Liu, Jinny L; Zabetakis, Dan; Acevedo-Vélez, Glendalys; Goldman, Ellen R; Anderson, George P
2013-01-08
Antibodies are commonly used as recognition elements in immunoassays because of their high specificity and affinity, and have seen extensive use in competitive assays for the detection of small molecules. However, these complex molecules require production either in animals or by mammalian cell cultures, and are not easily tailored through genetic manipulation. Single chain antibodies (scFv), recombinantly expressed molecules consisting of only the antibody's binding region joined via a linking peptide, can provide an alternative to intact antibodies. We describe the characterization of a new monoclonal antibody (mAb), 2G5B5, able to detect the small molecule explosive 2,4,6-trinitrotoluene (TNT) and the scFv derived from its variable regions. The mAb and scFv were tested by surface plasmon resonance to determine their affinity for an immobilized TNT surrogate; dissociation constants were determined to be 1.5×10(-13) M and 4.8×10(-10) M respectively. Circular dichroism was used to determine their melting temperatures. The mAb is more stable melting at ∼75°C while the scFv melts at ∼65°C. The recognition elements were incorporated into a competitive assay format using a bead-based multiplexing platform to examine their sensitivity and specificity. The scFv was able to detect TNT ∼10-fold more sensitively than the mAb in this assay format, allowing detection of TNT concentrations down to at least 1 μg L(-1). The 2G5B gave similar detection limits to a commercial anti-TNT mAb, but was less specific, recognizing 1,3,5-trinitrobenzene (TNB) equally well as TNT. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Thiery, Gwendoline; Mernaugh, Ray L.; Yan, Heping; Spraggins, Jeffrey M.; Yang, Junhai; Parl, Fritz F.; Caprioli, Richard M.
2012-10-01
Recombinant scfv antibodies specific for CYP1A1 and CYP1B1 P450 enzymes were combined with targeted imaging mass spectrometry to simultaneously detect the P450 enzymes present in archived, paraffin-embedded, human breast cancer tissue sections. By using CYP1A1 and CYP1B1 specific scfv, each coupled to a unique reporter molecule (i.e., a mass tag) it was possible to simultaneously detect multiple antigens within a single tissue sample with high sensitivity and specificity using mass spectrometry. The capability of imaging multiple antigens at the same time is a significant advance that overcomes technical barriers encountered when using present day approaches to develop assays that can simultaneously detect more than a single antigen in the same tissue sample.
Aghebati-Maleki, Leili; Younesi, Vahid; Baradaran, Behzad; Abdolalizadeh, Jalal; Motallebnezhad, Morteza; Nickho, Hamid; Shanehbandi, Dariush; Majidi, Jafar; Yousefi, Mehdi
2017-04-01
Receptor tyrosine kinase-like orphan receptor (ROR) proteins are a conserved family of tyrosine kinase receptors that function in developmental processes including cell survival, differentiation, cell migration, cell communication, cell polarity, proliferation, metabolism, and angiogenesis. ROR1 has recently been shown to be expressed in various types of cancer cells but not normal cells. Pharmacokinetics and pharmacodynamics of single-chain Fragment variable (scFv) antibodies provide potential therapeutic advantages over whole antibody molecules. In the present study, scFvs against a specific peptide from the extracellular domain of ROR1 were selected using phage display technology. The selected scFvs were further characterized using polyclonal and monoclonal phage enzyme-linked immunosorbent assay (ELISA), soluble monoclonal ELISA, colony PCR, and sequencing. Antiproliferative and apoptotic effects of selected scFv antibodies were also evaluated in lymphoma and myeloma cancer cell lines using MTT and annexin V/PI assays. The results of ELISA indicated specific reactions of the isolated scFvs against the ROR1 peptide. Colony PCR confirmed the presence of full-length V H and Vκ inserts. The percentages of cell growth after 24 h of treatment of cells with individual scFv revealed that the scFv significantly inhibited the growth of the RPMI8226 and chronic lymphocytic leukemia (CLL) cells in comparison with the untreated cells ( p < 0.05). Interestingly, 24-h treatment with specific scFv induced apoptosis cell death in the RPMI8226 and CLL cells. Taken together, our results demonstrate that targeting of ROR1 using peptide-specific scFv can be an effective immunotherapy strategy in hematological malignancies.
Tohidkia, Mohammad R; Sepehri, Maryam; Khajeh, Shirin; Barar, Jaleh; Omidi, Yadollah
2017-09-01
Phage display technology (PDT) is a powerful tool for the isolation of recombinant antibody (Ab) fragments. Using PDT, target molecule-specific phage-Ab clones are enriched through the "biopanning" process. The individual specific binders are screened by the monoclonal scFv enzyme-linked immunosorbent assay (ELISA) that may associate with inevitable false-negative results. Thus, in this study, three strategies were investigated for optimization of the scFvs screening using Tomlinson I and J libraries, including (1) optimizing the expression of functional scFvs, (2) improving the sensitivity of ELISA, and (3) preparing different samples containing scFvs. The expression of all scFv Abs was significantly enhanced when scFv clones were cultivated in the terrific broth (TB) medium at the optimum temperature of 30 °C. The protein A-conjugated with horseradish peroxidase (HRP) was found to be a well-suited reagent for the detection of Ag-bound scFvs in comparison with either anti-c-myc Ab or the mixing procedure. Based on our findings, it seems there is no universal media supplement for an improved expression of all scFvs derived from both Tomlinson I and J libraries. We thus propose that expression of scFv fragments in a microplate scale is largely dependent on a variety of parameters, in particular the scFv clones and relevant sequences.
Fast conversion of scFv to Fab antibodies using type IIs restriction enzymes.
Sanmark, Hanna; Huovinen, Tuomas; Matikka, Tero; Pettersson, Tiina; Lahti, Maria; Lamminmäki, Urpo
2015-11-01
Single chain variable fragment (scFv) antibody libraries are widely used for developing novel bioaffinity reagents, although Fab or IgG molecules are the preferred antibody formats in many final applications. Therefore, rapid conversion methods for combining multiple DNA fragments are needed to attach constant domains to the scFv derived variable domains. In this study we describe a fast and easy cloning method for the conversion of single framework scFv fragments to Fab fragments using type IIS restriction enzymes. All cloning steps excluding plating of the Fab transformants can be done in 96 well plates and the procedure can be completed in one working day. The concept was tested by converting 69 scFv clones into Fab format on 96 well plates, which resulted in 93% success rate. The method is particularly useful as a high-throughput tool for the conversion of the chosen scFv clones into Fab molecules in order to analyze them as early as possible, as the conversion can significantly affect the binding properties of the chosen clones. Copyright © 2015 Elsevier B.V. All rights reserved.
SPM for functional identification of individual biomolecules
NASA Astrophysics Data System (ADS)
Ros, Robert; Schwesinger, Falk; Padeste, Celestino; Plueckthun, Andreas; Anselmetti, Dario; Guentherodt, Hans-Joachim; Tiefenauer, Louis
1999-06-01
The identification of specific binding molecules is of increasing interest in the context of drug development based on combinatorial libraries. Scanning Probe Microscopy (SPM) is the method of choice to image and probe individual biomolecules on a surface. Functional identification of biomolecules is a first step towards screening on a single molecule level. As a model system we use recombinant single- chain Fv fragment (scFv) antibody molecules directed against the antigen fluorescein. The scFv's are covalently immobilized on a flat gold surface via the C-terminal cysteine, resulting in a high accessibility of the binding site. The antigen is immobilized covalently via a long hydrophilic spacer to the silicon nitride SPM-tip. This arrangement allows a direct measurement of binding forces. Thus, closely related antibody molecules differing in only one amino acid at their binding site could be distinguished. A novel SPM-software has been developed which combines imaging, force spectroscopic modes, and online analysis. This is a major prerequisite for future screening methods.
Sheng, Wei-Jin; Miao, Qing-Fang; Zhen, Yong-Su
2009-06-01
Recent studies have shown that epidermal growth factor receptor (EGFR) is an important target for cancer therapy. The present study prepared single chain Fv (scFv) directed against EGFR. Balb/c mice were immunized by human carcinoma A431 cells, and total RNA of the splenic cells was extracted. VH and VL gene fragments were amplified by RT-PCR and further joined into scFv gene with a linker, then scFv gene fragments were ligated into the phagemid vector pCANTAB 5E. The phagemid containing scFv were transformed into electro-competent E. coli TG1 cells. The recombinant phage antibody library was constructed through rescuing the transformed cells with help phage M13K07. The specified recombinant phages were enriched through 5 rounds of affinity panning and the anti-EGFR phage scFv clones were screened and identified with ELISA. A total of 48 clones from the library were selected randomly and 45 clones were identified positive. After infecting E. coli HB2151 cells with one positive clone, soluble recombinant antibodies about 27 kD were produced and located in the periplasm and the supernatant. The result of sequencing showed that the scFv gene was 768 bp, which encoded 256 amino acid residues. VH and VL including 3 CDRs and 4 FRs, respectively, were all homologous to mouse Ig. The soluble scFv showed the specific binding activity to purified EGFR and EGFR located in carcinoma cell membrane. The successful preparation of anti-EGFR scFv will provide an EGFR targeted molecule for the development of antibody-based drugs and biological therapy of cancer.
Moricoli, Diego; Muller, William A.; Carbonella, Damiano Cosimo; Balducci, Maria Cristina; Dominici, Sabrina; Fiori, Valentina; Watson, Richard; Weber, Evan; Cianfriglia, Maurizio; Scotlandi, Katia; Magnani, Mauro
2015-01-01
Migration of leukocytes into a site of inflammation involves several steps mediated by various families of adhesion molecules. CD99 play a significant role in transendothelial migration (TEM) of leukocytes. Inhibition of TEM by specific monoclonal antibody (mAb) can provide a potent therapeutic approach to treating inflammatory conditions. However, the therapeutic utilization of whole IgG can lead to an inappropriate activation of Fc receptor-expressing cells inducing serious adverse side effects due to cytokine release. In this regard, specific recombinant antibody in single chain variable fragments (scFvs) originated by phage library may offer a solution by affecting TEM function in a safe clinical context. However, this consideration requires large scale production of functional scFv antibodies under GMP conditions and hence, the absence of toxic reagents utilized for the solubilization and refolding steps of inclusion bodies that may discourage industrial application of these antibody fragments. In order to apply the scFv anti-CD99 named C7A in a clinical setting we herein describe an efficient and large scale production of the antibody fragments expressed in E.coli as insoluble protein avoiding gel filtration chromatography approach, and laborious refolding step pre- and post-purification. Using differential salt elution which is a simple, reproducible and effective procedure we are able to separate scFv in monomer format from aggregates. The purified scFv antibody C7A exhibits inhibitory activity comparable to an antagonistic conventional mAb, thus providing an excellent agent for blocking CD99 signalling. Thanks to the original purification protocol that can be extended to other scFvs that are expressed as inclusion bodies in bacterial systems, the scFv anti-CD99 C7A herein described represents the first step towards the construction of new antibody therapeutic. PMID:24798881
Ueno, Aruto; Arakawa, Fumiko; Abe, Hironori; Matsumoto, Hisanobu; Kudo, Toshio; Asano, Ryutaro; Tsumoto, Kohei; Kumagai, Izumi; Kuroki, Motomu; Kuroki, Masahide
2002-01-01
The bacterial superantigen staphylococcal enterotoxin A (SEA) is an extremely potent activator of T lymphocytes when presented on major histocompatibility complex (MHC) class II molecules. To develop a tumor-specific superantigen for cancer therapy, we constructed a recombinant fusion protein of SEA and the single-chain variable fragment (scFv) of the FU-MK-1 antibody, which recognizes a glycoprotein antigen (termed MK-1 antigen) present on most carcinomas. We employed recombinant DNA techniques to fuse recombinant mutant SEA to an scFv antibody derived from FU-MK-1 and the resulting fusion protein (SEA/FUscFv) was produced by a bacterial expression system, purified with a metal-affinity column, and characterized for its MK-1-binding specificity and its antitumor activity. The SEA/FUscFv fusion protein retained the reactivity with MK-1-expressing tumor cells, introduced a specific cytotoxicity of lymphokine-activated killer T-cells to the tumor cells, and consequently suppressed the tumor growth in a SCID mouse xenograft model. This genetically engineered SEA/FUscFv fusion protein may serve as a potentially useful immunotherapeutic reagent for human MK-1-expressing tumors.
Yu, Bing; Ni, Ming; Li, Wen-Han; Lei, Ping; Xing, Wei; Xiao, Dai-Wen; Huang, Yu; Tang, Zhen-Jie; Zhu, Hui-Fen; Shen, Guan-Xin
2005-07-14
To identify the scFv antibody fragments specific for hepatocellular carcinoma by biopanning from a large human naive scFv phage display library. A large human naive scFv phage library was used to search for the specific targets by biopanning with the hepatocellular carcinoma cell line HepG2 for the positive-selecting and the normal liver cell line L02 for the counter-selecting. After three rounds of biopanning, individual scFv phages binding selectively to HepG2 cells were picked out. PCR was carried out for identification of the clones containing scFv gene sequence. The specific scFv phages were selected by ELISA and flow cytometry. DNA sequences of positive clones were analyzed by using Applied Biosystem Automated DNA sequencers 3 730. The expression proteins of the specific scFv antibody fragments in E.coli HB2151 were purified by the affinity chromatography and detected by SDS-PAGE, Western blot and ELISA. The biological effect of the soluble antibody fragments on the HepG2 cells was investigated by observing the cell proliferation. Two different positive clones were obtained and the functional variable sequences were identified. Their DNA sequences of the scFv antibody fragments were submitted to GenBank (accession nos: AY686498 and AY686499). The soluble scFv antibody fragments were successfully expressed in E.coli HB2151. The relative molecular mass of the expression products was about 36 ku, according to its predicted M(r) value. The two soluble scFv antibody fragments also had specific binding activity and obvious growth inhibition properties to HepG2 cells. The phage library biopanning permits identification of specific antibody fragments for hepatocellular carcinoma and affords experiment evidence for its immunotherapy study.
Banisadr, Arsham; Safdari, Yaghoub; Kianmehr, Anvarsadat; Pourafshar, Mahdieh
2018-04-03
The aim of this study was to produce a humanized single chain antibody (scFv) as a potential improved product design to target EGFR (Epidermal Growth Factor Receptor) overexpressing cancer cells. To this end, CDR loops of cetuximab (an FDA-approved anti-EGFR antibody) were grafted on framework regions derived from type 3 (VH3 and VL3 kappa) human germline sequences to obtain recombinant VH and VL domainslinked together with a flexible linker [(Gly 4 Ser) 3 ] to form a scFv. Codon optimized synthetic gene encoding the scFv (with NH2-VH-linker-VL-COOH orientation) was expressed in E. coli Origami™ 2(DE3) cells and the resultant scFv purified by using Ni-NTA affinity chromatography. The scFv, called cet.Hum scFv, was evaluated in ELISA and immunoblot to determine whether it can recognize EGFR. The scFv was able to recognize EGFR over-expressing cancer cells (A-431) but failed to detect cancer cells with low levels of EGFR (MCF-7 cells). Although the affinity of the scFv forA-431 cells was 9 fold lower than that of cetuximab, it was strong enough to recognize these cells. Considering its ability to bind EGFR molecules, the scFv may exhibit a potential application for the detection of EGFR-overexpressing cancer cells.
Moricoli, Diego; Muller, William Anthony; Carbonella, Damiano Cosimo; Balducci, Maria Cristina; Dominici, Sabrina; Watson, Richard; Fiori, Valentina; Weber, Evan; Cianfriglia, Maurizio; Scotlandi, Katia; Magnani, Mauro
2014-06-01
Migration of leukocytes into site of inflammation involves several steps mediated by various families of adhesion molecules. CD99 play a significant role in transendothelial migration (TEM) of leukocytes. Inhibition of TEM by specific monoclonal antibody (mAb) can provide a potent therapeutic approach to treating inflammatory conditions. However, the therapeutic utilization of whole IgG can lead to an inappropriate activation of Fc receptor-expressing cells, inducing serious adverse side effects due to cytokine release. In this regard, specific recombinant antibody in single chain variable fragments (scFvs) originated by phage library may offer a solution by affecting TEM function in a safe clinical context. However, this consideration requires large scale production of functional scFv antibodies and the absence of toxic reagents utilized for solubilization and refolding step of inclusion bodies that may discourage industrial application of these antibody fragments. In order to apply the scFv anti-CD99 named C7A in a clinical setting, we herein describe an efficient and large scale production of the antibody fragments expressed in E. coli as periplasmic insoluble protein avoiding gel filtration chromatography approach, and laborious refolding step pre- and post-purification. Using differential salt elution which is a simple, reproducible and effective procedure we are able to separate scFv in monomer format from aggregates. The purified scFv antibody C7A exhibits inhibitory activity comparable to an antagonistic conventional mAb, thus providing an excellent agent for blocking CD99 signaling. This protocol can be useful for the successful purification of other monomeric scFvs which are expressed as periplasmic inclusion bodies in bacterial systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Isolation and characterization of a novel human scFv inhibiting EGFR vIII expressing cancers.
Rahbarnia, Leila; Farajnia, Safar; Babaei, Hossein; Majidi, Jafar; Dariushnejad, Hassan; Hosseini, Mohammad Kazem
2016-12-01
EGFRvIII, a mutant form of epidermal growth factor receptor is highly expressed in glioblastoma, carcinoma of the breast, ovary, and lung but not in normal cells. This tumor specific antigen has emerged as a promising candidate for antibody based therapy of several cancers. The aim of the present study was isolation and characterization of a human single chain antibody against EGFRvIII as a promising target for cancer therapy. For this, a synthetic peptide corresponding to EGFRvIII protein was used for screening the naive human scFv phage library. Selection was performed using a novel screening strategy for enrichment of rare specific clones. After five rounds of screening, six positive scFv clones against EGFRvIII were selected using monoclonal phage ELISA, among them, a clone with an amber mutation in VH CDR2 coding sequence showed higher reactivity. The mutation was corrected through site directed mutagenesis and then scFv fragment was expressed after subcloning into the bacterial expression vector. Expression in BL21 pLysS resulted in a highly soluble scFv appeared in soluble fraction of E. coli lysate. Bioinformatic in silico analysis between scFv and EGFRvIII sequences confirmed specific binding of desired scFv to EGFRvIII in CDR regions. The specific reactivity of the purified scFv with native EGFRvIII was confirmed by cell based ELISA and western blot. In conclusion, human anti- EGFRvIII scFv isolated from a scFv phage library displayed high reactivity with EGFRvIII. The scFv isolated in this study can be the groundwork for developing more effective diagnostic and therapeutic agents against EGFRvIII expressing cancers. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Monedero, Vicente; Rodríguez-Díaz, Jesús; Viana, Rosa; Buesa, Javier; Pérez-Martínez, Gaspar
2004-01-01
Single-chain antibodies (scFv) recognizing the VP8* fraction of rotavirus outer capsid and blocking rotavirus infection in vitro were isolated by phage display. Vectors for the extracellular expression in Lactobacillus casei of one of the scFv were constructed. L. casei was able to secrete active scFv to the growth medium, showing the potential of probiotic bacteria to be engineered to express molecules suitable for in vivo antirotavirus therapies. PMID:15528568
Han, Dong-gang; Duan, Xiao-yi; Guo, You-min; Zhou, Qi; Wang, Quan-ying; Yang, Guang-xiao
2010-01-01
To obtain specific anti-epidermal growth factor receptor variant III (EGFRvIII) single chain antibody (ScFv) by phage antibody library display system. The total RNA was extracted from the spleen B cells of BALB/c mice immunized with pep-3-OVA protein, and the first-strand cDNA was synthesized by reverse transcription. Antibody VH and VL gene fragments were amplified and joined to a ScFv gene with the linker. The ScFv gene was ligated into the phagemid vector pCANTAB5E, which was transformed into competent E. coli TG1. The transformed cells were then infected with M13KO7 helper phage to yield the recombinant phage to construct the phage ScFv library. Pep-3-BSA protein was used to screen the phage antibody library and ELISA carried out to characterize the activity of the antibody. The VH and VL gene fragments of the antibody were about 350 bp and 320 bp in length as analyzed by agarose gel electrophoresis. The ScFv gene was 780 bp, consistent with the expected length. The recombinant phagemid with ScFv gene insert was rescued, and an immune phage ScFv library with the content of 5.0x10(6) was constructed. The recombinant ScFv phage had a titer of 3.0x10(4) cfu/ml, and the fourth phage harvest yielded 56 times as much as that of the first one. SDS-PAGE demonstrated a molecular mass of the soluble ScFv of about 28 kD. ELISA results indicated good specificity of the ScFv to bind EGFRvIII. An immune phage ScFv library is successfully constructed, and the ScFv antibody fragment is capable of specific binding to EGFRvIII.
Phoolcharoen, Waranyoo; Prehaud, Christophe; van Dolleweerd, Craig J; Both, Leonard; da Costa, Anaelle; Lafon, Monique; Ma, Julian K-C
2017-10-01
The biomedical applications of antibody engineering are developing rapidly and have been expanded to plant expression platforms. In this study, we have generated a novel antibody molecule in planta for targeted delivery across the blood-brain barrier (BBB). Rabies virus (RABV) is a neurotropic virus for which there is no effective treatment after entry into the central nervous system. This study investigated the use of a RABV glycoprotein peptide sequence to assist delivery of a rabies neutralizing single-chain antibody (ScFv) across an in cellulo model of human BBB. The 29 amino acid rabies virus peptide (RVG) recognizes the nicotinic acetylcholine receptor (nAchR) at neuromuscular junctions and the BBB. ScFv and ScFv-RVG fusion proteins were produced in Nicotiana benthamiana by transient expression. Both molecules were successfully expressed and purified, but the ScFv expression level was significantly higher than that of ScFv-RVG fusion. Both ScFv and ScFv-RVG fusion molecules had potent neutralization activity against RABVin cellulo. The ScFv-RVG fusion demonstrated increased binding to nAchR and entry into neuronal cells, compared to ScFv alone. Additionally, a human brain endothelial cell line BBB model was used to demonstrate that plant-produced ScFv-RVG P fusion could translocate across the cells. This study indicates that the plant-produced ScFv-RVG P fusion protein was able to cross the in celluloBBB and neutralize RABV. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Patterson, Kelcey G.; Dixon Pittaro, Jennifer L.; Bastedo, Peter S.; Hess, David A.; Haeryfar, S. M. Mansour; McCormick, John K.
2014-01-01
Superantigens (SAgs) are microbial toxins that cross-link T cell receptors with major histocompatibility class II (MHC-II) molecules leading to the activation of large numbers of T cells. Herein, we describe the development and preclinical testing of a novel tumor-targeted SAg (TTS) therapeutic built using the streptococcal pyrogenic exotoxin C (SpeC) SAg and targeting cancer cells expressing the 5T4 tumor-associated antigen (TAA). To inhibit potentially harmful widespread immune cell activation, a SpeC mutation within the high-affinity MHC-II binding interface was generated (SpeCD203A) that demonstrated a pronounced reduction in mitogenic activity, yet this mutant could still induce immune cell-mediated cancer cell death in vitro. To target 5T4+ cancer cells, we engineered a humanized single chain variable fragment (scFv) antibody to recognize 5T4 (scFv5T4). Specific targeting of scFv5T4 was verified. SpeCD203A fused to scFv5T4 maintained the ability to activate and induce immune cell-mediated cytotoxicity of colorectal cancer cells. Using a xenograft model of established human colon cancer, we demonstrated that the SpeC-based TTS was able to control the growth and spread of large tumors in vivo. This required both TAA targeting by scFv5T4 and functional SAg activity. These studies lay the foundation for the development of streptococcal SAgs as ‘next-generation’ TTSs for cancer immunotherapy. PMID:24736661
Synergistic capture of Clostridium botulinum Type A neurotoxin by scFv antibodies to novel epitopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, Sean A.; Barr, John R.; Kalb, Suzanne R.
2011-10-01
A non-immune library of human single chain fragment variable (scFv) antibodies displayed on Saccharomyces cerevisiae was screened for binding to the Clostridium botulinum neurotoxin serotype A binding domain [BoNT/A (Hc)] with the goal of identifying scFv to novel epitopes. To do this, an antibody-mediated labeling strategy was used in which antigen-binding yeast clones were selected after labeling with previously characterized monoclonal antibodies (MAbs) specific to the Hc. Twenty unique scFv clones were isolated that bound Hc. Of these, three also bound to full-length BoNT/A toxin complex with affinities ranging from 5 nM to 170 nM. Epitope binning showed that themore » three unique clones recognized at least two epitopes that were distinct from one another and from the detection MAbs. After production in E. coli, the scFv were coupled to magnetic particles and tested for their ability to capture BoNT/A holotoxin using an Endopep-MS assay. In this assay, toxin captured by scFv coated magnetic particles was detected by incubation of the complex with a peptide containing a BoNT/A-specific cleavage sequence. Mass spectrometry was used to detect the ratio of intact peptide to cleavage products as evidence for toxin capture. When tested individually, each of the scFv showed a weak positive Endopep-MS result. However, when the particles were coated with all three scFv simultaneously, they exhibited significantly higher Endopep-MS activity, consistent with synergistic binding. These results demonstrate novel approaches toward the isolation and characterization of scFv antibodies specific to unlabeled antigen. They also provide evidence that distinct scFv antibodies can work synergistically to increase the efficiency of antigen capture onto a solid support.« less
Phage displayed scFv: pIII scaffold may fine tune binding specificity.
Goswami, Pooja; Saini, Deepti; Sinha, Subrata
2009-10-01
The fine specificity of antibodies is important for their discriminating powers during diagnostics and in vivo therapy. We have attempted to isolate human scFv antibodies to the oncofetal antigen, the placental isozyme of alkaline phosphatase (PLAP) in which it is important to distinguish between the closely related intestinal alkaline phosphatase (IAP) and bone alkaline phosphatase (BAP) isozymes. As the antibodies are selected in the phage displayed form and might be finally used as different entities, including the soluble scFv form, it may be important to look at the influence of scaffolds in determining specificity. There have been earlier reports of the role of the constant region and other scaffolding proteins in determining specificity. In this paper, we report isolation of one such clone, E6, which showed specificity to PLAP in phage antibody form but lost the specificity when soluble scFv was tested for same, and showed partial cross reactivity to BAP. We suggest that the altered specificity of scFv might be the result of loss of phage pIII scaffold, which is present in phage-displayed antibody and may help the displayed antibody to assume specific conformational structure, which may govern binding characteristics of the same.
Niesen, Judith; Stein, Christoph; Brehm, Hannes; Hehmann-Titt, Grit; Fendel, Rolf; Melmer, Georg; Fischer, Rainer; Barth, Stefan
2015-12-01
The epidermal growth factor receptor (EGFR) is overexpressed in many solid tumors. EGFR-specific monoclonal antibodies (mAbs), such as cetuximab and panitumumab, have been approved for the treatment of colorectal and head and neck cancer. To increase tissue penetration, we constructed single-chain fragment variable (scFv) antibodies derived from these mAbs and evaluated their potential for targeted cancer therapy. The resulting scFv-based EGFR-specific immunotoxins (ITs) combine target specificity of the full-size mAb with the cell-killing activity of a toxic effector domain, a truncated version of Pseudomonas exotoxin A (ETA'). The ITs and corresponding imaging probes were tested in vitro against four solid tumor entities (rhabdomyosarcoma, breast, prostate and pancreatic cancer). Specific binding and internalization of the ITs scFv2112-ETA' (from cetuximab) and scFv1711-ETA' (from panitumumab) were demonstrated by flow cytometry and for the scFv-SNAP-tag imaging probes by live cell imaging. Cytotoxic potential of the ITs was analyzed in cell viability and apoptosis assays. Binding of the ITs was proofed ex vivo on rhabdomyosarcoma, prostate and breast cancer formalin-fixed paraffin-embedded biopsies. Both novel ITs showed significant pro-apoptotic and anti-proliferative effects toward the target cells, achieving IC50 values of 4 pM (high EGFR expression) to 460 pM (moderate EGFR expression). Additionally, rapid internalization and specific in vitro and ex vivo binding on patient tissue were confirmed. These data demonstrate the potent therapeutic activity of two novel EGFR-specific ETA'-based ITs. Both molecules are promising candidates for further development toward clinical use in the treatment of various solid tumors to supplement the existing therapeutic regimes.
Sun, H.; Wu, G.M.; Chen, Y.Y.; Tian, Y.; Yue, Y.H.; Zhang, G.L.
2014-01-01
Intercellular adhesion molecule-1 (ICAM-1) is an important factor in the progression of inflammatory responses in vivo. To develop a new anti-inflammatory drug to block the biological activity of ICAM-1, we produced a monoclonal antibody (Ka=4.19×10−8 M) against human ICAM-1. The anti-ICAM-1 single-chain variable antibody fragment (scFv) was expressed at a high level as inclusion bodies in Escherichia coli. We refolded the scFv (Ka=2.35×10−7 M) by ion-exchange chromatography, dialysis, and dilution. The results showed that column chromatography refolding by high-performance Q Sepharose had remarkable advantages over conventional dilution and dialysis methods. Furthermore, the anti-ICAM-1 scFv yield of about 60 mg/L was higher with this method. The purity of the final product was greater than 90%, as shown by denaturing gel electrophoresis. Enzyme-linked immunosorbent assay, cell culture, and animal experiments were used to assess the immunological properties and biological activities of the renatured scFv. PMID:24919171
Selection of stable scFv antibodies by phage display.
Brockmann, Eeva-Christine
2012-01-01
ScFv fragments are popular recombinant antibody formats but often suffer from limited stability. Phage display is a powerful tool in antibody engineering and applicable also for stability selection. ScFv variants with improved stability can be selected from large randomly mutated phage displayed libraries with a specific antigen after the unstable variants have been inactivated by heat or GdmCl. Irreversible scFv denaturation, which is a prerequisite for efficient selection, is achieved by combining denaturation with reduction of the intradomain disulfide bonds. Repeated selection cycles of increasing stringency result in enrichment of stabilized scFv fragments. Procedures for constructing a randomly mutated scFv library by error-prone PCR and phage display selection for enrichment of stable scFv antibodies from the library are described here.
Yuasa, Noriyuki; Koyama, Tsubasa; Fujita-Yamaguchi, Yoko
2014-02-01
T-antigen (Galβ1-3GalNAcα-1-Ser/Thr) is an oncofetal antigen that is commonly expressed as a carbohydrate determinant in many adenocarcinomas. Since it is associated with tumor progression and metastasis, production of recombinant antibodies specific for T-antigen could lead to the development of cancer diagnostics and therapeutics. Previously, we isolated and characterized 11 anti-T-antigen phage clones from a phage library displaying human single-chain antibodies (scFvs) and purified one scFv protein, 1G11. More recently, we purified and characterized 1E8 scFv protein using a Drosophila S2 expression system. In the current study, four anti-T-antigen scFv genes belonging to Groups 1-4 were purified from inclusion bodies expressed in Escherichia coli cells. Inclusion bodies isolated from E. coli cells were denatured in 3.5 M Gdn-HCl. Solubilized His-tagged scFv proteins were purified using Ni(2+)-Sepharose column chromatography in the presence of 3.5 M Gdn-HCl. Purified scFv proteins were refolded according to a previously published method of step-wise dialysis. Two anti-T-antigen scFv proteins, 1E6 and 1E8 that belong to Groups 1 and 2, respectively, were produced in sufficient amounts, thus allowing further characterization of their binding activity with T-antigen. Specificity and affinity constants determined using enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR), respectively, provided evidence that both 1E8 and 1E6 scFv proteins are T-antigen specific and suggested that 1E8 scFv protein has a higher affinity for T-antigen than 1E6 scFv protein.
Charles, Paul T; Davis, Jasmine; Adams, André A; Anderson, George P; Liu, Jinny L; Deschamps, Jeffrey R; Kusterbeck, Anne W
2015-11-01
The development of explosives detection technologies has increased significantly over the years as environmental and national security agencies implement tighter pollution control measures and methods for improving homeland security. 2, 4, 6-Trinitrotoluene (TNT), known primarily as a component in munitions, has been targeted for both its toxicity and carcinogenic properties that if present at high concentrations can be a detriment to both humans, marine and plant ecosystems. Enabling end users with environmental detection and monitoring systems capable of providing real-time, qualitative and quantitative chemical analysis of these toxic compounds would be extremely beneficial. Reported herein is the development of a multi-channeled microfluidic device immobilized with single chain fragment variable (scFv) recombinant proteins specific for the explosive, TNT. Fluorescence displacement immunoassays performed under constant flow demonstrated trace level sensitivity and specificity for TNT. The utility of three multi-channeled devices immobilized with either (1) scFv recombinant protein, (2) biotinylated-scFv (bt-scFv) and (3) monoclonal anti-TNT (whole IgG molecule) were investigated and compared. Fluorescence dose response curves, crossreactivity measurements and limits of detection (LOD) for TNT were determined. Fluorescence displacement immunoassays for TNT in natural seawater demonstrated detection limits at sub-parts-per-billion levels (0.5 ppb) utilizing the microfluidic device with immobilized bt-scFv. Published by Elsevier B.V.
Isolation and characterization of anti c-met single chain fragment variable (scFv) antibodies.
Qamsari, Elmira Safaie; Sharifzadeh, Zahra; Bagheri, Salman; Riazi-Rad, Farhad; Younesi, Vahid; Abolhassani, Mohsen; Ghaderi, Sepideh Safaei; Baradaran, Behzad; Somi, Mohammad Hossein; Yousefi, Mehdi
2017-12-01
The receptor tyrosine kinase (RTK) Met is the cell surface receptor for hepatocyte growth factor (HGF) involved in invasive growth programs during embryogenesis and tumorgenesis. There is compelling evidence suggesting important roles for c-Met in colorectal cancer proliferation, migration, invasion, angiogenesis, and survival. Hence, a molecular inhibitor of an extracellular domain of c-Met receptor that blocks c-Met-cell surface interactions could be of great thera-peutic importance. In an attempt to develop molecular inhibitors of c-Met, single chain variable fragment (scFv) phage display libraries Tomlinson I + J against a specific synthetic oligopeptide from the extracellular domain of c-Met receptor were screened; selected scFv were then characterized using various immune techniques. Three c-Met specific scFv (ES1, ES2, and ES3) were selected following five rounds of panning procedures. The scFv showed specific binding to c-Met receptor, and significantly inhibited proliferation responses of a human colorectal carcinoma cell line (HCT-116). Moreover, anti- apoptotic effects of selected scFv antibodies on the HCT-116 cell line were also evaluated using Annexin V/PI assays. The results demonstrated rates of apoptotic cell death of 46.0, 25.5, and 37.8% among these cells were induced by use of ES1, ES2, and ES3, respectively. The results demonstrated ability to successfully isolate/char-acterize specific c-Met scFv that could ultimately have a great therapeutic potential in immuno-therapies against (colorectal) cancers.
Poulin, Kathy L; Lanthier, Robert M; Smith, Adam C; Christou, Carin; Risco Quiroz, Milagros; Powell, Karen L; O'Meara, Ryan W; Kothary, Rashmi; Lorimer, Ian A; Parks, Robin J
2010-10-01
Adenovirus (Ad) vectors are the most commonly used system for gene therapy applications, due in part to their ability to infect a wide array of cell types and tissues. However, many therapies would benefit from the ability to target the Ad vector only to specific cells, such as tumor cells for cancer gene therapy. In this study, we investigated the utility of capsid protein IX (pIX) as a platform for the presentation of single-chain variable-fragment antibodies (scFv) and single-domain antibodies (sdAb) for virus retargeting. We show that scFv can be displayed on the capsid through genetic fusion to native pIX but that these molecules fail to retarget the virus, due to improper folding of the scFv. Redirecting expression of the fusion protein to the endoplasmic reticulum (ER) results in correct folding of the scFv and allows it to recognize its epitope; however, ER-targeted pIX-scFv was incorporated into the Ad capsid at a very low level which was not sufficient to retarget virus infection. In contrast, a pIX-sdAb construct was efficiently incorporated into the Ad capsid and enhanced virus infection of cells expressing the targeted receptor. Taken together, our data indicate that pIX is an effective platform for presentation of large targeting polypeptides on the surface of the virus capsid, but the nature of the ligand can significantly affect its association with virions.
Johnson, Laura A; Scholler, John; Ohkuri, Takayuki; Kosaka, Akemi; Patel, Prachi R; McGettigan, Shannon E; Nace, Arben K; Dentchev, Tzvete; Thekkat, Pramod; Loew, Andreas; Boesteanu, Alina C; Cogdill, Alexandria P; Chen, Taylor; Fraietta, Joseph A; Kloss, Christopher C; Posey, Avery D; Engels, Boris; Singh, Reshma; Ezell, Tucker; Idamakanti, Neeraja; Ramones, Melissa H; Li, Na; Zhou, Li; Plesa, Gabriela; Seykora, John T; Okada, Hideho; June, Carl H; Brogdon, Jennifer L; Maus, Marcela V
2015-02-18
Chimeric antigen receptors (CARs) are synthetic molecules designed to redirect T cells to specific antigens. CAR-modified T cells can mediate long-term durable remissions in B cell malignancies, but expanding this platform to solid tumors requires the discovery of surface targets with limited expression in normal tissues. The variant III mutation of the epidermal growth factor receptor (EGFRvIII) results from an in-frame deletion of a portion of the extracellular domain, creating a neoepitope. We chose a vector backbone encoding a second-generation CAR based on efficacy of a murine scFv-based CAR in a xenograft model of glioblastoma. Next, we generated a panel of humanized scFvs and tested their specificity and function as soluble proteins and in the form of CAR-transduced T cells; a low-affinity scFv was selected on the basis of its specificity for EGFRvIII over wild-type EGFR. The lead candidate scFv was tested in vitro for its ability to direct CAR-transduced T cells to specifically lyse, proliferate, and secrete cytokines in response to antigen-bearing targets. We further evaluated the specificity of the lead CAR candidate in vitro against EGFR-expressing keratinocytes and in vivo in a model of mice grafted with normal human skin. EGFRvIII-directed CAR T cells were also able to control tumor growth in xenogeneic subcutaneous and orthotopic models of human EGFRvIII(+) glioblastoma. On the basis of these results, we have designed a phase 1 clinical study of CAR T cells transduced with humanized scFv directed to EGFRvIII in patients with either residual or recurrent glioblastoma (NCT02209376). Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Wang, Baiyang; Chen, Yi-Bin; Ayalon, Oran; Bender, Jeffrey; Garen, Alan
1999-02-01
Two antimelanoma immunoconjugates containing a human single-chain Fv (scFv) targeting domain conjugated to the Fc effector domain of human IgG1 were synthesized as secreted two-chain molecules in Chinese hamster ovary and Drosophila S2 cells, and purified by affinity chromatography on protein A. The scFv targeting domains originally were isolated as melanoma-specific clones from a scFv fusion-phage library, derived from the antibody repertoire of a vaccinated melanoma patient. The purified immunoconjugates showed similar binding specificity as did the fusion-phage clones. Binding occurred to human melanoma cells but not to human melanocytes or to several other types of normal cells and tumor cells. A 250-kDa melanoma protein was immunoprecipitated by the immunoconjugates and analyzed by mass spectrometry, using two independent procedures. A screen of protein sequence databases showed an exact match of several peptide masses between the immunoprecipitated protein and the core protein of a chondroitin sulfate proteoglycan, which is expressed on the surface of most human melanoma cells. The Fc effector domain of the immunoconjugates binds natural killer (NK) cells and also the C1q protein that initiates the complement cascade; both NK cells and complement can activate powerful cytolytic responses against the targeted tumor cells. An in vitro cytolysis assay was used to test for an immunoconjugate-dependent specific cytolytic response against cultured human melanoma cells by NK cells and complement. The melanoma cells, but not the human fibroblast cells used as the control, were efficiently lysed by both NK cells and complement in the presence of the immunoconjugates. The in vitro results suggest that the immunoconjugates also could activate a specific cytolytic immune response against melanoma tumors in vivo.
Zarei, Najmeh; Vaziri, Behrouz; Shokrgozar, Mohammad Ali; Mahdian, Reza; Fazel, Ramin; Khalaj, Vahid
2014-12-01
Single-chain variable fragments (scFvs) have recently emerged as attractive candidates in targeted immunotherapy of various malignancies. The anti-CD22 scFv is able to target CD22, on B cell surface and is being considered as a promising molecule in targeted immunotherapy of B cell malignancies. The recombinant anti-CD22 scFv has been successfully expressed in Escherichia coli; however, the insufficient production yield has been a major bottleneck for its therapeutic application. The methylotrophic yeast Pichia pastoris has become a highly popular expression host for the production of a wide variety of recombinant proteins such as antibody fragments. In this study, we used the Pichia expression system to express a humanized scFv antibody against CD22. The full-length humanized scFv gene was codon optimized, cloned into the pPICZαA and expressed in GS115 strain. The maximum production level of the scFv (25 mg/L) were achieved at methanol concentration, 1 %; pH 6.0; inoculum density, OD600 = 3 and the induction time of 72 h. The correlation between scFv gene dosage and expression level was also investigated by real-time PCR, and the results confirmed the presence of such correlation up to five gene copies. Immunofluorescence and flow cytometry studies and Biacore analysis demonstrated binding to CD22 on the surface of human lymphoid cell line Raji and recombinant soluble CD22, respectively. Taken together, the presented data suggest that the Pichia pastoris can be considered as an efficient host for the large-scale production of anti-CD22 scFv as a promising carrier for targeted drug delivery in treatment of CD22(+) B cell malignancies.
Sun, Dongbo; Shi, Hongyan; Chen, Jianfei; Shi, Da; Zhu, Qinghe; Zhang, Hong; Liu, Shengwang; Wang, Yunfeng; Qiu, Huaji; Feng, Li
2012-06-01
Porcine aminopeptidase N (pAPN) is a common cellular receptor for swine transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV). To investigate single-chain fragment variable (scFv) repertoire against pAPN, the genes encoding the immunoglobulin light chain variable region (VL) and heavy chain variable region (VH) were amplified by reverse transcript polymerase chain reaction (RT-PCR) using a series of degenerate primers from the spleen of BABL/c mice immunized with native pAPN. The VL and VH amplicons were combined randomly by a 12 amino acid flexible linker by splicing by overlap extension PCR (SOE-PCR), which produced the scFv gene repertoire. After ligation of the scFv gene repertoire into the T7Select10-3b vector, a mouse scFv phage library specific for pAPN was produced through in vitro packaging. The primary scFv library against pAPN contained 2.0×10(7) recombinant phage clones, and the titer of the amplified library was 3.6×10(9)pfu/mL. BstNI restriction analysis and DNA sequencing revealed that 28 phage clones from the primary pAPN scFv library showed excellent diversity. The effectiveness of the scFv library against pAPN was verified further by phage ELISA using the recombinant protein of the pAPN C subunit as coating antigen. The construction and evaluation of a murine scFv library against the common receptor pAPN of porcine coronaviruses TGEV and PEDV using the T7 phage display system are described. Copyright © 2012 Elsevier B.V. All rights reserved.
Nguyen, X-H; Trinh, T-L; Vu, T-B-H; Le, Q-H; To, K-A
2018-02-01
To select Listeria monocytogenes-specific single-chain fragment variable (scFv) antibodies from a phage-display library by a novel simple and cost-effective immobilization method. Light expanded clay aggregate (LECA) was used as biomass support matrix for biopanning of a phage-display library to select L. monocytogenes-specific scFv antibody. Four rounds of positive selection against LECA-immobilized L. monocytogenes and an additional subtractive panning against Listeria innocua were performed. The phage clones selected using this panning scheme and LECA-based immobilization method exhibited the ability to bind L. monocytogenes without cross-reactivity toward 10 other non-L. monocytogenes bacteria. One of the selected phage clones was able to specifically recognize three major pathogenic serotypes (1/2a, 1/2b and 4b) of L. monocytogenes and 11 tested L. monocytogenes strains isolated from foods. The LECA-based immobilization method is applicable for isolating species-specific anti-L. monocytogenes scFv antibodies by phage display. The isolated scFv antibody has potential use in development of immunoassay-based methods for rapid detection of L. monocytogenes in food and environmental samples. In addition, the LECA immobilization method described here could feasibly be employed to isolate specific monoclonal antibodies against any given species of pathogenic bacteria from phage-display libraries. © 2017 The Society for Applied Microbiology.
Development of a Novel Human scFv Against EGFR L2 Domain by Phage Display Technology.
Rahbarnia, Leila; Farajnia, Safar; Babaei, Hossein; Majidi, Jafar; Veisi, Kamal; Khosroshahi, Shiva Ahdi; Tanomand, Asghar
2017-01-01
Epidermal growth factor receptor (EGFR) as a transmembrane tyrosine kinase receptor frequently overexpresses in tumors with epithelial origin. The L2 domain from extracellular part of EGFR is involved in ligand binding and the blockage of this domain prevents activation of related signaling pathways. This study was aimed to develop a novel human scFv against EGFR L2 domain as a promising target for cancer therapy. The L2 recombinant protein was purified and used for panning a human scFv phage library (Tomlinson I). In this study, a novel screening strategy was applied to select clones with high binding and enrichment of rare specific phage clones of the L2 protein. After five biopanning rounds several specific clones were isolated which among them one phage clone with high binding was purified for further analysis. The specific interaction of selected clone against target antigen was confirmed by ELISA and western blotting. Immunofluorescence staining showed that purified scFv binds to A431 cells surface, displaying EGFR surface receptor. In the present study, we isolated for the first time a novel human scFv against EGFR L2 domain. This study can be the groundwork for developing more effective diagnostic and therapeutic agents against EGFR overexpressing cancers using this novel human anti-L2 ScFv. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
de la Cruz, Silvia; Alcocer, Marcos; Madrid, Raquel; García, Aina; Martín, Rosario; González, Isabel; García, Teresa
2016-06-10
The methylotropic yeast Pichia pastoris has demonstrated its suitability for large-scale production of recombinant proteins. As an eukaryotic organism P. pastoris presents a series of advantages at expression and processing of heterologous proteins when compared with Escherichia coli. In this work, P. pastoris has been used to express a scFv from a human synthetic library previously shown to bind almond proteins. In order to facilitate purification and post processing manipulations, the scFv was engineered with a C-terminal tag and biotinylated in vivo. After purification, biotinylated scFv were bound to avidin conjugated with HRP producing a multimeric scFv. The multimeric scFv showed to maintain their ability to recognize almond protein when assayed in ELISA, reaching a LOD of 470mgkg(-1). This study describes an easy method to produce large quantities of in vivo biotinylated scFv in P. pastoris. By substituting the enzyme or fluorochromes linked to avidin, it will be possible to generate a diverse number of multimeric scFv as probes to suit different analytical platforms in the detection of almond in food products. Copyright © 2016 Elsevier B.V. All rights reserved.
Xiao, Xiaodong; Douthwaite, Julie A; Chen, Yan; Kemp, Ben; Kidd, Sara; Percival-Alwyn, Jennifer; Smith, Alison; Goode, Kate; Swerdlow, Bonnie; Lowe, David; Wu, Herren; Dall'Acqua, William F; Chowdhury, Partha S
Phage display antibody libraries are a rich resource for discovery of potential therapeutic antibodies. Single-chain variable fragment (scFv) libraries are the most common format due to the efficient display of scFv by phage particles and the ease by which soluble scFv antibodies can be expressed for high-throughput screening. Typically, a cascade of screening and triaging activities are performed, beginning with the assessment of large numbers of E. coli-expressed scFv, and progressing through additional assays with individual reformatting of the most promising scFv to full-length IgG. However, use of high-throughput screening of scFv for the discovery of full-length IgG is not ideal because of the differences between these molecules. Furthermore, the reformatting step represents a bottle neck in the process because each antibody has to be handled individually to preserve the unique VH and VL pairing. These problems could be resolved if populations of scFv could be reformatted to full-length IgG before screening without disrupting the variable region pairing. Here, we describe a novel strategy that allows the reformatting of diverse populations of scFv from phage selections to full-length IgG in a batch format. The reformatting process maintains the diversity and variable region pairing with high fidelity, and the resulted IgG pool enables high-throughput expression of IgG in mammalian cells and cell-based functional screening. The improved process led to the discovery of potent candidates that are comparable or better than those obtained by traditional methods. This strategy should also be readily applicable to Fab-based phage libraries. Our approach, Screening in Product Format (SiPF), represents a substantial improvement in the field of antibody discovery using phage display.
Nejatollahi, Foroogh; Bayat, Payam; Moazen, Bahareh
2017-01-01
Background: Single chain antibody (scFv) has shown interesting results in cancer immunotargeting approaches, due to its advantages over monoclonal antibodies. Regeneration and tolerance factor (RTF) is one of the most important regulators of extracellular and intracellular pH in eukaryotic cells. In this study, the inhibitory effects of a specific anti-RTF scFv were investigated and compared between three types of prostate cancer and two types of glioblastoma cells. Methods: A phage antibody display library of scFv was used to select specific scFvs against RTF using panning process. The reactivity of a selected scFv was assessed by phage ELISA. The anti-proliferative and apoptotic effects of the antibody on prostate cancer (PC-3, Du-145 and LNCaP) and glioblastoma (U-87 MG and A-172) cell lines were investigated by MTT and Annexin V/PI assays. Results: A specific scFv with frequency 35% was selected against RTF epitope. This significantly inhibited the proliferation of the prostate cells after 24 h. The percentages of cell viability (using 1000 scFv/cell) were 52, 61 and 73% for PC-3, Du-145 and LNCaP cells, respectively, compared to untreated cells. The antibody (1000 scFv/cell) induced apoptosis at 50, 40 and 25% in PC-3, Du-145 and LNCaP cells, respectively. No growth inhibition and apoptotic induction was detected for U-87 and A172 glioblastoma cells. Conclusions: Anti-RTFscFv significantly reduced the proliferation of the prostate cancer cells. The inhibition of cell growth and apoptotic induction effects in PC-3 cells were greater than Du-145 and LNCaP cells. This might be due to higher expression of RTF antigen in PC-3 cells and/or better accessibility of RTF to scFv antibody. The resistance of glioblastoma cells to anti-RTF scFv offers the existence of mechanism(s) that abrogate the inhibitory effect(s) of the antibody to RTF. The results suggest that the selected anti-RTF scFv antibody could be an effective new alternative for prostate cancer immunotherapy. PMID:28491282
Engineered Recombinant Single-Chain Fragment Variable Antibody for Immunosensors
Shen, Zhihong; Mernaugh, Raymond L.; Yan, Heping; Yu, Lei; Zhang, Ying; Zeng, Xiangqun
2008-01-01
A recombinant single-chain fragment variable (scFv) antibody (designated A10B) was engineered to contain two histidines within the linker peptide used to join the scFv heavy and light chains. A piezoimmunosensor using the scFv was successfully developed. A10B scFv bound to the gold piezoimmunosensor surface were correctly oriented, retained antigen-binding activity, and coupled at high surface concentration. These results, and results obtained from an earlier study using an scFv containing a linker cysteine, suggest that the location on the linker sequence in which the amino acids were incorporated was well tolerated by the scFv and did not interfere with scFv antigen-binding activity. The scFv-modified QCM sensor was thoroughly characterized and used to specifically detect antigen in crude serum sample and had a sensitivity of 2.3 ± 0.15 nM (n = 4) with a linear range over 2.3 × 10−9–3.3 × 10−8 M. The piezoimmunosensor was also used to study the kinetics and thermodynamics of antigen/scFv antibody binding. PMID:16255580
The influence of antibody fragment format on phage display based affinity maturation of IgG
Steinwand, Miriam; Droste, Patrick; Frenzel, Andrè; Hust, Michael; Dübel, Stefan; Schirrmann, Thomas
2014-01-01
Today, most approved therapeutic antibodies are provided as immunoglobulin G (IgG), whereas small recombinant antibody formats are required for in vitro antibody generation and engineering during drug development. Particularly, single chain (sc) antibody fragments like scFv or scFab are well suited for phage display and bacterial expression, but some have been found to lose affinity during conversion into IgG. In this study, we compared the influence of the antibody format on affinity maturation of the CD30-specific scFv antibody fragment SH313-F9, with the overall objective being improvement of the IgG. The variable genes of SH313-F9 were randomly mutated and then cloned into libraries encoding different recombinant antibody formats, including scFv, Fab, scFabΔC, and FabΔC. All tested antibody formats except Fab allowed functional phage display of the parental antibody SH313-F9, and the corresponding mutated antibody gene libraries allowed isolation of candidates with enhanced CD30 binding. Moreover, scFv and scFabΔC antibody variants retained improved antigen binding after subcloning into the single gene encoded IgG-like formats scFv-Fc or scIgG, but lost affinity after conversion into IgGs. Only affinity maturation using the Fab-like FabΔC format, which does not contain the carboxy terminal cysteines, allowed successful selection of molecules with improved binding that was retained after conversion to IgG. Thus, affinity maturation of IgGs is dependent on the antibody format employed for selection and screening. In this study, only FabΔC resulted in the efficient selection of IgG candidates with higher affinity by combination of Fab-like conformation and improved phage display compared with Fab. PMID:24262918
An efficient strategy for cell-based antibody library selection using an integrated vector system.
Yoon, Hyerim; Song, Jin Myung; Ryu, Chun Jeih; Kim, Yeon-Gu; Lee, Eun Kyo; Kang, Sunghyun; Kim, Sang Jick
2012-09-18
Cell panning of phage-displayed antibody library is a powerful tool for the development of therapeutic and imaging agents since disease-related cell surface proteins in native complex conformation can be directly targeted. Here, we employed a strategy taking advantage of an integrated vector system which allows rapid conversion of scFv-displaying phage into scFv-Fc format for efficient cell-based scFv library selection on a tetraspanin protein, CD9. A mouse scFv library constructed by using a phagemid vector, pDR-D1 was subjected to cell panning against stable CD9 transfectant, and the scFv repertoire from the enriched phage pool was directly transferred to a mammalian cassette vector, pDR-OriP-Fc1. The resulting constructs enabled transient expression of enough amounts of scFv-Fcs in HEK293E cells, and flow cytometric screening of binders for CD9 transfectant could be performed simply by using the culture supernatants. All three clones selected from the screening showed correct CD9-specificity. They could immunoprecipitate CD9 molecules out of the transfectant cell lysate and correctly stain endogenous CD9 expression on cancer cell membrane. Furthermore, competition assay with a known anti-CD9 monoclonal antibody (mAb) suggested that the binding epitopes of some of them overlap with that of the mAb which resides within the large extracellular loop of CD9. This study demonstrates that scFv-Fc from mammalian transient expression can be chosen as a reliable format for rapid screening and validation in cell-based scFv library selection, and the strategy described here will be applicable to efficient discovery of antibodies to diverse cell-surface targets.
Fluorescent immunolabeling of cancer cells by quantum dots and antibody scFv fragment.
Zdobnova, Tatiana A; Dorofeev, Sergey G; Tananaev, Piter N; Vasiliev, Roman B; Balandin, Taras G; Edelweiss, Eveline F; Stremovskiy, Oleg A; Balalaeva, Irina V; Turchin, Ilya V; Lebedenko, Ekaterina N; Zlomanov, Vladimir P; Deyev, Sergey M
2009-01-01
Semiconductor quantum dots (QDs) coupled with cancer-specific targeting ligands are new promising agents for fluorescent visualization of cancer cells. Human epidermal growth factor receptor 2/neu (HER2/neu), overexpressed on the surface of many cancer cells, is an important target for cancer diagnostics. Antibody scFv fragments as a targeting agent for direct delivery of fluorophores offer significant advantages over full-size antibodies due to their small size, lower cross-reactivity, and immunogenicity. We have used quantum dots linked to anti-HER2/neu 4D5 scFv antibody to label HER2/neu-overexpressing live cells. Labeling of target cells was shown to have high brightness, photostability, and specificity. The results indicate that construction based on quantum dots and scFv antibody can be successfully used for cancer cell visualization.
Rahbarnia, Leila; Farajnia, Safar; Babaei, Hossein; Majidi, Jafar; Akbari, Bahman; Ahdi Khosroshahi, Shiva
2016-12-01
Purpose: EGFRvIII as the most common mutant variant of the epidermal growth factor receptor is resulting from deletion of exons 2-7 in the coding sequence and junction of exons 1 and 8 through a novel glycine residue. EGFRvIII is highly expressed in glioblastoma, carcinoma of the breast, ovary, and lung but not in normal cells. The aim of the present study was identification of a novel single chain antibody against EGFRvIII as a promising target for cancer therapy. Methods: In this study, a synthetic peptide corresponding to EGFRvIII protein was used for screening a naive human scFv phage library. A novel five-round selection strategy was used for enrichment of rare specific clones. Results: After five rounds of screening, six positive scFv clones against EGFRvIII were selected using monoclonal phage ELISA, among them, only three clones had expected size in PCR reaction. The specific interaction of two of the scFv clones with EGFRvIII was confirmed by indirect ELISA. One phage clone with higher affinity in scFv ELISA was purified for further analysis. The purity of the produced scFv antibody was confirmed using SDS-PAGE and Western blotting analyses. Conclusion: In the present study, a human anti- EGFRvIII scFv with high affinity was first identified from a scFv phage library. This study can be the groundwork for developing more effective diagnostic and therapeutic agents against EGFRvIII expressing cancers.
Li, Jingquan; Xu, Yongping; Wang, Xitao; Li, Yuan; Wang, Lili; Li, Xiaoyu
2016-06-01
The purpose of this study was to construct a single-chain variable fragment (scFv) antibody from chicken egg yolk immunoglobulin (IgY) by means of genetic engineering and subsequent panning for a specific antibody against Staphylococcus aureus. We amplified the scFv using blood and spleen obtained from 100-day-old Roman chickens immunized with inactivated S. aureus and subsequently constructed a T7 phage display antibody library using phage display technology. Four non-repeated blood scFv and 6 spleen scFv were obtained following 3 rounds of panning of the T7 phage display antibody library, enzyme-linked immunosorbent assay and sequencing. These 10 scFv were cloned into the prokaryotic expression vector pCold I with expression induced at a low temperature. Four soluble proteins were obtained. Among them, soluble protein SFV6 derived from the spleen showed good reactivity against S. aureus using indirect ELISA and produced a particularly strong antibacterial effect in vitro. We were successful in isolating a highly specific scFv antibody against S. aureus from the spleen phage display library. This study provides a simple and rapid method for the quick preparation of a large number of antibodies against S. aureus and provides the foundation for the positioning of antibodies in the organism and the study of the antibacterial mechanism through which the antibody functions. Copyright © 2016 Elsevier B.V. All rights reserved.
de la Cruz, Silvia; Madrid, Raquel; García-García, Aina; Alcocer, Marcos; Martín, Rosario; González, Isabel; García, Teresa
2018-03-01
Almonds and Brazil nuts are widely consumed allergenic nuts whose presence must be declared according to food labelling regulations. Their detection in food products has been recently achieved by ELISA methods with recombinant antibodies (scFv) isolated against complete Brazil nut and almond protein extracts. The screening of phage-scFv libraries against complete protein extracts confers a series of advantages over the use of purified proteins, as recombinant proteins might alter their native folding. However, using this strategy, the nature of the target detected by phage-displayed antibodies remains unknown, and requires further research to identify whether they are nut allergens or other molecules present in the extract, but not related to their allergenic potential. Electrophoretic, chromatographic, immunological and spectrometric techniques revealed that the Brazil nut (BE95) and almond (PD1F6 and PD2C9) specific phage-scFvs detected conformational epitopes of the Brazil nut and almond 11S globulins, recognised by WHO/IUIS as Ber e 2 and Pru du 6 major allergens. Circular dichroism data indicated that severe heat treatment would entail loss of epitope structure, disabling scFv for target detection. The presence of important Brazil nut and almond allergens (Ber e 2 and Pru du 6) in foodstuffs can be determined by using phage-display antibodies BE95, PD1F6 and PD2C9 as affinity probes in ELISA. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Guo, Jun-Qing; Li, Qing-Mei; Zhou, Ji-Yong; Zhang, Gai-Ping; Yang, Yan-Yan; Xing, Guang-Xu; Zhao, Dong; You, Shang-You; Zhang, Chu-Yu
2006-01-01
A functional IP10-scFv fusion protein retaining the antibody specificity for acidic isoferritin and chemokine function was produced at high level in Esherichia coli (E. coli). IP10-scFv gene from the recombinant plasmid pc3IP104c9 was subcloned into pET28a fused to N-terminal His-tag sequence in frame and overexpressed in E. coli BL21(DE3). With an on-column refolding procedure based on Ni-chelating chromatography, the active fusion protein was recovered efficiently from inclusion bodies with a refolding yield of approximate 45% confirmed by spectrophotometer. The activity of refolded IP10-scFv was determined through sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western blotting and enzyme-linked immunosorbent assay. The results showed the fusion protein retains the specific binding activity to AIF with an affinity constant of 4.48x10(-8) M as well as the chemokine function of IP-10. The overall yield of IP10-scFv with bioactivity in E. coli flask culture was more than 40 mg/L.
Huovinen, Tuomas; Syrjänpää, Markku; Sanmark, Hanna; Seppä, Titta; Akter, Sultana; Khan, Liton Md Ferdhos; Lamminmäki, Urpo
2014-09-19
Filamentous phage display has become an ordinary tool to engineer antibody fragments. Several capsid proteins have been applied for displaying antibodies, of which gene III (p3) protein is used the most followed by experiments with gene IX (p9) protein. Despite the popularity, there are no library scale studies to objectively compare differences in the selection performance of the libraries, when displayed via different capsid proteins. In this study, an identical antibody repertoire was displayed as Fab fragments on p9, p3 and truncated p3 (p3Δ). In addition, the library clones were displayed as ScFv fragments on p3Δ and the Fab-p3 display valency was modulated by hyperphage and VCS-M13 superinfections. The selection performances of the libraries were followed in repeated parallel panning reactions against streptavidin (STR) and digoxigenin (DIG). Selection was successful with all display formats, but the enrichment of specific clones from Fab-p9 library was clearly less efficient than from the other libraries. The most diverse outputs were obtained from p3Δ display and the highest affinity anti-DIG antibodies from the ScFv repertoire. Unfortunately, the number of retrieved specific clones was too low for explicit analysis of the differences in the number of obtained unique clones from each library. However, severe reduction in sequence diversity was observed in p3-Fab libraries prior to panning, which in turn, materialized as a low number of unique specific clones. Oligovalent display by hyperphage resulted in a higher number of unique clones, but the same highest affinity anti-DIG Fab was recovered also by VCS-M13 superinfection. The compromised enrichment of the target-specific clones from the Fab repertoire as a fusion to p9 capsid protein in our experiments, the significant loss of functional diversity in Fab-p3 library after single phage packing cycle and the retrieval of higher affinity anti-digoxigenin clones as ScFv molecules than as Fab molecules from the same source repertoire indicate that the chosen display format may have a significant impact on the selection outcome. This study demonstrates that in addition to library content, also display related issues, should be taken into consideration when planning directed evolution experiments.
Structural and functional characterization of a novel scFv anti-HSP60 of Strongyloides sp.
Levenhagen, Marcelo Arantes; de Almeida Araújo Santos, Fabiana; Fujimura, Patrícia Tiemi; Caneiro, Ana Paula; Costa-Cruz, Julia Maria; Goulart, Luiz Ricardo
2015-01-01
Phage display is a powerful technology that selects specific proteins or peptides to a target. We have used Phage Display to select scFv (single-chain variable fragment) clones from a combinatorial library against total proteins of Strongyloides venezuelensis. After scFv characterization, further analysis demonstrated that this recombinant fragment of antibody was able to bind to an S. venezuelensis antigenic fraction of ~65 kDa, present in the body periphery and digestive system of infective larvae (L3), as demonstrated by immunofluorescence. Mass spectrometry results followed by bioinformatics analysis showed that this antigenic fraction was a heat shock protein 60 (HSP60) of Strongyloides sp. The selected scFv was applied in serodiagnosis by immune complexes detection in serum samples from individuals with strongyloidiasis using a sandwich enzyme-linked immunosorbent assay (ELISA), showing sensitivity of 97.5% (86.84–99.94), specificity of 98.81 (93.54–99.97), positive likelihood ratio of 81.60 and an area under the curve of 0.9993 (0.9973–1.000). Our study provided a novel monoclonal scFv antibody fragment which specifically bound to HSP60 of Strongyloides sp. and was applied in the development of an innovative serodiagnosis method for the human strongyloidiasis. PMID:25994608
Single-step colony assay for screening antibody libraries.
Kato, Mieko; Hanyu, Yoshiro
2017-08-10
We describe a method, single-step colony assay, for simple and rapid screening of single-chain Fv fragment (scFv) libraries. Colonies of Escherichia coli expressing the scFv library are formed on a hydrophilic filter that is positioned in contact with a membrane coated with an antigen. scFv expression is triggered upon treatment of colonies with an induction reagent, following which scFvs are secreted from the cells and diffused to the antigen-coated membrane. scFvs that exhibit binding affinity for the antigen are captured by the membrane-immobilized antigen. Lastly, detection of scFv binding of the antigen on the membrane allows identification of the clones on the filter that express antigen-specific scFvs. We tested this methodology by using an anti-rabbit IgG scFv, scFv(A10B), and a rat immune scFv library. Experiments conducted using scFv(A10B) revealed that this method improves scFv expression during the colony assay. By using our method to screen an immune library of 3×10 3 scFv clones, we established several clones exhibiting affinity for the antigen. Moreover, we tested 7 other antigens, including peptides, and successfully identified positive clones. We believe that this simple procedure and controlled scFv expression of the single-step colony assay could make the antibody screening both rapid and reliable and lead to successful isolation of positive clones from antibody libraries. Copyright © 2017 Elsevier B.V. All rights reserved.
Stadlmann, Valerie; Harant, Hanna; Korschineck, Irina; Hermann, Marcela; Forster, Florian; Missbichler, Albert
2015-12-01
Celiac disease (CD) is a chronic, small intestinal inflammatory disease mediated by dietary gluten and related prolamins. The only current therapeutic option is maintenance of a strict life-long gluten-free diet, which implies substantial burden for CD patients. Different treatment regimes might be feasible, including masking of toxic celiac peptides with blocking antibodies or fragments thereof. The objective of this study was therefore to select and produce a recombinant avian single-chain fragment variable (scFv) directed against peptic-tryptic digested gliadin (PT-Gliadin) and related celiac toxic entities. Gluten-free raised chicken of same age were immunized with PT-Gliadin. Chicken splenic lymphocytes, selected with antigen-coated magnetic beads, served as RNA source for the generation of cDNA. Chicken VH and VL genes were amplified from the cDNA by PCR to generate full-length scFv constructs consisting of VH and VL fragments joined by a linker sequence. ScFv constructs were ligated in a prokaryotic expression vector, which provides a C-terminal hexahistidine tag. ScFvs from several bacterial clones were expressed in soluble form and crude cell lysates screened for binding to PT-Gliadin by ELISA. We identified an enriched scFv motif, which showed reactivity to PT-Gliadin. One selected scFv candidate was expressed and purified to homogeneity. Polyclonal anti-PT-Gliadin IgY, purified from egg yolk of immunized chicken, served as control. ScFv binds in a dose-dependent manner to PT-Gliadin, comparable to IgY. Furthermore, IgY competitively displaces scFv from PT-Gliadin and natural wheat flour digest, indicating a common epitope of scFv and IgY. ScFv was tested for reactivity to different gastric digested dietary grain flours. ScFv detects common and khorasan wheat comparably with binding affinities in the high nanomolar range, while rye is detected to a lesser extent. Notably, barley and cereals which are part of the gluten-free diet, like corn and rice, are not detected by scFv. Similarly, the pseudo-grain amaranth, used as gluten-free alternative, is not targeted by scFv. This data indicate that scFv specifically recognizes toxic cereal peptides relevant in CD. ScFv can be of benefit for future CD treatment regimes.
Liu, Rui; Liang, Xiao; Xiang, Dandan; Guo, Yirong; Liu, Yihua; Zhu, Guonian
2016-01-01
Triazophos is a widely used organophosphorous insecticide that has potentially adverse effects to organisms. In the present study, a high-affinity single-chain variable fragment (scFv) antibody with specific lambda light chain was developed for residue monitoring. First, the specific variable regions were correctly amplified from a hybridoma cell line 8C10 that secreted monoclonal antibody (mAb) against triazophos. The regions were then assembled as scFv via splicing by overlap extension polymerase chain reaction. Subsequently, the recombinant anti-triazophos scFv-8C10 was successfully expressed in Escherichia coli strain HB2151 in soluble form, purified through immobilized metal ion affinity chromatography, and verified via Western blot and peptide mass fingerprinting analyses. Afterward, an indirect competitive enzyme-linked immunosorbent assay was established based on the purified anti-triazophos scFv-8C10 antibody. The assay exhibited properties similar to those based on the parent mAb, with a high sensitivity (IC50 of 1.73 ng/mL) to triazophos and no cross reaction for other organophosphorus pesticides; it was reliable in detecting triazophos residues in spiked water samples. Moreover, kinetic measurement using a surface plasmon resonance biosensor indicated that the purified scFv-8C10 antibody had a high affinity of 1.8 × 10−10 M and exhibited good binding stability. Results indicated that the recombinant high-affinity scFv-8C10 antibody was an effective detection material that would be promising for monitoring triazophos residues in environment samples. PMID:27338340
Wong, Patty; Li, Lin; Chea, Junie; Delgado, Melissa K.; Crow, Desiree; Poku, Erasmus; Szpikowska, Barbara; Bowles, Nicole; Channappa, Divya; Colcher, David; Wong, Jeffrey Y.C.; Shively, John E.; Yazaki, Paul J.
2017-01-01
Introduction Single chain (scFv) antibodies are ideal targeting ligands due to their modular structure, high antigen specificity and affinity. These monovalent ligands display rapid tumor targeting but have limitations due to their fast urinary clearance. Methods An anti-prostate membrane antigen (PSMA) scFv with a site-specific cysteine was expressed and evaluated in a prostate cancer xenograft model by Cu-64 PET imaging. To enhance tumor accumulation, the scFv-cys was conjugated to the co-polymer DSPE-PEG-maleimide that spontaneously assembled into a homogeneous multivalent lipid nanoparticle (LNP). Results The targeted LNP exhibited a 2-fold increase in tumor uptake compared to the scFv alone using two different thiol ester chemistries. The anti-PSMA scFv-LNP exhibited a 1.6 fold increase in tumor targeting over the untargeted LNP. Conclusions The targeted anti-PSMA scFv-LNP showed enhanced tumor accumulation over the scFv alone or the untargeted DOTA-micelle providing evidence for the development of this system for drug delivery. Advances in Knowledge and implications for patient care Anti-tumor scFv antibody fragments have not achieved their therapeutic potential due to their fast blood clearance. Conjugation to a LNP enables multivalency to the tumor antigen as well as increased molecular size for chemotherapy drug delivery. PMID:28126683
Conversion of scFv peptide-binding specificity for crystal chaperone development
Pai, Jennifer C.; Culver, Jeffrey A.; Drury, Jason E.; Motani, Rakesh S.; Lieberman, Raquel L.; Maynard, Jennifer A.
2011-01-01
In spite of advances in protein expression and purification over the last decade, many proteins remain recalcitrant to structure determination by X-ray crystallography. One emerging tactic to obtain high-quality protein crystals for structure determination, particularly in the case of membrane proteins, involves co-crystallization with a protein-specific antibody fragment. Here, we report the development of new recombinant single-chain antibody fragments (scFv) capable of binding a specific epitope that can be introduced into internal loops of client proteins. The previously crystallized hexa-histidine-specific 3D5 scFv antibody was modified in the complementary determining region and by random mutagenesis, in conjunction with phage display, to yield scFvs with new biochemical characteristics and binding specificity. Selected variants include those specific for the hexa-histidine peptide with increased expression, solubility (up to 16.6 mg/ml) and sub-micromolar affinity, and those with new specificity for the EE hexa-peptide (EYMPME) and nanomolar affinity. Complexes of one such chaperone with model proteins harboring either an internal or a terminal EE tag were isolated by gel filtration. The 3.1 Å resolution structure of this chaperone reveals a binding surface complementary to the EE peptide and a ∼52 Å channel in the crystal lattice. Notably, in spite of 85% sequence identity, and nearly identical crystallization conditions, the engineered scFv crystallizes in a different space group than the parent 3D5 scFv, and utilizes two new crystal contacts. These engineered scFvs represent a new class of chaperones that may eliminate the need for de novo identification of candidate chaperones from large antibody libraries. PMID:21217145
Radioiodination and biodistribution of the monoclonal antibody TU-20 and its scFv fragment
NASA Astrophysics Data System (ADS)
Kubaštová, H.; Kleinova, V.; Seifert, D.; Fišer, M.; Kranda, K.
2006-01-01
The ability of the monoclonal antibody TU-20 and its scFv fragment to specifically bind to the C-end of the class III beta-tubulin makes these preparations useful as potential diagnostics for in vivo determination of neurodegenerative diseases that entail degradation of neuronal cytoskeleton. To examine this hypothesis, TU-20 and its scFv were labelled with 125I and their properties were extensively investigated. TU-20 and its scFv were labelled via chloramine-T with the yield 90 95% and 64 78%, respectively. Their quality control, performed by an ELISA and gel electrophoresis, determined adequate properties for further studies. The in vitro experiment, involving autoradiography and immunohistochemistry of mice’ brain slices, enabled confirmation of preserved immunospecificity of the radiolabelled substances. Finally, the in vivo biodistribution proved differences in elimination of either TU-20, scFv TU-20, or iodide from the mice.
Methods of preparing and using single chain anti-tumor antibodies
Cheung, Nai-Kong; Guo, Hong-Fen
2010-02-23
This invention provides a method for identifying cells expressing a target single chain antibody (scFv) directed against a target antigen from a collection of cells that includes cells that do not express the target scFv, comprising the step of combining the collection of cells with an anti-idiotype directed to an antibody specific for the target antigen and detecting interaction, if any, of the anti-idiotype with the cells, wherein the occurrence of an interaction identifies the cell as one which expresses the target scFv. This invention also provides a method for making a single chain antibody (scFv) directed against an antigen, wherein the selection of clones is made based upon interaction of those clones with an appropriate anti-idiotype, and heretofore inaccessible scFv so made. This invention provides the above methods or any combination thereof. Finally, this invention provides various uses of these methods.
Method for preparation of single chain antibodies
Cheung, Nai-Kong V [New York, NY; Guo, Hong-fen [New York, NY
2012-04-03
This invention provides a method for identifying cells expressing a target single chain antibody (scFv) directed against a target antigen from a collection of cells that includes cells that do not express the target scFv, comprising the step of combining the collection of cells with an anti-idiotype directed to an antibody specific for the target antigen and detecting interaction, if any, of the anti-idiotype with the cells, wherein the occurrence of an interaction identifies the cell as one which expresses the target scFv. This invention also provides a method for making a single chain antibody (scFv) directed against an antigen, wherein the selection of clones is made based upon interaction of those clones with an appropriate anti-idiotype, and heretofore inaccessible scFv so made. This invention provides the above methods or any combination thereof. Finally, this invention provides various uses of these methods.
Zhao, Qi; Wong, Pui-Fan; Lee, Susanna S T; Leung, Shui-On; Cheung, Wing-Tai; Wang, Jun-Zhi
2014-01-01
Pre-clinical and clinical studies of therapeutic antibodies require highly specific reagents to examine their immune responses, bio-distributions, immunogenicity, and pharmacodynamics in patients. Selective antigen-mimicking anti-idiotype antibody facilitates the assessment of therapeutic antibody in the detection, quantitation and characterization of antibody immune responses. Using mouse specific degenerate primer pairs and splenocytic RNA, we generated an idiotype antibody-immunized phage-displayed scFv library in which an anti-idiotype antibody against the therapeutic chimera anti-CD22 antibody SM03 was isolated. The anti-idiotype scFv recognized the idiotype of anti-CD22 antibody and inhibited binding of SM03 to CD22 on Raji cell surface. The anti-idiotype scFv was subsequently classified as Ab2γ type. Moreover, our results also demonstrated firstly that the anti-idiotype scFv could be used for pharmacokinetic measurement of circulating residual antibody in lymphoma patients treated with chimera anti-CD22 monoclonal antibody SM03. Of important, the present approach could be easily adopted to generate anti-idiotype antibodies for therapeutic antibodies targeting membrane proteins, saving the cost and time for producing a soluble antigen.
Zhao, Qi; Wong, Pui-Fan; Lee, Susanna S. T.; Leung, Shui-On; Cheung, Wing-Tai; Wang, Jun-Zhi
2014-01-01
Pre-clinical and clinical studies of therapeutic antibodies require highly specific reagents to examine their immune responses, bio-distributions, immunogenicity, and pharmacodynamics in patients. Selective antigen-mimicking anti-idiotype antibody facilitates the assessment of therapeutic antibody in the detection, quantitation and characterization of antibody immune responses. Using mouse specific degenerate primer pairs and splenocytic RNA, we generated an idiotype antibody-immunized phage-displayed scFv library in which an anti-idiotype antibody against the therapeutic chimera anti-CD22 antibody SM03 was isolated. The anti-idiotype scFv recognized the idiotype of anti-CD22 antibody and inhibited binding of SM03 to CD22 on Raji cell surface. The anti-idiotype scFv was subsequently classified as Ab2γ type. Moreover, our results also demonstrated firstly that the anti-idiotype scFv could be used for pharmacokinetic measurement of circulating residual antibody in lymphoma patients treated with chimera anti-CD22 monoclonal antibody SM03. Of important, the present approach could be easily adopted to generate anti-idiotype antibodies for therapeutic antibodies targeting membrane proteins, saving the cost and time for producing a soluble antigen. PMID:24816427
Production of Recombinant Human scFv Against Tetanus Toxin Heavy Chain by Phage Display Technology.
Khalili, Ehsan; Lakzaei, Mostafa; Rasaee, Mohhamad Javad; Aminian, Mahdi
2015-10-01
Tetanus, as a major cause of death in developing countries, is caused by tetanus neurotoxin. Recombinant antibodies against tetanus neurotoxin can be useful in tetanus management. Phage display of antibody fragments from immune human antibody libraries with single chain constructs combining the variable fragments (scFv) has been one of the most prominent technologies in antibody engineering. The aim of this study was the generation of a single chain fragment of variable region (scFv) library and selection of specific antibodies with high affinity against tetanus toxin. Immune human single chain fragment variable (HuscFv) antibody phagemid library was displayed on pIII of filamentous bacteriophage. Selection of scFv clones was performed against tetanus toxin antigens after three rounds of panning. The selected scFv clones were analyzed for inhibition of tetanus toxin binding to ganglioside GT1b. After the third round of panning, over 35 HuscFv phages specific for tetanus toxin were isolated from this library of which 15 clones were found to bind specifically to tetanus toxin. The selected HuscFv phages expressed as a soluble HuscFv peptide and some clones showed positive signals against tetanus toxin. We found that six HuscFv clones inhibit toxin binding to ganglioside GT1b. These selected antibodies can be used in the management of tetanus.
Honey, Denise M.; Best, Annie; Qiu, Huawei
2018-01-01
ABSTRACT Metelimumab (CAT192) is a human IgG4 monoclonal antibody developed as a TGFβ1-specific antagonist. It was tested in clinical trials for the treatment of scleroderma but later terminated due to lack of efficacy. Subsequent characterization of CAT192 indicated that its TGFβ1 binding affinity was reduced by ∼50-fold upon conversion from the parental single-chain variable fragment (scFv) to IgG4. We hypothesized this result was due to decreased conformational flexibility of the IgG that could be altered via engineering. Therefore, we designed insertion mutants in the elbow region and screened for binding and potency. Our results indicated that increasing the elbow region linker length in each chain successfully restored the isoform-specific and high affinity binding of CAT192 to TGFβ1. The crystal structure of the high binding affinity mutant displays large conformational rearrangements of the variable domains compared to the wild-type antigen-binding fragment (Fab) and the low binding affinity mutants. Insertion of two glycines in both the heavy and light chain elbow regions provided sufficient flexibility for the variable domains to extend further apart than the wild-type Fab, and allow the CDR3s to make additional interactions not seen in the wild-type Fab structure. These interactions coupled with the dramatic conformational changes provide a possible explanation of how the scFv and elbow-engineered Fabs bind TGFβ1 with high affinity. This study demonstrates the benefits of re-examining both structure and function when converting scFv to IgG molecules, and highlights the potential of structure-based engineering to produce fully functional antibodies. PMID:29333938
Suila, Heli; Tiitinen, Sari; Natunen, Suvi; Laukkanen, Marja-Leena; Kotovuori, Annika; Reinman, Mirka; Satomaa, Tero; Alfthan, Kaija; Laitinen, Saara; Takkinen, Kristiina; Räbinä, Jarkko; Valmu, Leena
2013-01-01
Abstract Multipotent mesenchymal stem/stromal cells (MSCs) offer great promise for future regenerative and anti-inflammatory therapies. Panels of functional and phenotypical markers are currently used in characterization of different therapeutic stem cell populations from various sources. The i antigen (linear poly-N-acetyllactosamine) from the Ii blood group system has been suggested as a marker for MSCs derived from umbilical cord blood (UCB). However, there are currently no commercially available antibodies recognizing the i antigen. In the present study, we describe the use of antibody phage display technology to produce recombinant antibodies recognizing a structure from the surface of mesenchymal stem cells. We constructed IgM phage display libraries from the lymphocytes of a donor with an elevated serum anti-i titer. Antibody phage display technology is not dependent on immunization and thus allows the generation of antibodies against poorly immunogenic molecules, such as carbohydrates. Agglutination assays utilizing i antigen–positive red blood cells (RBCs) from UCB revealed six promising single-chain variable fragment (scFv) antibodies, three of which recognized epitopes from the surface of UCB-MSCs in flow cytometric assays. The amino acid sequence of the VH gene segment of B12.2 scFv was highly similar to the VH4.21 gene segment required to encode anti-i specificities. Further characterization of binding properties revealed that the binding of B12.2 hyperphage was inhibited by soluble linear lactosamine oligosaccharide. Based on these findings, we suggest that the B12.2 scFv we have generated is a prominent anti-i antibody that recognizes i antigen on the surface of both UCB-MSCs and RBCs. This binder can thus be utilized in UCB-MSC detection and isolation as well as in blood group serology. PMID:24083089
Adler, Adam S; Bedinger, Daniel; Adams, Matthew S; Asensio, Michael A; Edgar, Robert C; Leong, Renee; Leong, Jackson; Mizrahi, Rena A; Spindler, Matthew J; Bandi, Srinivasa Rao; Huang, Haichun; Tawde, Pallavi; Brams, Peter; Johnson, David S
2018-04-01
Deep sequencing and single-chain variable fragment (scFv) yeast display methods are becoming more popular for discovery of therapeutic antibody candidates in mouse B cell repertoires. In this study, we compare a deep sequencing and scFv display method that retains native heavy and light chain pairing with a related method that randomly pairs heavy and light chain. We performed the studies in a humanized mouse, using interleukin 21 receptor (IL-21R) as a test immunogen. We identified 44 high-affinity binder scFv with the native pairing method and 100 high-affinity binder scFv with the random pairing method. 30% of the natively paired scFv binders were also discovered with the randomly paired method, and 13% of the randomly paired binders were also discovered with the natively paired method. Additionally, 33% of the scFv binders discovered only in the randomly paired library were initially present in the natively paired pre-sort library. Thus, a significant proportion of "randomly paired" scFv were actually natively paired. We synthesized and produced 46 of the candidates as full-length antibodies and subjected them to a panel of binding assays to characterize their therapeutic potential. 87% of the antibodies were verified as binding IL-21R by at least one assay. We found that antibodies with native light chains were more likely to bind IL-21R than antibodies with non-native light chains, suggesting a higher false positive rate for antibodies from the randomly paired library. Additionally, the randomly paired method failed to identify nearly half of the true natively paired binders, suggesting a higher false negative rate. We conclude that natively paired libraries have critical advantages in sensitivity and specificity for antibody discovery programs.
Adler, Adam S.; Bedinger, Daniel; Adams, Matthew S.; Asensio, Michael A.; Edgar, Robert C.; Leong, Renee; Leong, Jackson; Mizrahi, Rena A.; Spindler, Matthew J.; Bandi, Srinivasa Rao; Huang, Haichun; Brams, Peter; Johnson, David S.
2018-01-01
ABSTRACT Deep sequencing and single-chain variable fragment (scFv) yeast display methods are becoming more popular for discovery of therapeutic antibody candidates in mouse B cell repertoires. In this study, we compare a deep sequencing and scFv display method that retains native heavy and light chain pairing with a related method that randomly pairs heavy and light chain. We performed the studies in a humanized mouse, using interleukin 21 receptor (IL-21R) as a test immunogen. We identified 44 high-affinity binder scFv with the native pairing method and 100 high-affinity binder scFv with the random pairing method. 30% of the natively paired scFv binders were also discovered with the randomly paired method, and 13% of the randomly paired binders were also discovered with the natively paired method. Additionally, 33% of the scFv binders discovered only in the randomly paired library were initially present in the natively paired pre-sort library. Thus, a significant proportion of “randomly paired” scFv were actually natively paired. We synthesized and produced 46 of the candidates as full-length antibodies and subjected them to a panel of binding assays to characterize their therapeutic potential. 87% of the antibodies were verified as binding IL-21R by at least one assay. We found that antibodies with native light chains were more likely to bind IL-21R than antibodies with non-native light chains, suggesting a higher false positive rate for antibodies from the randomly paired library. Additionally, the randomly paired method failed to identify nearly half of the true natively paired binders, suggesting a higher false negative rate. We conclude that natively paired libraries have critical advantages in sensitivity and specificity for antibody discovery programs. PMID:29376776
Guo, L; Yan, X; Qian, S; Meng, G
2000-02-01
Four non-inhibitory specific single-chain Fv (sc Fv) fragments directed against L-asparaginase (ASNase) of Escherichia coli were selected from a synthetic phage-display scFv library. The scFv46 fragment could enhance the resistance of ASNase to trypsin proteolysis, with 70% of the initial ASNase activity present after the ASNase-scFv46 complex had been treated with trypsin for 30 min at 37 degrees C, whereas little residual activity was detected without the scFv46 fragment. The scFv46 gene was cloned to an expression vector pET-21a and expressed at high levels (about 45% of total cell protein) in E. coli BL21 (DE3) as inclusion bodies. The refolded and purified scFv46 fragment was proved to protect ASNase, and the protective effect was further confirmed by SDS/PAGE. It was found that under optimum conditions of molar ratio of scFv to ASNase, incubation time and temperature, the residual activity of the ASNase-scFv46 complex could reach about 78% after treatment with trypsin for 30 min at 37 degrees C. The results demonstrated that scFv fragments prepared by phage-antibody library technology could be used to protect target proteins.
Design of multivalent complexes using the barnase*barstar module.
Deyev, Sergey M; Waibel, Robert; Lebedenko, Ekaterina N; Schubiger, August P; Plückthun, Andreas
2003-12-01
The ribonuclease barnase (12 kDa) and its inhibitor barstar (10 kDa) form a very tight complex in which all N and C termini are accessible for fusion. Here we exploit this system to create modular targeting molecules based on antibody scFv fragment fusions to barnase, to two barnase molecules in series and to barstar. We describe the construction, production and purification of defined dimeric and trimeric complexes. Immobilized barnase fusions are used to capture barstar fusions from crude extracts to yield homogeneous, heterodimeric fusion proteins. These proteins are stable, soluble and resistant to proteolysis. Using fusions with anti-p185(HER2-ECD) 4D5 scFv, we show that the anticipated gain in avidity from monomer to dimer to trimer is obtained and that favorable tumor targeting properties are achieved. Many permutations of engineered multispecific fusion proteins become accessible with this technology of quasi-covalent heterodimers.
Harnessing insulin- and leptin-induced oxidation of PTP1B for therapeutic development.
Krishnan, Navasona; Bonham, Christopher A; Rus, Ioana A; Shrestha, Om Kumar; Gauss, Carla M; Haque, Aftabul; Tocilj, Ante; Joshua-Tor, Leemor; Tonks, Nicholas K
2018-01-18
The protein tyrosine phosphatase PTP1B is a major regulator of glucose homeostasis and energy metabolism, and a validated target for therapeutic intervention in diabetes and obesity. Nevertheless, it is a challenging target for inhibitor development. Previously, we generated a recombinant antibody (scFv45) that recognizes selectively the oxidized, inactive conformation of PTP1B. Here, we provide a molecular basis for its interaction with reversibly oxidized PTP1B. Furthermore, we have identified a small molecule inhibitor that mimics the effects of scFv45. Our data provide proof-of-concept that stabilization of PTP1B in an inactive, oxidized conformation by small molecules can promote insulin and leptin signaling. This work illustrates a novel paradigm for inhibiting the signaling function of PTP1B that may be exploited for therapeutic intervention in diabetes and obesity.
Sotelo, Pablo H.; Collazo, Noberto; Zuñiga, Roberto; Gutiérrez-González, Matías; Catalán, Diego; Ribeiro, Carolina Hager; Aguillón, Juan Carlos; Molina, María Carmen
2012-01-01
Phage display library technology is a common method to produce human antibodies. In this technique, the immunoglobulin variable regions are displayed in a bacteriophage in a way that each filamentous virus displays the product of a single antibody gene on its surface. From the collection of different phages, it is possible to isolate the virus that recognizes specific targets. The most common form in which to display antibody variable regions in the phage is the single chain variable fragment format (scFv), which requires assembly of the heavy and light immunoglobulin variable regions in a single gene. In this work, we describe a simple and efficient method for the assembly of immunoglobulin heavy and light chain variable regions in a scFv format. This procedure involves a two-step reaction: (1) DNA amplification to produce the single strand form of the heavy or light chain gene required for the fusion; and (2) mixture of both single strand products followed by an assembly reaction to construct a complete scFv gene. Using this method, we produced 6-fold more scFv encoding DNA than the commonly used splicing by overlap extension PCR (SOE-PCR) approach. The scFv gene produced by this method also proved to be efficient in generating a diverse scFv phage display library. From this scFv library, we obtained phages that bound several non-related antigens, including recombinant proteins and rotavirus particles. PMID:22692130
Viejo-Borbolla, A; Pizzato, M; Blair, E D; Schulz, T F
2005-03-01
Several groups have inserted targeting domains into the envelope glycoprotein (Env) of Moloney murine leukemia virus (MoMLV) in an attempt to produce targeted retroviral vectors for human gene therapy. While binding of these modified Envs to the target molecule expressed on the surface of human cells was observed, specific high-titer infection of human cells expressing the target molecule was not achieved. Here we investigate the initial steps in the entry process of targeted MoMLV vectors both in murine and human cells expressing the MoMLV receptor, the mouse cationic amino acid transporter-1 (mCAT-1). We show that insertion of a small ligand targeted to E-selectin and of a single chain antibody (scFv) targeted to folate-binding protein (FBP) into the N-terminus of MoMLV Env results in the reduction of the infectivity and the kinetics of entry of the MoMLV vectors. The use of soluble receptor-binding domain (sRBD), bafilomycin A1 (BafA1) and methyl-beta-cyclodextrin (MbetaC) increase the infectivity of the MoMLV vectors targeted to FBP (MoMLV-FBP) suggesting that the scFv targeted to FBP increases the threshold for fusion and might re-route entry of the targeted MoMLV-FBP vector towards an endocytic, non-productive pathway.
A simple and robust approach to immobilization of antibody fragments.
Ikonomova, Svetlana P; He, Ziming; Karlsson, Amy J
2016-08-01
Antibody fragments, such as the single-chain variable fragment (scFv), have much potential in research and diagnostics because of their antigen-binding ability similar to a full-sized antibody and their ease of production in microorganisms. Some applications of antibody fragments require immobilization on a surface, and we have established a simple immobilization method that is based on the biotin-streptavidin interaction and does not require a separate purification step. We genetically fused two biotinylation tags-the biotin carboxyl carrier protein (BCCP) or the AviTag minimal sequence-to six different scFvs (scFv13R4, scFvD10, scFv26-10, scFv3, scFv5, and scFv12) for site-specific biotinylation in vivo by endogenous biotin ligases produced by Escherichia coli. The biotinylated scFvs were immobilized onto streptavidin-coated plates directly from cell lysates, and immobilization was detected through enzyme-linked immunosorbent assays. All scFvs fusions were successfully immobilized, and scFvs biotinylated via the BCCP tag tended to immobilize better than those biotinylated via the AviTag, even when biotinylation efficiency was improved with the biotin ligase BirA. The ability of immobilized scFvs to bind antigens was confirmed using scFv13R4 and scFvD10 with their respective targets β-galactosidase and bacteriophage lambda head protein D (gpD). The immobilized scFv13R4 bound to β-galactosidase at the same level for both biotinylation tags when the surface was saturated with the scFv, and immobilized scFvs retained their functionality for at least 100days after immobilization. The simplicity and robustness of our method make it a promising approach for future applications that require antibody fragment immobilization. Copyright © 2016 Elsevier B.V. All rights reserved.
Toward low-cost affinity reagents: lyophilized yeast-scFv probes specific for pathogen antigens.
Gray, Sean A; Weigel, Kris M; Ali, Ibne K M; Lakey, Annie A; Capalungan, Jeremy; Domingo, Gonzalo J; Cangelosi, Gerard A
2012-01-01
The generation of affinity reagents, usually monoclonal antibodies, remains a critical bottleneck in biomedical research and diagnostic test development. Recombinant antibody-like proteins such as scFv have yet to replace traditional monoclonal antibodies in antigen detection applications, in large part because of poor performance of scFv in solution. To address this limitation, we have developed assays that use whole yeast cells expressing scFv on their surfaces (yeast-scFv) in place of soluble purified scFv or traditional monoclonal antibodies. In this study, a nonimmune library of human scFv displayed on the surfaces of yeast cells was screened for clones that bind to recombinant cyst proteins of Entamoeba histolytica, an enteric pathogen of humans. Selected yeast-scFv clones were stabilized by lyophilization and used in detection assay formats in which the yeast-scFv served as solid support-bound monoclonal antibodies. Specific binding of antigen to the yeast-scFv was detected by staining with rabbit polyclonal antibodies. In flow cytometry-based assays, lyophilized yeast-scFv reagents retained full binding activity and specificity for their cognate antigens after 4 weeks of storage at room temperature in the absence of desiccants or stabilizers. Because flow cytometry is not available to all potential assay users, an immunofluorescence assay was also developed that detects antigen with similar sensitivity and specificity. Antigen-specific whole-cell yeast-scFv reagents can be selected from nonimmune libraries in 2-3 weeks, produced in vast quantities, and packaged in lyophilized form for extended shelf life. Lyophilized yeast-scFv show promise as low cost, renewable alternatives to monoclonal antibodies for diagnosis and research.
Mohammadzadeh, Sara; Rajabibazl, Masoumeh; Fourozandeh, Mehdi; Rasaee, Mohammad Javad; Rahbarizadeh, Fatemeh; Mohammadi, Mohammad
2014-02-01
Phage display has a fundamental role in protein isolation and engineering. Isolated proteins produced with this method can be modified for specific binding and affinity. P24 is the most produced protein during human immune deficiency virus (HIV) replication; especially in the early steps of HIV-1 infection, its evaluation may have diagnostic values. To test the HIV-1 infection, p24 antigen assay appears to be a very promising alternative to RNA assays. In this study, we have generated a recombinant mouse single chain antibody fragment against p24 of the HIV-1 with the use of phage display technology. After isolation of antibody variable-region (V) gene of B cells extracted from the spleen of an immunized mouse, a library of single chain Fv fragments (scFv) was constructed. The library was used in a series of bio-panning processes against recombinant p24 protein expressed from Escherichia coli. The isolated scFv antibody specifically recognizes the HIV-1 capsid protein p24. The affinity constant of the isolated scFv antibody (MF85) was found to be 2×10(-9) M. Our studies showed that the MF85 scFV antibody has similar properties as that of monoclonal antibodies produced by the hybridoma technology.
Lee, Yie Chia; Boehm, Mark K; Chester, Kerry A; Begent, Richard H J; Perkins, Stephen J
2002-06-28
MFE-23 is a single chain Fv (scFv) antibody molecule used to target colorectal cancer through its high affinity for the tumour marker carcinoembryonic antigen (CEA). ScFv molecules are formed from peptide-linked antibody V(H) and V(L) domains, and many of these form dimers. Our recent crystal structure for MFE-23 showed that this formed an unusual symmetric back-to-back association of two monomers that is consistent with a domain-swapped diabody structure. Neutron scattering and modelling fits showed that MFE-23 existed as compact V(H)-V(L)-linked monomers at therapeutically relevant concentrations below 1 mg/ml. Size-exclusion gel chromatography showed that the monomeric and dimeric forms of MFE-23 could be separated, and that the proportions of these two forms depended on the starting MFE-23 concentration. Sedimentation equilibrium experiments by analytical ultracentrifugation at nine concentrations of MFE-23 indicated a reversible monomer-dimer self-association equilibrium with an association constant of 1.9x10(3)-2.2x10(3) M(-1). Sedimentation velocity experiments using the time derivative g(s(*)) method showed that MFE-23-His has a concentration-dependent weight average sedimentation coefficient that increased from 1.8 S for the monomer to about 3-6 S for the dimer. Both values agreed with those calculated from the MFE-23 crystal structure. In relation to the thermal stability of MFE-23, denaturation experiments by (1)H NMR and FT-IR spectroscopy showed that the molecule is stable up to 47 degrees C, after which denaturation was irreversible. MFE-23 dimerisation is discussed in terms of a new model for diabody structures, in which the V(H) and V(L) domains in the monomer are able to dissociate and reassociate to form a dimer, or diabody, but in which symmetric back-to-back contacts between the two monomers are formed. This dimerisation in solution is attributed to the complementary nature of the C-terminal surface of the MFE-23 monomer. Crystal structures for seven other scFv molecules have shown that, while the contact residues for symmetric back-to-back dimer formation in MFE-23 are not fully conserved, in principle, back-to-back contacts can be formed in these too. This offers possibilities for the creation of other forms of scFv molecules. (c) 2002 Elsevier Science Ltd.
Fu, Wenyan; Sun, Hefen; Zhao, Yang; Chen, Mengting; Yang, Lipeng; Yang, Xueli; Jin, Wei
2018-05-16
The overexpression of EGFR often occurs in TNBC, and the anti-EGFR receptor antibody cetuximab is used widely to treat metastatic cancer in the clinic. However, EGFR-targeted therapies have been developed for TNBC without clinical success. In this study, we show that impaired EGFR degradation is crucial for resistance to cetuximab, which depends on the cell surface molecule CD44. To further investigate the role of CD44 in EGFR signaling and its treatment potential, we developed a targeting fusion protein composed of an anti-EGFR scFv generated from cetuximab and truncated protamine, called Ce-tP. CD44 siRNA can be specifically delivered into EGFR-positive TNBC cells by Ce-tP. Efficient knockdown of CD44 and suppression of both EGFR and downstream signaling by the Ce-tP/siRNA complex were observed in EGFR-positive TNBC cells. More importantly, our results also showed that targeted delivery of siRNA specific for CD44 can efficiently overcome resistance to EGFR targeting in TNBC cells both in vitro and in vivo. Overall, our results establish a new principle to achieve EGFR inhibition in TNBC and limit drug resistance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Khantasup, Kannika; Saiviroonporn, Pairash; Jarussophon, Suwatchai; Chantima, Warangkana; Dharakul, Tararaj
2018-05-08
The development of targeted contrast agents for magnetic resonance imaging (MRI) facilitates enhanced cancer imaging and more accurate diagnosis. In the present study, a novel contrast agent was developed by conjugating anti-EpCAM humanized scFv with gadolinium chelate to achieve target specificity. The material design strategy involved site-specific conjugation of the chelating agent to scFv. The scFv monomer was linked to maleimide-DTPA via unpaired cysteine at the scFv C-terminus, followed by chelation with gadolinium (Gd). Successful scFv-DTPA conjugation was achieved at 1:10 molar ratio of scFv to maleimide-DTPA at pH 6.5. The developed anti-EpCAM-Gd-DTPA MRI contrast agent was evaluated for cell targeting ability, in vitro serum stability, cell cytotoxicity, relaxivity, and MR contrast enhancement. A high level of targeting efficacy of anti-EpCAM-Gd-DTPA to an EpCAM-overexpressing HT29 colorectal cell was demonstrated by confocal microscopy. Good stability of the contrast agent was obtained and no cytotoxicity was observed in HT29 cells after 48 h incubation with 25-100 µM of Gd. Favorable imaging was obtained using anti-EpCAM-Gd-DTPA, including 1.8-fold enhanced relaxivity compared with Gd-DTPA, and MR contrast enhancement observed after binding to HT29. The potential benefit of this contrast agent for in vivo MR imaging of colorectal cancer, as well as other EpCAM positive cancers, is suggested and warrants further investigation.
Thullier, Philippe; Avril, Arnaud; Mathieu, Jacques; Behrens, Christian K; Pellequer, Jean-Luc; Pelat, Thibaut
2013-01-01
The lethal toxin (LT) of Bacillus anthracis, composed of the protective antigen (PA) and the lethal factor (LF), plays an essential role in anthrax pathogenesis. PA also interacts with the edema factor (EF, 20% identity with LF) to form the edema toxin (ET), which has a lesser role in anthrax pathogenesis. The first recombinant antibody fragment directed against LF was scFv 2LF; it neutralizes LT by blocking the interaction between PA and LF. Here, we report that scFv 2LF cross-reacts with EF and cross-neutralizes ET, and we present an in silico method taking advantage of this cross-reactivity to map the epitope of scFv 2LF on both LF and EF. This method identified five epitope candidates on LF, constituted of a total of 32 residues, which were tested experimentally by mutating the residues to alanine. This combined approach precisely identified the epitope of scFv 2LF on LF as five residues (H229, R230, Q234, L235 and Y236), of which three were missed by the consensus epitope candidate identified by pre-existing in silico methods. The homolog of this epitope on EF (H253, R254, E258, L259 and Y260) was experimentally confirmed to constitute the epitope of scFv 2LF on EF. Other inhibitors, including synthetic molecules, could be used to target these epitopes for therapeutic purposes. The in silico method presented here may be of more general interest.
Ordóñez, Adriana; Pérez, Juan; Tan, Lu; Dickens, Jennifer A; Motamedi-Shad, Neda; Irving, James A; Haq, Imran; Ekeowa, Ugo; Marciniak, Stefan J; Miranda, Elena; Lomas, David A
2015-06-01
Mutant Z α1-antitrypsin (E342K) accumulates as polymers within the endoplasmic reticulum (ER) of hepatocytes predisposing to liver disease, whereas low levels of circulating Z α1-antitrypsin lead to emphysema by loss of inhibition of neutrophil elastase. The ideal therapy should prevent polymer formation while preserving inhibitory activity. Here we used mAb technology to identify interactors with Z α1-antitrypsin that comply with both requirements. We report the generation of an mAb (4B12) that blocked α1-antitrypsin polymerization in vitro at a 1:1 molar ratio, causing a small increase of the stoichiometry of inhibition for neutrophil elastase. A single-chain variable fragment (scFv) intrabody was generated based on the sequence of mAb4B12. The expression of scFv4B12 within the ER (scFv4B12KDEL) and along the secretory pathway (scFv4B12) reduced the intracellular polymerization of Z α1-antitrypsin by 60%. The scFv4B12 intrabody also increased the secretion of Z α1-antitrypsin that retained inhibitory activity against neutrophil elastase. MAb4B12 recognized a discontinuous epitope probably located in the region of helices A/C/G/H/I and seems to act by altering protein dynamics rather than binding preferentially to the native state. This novel approach could reveal new target sites for small-molecule intervention that may block the transition to aberrant polymers without compromising the inhibitory activity of Z α1-antitrypsin. © FASEB.
Yusakul, Gorawit; Nuntawong, Poomraphie; Sakamoto, Seiichi; Ratnatilaka Na Bhuket, Pahweenvaj; Kohno, Toshitaka; Kikkawa, Nao; Rojsitthisak, Pornchai; Shimizu, Kuniyoshi; Tanaka, Hiroyuki; Morimoto, Satoshi
2017-01-01
Due to the highly specific binding between an antibody and its target, superior analytical performances was obtained by immunoassays for phytochemical analysis over conventional chromatographic techniques. Here, we describe a simple method for producing a functional single-chain variable fragment (scFv) antibody against ganoderic acid A (GAA), a pharmacologically active metabolite from Ganoderma lingzhi. The Escherichia coli BL21(DE3) strain produced a large amount of anti-GAA scFv. However, in vitro refolding steps, which partially recovered the reactivity of the scFv, were required. Interestingly, the functional scFv was expressed as a soluble and active form in the cytoplasm of an engineered E. coli SHuffle ® strain. Purified anti-GAA scFv, which yielded 2.56 mg from 1 L of culture medium, was obtained from simple and inexpensive procedures for expression and purification. The anti-GAA scFv-based indirect competitive enzyme-linked immunosorbent assay (icELISA) exhibited high sensitivity (linearity: 0.078-1.25 µg/mL) with precision (CV: ≤6.20%) and reliability (recovery: 100.1-101.8%) for GAA determination. In summary, the approach described here is an inexpensive, simple, and efficient expression system that extends the application of anti-GAA scFv-based immunoassays. In addition, when in vitro refolding steps can be skipped, the cost and complexity of scFv antibody production can be minimized.
Balyasnikova, Irina V; Franco-Gou, Rosa; Mathis, J Michael; Lesniak, Maciej S
2010-06-01
Human adult mesenchymal stem cells (hMSCs) are under active investigation as cellular carriers for gene therapy. hMSCs possess natural tropism toward tumours; however, the targeting of hMSCs to specific cell populations within tumours is unexplored. In the case of glioblastoma multiforme (GBM), at least half of the tumours express EGFRvIII on the cell surface, an ideal target for antibody-mediated gene/drug delivery. In this study, we investigated the feasibility of genetically modifying hMSCs to express a single-chain antibody (scFv) to EGFRvIII on their surfaces. Nucleofection was used to transfect hMSCs with cDNA encoding scFv EGFRvIII fused with PDGFR or human B7-1 transmembrane domains. The expression of scFv EGFRvIII on the cell surface was assessed by FACS. A stable population of scFv EGFRvIII-expressing hMSCs was selected, based on antibiotic resistance, and enriched using FACS. We found that nucleofection allows the efficient expression of scFv EGFRvIII on the cell surface of hMSCs. hMSCs transfected with the construct encoding scFv EGFRvIII as a fusion with PDGFRtm showed scFv EGFRvIII expression in up to 86% of cells. Most importantly, human MSCs expressing scFv against EGFRvIII demonstrated enhanced binding to U87-EGFRvIII cells in vitro and significantly increased retention in human U87-EGFRvIII-expressing tumours in vivo. In summary, we provide the first conclusive evidence of genetic modification of hMSCs with a single-chain antibody against an antigen expressed on the surface of tumour cells, thereby opening up a new venue for enhanced delivery of gene therapy applications in the context of malignant brain cancer. Copyright 2009 John Wiley & Sons, Ltd.
Zhang, Qing; Yuan, Xiang-Fei; Lu, Yang; Li, Zhen-Zhen; Bao, Shi-Qi; Zhang, Xiao-Long; Yang, Yuan-Yuan; Fan, Dong-Mei; Zhang, Yi-Zhi; Wu, Chen-Xuan; Guo, Hong-Xing; Zhang, Yan-Jun; Ye, Zhou; Xiong, Dong-Sheng
2017-10-01
Tumor antigens is at the core of cancer immunotherapy, however, the ideal antigen selection is difficult especially in poorly immunogenic tumors. In this study, we designed a strategy to modify hepatocellular carcinoma (HCC) cells by surface expressing anti-CD3scfv within the tumor site strictly, which depended on the E1A-engineered human umbilical cord mesenchymal stem cells (HUMSC.E1A) delivery system. Subsequently, membrane-bound anti-CD3scfv actived the lymphocytes which lysed HCC cells bypassing the expression of antigens or MHC restriction. First, we constructed the anti-CD3scfv gene driven by human α-fetoprotein (AFP) promoter into an adenoviral vector and the E1A gene into the lentiviral vector. Our results showed that anti-CD3scfv could specifically express on the surface of HCC cells and activate the lymphocytes to kill target cells effectively in vitro. HUMSC infected by AdCD3scfv followed by LentiR.E1A could support the adenoviral replication and packaging in vitro 36 h after LentiR.E1A infection. Using a subcutaneous HepG2 xenograft model, we confirmed that AdCD3scfv and LentiR.E1A co-transfected HUMSC could migrate selectively to the tumor site and produce considerable adenoviruses. The new generated AdCD3scfv infected and modified tumor cells successfully. Mice injected with the MSC.E1A.AdCD3scfv and lymphocytes significantly inhibited the tumor growth compared with control groups. Furthermore, 5-fluorouracil (5-FU) could sensitize adenovirus infection at low MOI resulting in improved lymphocytes cytotoxicity in vitro and in vivo. In summary, this study provides a promising strategy for solid tumor immunotherapy. © 2017 UICC.
Screening of a ScFv Antibody With High Affinity for Application in Human IFN-γ Immunoassay
Yang, Hang; Zhong, Yanfang; Wang, Juncheng; Zhang, Qinghong; Li, Xiulan; Ling, Sumei; Wang, Shihua; Wang, Rongzhi
2018-01-01
Interferon gamma (IFN-γ), a signal proinflammatory cytokine secreted by immune cell, and plays a critical role in the pathogenesis and progression of many diseases. It has been regarded as an important marker for determination of disease-specific immune responses. Therefore, it is urgent to develop a feasible and accurate method to detect IFN-γ in clinic real blood samples. Until now, the immunoassay based on singe chain variable fragment (scFv) antibody for human IFN-γ is still not reported. In the present study, an scFv antibody named scFv-A8 with high specificity was obtained by phage display and biopanning, with the affinity 2.6 × 109 L/mol. Maltose binding protein (MBP) was used to improve the solubility of scFv by inserting an linker DNA between scFv and MBP tag, and the resulted fusion protein (MBP-LK-scFv) has high solubility and antigen biding activity. The expressed and purified MBP-LK-scFv antibody was used to develop the indirect competitive enzyme-linked immunosorbent assay (ELISA) (ic-ELISA) for detection of human IFN-γ, and the result indicated that the linear range to detect IFN-γ was 6–60 pg/mL with IC50 of 25 pg/mL. The limit of detection was 2 pg/mL (1.3 fm), and the average recovery was 85.05%, further demonstrating that the detection method based on scFv has higher recovery and accuracy. Hence, the developed ic-ELISA can be used to detect IFN-γ in real samples, and it may be further provided a scientific basis for disease diagnosis. PMID:29563896
Adnectin-Based Design of Chimeric Antigen Receptor for T Cell Engineering.
Han, Xiaolu; Cinay, Gunce E; Zhao, Yifan; Guo, Yunfei; Zhang, Xiaoyang; Wang, Pin
2017-11-01
Although chimeric antigen receptor (CAR)-engineered T cell therapy has achieved encouraging clinical trial results for treating hematological cancers, further optimization can likely expand this therapeutic success to more patients and other cancer types. Most CAR constructs used in clinical trials incorporate single chain variable fragment (scFv) as the extracellular antigen recognition domain. The immunogenicity of nonhuman scFv could cause host rejection against CAR T cells and compromise their persistence and efficacy. The limited availability of scFvs and slow discovery of new monoclonal antibodies also limit the development of novel CAR constructs. Adnectin, a class of affinity molecules derived from the tenth type III domain of human fibronectin, can be an alternative to scFv as an antigen-binding moiety in the design of CAR molecules. We constructed adnectin-based CARs targeting epithelial growth factor receptor (EGFR) and found that compared to scFv-based CAR, T cells engineered with adnectin-based CARs exhibited equivalent cell-killing activity against target H292 lung cancer cells in vitro and had comparable antitumor efficacy in xenograft tumor-bearing mice in vivo. In addition, with optimal affinity tuning, adnectin-based CAR showed higher selectivity on target cells with high EGFR expression than on those with low expression. This new design of adnectin CARs can potentially facilitate the development of T cell immunotherapy for cancer and other diseases. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Srila, Witsanu; Yuttavanichakul, Watcharin; Teamtisong, Kamonluck; Teaumroong, Neung; Boonkerd, Nantakorn; Tittabutr, Panlada
2017-01-01
A simple and reliable method for the detection of specific nitrogen-fixing bacteria in both free-living and bacteroid forms is essential for the development and application of biofertilizer. Traditionally, a polyclonal antibody generated from an immunized rabbit was used for detection. However, the disadvantages of using a polyclonal antibody include limited supply and cross-reactivity to related bacterial strains. This is the first report on the application of phage display technology for the generation of a rabbit recombinant monoclonal antibody for specific detection and monitoring of nitrogen-fixing bacteria in both free-living form and in plant nodules. Bradyrhizobium sp. DOA9, a broad host range soil bacteria, originally isolated from the root nodules of Aeschynomene americana in Thailand was used as a model in this study. A recombinant single-chain fragment variable (scFv) antibody library was constructed from the spleen of a rabbit immunized with DOA9. After three rounds of biopanning, one specific phage-displayed scFv antibody, designated bDOA9rb8, was identified. Specific binding of this antibody was confirmed by phage enzyme-linked immunosorbent assay (phage ELISA). The phage antibody could bind specifically to DOA9 in both free-living cells (pure culture) and bacteroids inside plant nodules. In addition to phage ELISA, specific and robust immunofluorescence staining of both free-living and bacteroid forms could also be observed by confocal-immunofluorescence imaging, without cross-reactivity with other tested bradyrhizobial strains. Moreover, specific binding of free scFv to DOA9 was also demonstrated by ELISA. This recombinant antibody can also be used for the study of the molecular mechanism of plant–microbe interactions in the future. PMID:28654662
Vu, Nguyen Xuan; Pruksametanan, Natcha; Srila, Witsanu; Yuttavanichakul, Watcharin; Teamtisong, Kamonluck; Teaumroong, Neung; Boonkerd, Nantakorn; Tittabutr, Panlada; Yamabhai, Montarop
2017-01-01
A simple and reliable method for the detection of specific nitrogen-fixing bacteria in both free-living and bacteroid forms is essential for the development and application of biofertilizer. Traditionally, a polyclonal antibody generated from an immunized rabbit was used for detection. However, the disadvantages of using a polyclonal antibody include limited supply and cross-reactivity to related bacterial strains. This is the first report on the application of phage display technology for the generation of a rabbit recombinant monoclonal antibody for specific detection and monitoring of nitrogen-fixing bacteria in both free-living form and in plant nodules. Bradyrhizobium sp. DOA9, a broad host range soil bacteria, originally isolated from the root nodules of Aeschynomene americana in Thailand was used as a model in this study. A recombinant single-chain fragment variable (scFv) antibody library was constructed from the spleen of a rabbit immunized with DOA9. After three rounds of biopanning, one specific phage-displayed scFv antibody, designated bDOA9rb8, was identified. Specific binding of this antibody was confirmed by phage enzyme-linked immunosorbent assay (phage ELISA). The phage antibody could bind specifically to DOA9 in both free-living cells (pure culture) and bacteroids inside plant nodules. In addition to phage ELISA, specific and robust immunofluorescence staining of both free-living and bacteroid forms could also be observed by confocal-immunofluorescence imaging, without cross-reactivity with other tested bradyrhizobial strains. Moreover, specific binding of free scFv to DOA9 was also demonstrated by ELISA. This recombinant antibody can also be used for the study of the molecular mechanism of plant-microbe interactions in the future.
Perche, Federico; Uchida, Satoshi; Akiba, Hiroki; Lin, Chin-Yu; Ikegami, Masaru; Dirisala, Anjaneyulu; Nakashima, Toshihiro; Itaka, Keiji; Tsumoto, Kohei; Kataoka, Kazunori
2017-01-01
The ever-increasing number of people living with Alzheimer's disease urges to develop more effective therapies. Despite considerable success, anti-Alzheimer immunotherapy still faces the challenge of intracerebral and intracellular delivery. This work introduces in situ production of anti-amyloid beta (Aβ) antibody after intracerebral injection of PEG-PAsp(DET)/mRNA polyplexes as a novel immunotherapy approach and a safer alternative compared to high systemic antibodies doses or administration of adenovirus encoding anti- Aβ antibodies. We used mRNA encoding three different Aβ-specific scFV with a secretion signal for passive immunotherapy. scFv contained a 6xHis-tag for immuno-detection. The secretion signal from IL2 (IL2ss) was added to allow extracellular engagement of senile plaques. Aβ affinity of scFv was measured by surface plasmon resonance. To allow intracellular delivery, scFv were administered as polyplexes formed with our smart copolymer polyethylene glycol-poly[N'-[N-(2-aminoethyl)-2-aminoethyl] aspartamide] [PEG-PAsp (DET)]. We evaluated scFv expression in cellulo by Western blot and ELISA, their ability to disaggregate amyloid aggregates by thioflavine T assay. Moreover, in vivo expression and therapeutic activity were evaluated in a murine amyloidosis model, by anti-6xHis-tag ELISA and anti- Aβ ELISA, respectively. The selected anti-amyloid beta scFv showed affinity towards Aβ and disaggregated Aβ fibers in vitro. Whereas both DNA and mRNA transfection led to scFV expression in cancer cells, only mRNA led to detectable scFv expression in primary neurons. In addition, the use of IL2ss increased by 3.4-fold scFv secretion by primary neurons over mRNA polyplexes devoid of secretion signal. In vivo, a 3 to 11- fold of intracranial scFv levels was measured for mRNA compared to DNA polyplexes and higher in vivo scFv levels were obtained with mRNA containing IL2ss over non-secreted mRNA. Intracranial injection of anti-Aβ mRNA polyplexes with IL2ss resulted in 40 % Aβ decrease in an acute amyloidosis model; with no decrease detected with control scFv mRNA nor DNA polyplexes. However, no Aβ decrease was detected in a more challenging transgenic model of Alzheimer's disease. Our results introduce a concerted approach not only for Alzheimer's disease treatment but also for immunotherapy against neurological diseases. The effectivity of our platform required the intracranial delivery of anti-Aβ scFv as mRNA not DNA, as mRNA with an IL2ss secretion sequence to favor engagement of Aβ in the amyloidosis model, complexation with a smart copolymer for efficient transfection of primary neurons and to achieve detectable mRNA expression in the brain during 48h. Amyloid burden decrease in an acute amyloidosis model was only achieved when these three factors (mRNA coding scFv, smart copolymer, IL2ss) were integrated into a single formulation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Sharma, Gaurav K; Mahajan, Sonalika; Matura, Rakesh; Subramaniam, Saravanan; Mohapatra, Jajati K; Pattnaik, Bramhadev
2014-11-01
Differentiation of Foot-and-Mouth Disease infected from vaccinated animals is essential for effective implementation of vaccination based control programme. Detection of antibodies against 3ABC non-structural protein of FMD virus by immunodiagnostic assays provides reliable indication of FMD infection. Sero-monitoring of FMD in the large country like India is a big task where thousands of serum samples are annually screened. Currently, monoclonal or polyclonal antibodies are widely used in these immunodiagnostic assays. Considering the large population of livestock in the country, an economical and replenishable alternative of these antibodies was required. In this study, specific short chain variable fragment (scFv) antibody against 3B region of 3ABC poly-protein was developed. High level of scFv expression in Escherichia coli system was obtained by careful optimization in four different strains. Two formats of enzyme immunoassays (sandwich and competitive ELISAs) were optimized using scFv with objective to differentiate FMD infected among the vaccinated population. The assays were statistically validated by testing 2150 serum samples. Diagnostic sensitivity/specificity of sandwich and competitive ELISAs were determined by ROC method as 92.2%/95.5% and 89.5%/93.5%, respectively. This study demonstrated that scFv is a suitable alternate for immunodiagnosis of FMD on large scale. Copyright © 2014 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
Min, Won-Ki; Cho, Young-Jin; Park, Jun-Bock; Bae, Yi-Hyun; Kim, Eun-Jeong; Park, Kyungmoon; Park, Yong-Cheol; Seo, Jin-Ho
2010-01-01
Fumonisin B(1) (FMB(1)) is a food-born mycotoxin produced by Fusarium moniliforme. Monoclonal antibody against FMB(1) (anti-FMB(1) mAb) was produced in the hybridoma DV9, which was established from a BALB/c mouse immunized with bovine serum albumin conjugated FMB(1) (FMB(1)-BSA). A competitive direct enzyme-linked immunosorbent assay (ELISA) showed that anti-FMB(1) mAb has about 10 ppb of minimum FMB(1) detection concentration and 220 ppb of 50% inhibition concentration (IC(50)). Much lower cross-reactivity of anti-FMB(1) mAb on ochratoxin A, aflatoxin B(1) and deoxynivalenol provided that anti-FMB(1) mAb was specific for FMB(1). The gene coding single chain variable fragment against FMB(1) (anti-FMB(1) scFv) was cloned from the hybridoma DV9 and was expressed in recombinant Escherichia coli. Insoluble anti-FMB(1) scFv required optimization of its refolding condition, and hence functional scFv was obtained. By using indirect ELISA, about 12-fold lower binding activity of anti-FMB(1) scFv on FMB(1)-BSA was obtained in comparison with that of the parental mAb.
Kotlan, Beatrix; Plotar, Vanda; Eles, Klara; Horvath, Szabolcs; Balatoni, Timea; Csuka, Orsolya; Újhelyi, Mihaly; Sávolt, Ákos; Szollar, Andras; Vamosi-Nagy, Istvan; Toth, Laszlo; Farkas, Emil; Toth, Jozsef; Kasler, Miklos; Liszkay, Gabriella
2018-03-01
The arsenal of questions and answers about the minor cancer initiating cancer stem cell (CSC) population put responsible for cancer invasiveness and metastases, has left with an unsolved puzzle. Specific aims of a complex project were partly focused on revealing new biomarkers of cancer. We designed and set up novel techniques to facilitate the detection of cancerous cells. As a novel approach, we investigated B cells infiltrating breast carcinomas and melanomas (TIL-B) in terms of their tumour antigen binding potential. By developing the TIL-B phage display technology we provide here a new technology for the specific detection of highly tumour-associated antigens. Single chain Fv (scFv) antibody fragment phage ELISA, immunofluorescence (IF) FACS analysis, chamber slide technique with IF confocal laser microscopy and immunohistochemistry (IHC) in paraffin-embedded tissue sections were set up and standardized. We showed strong tumour-associated disialylated glycosphingolipid expression levels on various cancer cells using scFv antibody fragments, generated previously by uniquely invasive breast carcinoma TIL-B phage display library technology. We report herein a novel strategy to obtain antibody fragments of human origin that recognise tumour-associated ganglioside antigens. Our investigations have the power to detect privileged molecules in cancer progression, invasiveness, and metastases. The technical achievements of this study are being harnessed for early diagnostics and effective cancer therapeutics.
Han, Yuedong; Haun, Yi; Deng, Jinlan; Gao, Feng; Pan, Bifeng; Cui, Daxiang
2006-01-01
Fabricating a single-chain variable fragment specific for human seminoprotein is very important in antibody-directed enzyme prodrug therapy and NMR imaging for prostate cancer. Here a single-chain Fv specific for gamma-seminoprotein was expressed by RTS. Its activity and the efficiency of entry into prostate cancer cells are investigated by immunoprecipitation and Western blotting and immunofluorescent staining, as well as entry of conjugated magnetic beads into cells. Results showed that ScFv peptides specific for gamma-seminoprotein were successfully prepared, which can bind with the prostate cells specifically and can bring magnetic beads into prostate cancer cells within 15 min, the amount of magnetic beads inside prostate cancer cells increased as the culture time prolonged. ScFv-conjugated magnetic beads did not enter into control cells. In conclusion, the ScFv peptide against human gamma-seminoprotein with biological activity was successfully fabricated, which can take magnetic beads to prostate cancer cells specifically and not to the control cells. This ScFv peptide against human gamma-seminoprotein should be useful in improving the detection and therapy of prostate cancer at early stages and NMR imaging.
Combinatorial Libraries of Arrayable Single-Chain Antibodies
NASA Astrophysics Data System (ADS)
Benhar, Itai
Antibodies that bind their respective targets with high affinity and specificity have proven to be essential reagents for biological research. Antibody phage display has become the leading tool for the rapid isolation of single-chain variable fragment (scFv) antibodies in vitro for research applications, but there is usually a gap between scFv isolation and its application in an array format suitable for high-throughput proteomics. In this chapter, we present our antibody phage display system where antibody isolation and scFv immobilization are facilitated by the design of the phagemid vector used as platform. In our system, the scFvs are fused at their C-termini to a cellulose-binding domain (CBD) and can be immobilized onto cellulose-based filters. This made it possible to develop a unique filter lift screen that allowed the efficient screen for multiple binding specificities, and to directly apply library-derived scFvs in an antibody spotted microarray.
Bu, Dawei; Zhou, Yuwei; Tang, Jian; Jing, Fang; Zhang, Wei
2013-12-01
Abnormal brain natriuretic peptide (BNP) secretion is regarded as the dominating mechanism of cerebral salt wasting syndrome (CSW), which results from a renal loss of sodium and water during intracranial disease leading to hyponatremia. Scale preparation of therapeutic single-chain variable fragment (scFv) that can neutralize elevated circulating BNP may have potential value for clinical use. In this report, we used a recently isolated humanized anti-BNP scFv fragment (3C1) as model antibody (Ab) to evaluate the potential of scale production of this therapeutic protein. The truncated gene encoding for scFv fragment cloned in pET22b (+) was mainly overexpressed as inclusion bodies in Escherichia coli (E. coli) Rosetta (DE3) pLysS cells. The insoluble fragment was solubilized and purified by Ni-NTA agarose resin under denaturation conditions, and recovered via an effective refolding buffer containing 50 mM Tris-HCl, pH 8.0, 0.15 M NaCl, 1 mM EDTA, 0.5 M arginine, 2 mM GSH, 1 mM GSSG, and 5% glycerol. The refolded scFv fragment was concentrated by PEG20000, and dialyzed in PBS (containing 5% glycerol, pH 7.4). The final yield was approximately 10.2 mg active scFv fragment per liter of culture (3.4 g wet weight cells). The scFv fragment was more than 95% pure assessed by SDS-PAGE assay. Recombinant scFv fragment with His tag displayed its immunoreactivity with anti-His tag Ab by western blotting. ELISA showed the scFv fragment specifically bound to BNP, and it displayed similar activity as the traditional anti-BNP monoclonal Ab (mAb). Thus, the current strategy allows convenient small-scale production of this therapeutic protein. Copyright © 2013 Elsevier Inc. All rights reserved.
Rangnoi, Kuntalee; Choowongkomon, Kiattawee; O'Kennedy, Richard; Rüker, Florian; Yamabhai, Montarop
2018-06-06
A human antiaflatoxin B1 (AFB1) scFv antibody (yAFB1-c3), selected from a naı̈ve human phage-displayed scFv library, was used as a template for improving and analysis of antibody-ligand interactions using the chain-shuffling technique. The variable-heavy and variable-light (VH/VL)-shuffled library was constructed from the VH of 25 preselected clones recombined with the VL of yAFB1-c3 and vice versa. Affinity selection from these libraries demonstrated that the VH domain played an important role in the binding of scFv to free AFB1. Therefore, in the next step, VH-shuffled scFv library was constructed from variable-heavy (VH) chain repertoires, amplified from the naı̈ve library, recombined with the variable-light (VL) chain of the clone yAFB1-c3. This library was then used to select a specific scFv antibody against soluble AFB1 by a standard biopanning method. Three clones that showed improved binding properties were isolated. Amino acid sequence analysis indicated that the improved clones have amino acid mutations in framework 1 (FR1) and the complementarity determining region (CDR1) of the VH chain. One clone, designated sAFH-3e3, showed 7.5-fold improvement in sensitivity over the original scFv clone and was selected for molecular binding studies with AFB1. Homology modeling and molecular docking were used to compare the binding of this and the original clones. The results confirmed that VH is more important than VL for AFB1 binding.
A conjugate of an anti-midkine single-chain variable fragment to doxorubicin inhibits tumor growth
Zhao, Shuli; Zhao, Guangfeng; Xie, Hao; Huang, Yahong; Hou, Yayi
2012-01-01
Doxorubicin (DOX) was conjugated to a single-chain variable fragment (scFv) against human midkine (MK), and the conjugate (scFv-DOX) was used to target the chemotherapeutic agent to a mouse solid tumor model in which the tumor cells expressed high levels of human MK. The His-tagged recombinant scFv was expressed in bacteria, purified by metal affinity chromatography, and then conjugated to DOX using oxidative dextran (Dex) as a linker. The molecular formula of this immunoconjugate was scFv(Dex)1.3(DOX)20. In vitro apoptosis assays showed that the scFv-DOX conjugate was more cytotoxic against MK-transfected human adenocarcinoma cells (BGC823-MK) than untransfected cells (55.3 ± 2.4 vs 22.4 ± 3.8%) for three independent experiments. Nude mice bearing BGC823-MK solid tumors received scFv-DOX or equivalent doses of scFv + DOX for 2 weeks and tumor growth was more effectively inhibited by the scFv-DOX conjugate than by scFv + DOX (51.83% inhibition vs 40.81%). Histological analysis of the tumor tissues revealed that the highest levels of DOX accumulated in tumors from mice treated with scFv-DOX and this resulted in more extensive tumor cell death than in animals treated with the equivalent dose of scFv + DOX. These results show that the scFv-DOX conjugate effectively inhibited tumor growth in vivo and suggest that antigen-specific scFv may be competent drug-carriers. PMID:22267001
He, Kuo; Zhang, Xiuyuan; Wang, Lixia; Du, Xinjun; Wei, Dong
2016-06-15
Okadaic acid is a lipophilic marine algal toxin commonly responsible for diarrhetic shellfish poisoning (DSP). Outbreaks of DSP have been increasing and are of worldwide public health concern; therefore, there is a growing demand for more rapid, reliable, and economical analytical methods for the detection of this toxin. In this study, anti-okadaic acid single-chain variable fragment (scFv) genes were prepared by cloning heavy and light chain genes from hybridoma cells, followed by fusion of the chains via a linker peptide. An scFv-pLIP6/GN recombinant plasmid was constructed and transformed into Escherichia coli for expression, and the target scFv was identified with IC-CLEIA (chemiluminescent enzyme immunoassay). The IC15 was 0.012 ± 0.02 μg/L, and the IC50 was 0.25 ± 0.03 μg/L. The three-dimensional structure of the scFv was simulated with computer modeling, and okadaic acid was docked to the scFv model to obtain a putative structure of the binding complex. Two predicted critical amino acids, Ser32 and Thr187, were then mutated to verify this theoretical model. Both mutants exhibited significant loss of binding activity. These results help us to understand this specific scFv-antigen binding mechanism and provide guidance for affinity maturation of the antibody in vitro. The high-affinity scFv developed here also has potential for okadaic acid toxin detection. Copyright © 2016. Published by Elsevier Inc.
Methanol induction optimization for scFv antibody fragment production in Pichia pastoris.
Cunha, A E; Clemente, J J; Gomes, R; Pinto, F; Thomaz, M; Miranda, S; Pinto, R; Moosmayer, D; Donner, P; Carrondo, M J T
2004-05-20
Fibronectin splice variant ED B (extracellular domain B) is a promising marker for angiogenesis in growing solid tumors. Currently, recombinant antibodies against ED B are being investigated concerning their potential use, for either therapeutic or diagnostic purposes. Single-chain antibody fragments directed against the ED B can be efficiently expressed in Pichia pastoris; thus, a recombinant strain of the methylotropic yeast P. pastoris was used for this work. Three different forms of scFv antibody fragment are found in the supernatant from this fermentation: covalent homodimer, associative homodimer, and monomer. Both homodimeric forms can be converted to the monomeric form (under reducing conditions) and be efficiently radiolabeled, whereas the monomeric form of scFv already present in the supernatant cannot. It was also found that the fraction of protein in the monomeric form is highly dependent on the mode of induction rather than scFv concentration. This suggests that the monomeric form of the scFv present in the supernatant might be a result of events occurring at the expression, secretion, or folding level. A high cell density fermentation protocol was developed by optimizing methanol induction, yielding the highest scFv antibody fragment production rate and product quality; cell concentration at the induction point and specific methanol uptake rate were found to be the most important control variables. A decrease in specific methanol uptake rate led to a higher specific production rate for the scFv antibody fragment (5.4 microg g(cell) h(-1)). Product quality, i.e., percentage of product in a homodimeric form, also increased with the decrease in methanol uptake rate. Furthermore, the volumetric productivity depended on cell concentration at the induction point, increasing with the increase of cell concentration up to 320 g L(-1) wet cell weight (WCW). The reduction of the methanol feeding rate for induction, and consequently of the oxygen uptake rate, have important consequences for optimizing product titers and quality and thus on the scale-up of this production process; hence one of the major limitations upon high cell density cultivation in bioreactors is keeping the high oxygen transfer rate required. From the results obtained, a scale-up strategy was developed based on the available oxygen transfer rates at larger scales, allowing the definition of the optimum biomass concentration for induction and methanol feeding strategy for maximization of product titer and quality. Copyright 2004 Wiley Periodicals, Inc.
Ta, H T; Prabhu, S; Leitner, E; Jia, F; von Elverfeldt, D; Jackson, Katherine E; Heidt, T; Nair, A K N; Pearce, H; von Zur Muhlen, C; Wang, X; Peter, K; Hagemeyer, C E
2011-08-05
Antibody-targeted delivery of imaging agents can enhance the sensitivity and accuracy of current imaging techniques. Similarly, homing of effector cells to disease sites increases the efficacy of regenerative cell therapy while reducing the number of cells required. Currently, targeting can be achieved via chemical conjugation to specific antibodies, which typically results in the loss of antibody functionality and in severe cell damage. An ideal conjugation technique should ensure retention of antigen-binding activity and functionality of the targeted biological component. To develop a biochemically robust, highly reproducible, and site-specific coupling method using the Staphylococcus aureus sortase A enzyme for the conjugation of a single-chain antibody (scFv) to nanoparticles and cells for molecular imaging and cell homing in cardiovascular diseases. This scFv specifically binds to activated platelets, which play a pivotal role in thrombosis, atherosclerosis, and inflammation. The conjugation procedure involves chemical and enzyme-mediated coupling steps. The scFv was successfully conjugated to iron oxide particles (contrast agents for magnetic resonance imaging) and to model cells. Conjugation efficiency ranged between 50% and 70%, and bioactivity of the scFv after coupling was preserved. The targeting of scFv-coupled cells and nanoparticles to activated platelets was strong and specific as demonstrated in in vitro static adhesion assays, in a flow chamber system, in mouse intravital microscopy, and in in vivo magnetic resonance imaging of mouse carotid arteries. This unique biotechnological approach provides a versatile and broadly applicable tool for procuring targeted regenerative cell therapy and targeted molecular imaging in cardiovascular and inflammatory diseases and beyond.
A novel anti-PSMA human scFv has the potential to be used as a diagnostic tool in prostate cancer
Han, Yueheng; Wei, Ming; Han, Sen; Lin, Ruihe; Sun, Ziyong; Yang, Fa; Jiao, Dian; Xie, Pin; Zhang, Lingling; Yang, An-Gang; Zhao, Aizhi; Wen, Weihong; Qin, Weijun
2016-01-01
Prostate cancer (PCa) is the most commonly diagnosed malignancy and the second leading cause of cancer related death in men. The early diagnosis and treatment of PCa are still challenging due to the lack of efficient tumor targeting agents in traditional managements. Prostate specific membrane antigen (PSMA) is highly expressed in PCa, while only has limited expression in other organs, providing an ideal target for the diagnosis and therapy of PCa. The antibody library technique has opened the avenue for the discovery of novel antibodies to be used in the diagnosis and therapy of cancer. In this paper, by screening a large yeast display naive human single chain antibody fragment (scFv) library, we obtained a high affinity scFv targeting PSMA, called gy1. The gy1 scFv was expressed in E.coli and purified via a C terminal 6His tag. The binding affinity of gy1 was shown to be at the nanomolar level and gy1 can specifically bind with PSMA positive cancer cells, and binding triggers its rapid internalization through the endosome-lysosome pathway. The specific targeting of gy1 to PSMA positive tumor tissues was also evaluated in vivo. We showed that the IRDye800CW labeled gy1 can efficiently target and specifically distribute in PSMA positive tumor tissues after being injected into xenograft nude mice. This study indicated that the novel antibody gy1 could be used as a great tool for the development of PSMA targeted imaging and therapy agents for PCa. PMID:27448970
Sridevi, N. V.; Shukra, A. M.; Neelakantam, B.; Anilkumar, J.; Madhanmohan, M.; Rajan, S.; Dev Chandran
2014-01-01
Recombinant antibody fragments like single chain variable fragments (scFvs) represent an attractive yet powerful alternative to immunoglobulins and hold great potential in the development of clinical diagnostic/therapeutic reagents. Structurally, scFvs are the smallest antibody fragments capable of retaining the antigen-binding capacity of whole antibodies and are composed of an immunoglobulin (Ig) variable light (VL) and variable heavy (VH) chain joined by a flexible polypeptide linker. In the present study, we constructed a scFv against bovine IgA from a hybridoma cell line IL-A71 that secretes a monoclonal antibody against bovine IgA using recombinant DNA technology. The scFv was expressed in Escherichia coli and purified using immobilized metal affinity chromatography (IMAC). The binding activity and specificity of the scFv was established by its non-reactivity toward other classes of immunoglobulins as determined by enzyme-linked immunosorbent assay (ELISA) and immunoblot analysis. Kinetic measurement of the scFv indicated that the recombinant antibody fragment had an affinity in picomolar range toward purified IgA. Furthermore, the scFv was used to develop a sensitive ELISA for the detection of foot and mouth disease virus (FMDV) carrier animals. PMID:24678404
Wu, Qian; Wang, Xiaodong; Gu, Yong; Zhang, Xiao; Qin, Yao; Chen, Heng; Xu, Xinyu; Yang, Tao; Zhang, Mei
2016-07-01
Zinc transporter 8 (ZnT8) is a major autoantigen and a predictive marker in type 1 diabetes (T1D). To investigate ZnT8-specific antibodies, a phage display library from T1D was constructed and single-chain antibodies against ZnT8 were screened and identified. Human T1D single-chain variable fragment (scFv) phage display library consists of approximately 1×10(8) clones. After four rounds of bio-panning, seven unique clones were positive by phage ELISA. Among them, C27 and C22, which demonstrated the highest affinity to ZnT8, were expressed in Escherichia coli Top10F' and then purified by affinity chromatography. C27 and C22 specifically bound ZnT8 N/C fusion protein and ZnT8 C terminal dimer with one Arg325Trp mutation. The specificity to human islet cells of these scFvs were further confirmed by immunohistochemistry. In conclusion, we have successfully constructed a T1D phage display antibody library and identified two ZnT8-specific scFv clones, C27 and C22. These ZnT8-specific scFvs are potential agents in immunodiagnostic and immunotherapy of T1D.
Heng, Boon Chin; Cao, Tong
2005-01-01
Over the past decade, there has been growing interest in the use of antibodies against intracellular targets. This is currently achieved through recombinant expression of the single chain variable fragment (scFv) antibody format within the cell, which is commonly referred to as an intrabody. This possesses a number of inherent advantages over RNA interference (iRNA). Firstly, the high specificity and affinity of intrabodies to target antigens is well-established, whereas iRNA has been frequently shown to exert multiple non-specific effects. Secondly, intrabodies being proteins possess a much longer active half-life compared to iRNA. Thirdly, when the active half-life of the intracellular target molecule is long, gene silencing through iRNA would be slow to yield any effect, whereas the effects of intrabody expression would be almost instantaneous. Lastly, it is possible to design intrabodies to block certain binding interactions of a particular target molecule, while sparing others. There is, however, various technical challenges faced with intrabody expression through the application of recombinant DNA technology. In particular, protein conformational folding and structural stability of the newly-synthesized intrabody within the cell is affected by reducing conditions of the intracellular environment. Also, there are overwhelming safety concerns surrounding the application of transfected recombinant DNA in human clinical therapy, which is required to achieve intrabody expression within the cell. Of particular concern are the various viral-based vectors that are commonly-used in genetic manipulation. A novel approach around these problems would be to look at the possibility of fusing protein transduction domains (PTD) to scFv antibodies, to create a 'cell-permeable' antibody or 'Transbody'. PTD are short peptide sequences that enable proteins to translocate across the cell membrane and be internalized within the cytosol, through atypical secretory and internalization pathways. There are a number of distinct advantages that a 'Transbody' would possess over conventional intrabodies expressed within the cell. For a start, 'correct' conformational folding and disulfide bond formation can take place prior to introduction into the target cell. More importantly, the use of cell-permeable antibodies or 'Transbodies' would avoid the overwhelming safety and ethical concerns surrounding the direct application of recombinant DNA technology in human clinical therapy, which is required for intrabody expression within the cell. 'Transbodies' introduced into the cell would possess only a limited active half-life, without resulting in any permanent genetic alteration. This would allay any safety concerns with regards to their application in human clinical therapy.
Ordóñez, Adriana; Pérez, Juan; Tan, Lu; Dickens, Jennifer A.; Motamedi-Shad, Neda; Irving, James A.; Haq, Imran; Ekeowa, Ugo; Marciniak, Stefan J.; Miranda, Elena; Lomas, David A.
2015-01-01
Mutant Z α1-antitrypsin (E342K) accumulates as polymers within the endoplasmic reticulum (ER) of hepatocytes predisposing to liver disease, whereas low levels of circulating Z α1-antitrypsin lead to emphysema by loss of inhibition of neutrophil elastase. The ideal therapy should prevent polymer formation while preserving inhibitory activity. Here we used mAb technology to identify interactors with Z α1-antitrypsin that comply with both requirements. We report the generation of an mAb (4B12) that blocked α1-antitrypsin polymerization in vitro at a 1:1 molar ratio, causing a small increase of the stoichiometry of inhibition for neutrophil elastase. A single-chain variable fragment (scFv) intrabody was generated based on the sequence of mAb4B12. The expression of scFv4B12 within the ER (scFv4B12KDEL) and along the secretory pathway (scFv4B12) reduced the intracellular polymerization of Z α1-antitrypsin by 60%. The scFv4B12 intrabody also increased the secretion of Z α1-antitrypsin that retained inhibitory activity against neutrophil elastase. MAb4B12 recognized a discontinuous epitope probably located in the region of helices A/C/G/H/I and seems to act by altering protein dynamics rather than binding preferentially to the native state. This novel approach could reveal new target sites for small-molecule intervention that may block the transition to aberrant polymers without compromising the inhibitory activity of Z α1-antitrypsin.—Ordóñez, A., Pérez, J., Tan, L., Dickens, J. A., Motamedi-Shad, N., Irving, J. A., Haq, I., Ekeowa, U., Marciniak, S. J., Miranda, E., Lomas, D. A. A single-chain variable fragment intrabody prevents intracellular polymerization of Z α1-antitrypsin while allowing its antiproteinase activity. PMID:25757566
Recombinant scFv antibodies against infectious pancreatic necrosis virus isolated by flow cytometry.
Xu, Li-Ming; Zhao, Jing-Zhuang; Liu, Miao; Cao, Yong-Sheng; Yin, Jia-Sheng; Liu, Hong-Bai; Lu, Tongyan
2016-11-01
Infectious pancreatic necrosis is a significant disease of farmed salmonids in China. In this study, a single chain variable fragment (scFv) antibody library derived from rainbow trout (Oncorhynchus mykiss) and viral protein VP2 of a Chinese infectious pancreatic necrosis virus (IPNV) isolate ChRtm213 were co-expressed by a bacterial display technology. The library was subjected to three rounds of screening by flow cytometry (FCM) to select IPNV specific antibodies. Six antibody clones with different mean fluorescence intensities (MFI) were obtained by picking colonies at random. The antibody clones were expressed and purified. The purified IPNV-specific scFv antibodies were used successfully in Western blotting, enzyme linked immunosorbent assay (ELISA) and an immunofluorescence antibody test (IFAT). This method provides a high throughput means to screen an antibody library by flow cytometry, and isolate a panel of antibody that can be used as potential reagents for the detection and study of IPNV that are prevalent in China. Copyright © 2016 Elsevier B.V. All rights reserved.
Oxidation-specific epitopes restrain bone formation.
Ambrogini, Elena; Que, Xuchu; Wang, Shuling; Yamaguchi, Fumihiro; Weinstein, Robert S; Tsimikas, Sotirios; Manolagas, Stavros C; Witztum, Joseph L; Jilka, Robert L
2018-06-06
Atherosclerosis and osteoporosis are epidemiologically linked and oxidation specific epitopes (OSEs), such as phosphocholine (PC) of oxidized phospholipids (PC-OxPL) and malondialdehyde (MDA), are pathogenic in both. The proatherogenic effects of OSEs are opposed by innate immune antibodies. Here we show that high-fat diet (HFD)-induced bone loss is attenuated in mice expressing a single chain variable region fragment of the IgM E06 (E06-scFv) that neutralizes PC-OxPL, by increasing osteoblast number and stimulating bone formation. Similarly, HFD-induced bone loss is attenuated in mice expressing IK17-scFv, which neutralizes MDA. Notably, E06-scFv also increases bone mass in mice fed a normal diet. Moreover, the levels of anti-PC IgM decrease in aged mice. We conclude that OSEs, whether produced chronically or increased by HFD, restrain bone formation, and that diminished defense against OSEs may contribute to age-related bone loss. Anti-OSEs, therefore, may represent a novel therapeutic approach against osteoporosis and atherosclerosis simultaneously.
Fagète, Séverine; Botas-Perez, Ledicia; Rossito-Borlat, Irène; Adea, Kenneth; Gueneau, Franck; Ravn, Ulla; Rousseau, François; Kosco-Vilbois, Marie; Fischer, Nicolas; Hartley, Oliver
2017-09-01
Antibody phage display technology has supported the emergence of numerous therapeutic antibodies. The development of bispecific antibodies, a promising new frontier in antibody therapy, could be facilitated by new phage display approaches that enable pairs of antibodies to be co-selected based on co-engagement of their respective targets. We describe such an approach, making use of two complementary leucine zipper domains that heterodimerize with high affinity. Phagemids encoding a first antibody fragment (scFv) fused to phage coat protein via the first leucine zipper are rescued in bacteria expressing a second scFv fused to the second leucine zipper as a soluble periplasmic protein, so that it is acquired by phage during assembly. Using a soluble scFv specific for a human CD3-derived peptide, we show that its acquisition by phage displaying an irrelevant antibody is sufficiently robust to drive selection of rare phage (1 in 105) over three rounds of panning. We then set up a model selection experiment using a cell line expressing the chemokine receptor CCR5 fused to the CD3 peptide together with a panel of phage clones capable displaying either an anti-CCR5 scFv or an irrelevant antibody, with or without the capacity to acquire the soluble anti-CD3 scFv. In this experiment we showed that rare phage (1 in 105) capable of displaying the two different scFvs can be specifically enriched over four rounds of panning. This approach has the potential to be applied to the identification of pairs of ligands capable of co-engaging two different user-defined targets, which would facilitate the discovery of novel bispecific antibodies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Ritala, A; Leelavathi, S; Oksman-Caldentey, K-M; Reddy, V S; Laukkanen, M-L
2014-06-01
Recombinant allergens and antibodies are needed for diagnostic, therapeutic, food processing and quality verification purposes. The aim of this work was to develop a barley-based production system for β-lactoglobulin (BLG) specific immunoglobulin E antibody (D1 scFv). The expression level in the best barley cell clone was 0.8-1.2 mg/kg fresh weight, and was constant over an expression period of 21 days. In the case of barley grains, the highest stable productivity (followed up to T2 grains) was obtained when the D1 scFv cDNA was expressed under a seed-specific Glutelin promoter rather than under the constitutive Ubiquitin promoter. Translational fusion of ER retention signal significantly improved the accumulation of recombinant antibody. Furthermore, lines without ER retention signal lost D1 scFv accumulation in T2 grains. Pilot scale purification was performed for a T2 grain pool (51 g) containing 55.0 mg D1 scFv/kg grains. The crude extract was purified by a two-step purification protocol including IMAC and size exclusion chromatography. The purification resulted in a yield of 0.47 mg of D1 scFv (31 kD) with high purity. Enzyme-linked immunosorbent assay revealed that 29 % of the purified protein was fully functional. In immunoprecipitation assay the purified D1 scFv recognized the native 18 kD BLG in the milk sample. No binding was observed with the heat-treated milk sample, as expected. The developed barley-based expression system clearly demonstrated its potential for application in the processing of dairy milk products as well as in detecting allergens from foods possibly contaminated by bovine milk.
Intasai, Nutjeera; Tragoolpua, Khajornsak; Pingmuang, Prakitnavin; Khunkaewla, Panida; Moonsom, Seangdeun; Kasinrerk, Watchara; Lieber, André; Tayapiwatana, Chatchai
2008-01-01
CD147, a multifunctional type I transmembrane glycoprotein, has been implicated in various physiological and pathological processes. It is involved in signal transduction pathways and also plays a crucial role in the invasive and metastatic activity of malignant tumor cells. Diminished expression of this molecule has been shown to be beneficial in suppression of tumor progression. In a previous study, we generated and characterized a recombinant antibody fragment, scFv, which reacted specifically to CD147. In the present study, we further investigated the biological properties, function and the effect of generated scFv on CD147 expression. The in vitro study showed that soluble scFv-M6-1B9 produced from E. coli HB2151 bound to CD147 surface molecule and inhibited OKT3-induced T cell proliferation. Furthermore, soluble lysate of scFv-M6-1B9 from 293A cells, transduced with a scFv-M6-1B9 expressing adenovirus vector, recognized both recombinant and native CD147. These results indicate that scFv-M6-1B9 binds with high efficiency and specificity. Importantly, scFv-M6-1B9 intrabody reduced the expression of CD147 on the cell surface of HeLa cells suggesting that scFv-M6-1B9 is biologically active. In conclusion, our present study demonstrated that scFv-M6-1B9 has a great potential to target both the intracellular and the extracellular CD147. The generated scFv-M6-1B9 may be an effective agent to clarify the cellular function of CD147 and may aid in efforts to develop a novel treatment in various human carcinomas.
Chang, Chang-Yu; Chang, Fu-Ling; Chiang, Chen-Wei; Lo, Yan-Ni; Lin, Tsai-Yu; Chen, Wang-Chuan; Tsai, Keng-Chang; Lee, Yu-Ching
2018-05-30
To understand the mechanism for inhibition of hepatitis B virus (HBV) infection is important. In this study, single-chain variable fragment (scFv) antibodies were generated and directed to the pre-S2 epitope of HBV surface antigen (HBsAg). These human scFvs were isolated from a person with history of HBV infection by phage display technology. An evaluation of panning efficiency revealed that the eluted phage titer was increased, indicating that specific clones were enriched after panning. Selected scFvs were characterized with the recombinant HBsAg through Western blotting and enzyme-linked immunosorbent assay to confirm the binding ability. Flow cytometry analysis and immunocytochemical staining revealed that one scFv, S17, could recognize endogenous HBsAg expressed on the HepG2215 cell membrane. Moreover, the binding affinity of scFv S17 to the pre-S2 epitope was determined to be 4.2 × 10 -8 M. Two ion interactions were observed as the major driving forces for scFv S17 interacting with pre-S2 by performing a rational molecular docking analysis. This study provides insights into the structural basis to understand the interactions between an antibody and the pre-S2 epitope. The functional scFv format can potentially be used in future immunotherapeutic applications.
Muchima, Kaname; Todaka, Taro; Shinchi, Hiroyuki; Sato, Ayaka; Tazoe, Arisa; Aramaki, Rikiya; Kakitsubata, Yuhei; Yokoyama, Risa; Arima, Naomichi; Baba, Masanori; Wakao, Masahiro; Ito, Yuji; Suda, Yasuo
2018-04-01
Adult T-cell leukemia (ATL) is an intractable blood cancer caused by the infection of human T-cell leukemia virus type-1, and effective medical treatment is required. It is known that the structure and expression levels of cell surface sugar chains vary depending on cell states such as inflammation and cancer. Thus, it is expected that the antibody specific for ATL cell surface sugar chain would be an effective diagnostic tool and a strong candidate for the development of an anti-ATL drug. Here, we developed a stable sugar chain-binding single-chain variable fragment antibody (scFv) that can bind to ATL cells using a fibre-type Sugar Chip and phage display method. The fiber-type Sugar Chips were prepared using O-glycans released from ATL cell lines. The scFv-displaying phages derived from human B cells (diversity: 1.04 × 108) were then screened using the fiber-type Sugar Chips, and an O-glycan-binding scFv was obtained. The flow cytometry analysis revealed that the scFv predominantly bound to ATL cell lines. The sugar chain-binding properties of the scFv was evaluated by array-type Sugar Chip immobilized with a library of synthetic glycosaminoglycan disaccharide structures. Highly sulphated disaccharide structures were found to have high affinity to scFv.
Genetically engineered multivalent single chain antibody constructs for cancer therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surinder Batra, Ph D
2006-02-27
Current therapeutic approaches against the advanced stages of human solid tumors are palliative rather than curative. Many modalities, including, surgery, radiation, and chemotherapy, either alone or in combination have met with only modest success for advanced metastatic cancers. Radioimmunotherapy (RIT) combines the specificity of monoclonal antibodies with cytotxic effects of radioisotopes. It is the smart way of delivering radiation to the known and occult metastatic cancer cells and is independent of drug toxicity and/or hormone resistance. The tumor associated glycoprotein-72 (TAG-72) containing the unique disaccharide sialyl-Tn, is highly expressed in majority of adenocarcinomas, including carcinomas of the prostate, breast, ovaries,more » pancreas and colon (80-90%) compared to undetectable expression in normal tissues. Monoclonal antibody CC49, reactive with TAG-72, after conjugation to potent gamma- and beta-emitting radionuclides, has been useful in selective systemic radiolocalization of disease and therapy of primary and metastatic tumor sites. However, limited therapeutic responses were observed in patients. Limited success of antibody based delivery of radioisotopes can be attributed to several factors including undesirable pharmacokinetics, poor tumor uptake and high immunogenicity of intact antibodies (IgGs). The primary factors contributing towards the failure of RIT include: 1) longer serum half-lives of the intact IgG molecules resulting in the radiotoxicity, 2) generation of human antibodies against murine antibodies (HAMA) that limits the frequency of dose administration, 3) poor diffusion rates of intact IgG due to the large size and 4) high interstitial fluid pressures (IFP) encountered in solid tumors. The major goal of our multidisciplinary project was to develop specific novel radiopharmaceuticals, with desired pharmacokinetics, for the diagnosis and therapy of solid tumors. To overcome the low uptake of radioactivity by tumors and to increase its tumor: normal tissue ratio for improved therapeutic index, we engineered a variety antibody constructs. These constructs were evaluated using novel approaches like special radionuclides, pretargeting and optimization. Due to the smaller size, the engineered antibody molecules should penetrate better throughout a tumor mass, with less dose heterogeneity, than is the case with intact IgG. Multivalent scFvs with an appropriate radionuclide, therefore, hold promising prospects for cancer therapy and clinical imaging in MAb-based radiopharmaceuticals. In addition, the human anti-mouse antibodies (HAMA) responses in patients against antibody-based therapy are usually directed against the immunoglobulin constant regions; however, anti-idiotypic responses can also be detected. The HAMA responses reduce the efficacy of treatment by removing the circulating antibody molecules, fragments, and possibly scFvs by altering the pharmacokinetic properties of the antibody. HAMA responses against divalent IgG, divalent Ig fragments, and possibly multimeric scFvs could cause immune complex formation with hypersensitivity or allergic reactions that could be harmful to patients. The use of small molecules, such as scFvs (monomeric as well as multimeric), with their shorter biological half-lives and the lack of the constant regions and humanized variable (binding regions) performed in our studies should reduce the development of HAMA. The generation of humanized and fully human scFvs should further reduce the development of HAMA. Specific accomplishments on the project are the production of large amounts of recombinant antibodies as they are required in large amounts for cancer diagnosis and therapy. A variety of single-chain Fv (scFv) constructs were engineered for the desired pharmacokinetic properties. Tetrameric and dimeric scFvs showed a two-fold advantage: (1) there was a considerable gain in avidity as compared to smaller fragments, and (2) the biological half-life was more compatible with RIT and RIS requirements. For RIT, delivery for sc(Fv)2 and [sc(Fv)2]2 in a fractionated schedule clearly presented a therapeutic advantage over single administration. The treatment group receiving tetravalent scFv showed a statistically significant prolonged survival with both single and fractionated administrations. 99mTc-labeled multivalent scFvs show good tumor targeting characteristics with high radiolocalization indices (tumor:background ratio). Macroautoradiography performed at 6 and 16 h post administration of labeled 99mTc-sc(Fv)2 and 99mTc-[sc(Fv)2] clearly detected the tumors in mice. Huamnaized scFs showed decreased immunogencity with patient sera.« less
2014-01-01
Introduction We previously demonstrated that a single-chain fragment variable (scFv) specific to collagen type II (CII) posttranslationally modified by reactive oxygen species (ROS) can be used to target anti-inflammatory therapeutics specifically to inflamed arthritic joints. The objective of the present study was to demonstrate the superior efficacy of anti-inflammatory cytokines when targeted to inflamed arthritic joints by the anti-ROS modified CII (anti-ROS-CII) scFv in a mouse model of arthritis. Methods Viral interleukin-10 (vIL-10) was fused to anti-ROS-CII scFv (1-11E) with a matrix-metalloproteinase (MMP) cleavable linker to create 1-11E/vIL-10 fusion. Binding of 1-11E/vIL-10 to ROS-CII was determined by enzyme-linked immunosorbent assay (ELISA), Western blotting, and immune-staining of arthritic cartilage, whereas vIL-10 bioactivity was evaluated in vitro by using an MC-9 cell-proliferation assay. Specific in vivo localization and therapeutic efficacy of 1-11E/vIL-10 was tested in the mouse model of antigen-induced arthritis. Results 1-11E/vIL-10 bound specifically to ROS-CII and to damaged arthritic cartilage. Interestingly, the in vitro vIL-10 activity in the fusion protein was observed only after cleavage with MMP-1. When systemically administered to arthritic mice, 1-11E/vIL-10 localized specifically to the arthritic knee, with peak accumulation observed after 3 days. Moreover, 1-11E/vIL-10 reduced inflammation significantly quicker than vIL-10 fused to the control anti-hen egg lysozyme scFv (C7/vIL10). Conclusions Targeted delivery of anti-inflammatory cytokines potentiates their anti-arthritic action in a mouse model of arthritis. Our results further support the hypothesis that targeting biotherapeutics to arthritic joints may be extended to include anti-inflammatory cytokines that lack efficacy when administered systemically. PMID:25029910
Characterization of single chain antibody targets through yeast two hybrid
2010-01-01
Background Due to their unique ability to bind their targets with high fidelity, antibodies are used widely not only in biomedical research, but also in many clinical applications. Recombinant antibodies, including single chain variable fragments (scFv), are gaining momentum because they allow powerful in vitro selection and manipulation without loss of function. Regardless of the ultimate application or type of antibody used, precise understanding of the interaction between the antibody's binding site and its specific target epitope(s) is of great importance. However, such data is frequently difficult to obtain. Results We describe an approach that allows detailed characterization of a given antibody's target(s) using the yeast two-hybrid system. Several recombinant scFv were used as bait and screened against highly complex cDNA libraries. Systematic sequencing of all retained clones and statistical analysis allowed efficient ranking of the prey fragments. Multiple alignment of the obtained cDNA fragments provided a selected interacting domain (SID), efficiently narrowing the epitope-containing region. Interactions between antibodies and their respective targets were characterized for several scFv. For AA2 and ROF7, two conformation-specific sensors that exclusively bind the activated forms of the small GTPases Rab6 and Rab1 respectively, only fragments expressing the entire target protein's core region were retained. This strongly suggested interaction with a non-linear epitope. For two other scFv, TA10 and SF9, which recognize the large proteins giantin and non-muscle myosin IIA, respectively, precise antibody-binding regions within the target were defined. Finally, for some antibodies, secondary targets within and across species could be revealed. Conclusions Our method, utilizing the yeast two-hybrid technology and scFv as bait, is a simple yet powerful approach for the detailed characterization of antibody targets. It allows precise domain mapping for linear epitopes, confirmation of non-linear epitopes for conformational sensors, and detection of secondary binding partners. This approach may thus prove to be an elegant and rapid method for the target characterization of newly obtained scFv antibodies. It may be considered prior to any research application and particularly before any use of such recombinant antibodies in clinical medicine. PMID:20727208
Badescu, George O.; Marsh, Andrew; Smith, Timothy R.; Thompson, Andrew J.; Napier, Richard M.
2016-01-01
A single-chain Fv fragment antibody (scFv) specific for the plant hormone abscisic acid (ABA) has been expressed in the bacterium Escherichia coli as a fusion protein. The kinetics of ABA binding have been measured using surface plasmon resonance spectrometry (BIAcore 2000) using surface and solution assays. Care was taken to calculate the concentration of active protein in each sample using initial rate measurements under conditions of partial mass transport limitation. The fusion product, parental monoclonal antibody and the free scFv all have low nanomolar affinity constants, but there is a lower dissociation rate constant for the parental monoclonal resulting in a three-fold greater affinity. Analogue specificity was tested and structure-activity binding preferences measured. The biologically-active (+)-ABA enantiomer is recognised with an affinity three orders of magnitude higher than the inactive (-)-ABA. Metabolites of ABA including phaseic acid, dihydrophaseic acid and deoxy-ABA have affinities over 100-fold lower than that for (+)-ABA. These properties of the scFv make it suitable as a sensor domain in bioreporters specific for the naturally occurring form of ABA. PMID:27023768
Mechanism of HSV infection through soluble adapter-mediated virus bridging to the EGF receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakano, Kenji, E-mail: kenakano@med.kyushu-u.ac.j; Kobayashi, Masatoshi; Nakamura, Kei-ichiro
2011-04-25
Herpes simplex virus entry into cells requires the binding of envelope glycoprotein D (gD) to an entry receptor. Depending on the cell, entry occurs by different mechanisms, including fusion at the cell surface or endocytosis. Here we examined the entry mechanism through a non-HSV receptor mediated by a soluble bi-specific adapter protein composed of recognition elements for gD and the EGF receptor (EGFR). Virus entered into endosomes using either EGF or an EGFR-specific single chain antibody (scFv) for receptor recognition. Infection was less efficient with the EGF adapter which could be attributed to its weaker binding to a viral gD.more » Infection mediated by the scFv adapter was pH sensitive, indicating that gD-EGFR bridging alone was insufficient for capsid release from endosomes. We also show that the scFv adapter enhanced infection of EGFR-expressing tumor tissue in vivo. Our results indicate that adapters may retarget HSV infection without drastically changing the entry mechanism.« less
Klimka, A; Barth, S; Matthey, B; Roovers, R C; Lemke, H; Hansen, H; Arends, J-W; Diehl, V; Hoogenboom, H R; Engert, A
1999-01-01
The human CD30 receptor is highly overexpressed on the surface of Hodgkin Reed-Sternberg cells and has been shown to be an excellent target for selective immunotherapy using monoclonal antibody-based agents such as immunotoxins. To construct a new recombinant immunotoxin for possible clinical use in patients with Hodgkin's lymphoma, we have chosen the murine anti-CD30 hybridoma Ki-4 to generate a high-affinity Ki-4 single-chain variable fragment (scFv). Hybridoma V-genes were polymerase chain reaction-amplified, assembled, cloned and expressed as a mini-library for display on filamentous phage. Functional Ki-4 scFv were obtained by selection of binding phage on the Hodgkin lymphoma-derived, CD30-expressing cell line L540Cy. The selected recombinant Ki-4 scFv was shown to specifically bind to an overlapping epitope on the CD30 antigen with binding kinetics similar to those of the original antibody. The Ki-4 scFv was subsequently fused to a deletion mutant of Pseudomonas exotoxin A (ETÁ). The resulting immunotoxin Ki-4(scFv)-ETÁ specifically binds to CD30+ L540Cy cells and inhibits the protein synthesis by 50% at a concentration (IC50) of 43 pM. This recombinant immunotoxin is a promising candidate for further clinical evaluation in patients with Hodgkin's lymphoma or other CD30+ malignancies. © 1999 Cancer Research Campaign PMID:10376974
Kellner, Christian; Bräutigam, Joachim; Staudinger, Matthias; Schub, Natalie; Peipp, Matthias; Gramatzki, Martin; Humpe, Andreas
2012-01-01
CD96, a cell surface antigen recently described to be preferentially expressed on acute myeloid leukemia (AML) leukemic stem cells (LSC) may represent an interesting target structure for the development of antibody-based therapeutic approaches. The v-regions from the CD96-specific hybridoma TH-111 were isolated and used to generate a CD96-specific single chain fragment of the variable regions (scFv). An affinity maturated variant resulting in 4-fold enhanced CD96-binding was generated by random mutagenesis and stringent selection using phage display. The affinity maturated scFv CD96-S32F was used to generate bivalent mini-antibodies by genetically fusing an IgG1 wild type Fc region or a variant with enhanced CD16a binding. Antibody dependent cell-mediated cytotoxicity (ADCC) experiments revealed that Fc engineering was essential to trigger significant effector cell-mediated lysis when the wild type scFv was used. The mini-antibody variant generated by fusing the affinity-maturated scFv with the optimized Fc variant demonstrated the highest ADCC activity (2.3-fold enhancement in efficacy). In conclusion, our data provide proof of concept that CD96 could serve as a target structure for effector cell-mediated lysis and demonstrate that both enhancing affinity for CD96 and for CD16a resulted in mini-antibodies with the highest cytolytic potential. PMID:22879978
JU, Schmohl; MK, Gleason; PR, Dougherty; JS, Miller; DA, Vallera
2015-01-01
Background Natural killer (NK) cells are potent cytotoxic lymphocytes that play a critical role in tumor immunosurveillance and control. Cancer stem cells (CSC) initiate and sustain tumor cell growth, mediate drug refractory cancer relapse and express the well-known surface marker CD133. Methods DNA fragments from two fully humanized single chain fragment variable (scFv) antibody recognizing CD16 on NK-cells and CD133 on CSC were genetically spliced forming a novel drug, 16 × 133 BiKE that simultaneously recognizes these antigen to facilitate an immunologic synapse. The anti-CD133 was created using a fusion protein prepared by fusing DNA fragments encoding the two extracellular domains of CD133. Immunization of mice with the resulting fusion protein generated an unique antibody that recognized the molecular framework and was species cross-reactive. Results In vitro 51chromium release cytotoxicity assays at both high and low effector:target ratios demonstrated the ability of the heterodimeric biological drug to greatly enhance NK-cell killing of human Caco-2 colorectal carcinoma cells known to overexpress CD133. The tumor associated antigen specificity of the drug for CD133 even enhanced NK-cell cytotoxicity against the NK-resistant human Burkitt's lymphoma Daudi cell line, which has less than 5% CD133 surface expression. Flow cytometry analysis revealed increases in NK-cell degranulation and Interferon-γ production upon co-culture with Caco-2 targets in the presence of the drug. Conclusion These studies demonstrate that the innate immune system can be effectively recruited to kill CSC using bispecific antibodies targeting CD133, and that this anti-CD133 scFv may be useful in this bispecific platform or, perhaps, in the design of more complex trispecific molecules for carcinoma therapy. PMID:26566946
Goodchild, Sarah A; Dooley, Helen; Schoepp, Randal J; Flajnik, Martin; Lonsdale, Stephen G
2011-09-01
Members of the genus Ebolavirus cause fulminating outbreaks of disease in human and non-human primate populations with a mortality rate up to 90%. To facilitate rapid detection of these pathogens in clinical and environmental samples, robust reagents capable of providing sensitive and specific detection are required. In this work recombinant antibody libraries were generated from murine (single chain variable domain fragment; scFv) and nurse shark, Ginglymostoma cirratum (IgNAR V) hosts immunised with Zaire ebolavirus. This provides the first recorded IgNAR V response against a particulate antigen in the nurse shark. Both murine scFv and shark IgNAR V libraries were panned by phage display technology to identify useful antibodies for the generation of immunological detection reagents. Two murine scFv were shown to have specificity to the Zaire ebolavirus viral matrix protein VP40. Two isolated IgNAR V were shown to bind to the viral nucleoprotein (NP) and to capture viable Zaire ebolavirus with a high degree of sensitivity. Assays developed with IgNAR V cross-reacted to Reston ebolavirus, Sudan ebolavirus and Bundibugyo ebolavirus. Despite this broad reactivity, neither of IgNAR V showed reactivity to Côte d'Ivoire ebolavirus. IgNAR V was substantially more resistant to irreversible thermal denaturation than murine scFv and monoclonal IgG in a comparative test. The demonstrable robustness of the IgNAR V domains may offer enhanced utility as immunological detection reagents in fieldable biosensor applications for use in tropical or subtropical countries where outbreaks of Ebolavirus haemorrhagic fever occur. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Gąciarz, Anna
2017-01-01
CyDisCo is a system facilitating disulfide bond formation in recombinant proteins in the cytoplasm of Escherichia coli. Previously we screened for soluble expression of single chain antibody fragments (scFv) in the cytoplasm of E. coli in the presence and absence of CyDisCo, with >90% being solubly expressed. Two scFv, those derived from natalizumab and trastuzumab, were solubly produced in high amounts even in the absence of folding catalysts i.e. disulfide bond formation is not critical for their folding. Here we investigate the contribution of the framework and the complementarity determining regions (CDRs) of scFv to the disulfide-independence of folding. We swapped CDRs between four scFv that have different properties, including two scFv that can efficiently fold independently from disulfide bonds and two more disulfide-dependent scFv. To confirm disulfide-independence we generated cysteine to alanine mutants of the disulfide-independent scFv. All of the scFv were tested for soluble expression in the cytoplasm of E. coli in the presence and absence of the oxidative folding catalysts Erv1p and PDI. Eight of the hybrid scFv were solubly produced in the presence of CyDisCo, while seven were solubly produced in the absence of CyDisCo, though the yields were often much lower when CyDisCo was absent. Soluble expression was also observed for scFv natalizumab and trastuzumab containing no cysteines. We compared yields, thermal stability and secondary structure of solubly produced scFv and undertook binding studies by western blotting, dot blotting or surface plasmon resonance of those produced in good yields. Our results indicate that both the CDRs and the framework contribute to the disulfide-dependence of soluble production of scFv, with the CDRs having the largest effect. In addition, there was no correlation between thermal stability and disulfide-dependence of folding and only a weak correlation between the yield of protein and the thermal stability of the protein. PMID:29253024
Gąciarz, Anna; Ruddock, Lloyd W
2017-01-01
CyDisCo is a system facilitating disulfide bond formation in recombinant proteins in the cytoplasm of Escherichia coli. Previously we screened for soluble expression of single chain antibody fragments (scFv) in the cytoplasm of E. coli in the presence and absence of CyDisCo, with >90% being solubly expressed. Two scFv, those derived from natalizumab and trastuzumab, were solubly produced in high amounts even in the absence of folding catalysts i.e. disulfide bond formation is not critical for their folding. Here we investigate the contribution of the framework and the complementarity determining regions (CDRs) of scFv to the disulfide-independence of folding. We swapped CDRs between four scFv that have different properties, including two scFv that can efficiently fold independently from disulfide bonds and two more disulfide-dependent scFv. To confirm disulfide-independence we generated cysteine to alanine mutants of the disulfide-independent scFv. All of the scFv were tested for soluble expression in the cytoplasm of E. coli in the presence and absence of the oxidative folding catalysts Erv1p and PDI. Eight of the hybrid scFv were solubly produced in the presence of CyDisCo, while seven were solubly produced in the absence of CyDisCo, though the yields were often much lower when CyDisCo was absent. Soluble expression was also observed for scFv natalizumab and trastuzumab containing no cysteines. We compared yields, thermal stability and secondary structure of solubly produced scFv and undertook binding studies by western blotting, dot blotting or surface plasmon resonance of those produced in good yields. Our results indicate that both the CDRs and the framework contribute to the disulfide-dependence of soluble production of scFv, with the CDRs having the largest effect. In addition, there was no correlation between thermal stability and disulfide-dependence of folding and only a weak correlation between the yield of protein and the thermal stability of the protein.
Putalun, Waraporn
2011-03-01
Single chain fragment-variable (scFv) enhanced solasodine glycoside accumulation in Solanum khasianum hairy root cultures transformed by the ScFv solamargine (As)-scFv gene. The scFv protein was expressed at a high level in inclusion bodies of E. coli. After being renatured, the scFv protein was purified in a one-step manner by metal chelate affinity chromatography. The yield of refolded and purified scFv was 12.5 mg per 100 ml of cell culture. The characteristics of the As-scFv expressed in E. coli and transgenic hairy roots were similar to those of the parent monoclonal antibody (MAb). The expression of scFv protein provides a low cost and a high yield of functional scFv antibody against solamargine. The full linear range of the ELISA assay using scFv was extended from 1.5-10 µg/ml. The expressed anti-solamargine scFv protein could be useful for determination of total solasodine glycoside content in plant samples by ELISA. Solasodine glycoside levels in the transgenic hairy root were 2.3-fold higher than that in the wild-type hairy root based on the soluble protein level and binding activities. The As-scFv expressed in S. khasianum hairy roots enhanced solasodine glycosides accumulation and provide a novel medicinal plant breeding methodology that can produce a high yield of secondary metabolites.
Li, Jinhua; Franek, Karl J; Patterson, Andrea L; Holmes, Lillia M; Burgin, Kelly E; Ji, Jianfei; Yu, Xianzhong; Wagner, Thomas E; Wei, Yanzhang
2003-11-01
Down-regulation of the major histocompatibility complex (MHC) is one of the major mechanisms that tumor cells adopted to escape immunosurveillance. Therefore, specifically coating tumor cells with foreign MHC may make tumor cells a better target for immune recognition and surveillance. In this study, we designed and generated a fusion protein, H2Kd/scPSMA, consisting of a single chain antibody against human prostate specific membrane antigen (PSMA) and the extracellular domain of mouse H-2Kd. The expression of this fusion protein in B16F0 mouse melanoma cells was confirmed by RT-PCR and fluorescent activated cell sorting (FACS). Our animal study showed that the expression of H2Kd/scPSMA in B16F0/PSMA5, a B16F0 cell line expressing human PSMA, significantly inhibited tumor growth as demonstrated in the pulmonary metastasis assay and tumor growth study and improved overall survival.
Kogelberg, Heide; Tolner, Berend; Thomas, Gareth J.; Di Cara, Danielle; Minogue, Shane; Ramesh, Bala; Sodha, Serena; Marsh, Dan; Lowdell, Mark W.; Meyer, Tim; Begent, Richard H.J.; Hart, Ian; Marshall, John F; Chester, Kerry
2010-01-01
Summary The αvβ6 integrin is a promising target for cancer therapy. Its expression is up-regulated de novo on many types of carcinoma where it may activate transforming growth factor-β1 and transforming growth factor-β3, interact with the specific extracellular matrix proteins and promote migration and invasion of tumour cells. The viral protein 1 (VP1) coat protein of the O1 British field strain serotype of foot-and-mouth disease virus is a high-affinity ligand for αvβ6, and we recently reported that a peptide derived from VP1 exhibited αvβ6-specific binding in vitro and in vivo. We hypothesized that this peptide could confer binding specificity of an antibody to αvβ6. A 17-mer peptide of VP1 was inserted into the complementary-determining region H3 loop of MFE-23, a murine single-chain Fv (scFv) antibody reactive with carcinoembryonic antigen (CEA). The resultant scFv (B6-1) bound to αvβ6 but retained residual reactivity with CEA. This was eliminated by point mutation (Y100bP) in the variable heavy-chain domain to create an scFv (B6-2) that was as structurally stable as MFE-23 and reacted specifically with αvβ6 but not α5β1, αvβ3, αvβ5, αvβ8 or CEA. B6-2 was internalized into αvβ6-expressing cells and inhibited αvβ6-dependent migration of carcinoma cells. B6-2 was subsequently humanized. The humanized form (B6-3) was obtained as a non-covalent dimer from secretion in Pichia pastoris (115 mg/l) and was a potent inhibitor of αvβ6-mediated cell adhesion. Thus, we have used a rational stepwise approach to create a humanized scFv with therapeutic potential to block αvβ6-mediated cancer cell invasion or to deliver and internalize toxins specifically to αvβ6-expressing tumours. PMID:18656482
Lehmann, Andreas; Wixted, Josephine H F; Shapovalov, Maxim V; Roder, Heinrich; Dunbrack, Roland L; Robinson, Matthew K
2015-01-01
Phage-display technology facilitates rapid selection of antigen-specific single-chain variable fragment (scFv) antibodies from large recombinant libraries. ScFv antibodies, composed of a VH and VL domain, are readily engineered into multimeric formats for the development of diagnostics and targeted therapies. However, the recombinant nature of the selection strategy can result in VH and VL domains with sub-optimal biophysical properties, such as reduced thermodynamic stability and enhanced aggregation propensity, which lead to poor production and limited application. We found that the C10 anti-epidermal growth factor receptor (EGFR) scFv, and its affinity mutant, P2224, exhibit weak production from E. coli. Interestingly, these scFv contain a fusion of lambda3 and lambda1 V-region (LV3 and LV1) genes, most likely the result of a PCR aberration during library construction. To enhance the biophysical properties of these scFvs, we utilized a structure-based approach to replace and redesign the pre-existing framework of the VL domain to one that best pairs with the existing VH. We describe a method to exchange lambda sequences with a more stable kappa3 framework (KV3) within the VL domain that incorporates the original lambda DE-loop. The resulting scFvs, C10KV3_LV1DE and P2224KV3_LV1DE, are more thermodynamically stable and easier to produce from bacterial culture. Additionally, C10KV3_LV1DE and P2224KV3_LV1DE retain binding affinity to EGFR, suggesting that such a dramatic framework swap does not significantly affect scFv binding. We provide here a novel strategy for redesigning the light chain of problematic scFvs to enhance their stability and therapeutic applicability.
Hu, Zu-Quan; Li, He-Ping; Wu, Ping; Li, Ya-Bo; Zhou, Zhu-Qing; Zhang, Jing-Bo; Liu, Jin-Long; Liao, Yu-Cai
2015-03-31
Fumonisin B analogs, particularly FB1, FB2, and FB3, are major mycotoxins found in cereals. Single-chain fragment variable (scFv) antibodies represent a promising alternative immunoassay system. A phage-displayed antibody library derived from four monoclonal antibodies (mAbs) generated against FB1 was used to screen high binding affinity scFv antibodies; the best candidate was designated H2. Surface plasmon resonance measurements confirmed that the H2 scFv displayed a 82-fold higher binding affinity than its parent mAb. Direct competitive enzyme-linked immunosorbent assay demonstrated that the H2 antibody could competitively bind to free FB1, FB2, and FB3, with an IC50 of 0.11, 0.04, and 0.10 μM, respectively; it had no cross-reactivity to deoxynivalenol, nivalenol and aflatoxin. Validation assays with naturally contaminated samples revealed a linear relationship between the H2 antibody-based assay results and chemical analysis results, that could be expressed as y=1.7072x+5.5606 (R(2)=0.8883). Homology modeling of H2 revealed a favorable binding structure highly complementary to the three fumonisins. Molecular docking analyses suggested that the preferential binding of the H2 scFv to FB2 was due to the presence of a hydrogen radical in its R1 position, leading to a proper electrostatic matching and hydrophobic interaction. The H2 scFv antibody can be used for the rapid, accurate, and specific detection of fumonisin contamination in agricultural samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Improving the affinity of an antibody for its antigen via long-range electrostatic interactions.
Fukunaga, Atsushi; Tsumoto, Kouhei
2013-12-01
To address how long-range electrostatic force can affect antibody-antigen binding, we focused on the interactions between human cardiac troponin I and its specific single-chain antibodies (scFvs). We first isolated two scFvs against two linear epitopes with distinct isoelectric points. For the scFv against the acidic epitope (A1scFv), we mutated five residues of framework region 3 of the light chain to Lys or Arg, designated as the K- or R-mutant, respectively. For the scFv against the basic epitope (A2scFv), we mutated four or three residues in framework region 3 of the light or heavy chain to Asp, to generate the VL- and VH-mutant, respectively. Surface plasmon resonance analyses showed that the kon values of all of the mutants were greater than that of wild type, even though framework region 3 does not make direct contact with the epitope. The affinity of the K-mutant was pM range, and that of the R-mutant improved further by more than two orders of magnitude due to a decrease in the dissociation rate constant. For the A2scFv mutants, the affinity of the VL-mutant for its target improved through an increase in the kon value without a decrease in the koff value. The stability slightly decreased in all mutants. These results suggest that introducing electrostatic interaction can improve the affinity of an antibody for its target, even if the mutation reduces stability of the antibody.
A Recombinant Human Anti-Platelet scFv Antibody Produced in Pichia pastoris for Atheroma Targeting
Vallet-Courbin, Amelie; Larivière, Mélusine; Hocquellet, Agnès; Hemadou, Audrey; Parimala, Sarjapura-Nagaraja; Laroche-Traineau, Jeanny; Santarelli, Xavier; Clofent-Sanchez, Gisèle; Jacobin-Valat, Marie-Josée; Noubhani, Abdelmajid
2017-01-01
Cells of the innate and adaptive immune system are key factors in the progression of atherosclerotic plaque, leading to plaque instability and rupture, potentially resulting in acute atherothrombotic events such as coronary artery disease, cerebrovascular disease and peripheral arterial disease. Here, we describe the cloning, expression, purification, and immunoreactivity assessment of a recombinant single-chain variable fragment (scFv) derived from a human anti-αIIbβ3 antibody (HuAb) selected to target atheromatous lesions for the presence of platelets. Indeed, platelets within atheroma plaques have been shown to play a role in inflammation, in platelet-leucocyte aggregates and in thrombi formation and might thus be considered relevant biomarkers of atherosclerotic progression. The DNA sequence that encodes the anti-αIIbβ3 TEG4 scFv previously obtained from a phage-display selection on activated platelets, was inserted into the eukaryote vector (pPICZαA) in fusion with a tag sequence encoding 2 cysteines useable for specific probes grafting experiments. The recombinant protein was expressed at high yields in Pichia pastoris (30 mg/L culture). The advantage of P. pastoris as an expression system is the production and secretion of recombinant proteins in the supernatant, ruling out the difficulties encountered when scFv are produced in the cytoplasm of bacteria (low yield, low solubility and reduced affinity). The improved conditions allowed for the recovery of highly purified and biologically active scFv fragments ready to be grafted in a site-directed way to nanoparticles for the imaging of atherosclerotic plaques involving inflammatory processes and thus at high risk of instability. PMID:28125612
Bezabeh, Binyam; Fleming, Ryan; Fazenbaker, Christine; Zhong, Haihong; Coffman, Karen; Yu, Xiang-Qing; Leow, Ching Ching; Gibson, Nerea; Wilson, Susan; Stover, C Kendall; Wu, Herren; Gao, Changshou; Dimasi, Nazzareno
By simultaneous binding two disease mediators, bispecific antibodies offer the opportunity to broaden the utility of antibody-based therapies. Herein, we describe the design and characterization of Bs4Ab, an innovative and generic bispecific tetravalent antibody platform. The Bs4Ab format comprises a full-length IgG1 monoclonal antibody with a scFv inserted into the hinge domain. The Bs4Ab design demonstrates robust manufacturability as evidenced by MEDI3902, which is currently in clinical development. To further demonstrate the applicability of the Bs4Ab technology, we describe the molecular engineering, biochemical, biophysical, and in vivo characterization of a bispecific tetravalent Bs4Ab that, by simultaneously binding vascular endothelial growth factor and angiopoietin-2, inhibits their function. We also demonstrate that the Bs4Ab platform allows Fc-engineering similar to that achieved with IgG1 antibodies, such as mutations to extend half-life or modulate effector functions.
Fab is the most efficient format to express functional antibodies by yeast surface display.
Sivelle, Coline; Sierocki, Raphaël; Ferreira-Pinto, Kelly; Simon, Stéphanie; Maillere, Bernard; Nozach, Hervé
2018-04-30
Multiple formats are available for engineering of monoclonal antibodies (mAbs) by yeast surface display, but they do not all lead to efficient expression of functional molecules. We therefore expressed four anti-tumor necrosis factor and two anti-IpaD mAbs as single-chain variable fragment (scFv), antigen-binding fragment (Fab) or single-chain Fabs and compared their expression levels and antigen-binding efficiency. Although the scFv and scFab formats are widely used in the literature, 2 of 6 antibodies were either not or weakly expressed. In contrast, all 6 antibodies expressed as Fab revealed strong binding and high affinity, comparable to that of the soluble form. We also demonstrated that the variations in expression did not affect Fab functionality and were due to variations in light chain display and not to misfolded dimers. Our results suggest that Fab is the most versatile format for the engineering of mAbs.
Cheraghi, Roya; Nazari, Mahboobeh; Alipour, Mohsen; Majidi, Asia; Hosseinkhani, Saman
2016-12-30
Chimeric polymers are known as suitable carriers for gene delivery. Certain properties are critical for a polymer to be used as a gene delivery vector. A new polymer was designed for the targeted delivery of genes into breast cancer cell lines, based on MPG peptide. It is composed of different functional domains, including HIV gp41, nuclear localization sequence of SV40 T-antigen, two C-terminus repeats of histone H1, and the scFv of anti-HER2 antibody. The results demonstrated that the vector can effectively condense plasmid DNA into nanoparticles with an average size of 250nm. Moreover, fusion of the scFv portion to the carrier brought about the specific recognition of HER2. Overall, the transfection efficiency of the vector demonstrated that it could deliver the desired gene into BT-474 HER2-positive breast cancer cells. Copyright © 2016 Elsevier B.V. All rights reserved.
Peptide docking of HIV-1 p24 with single chain fragment variable (scFv) by CDOCKER algorithm
NASA Astrophysics Data System (ADS)
Karim, Hana Atiqah Abdul; Tayapiwatana, Chatchai; Nimmanpipug, Piyarat; Zain, Sharifuddin M.; Rahman, Noorsaadah Abdul; Lee, Vannajan Sanghiran
2014-10-01
In search for the important residues that might have involve in the binding interaction between the p24 caspid protein of HIV-1 fragment (MET68 - PRO90) with the single chain fragment variable (scFv) of FAB23.5, modern computational chemistry approach has been conducted and applied. The p24 fragment was initially taken out from the 1AFV protein molecule consisting of both light (VL) and heavy (VH) chains of FAB23.5 as well as the HIV-1 caspid protein. From there, the p24 (antigen) fragment was made to dock back into the protein pocket receptor (antibody) by using the CDOCKER algorithm to conduct the molecular docking process. The score calculated from the CDOCKER gave 15 possible docked poses with various docked ligand's positions, the interaction energy as well as the binding energy. The best docked pose that imitates the original antigen's position was determined and further processed to the In Situ minimization to obtain the residues interaction energy as well as to observe the hydrogen bonds interaction in the protein-peptide complex. Based on the results demonstrated, the specific residues in the complex that have shown immense lower interaction energies in the 5Å vicinity region from the peptide are from the heavy chain (VH:TYR105) and light chain (VL: ASN31, TYR32, and GLU97). Those residues play vital roles in the binding mechanism of Antibody-Antigen (Ab-Ag) complex of p24 with FAB23.5.
Xu, Chongxin; Zhang, Cunzheng; Zhong, Jianfeng; Hu, Hui; Luo, Shimin; Liu, Xiaoqin; Zhang, Xiao; Liu, Yuan; Liu, Xianjin
2017-07-26
In the present study, a Cry1F-immunized rabbit phage display library (6.96 × 10 8 cfu/mL) was constructed for selecting high activity of anti-Cry1F toxin single-chain antibody (a single-chain variable fragment, scFv) by biopanning. A total of 16 positive monoclonal phage scFv's were obtained after 4 rounds of panning, which were identified by enzyme-linked immunosorbent assay (ELISA), polymerized chain reaction, and DNA sequencing. The most positive phage scFv (named RF4) was expressed in Escherichia coli HB2151, and a soluble protein of approximately 30 kDa was purified with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. An indirect competitive ELISA (IC-ELISA) was established on the basis of purified soluble RF4-scFv for Cry1F toxin. It indicated the 50% inhibition of the control (IC 50 ) was 11.56 ng/mL and the detection limit (IC 10 ) was 0.18 ng/mL and showed weak cross-reactivities for Cry1Ab (2.8%), Cry1Ac (1.3%), and Cry1B, Cry1C, Cry1Ie, and Cry2A (less than 0.1%). It was found that IC-ELISA detected Cry1F toxin spiked in rice, wheat, corn, and soil samples with good accuracy, stability, and repeatability. The recoveries were in the range of 80.2-99.6%, and the coefficients of variation were in the range of 2.5-10.0%. These results showed that IC-ELISA based on scFv from the immunized rabbit phage display library was promising for specific detection of Cry1F toxin in agroproducts and environmental samples.
Gao, Wei; Cai, Liting; Xu, Xudong; Fan, Juxiang; Xue, Xiulei; Yan, Xuejiao; Qu, Qinrong; Wang, Xihua; Zhang, Chen; Wu, Guoqiu
2014-01-01
Connective tissue growth factor (CTGF) contributes to airway smooth muscle (ASM) cell hyperplasia in asthma. Humanized single-chain variable fragment antibody (scFv) was well characterized as a CTGF antagonist in the differentiation of fibroblast into myofibroblast and pulmonary fibrosis in our previous studies. To further improve the bioactivity of scFv, we constructed a plasmid to express scFv-linker-matrilin-6×His fusion proteins that could self-assemble into the scFv dimers by disulfide bonds in matrilin under non-reducing conditions. An immunoreactivity assay demonstrated that the scFv dimer could highly bind to CTGF in a concentration-dependent manner. The MTT and EdU assay results revealed that CTGF (≥10 ng/mL) promoted the proliferation of ASM cells, and this effect was inhibited when the cells were treated with anti-CTGF scFv dimer. The western blot analysis results showed that increased phosphorylation of Akt and mTOR induced by CTGF could be suppressed by this scFv dimer. Based on these findings, anti-CTGF scFv dimer may be a potential agent for the prevention of airway remodeling in asthma.
Refolding of autodisplayed anti-NEF scFv through oxidation with glutathione for immunosensors.
Bong, Ji-Hong; Song, Hyun-Woo; Kim, Tae-Hun; Kang, Min-Jung; Jose, Joachim; Pyun, Jae-Chul
2018-04-15
In this study, a single-domain antibody against negative regulatory factor (anti-NEF scFv) was autodisplayed on the outer membrane of Escherichia coli and used to detect NEF in an immunoassay based on fluorescence-activated cell sorting, enzyme-linked immunosorbent assay, and surface plasmon resonance biosensors. Next, the autodisplayed single-domain antibody was oxidized to form disulfide bonds by using glutathione, and the change in NEF-binding activity of anti-NEF scFv was analyzed by fluorescence-activated cell sorting-based immunoassay, chromogenic immunoassay, and surface plasmon resonance biosensor. For each type of immunoassays the anti-NEF scFv on the isolated outer membrane showed more NEF binding activity after the disulfide bond formation by glutathione. To determine the role of cysteines in anti-NEF scFv, three mutants were prepared, and the NEF binding activity of mutants was compared with that of wild-type anti-NEF scFv in a competitive immunoassay based on FACS. In these mutant studies, the refolding process of autodisplayed anti-NEF scFv by following oxidation via GSH/GSSG revealed that disulfide bonds formed and increased NEF binding activity. Copyright © 2017 Elsevier B.V. All rights reserved.
Xu, Xudong; Fan, Juxiang; Xue, Xiulei; Yan, Xuejiao; Qu, Qinrong; Wang, Xihua; Zhang, Chen; Wu, Guoqiu
2014-01-01
Connective tissue growth factor (CTGF) contributes to airway smooth muscle (ASM) cell hyperplasia in asthma. Humanized single-chain variable fragment antibody (scFv) was well characterized as a CTGF antagonist in the differentiation of fibroblast into myofibroblast and pulmonary fibrosis in our previous studies. To further improve the bioactivity of scFv, we constructed a plasmid to express scFv-linker-matrilin-6×His fusion proteins that could self-assemble into the scFv dimers by disulfide bonds in matrilin under non-reducing conditions. An immunoreactivity assay demonstrated that the scFv dimer could highly bind to CTGF in a concentration-dependent manner. The MTT and EdU assay results revealed that CTGF (≥10 ng/mL) promoted the proliferation of ASM cells, and this effect was inhibited when the cells were treated with anti-CTGF scFv dimer. The western blot analysis results showed that increased phosphorylation of Akt and mTOR induced by CTGF could be suppressed by this scFv dimer. Based on these findings, anti-CTGF scFv dimer may be a potential agent for the prevention of airway remodeling in asthma. PMID:25478966
Wang, Xuan; Zhang, Fang-Cheng; Zhao, Hong-Yang; Lu, Xiao-Ling; Sun, Yun; Xiong, Zhi-Yong; Jiang, Xiao-Bing
2014-08-01
The epidermal growth factor receptor (EGFR) mutant of EGFRvIII is highly expressed in glioma cells, and the EGFRvIII-specific dendritic cell (DC)-induced tumor antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) may hold promise in cancer immunotherapy. Interferon (IFN)-γ-inducible protein (IP)-10 (IP-10) is a potent inhibitor of angiogenesis and can recruit CXCR3(+) T cells, including CD8(+) T cells, which are important for the control of tumor growth. In this study, we assessed if the combination of IP10-EGFRvIIIscFv with DC-induced CTLs would improve the therapeutic antitumor efficacy. IP10-scFv was generated by linking the human IP-10 gene with the DNA fragment for anti-EGFRvIIIscFv with a (Gly4Ser)3 flexible linker, purified by affinity chromatography, and characterized for its anti-EGFRvIII immunoreactivity and chemotactic activity. DCs were isolated from human peripheral blood monocyte cells and pulsed with EGFRvIII-peptide, then co-cultured with autologous CD8(+) T cells. BALB/c-nu mice were inoculated with human glioma U87-EGFRvIII cells in the brain and treated intracranially with IP10-scFv and/or intravenously with DC-induced CTLs for evaluating the therapeutic effect. Treatment with both IP10-scFv and EGFRvIII peptide-pulsed, DC-induced CTL synergistically inhibited the growth of glioma and prolonged the survival of tumor-bearing mice, which was accompanied by the inhibition of tumor angiogenesis and enhancement of cytotoxicity, thereby increasing the numbers of brain-infiltrating lymphocytes (BILs) and prolonging the residence time of CTLs in the tumor.
Gadermaier, E; Marth, K; Lupinek, C; Campana, R; Hofer, G; Blatt, K; Smiljkovic, D; Roder, U; Focke-Tejkl, M; Vrtala, S; Keller, W; Valent, P; Valenta, R; Flicker, S
2018-01-09
Recombinant hypoallergenic allergen derivatives have been used in clinical immunotherapy studies, and clinical efficacy seems to be related to the induction of blocking IgG antibodies recognizing the wild-type allergens. However, so far no treatment-induced IgG antibodies have been characterized. To clone, express, and characterize IgG antibodies induced by vaccination with two hypoallergenic recombinant fragments of the major birch pollen allergen, Bet v 1 in a nonallergic subject. A phage-displayed combinatorial single-chain fragment (ScFv) library was constructed from blood of the immunized subject and screened for Bet v 1-reactive antibody fragments. ScFvs were tested for specificity and cross-reactivity to native Bet v 1 and related pollen and food allergens, and epitope mapping was performed. Germline ancestor genes of the antibody were analyzed with the ImMunoGeneTics (IMGT) database. The affinity to Bet v 1 and cross-reactive allergens was determined by surface plasmon resonance measurements. The ability to inhibit patients' IgE binding to ELISA plate-bound allergens and allergen-induced basophil activation was assessed. A combinatorial ScFv library was obtained from the vaccinated donor after three injections with the Bet v 1 fragments. Despite being almost in germline configuration, ScFv (clone H3-1) reacted with high affinity to native Bet v 1 and homologous allergens, inhibited allergic patients' polyclonal IgE binding to Bet v 1, and partially suppressed allergen-induced basophil activation. Immunization with unfolded hypoallergenic allergen derivatives induces high-affinity antibodies even in nonallergic subjects which recognize the folded wild-type allergens and inhibit polyclonal IgE binding of allergic patients. © 2018 The Authors. Allergy Published by John Wiley & Sons Ltd.
Zhu, Lijuan; Liao, Wenjun; Zhu, Huifen; Lei, Ping; Wang, Zhihua; Shao, Jingfang; Zhang, Yue; Shen, Guanxin
2006-01-01
The expression vector of SmIg scFv fragment was constructed in patient with B cell chronic lymphocyte leukemia (B-CLL) and expressed in E. coli to obtain scFv fragment, and the effect of the protein on the proliferation of stimulated peripheral blood mononuclear cells (PBMC) was investigated in vitro. Two pairs of primers were designed, and variable region genes of light chain and heavy chain were amplified by PCR respectively from the pGEM-T vectors previously constructed in our laboratory which containing light chain gene or Fd fragment of heavy chain gene. The PCR product was digested, purified and inserted into pHEN2 vector to construct the soluble expression vector pHEN2-scFv. After the induction by IPTG, the scFv protein was identified by SDS-PAGE electrophoresis and purified by Ni-NTA-Chromatography. MTT was used to determine the effect of purified protein on the proliferation of stimulated PBMC in vitro. Plasmid PCR and restriction enzyme digestion of pHEN2-scFv revealed the pHEN2-scFv vector was constructed successfully. Id-scFv protein was expressed in positive clone after induced by IPTG. SDS-PAGE analysis showed that the relative molecular weight of fusion protein was about 30 kD (1 kD= 0.9921 ku), which was consistent with the theoretically predicted value. Proliferation of PBMC could be induced by purified Id-scFv. It was suggested that the expression vector of SmIg scFv fragment was constructed successfully, and scFv protein was expressed and secreted from E. coli, which could induce proliferation of PBMC. This may lay an experimental foundation for further research of Id-HSP complex vaccine for B-CLL.
Efficient killing of CD22{sup +} tumor cells by a humanized diabody-RNase fusion protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krauss, Juergen; Arndt, Michaela A.E.; Vu, Bang K.
2005-06-03
We report on the generation of a dimeric immunoenzyme capable of simultaneously delivering two ribonuclease (RNase) effector domains on one molecule to CD22{sup +} tumor cells. As targeting moiety a diabody derived from the previously humanized scFv SGIII with grafted specificity of the murine anti-CD22 mAb RFB4 was constructed. Further engineering the interface of this construct (V{sub L}36{sub Leu{yields}}{sub Tyr}) resulted in a highly robust bivalent molecule that retained the same high affinity as the murine mAb RFB4 (K{sub D} 0.2 nM). A dimeric immunoenzyme comprising this diabody and Rana pipiens liver ribonuclease I (rapLRI) was generated, expressed as solublemore » protein in bacteria, and purified to homogeneity. The dimeric fusion protein killed several CD22{sup +} tumor cell lines with high efficacy (IC{sub 50} = 3-20 nM) and exhibited 9- to 48-fold stronger cytotoxicity than a monovalent rapLRI-scFv counterpart. Our results demonstrate that engineering of dimeric antibody-ribonuclease fusion proteins can markedly enhance their biological efficacy.« less
Barucca, A; Capitani, M; Cesca, M; Tomassoni, D; Kazmi, U; Concetti, F; Vincenzetti, L; Concetti, A; Venanzi, F M
2014-11-01
Anti-idiotypic MK2-23 monoclonal antibody (anti-Id MK2-23 mAb), which mimics the high molecular weight melanoma-associated antigen (HMW-MAA), has been used to implement active immunotherapy against melanoma. However, due to safety and standardization issues, this approach never entered extensive clinical trials. In the present study, we investigated the usage of DNA vaccines as an alternative to MK2-23 mAb immunization. MK2-23 DNA plasmids coding for single chain (scFv) MK2-23 antibody were constructed via the insertion of variable heavy (V H) and light (V L) chains of MK2-23 into the pVAC-1mcs plasmids. Two alternative MK2-23 plasmids format V H/V L, and V L/V H were assembled. We demonstrate that both polypeptides expressed by scFv plasmids in vitro retained the ability to mimic HMW-MAA antigen, and to elicit specific anti-HMW-MAA humoral and cellular immunoresponses in immunized mice. Notably, MK2-23 scFv DNA vaccines impaired the onset and growth of transplantable B16 melanoma cells not engineered to express HMW-MAA. This pilot study suggests that optimized MK2-23 scFv DNA vaccines could potentially provide a safer and cost-effective alternative to anti-Id antibody immunization, for melanoma immunotherapy.
Gattenlöhner, S.; Jörißen, H.; Huhn, M.; Vincent, A.; Beeson, D.; Tzartos, S.; Mamalaki, A.; Etschmann, B.; Muller-Hermelink, H. K.; Koscielniak, E.; Barth, S.; Marx, A.
2010-01-01
Rhabdomyosarcoma (RMS) is the most common malignant soft tissue tumor in children and is highly resistant to all forms of treatment currently available once metastasis or relapse has commenced. As it has recently been determined that the acetylcholine receptor (AChR) γ-subunit, which defines the fetal AChR (fAChR) isoform, is almost exclusively expressed in RMS post partum, we recombinantly fused a single chain variable fragment (scFv) derived from a fully human anti-fAChR Fab-fragment to Pseudomonas exotoxin A to generate an anti-fAChR immunotoxin (scFv35-ETA). While scFv35-ETA had no damaging effect on fAChR-negative control cell lines, it killed human embryonic and alveolar RMS cell lines in vitro and delayed RMS development in a murine transplantation model. These results indicate that scFv35-ETA may be a valuable new therapeutic tool as well as a relevant step towards the development of a fully human immunotoxin directed against RMS. Moreover, as approximately 20% of metastatic malignant melanomas (MMs) display rhabdoid features including the expression of fAChR, the immunotoxin we developed may also prove to be of significant use in the treatment of these more common and most often fatal neoplasms. PMID:20204062
Giudicelli, Véronique; Duroux, Patrice; Kossida, Sofia; Lefranc, Marie-Paule
2017-06-26
IMGT®, the international ImMunoGeneTics information system® ( http://www.imgt.org ), was created in 1989 in Montpellier, France (CNRS and Montpellier University) to manage the huge and complex diversity of the antigen receptors, and is at the origin of immunoinformatics, a science at the interface between immunogenetics and bioinformatics. Immunoglobulins (IG) or antibodies and T cell receptors (TR) are managed and described in the IMGT® databases and tools at the level of receptor, chain and domain. The analysis of the IG and TR variable (V) domain rearranged nucleotide sequences is performed by IMGT/V-QUEST (online since 1997, 50 sequences per batch) and, for next generation sequencing (NGS), by IMGT/HighV-QUEST, the high throughput version of IMGT/V-QUEST (portal begun in 2010, 500,000 sequences per batch). In vitro combinatorial libraries of engineered antibody single chain Fragment variable (scFv) which mimic the in vivo natural diversity of the immune adaptive responses are extensively screened for the discovery of novel antigen binding specificities. However the analysis of NGS full length scFv (~850 bp) represents a challenge as they contain two V domains connected by a linker and there is no tool for the analysis of two V domains in a single chain. The functionality "Analyis of single chain Fragment variable (scFv)" has been implemented in IMGT/V-QUEST and, for NGS, in IMGT/HighV-QUEST for the analysis of the two V domains of IG and TR scFv. It proceeds in five steps: search for a first closest V-REGION, full characterization of the first V-(D)-J-REGION, then search for a second V-REGION and full characterization of the second V-(D)-J-REGION, and finally linker delimitation. For each sequence or NGS read, positions of the 5'V-DOMAIN, linker and 3'V-DOMAIN in the scFv are provided in the 'V-orientated' sense. Each V-DOMAIN is fully characterized (gene identification, sequence description, junction analysis, characterization of mutations and amino changes). The functionality is generic and can analyse any IG or TR single chain nucleotide sequence containing two V domains, provided that the corresponding species IMGT reference directory is available. The "Analysis of single chain Fragment variable (scFv)" implemented in IMGT/V-QUEST and, for NGS, in IMGT/HighV-QUEST provides the identification and full characterization of the two V domains of full-length scFv (~850 bp) nucleotide sequences from combinatorial libraries. The analysis can also be performed on concatenated paired chains of expressed antigen receptor IG or TR repertoires.
Faitschuk, E; Nagy, V; Hombach, A A; Abken, H
2016-10-01
Adoptive cell therapy with chimeric antigen receptor (CAR)-modified T cells showed remarkable therapeutic efficacy in the treatment of leukaemia/lymphoma. However, the application to a variety of cancer entities is often constricted by the non-availability of a single chain antibody (scFv), which is usually the targeting domain in a CAR, while antibodies in the natural format are often available. To overcome the limitation, we designed a CAR that uses an antibody in its natural configuration for binding. Such CAR consists of two chains, the immunoglobulin light and heavy chain with their constant regions, whereby the heavy chain is anchored to the membrane and linked to an intracellular signalling domain for T-cell activation. The two chains form a stable heterodimer, a so-called dual chain CAR (dcCAR), and bind with high affinity and in a specific manner to their cognate antigen. By specific binding, the dcCAR activates engineered T cells for the release of pro-inflammatory cytokines and for target cell lysis. We provide evidence by three examples that the dcCAR format is universally applicable and thereby broadens the CAR cell therapy towards a larger variety of targets for which an scFv antibody is not available.
Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice.
Que, Xuchu; Hung, Ming-Yow; Yeang, Calvin; Gonen, Ayelet; Prohaska, Thomas A; Sun, Xiaoli; Diehl, Cody; Määttä, Antti; Gaddis, Dalia E; Bowden, Karen; Pattison, Jennifer; MacDonald, Jeffrey G; Ylä-Herttuala, Seppo; Mellon, Pamela L; Hedrick, Catherine C; Ley, Klaus; Miller, Yury I; Glass, Christopher K; Peterson, Kirk L; Binder, Christoph J; Tsimikas, Sotirios; Witztum, Joseph L
2018-06-06
Oxidized phospholipids (OxPL) are ubiquitous, are formed in many inflammatory tissues, including atherosclerotic lesions, and frequently mediate proinflammatory changes 1 . Because OxPL are mostly the products of non-enzymatic lipid peroxidation, mechanisms to specifically neutralize them are unavailable and their roles in vivo are largely unknown. We previously cloned the IgM natural antibody E06, which binds to the phosphocholine headgroup of OxPL, and blocks the uptake of oxidized low-density lipoprotein (OxLDL) by macrophages and inhibits the proinflammatory properties of OxPL 2-4 . Here, to determine the role of OxPL in vivo in the context of atherogenesis, we generated transgenic mice in the Ldlr -/- background that expressed a single-chain variable fragment of E06 (E06-scFv) using the Apoe promoter. E06-scFv was secreted into the plasma from the liver and macrophages, and achieved sufficient plasma levels to inhibit in vivo macrophage uptake of OxLDL and to prevent OxPL-induced inflammatory signalling. Compared to Ldlr -/- mice, Ldlr -/- E06-scFv mice had 57-28% less atherosclerosis after 4, 7 and even 12 months of 1% high-cholesterol diet. Echocardiographic and histologic evaluation of the aortic valves demonstrated that E06-scFv ameliorated the development of aortic valve gradients and decreased aortic valve calcification. Both cholesterol accumulation and in vivo uptake of OxLDL were decreased in peritoneal macrophages, and both peritoneal and aortic macrophages had a decreased inflammatory phenotype. Serum amyloid A was decreased by 32%, indicating decreased systemic inflammation, and hepatic steatosis and inflammation were also decreased. Finally, the E06-scFv prolonged life as measured over 15 months. Because the E06-scFv lacks the functional effects of an intact antibody other than the ability to bind OxPL and inhibit OxLDL uptake in macrophages, these data support a major proatherogenic role of OxLDL and demonstrate that OxPL are proinflammatory and proatherogenic, which E06 counteracts in vivo. These studies suggest that therapies inactivating OxPL may be beneficial for reducing generalized inflammation, including the progression of atherosclerosis, aortic stenosis and hepatic steatosis.
USDA-ARS?s Scientific Manuscript database
Deoxynivalenol (DON)is a mycotoxin produced by certain fungi that infest cereal grains worldwide. A hybridoma cell line producing a monoclonal antibody (Mab) recognizing DON was used as the starting point in the development of a recombinant single chain variable fragment (scFv) antibody. The scFv wa...
Identification of a GTP-bound Rho specific scFv molecular sensor by phage display selection
Goffinet, Marine; Chinestra, Patrick; Lajoie-Mazenc, Isabelle; Medale-Giamarchi, Claire; Favre, Gilles; Faye, Jean-Charles
2008-01-01
Background The Rho GTPases A, B and C proteins, members of the Rho family whose activity is regulated by GDP/GTP cycling, function in many cellular pathways controlling proliferation and have recently been implicated in tumorigenesis. Although overexpression of Rho GTPases has been correlated with tumorigenesis, only their GTP-bound forms are able to activate the signalling pathways implicated in tumorigenesis. Thus, the focus of much recent research has been to identify biological tools capable of quantifying the level of cellular GTP-bound Rho, or determining the subcellular location of activation. However useful, these tools used to study the mechanism of Rho activation still have limitations. The aim of the present work was to employ phage display to identify a conformationally-specific single chain fragment variable (scFv) that recognizes the active, GTP-bound, form of Rho GTPases and is able to discriminate it from the inactive, GDP-bound, Rho in endogenous settings. Results After five rounds of phage selection using a constitutively activated mutant of RhoB (RhoBQ63L), three scFvs (A8, C1 and D11) were selected for subsequent analysis. Further biochemical characterization was pursued for the single clone, C1, exhibiting an scFv structure. C1 was selective for the GTP-bound form of RhoA, RhoB, as well as RhoC, and failed to recognize GTP-loaded Rac1 or Cdc42, two other members of the Rho family. To enhance its production, soluble C1 was expressed in fusion with the N-terminal domain of phage protein pIII (scFv C1-N1N2), it appeared specifically associated with GTP-loaded recombinant RhoA and RhoB via immunoprecipitation, and endogenous activated Rho in HeLa cells as determined by immunofluorescence. Conclusion We identified an antibody, C1-N1N2, specific for the GTP-bound form of RhoB from a phage library, and confirmed its specificity towards GTP-bound RhoA and RhoC, as well as RhoB. The success of C1-N1N2 in discriminating activated Rho in immunofluorescence studies implies that this new tool, in collaboration with currently used RhoA and B antibodies, has the potential to analyze Rho activation in cell function and tumor development. PMID:18377644
Yang, Tao; Yang, Lijun; Chai, Weiran; Li, Renke; Xie, Jun; Niu, Bo
2011-03-01
A phage display single-chain variable fragment (scFv) library against TNFα was constructed using a recombinant phage antibody system (RPAS). The cloned scFv gene was introduced into the phage display vector pCANTAB 5E and expressed in Escherichia coli (E. coli) with a yield of up to 0.15 mg/l of total protein. With the attempt to improve the expression level of TNF-scFv, a strategy was established for subcloning the scFv gene from pCANTAB 5E into the plasmid pBV220. Under the control of a highly efficient tandem P(R)P(L) promoter system, scFv production was increased to 30% of total protein as inclusion bodies. After extraction from the cell pellet by sonication, the inclusion bodies were solubilized and denatured in the presence of 8M urea. Purification of denatured scFv was performed using nickel column chromatography followed by renaturation. The purity and activity of the refolded scFv were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Western blotting and by an enzyme-linked immunoabsorbent assay (ELISA). The results reveal that the overall yield of bioactive TNF-scFv from E. coli flask cultures was more than 45 mg/l culture medium and 15 mg/g wet weight cells. The renatured scFv exhibited binding activity similarly to soluble scFv. In conclusion we developed a method to over-express TNF-scFv, which have biological function after purification and renaturation. Copyright © 2010 Elsevier Inc. All rights reserved.
Zhao, Peng; Tao, Dingyin; Liang, Zhen; Zhang, Lihua; Zhang, Yukui
2009-05-01
A novel protein equalizer was developed with single chain variable fragment (scFv) library displaying M13 phage covalently bonded on monolithic cryogel. Due to the great number and various kinds of displayed scFv fragments, as well as strong and specific binding capacity between scFv fragments and proteins, a new protein equalizer technology is preferable in the pretreatment of complex protein samples. After the sample dissolved in phosphate buffer solution (PBS), it was repeatedly loaded onto the equalizer for five times, the bound proteins were in sequence eluted by 2 mol/L NaCl and 50 mmol/L Gly-HC1 (pH 2.5) solution, followed by digestion with thrombin. All proteins or peptides collected from each fraction were further analyzed by high performance liquid chromatography-electrospray tandem mass spectrometry (RPLC-ESI-MS/MS) with a serially coupled long microcolumn. Compared with the untreated samples, the identified protein number was increased from 142 to 396. Furthermore, from sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis results, it was found that the protein concentration difference was reduced obviously in the eluant of direct sample loading, and most high abundance proteins were identified in the eluant of NaCl. All these results demonstrate that the novel protein equalizer with scFv display M13 phage library immobilized on cyrogel could effectively reduce the dynamic range of proteins in complex samples, enabling the identification of more low abundance proteins.
Rahbarnia, Leila; Farajnia, Safar; Babaei, Hossein; Majidi, Jafar; Veisi, Kamal; Tanomand, Asghar; Akbari, Bahman
2016-11-01
Phage display is a prominent screening technique for development of novel high affinity antibodies against almost any antigen. However, removing false positive clones in screening process remains a challenge. The aim of this study was to develop an efficient and rapid method for isolation of high affinity scFvs by removing NSBs without losing rare specific clones. Therefore, a novel two rounds strategy called invert biopanning was developed for isolating high affinity scFvs against EGFRvIII antigen from human scFv library. The efficiency of invert biopanning method (procedure III) was analyzed by comparing with results of conventional biopanning methods (procedures I and II). According to the results of polyclonal ELISA, the second round of procedure III displayed highest binding affinity against EGFRvIII peptide accompanied by lowest NSB comparing to other two procedures. Several positive clones were identified among output phages of procedure III by monoclonal phage ELISA which displayed high affinity to EGFRvIII antigen. In conclusion, results of our study indicate that invert biopanning is an efficient method for avoiding NSBs and conservation of rare specific clones during screening of a scFv phage library. Novel anti EGFRvIII scFv isolated could be a promising candidate for potential use in treatment of EGFRvIII expressing cancers. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
Lee, Jiyeon; Kim, Hye-Jin; Roh, Jooho; Seo, Youngsil; Kim, Minjae; Jun, Hye-Ryeong; Pham, Chuong D.; Kwon, Myung-Hee
2013-01-01
Many murine monoclonal anti-DNA antibodies (Abs) derived from mice models for systemic lupus erythematosus have additional cell-penetration and/or nucleic acid-hydrolysis properties. Here, we examined the influence of deactivating each complementarity-determining region (CDR) within a multifunctional anti-nucleic acid antibody (Ab) that possesses these activities, the catalytic 3D8 single chain variable fragment (scFv). CDR-deactivated 3D8 scFv variants were generated by replacing all of the amino acids within each CDR with Gly/Ser residues. The structure of 3D8 scFv accommodated single complete CDR deactivations. Different functional activities of 3D8 scFv were affected differently depending on which CDR was deactivated. The only exception was CDR1, located within the light chain (LCDR1); deactivation of LCDR1 abolished all of the functional activities of 3D8 scFv. A hybrid Ab, HW6/3D8L1, in which the LCDR1 from an unrelated Ab (HW6) was replaced with the LCDR1 from 3D8, acquired all activities associated with the 3D8 scFv. These results suggest that the activity of a multifunctional 3D8 scFv Ab can be modulated by single complete CDR deactivation and that the LCDR1 plays a crucial role in maintaining Ab properties. This study presents a new approach for determining the role of individual CDRs in multifunctional Abs with important implications for the future of Ab engineering. PMID:24155236
Aghebati-Maleki, Leili; Younesi, Vahid; Jadidi-Niaragh, Farhad; Baradaran, Behzad; Majidi, Jafar; Yousefi, Mehdi
2017-01-01
Receptor tyrosine kinase-like orphan receptor (ROR1) belongs to one of the families of receptor tyrosine kinases (RTKs). RTKs are involved in the various physiologic cellular functions including proliferation, migration, survival, signaling and differentiation. Several RTKs are deregulated in various cancers implying the targeting potential of these molecules in cancer therapy. ROR1 has recently been shown to be expressed in various types of cancer cells but not in normal adult cells. Hence a molecular inhibitor of extracellular domain of ROR1 that inhibits ROR1-cell surface interaction is of great therapeutic importance. In an attempt to develop molecular inhibitors of ROR1, we screened single chain variable fragment (scFv) phage display libraries, Tomlinson I + J, against one specific synthetic oligopeptide from extracellular domain of ROR1 and selected scFvs were characterized using various immunological techniques. Several ROR1 specific scFvs were selected following five rounds of panning procedure. The scFvs showed specific binding to ROR1 using immunological techniques. Our results demonstrate successful isolation and characterization of specific ROR1 scFvs that may have great therapeutic potential in cancer immunotherapy.
Viola-Villegas, Nerissa Therese; Sevak, Kuntal K; Carlin, Sean D; Doran, Michael G; Evans, Henry W; Bartlett, Derek W; Wu, Anna M; Lewis, Jason S
2014-11-03
Engineered antibody fragments offer faster delivery with retained tumor specificity and rapid clearance from nontumor tissues. Here, we demonstrate that positron emission tomography (PET) based detection of prostate specific membrane antigen (PSMA) in prostatic tumor models using engineered bivalent antibodies built on single chain fragments (scFv) derived from the intact antibody, huJ591, offers similar tumor delineating properties but with the advantage of rapid targeting and imaging. (89)Zr-radiolabeled huJ591 scFv (dimeric scFv-CH3; (89)Zr-Mb) and cysteine diabodies (dimeric scFv; (89)Zr-Cys-Db) demonstrated internalization and similar Kds (∼2 nM) compared to (89)Zr-huJ591 in PSMA(+) cells. Tissue distribution assays established the specificities of both (89)Zr-Mb and (89)Zr-Cys-Db for PSMA(+) xenografts (6.2 ± 2.5% ID/g and 10.2 ± 3.4% ID/g at 12 h p.i. respectively), while minimal accumulation in PSMA(-) tumors was observed. From the PET images, (89)Zr-Mb and (89)Zr-Cys-Db exhibited faster blood clearance than the parent huJ591 while tumor-to-muscle ratios for all probes show comparable values across all time points. Ex vivo autoradiography and histology assessed the distribution of the probes within the tumor. Imaging PSMA-expressing prostate tumors with smaller antibody fragments offers rapid tumor accumulation and accelerated clearance; hence, shortened wait periods between tracer administration and high-contrast tumor imaging and lower dose-related toxicity are potentially realized.
Kuramitsu, S; Ohno, M; Ohka, F; Shiina, S; Yamamichi, A; Kato, A; Tanahashi, K; Motomura, K; Kondo, G; Kurimoto, M; Senga, T; Wakabayashi, T; Natsume, A
2015-10-01
The epidermal growth factor receptor variant III (EGFRvIII) is exclusively expressed on the cell surface in ~50% of glioblastoma multiforme (GBM). This variant strongly and persistently activates the phosphatidylinositol 3-kinase-Akt signaling pathway in a ligand-independent manner resulting in enhanced tumorigenicity, cellular motility and resistance to chemoradiotherapy. Our group generated a recombinant single-chain variable fragment (scFv) antibody specific to the EGFRvIII, referred to as 3C10-scFv. In the current study, we constructed a lentiviral vector transducing the chimeric antigen receptor (CAR) that consisted of 3C10-scFv, CD3ζ, CD28 and 4-1BB (3C10-CAR). The 3C10-CAR-transduced peripheral blood mononuclear cells (PBMCs) and CD3(+) T cells specifically lysed the glioma cells that express EGFRvIII. Moreover, we demonstrated that CAR CD3(+) T cells migrated to the intracranial xenograft of GBM in the mice treated with 3C10-CAR PBMCs. An important and novel finding of our study was that a thalidomide derivative lenalidomide induced 3C10-CAR PBMC proliferation and enhanced the persistent antitumor effect of the cells in vivo. Lenalidomide also exhibited enhanced immunological synapses between the effector cells and the target cells as determined by CD11a and F-actin polymerization. Collectively, lentiviral-mediated transduction of CAR effectors targeting the EGFRvIII showed specific efficacy, and lenalidomide even intensified CAR cell therapy by enhanced formation of immunological synapses.
Ueda, Masashi; Hisada, Hayato; Temma, Takashi; Shimizu, Yoichi; Kimura, Hiroyuki; Ono, Masahiro; Nakamoto, Yuji; Togashi, Kaori; Saji, Hideo
2015-02-01
We aimed to develop a gallium-68 (Ga-68)-labeled single-chain variable fragment (scFv) targeting the human epidermal growth factor receptor 2 (HER2) to rapidly and noninvasively evaluate the status of HER2 expression. Anti-HER2 scFv was labeled with Ga-68 by using deferoxamine (Df) as a bifunctional chelate. Biodistribution of [(68)Ga]Df-anti-HER2 scFv was examined with tumor-bearing mice and positron emission tomography (PET) imaging was performed. The changes in HER2 expression after anti-HER2 therapy were monitored by PET imaging. [(68)Ga]Df-anti-HER2 scFv was obtained with high radiochemical yield after only a 5-min reaction at room temperature. The probe showed high accumulation in HER2-positive xenografts and the intratumoral distribution of radioactivity coincided with HER2-positive regions. Furthermore, [(68)Ga]Df-anti-HER2 scFv helped visualize HER2-positive xenografts and monitor the changes in HER2 expression after anti-HER2 therapy. [(68)Ga]Df-anti-HER2 scFv could be a promising probe to evaluate HER2 status by in vivo PET imaging, unless trastuzumab is prescribed as part of the therapy.
Hu, Zu-Quan; Liu, Jin-Long; Li, He-Ping; Xing, Shu; Xue, Sheng; Zhang, Jing-Bo; Wang, Jian-Hua; Nölke, Greta; Liao, Yu-Cai
2012-01-01
Fusarium verticillioides is the primary causal agent of Fusarium ear and kernel rot in maize, producing fumonisin mycotoxins that are toxic to humans and domestic animals. Rapid detection and monitoring of fumonisin-producing fungi are pivotally important for the prevention of mycotoxins from entering into food/feed products. Chicken-derived single-chain variable fragments (scFvs) against cell wall-bound proteins from F. verticillioides were isolated from an immunocompetent phage display library. Comparative phage enzyme-linked immunosorbant assays (ELISAs) and sequencing analyses identified four different scFv antibodies with high sensitivity. Soluble antibody ELISAs identified two highly sensitive scFv antibodies, FvCA3 and FvCA4, with the latter being slightly more sensitive. Three-dimensional modeling revealed that the FvCA4 may hold a better overall structure with CDRH3, CDRL1 and CDRL3 centered in the core region of antibody surface compared with that of other scFvs. Immunofluorescence labeling revealed that the binding of FvCA4 antibody was localized to the cell walls of conidiospores and hyphae of F. verticillioides, confirming the specificity of this antibody for a surface target. This scFv antibody was able to detect the fungal mycelium as low as 10−2 μg/mL and contaminating mycelium at a quantity of 10−2 mg/g maize. This is the first report that scFv antibodies derived from phage display have a wide application for rapid and accurate detection and monitoring of fumonisin-producing pathogens in agricultural samples. PMID:22837678
Zhang, Jiping; Valianou, Matthildi; Simmons, Heidi; Robinson, Matthew K.; Lee, Hyung-Ok; Mullins, Stefanie R.; Marasco, Wayne A.; Adams, Gregory P.; Weiner, Louis M.; Cheng, Jonathan D.
2013-01-01
Fibroblast activation protein (FAP) is a serine protease selectively expressed on tumor stromal fibroblasts in epithelial carcinomas and is important in cancer growth, adhesion, and metastases. As FAP enzymatic activity is a potent therapeutic target, we aimed to identify inhibitory antibodies. Using a competitive inhibition strategy, we used phage display techniques to identify 53 single-chain variable fragments (scFvs) after three rounds of panning against FAP. These scFvs were expressed and characterized for binding to FAP by surface plasmon resonance and flow cytometry. Functional assessment of these antibodies yielded an inhibitory scFv antibody, named E3, which could attenuate 35% of FAP cleavage of the fluorescent substrate Ala-Pro-7-amido-4-trifluoromethylcoumarin compared with nonfunctional scFv control. Furthermore, a mutant E3 scFv was identified by yeast affinity maturation. It had higher affinity (4-fold) and enhanced inhibitory effect on FAP enzyme activity (3-fold) than E3. The application of both inhibitory anti-FAP scFvs significantly affected the formation of 3-dimensional FAP-positive cell matrix, as demonstrated by reducing the fibronectin fiber orientation from 41.18% (negative antibody control) to 34.06% (E3) and 36.15% (mutant E3), respectively. Thus, we have identified and affinity-maturated the first scFv antibody capable of inhibiting FAP function. This scFv antibody has the potential to disrupt the role of FAP in tumor invasion and metastasis.—Zhang, J., Valianou, M., Simmons, H., Robinson, M. K., Lee, H.-O., Mullins, S. R., Marasco, W. A., Adams, G. P., Weiner, L. M., Cheng, J. D. Identification of inhibitory ScFv antibodies targeting fibroblast activation protein utilizing phage display functional screens. PMID:23104982
Fernandez-Funez, Pedro; Zhang, Yan; Sanchez-Garcia, Jonatan; de Mena, Lorena; Khare, Swati; Golde, Todd E.; Levites, Yona; Rincon-Limas, Diego E.
2015-01-01
Both active and passive immunotherapy protocols decrease insoluble amyloid-ß42 (Aß42) peptide in animal models, suggesting potential therapeutic applications against the main pathological trigger in Alzheimer's disease (AD). However, recent clinical trials have reported no significant benefits from humanized anti-Aß42 antibodies. Engineered single-chain variable fragment antibodies (scFv) are much smaller and can easily penetrate the brain, but identifying the most effective scFvs in murine AD models is slow and costly. We show here that scFvs against the N- and C-terminus of Aß42 (scFv9 and scFV42.2, respectively) that decrease insoluble Aß42 in CRND mice are neuroprotective in Drosophila models of Aß42 and amyloid precursor protein neurotoxicity. Both scFv9 and scFv42.2 suppress eye toxicity, reduce cell death in brain neurons, protect the structural integrity of dendritic terminals in brain neurons and delay locomotor dysfunction. Additionally, we show for the first time that co-expression of both anti-Aß scFvs display synergistic neuroprotective activities, suggesting that combined therapies targeting distinct Aß42 epitopes can be more effective than targeting a single epitope. Overall, we demonstrate the feasibility of using Drosophila as a first step for characterizing neuroprotective anti-Aß scFvs in vivo and identifying scFv combinations with synergistic neuroprotective activities. PMID:26253732
Wang, Zhujun; Chen, Yuanyuan; Li, Sisi; Cheng, Yuping; Zhao, Haizhao; Jia, Ming; Luo, Zebin; Tang, Yongmin
2014-02-01
CD45RA has been found highly expressed on leukemia cells and may be a potential target of the disease. In this study, an anti-CD45RA single-chain antibody fragment (scFv3A4) was genetically linked to the N terminus of the enhanced green fluorescent protein (EGFP) to generate a scFv3A4-EGFP fusion protein. The scFv3A4-EGFP with a molecular weight of 57kDa was stably expressed and secreted from the transfected CHO cells through the ER/Golgi-dependent pathway. The fusion protein was soluble in the culture supernatant and the yield was 1350μg/L. Flow cytometry analysis showed that the scFv3A4-EGFP had the same binding site and a very similar reactivity pattern with its parental murine monoclonal antibody (mAb) 3A4. Furthermore, comparing to conventional labeled 3A4-FITC antibody, the scFv3A4-EGFP was more resistant to illumination and more suitable for immunofluorescence histology (IFH) detection. Therefore, the scFv3A4-EGFP fusion protein can be a powerful tool to investigate the targeting of CD45RA on leukemia cells, biological activity of the target and possibly for the genetic manipulation of the antibody. Copyright © 2013 Elsevier Inc. All rights reserved.
Blokzijl, Andries; Zieba, Agata; Hust, Michael; Schirrmann, Thomas; Helmsing, Saskia; Grannas, Karin; Hertz, Ellen; Moren, Anita; Chen, Lei; Söderberg, Ola; Moustakas, Aristidis; Dübel, Stefan; Landegren, Ulf
2016-06-01
The cellular heterogeneity seen in tumors, with subpopulations of cells capable of resisting different treatments, renders single-treatment regimens generally ineffective. Accordingly, there is a great need to increase the repertoire of drug treatments from which combinations may be selected to efficiently target sets of pathological processes, while suppressing the emergence of resistance mutations. In this regard, members of the TGF-β signaling pathway may furnish new, valuable therapeutic targets. In the present work, we developed in situ proximity ligation assays (isPLA) to monitor the state of the TGF-β signaling pathway. Moreover, we extended the range of suitable affinity reagents for this analysis by developing a set of in-vitro-derived human antibody fragments (single chain fragment variable, scFv) that bind SMAD2 (Mothers against decapentaplegic 2), 3, 4, and 7 using phage display. These four proteins are all intracellular mediators of TGF-β signaling. We also developed an scFv specific for SMAD3 phosphorylated in the linker domain 3 (p179 SMAD3). This phosphorylation has been shown to inactivate the tumor suppressor function of SMAD3. The single chain affinity reagents developed in the study were fused tocrystallizable antibody fragments (Fc-portions) and expressed as dimeric IgG-like molecules having Fc domains (Yumabs), and we show that they represent valuable reagents for isPLA.Using these novel assays, we demonstrate that p179 SMAD3 forms a complex with SMAD4 at increased frequency during division and that pharmacological inhibition of cyclin-dependent kinase 4 (CDK4)(1) reduces the levels of p179SMAD3 in tumor cells. We further show that the p179SMAD3-SMAD4 complex is bound for degradation by the proteasome. Finally, we developed a chemical screening strategy for compounds that reduce the levels of p179SMAD3 in tumor cells with isPLA as a read-out, using the p179SMAD3 scFv SH544-IIC4. The screen identified two kinase inhibitors, known inhibitors of the insulin receptor, which decreased levels of p179SMAD3/SMAD4 complexes, thereby demonstrating the suitability of the recombinant affinity reagents applied in isPLA in screening for inhibitors of cell signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Construction of a scFv Library with Synthetic, Non-combinatorial CDR Diversity.
Bai, Xuelian; Shim, Hyunbo
2017-01-01
Many large synthetic antibody libraries have been designed, constructed, and successfully generated high-quality antibodies suitable for various demanding applications. While synthetic antibody libraries have many advantages such as optimized framework sequences and a broader sequence landscape than natural antibodies, their sequence diversities typically are generated by random combinatorial synthetic processes which cause the incorporation of many undesired CDR sequences. Here, we describe the construction of a synthetic scFv library using oligonucleotide mixtures that contain predefined, non-combinatorially synthesized CDR sequences. Each CDR is first inserted to a master scFv framework sequence and the resulting single-CDR libraries are subjected to a round of proofread panning. The proofread CDR sequences are assembled to produce the final scFv library with six diversified CDRs.
Chan, Conrad E Z; Chan, Annie H Y; Lim, Angeline P C; Hanson, Brendon J
2011-10-28
Rapid development of diagnostic immunoassays against novel emerging or genetically modified pathogens in an emergency situation is dependent on the timely isolation of specific antibodies. Non-immune antibody phage display libraries are an efficient in vitro method for selecting monoclonal antibodies and hence ideal in these circumstances. Such libraries can be constructed from a variety of sources e.g. B cell cDNA or synthetically generated, and use a variety of antibody formats, typically scFv or Fab. However, antibody source and format can impact on the quality of antibodies generated and hence the effectiveness of this methodology for the timely production of antibodies. We have carried out a comparative screening of two antibody libraries, a semi-synthetic scFv library and a human-derived Fab library against the protective antigen toxin component of Bacillus anthracis and the epsilon toxin of Clostridium botulinum. We have shown that while the synthetic library produced a diverse collection of specific scFv-phage, these contained a high frequency of unnatural amber stops and glycosylation sites which limited their conversion to IgG, and also a high number which lost specificity when expressed as IgG. In contrast, these limitations were overcome by the use of a natural human library. Antibodies from both libraries could be used to develop sandwich ELISA assays with similar sensitivity. However, the ease and speed with which full-length IgG could be generated from the human-derived Fab library makes screening this type of library the preferable method for rapid antibody generation for diagnostic assay development. Copyright © 2011 Elsevier B.V. All rights reserved.
Lipowska-Bhalla, Grazyna; Gilham, David E; Hawkins, Robert E; Rothwell, Dominic G
2013-12-01
The clinical potential of chimeric antigen receptors in adoptive cellular therapy is beginning to be realized with several recent clinical trials targeting CD19 showing promising results in advanced B cell malignancies. This increased efficacy corresponds with improved engineering of the chimeric receptors with the latest-generation receptors eliciting greater signaling and proliferation potential. However, the antigen-binding single-chain variable fragment (scFv) domain of the receptors is critical in determining the activity of the chimeric receptor-expressing T cells, as this determines specificity and affinity to the tumor antigen. In this study, we describe a mammalian T cell line screening protocol employing a 2A-based bicistronic retroviral vector to isolate functional scFvs. This approach involves expression of the scFv library in a chimeric antigen receptor, and is based on selection of clones capable of stimulating CD69 upregulation in a T cell line and has a number of advantages over previously described methods in that the use of a 2A cassette ensures the exclusion of nonexpressing scFvs and the screening using a chimeric receptor in a mammalian T cell line ensures selection in the optimum context for therapeutic use. Proof-of-principle experiments show that the protocol was capable of a 10(5)-fold enrichment of positive clones after three rounds of selection. Furthermore, an antigen-specific clone was successfully isolated from a partially enriched scFv library, confirming the strength of the protocol. This approach has the potential to identify novel scFvs of use in adoptive T cell therapy and, potentially, wider antibody-based applications.
Human anti-CD30 recombinant antibodies by guided phage antibody selection using cell panning
Klimka, A; Matthey, B; Roovers, R C; Barth, S; Arends, J-W; Engert, A; Hoogenboom, H R
2000-01-01
In various clinical studies, Hodgkin’s patients have been treated with anti-CD30 immunotherapeutic agents and have shown promising responses. One of the problems that appeared from these studies is the development of an immune response against the non-human therapeutics, which limits repeated administration and reduces efficacy. We have set out to make a recombinant, human anti-CD30 single-chain variable fragment (scFv) antibody, which may serve as a targeting moiety with reduced immunogenicity and more rapid tumour penetration in similar clinical applications. Rather than selecting a naive phage antibody library on recombinant CD30 antigen, we used guided selection of a murine antibody in combination with panning on the CD30-positive cell line L540. The murine monoclonal antibody Ki-4 was chosen as starting antibody, because it inhibits the shedding of the extracellular part of the CD30 antigen. This makes the antibody better suited for CD30-targeting than most other anti-CD30 antibodies. We have previously isolated the murine Ki-4 scFv by selecting a mini-library of hybridoma-derived phage scFv-antibodies via panning on L540 cells. Here, we report that phage display technology was successfully used to obtain a human Ki-4 scFv version by guided selection. The murine variable heavy (VH) and light (VL) chain genes of the Ki-4 scFv were sequentially replaced by human V gene repertoires, while retaining only the major determinant for epitope-specificity: the heavy-chain complementarity determining region 3 (CDR3) of murine Ki-4. After two rounds of chain shuffling and selection by panning on L540 cells, a fully human anti-CD30 scFv was selected. It competes with the parental monoclonal antibody Ki-4 for binding to CD30, inhibits the shedding of the extracellular part of the CD30 receptor from L540 cells and is thus a promising candidate for the generation of anti-CD30 immunotherapeutics. © 2000 Cancer Research Campaign PMID:10901379
Protein complex purification from Thermoplasma acidophilum using a phage display library.
Hubert, Agnes; Mitani, Yasuo; Tamura, Tomohiro; Boicu, Marius; Nagy, István
2014-03-01
We developed a novel protein complex isolation method using a single-chain variable fragment (scFv) based phage display library in a two-step purification procedure. We adapted the antibody-based phage display technology which has been developed for single target proteins to a protein mixture containing about 300 proteins, mostly subunits of Thermoplasma acidophilum complexes. T. acidophilum protein specific phages were selected and corresponding scFvs were expressed in Escherichia coli. E. coli cell lysate containing the expressed His-tagged scFv specific against one antigen protein and T. acidophilum crude cell lysate containing intact target protein complexes were mixed, incubated and subjected to protein purification using affinity and size exclusion chromatography steps. This method was confirmed to isolate intact particles of thermosome and proteasome suitable for electron microscopy analysis and provides a novel protein complex isolation strategy applicable to organisms where no genetic tools are available. Copyright © 2013 Elsevier B.V. All rights reserved.
Analysis of B-cell epitopes from the allergen Hev b 6.02 revealed by using blocking antibodies.
Pedraza-Escalona, Martha; Becerril-Luján, Baltazar; Agundis, Concepción; Domínguez-Ramírez, Lenin; Pereyra, Ali; Riaño-Umbarila, Lidia; Rodríguez-Romero, Adela
2009-02-01
Hev b 6.02 (hevein), identified as a major allergen from natural rubber latex (NRL), is involved in the latex-fruit syndrome and also acts as a pathogenesis defense-related protein. Its 3D structure has been solved at high resolution, and its linear epitopes have already been reported. However, information about conformational epitopes is still controversial, even though it is relevant for an accurate diagnosis and treatment, as well as for the study of allergen-antibody molecular interactions. We sought to analyze the B-cell epitopes of Hev b 6.02 at a molecular and structural level, using specific recombinant antibodies. We obtained a murine monoclonal antibody (mAb 6E7) and three human single chain fragments (scFvs A6, H8, and G7) anti-Hev b 6.02 that were able to compete for hevein binding with serum IgEs from latex allergic patients. In vitro assays showed that the mAb 6E7 and scFv H8 recognized the area of Hev b 6.02 where the aromatic residues are exposed; while the scFv G7 defined the amino and carboxy-terminal regions that lie close to each other, as a different epitope. The structural modeling of the Hev b 6.02-scFv H8 and Hev b 6.02-scFv G7 complexes revealed the putative regions of two conformational epitopes. In one of these, the aromatic residues, as well as polar side chains are important for the interaction, suggesting that they are part of a dominant conformational epitope also presented on the Hev b 6.02-IgE interactions. Antibodies recognizing this important allergen have potential to be used to diagnose and ultimately treat latex allergy.
Cassimeris, Lynne; Guglielmi, Laurence; Denis, Vincent; Larroque, Christian; Martineau, Pierre
2013-01-01
GFP-tagged proteins are used extensively as biosensors for protein localization and function, but the GFP moiety can interfere with protein properties. An alternative is to indirectly label proteins using intracellular recombinant antibodies (scFvs), but most antibody fragments are insoluble in the reducing environment of the cytosol. From a synthetic hyperstable human scFv library we isolated an anti-tubulin scFv, 2G4, which is soluble in mammalian cells when expressed as a GFP-fusion protein. Here we report the use of this GFP-tagged scFv to label microtubules in fixed and living cells. We found that 2G4-GFP localized uniformly along microtubules and did not disrupt binding of EB1, a protein that binds microtubule ends and serves as a platform for binding by a complex of proteins regulating MT polymerization. TOGp and CLIP-170 also bound microtubule ends in cells expressing 2G4-GFP. Microtubule dynamic instability, measured by tracking 2G4-GFP labeled microtubules, was nearly identical to that measured in cells expressing GFP-α-tubulin. Fluorescence recovery after photobleaching demonstrated that 2G4-GFP turns over rapidly on microtubules, similar to the turnover rates of fluorescently tagged microtubule-associated proteins. These data indicate that 2G4-GFP binds relatively weakly to microtubules, and this conclusion was confirmed in vitro. Purified 2G4 partially co-pelleted with microtubules, but a significant fraction remained in the soluble fraction, while a second anti-tubulin scFv, 2F12, was almost completely co-pelleted with microtubules. In cells, 2G4-GFP localized to most microtubules, but did not co-localize with those composed of detyrosinated α-tubulin, a post-translational modification associated with non-dynamic, more stable microtubules. Immunoblots probing bacterially expressed tubulins confirmed that 2G4 recognized α-tubulin and required tubulin’s C-terminal tyrosine residue for binding. Thus, a recombinant antibody with weak affinity for its substrate can be used as a specific intracellular biosensor that can differentiate between unmodified and post-translationally modified forms of a protein. PMID:23555790
Cheal, Sarah M.; Yoo, Barney; Boughdad, Sarah; Punzalan, Blesida; Yang, Guangbin; Dilhas, Anna; Torchon, Geralda; Pu, Jun; Axworthy, Don B.; Zanzonico, Pat; Ouerfelli, Ouathek; Larson, Steven M.
2014-01-01
A series of N-acetylgalactosamine-dendrons (NAG-dendrons) and dextrans bearing biotin moieties were compared for their ability to complex with and sequester circulating bispecific anti-tumor antibody (scFv4) streptavidin (SA) fusion protein (scFv4-SA) in vivo, to improve tumor to normal tissue concentration ratios for targeted radioimmunotherapy and diagnosis. Specifically, a total of five NAG-dendrons employing a common synthetic scaffold structure containing 4, 8, 16, or 32 carbohydrate residues and a single biotin moiety were prepared (NAGB), and for comparative purposes, a biotinylated-dextran with average molecular weight (MW) of 500 kD was synthesized from amino-dextran (DEXB). One of the NAGB compounds, CA16, has been investigated in humans; our aim was to determine if other NAGB analogs (e.g. CA8 or CA4) were bioequivalent to CA16 and/or better suited as MST reagents. In vivo studies included dynamic positron-emission tomography (PET) imaging of 124I-labelled-scFv4-SA clearance and dual-label biodistribution studies following multi-step targeting (MST) directed at subcutaneous (s.c.) human colon adenocarcinoma xenografts in mice. The MST protocol consists of three injections: first, a bispecific antibody specific for an anti-tumor associated glycoprotein (TAG-72) single chain genetically-fused with SA (scFv4-SA); second, CA16 or other clearing agent; and third, radiolabeled biotin. We observed using PET imaging of 124I-labelled-scFv4-SA clearance that the spatial arrangement of ligands conjugated to NAG (i.e. biotin) can impact the binding to antibody in circulation and subsequent liver uptake of the NAG-antibody complex. Also, NAGB CA32-LC or CA16-LC can be utilized during MST to achieve comparable tumor- to-blood ratios and absolute tumor uptake seen previously with CA16. Finally, DEXB was equally effective as NAGB CA32-LC at lowering scFv4-SA in circulation, but at the expense of reducing absolute tumor uptake of radiolabeled biotin. PMID:24219178
Liu, Jing; Zhang, Hui C; Duan, Chang F; Dong, Jun; Zhao, Guo X; Wang, Jian P; Li, Nan; Liu, Jin Z; Li, Yu W
2016-11-01
The molecular recognition mechanism of an antibody for its hapten is very interesting. The objective of this research was to study the intermolecular interactions of an anti-amoxicillin antibody with penicillin drugs. The single chain variable fragment (ScFv) antibody was generated from a hybridoma cell strain excreting the monoclonal antibody for amoxicillin. The recombinant ScFv antibody showed similar recognition ability for penicillins to its parental monoclonal antibody: simultaneous recognizing 11 penicillins with cross-reactivities of 18-107%. The three-dimensional structure of the ScFv antibody was simulated by using homology modeling, and its intermolecular interactions with 11 penicillins were studied by using molecular docking. Results showed that three CDRs are involved in antibody recognition; CDR L3 Arg 100, CDR H3 Tyr226, and CDR H3 Arg 228 were the key contact amino acid residues; hydrogen bonding was the main antibody-drug intermolecular force; and the core structure of penicillin drugs was the main antibody binding position. These results could explain the recognition mechanism of anti-amoxicillin antibody for amoxicillin and its analogs. This is the first study reporting the production of ScFv antibody for penicillins and stimulation studying its recognition mechanism.
Hu, Jia; Chen, Xiang; Zhang, Xuhua; Yuan, Xiaopeng; Yang, Mingjuan; Dai, Hui; Yang, Wei; Zhou, Qinghua; Wen, Weihong; Wang, Qirui; Qin, Weijun; Zhao, Aizhi
2018-05-01
A single chain Fv fragment (scFv) is a fusion of the variable regions of heavy (V H ) and light (V L ) chains of immunoglobulins. They are important elements of chimeric antigen receptors for cancer therapy. We sought to produce a panel of 16 extracellular protein domains of tumor markers for use in scFv yeast library screenings. A series of vectors comprising various combinations of expression elements was made, but expression was unpredictable and more than half of the protein domains could not be produced using any of the constructs. Here we describe a novel fusion expression system based on mouse TEM7 (tumor endothelial marker 7), which could facilitate protein expression. With this approach we could produce all but one of the tumor marker domains that could not otherwise be expressed. In addition, we demonstrated that the tumor associated antigen hFZD10 produced as a fusion protein with mTEM7 could be used to enrich scFv antibodies from a yeast display library. Collectively our study demonstrates the potential of specific fusion proteins based on mTEM7 in enabling mammalian cell production of tumor targeting protein domains for therapeutic development. © 2018 The Protein Society.
Tsurushita, N; Fu, H; Warren, C
1996-06-12
New phage display vectors for in vivo recombination of immunoglobulin (Ig) heavy (VH) and light (VL) chain variable genes, to make single-chain Fv fragments (scFv), were constructed. The VH and VL genes of monoclonal antibody (mAb) EP-5C7, which binds to both human E- and P-selectin, were cloned into a pUC19-derived plasmid vector, pCW93, and a pACYC184-derived phagemid vector, pCW99, respectively. Upon induction of Cre recombinase (phage P1 recombinase), the VH and VL genes were efficiently recombined into the same plasmid via the two loxP sites (phage P1 recombination sites), one located downstream from a VH gene in pCW93 and another upstream from a VL gene in pCW99. In the resulting phagemid, the loxP sequence also encodes a polypeptide linker connecting the VH and VL domains to form a scFv of EP-5C7. Whether expressed on the phage surface or as a soluble form, the EP-5C7 scFv showed specific binding to human E- and P-selectin. This phagemid vector system provides a way to recombine VH and VL gene libraries efficiently in vivo to make extremely large Ig combinatorial libraries.
Caldas, Cristina; Coelho, Verônica; Kalil, Jorge; Moro, Ana Maria; Maranhão, Andrea Q; Brígido, Marcelo M
2003-05-01
Humanization of monoclonal antibodies by complementary determinant region (CDR)-grafting has become a standard procedure to improve the clinical usage of animal antibodies. However, antibody humanization may result in loss of activity that has been attributed to structural constraints in the framework structure. In this paper, we report the complete humanization of the 6.7 anti-human CD18 monoclonal antibody in a scFv form. We used a germline-based approach to design a humanized VL gene fragment and expressed it together with a previously described humanized VH. The designed humanized VL has only 14 mutations compared to the closest human germline sequence. The resulting humanized scFv maintained the binding capacity and specificity to human CD18 expressed on the cell surface of peripheral blood mononuclear cells (PBMC), and showed the same pattern of staining T-lymphocytes sub-populations, in comparison to the original monoclonal antibody. We observed an unexpected effect of a conserved mouse-human framework position (L37) that hinders the binding of the humanized scFv to antigen. This paper reveals a new framework residue that interferes with paratope and antigen binding and also reinforces the germline approach as a successful strategy to humanize antibodies.
Xu, L.; Tang, W. H.; Huang, C. C.; Alexander, W.; Xiang, L. M.; Pirollo, K. F.; Rait, A.; Chang, E. H.
2001-01-01
BACKGROUND: A long-standing goal in genetic therapy for cancer is a systemic gene delivery system that selectively targets tumor cells, including metastases. Here we describe a novel cationic immunolipoplex system that shows high in vivo gene transfer efficiency and anti- tumor efficacy when used for systemic p53 gene therapy of cancer. MATERIALS AND METHODS: A cationic immunolipoplex incorporating a biosynthetically lipid-tagged, anti-transferrin receptor single-chain antibody (TfRscFv), was designed to target tumor cells both in vitro and in vivo. A human breast cancer metastasis model was employed to evaluate the in vivo efficacy of systemically administered, TfRscFv-immunolipoplex-mediated, p53 gene therapy in combination with docetaxel. RESULTS: The TfRscFv-targeting cationic immunolipoplex had a size of 60-100 nm, showed enhanced tumor cell binding, and improved targeted gene delivery and transfection efficiencies, both in vitro and in vivo. The p53 tumor suppressor gene was not only systemically delivered by the immunolipoplex to human tumor xenografts in nude mice but also functionally expressed. In the nude mouse breast cancer metastasis model, the combination of the p53 gene delivered by the systemic administration of the TfRscFv-immunolipoplex and docetaxel resulted in significantly improved efficacy with prolonged survival. CONCLUSIONS: This is the first report using scFv-targeting immunolipoplexes for systemic gene therapy. The TfRscFv has a number of advantages over the transferrin (Tf) molecule itself: (1) scFv has a much smaller size than Tf producing a smaller immunolipoplex giving better penetration into solid tumors; (2) unlike Tf, the scFv is a recombinant protein, not a blood product; (3) large scale production and strict quality control of the recombinant scFv, as well as scFv-immunolipoplex, are feasible. The sensitization of tumors to chemotherapy by this tumor-targeted and efficient p53 gene delivery method could lower the effective dose of the drug, correspondingly lessening the severe side effects, while decreasing the possibility of recurrence. Moreover, this approach is applicable to both primary and recurrent tumors, and more significantly, metastatic disease. The TfRscFv-targeting of cationic immunolipoplexes is a promising method of tumor targeted gene delivery that can be used for systemic gene therapy of cancer with the potential to critically impact the clinical management of cancer. PMID:11713371
Self-assembling complexes of quantum dots and scFv antibodies for cancer cell targeting and imaging.
Zdobnova, Tatiana A; Stremovskiy, Oleg A; Lebedenko, Ekaterina N; Deyev, Sergey M
2012-01-01
Semiconductor quantum dots represent a novel class of fluorophores with unique physical and chemical properties which could enable a remarkable broadening of the current applications of fluorescent imaging and optical diagnostics. Complexes of quantum dots and antibodies are promising visualising agents for fluorescent detection of selective biomarkers overexpressed in tumor tissues. Here we describe the construction of self-assembling fluorescent complexes of quantum dots and anti-HER1 or anti-HER2/neu scFv antibodies and their interactions with cultured tumor cells. A binding strategy based on a very specific non-covalent interaction between two proteins, barnase and barstar, was used to connect quantum dots and the targeting antibodies. Such a strategy allows combining the targeting and visualization functions simply by varying the corresponding modules of the fluorescent complex.
Self-Assembling Complexes of Quantum Dots and scFv Antibodies for Cancer Cell Targeting and Imaging
Zdobnova, Tatiana A.; Stremovskiy, Oleg A.; Lebedenko, Ekaterina N.; Deyev, Sergey M.
2012-01-01
Semiconductor quantum dots represent a novel class of fluorophores with unique physical and chemical properties which could enable a remarkable broadening of the current applications of fluorescent imaging and optical diagnostics. Complexes of quantum dots and antibodies are promising visualising agents for fluorescent detection of selective biomarkers overexpressed in tumor tissues. Here we describe the construction of self-assembling fluorescent complexes of quantum dots and anti-HER1 or anti-HER2/neu scFv antibodies and their interactions with cultured tumor cells. A binding strategy based on a very specific non-covalent interaction between two proteins, barnase and barstar, was used to connect quantum dots and the targeting antibodies. Such a strategy allows combining the targeting and visualization functions simply by varying the corresponding modules of the fluorescent complex. PMID:23133578
Jena, Bipulendu; Maiti, Sourindra; Huls, Helen; Singh, Harjeet; Lee, Dean A.; Champlin, Richard E.; Cooper, Laurence J. N.
2013-01-01
Clinical trials targeting CD19 on B-cell malignancies are underway with encouraging anti-tumor responses. Most infuse T cells genetically modified to express a chimeric antigen receptor (CAR) with specificity derived from the scFv region of a CD19-specific mouse monoclonal antibody (mAb, clone FMC63). We describe a novel anti-idiotype monoclonal antibody (mAb) to detect CD19-specific CAR+ T cells before and after their adoptive transfer. This mouse mAb was generated by immunizing with a cellular vaccine expressing the antigen-recognition domain of FMC63. The specificity of the mAb (clone no. 136.20.1) was confined to the scFv region of the CAR as validated by inhibiting CAR-dependent lysis of CD19+ tumor targets. This clone can be used to detect CD19-specific CAR+ T cells in peripheral blood mononuclear cells at a sensitivity of 1∶1,000. In clinical settings the mAb is used to inform on the immunophenotype and persistence of administered CD19-specific T cells. Thus, our CD19-specific CAR mAb (clone no. 136.20.1) will be useful to investigators implementing CD19-specific CAR+ T cells to treat B-lineage malignancies. The methodology described to develop a CAR-specific anti-idiotypic mAb could be extended to other gene therapy trials targeting different tumor associated antigens in the context of CAR-based adoptive T-cell therapy. PMID:23469246
Mølgaard, Kasper; Harwood, Seandean L; Compte, Marta; Merino, Nekane; Bonet, Jaume; Alvarez-Cienfuegos, Ana; Mikkelsen, Kasper; Nuñez-Prado, Natalia; Alvarez-Mendez, Ana; Sanz, Laura; Blanco, Francisco J; Alvarez-Vallina, Luis
2018-06-04
The recruitment of T-cells by bispecific antibodies secreted from adoptively transferred, gene-modified autologous cells has shown satisfactory results in preclinical cancer models. Even so, the approach's translation into the clinic will require incremental improvements to its efficacy and reduction of its toxicity. Here, we characterized a tandem T-cell recruiting bispecific antibody intended to benefit gene-based immunotherapy approaches, which we call the light T-cell engager (LiTE), consisting of an EGFR-specific single-domain V HH antibody fused to a CD3-specific scFv. We generated two LiTEs with the anti-EGFR V HH and the anti-CD3 scFv arranged in both possible orders. Both constructs were well expressed in mammalian cells as highly homogenous monomers in solution with molecular weights of 43 and 41 kDa, respectively. In situ secreted LiTEs bound the cognate antigens of both parental antibodies and triggered the specific cytolysis of EGFR-expressing cancer cells without inducing T-cell activation and cytotoxicity spontaneously or against EGFR-negative cells. Light T-cell engagers are, therefore, suitable for future applications in gene-based immunotherapy approaches.
Turki, Imène; Hammami, Akil; Kharmachi, Habib; Mousli, Mohamed
2014-02-01
Human and equine rabies immunoglobulins are currently available for passive immunization against rabies. However, these are hampered by the limited supply and some drawbacks. Advances in antibody engineering have led to overcome issues of clinical applications and to improve the protective efficacy. In the present study, we report the generation of a trivalent single-chain Fv (scFv50AD1-Fd), that recognizes the rabies virus glycoprotein, genetically fused to the trimerization domain of the bacteriophage T4 fibritin, termed 'foldon' (Fd). scFv50AD1-Fd was expressed as soluble recombinant protein in bacterial periplasmic space and purified through affinity chromatography. The molecular integrity and stability were analyzed by polyacrylamide gradient-gel electrophoresis, size-exclusion chromatography and incubation in human sera. The antigen-binding properties of the trimeric scFv were analyzed by direct and competitive-ELISA. Its apparent affinity constant was estimated at 1.4 ± 0.25 × 10(9)M(-1) and was 75-fold higher than its monovalent scFv (1.9 ± 0.68 × 10(7)M(-1)). The scFv50AD1-Fd neutralized rabies virus in a standard in vitro and in vivo neutralization assay. We showed a high neutralization activity up to 75-fold compared with monovalent format and the WHO standard serum. The gain in avidity resulting from multivalency along with an improved biological activity makes the trivalent scFv50AD1-Fd construct an important reagent for rabies protection. The antibody engineering approach presented here may serve as a strategy for designing a new generation of anti-rabies for passive immunotherapy. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wang, Hai-rong; Xiao, Zhen-yu; Chen, Miao; Wang, Fei-long; Liu, Jia; Zhong, Hua; Zhong, Ji-hua; Ou-Yang, Ren-rong; Shen, Yan-lin; Pan, Shu-ming
2012-06-01
Over-expressed CHMP5 was found to act as oncogene that probably participated in leukemogenesis. In this study, we constructed the CHMP5 single chain variable fragment antibody (CHMP5-scFv) retrovirus and studied the changes of programmed cell death (PCD) of AML leukemic cells after infection by the retrovirus. The anti-CHMP5 KC14 hybridoma cell line was constructed to generate monoclonal antibody of CHMP5. The protein expression of CHMP5 was studied using immunofluorescence analysis. pMIG-CHMP5 scFv antibody expressible retroviral vector was constructed to prepare CHMP5-scFv retrovirus. AML leukemic U937 cells were infected with the retrovirus, and programmed cell death was studied using confocal microscope, FCM and Western blot. We obtained a monoclonal antibody of CHMP5, and found the expression of CHMP5 was up-regulated in the leukemic cells. After U937 cells were infected with CHMP5-scFv retrovirus, CHMP5 protein was neutralized. Moreover, the infection resulted in a significant increase in apoptosis and necrosis of U937 cells. In U937 cells infected with CHMP5-scFv retrovirus, apoptosis-inducing factor (AIF)-mediated caspase-independent necrotic PCD was activated, but autophagic programmed cell death was not observed. Neither the intrinsic nor extrinsic apoptotic PCD pathway was activated. The granzyme B/perforin-mediated caspase-dependent apoptotic PCD pathway was not activated. CHMP5-scFv retrovirus can neutralize the abnormally high levels of the CHMP5 protein in the cytosol of AML leukemic U937 cells, thereby inducing the programmed cell death of the leukemic cells via AIF-mediated caspase-independent necrosis and apoptosis.
Generalova, Alla N; Sizova, Svetlana V; Zdobnova, Tatiana A; Zarifullina, Margarita M; Artemyev, Michail V; Baranov, Alexander V; Oleinikov, Vladimir A; Zubov, Vitaly P; Deyev, Sergey M
2011-02-01
This study aimed to design a panel of uniform particulate biochemical reagents and to test them in specific bioassays. These reagents are polymer particles of different sizes doped with semiconductor nanocrystals and conjugated with either full-size antibodies or recombinant mini-antibodies (4D5 scFv fragment) designed by genetic engineering approaches. A panel of highly fluorescent polymer particles (150-800 nm) were formed by embedding CdSe/ZnS nanocrystals (quantum dots) into preformed polyacrolein and poly(acrolein-co-styrene) particles. Morphology, content and fluorescence characteristics of the prepared materials were studied by laser correlation spectroscopy, spectrophotometry, optical and fluorescent microscopy and fluorimetry. The obtained fluorescent particles sensitized by anti-Yersinia pestis antibodies were used for rapid agglutination glass test suitable for screening analysis of Y. pestis antigen and for microtiter particle agglutination, which, owing to its speed and simplicity, is very beneficial for diagnostic detection of Y. pestis antigen. Recombinant 4D5 scFv antibodies designed and conjugated with polymer particles containing quantum dots provide multipoint highly specific binding with cancer marker HER2/neu on the surface of SKOV-3 cell.
Modification and identification of a vector for making a large phage antibody library.
Zhang, Guo-min; Chen, Yü-ping; Guan, Yuan-zhi; Wang, Yan; An, Yun-qing
2007-11-20
The large phage antibody library is used to obtain high-affinity human antibody, and the Loxp/cre site-specific recombination system is a potential method for constructing a large phage antibody library. In the present study, a phage antibody library vector pDF was reconstructed to construct diabody more quickly and conveniently without injury to homologous recombination and the expression function of the vector and thus to integrate construction of the large phage antibody library with the preparation of diabodies. scFv was obtained by overlap polymerase chain reaction (PCR) amplification with the newly designed VL and VH extension primers. loxp511 was flanked by VL and VH and the endonuclease ACC III encoding sequences were introduced on both sides of loxp511. scFv was cloned into the vector pDF to obtain the vector pDscFv. The vector expression function was identified and the feasibility of diabody preparation was evaluated. A large phage antibody library was constructed in pDscFv. Several antigens were used to screen the antibody library and the quality of the antibody library was evaluated. The phage antibody library expression vector pDscFv was successfully constructed and confirmed to express functional scFv. The large phage antibody library constructed using this vector was of high diversity. Screening of the library on 6 antigens confirmed the generation of specific antibodies to these antigens. Two antibodies were subjected to enzymatic digestion and were prepared into diabody with functional expression. The reconstructed vector pDscFv retains its recombination capability and expression function and can be used to construct large phage antibody libraries. It can be used as a convenient and quick method for preparing diabodies after simple enzymatic digestion, which facilitates clinical trials and application of antibody therapy.
Leong, Siew Wen; Lim, Theam Soon; Ismail, Asma; Choong, Yee Siew
2018-05-01
With the development of de novo binders for protein targets from non-related scaffolds, many possibilities for therapeutics and diagnostics have been created. In this study, we described the use of de novo design approach to create single-chain fragment variable (scFv) for Salmonella enterica subspecies enterica serovar Typhi TolC protein. Typhoid fever is a global health concern in developing and underdeveloped countries. Rapid typhoid diagnostics will improve disease management and therapy. In this work, molecular dynamics simulation was first performed on a homology model of TolC protein in POPE membrane bilayer to obtain the central structure that was subsequently used as the target for scFv design. Potential hotspot residues capable of anchoring the binders to the target were identified by docking "disembodied" amino acid residues against TolC surface. Next, scFv scaffolds were selected from Protein Data Bank to harbor the computed hotspot residues. The hotspot residues were then incorporated into the scFv scaffold complementarity determining regions. The designs recapitulated binding energy, shape complementarity, and interface surface area of natural protein-antibody interfaces. This approach has yielded 5 designs with high binding affinity against TolC that may be beneficial for the future development of antigen-based detection agents for typhoid diagnostics. Copyright © 2017 John Wiley & Sons, Ltd.
Sina, Mohammad; Farajzadeh, Davoud; Dastmalchi, Siavoush
2015-01-01
Purpose: The bacterial cultivation conditions for obtaining anti-TNF-α single chain variable fragment (scFv) antibody as the soluble product in E. coli was investigated. Methods: To avoid the production of inclusion bodies, the effects of lactose, IPTG, incubation time, temperature, shaking protocol, medium additives (Mg+2, sucrose), pH, osmotic and heat shocks were examined. Samples from bacterial growth conditions with promising results of soluble expression of GST-hD2 scFv were affinity purified and quantified by SDS-PAGE and image processing for further evaluation. Results: The results showed that cultivation in LB medium under induction by low concentrations of lactose and incubation at 10 °C led to partial solubilization of the expressed anti-TNF-α scFv (GST-hD2). Other variables which showed promising increase in soluble expression of GST-hD2 were osmotic shock and addition of magnesium chloride. Furthermore, addition of sucrose to medium suppressed the expression of scFv completely. The other finding was that the addition of sorbitol decreased the growth rate of bacteria. Conclusion: It can be concluded that low cultivation temperature in the presence of low amount of inducer under a long incubation time or addition of magnesium chloride are the most effective environmental factors studied for obtaining the maximum solubilization of GST-hD2 recombinant protein. PMID:26819916
Sina, Mohammad; Farajzadeh, Davoud; Dastmalchi, Siavoush
2015-11-01
The bacterial cultivation conditions for obtaining anti-TNF-α single chain variable fragment (scFv) antibody as the soluble product in E. coli was investigated. To avoid the production of inclusion bodies, the effects of lactose, IPTG, incubation time, temperature, shaking protocol, medium additives (Mg+2, sucrose), pH, osmotic and heat shocks were examined. Samples from bacterial growth conditions with promising results of soluble expression of GST-hD2 scFv were affinity purified and quantified by SDS-PAGE and image processing for further evaluation. The results showed that cultivation in LB medium under induction by low concentrations of lactose and incubation at 10 °C led to partial solubilization of the expressed anti-TNF-α scFv (GST-hD2). Other variables which showed promising increase in soluble expression of GST-hD2 were osmotic shock and addition of magnesium chloride. Furthermore, addition of sucrose to medium suppressed the expression of scFv completely. The other finding was that the addition of sorbitol decreased the growth rate of bacteria. It can be concluded that low cultivation temperature in the presence of low amount of inducer under a long incubation time or addition of magnesium chloride are the most effective environmental factors studied for obtaining the maximum solubilization of GST-hD2 recombinant protein.
Abdolalizadeh, Jalal; Majidi Zolbanin, Jafar; Nouri, Mohammad; Baradaran, Behzad; Movassaghpour, AliAkbar; Farajnia, Safar; Omidi, Yadollah
2013-01-01
Purpose: Recombinant tumor necrosis factor-alpha (TNF-α) has been utilized as an antineoplastic agent for the treatment of patients with melanoma and sarcoma. It targets tumor cell antigens by impressing tumor-associated vessels. Protein purification with affinity chromatography has been widely used in the downstream processing of pharmaceutical-grade proteins. Methods:In this study, we examined the potential of our produced anti-TNF-α scFv fragments for purification of TNF-α produced by Raji cells. The Raji cells were induced by lipopolysaccharides (LPS) to express TNF-α. Western blotting and Fluorescence-activated cell sorting (FACS) flow cytometry analyses were used to evaluate the TNF-α expression. The anti-TNF-α scFv selected from antibody phage display library was coupled to CNBr-activated sepharose 4B beads used for affinity purification of expressed TNF-α and the purity of the protein was assessed by SDS-PAGE. Results: Western blot and FACS flow cytometry analyses showed the successful expression of TNF-α with Raji cells. SDS-PAGE analysis showed the performance of scFv for purification of TNF-α protein with purity over 95%. Conclusion: These findings confirm not only the potential of the produced scFv antibody fragments but also this highly pure recombinant TNF-α protein can be applied for various in vitro and in vivo applications. PMID:24312807
Fusion Peptide Improves Stability and Bioactivity of Single Chain Antibody against Rabies Virus.
Xi, Hualong; Zhang, Kaixin; Yin, Yanchun; Gu, Tiejun; Sun, Qing; Shi, Linqing; Zhang, Renxia; Jiang, Chunlai; Kong, Wei; Wu, Yongge
2017-04-28
The combination of rabies immunoglobulin (RIG) with a vaccine is currently effective against rabies infections, but improvements are needed. Genetic engineering antibody technology is an attractive approach for developing novel antibodies to replace RIG. In our previous study, a single-chain variable fragment, scFv57R, against rabies virus glycoprotein was constructed. However, its inherent weak stability and short half-life compared with the parent RIG may limit its diagnostic and therapeutic application. Therefore, an acidic tail of synuclein (ATS) derived from the C-terminal acidic tail of human alpha-synuclein protein was fused to the C-terminus of scFv57R in order to help it resist adverse stress and improve the stability and halflife. The tail showed no apparent effect on the preparation procedure and affinity of the protein, nor did it change the neutralizing potency in vitro. In the ELISA test of molecular stability, the ATS fusion form of the protein, scFv57R-ATS, showed an increase in thermal stability and longer half-life in serum than scFv57R. The protection against fatal rabies virus challenge improved after fusing the tail to the scFv, which may be attributed to the improved stability. Thus, the ATS fusion approach presented here is easily implemented and can be used as a new strategy to improve the stability and half-life of engineered antibody proteins for practical applications.
Qudsia, Sehar; Merugu, Siva B; Mangukiya, Hitesh B; Hema, Negi; Wu, Zhenghua; Li, Dawei
2018-04-30
Antibody display libraries have become a popular technique to screen monoclonal antibodies for therapeutic purposes. An important aspect of display technology is to generate an optimization library by changing antibody affinity to antigen through mutagenesis and screening the high affinity antibody. In this study, we report a novel lentivirus display based optimization library antibody in which Agtuzumab scFv is displayed on cell membrane of HEK-293T cells. To generate an optimization library, hotspot mutagenesis was performed to achieve diverse antibody library. Based on sequence analysis of randomly selected clones, library size was estimated approximately to be 1.6 × 10 6 . Lentivirus display vector was used to display scFv antibody on cell surface and flow cytometery was performed to check the antibody affinity to antigen. Membrane bound scFv antibodies were then converted to secreted antibody through cre/loxP recombination. One of the mutant clones, M8 showed higher affinity to antigen in flow cytometery analysis. Further characterization of cellular and secreted scFv through western blot showed that antibody affinity was increased by three fold after mutagenesis. This study shows successful construction of a novel antibody library and suggests that hotspot mutagenesis could prove a useful and rapid optimization tool to generate similar libraries with various degree of antigen affinity. Copyright © 2018 Elsevier Inc. All rights reserved.
Dong, Sa; Bo, Zongyi; Zhang, Cunzheng; Feng, Jianguo; Liu, Xianjin
2018-04-01
Single-chain variable fragment (scFv) is a kind of antibody that possess only one chain of the complete antibody while maintaining the antigen-specific binding abilities and can be expressed in prokaryotic system. In this study, scFvs against Cry1 toxins were screened out from an immunized mouse phage displayed antibody library, which was successfully constructed with capacity of 6.25 × 10 7 CFU/mL. Using the mixed and alternative antigen coating strategy and after four rounds of affinity screening, seven positive phage-scFvs against Cry1 toxins were selected and characterized. Among them, clone scFv-3H9 (MG214869) showing relative stable and high binding abilities to six Cry1 toxins was selected for expression and purification. SDS-PAGE indicated that the scFv-3H9 fragments approximately 27 kDa were successfully expressed in Escherichia coli HB2151 strain. The purified scFv-3H9 was used to establish the double antibody sandwich enzyme-linked immunosorbent assay method (DAS-ELISA) for detecting six Cry1 toxins, of which the lowest detectable limits (LOD) and the lowest quantitative limits (LOQ) were 3.14-11.07 and 8.22-39.44 ng mL -1 , respectively, with the correlation coefficient higher than 0.997. The average recoveries of Cry1 toxins from spiked rice leaf samples were ranged from 84 to 95%, with coefficient of variation (CV) less than 8.2%, showing good accuracy for the multi-residue determination of six Cry1 toxins in agricultural samples. This research suggested that the constructed phage display antibody library based on the animal which was immunized with the mixture of several antigens under the same category can be used for the quick and effective screening of generic antibodies.
Recombinant anti-tenascin antibody constructs
DOE Office of Scientific and Technical Information (OSTI.GOV)
ZALUTSKY, MICHAEL R
2006-08-29
The general objective of this research is to combine genetically derived molecular constructs reactive with tenascin, with appropriate radionuclides and labeling methods in order to generate more effective diagnostic and therapeutic reagents for oncologic nuclear medicine. Tenascin, a polymorphic extracellular matrix glycoprotein, is of interest because of its high expression on glioma, melanoma, as well as prostate and breast carcinoma. Recently, we have also documented high levels of tenascin in lymphomas, particularly those of higher grade, making the potential clinical impact of tenascin-specific radiodiagnostics and therapeutics even greater. An essential feature of our work plan is the ability to exploitmore » our extensive clinical experience in order to design second-generation constructs with properties which could improve clinical efficacy. To date, we have treated over 150 brain tumor patients with 131I-labeled murine 81C6, an antibody which binds specifically to the alternatively spliced fibronectin type III repeats CD of the tenascin molecule. During the current grant period, we have made several observations which form the basis for our proposed specific aims. First, tissue distribution and catabolism experiments in animal models have demonstrated enhanced stability for a chimeric construct composed of murine variable regions and human IgG2 constant domains. Furthermore, pharmacokinetic studies in patients with 131I-labeled chimeric 81C6 have shown significantly longer retention in glioma tumor resection cavities compared with its murine parent. Second, we have initiated the first clinical trial of an endoradiotherapeutic labeled with the 7.2-hr -particle emitter 211At. Twelve glioma patients have received 211At-labeled chimeric 81C6 directly into their brain tumor resection cavity, and very encouraging results have been obtained. Now that the feasibility of human studies with 211At, has been demonstrated, the development and evaluation of anti-tenascin constructs with optimized properties for use in tandem with short half life radionuclides such as 211At ( as well as 1.8-hr 18F for PET imaging) is warranted. Our specific aims are: 1) to construct a bivalent, anti-tenascin molecule containing murine 81C6 variable regions and the human IgG2 hinge region. Both the CH2 domain deletion construct (CH2) and F(ab’)2 will be investigated; 2) to construct a single-chain Fv dimer or multimer with adequate stability, affinity and immunoreactivity for use in tandem with 211At for therapy and 18F for imaging; 3) to generate higher affinity scFv constructs reactive with the alternatively spliced fibronectin type III repeats CD of the tenascin molecule via phage display technology and site-directed mutagenesis; 4) to label promising anti-tenascin constructs with radioiodine, 211At, and 18F and evaluate their potential as radiodiagnostic and radiotherapeutic agents. The proposed studies include: characterization of affinity and immunoreactivity after labeling; evaluation of tissue distribution and projected dosimetry in normal mice, and athymic rodents with subcutaneous, intracranial and neoplastic meningitis xenografts; investigation of the nature of low and high molecular weight labeled catabolites generated in mice; and assessment of cytotoxicity in vitro and in vivo models of human glioma, and possibly, other tenascin expressing tumors; and 5) to investigate strategies for labeling scFv monomers and dimers which will minimize retention of the radiohalogen in the kidneys through the use of negatively charged templates.« less
Andris-Widhopf, Jennifer; Steinberger, Peter; Fuller, Roberta; Rader, Christoph; Barbas, Carlos F
2011-09-01
The development of therapeutic antibodies for use in the treatment of human diseases has long been a goal for many researchers in the antibody field. One way to obtain these antibodies is through phage-display libraries constructed from human lymphocytes. This protocol describes the construction of human scFv (single chain antibody fragment) libraries using a short linker (GGSSRSS) or a long linker (GGSSRSSSSGGGGSGGGG). In this method, the individual rearranged heavy- and light-chain variable regions are amplified separately and are linked through a series of overlap polymerase chain reaction (PCR) steps to give the final scFv products that are used for cloning.
Spencer, Brian; Emadi, Sharareh; Desplats, Paula; Eleuteri, Simona; Michael, Sarah; Kosberg, Kori; Shen, Jay; Rockenstein, Edward; Patrick, Christina; Adame, Anthony; Gonzalez, Tania; Sierks, Michael; Masliah, Eliezer
2014-01-01
Parkinson's disease and dementia with Lewy bodies are neurodegenerative disorders characterized by accumulation of α-synuclein (α-syn). Recently, single-chain fragment variables (scFVs) have been developed against individual conformational species of α-syn. Unlike more traditional monoclonal antibodies, these scFVs will not activate or be endocytosed by Fc receptors. For this study, we investigated an scFV directed against oligomeric α-syn fused to the LDL receptor-binding domain from apolipoprotein B (apoB). The modified scFV showed enhanced brain penetration and was imported into neuronal cells through the endosomal sorting complex required for transport (ESCRT) pathway, leading to lysosomal degradation of α-syn aggregates. Further analysis showed that the scFV was effective at ameliorating neurodegenerative pathology and behavioral deficits observed in the mouse model of dementia with Lewy bodies/Parkinson's disease. Thus, the apoB modification had the effect of both increasing accumulation of the scFV in the brain and directing scFV/α-syn complexes for degradation through the ESCRT pathway, leading to improved therapeutic potential of immunotherapy. PMID:25008355
Spencer, Brian; Emadi, Sharareh; Desplats, Paula; Eleuteri, Simona; Michael, Sarah; Kosberg, Kori; Shen, Jay; Rockenstein, Edward; Patrick, Christina; Adame, Anthony; Gonzalez, Tania; Sierks, Michael; Masliah, Eliezer
2014-10-01
Parkinson's disease and dementia with Lewy bodies are neurodegenerative disorders characterized by accumulation of α-synuclein (α-syn). Recently, single-chain fragment variables (scFVs) have been developed against individual conformational species of α-syn. Unlike more traditional monoclonal antibodies, these scFVs will not activate or be endocytosed by Fc receptors. For this study, we investigated an scFV directed against oligomeric α-syn fused to the LDL receptor-binding domain from apolipoprotein B (apoB). The modified scFV showed enhanced brain penetration and was imported into neuronal cells through the endosomal sorting complex required for transport (ESCRT) pathway, leading to lysosomal degradation of α-syn aggregates. Further analysis showed that the scFV was effective at ameliorating neurodegenerative pathology and behavioral deficits observed in the mouse model of dementia with Lewy bodies/Parkinson's disease. Thus, the apoB modification had the effect of both increasing accumulation of the scFV in the brain and directing scFV/α-syn complexes for degradation through the ESCRT pathway, leading to improved therapeutic potential of immunotherapy.
de Graaf, M; Boven, E; Oosterhoff, D; van der Meulen-Muileman, I H; Huls, G A; Gerritsen, W R; Haisma, H J; Pinedo, H M
2002-03-04
Monoclonal antibodies against tumour-associated antigens could be useful to deliver enzymes selectively to the site of a tumour for activation of a non-toxic prodrug. A completely human fusion protein may be advantageous for repeated administration, as host immune responses may be avoided. We have constructed a fusion protein consisting of a human single chain Fv antibody, C28, against the epithelial cell adhesion molecule and the human enzyme beta-glucuronidase. The sequences encoding C28 and human enzyme beta-glucuronidase were joined by a sequence encoding a flexible linker, and were preceded by the IgGkappa signal sequence for secretion of the fusion protein. A CHO cell line was engineered to secrete C28-beta-glucuronidase fusion protein. Antibody specificity and enzyme activity were retained in the secreted fusion protein that had an apparent molecular mass of 100 kDa under denaturing conditions. The fusion protein was able to convert a non-toxic prodrug of doxorubicin, N-[4-doxorubicin-N-carbonyl(oxymethyl)phenyl]-O-beta-glucuronyl carbamate to doxorubicin, resulting in cytotoxicity. A bystander effect was demonstrated, as doxorubicin was detected in all cells after N-[4-doxorubicin-N-carbonyl(oxymethyl)phenyl]-O-beta-glucuronyl carbamate administration when only 10% of the cells expressed the fusion protein. This is the first fully human and functional fusion protein consisting of an scFv against epithelial cell adhesion molecule and human enzyme beta-glucuronidase for future use in tumour-specific activation of a non-toxic glucuronide prodrug. Copyright 2002 Cancer Research UK
Shahsavarian, Melody A; Le Minoux, Damien; Matti, Kalyankumar M; Kaveri, Srini; Lacroix-Desmazes, Sébastien; Boquet, Didier; Friboulet, Alain; Avalle, Bérangère; Padiolleau-Lefèvre, Séverine
2014-05-01
Phage display antibody libraries have proven to have a significant role in the discovery of therapeutic antibodies and polypeptides with desired biological and physicochemical properties. Obtaining a large and diverse phage display antibody library, however, is always a challenging task. Various steps of this technique can still undergo optimization in order to obtain an efficient library. In the construction of a single chain fragment variable (scFv) phage display library, the cloning of the scFv fragments into a phagemid vector is of crucial importance. An efficient restriction enzyme digestion of the scFv DNA leads to its proper ligation with the phagemid followed by its successful cloning and expression. Here, we are reporting a different approach to enhance the efficiency of the restriction enzyme digestion step. We have exploited rolling circle amplification (RCA) to produce a long strand of DNA with tandem repeats of scFv sequences, which is found to be highly susceptible to restriction digestion. With this important modification, we are able to construct a large phage display antibody library of naive SJL/J mice. The size of the library is estimated as ~10(8) clones. The number of clones containing a scFv fragment is estimated at 90%. Hence, the present results could considerably aid the utilization of the phage-display technique in order to get an efficiently large antibody library. Copyright © 2014 Elsevier B.V. All rights reserved.
Hydrogel Tethering Enhances Interdomain Stabilization of Single-Chain Antibodies.
Xiong, Yijia; Ford, Nicole R; Hecht, Karen A; Roesijadi, Guritno; Squier, Thomas C
2017-11-15
Here, we identify the importance of molecular crowding agents in the functional stabilization of scFv antibodies. Antibodies were tethered through an engineered calmodulin (CaM)-binding peptide into a stimulus-responsive hydrogel composed of poly(ethylene glycol) (PEG)-functionalized CaM. Macromolecular crowding is modulated by transient heating, which decreases effective pore sizes. Using a fluorescent ligand bound to the scFv, frequency-domain fluorescence spectroscopy was used to assess the structural coupling between the V H and the V L domains and relationships with functional stabilization. There is minimal structural coupling between the V H and the V L domains in solution, as is apparent from the substantial rotational mobility for the bound ligand, that is suggestive of an independent mobility for the V H and the V L domains. In comparison, the hydrogel matrix acts to structurally couple the V H and the V L domains, resulting in a reduction in rotational mobility and a retention of ligand binding in the presence of 8.0 M urea. Under these same conditions, ligand binding is disrupted for scFv antibodies in solution. Increases in the stabilization of scFv antibodies in hydrogels is not simply the result of molecular crowding because decreases in pore size act to destabilize ligand binding. Rather, our results suggest that the functional stabilization of the scFv antibody within the PEG hydrogel matrix includes important factors involving protein solvation that stabilize interdomain interactions between the V H and the V L domains necessary for ligand binding.
Attallah, Carolina; Aguilar, María Fernanda; Garay, A Sergio; Herrera, Fernando E; Etcheverrigaray, Marina; Oggero, Marcos; Rodrigues, Daniel E
2017-10-01
The Cys residues are almost perfectly conserved in all antibodies. They contribute significantly to the antibody fragment stability. The relevance of two natural contiguous Cys residues of an anti-recombinant human-follicle stimulation hormone (rhFSH) in a format of single-chain variable fragment (scFv) was studied. This scFv contains 5 Cys residues: V H 22 and V H 92 in the variable heavy chain (V H ) and V L 23, V L 87 and V L 88 in the variable light chain (V L ). The influence of two unusual contiguous Cys at positions V L 87 and V L 88 was studied by considering the wild type fragment and mutant variants: V L -C88S, V L -C87S, V L -C87Y. The analysis was carried out using antigen-binding ability measurement by indirect specific ELISA and a detailed molecular modeling that comprises homology methods, long molecular dynamics simulations and docking. We found that V L -C87 affected the antibody fragment stability without interfering with the disulfide bond formation. The effect of mutating the V L -C87 by a usual residue at this position like Tyr caused distant structural changes at the V H region that confers a higher mobility to the V H -CDR2 and V H -CDR3 loops improving the scFv binding to the antigen. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dynamic Stabilization of Expressed Proteins in Engineered Diatom Biosilica Matrices.
Xiong, Yijia; Ford, Nicole R; Hecht, Karen A; Roesijadi, Guritno; Squier, Thomas C
2016-05-18
Self-assembly of recombinant proteins within the biosilica of living diatoms represents a means to construct functional materials in a reproducible and scalable manner that will enable applications that harness the inherent specificities of proteins to sense and respond to environmental cues. Here we describe the use of a silaffin-derived lysine-rich 39-amino-acid targeting sequence (Sil3T8) that directs a single chain fragment variable (scFv) antibody or an enhanced green fluorescent protein (EGFP) to assemble within the biosilica frustule, resulting in abundance of >200 000 proteins per frustule. Using either a fluorescent ligand bound to the scFv or the intrinsic fluorescence of EGFP, we monitored protein conformational dynamics, accessibility to external quenchers, binding affinity, and conformational stability. Like proteins in solution, proteins within isolated frustules undergo isotropic rotational motion, but with 2-fold increases in rotational correlation times that are indicative of weak macromolecular associations within the biosilica. Solvent accessibilities and high-affinity (pM) binding are comparable to those in solution. In contrast to solution conditions, scFv antibodies within the biosilica matrix retain their binding affinity in the presence of chaotropic agents (i.e., 8 M urea). Together, these results argue that dramatic increases in protein conformational stability within the biosilica matrices arise through molecular crowding, acting to retain native protein folds and associated functionality with the potential to allow the utility of engineered proteins under a range of harsh environmental conditions associated with environmental sensing and industrial catalytic transformations.
Generation and characterization of high affinity humanized fab against hepatitis B surface antigen.
Tiwari, Ashutosh; Dutta, Durgashree; Khanna, Navin; Acharya, Subrat K; Sinha, Subrata
2009-09-01
5S is a mouse monoclonal IgG1 that binds to the 'a' epitope of the Hepatitis B surface antigen (HBsAg) and tested positive in an in vitro test for virus neutralization. We have earlier reported the generation of humanized single chain variable fragment (scFv) from the same. In this article we report the generation of a recombinant Fab molecule by fusing humanized variable domains of 5S with the constant domains of human IgG1. The humanized Fab expressed in E. coli and subsequently purified, retained a high binding affinity (K(D) = 3.63 nmol/L) to HBsAg and bound to the same epitope of HBsAg as the parent molecule. The humanized Fab also maintained antigen binding in the presence of various destabilizing agents like 3 M NaCl, 30% DMSO, 8 M urea, and extreme pH. This high affinity humanized Fab provides a basis for the development of therapeutic molecules that can be safely utilized for the prophylaxis and treatment for Hepatitis B infection.
USDA-ARS?s Scientific Manuscript database
‘Ca. Liberibacter asiaticus’ is the causal agent of citrus huanglongbing, the most serious disease of citrus worldwide. We have developed and applied immunization and affinity screening methods to develop a primary library of recombinant single chain variable fragment (scFv) antibodies in an M13 vec...
Deckers, Susanne; Braren, Ingke; Greunke, Kerstin; Meyer, Nadine; Rühl, Dana; Bredehorst, Reinhard; Spillner, Edzard
2009-01-01
Nowadays, recombinant antibody and phage display technology enable the efficient generation of immunotools and a subsequent manipulation for optimized affinity, specificity or overall performance. Such advantages are of particular interest for haptenic target structures, such as TNT (2,4,6-trinitrotoluene). The toxicity of TNT and its breakdown products makes a reliable and fast detection of low levels in aqueous samples highly important. In the present study, we aimed for the generation of scFvs (single-chain antibody fragments) specific for the TNT-surrogate TNP (2,4,6-trinitrophenyl) and their subsequent production as monoclonal avian IgY immunoglobulins providing improved assay performance. Therefore we subjected a human synthetic scFv library to selection following different strategies. TNP-specific human antibody fragments could be identified, characterized for their primary structure and evaluated for production as soluble scFv in Escherichia coli. Additionally, a murine TNP-specific antibody fragment was obtained from the hybridoma 11B3; however, the prokaryotic expression level was found to be limited. To generate and evaluate immunoglobulin formats with superior characteristics, all recombinant antibody fragments then were converted into two different chimaeric bivalent IgY antibody formats. After expression in mammalian cells, the IgY antibodies were assessed for their reactivity towards TNT. The IgY antibodies generated on the basis of the combinatorial library proved to be useful for detection of TNT, thereby emphasizing the high potential of this approach for the development of detection devices for immunoassay-based techniques.
Haun, Jered B; Pepper, Lauren R; Boder, Eric T; Hammer, Daniel A
2011-11-15
Elucidation of the relationship between targeting molecule binding properties and the adhesive behavior of therapeutic or diagnostic nanocarriers would aid in the design of optimized vectors and lead to improved efficacy. We measured the adhesion of 200-nm-diameter particles under fluid flow that was mediated by a diverse array of molecular interactions, including recombinant single-chain antibodies (scFvs), full antibodies, and the avidin/biotin interaction. Within the panel of scFvs, we used a family of mutants that display a spectrum of binding kinetics, allowing us to compare nanoparticle adhesion to bond chemistry. In addition, we explored the effect of molecular size by inserting a protein linker into the scFv fusion construct and by employing scFvs that are specific for targets with vastly different sizes. Using computational models, we extracted multivalent kinetic rate constants for particle attachment and detachment from the adhesion data and correlated the results to molecular binding properties. Our results indicate that the factors that increase encounter probability, such as adhesion molecule valency and size, directly enhance the rate of nanoparticle attachment. Bond kinetics had no influence on scFv-mediated nanoparticle attachment within the kinetic range tested, however, but did appear to affect antibody/antigen and avidin/biotin mediated adhesion. We attribute this finding to a combination of multivalent binding and differences in bond mechanical strength between recombinant scFvs and the other adhesion molecules. Nanoparticle detachment probability correlated directly with adhesion molecule valency and size, as well as the logarithm of the affinity for all molecules tested. On the basis of this work, scFvs can serve as viable targeting receptors for nanoparticles, but improvements to their bond mechanical strength would likely be required to fully exploit their tunable kinetic properties and maximize the adhesion efficiency of nanoparticles that bear them.
Hill, A S; Giersch, T M; Loh, C S; Skerritt, J H
1999-10-01
A single-chain fragment (scFv) was engineered from a monoclonal antibody to high molecular weight glutenin subunits (HMW-GS), wheat flour polypeptides that play a major role in determining the mixing- and extension strength-related properties of dough and its subsequent baking performance. The scFv was expressed in a thioredoxin mutant Escherichia coli strain that allows disulfide bond formation in the cytoplasm and incorporated into a diagnostic test for wheat quality. Although the scFv lacks the more highly conserved antibody constant regions usually involved with immobilization, it was able to be directly immobilized to a polystyrene microwell solid phase without chemical or covalent modification of the protein or solid phase and utilized as a capture antibody in a double-antibody (two-site) immunoassay. In the sandwich assay, increasing HMW-GS concentrations produced increasing assay color, and highly significant correlations were obtained between optical densities obtained in the ELISA using the scFv and the content of large glutenin polymers in flours as well as measures of dough strength as measured by resistance to dough extension in rheological testing. The assay using the scFv was able to be carried out at lower flour sample extract dilutions than that required for a similar assay utilizing a monoclonal capture antibody. This research shows that engineered antibody fragments can be utilized to provide superior assay performance in two-site ELISAs over monoclonal antibodies and is the first application of an engineered antibody to the analysis of food processing quality.
Yuan, Qing; Jordan, Ramon; Brlansky, Ronald H; Istomina, Olga; Hartung, John
2015-10-01
Xylella fastidiosa is a member of the gamma proteobacteria. It is fastidious, insect-vectored and xylem-limited and causes a variety of diseases, some severe, on a wide range of economically important perennial crops, including grape and citrus. Antibody based detection assays are commercially available for X. fastidiosa, and are effective at the species, but not at the subspecies level. We have made a library of scFv antibody fragments directed against X. fastidiosa subsp. pauca strain 9a5c (citrus) by using phage display technology. Antibody gene repertoires were PCR-amplified using 23 primers for the heavy chain variable region (V(H)) and 21 primers for the light chain variable region (V(L)). The V(H) and V(L) were joined by overlap extension PCR, and then the genes of the scFv library were ligated into the phage vector pKM19. The library contained 1.2×10(7) independent clones with full-length scFv inserts. In each of 3cycles of affinity-selection with 9a5c, about 1.0×10(12) phage were used for panning with 4.1×10(6), 7.1×10(6), 2.1×10(7) phage recovered after the first, second and third cycles, respectively. Sixty-six percent of clones from the final library bound X. fastidiosa 9a5c in an ELISA. Some of these scFv antibodies recognized strain 9a5c and did not recognize X. fastidiosa strains that cause Pierce's disease of grapevine. Published by Elsevier B.V.
Xu, Jian; Wu, Jing; Jiang, Bo; He, Houjun; Zhang, Xixi; Li, Xiaoyang; Yang, Dawei; Huang, Xiufen; Sealy, Joshua E; Iqbal, Munir; Li, Yongqing
2017-12-01
Glycoprotein D (gD) of bovine herpesvirus-1 (BoHV-1) is essential for attachment and penetration of cells during infection and is a major target for neutralizing antibodies during an adaptive immune response. Currently there are no recombinant antibodies capable of binding gD epitopes for use in treating BoHV-1 infection. In this study, a bovine scFv gene derived from a hybridoma secreting monoclonal antibodies (McAbs) against the amino acid motif MEESKGYEPP of gD was expressed in E. coli. Molecular modeling, western blot and ELISA analysis showed that this scFv had a high affinity for BoHV-1 gD, with a Kd of 161.2 ± 37.58 nM and for whole BoHV-1 virus, with a Kd of 67.44 ± 16.99 nM. In addition, this scFv displayed a high affinity for BoHV-1 antigen in an ELISA and competed with BoHV-1 anti-serum in a competitive ELISA. Immunofluorescence assay (IFA) and laser confocal microscopy showed that this scFv could efficiently bind to and be internalized by BoHV-1 infected Madin-Darby bovine kidney (MDBK) cells. Importantly, this scFv was shown to inhibit BoHV-1 infectivity and to reduce the number of viral plaques by blocking viral attachment to MDBK cells. Our study suggests that this bovine single-chain antibody could be developed for use as a diagnostic and therapeutic agent against BoHV-1 infection in cattle.
A novel anti-CD22 scFv-apoptin fusion protein induces apoptosis in malignant B-cells.
Agha Amiri, Solmaz; Shahhosseini, Soraya; Zarei, Najmeh; Khorasanizadeh, Dorsa; Aminollahi, Elahe; Rezaie, Faegheh; Zargari, Mehryar; Azizi, Mohammad; Khalaj, Vahid
2017-12-01
CD22 marker is a highly internalizing antigen which is located on the surface of B-cells and is being used as a promising target for treatment of B cell malignancies. Monoclonal antibodies targeting CD22 have been introduced and some are currently under investigation in clinical trials. Building on the success of antibody drug conjugates, we developed a fusion protein consisting of a novel anti-CD22 scFv and apoptin and tested binding and therapeutic effects in lymphoma cells. The recombinant protein was expressed in E. coli and successfully purified and refolded. In vitro binding analysis by immunofluorescence and flow cytometry demonstrated that the recombinant protein specifically binds to CD22 positive Raji cells but not to CD22 negative Jurkat cells. The cytotoxic properties of scFv-apoptin were assessed by an MTT assay and Annexin V/PI flow cytometry analysis and showed that the recombinant protein induced apoptosis preferentially in Raji cells with no detectable effects in Jurkat cells. Our findings indicated that the recombinant anti-CD22 scFv-apoptin fusion protein could successfully cross the cell membrane and induce apoptosis with high specificity, make it as a promising molecule for immunotherapy of B-cell malignancies.
Gladiolus plants transformed with single-chain variable fragment antibodies to Cucumber mosaic virus
USDA-ARS?s Scientific Manuscript database
Transgenic plants of Gladiolus ‘Peter Pears’ or ‘Jenny Lee’ were developed that contain single-chain variable fragments (scFv) to Cucumber mosaic virus (CMV) subgroup I or II. The CMV subgroup I heavy and light chain scFv fragments were placed under control of either the duplicated CaMV 35S or suga...
Seaman, Mike S.; Lutje Hulsik, David; Hinz, Andreas; Vanzetta, Fabrizia; Agatic, Gloria; Silacci, Chiara; Mainetti, Lara; Scarlatti, Gabriella; Sallusto, Federica; Weiss, Robin; Lanzavecchia, Antonio; Weissenhorn, Winfried
2010-01-01
The human monoclonal antibody (mAb) HK20 neutralizes a broad spectrum of primary HIV-1 isolates by targeting the highly conserved heptad repeat 1 (HR1) of gp41, which is transiently exposed during HIV-1 entry. Here we present the crystal structure of the HK20 Fab in complex with a gp41 mimetic 5-Helix at 2.3 Å resolution. HK20 employs its heavy chain CDR H2 and H3 loops to bind into a conserved hydrophobic HR1 pocket that is occupied by HR2 residues in the gp41 post fusion conformation. Compared to the previously described HR1-specific mAb D5, HK20 approaches its epitope with a different angle which might favor epitope access and thus contribute to its higher neutralization breadth and potency. Comparison of the neutralization activities of HK20 IgG, Fab and scFv employing both single cycle and multiple cycle neutralization assays revealed much higher potencies for the smaller Fab and scFv over IgG, implying that the target site is difficult to access for complete antibodies. Nevertheless, two thirds of sera from HIV-1 infected individuals contain significant titers of HK20-inhibiting antibodies. The breadth of neutralization of primary isolates across all clades, the higher potencies for C-clade viruses and the targeting of a distinct site as compared to the fusion inhibitor T-20 demonstrate the potential of HK20 scFv as a therapeutic tool. PMID:21124990
Sabin, Charles; Corti, Davide; Buzon, Victor; Seaman, Mike S; Lutje Hulsik, David; Hinz, Andreas; Vanzetta, Fabrizia; Agatic, Gloria; Silacci, Chiara; Mainetti, Lara; Scarlatti, Gabriella; Sallusto, Federica; Weiss, Robin; Lanzavecchia, Antonio; Weissenhorn, Winfried
2010-11-18
The human monoclonal antibody (mAb) HK20 neutralizes a broad spectrum of primary HIV-1 isolates by targeting the highly conserved heptad repeat 1 (HR1) of gp41, which is transiently exposed during HIV-1 entry. Here we present the crystal structure of the HK20 Fab in complex with a gp41 mimetic 5-Helix at 2.3 Å resolution. HK20 employs its heavy chain CDR H2 and H3 loops to bind into a conserved hydrophobic HR1 pocket that is occupied by HR2 residues in the gp41 post fusion conformation. Compared to the previously described HR1-specific mAb D5, HK20 approaches its epitope with a different angle which might favor epitope access and thus contribute to its higher neutralization breadth and potency. Comparison of the neutralization activities of HK20 IgG, Fab and scFv employing both single cycle and multiple cycle neutralization assays revealed much higher potencies for the smaller Fab and scFv over IgG, implying that the target site is difficult to access for complete antibodies. Nevertheless, two thirds of sera from HIV-1 infected individuals contain significant titers of HK20-inhibiting antibodies. The breadth of neutralization of primary isolates across all clades, the higher potencies for C-clade viruses and the targeting of a distinct site as compared to the fusion inhibitor T-20 demonstrate the potential of HK20 scFv as a therapeutic tool.
Hydrogel Tethering Enhances Interdomain Stabilization of Single-Chain Antibodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Yijia; Ford, Nicole R.; Hecht, Karen A.
Self-assembly of recombinant proteins within the biosilica of living diatoms represents a means to construct functional materials in a reproducible and scalable manner that enable applications that harness the inherent specificities of proteins to sense and respond to environmental cues. Here we describe the use of a silaffin-derived lysine-rich 39 amino-acid targeting sequence (Sil3T8) to direct a single chain fragment variable (scFv) antibody or an enhanced green fluorescent protein (EGFP) to assemble within the biosilica frustule, resulting in abundances in excess of 200,000 proteins per frustule. The fluorescence of either a derivative of trinitrotoluene (TNT) bound to the scFv ormore » the endogenous fluorescence of EGFP was used to monitor pro-tein conformational dynamics, accessibility to external quenchers, binding affinity, and conformational stability. We find that proteins within isolated frustules undergo isotropic rotational motions with two-fold increases in rotational correlation times, which are indicative of weak macromolecular associations within the biosilica. Solvent accessibilities and high-affinity (pM) binding are comparable to those in solution. In contrast to solution conditions, scFv antibod-ies within the biosilica matrix retain their binding affinity in the presence of chaotropic agents (i.e., 8 M urea). These results argue that dramatic increases in protein conforma-tional stability within the biosilica frustule matrices arise through molecular crowding, acting to retain native protein folds and associated functionality to allow the utility of engineered proteins under a range of harsh environmental conditions associated with environmental sensing and industrial catalytic transformations.« less
Orcutt, Kelly Davis; Slusarczyk, Adrian L; Cieslewicz, Maryelise; Ruiz-Yi, Benjamin; Bhushan, Kumar R; Frangioni, John V; Wittrup, K Dane
2014-01-01
Introduction In pretargeted radioimmunotherapy (PRIT), a bifunctional antibody is administered and allowed to pre-localize to tumor cells. Subsequently, a chelated radionuclide is administered and captured by cell-bound antibody while unbound hapten clears rapidly from the body. We aim to engineer high-affinity binders to DOTA chelates for use in PRIT applications. Methods We mathematically modeled antibody and hapten pharmacokinetics to analyze hapten tumor retention as a function of hapten binding affinity. Motivated by model predictions, we used directed evolution and yeast surface display to affinity mature the 2D12.5 antibody to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), reformatted as a single chain variable fragment (scFv). Results Modeling predicts that for high antigen density and saturating bsAb dose, a hapten binding affinity of 100 picomolar (pM) is needed for near-maximal hapten retention. We affinity matured 2D12.5 with an initial binding constant of about 10 nanomolar (nM) to DOTA-yttrium chelates. Affinity maturation resulted in a 1000-fold affinity improvement to biotinylated DOTA-yttrium, yielding an 8.2 ± 1.9 picomolar binder. The high-affinity scFv binds DOTA complexes of lutetium and gadolinium with similar picomolar affinity and indium chelates with low nanomolar affinity. When engineered into a bispecific antibody construct targeting carcinoembryonic antigen (CEA), pretargeted high-affinity scFv results in significantly higher tumor retention of a 111In-DOTA hapten compared to pretargeted wild-type scFv in a xenograft mouse model. Conclusions We have engineered a versatile, high-affinity DOTA-chelate-binding scFv. We anticipate it will prove useful in developing pretargeted imaging and therapy protocols to exploit the potential of a variety of radiometals. PMID:21315278
Combination cancer therapy by hapten-targeted prodrug-activating enzymes and cytokines.
Chuang, Kuo-Hsiang; Cheng, Chiu-Min; Roffler, Steve R; Lu, Yu-Lin; Lin, Shiu-Ru; Wang, Jaw-Yuan; Tzou, Wen-Shyong; Su, Yu-Cheng; Chen, Bing-Mae; Cheng, Tian-Lu
2006-01-01
Combination therapy can help overcome limitations in the treatment of heterogeneous tumors. In the current study, we examined whether multiple therapeutic agents could be targeted to anti-dansyl single-chain antibodies (DNS scFv) that were anchored on the plasma membrane of cancer cells. Functional DNS scFv could be stably expressed on CT-26 colon cancer cells both in vitro and in vivo. Dansyl moieties were covalently attached to recombinant beta-glucuronidase (betaG) and interleukin 2 (IL-2) via a flexible poly(ethylene glycol) linker to form DNS-PEG-betaG and DNS-PEG-IL-2 conjugates. The conjugates displayed enzymatic and splenocyte-stimulatory activities, respectively, that were similar to those of the unmodified proteins. The conjugates selectively bound CT-26 cells that expressed anti-DNS scFv (CT-26/DNS cells) but not CT-26 cells that expressed control scFv (CT-26/phOx cells). DNS-PEG-betaG preferentially activated a glucuronide prodrug (BHAMG) of p-hydroxy aniline mustard at CT-26/DNS cells in culture and accumulated in subcutaneous CT-26/DNS tumors after intravenous administration. Systemic administration of DNS-PEG-IL-2 or DNS-PEG-betaG and BHAMG significantly delayed the growth of CT-26/DNS but not control CT-26/phOx tumors. Combination treatment with DNS-PEG-betaG and BHAMG followed by DNS-PEG-IL-2 therapy significantly suppressed the growth of CT-26/DNS tumors as compared to either single-agent regimen. These results show that at least two DNS-modified therapeutic agents can be selectively delivered to DNS scFv receptors in vitro and in vivo, allowing combination therapy of DNS scFv-modified tumors.
de Graaf, M; Boven, E; Oosterhoff, D; van der Meulen-Muileman, I H; Huls, G A; Gerritsen, W R; Haisma, H J; Pinedo, H M
2002-01-01
Monoclonal antibodies against tumour-associated antigens could be useful to deliver enzymes selectively to the site of a tumour for activation of a non-toxic prodrug. A completely human fusion protein may be advantageous for repeated administration, as host immune responses may be avoided. We have constructed a fusion protein consisting of a human single chain Fv antibody, C28, against the epithelial cell adhesion molecule and the human enzyme β-glucuronidase. The sequences encoding C28 and human enzyme β-glucuronidase were joined by a sequence encoding a flexible linker, and were preceded by the IgGκ signal sequence for secretion of the fusion protein. A CHO cell line was engineered to secrete C28-β-glucuronidase fusion protein. Antibody specificity and enzyme activity were retained in the secreted fusion protein that had an apparent molecular mass of 100 kDa under denaturing conditions. The fusion protein was able to convert a non-toxic prodrug of doxorubicin, N-[4-doxorubicin-N-carbonyl(oxymethyl)phenyl]-O-β-glucuronyl carbamate to doxorubicin, resulting in cytotoxicity. A bystander effect was demonstrated, as doxorubicin was detected in all cells after N-[4-doxorubicin-N-carbonyl(oxymethyl)phenyl]-O-β-glucuronyl carbamate administration when only 10% of the cells expressed the fusion protein. This is the first fully human and functional fusion protein consisting of an scFv against epithelial cell adhesion molecule and human enzyme β-glucuronidase for future use in tumour-specific activation of a non-toxic glucuronide prodrug. British Journal of Cancer (2002) 86, 811–818. DOI: 10.1038/sj/bjc/6600143 www.bjcancer.com © 2002 Cancer Research UK PMID:11875747
USDA-ARS?s Scientific Manuscript database
A single-chain variable fragment (scFv) and alkaline phosphatase (AP) fusion protein for detection of O, O-diethyl organophosphorus pesticides (OPs) was produced and characterized. The scFv gene was prepared by cloning VL and VH genes from a hybridoma cell secreting monoclonal antibody with broad-s...
Heitner, Tara; Satozawa, Noboru; McLean, Kirk; Vogel, David; Cobb, Ronald R; Liu, Bing; Mahmoudi, Mithra; Finster, Silke; Larsen, Brent; Zhu, Ying; Zhou, Hongxing; Müller-Tiemann, Beate; Monteclaro, Felipe; Zhao, Xiao-Yan; Light, David R
2006-12-01
A therapeutic antibody candidate (AT-19) isolated using multivalent phage display binds native tomoregulin (TR) as a mul-timer not as a monomer. This report raises the importance of screening and selecting phage antibodies on native antigen and reemphasizes the possibility that potentially valuable antibodies are discarded when a monomeric phage display system is used for screening. A detailed live cell panning selection and screening method to isolate multivalently active antibodies is described. AT-19 is a fully human antibody recognizing the cell surface protein TR, a proposed prostate cancer target for therapeutic antibody internalization. AT-19 was isolated from a multivalent single-chain variable fragment (scFv) antibody library rescued with hyperphage. The required multivalency for isolation of AT-19 is supported by fluorescence activated cell sorting data demonstrating binding of the multivalent AT-19 phage particles at high phage concentrations and failure of monovalent particles to bind. Pure monomeric scFv AT-19 does not bind native receptor on cells, whereas dimeric scFv or immunoglobulin G binds with nanomolar affinity. The isolation of AT-19 antibody with obligate bivalent binding activity to native TR is attributed to the use of a multivalent display of scFv on phage and the method for selecting and screening by alternate use of 2 recombinant cell lines.
Gene transfer of Hodgkin cell lines via multivalent anti-CD30 scFv displaying bacteriophage.
Chung, Yoon-Suk A; Sabel, Katja; Krönke, Martin; Klimka, Alexander
2008-04-16
The display of binding ligands, such as recombinant antibody fragments, on the surface of filamentous phage makes it possible to specifically attach these phage particles to target cells. After uptake of the phage, their internal single-stranded DNA is processed by the host cell, which allows transient expression of an encoded eukaryotic gene cassette. This opens the possibility to use bacteriophage as vectors for targeted gene therapy, although the transduction efficiency is very low. Here we demonstrate the display of an anti-CD30 single chain variable fragment fused to the major coat protein pVIII on the surface of bacteriophage. These phage particles showed an improved binding and transduction efficiency of CD30 positive Hodgkin-lymphoma cells, compared to bacteriophage with the anti-CD30 single chain variable fragment fused to the minor coat protein pIII. We can conclude from the results that the postulated multivalency of the anti-CD30-pVIII displaying bacteriophage combined with disseminated display of the anti-CD30 scFv on the whole particle surface is responsible for the improved gene transfer rate. These results mark an important step towards the use of phage particles as a cheap and safe gene transfer vehicle for the gene delivery of the desired target cells via their specific surface receptors.
Lakhrif, Zineb; Moreau, Alexis; Hérault, Bruno; Di-Tommaso, Anne; Juste, Matthieu; Moiré, Nathalie; Dimier-Poisson, Isabelle; Mévélec, Marie-Noëlle; Aubrey, Nicolas
2018-01-01
Toxoplasmosis is a major public health problem and the development of a human vaccine is of high priority. Efficient vaccination against Toxoplasma gondii requires both a mucosal and systemic Th1 immune response. Moreover, dendritic cells play a critical role in orchestrating the innate immune functions and driving specific adaptive immunity to T. gondii. In this study, we explore an original vaccination strategy that combines administration via mucosal and systemic routes of fusion proteins able to target the major T. gondii surface antigen SAG1 to DCs using an antibody fragment single-chain fragment variable (scFv) directed against DEC205 endocytic receptor. Our results show that SAG1 targeting to DCs by scFv via intranasal and subcutaneous administration improved protection against chronic T. gondii infection. A marked reduction in brain parasite burden is observed when compared with the intranasal or the subcutaneous route alone. DC targeting improved both local and systemic humoral and cellular immune responses and potentiated more specifically the Th1 response profile by more efficient production of IFN-γ, interleukin-2, IgG2a, and nasal IgA. This study provides evidence of the potential of DC targeting for the development of new vaccines against a range of Apicomplexa parasites. PMID:29515595
Säll, Anna; Walle, Maria; Wingren, Christer; Müller, Susanne; Nyman, Tomas; Vala, Andrea; Ohlin, Mats; Borrebaeck, Carl A K; Persson, Helena
2016-10-01
Antibody-based proteomics offers distinct advantages in the analysis of complex samples for discovery and validation of biomarkers associated with disease. However, its large-scale implementation requires tools and technologies that allow development of suitable antibody or antibody fragments in a high-throughput manner. To address this we designed and constructed two human synthetic antibody fragment (scFv) libraries denoted HelL-11 and HelL-13. By the use of phage display technology, in total 466 unique scFv antibodies specific for 114 different antigens were generated. The specificities of these antibodies were analyzed in a variety of immunochemical assays and a subset was further evaluated for functionality in protein microarray applications. This high-throughput approach demonstrates the ability to rapidly generate a wealth of reagents not only for proteome research, but potentially also for diagnostics and therapeutics. In addition, this work provides a great example on how a synthetic approach can be used to optimize library designs. By having precise control of the diversity introduced into the antigen-binding sites, synthetic libraries offer increased understanding of how different diversity contributes to antibody binding reactivity and stability, thereby providing the key to future library optimization. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Cocca, Brian A.; Seal, Samarendra N.; D'Agnillo, Paolo; Mueller, Yvonne M.; Katsikis, Peter D.; Rauch, Joyce; Weigert, Martin; Radic, Marko Z.
2001-01-01
Apoptotic cells contain nuclear autoantigens that may initiate a systemic autoimmune response. To explore the mechanism of antibody binding to apoptotic cells, 3H9, a murine autoantibody with dual specificity for phospholipids and DNA, was used. H chain mutants of 3H9 were constructed, expressed as single-chain Fv (scFv) in Escherichia coli, and assessed for binding to phosphatidylserine, an antigen expressed on apoptotic cells. Both 3H9 and its germline revertant bound to dioleoyl phosphatidylserine in ELISA, and binding was enhanced by β2 glycoprotein I (β2GPI), a plasma protein that selectively binds to apoptotic cells. Higher relative affinity for DOPS-β2GPI was achieved by the introduction of Arg residues into the 3H9 H chain variable region at positions previously shown to mediate DNA binding. Specificity of the two structurally most diverse scFv for apoptotic cells was shown by flow cytometry, and two populations of scFv-bound cells were identified by differences in propidium iodide staining. The results suggest that, in autoimmunity, B cells with Ig receptors for apoptotic cells and DNA are positively selected, and that the antibodies they produce have the potential to affect the clearance and processing of apoptotic cells. PMID:11717440
Han, Yali; Liu, Chuanyong; Li, Guanhua; Li, Juan; Lv, Xingyan; Shi, Huan; Liu, Jie; Liu, Shuai; Yan, Peng; Wang, Shuyun; Sun, Yuping; Sun, Meili
2018-01-01
New immunotherapeutic approaches are urgently needed for gastric cancer due to its poor survival and unsatisfactory treatment. Here we applied the humanized chA21 scfv based chimeric antigen receptor (CAR) modified T cells approach to the HER2 overexpressing gastric cancer treatment. The chA21-4-1BBz CAR T cells specifically exerted Th1 skewed cytokine response and efficient cytolysis of HER2 overexpressing human gastric cancer cells in vitro. Both the cytokine production and cytotoxicity levels were correlated with the level of HER2 surface expression by tumor cells. In established subcutaneous xenograft and peritoneal metastasis models, chA21-4-1BBz CAR T cells dramatically facilitated regression of HER2 overexpressing tumor and prolonged survival of tumor-bearing mice, whereas spared the progression of HER2 low-expressing tumor. Additionally, the capability of these CAR T cells to persist in circulation, as well as specifically home to, and accumulate in tumor sites were identified. Taken together, these results provide the basis for the future clinical investigation of the humanized chA21 scFv based, 4-1BB costimulated CAR T cells for the treatment of gastric cancer, and other HER2-expressing solid tumors. PMID:29416924
Celikel, Reha; Peterson, Eric C; Owens, S Michael; Varughese, Kottayil I
2009-01-01
Methamphetamine (METH) is a major drug threat in the United States and worldwide. Monoclonal antibody (mAb) therapy for treating METH abuse is showing exciting promise and the understanding of how mAb structure relates to function will be essential for future development of these important therapies. We have determined crystal structures of a high affinity anti-(+)-METH therapeutic single chain antibody fragment (scFv6H4, KD= 10 nM) derived from one of our candidate mAb in complex with METH and the (+) stereoisomer of another abused drug, 3,4-methylenedioxymethamphetamine (MDMA), known by the street name “ecstasy.” The crystal structures revealed that scFv6H4 binds to METH and MDMA in a deep pocket that almost completely encases the drugs mostly through aromatic interactions. In addition, the cationic nitrogen of METH and MDMA forms a salt bridge with the carboxylate group of a glutamic acid residue and a hydrogen bond with a histidine side chain. Interestingly, there are two water molecules in the binding pocket and one of them is positioned for a C—H⋯O interaction with the aromatic ring of METH. These first crystal structures of a high affinity therapeutic antibody fragment against METH and MDMA (resolution = 1.9 Å, and 2.4 Å, respectively) provide a structural basis for designing the next generation of higher affinity antibodies and also for carrying out rational humanization. PMID:19760665
Celikel, Reha; Peterson, Eric C; Owens, S Michael; Varughese, Kottayil I
2009-11-01
Methamphetamine (METH) is a major drug threat in the United States and worldwide. Monoclonal antibody (mAb) therapy for treating METH abuse is showing exciting promise and the understanding of how mAb structure relates to function will be essential for future development of these important therapies. We have determined crystal structures of a high affinity anti-(+)-METH therapeutic single chain antibody fragment (scFv6H4, K(D)= 10 nM) derived from one of our candidate mAb in complex with METH and the (+) stereoisomer of another abused drug, 3,4-methylenedioxymethamphetamine (MDMA), known by the street name "ecstasy." The crystal structures revealed that scFv6H4 binds to METH and MDMA in a deep pocket that almost completely encases the drugs mostly through aromatic interactions. In addition, the cationic nitrogen of METH and MDMA forms a salt bridge with the carboxylate group of a glutamic acid residue and a hydrogen bond with a histidine side chain. Interestingly, there are two water molecules in the binding pocket and one of them is positioned for a C--H...O interaction with the aromatic ring of METH. These first crystal structures of a high affinity therapeutic antibody fragment against METH and MDMA (resolution = 1.9 A, and 2.4 A, respectively) provide a structural basis for designing the next generation of higher affinity antibodies and also for carrying out rational humanization.
2009-06-01
target delivery of an immunotoxin, the CD22 -Pseudomonas exotoxin A ( CD22 -PEA), which has already been used in a clinical setting . The toxin portion...contains the transloc ating and ADP-ribosylat ing dom ains of PEA, and the native cell-binding portion is replaced with a CD22 scFv that directs...targeting to B lymphocytes. CD22 -PEA was tested in a Phase I trial in B-cell malignancies, but tumor responses, particularly in hairy cell leukemia
Bertozzi, Carolyn R [Berkeley, CA; Kehoe, John [Saint Davids, PA; Bradbury, Andrew M [Santa Fe, NM
2009-09-15
The invention provides anti-sulfotyrosine specific antibodies capable of detecting and isolating polypeptides that are tyrosine-sulfated. The sulfotyrosine antibodies and antibody fragments of the invention may be used to discriminate between the non-sulfated and sulfated forms of such proteins, using any number of immunological assays, such ELISAs, immunoblots, Western Blots, immunoprecipitations, and the like. Using a phage-display system, single chain antibodies (scFvs) were generated and screened against tyrosine-sulfated synthetic peptide antigens, resulting in the isolation of scFvs that specifically recognize sulfotyrosine-containing peptides and/or demonstrate sulfotyrosine-specific binding in tyrosine sulfated proteins. The VH and VL genes from one such sulfotyrosine-specific scFv were employed to generate a full length, sulfotyrosine-specific immunoglobulin.
Polynucleotides encoding anti-sulfotyrosine antibodies
Bertozzi, Carolyn R [Berkeley, CA; Kehoe, John [Saint Davids, PA; Bradbury, Andrew M [Santa Fe, NM
2011-01-11
The invention provides anti-sulfotyrosine specific antibodies capable of detecting and isolating polypeptides that are tyrosine-sulfated. The sulfotyrosine antibodies and antibody fragments of the invention may be used to discriminate between the non-sulfated and sulfated forms of such proteins, using any number of immunological assays, such ELISAs, immunoblots, Western Blots, immunoprecipitations, and the like. Using a phage-display system, single chain antibodies (scFvs) were generated and screened against tyrosine-sulfated synthetic peptide antigens, resulting in the isolation of scFvs that specifically recognize sulfotyrosine-containing peptides and/or demonstrate sulfotyrosine-specific binding in tyrosine sulfated proteins. The VH and VL genes from one such sulfotyrosine-specific scFv were employed to generate a full length, sulfotyrosine-specific immunoglobulin.
Usui, Daiki; Inaba, Satomi; Kamatari, Yuji O; Ishiguro, Naotaka; Oda, Masayuki
2017-09-02
The monoclonal antibody, G2, specifically binds to the immunogen peptide derived from the chicken prion protein, Pep18mer, and two chicken proteins derived peptides, Pep8 and Pep395; G2 binds with equal affinity to Pep18mer. The amino acid sequences of the three peptides are completely different, and so the recognition mechanism of G2 is unique and interesting. We generated a single-chain Fv (scFv) antibody of G2, and demonstrated its correct folding with an antigen binding function similar to intact G2 antibody. We also generated a Pro containing mutant of G2 scFv at residue 95 of the light chain, and analyzed its antigen binding using a surface plasmon biosensor. The mutant lost its binding ability to Pep18mer, but remained those to Pep8 and Pep395. The results clearly indicate residue 95 as being critical for multispecific antigen binding of G2 at the site generated from the junctional diversity introduced at the joints between the V and J gene segments. Copyright © 2017 Elsevier Inc. All rights reserved.
"Quenchbodies": quench-based antibody probes that show antigen-dependent fluorescence.
Abe, Ryoji; Ohashi, Hiroyuki; Iijima, Issei; Ihara, Masaki; Takagi, Hiroaki; Hohsaka, Takahiro; Ueda, Hiroshi
2011-11-02
Here, we describe a novel reagentless fluorescent biosensor strategy based on the antigen-dependent removal of a quenching effect on a fluorophore attached to antibody domains. Using a cell-free translation-mediated position-specific protein labeling system, we found that an antibody single chain variable region (scFv) that had been fluorolabeled at the N-terminal region showed a significant antigen-dependent fluorescence enhancement. Investigation of the enhancement mechanism by mutagenesis of the carboxytetramethylrhodamine (TAMRA)-labeled anti-osteocalcin scFv showed that antigen-dependency was dependent on semiconserved tryptophan residues near the V(H)/V(L) interface. This suggested that the binding of the antigen led to the interruption of a quenching effect caused by the proximity of tryptophan residues to the linker-tagged fluorophore. Using TAMRA-scFv, many targets including peptides, proteins, and haptens including morphine-related drugs could be quantified. Similar or higher sensitivities to those observed in competitive ELISA were obtained, even in human plasma. Because of its versatility, this "quenchbody" is expected to have a range of applications, from in vitro diagnostics, to imaging of various targets in situ.
Gokulan, Kuppan; Varughese, Kottayil I.
2013-01-01
Vaccines and monoclonal antibodies (mAb) for treatment of (+)-methamphetamine (METH) abuse are in late stage preclinical and early clinical trial phases, respectively. These immunotherapies work as pharmacokinetic antagonists, sequestering METH and its metabolites away from sites of action in the brain and reduce the rewarding and toxic effects of the drug. A key aspect of these immunotherapy strategies is the understanding of the subtle molecular interactions important for generating antibodies with high affinity and specificity for METH. We previously determined crystal structures of a high affinity anti-METH therapeutic single chain antibody fragment (scFv6H4, KD = 10 nM) in complex with METH and the (+) stereoisomer of 3,4-methylenedioxymethamphetamine (MDMA, or “ecstasy”). Here we report the crystal structure of scFv6H4 in homo-trimeric unbound (apo) form (2.60Å), as well as monomeric forms in complex with two active metabolites; (+)-amphetamine (AMP, 2.38Å) and (+)-4-hydroxy methamphetamine (p-OH-METH, 2.33Å). The apo structure forms a trimer in the crystal lattice and it results in the formation of an intermolecular composite beta-sheet with a three-fold symmetry. We were also able to structurally characterize the coordination of the His-tags with Ni2+. Two of the histidine residues of each C-terminal His-tag interact with Ni2+ in an octahedral geometry. In the apo state the CDR loops of scFv6H4 form an open conformation of the binding pocket. Upon ligand binding, the CDR loops adopt a closed formation, encasing the drug almost completely. The structural information reported here elucidates key molecular interactions important in anti-methamphetamine abuse immunotherapy. PMID:24349338
Peterson, Eric C; Celikel, Reha; Gokulan, Kuppan; Varughese, Kottayil I
2013-01-01
Vaccines and monoclonal antibodies (mAb) for treatment of (+)-methamphetamine (METH) abuse are in late stage preclinical and early clinical trial phases, respectively. These immunotherapies work as pharmacokinetic antagonists, sequestering METH and its metabolites away from sites of action in the brain and reduce the rewarding and toxic effects of the drug. A key aspect of these immunotherapy strategies is the understanding of the subtle molecular interactions important for generating antibodies with high affinity and specificity for METH. We previously determined crystal structures of a high affinity anti-METH therapeutic single chain antibody fragment (scFv6H4, K(D) = 10 nM) in complex with METH and the (+) stereoisomer of 3,4-methylenedioxymethamphetamine (MDMA, or "ecstasy"). Here we report the crystal structure of scFv6H4 in homo-trimeric unbound (apo) form (2.60Å), as well as monomeric forms in complex with two active metabolites; (+)-amphetamine (AMP, 2.38Å) and (+)-4-hydroxy methamphetamine (p-OH-METH, 2.33Å). The apo structure forms a trimer in the crystal lattice and it results in the formation of an intermolecular composite beta-sheet with a three-fold symmetry. We were also able to structurally characterize the coordination of the His-tags with Ni(2+). Two of the histidine residues of each C-terminal His-tag interact with Ni(2+) in an octahedral geometry. In the apo state the CDR loops of scFv6H4 form an open conformation of the binding pocket. Upon ligand binding, the CDR loops adopt a closed formation, encasing the drug almost completely. The structural information reported here elucidates key molecular interactions important in anti-methamphetamine abuse immunotherapy.
Tillotson, Benjamin J; Goulatis, Loukas I; Parenti, Isabelle; Duxbury, Elizabeth; Shusta, Eric V
2015-01-01
The equilibrium binding affinity of receptor-ligand or antibody-antigen pairs may be modulated by protonation of histidine side-chains, and such pH-dependent mechanisms play important roles in biological systems, affecting molecular uptake and trafficking. Here, we aimed to manipulate cellular transport of single-chain antibodies (scFvs) against the transferrin receptor (TfR) by engineering pH-dependent antigen binding. An anti-TfR scFv was subjected to histidine saturation mutagenesis of a single CDR. By employing yeast surface display with a pH-dependent screening pressure, scFvs having markedly increased dissociation from TfR at pH 5.5 were identified. The pH-sensitivity generally resulted from a central cluster of histidine residues in CDRH1. When soluble, pH-sensitive, scFv clone M16 was dosed onto live cells, the internalized fraction was 2.6-fold greater than scFvs that lacked pH-sensitive binding and the increase was dependent on endosomal acidification. Differences in the intracellular distribution of M16 were also observed consistent with an intracellular decoupling of the scFv M16-TfR complex. Engineered pH-sensitive TfR binding could prove important for increasing the effectiveness of TfR-targeted antibodies seeking to exploit endocytosis or transcytosis for drug delivery purposes.
Tillotson, Benjamin J.; Goulatis, Loukas I.; Parenti, Isabelle; Duxbury, Elizabeth; Shusta, Eric V.
2015-01-01
The equilibrium binding affinity of receptor-ligand or antibody-antigen pairs may be modulated by protonation of histidine side-chains, and such pH-dependent mechanisms play important roles in biological systems, affecting molecular uptake and trafficking. Here, we aimed to manipulate cellular transport of single-chain antibodies (scFvs) against the transferrin receptor (TfR) by engineering pH-dependent antigen binding. An anti-TfR scFv was subjected to histidine saturation mutagenesis of a single CDR. By employing yeast surface display with a pH-dependent screening pressure, scFvs having markedly increased dissociation from TfR at pH 5.5 were identified. The pH-sensitivity generally resulted from a central cluster of histidine residues in CDRH1. When soluble, pH-sensitive, scFv clone M16 was dosed onto live cells, the internalized fraction was 2.6-fold greater than scFvs that lacked pH-sensitive binding and the increase was dependent on endosomal acidification. Differences in the intracellular distribution of M16 were also observed consistent with an intracellular decoupling of the scFv M16-TfR complex. Engineered pH-sensitive TfR binding could prove important for increasing the effectiveness of TfR-targeted antibodies seeking to exploit endocytosis or transcytosis for drug delivery purposes. PMID:26713870
Lerner, Mitchell B.; D’Souza, Jimson; Pazina, Tatiana; Dailey, Jennifer; Goldsmith, Brett R.; Robinson, Matthew K.; Johnson, A.T. Charlie
2012-01-01
We developed a novel detection method for osteopontin (OPN), a new biomarker for prostate cancer, by attaching a genetically engineered single chain variable fragment (scFv) protein with high binding affinity for OPN to a carbon nanotube field-effect transistor (NTFET). Chemical functionalization using diazonium salts is used to covalently attach scFv to NT-FETs, as confirmed by atomic force microscopy, while preserving the activity of the biological binding site for OPN. Electron transport measurements indicate that functionalized NT-FET may be used to detect the binding of OPN to the complementary scFv protein. A concentration-dependent increase in the source-drain current is observed in the regime of clinical significance, with a detection limit of approximately 30 fM. The scFv-NT hybrid devices exhibit selectivity for OPN over other control proteins. These devices respond to the presence of OPN in a background of concentrated bovine serum albumin, without loss of signal. Based on these observations, the detection mechanism is attributed to changes in scattering at scFv protein-occupied defect sites on the carbon nanotube sidewall. The functionalization procedure described here is expected to be generalizable to any antibody containing an accessible amine group, and to result in biosensors appropriate for detection of corresponding complementary proteins at fM concentrations. PMID:22575126
Weber, Tobias; Mavratzas, Athanasios; Kiesgen, Stefan; Haase, Stephanie; Bötticher, Benedikt; Exner, Evelyn; Mier, Walter; Grosse-Hovest, Ludger; Jäger, Dirk; Arndt, Michaela A E; Krauss, Jürgen
2015-01-01
Antibody-drug conjugates (ADCs) have evolved as a new class of potent cancer therapeutics. We here report on the development of ADCs with specificity for the B-cell lineage specific (surface) antigen CD22 being expressed in the majority of hematological malignancies. As targeting moiety a previously generated humanized anti-CD22 single-chain variable fragment (scFv) derivative from the monoclonal antibody RFB4 was reengineered into a humanized IgG1 antibody format (huRFB4). Onconase (ranpirnase), a clinically active pancreatic-type ribonuclease, was employed as cytotoxic payload moiety. Chemical conjugation via thiol-cleavable disulfide linkage retained full enzymatic activity and full binding affinity of the ADC. Development of sophisticated purification procedures using size exclusion and ion exchange chromatography allowed the separation of immunoconjugate species with stoichiometrically defined number of Onconase cargos. A minimum of two Onconase molecules per IgG was required for achieving significant in vitro cytotoxicity towards lymphoma and leukemia cell lines. Antibody-drug conjugates with an Onconase to antibody ratio of 3 : 1 exhibited an IC50 of 0.08 nM, corresponding to more than 18,400-fold increased cytotoxicity of the ADC when compared with unconjugated Onconase. These results justify further development of this ADC as a promising first-in-class compound for the treatment of CD22-positive malignancies.
Weber, Tobias; Mavratzas, Athanasios; Kiesgen, Stefan; Haase, Stephanie; Bötticher, Benedikt; Exner, Evelyn; Mier, Walter; Grosse-Hovest, Ludger; Jäger, Dirk; Arndt, Michaela A. E.; Krauss, Jürgen
2015-01-01
Antibody-drug conjugates (ADCs) have evolved as a new class of potent cancer therapeutics. We here report on the development of ADCs with specificity for the B-cell lineage specific (surface) antigen CD22 being expressed in the majority of hematological malignancies. As targeting moiety a previously generated humanized anti-CD22 single-chain variable fragment (scFv) derivative from the monoclonal antibody RFB4 was reengineered into a humanized IgG1 antibody format (huRFB4). Onconase (ranpirnase), a clinically active pancreatic-type ribonuclease, was employed as cytotoxic payload moiety. Chemical conjugation via thiol-cleavable disulfide linkage retained full enzymatic activity and full binding affinity of the ADC. Development of sophisticated purification procedures using size exclusion and ion exchange chromatography allowed the separation of immunoconjugate species with stoichiometrically defined number of Onconase cargos. A minimum of two Onconase molecules per IgG was required for achieving significant in vitro cytotoxicity towards lymphoma and leukemia cell lines. Antibody-drug conjugates with an Onconase to antibody ratio of 3 : 1 exhibited an IC50 of 0.08 nM, corresponding to more than 18,400-fold increased cytotoxicity of the ADC when compared with unconjugated Onconase. These results justify further development of this ADC as a promising first-in-class compound for the treatment of CD22-positive malignancies. PMID:26605343
Tsumoto, K; Shinoki, K; Kondo, H; Uchikawa, M; Juji, T; Kumagai, I
1998-10-01
An improved and efficient refolding system for a single-chain antibody fragment (scFv) from inclusion bodies expressed in Escherichia coli was developed. Stepwise removal of denaturing reagent and controlled addition of oxidizing reagent were found to be the most effective conditions to achieve for almost complete recovery of functional monomeric scFv from inclusion bodies. Adding L-arginine to the refolding solution also increased the yield of refolded functional scFv. The single-chain Fv fragments of both a mouse anti-lysozyme monoclonal antibody, HyHEL10, and a human monoclonal antibody against the D antigen of the Rh blood group, D10, in solubilized inclusion bodies could be refolded under these conditions with yields of up to 95%. The refolding procedures developed in this study will contribute to providing a stable supply of large amounts of human single-chain Fv fragments.
Balaji, Parthasarathy; Satheeshkumar, P K; Venkataraman, Krishnan; Vijayalakshmi, M A
2016-05-01
Therapeutic antibodies against tumor necrosis factor alpha (TNFα) have been considered effective for some of the autoimmune diseases such as rheumatoid arthritis, Crohn's diseases, and so on. But associated limitations of the current therapeutics in terms of cost, availability, and immunogenicity have necessitated the need for alternative candidates. Single-chain variable fragment (scFv) can negate the limitations tagged with the anti-TNFα therapeutics to a greater extent. In the present study, Spirodela punctata plants were transformed with anti-TNFα through in planta transformation using Agrobacterium tumefaciens strain, EHA105. Instead of cefotaxime, garlic extract (1 mg/mL) was used to remove the agrobacterial cells after cocultivation. To the best of our knowledge, this report shows for the first time the application of plant extracts in transgenic plant development. 95% of the plants survived screening under hygromycin. ScFv cDNA integration in the plant genomic DNA was confirmed at the molecular level by PCR. The transgenic protein expression was followed up to 10 months. Expression of scFv was confirmed by immunodot blot. Protein expression levels of up to 6.3% of total soluble protein were observed. β-Glucuronidase and green fluorescent protein expressions were also detected in the antibiotic resistant plants. The paper shows the generation of transgenic Spirodela punctuata plants through in planta transformation. © 2015 International Union of Biochemistry and Molecular Biology, Inc.
Garcia-Rodriguez, Consuelo; Razai, Ali; Geren, Isin N; Lou, Jianlong; Conrad, Fraser; Wen, Wei-Hua; Farr-Jones, Shauna; Smith, Theresa J; Brown, Jennifer L; Skerry, Janet C; Smith, Leonard A; Marks, James D
2018-03-01
Human botulism is most commonly caused by botulinum neurotoxin (BoNT) serotypes A, B, and E. For this work, we sought to develop a human monoclonal antibody (mAb)-based antitoxin capable of binding and neutralizing multiple subtypes of BoNT/E. Libraries of yeast-displayed single chain Fv (scFv) antibodies were created from the heavy and light chain variable region genes of humans immunized with pentavalent-toxoid- and BoNT/E-binding scFv isolated by Fluorescence-Activated Cell Sorting (FACS). A total of 10 scFv were isolated that bound one or more BoNT/E subtypes with nanomolar-level equilibrium dissociation constants (K D ). By diversifying the V-regions of the lead mAbs and selecting for cross-reactivity, we generated three scFv that bound all four BoNT/E subtypes tested at three non-overlapping epitopes. The scFvs were converted to IgG that had K D values for the different BoNT/E subtypes ranging from 9.7 nM to 2.28 pM. An equimolar combination of the three mAbs was able to potently neutralize BoNT/E1, BoNT/E3, and BoNT/E4 in a mouse neutralization assay. The mAbs have potential utility as therapeutics and as diagnostics capable of recognizing multiple BoNT/E subtypes. A derivative of the three-antibody combination (NTM-1633) is in pre-clinical development with an investigational new drug (IND) application filing expected in 2018.
Production and characterization of recombinant scFv against digoxin by phage display technology.
Alirezapour, Behruz; Rajabibazl, Masoumeh; Rasaee, Mohhamad Javad; Omidfar, Kobra
2013-06-01
The cardiac glycoside digoxin is widely used for the treatment of congestive heart failure and cardiac arrhythmias. Digoxin is a highly toxic drug and consequently is routinely measured in sera of treated patients. In such cases, antibodies are required against digoxin for detection as well as detoxification purposes. To obtain recombinant single chain antibody against digoxin, RNA was extracted from spleen of BALB/c mice immunized with digoxin-BSA and converted to cDNA. The gene fragment corresponding to the variable regions of the repertoire of antibody genes were amplified by PCR. ScFv construct was generated by randomly joining individual heavy- and light-chain variable domains through gene splicing by overlapping extension PCR. Recombinant phage library expressing scFv polypeptides were produced. Phages with higher affinity toward digoxin were selected in the biopanning process. Sensitivity of produced recombinant MAb (AR85) was determined to be about 100 pg/well, while intact MAb (BBA) produced by hybridoma technology (data not shown) was reported to be around 100 pg/well too. The saturation value for recombinant scFv MAb was found to be 1000 ng/well while that for hybridoma MAb was reported to be 10 ng/well. The affinity constant of recombinant MAb (AR85) towards digoxin was also found to be around ka=3.8×10(7) M(-1) while that for hybridoma MAb (BBA) was reported to be ka=2.6×10(8) M(-1).
Wilbur, D. Scott; Park, Steven I.; Chyan, Ming-Kuan; Wan, Feng; Hamlin, Donald K.; Shenoi, Jaideep; Lin, Yukang; Wilbur, Shani M.; Buchegger, Franz; Pantelias, Anastasia; Pagel, John M.; Press, Oliver W.
2010-01-01
Previous studies have shown that pretargeting protocols, using cancer-targeting fusion proteins, composed of 4 anti-CD20 single chain Fv (scFv) fragments and streptavidin (scFv4-SAv), followed by a biotinylated dendrimeric N-acetyl-galactosamine blood clearing agent (CA), 1, then a radiolabeled DOTA-biotin derivative (a mono-biotin), 3a, can provide effective therapy for lymphoma xenografts in mouse models. A shortcoming in this pretargeting system is that endogenous biotin may affect its efficacy in patients. To circumvent this potential problem, we investigated a pretargeting system that employs anti-CD20 scFv4-SAv mutant fusion proteins with radioiodinated bis-biotin derivatives. With that combination of reagents good localization of the radiolabel to lymphoma tumor xenografts was obtained in the presence of endogenous biotin. However, the blood clearance reagents employed in the studies were ineffective, resulting in abnormally high levels of radioactivity in other tissues. Thus, in the present investigation a bis-biotin-tri-galactose blood clearance reagent, 2, was designed, synthesized and evaluated in vivo. Additionally, another DOTA-biotin derivative (a bis-biotin), 4a, was designed and synthesized, such that radiometals (e.g. 111In, 90Y, 177Lu) could be used in the pretargeting protocols employing scFv4-SAv mutant fusion proteins. Studies in mice demonstrated that the CA 2 was more effective than CA 1 at removing [125I]scFv4-SAv-S45A mutant fusion proteins from blood. Another in vivo study compared tumor targeting and normal tissue concentrations of the new reagents (2 & [111In]4b) with standard reagents (1 and [111In]3b) used in pretargeting protocols. The study showed that lymphoma xenografts could be targeted in the presence of endogenous biotin when anti-CD20 fusion proteins containing SAv mutants (scFv4-SAv-S45A or scFv4-SAv-Y43A) were employed in combination with CA 2 and [111In]4b. Importantly, normal tissue concentrations of [111In]4b were similar to those obtained using the standard reagents (1 & [111In]3b), except that the blood and liver concentrations were slightly higher with the new reagents. While the reasons for the higher blood and liver concentrations are unknown, the differences in the galactose structures of the clearance agents 1 and 2 may play a role. PMID:20597486
Wilbur, D Scott; Park, Steven I; Chyan, Ming-Kuan; Wan, Feng; Hamlin, Donald K; Shenoi, Jaideep; Lin, Yukang; Wilbur, Shani M; Buchegger, Franz; Pantelias, Anastasia; Pagel, John M; Press, Oliver W
2010-07-21
Previous studies have shown that pretargeting protocols, using cancer-targeting fusion proteins, composed of 4 anti-CD20 single chain Fv (scFv) fragments and streptavidin (scFv(4)-SAv), followed by a biotinylated dendrimeric N-acetyl-galactosamine blood clearing agent (CA), 1, then a radiolabeled DOTA-biotin derivative (a monobiotin), 3a, can provide effective therapy for lymphoma xenografts in mouse models. A shortcoming in this pretargeting system is that endogenous biotin may affect its efficacy in patients. To circumvent this potential problem, we investigated a pretargeting system that employs anti-CD20 scFv(4)-SAv mutant fusion proteins with radioiodinated bis-biotin derivatives. With that combination of reagents, good localization of the radiolabel to lymphoma tumor xenografts was obtained in the presence of endogenous biotin. However, the blood clearance reagents employed in the studies were ineffective, resulting in abnormally high levels of radioactivity in other tissues. Thus, in the present investigation a bis-biotin-trigalactose blood clearance reagent, 2, was designed, synthesized, and evaluated in vivo. Additionally, another DOTA-biotin derivative (a bis-biotin), 4a, was designed and synthesized, such that radiometals (e.g., (111)In, (90)Y, (177)Lu) could be used in the pretargeting protocols employing scFv(4)-SAv mutant fusion proteins. Studies in mice demonstrated that the CA 2 was more effective than CA 1 at removing [(125)I]scFv(4)-SAv-S45A mutant fusion proteins from blood. Another in vivo study compared tumor targeting and normal tissue concentrations of the new reagents (2 and [(111)In]4b) with standard reagents (1 and [(111)In]3b) used in pretargeting protocols. The study showed that lymphoma xenografts could be targeted in the presence of endogenous biotin when anti-CD20 fusion proteins containing SAv mutants (scFv(4)-SAv-S45A or scFv(4)-SAv-Y43A) were employed in combination with CA 2 and [(111)In]4b. Importantly, normal tissue concentrations of [(111)In]4b were similar to those obtained using the standard reagents (1 and [(111)In]3b), except that the blood and liver concentrations were slightly higher with the new reagents. While the reasons for the higher blood and liver concentrations are unknown, the differences in the galactose structures of the clearance agents 1 and 2 may play a role.
Weber, Marcel; Bujak, Emil; Putelli, Alessia; Villa, Alessandra; Matasci, Mattia; Gualandi, Laura; Hemmerle, Teresa; Wulhfard, Sarah; Neri, Dario
2014-01-01
Several synthetic antibody phage display libraries have been created and used for the isolation of human monoclonal antibodies. The performance of antibody libraries, which is usually measured in terms of their ability to yield high-affinity binding specificities against target proteins of interest, depends both on technical aspects (such as library size and quality of cloning) and on design features (which influence the percentage of functional clones in the library and their ability to be used for practical applications). Here, we describe the design, construction and characterization of a combinatorial phage display library, comprising over 40 billion human antibody clones in single-chain fragment variable (scFv) format. The library was designed with the aim to obtain highly stable antibody clones, which can be affinity-purified on protein A supports, even when used in scFv format. The library was found to be highly functional, as >90% of randomly selected clones expressed the corresponding antibody. When selected against more than 15 antigens from various sources, the library always yielded specific and potent binders, at a higher frequency compared to previous antibody libraries. To demonstrate library performance in practical biomedical research projects, we isolated the human antibody G5, which reacts both against human and murine forms of the alternatively spliced BCD segment of tenascin-C, an extracellular matrix component frequently over-expressed in cancer and in chronic inflammation. The new library represents a useful source of binding specificities, both for academic research and for the development of antibody-based therapeutics.
A Highly Functional Synthetic Phage Display Library Containing over 40 Billion Human Antibody Clones
Weber, Marcel; Bujak, Emil; Putelli, Alessia; Villa, Alessandra; Matasci, Mattia; Gualandi, Laura; Hemmerle, Teresa; Wulhfard, Sarah; Neri, Dario
2014-01-01
Several synthetic antibody phage display libraries have been created and used for the isolation of human monoclonal antibodies. The performance of antibody libraries, which is usually measured in terms of their ability to yield high-affinity binding specificities against target proteins of interest, depends both on technical aspects (such as library size and quality of cloning) and on design features (which influence the percentage of functional clones in the library and their ability to be used for practical applications). Here, we describe the design, construction and characterization of a combinatorial phage display library, comprising over 40 billion human antibody clones in single-chain fragment variable (scFv) format. The library was designed with the aim to obtain highly stable antibody clones, which can be affinity-purified on protein A supports, even when used in scFv format. The library was found to be highly functional, as >90% of randomly selected clones expressed the corresponding antibody. When selected against more than 15 antigens from various sources, the library always yielded specific and potent binders, at a higher frequency compared to previous antibody libraries. To demonstrate library performance in practical biomedical research projects, we isolated the human antibody G5, which reacts both against human and murine forms of the alternatively spliced BCD segment of tenascin-C, an extracellular matrix component frequently over-expressed in cancer and in chronic inflammation. The new library represents a useful source of binding specificities, both for academic research and for the development of antibody-based therapeutics. PMID:24950200
2013-10-01
displayed at the tip of the bacteriophage. The M13 hyperphage system can produce phage with multiple copies of the scFv expressed at the tip. Using C6T...antibody is one of the morphology specific nanobodies and the detection antibody is a phage displayed version of the capture nanobody. The phage ...selected for future ELISAs development. To ensure that the phage - displayed scFvs can still bind to their antigens, the different protein targets
Adekar, Sharad P.; Segan, Andrew T.; Chen, Cindy; Bermudez, Rodney; Elias, M. D.; Selling, Bernard H.; Kapadnis, B. P.; Simpson, Lance L.; Simon, Paul M.; Dessain, Scott K.
2011-01-01
Botulinum neurotoxin (BoNT) potently inhibits cholinergic signaling at the neuromuscular junction. The ideal countermeasures for BoNT exposure are monoclonal antibodies or BoNT antisera, which form BoNT-containing immune complexes that are rapidly cleared from the general circulation. Clearance of opsonized toxins may involve complement receptor-mediated immunoadherence to red blood cells (RBC) in primates or to platelets in rodents. Methods of enhancing immunoadherence of BoNT-specific antibodies may increase their potency in vivo. We designed a novel fusion protein (FP) to link biotinylated molecules to glycophorin A (GPA) on the RBC surface. The FP consists of an scFv specific for murine GPA fused to streptavidin. FP:mAb:BoNT complexes bound specifically to the RBC surface in vitro. In a mouse model of BoNT neutralization, the FP increased the potency of single and double antibody combinations in BoNT neutralization. A combination of two antibodies with the FP gave complete neutralization of 5,000 LD50 BoNT in mice. Neutralization in vivo was dependent on biotinylation of both antibodies and correlated with a reduction of plasma BoNT levels. In a post-exposure model of intoxication, FP:mAb complexes gave complete protection from a lethal BoNT/A1 dose when administered within 2 hours of toxin exposure. In a pre-exposure prophylaxis model, mice were fully protected for 72 hours following administration of the FP:mAb complex. These results demonstrate that RBC-targeted immunoadherence through the FP is a potent enhancer of BoNT neutralization by antibodies in vivo. PMID:21399689
Dammeyer, Thorben; Steinwand, Miriam; Krüger, Sarah-C; Dübel, Stefan; Hust, Michael; Timmis, Kenneth N
2011-02-21
Recombinant antibody fragments have a wide range of applications in research, diagnostics and therapy. For many of these, small fragments like single chain fragment variables (scFv) function well and can be produced inexpensively in bacterial expression systems. Although Escherichia coli K-12 production systems are convenient, yields of different fragments, even those produced from codon-optimized expression systems, vary significantly. Where yields are inadequate, alternative production systems are needed. Pseudomonas putida strain KT2440 is a versatile biosafety strain known for good expression of heterologous genes, so we have explored its utility as a cell factory for production of scFvs. We have generated new broad host range scFv expression constructs and assessed their production in the Pseudomonas putida KT2440 host. Two scFvs bind either to human C-reactive protein or to mucin1, proteins of significant medical diagnostic and therapeutic interest, whereas a third is a model anti-lysozyme scFv. The KT2440 antibody expression systems produce scFvs targeted to the periplasmic space that were processed precisely and were easily recovered and purified by single-step or tandem affinity chromatography. The influence of promoter system, codon optimization for P. putida, and medium on scFv yield was examined. Yields of up to 3.5 mg/l of pure, soluble, active scFv fragments were obtained from shake flask cultures of constructs based on the original codon usage and expressed from the Ptac expression system, yields that were 2.5-4 times higher than those from equivalent cultures of an E. coli K-12 expression host. Pseudomonas putida KT2440 is a good cell factory for the production of scFvs, and the broad host range constructs we have produced allow yield assessment in a number of different expression hosts when yields in one initially selected are insufficient. High cell density cultivation and further optimization and refinement of the KT2440 cell factory will achieve additional increases in the yields of scFvs.
Oyama, Hiroyuki; Morita, Izumi; Kiguchi, Yuki; Banzono, Erika; Ishii, Kasumi; Kubo, Satoshi; Watanabe, Yoshiro; Hirai, Anna; Kaede, Chiaki; Ohta, Mitsuhiro; Kobayashi, Norihiro
2017-01-03
Immunoassays for cotinine, a major nicotine metabolite, in the urine are useful for monitoring the degree of tobacco smoke exposure. However, hybridoma-based anti-cotinine antibodies lack sufficient binding affinity to perform practically sensitive measurements, and thus most cotinine assays still rely on polyclonal antibodies. Here, we describe the generation of a mutant single-chain Fv fragment (scFv) that was used in an enzyme-linked immunosorbent assay (ELISA) to determine urinary cotinine levels in passive smokers. A "wild-type" scFv (scFv-wt) with a K a value of 2.7 × 10 7 M -1 (at 4 °C) was prepared by linking the V H and V L domains in a mouse anti-cotinine antibody. "One-shot" random mutagenesis on the scFv-wt gene by error-prone PCR generated mutant scFv genes, which were expressed on phage particles. Repeated panning directed toward mutants with slower off-rates selected scFv clones that showed improved sensitivity in an ELISA system. One of these mutants (scFv#m1-54) with five amino acid substitutions showed more than a 40-fold enhanced K a (1.2 × 10 9 M -1 at 4 °C) and, thus, was used to monitor human urinary cotinine. A limited amount of soluble scFv was reacted with urine specimens (or cotinine standards) at 4 °C for 120 min in microwells on which cotinine residues had been immobilized. The midpoint of the dose-response curves under optimized conditions (0.27 ng/assay) was more than 100-fold lower than the ELISA results obtained using scFv-wt. The limit of detection (8.4 pg/assay) corresponded to 0.17 ng/mL urinary cotinine, which was satisfactorily low for testing the threshold levels for passive smoke exposure. The assay values for volunteers correlated with the values determined using a commercial assay kit. This study evidently showed the potential of a molecular breeding approach, in which simple in vitro evolution might generate superior antibody reagents as cloned proteins, overcoming the limited molecular diversity inherent to conventional immunization-based antibodies.
Specific binding of the WASP N-terminal domain to Btk is critical for TLR2 signaling in macrophages.
Sakuma, Chisato; Sato, Mitsuru; Takenouchi, Takato; Kitani, Hiroshi
2015-02-01
Wiskott-Aldrich syndrome protein (WASP) is an adaptor molecule in immune cells. Recently, we revealed that WASP is involved in lipopolysaccharide-TLR4 signaling in macrophages by association of Bruton's tyrosine kinase (Btk) with the WASP N-terminal domain. Btk has been shown to play important roles in the signaling of several TLRs and to modulate the inflammatory response in macrophages. In this study, we evaluated the importance of the interaction between Btk and WASP in TLR2 signaling by using bone marrow-derived macrophage cell lines from transgenic (Tg) mice expressing anti-WASP N-terminal domain single-chain variable fragment (scFv) or VL single-domain intrabodies. In this Tg bone marrow-derived macrophages, specific interaction between WASP and Btk were strongly inhibited by masking of the binding site in the WASP N-terminal domain. There was impairment of gene expression of TNF-α, IL-6, and IL-1β and phosphorylation of inhibitor of κB α/β (IKKα/β) and nuclear factor (NF)-κB upon stimulation with TLR2 ligands. Furthermore, tyrosine phosphorylation of WASP following TLR2-ligand stimulation was severely inhibited in the Tg bone marrow-derived macrophages, as shown by the impairment in WASP tyrosine phosphorylation following lipopolysaccharide stimulation. These results strongly suggest that the association between the WASP N-terminal domain and Btk plays an important role in the TLR2-signaling pathway in macrophages. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cao, Jun; Jin, Yiqi; Li, Wei; Zhang, Bin; He, Yang; Liu, Hongqiang; Xia, Ning; Wei, Huafeng; Yan, Jian
2013-08-14
Although DNA vaccine holds a great potential for cancer immunotherapy, effective long-lasting antitumoral immunity sufficient to induce durable responses in cancer patients remains to be achieved. Considering the pivotal role of dendritic cells (DC) in the antigen processing and presentation, we prepared DC-targeting DNA vaccines by fusing tumor-associated antigen HER2/neu ectodomain to single chain antibody fragment (scFv) from NLDC-145 antibody specific for DC-restricted surface molecule DEC-205 (scFvNLDC-145), and explored its antitumoral efficacy and underlying mechanisms in mouse breast cancer models. In vivo targeting assay demonstrated that scFvNLDC-145 specifically delivered DNA vaccine-encoded antigen to DC. Compared with untargeted HER2/neu DNA vaccines, vaccination with scFvNLDC-145-HER2/neu markedly promoted the HER2/neu-specific cellular and humoral immune responses with long-lasting immune memory, resulting in effective protection against challenge of HER2/neu-positive D2F2/E2 breast tumor while ineffective in parental HER2/neu-negative D2F2 breast tumor. More importantly, in combination with temporary depletion of regulatory T cells (Treg) by low-dose cyclophosphamide, vaccination with scFvNLDC-145-HER2/neu induced the regression of established D2F2/E2 breast tumor and significantly retarded the development of spontaneous mammary carcinomas in transgenic BALB-neuT mice. Our findings demonstrate that DC-targeted DNA vaccines for in vivo direct delivery of tumor antigens to DC could induce potent antigen-specific cellular and humoral immune responses and, if additional combination with systemic Treg depletion, was able to elicit an impressively therapeutic antitumoral activity, providing a rationale for further development of this approach for cancer treatment.
Meier, Silvio R; Syvänen, Stina; Hultqvist, Greta; Fang, Xiaotian T; Roshanbin, Sahar; Lannfelt, Lars; Neumann, Ulf; Sehlin, Dag
2018-05-31
Positron emission tomography (PET) used for visualizing amyloid-β (Aβ) pathology has become an important tool for specific clinical diagnosis of Alzheimer's disease (AD). However, all available amyloid PET radioligands, such as [ 11 C]PiB, reflect levels of insoluble Aβ plaques, but do not capture soluble and protofibrillar Aβ forms. When measured with current PET ligands, the plaque load appears to be fairly static during clinical stages of AD, and may not be affected by Aβ reducing treatments. The aim of the present study was to investigate if a novel PET radioligand, based on an antibody directed towards soluble aggregates of Aβ, could be used to detect changes in Aβ levels during disease progression and after treatment with a β-secretase (BACE-1) inhibitor. Methods: One set of transgenic mice (tg-ArcSwe, model of Aβ pathology) aged between 7 and 16 months were PET scanned with the Aβ protofibril selective radioligand [ 124 I]RmAb158-scFv8D3 to follow progression of Aβ pathology in the brain. A second set of tg-ArcSwe mice, aged 10 months, were treated with BACE-1 inhibitor NB-360 for 3 months and compared to an untreated control group. A set of 10 months old tg-ArcSwe mice also underwent PET scanning, acting as a baseline group. Brain tissue was isolated after PET to determine levels of Aβ by ELISA and immunohistochemistry. Results: Concentration of [ 124 I]RmAb158-scFv8D3 in tg-ArcSwe mice, measured in vivo with PET, increased with age and corresponded well with ex vivo autoradiography and Aβ immunohistochemistry. Tg-ArcSwe mice treated with NB-360 showed significantly lower in vivo PET signals than untreated animals, and were similar to the baseline 10 month old animals. The decreased [ 124 I]RmAb158-scFv8D3 concentrations in NB-360 treated mice, quantified with PET, corresponded well with decreased Aβ levels measured in post mortem brain. Conclusion: A number of treatments for AD are currently studied in phase 2 and 3 clinical trials but there are limited possibilities to study their effects on the important, non-fibrillar Aβ forms in vivo. This study demonstrates the ability of the Aβ protofibril selective radioligand [ 124 I]RmAb158-scFv8D3 to follow disease progression and detect treatment effects with PET imaging in tg-ArcSwe mice. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Ito, Yuji
2017-01-01
As an alternative to hybridoma technology, the antibody phage library system can also be used for antibody selection. This method enables the isolation of antigen-specific binders through an in vitro selection process known as biopanning. While it has several advantages, such as an avoidance of animal immunization, the phage cloning and screening steps of biopanning are time-consuming and problematic. Here, we introduce a novel biopanning method combined with high-throughput sequencing (HTS) using a next-generation sequencer (NGS) to save time and effort in antibody selection, and to increase the diversity of acquired antibody sequences. Biopannings against a target antigen were performed using a human single chain Fv (scFv) antibody phage library. VH genes in pooled phages at each round of biopanning were analyzed by HTS on a NGS. The obtained data were trimmed, merged, and translated into amino acid sequences. The frequencies (%) of the respective VH sequences at each biopanning step were calculated, and the amplification factor (change of frequency through biopanning) was obtained to estimate the potential for antigen binding. A phylogenetic tree was drawn using the top 50 VH sequences with high amplification factors. Representative VH sequences forming the cluster were then picked up and used to reconstruct scFv genes harboring these VHs. Their derived scFv-Fc fusion proteins showed clear antigen binding activity. These results indicate that a combination of biopanning and HTS enables the rapid and comprehensive identification of specific binders from antibody phage libraries.
Specific Fluorine Labeling of the HyHEL10 Antibody Affects Antigen Binding and Dynamics
Acchione, Mauro; Lee, Yi-Chien; DeSantis, Morgan E.; Lipschultz, Claudia A.; Wlodawer, Alexander; Li, Mi; Shanmuganathan, Aranganathan; Walter, Richard L.; Smith-Gill, Sandra; Barchi, Joseph J.
2012-01-01
To more fully understand the molecular mechanisms responsible for variations in binding affinity with antibody maturation, we explored the use of site specific fluorine labeling and 19F nuclear magnetic resonance (NMR). Several single-chain (scFv) antibodies, derived from an affinity-matured series of anti-hen egg white lysozyme (HEL) mouse IgG1, were constructed with either complete or individual replacement of tryptophan residues with 5-fluorotryptophan (5FW). An array of biophysical techniques was used to gain insight into the impact of fluorine substitution on the overall protein structure and antigen binding. SPR measurements indicated that 5FW incorporation lowered binding affinity for the HEL antigen. The degree of analogue impact was residue-dependent, and the greatest decrease in affinity was observed when 5FW was substituted for residues near the binding interface. In contrast, corresponding crystal structures in complex with HEL were essentially indistinguishable from the unsubstituted antibody. 19F NMR analysis showed severe overlap of signals in the free fluorinated protein that was resolved upon binding to antigen, suggesting very distinct chemical environments for each 5FW in the complex. Preliminary relaxation analysis suggested the presence of chemical exchange in the antibody–antigen complex that could not be observed by X-ray crystallography. These data demonstrate that fluorine NMR can be an extremely useful tool for discerning structural changes in scFv antibody–antigen complexes with altered function that may not be discernible by other biophysical techniques. PMID:22769726
Smith, Eric L; Staehr, Mette; Masakayan, Reed; Tatake, Ishan J; Purdon, Terence J; Wang, Xiuyan; Wang, Pei; Liu, Hong; Xu, Yiyang; Garrett-Thomson, Sarah C; Almo, Steven C; Riviere, Isabelle; Liu, Cheng; Brentjens, Renier J
2018-06-06
B cell maturation antigen (BCMA) has recently been identified as an important multiple myeloma (MM)-specific target for chimeric antigen receptor (CAR) T cell therapy. In CAR T cell therapy targeting CD19 for lymphoma, host immune anti-murine CAR responses limited the efficacy of repeat dosing and possibly long-term persistence. This clinically relevant concern can be addressed by generating a CAR incorporating a human single-chain variable fragment (scFv). We screened a human B cell-derived scFv phage display library and identified a panel of BCMA-specific clones from which human CARs were engineered. Despite a narrow range of affinity for BCMA, dramatic differences in CAR T cell expansion were observed between unique scFvs in a repeat antigen stimulation assay. These results were confirmed by screening in a MM xenograft model, where only the top preforming CARs from the repeat antigen stimulation assay eradicated disease and prolonged survival. The results of this screening identified a highly effective CAR T cell therapy with properties, including rapid in vivo expansion (>10,000-fold, day 6), eradication of large tumor burden, and durable protection to tumor re-challenge. We generated a bicistronic construct including a second-generation CAR and a truncated-epithelial growth factor receptor marker. CAR T cell vectors stemming from this work are under clinical investigation. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
The use of fluorescent intrabodies to detect endogenous gankyrin in living cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinaldi, Anne-Sophie; Freund, Guillaume; Desplancq, Dominique
2013-04-01
Expression of antibody fragments in mammalian cells (intrabodies) is used to probe the target protein or interfere with its biological function. We previously described the in vitro characterisation of a single-chain Fv (scFv) antibody fragment (F5) isolated from an intrabody library that binds to the oncoprotein gankyrin (GK) in solution. Here, we have isolated several other scFvs that interact with GK in the presence of F5 and tested whether they allow, when fused to fluorescent proteins, to detect by FRET endogenous GK in living cells. The binding of pairs of scFvs to GK was analysed by gel filtration and themore » ability of each scFv to mediate nuclear import/export of GK was determined. Binding between scFv-EGFP and RFP-labelled GK in living cells was detected by fluorescence lifetime imaging microscopy (FLIM). After co-transfection of two scFvs fused to EGFP and RFP, respectively, which form a tri-molecular complex with GK in vitro, FRET signal was measured. This system allowed us to observe that GK is monomeric and distributed throughout the cytoplasm and nucleus of several cancer cell lines. Our results show that pairs of fluorescently labelled intrabodies can be monitored by FLIM–FRET microscopy and that this technique allows the detection of lowly expressed endogenous proteins in single living cells. Highlights: ► Endogenous GK in living cells was targeted with pairs of fluorescently-tagged scFvs. ► Tri-molecular complexes containing two scFvs and one molecule GK were formed. ► GK was detected using fluorescence lifetime-based FRET imaging. ► GK is monomeric and homogeneously distributed in several cancer cell lines. ► This technique may have many applications in live-cell imaging of endogenous proteins.« less
Raghuwanshi, Dharmendra; Mishra, Vivek; Das, Dipankar; Kaur, Kamaljit; Suresh, Mavanur R
2012-04-02
This work investigates the formulation and in vivo efficacy of dendritic cell (DC) targeted plasmid DNA loaded biotinylated chitosan nanoparticles for nasal immunization against nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) as antigen. The induction of antigen-specific mucosal and systemic immune response at the site of virus entry is a major challenge for vaccine design. Here, we designed a strategy for noninvasive receptor mediated gene delivery to nasal resident DCs. The pDNA loaded biotinylated chitosan nanoparticles were prepared using a complex coacervation process and characterized for size, shape, surface charge, plasmid DNA loading and protection against nuclease digestion. The pDNA loaded biotinylated chitosan nanoparticles were targeted with bifunctional fusion protein (bfFp) vector for achieving DC selective targeting. The bfFp is a recombinant fusion protein consisting of truncated core-streptavidin fused with anti-DEC-205 single chain antibody (scFv). The core-streptavidin arm of fusion protein binds with biotinylated nanoparticles, while anti-DEC-205 scFv imparts targeting specificity to DC DEC-205 receptor. We demonstrate that intranasal administration of bfFp targeted formulations along with anti-CD40 DC maturation stimuli enhanced magnitude of mucosal IgA as well as systemic IgG against N protein. The strategy led to the detection of augmented levels of N protein specific systemic IgG and nasal IgA antibodies. However, following intranasal delivery of naked pDNA no mucosal and systemic immune responses were detected. A parallel comparison of targeted formulations using intramuscular and intranasal routes showed that the intramuscular route is superior for induction of systemic IgG responses compared with the intranasal route. Our results suggest that targeted pDNA delivery through a noninvasive intranasal route can be a strategy for designing low-dose vaccines.
Richman, Sarah A.; Nunez-Cruz, Selene; Moghimi, Babak; Li, Lucy Z.; Gershenson, Zachary T.; Mourelatos, Zissimos; Barrett, David M.; Grupp, Stephan A.; Milone, Michael C.
2018-01-01
The GD2 ganglioside, which is abundant on the surface of neuroblastoma cells, is targeted by an FDA-approved therapeutic monoclonal antibody and is an attractive tumor-associated antigen for cellular immunotherapy. Chimeric antigen receptor (CAR)–modified T cells can have potent antitumor activity in B-cell malignancies, and trials to harness this cytolytic activity toward GD2 in neuroblastoma are under way. In an effort to enhance the antitumor activity of CAR T cells that target GD2, we generated variant CAR constructs predicted to improve the stability and the affinity of the GD2-binding, 14G2a-based, single-chain variable fragment (scFv) of the CAR and compared their properties in vivo. We included the E101K mutation of GD2 scFv (GD2-E101K) that has enhanced antitumor activity against a GD2+ human neuroblastoma xenograft in vivo. However, this enhanced antitumor efficacy in vivo was concomitantly associated with lethal central nervous system (CNS) toxicity comprised of extensive CAR T-cell infiltration and proliferation within the brain and neuronal destruction. The encephalitis was localized to the cerebellum and basal regions of the brain that display low amounts of GD2. Our results highlight the challenges associated with target antigens that exhibit shared expression on critical normal tissues. Despite the success of GD2-specific antibody therapies in the treatment of neuroblastoma, the fatal neurotoxicity of GD2-specific CAR T-cell therapy observed in our studies suggests that GD2 may be a difficult target antigen for CAR T-cell therapy without additional strategies that can control CAR T-cell function within the CNS. PMID:29180536
Crivianu-Gaita, Victor; Thompson, Michael
2016-11-15
The choice of biosensing elements is crucial for the development of the optimal biosensor. Three of the most versatile biosensing elements are antibody single-chain Fv fragments (scFv), antibody fragment-antigen binding (Fab') units, and aptamers. This article provides an overview of these three biorecognition elements with respects to their synthesis/engineering, various immobilization techniques, and examples of their use in biosensors. Furthermore, the final section of the review compares and contrasts their characteristics (time/cost of development, ease and variability of immobilization, affinity, stability) illustrating their advantages and disadvantages. Overall, scFv fragments are found to display the highest customizability (i.e. addition of functional groups, immobilizing peptides, etc.) due to recombinant synthesis techniques. If time and cost are an issue in the development of the biosensor, Fab' fragments should be chosen as they are relatively cheap and can be developed quickly from whole antibodies (several days). However, if there are sufficient funds and time is not a factor, aptamers should be utilized as they display the greatest affinity towards their target analytes and are extremely stable (excellent biosensor regenerability). Copyright © 2016 Elsevier B.V. All rights reserved.
Inui, Hideyuki; Takeuchi, Tetsuya; Uesugi, Akari; Doi, Fumito; Takai, Mikio; Nishi, Kosuke; Miyake, Shiro; Ohkawa, Hideo
2012-02-22
Coplanar polychlorinated biphenyls (Co-PCBs) consisting of non-ortho and mono-ortho-chlorinated PCBs are dioxin-like compounds and cause wide contamination in the environment. To monitor Co-PCB residues, it was attempted to establish an enzyme-linked immunosorbent assay (ELISA) with monoclonal and recombinant antibodies selective to Co-PCBs. When 3,3',5,5'-tetrachlorobiphenoxybutyric acid (PCBH)-keyhole limpet hemocyanin conjugate was immunized into mice, two monoclonal antibodies, Mab-0217 and Mab-4444, were obtained. 3,3',5,5'-Tetrachlorobiphenyl (PCB80) was determined with an IC(50) value of 2.6 and 0.46 ng mL(-1) in ELISA based on Mab-0217 and Mab-4444, respectively. Mab-4444 cross-reacted with Co-PCB congeners, except for PCB77 and PCB81. Mab-0217 reacted with PCB80 and cross-reacted with PCB111. A single-chain variable fragment (scFv) antibody derived from Mab-4444 was produced in recombinant Escherichia coli cells. The scFv antibody showed nearly the same sensitivity toward PCBH as the parent monoclonal antibody in ELISA. These results clearly suggested that Mab-4444 and its scFv antibodies were suitable for monitoring the representative congeners of Co-PCBs.
Krenciute, Giedre; Krebs, Simone; Torres, David; Wu, Meng-Fen; Liu, Hao; Dotti, Gianpietro; Li, Xiao-Nan; Lesniak, Maciej S; Balyasnikova, Irina V; Gottschalk, Stephen
2016-01-01
Immunotherapy with T cells expressing chimeric antigen receptors (CARs) is an attractive approach to improve outcomes for patients with glioblastoma (GBM). IL13Rα2 is expressed at a high frequency in GBM but not in normal brain, making it a promising CAR T-cell therapy target. IL13Rα2-specific CARs generated up to date contain mutated forms of IL13 as an antigen-binding domain. While these CARs target IL13Rα2, they also recognize IL13Rα1, which is broadly expressed. To overcome this limitation, we constructed a panel of IL13Rα2-specific CARs that contain the IL13Rα2-specific single-chain variable fragment (scFv) 47 as an antigen binding domain, short or long spacer regions, a transmembrane domain, and endodomains derived from costimulatory molecules and CD3.ζ (IL13Rα2-CARs). IL13Rα2-CAR T cells recognized IL13Rα2-positive target cells in coculture and cytotoxicity assays with no cross-reactivity to IL13Rα1. However, only IL13Rα2-CAR T cells with a short spacer region produced IL2 in an antigen-dependent fashion. In vivo, T cells expressing IL13Rα2-CARs with short spacer regions and CD28.ζ, 41BB.ζ, and CD28.OX40.ζ endodomains had potent anti-glioma activity conferring a significant survival advantage in comparison to mice that received control T cells. Thus, IL13Rα2-CAR T cells hold the promise to improve current IL13Rα2-targeted immunotherapy approaches for GBM and other IL13Rα2-positive malignancies. PMID:26514825
Production of antibody labeled gold nanoparticles for influenza virus H5N1 diagnosis kit development
NASA Astrophysics Data System (ADS)
Pham, Van Dong; Hoang, Ha; Hoang Phan, Trong; Conrad, Udo; Chu, Hoang Ha
2012-12-01
Preparation of colloidal gold conjugated antibodies specific for influenza A/H5N1 and its use in developing a virus A/H5N1 rapid diagnostic kit is presented. Colloidal gold nanoparticles (AuNPs) were prepared through citrate reduction. Single chain antibodies specific to H5N1 (scFv7 and scFv24) were produced using pTI2 + vector and E. coli strain HB2151. These antibodies were purified by affinity chromatography technique employing HiTrap Chelating HP columns pre-charged with Ni2 + . The method for preparation of antibody-colloidal gold conjugate was based on electrostatic force binding antibody with colloidal gold. The effect of factors such as pH and concentration of antibody has been quantitatively analyzed using spectroscopic methods after adding 1 wt% NaCl which induced AuNP aggregation. The morphological study by scanning electron microscopy (SEM) showed that the average size of the spherical AuNPs was 23 nm with uniform sizes. The spectroscopic properties of colloidal AuNPs showed the typical surface plasmon resonance band at 523 nm in UV-visible spectrum. The optimal pH of conjugated colloidal gold was found between 8.0 and 10.0. The activity of synthesized antibody labeled AuNPs for detection of H5N1 flu virus was checked by dot blot immunological method. The results confirmed the ability in detection of the A/H5N1 virus of the prepared antibody labeled gold particles and opened up the possibility of using them in manufacturing rapid detection kit for this virus.
Specific Fluorine Labeling of the HyHEL10 Antibody Affects Antigen Binding and Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acchione, Mauro; Lee, Yi-Chien; DeSantis, Morgan E.
To more fully understand the molecular mechanisms responsible for variations in binding affinity with antibody maturation, we explored the use of site specific fluorine labeling and {sup 19}F nuclear magnetic resonance (NMR). Several single-chain (scFv) antibodies, derived from an affinity-matured series of anti-hen egg white lysozyme (HEL) mouse IgG1, were constructed with either complete or individual replacement of tryptophan residues with 5-fluorotryptophan ({sup 5F}W). An array of biophysical techniques was used to gain insight into the impact of fluorine substitution on the overall protein structure and antigen binding. SPR measurements indicated that {sup 5F}W incorporation lowered binding affinity for themore » HEL antigen. The degree of analogue impact was residue-dependent, and the greatest decrease in affinity was observed when {sup 5F}W was substituted for residues near the binding interface. In contrast, corresponding crystal structures in complex with HEL were essentially indistinguishable from the unsubstituted antibody. {sup 19}F NMR analysis showed severe overlap of signals in the free fluorinated protein that was resolved upon binding to antigen, suggesting very distinct chemical environments for each {sup 5F}W in the complex. Preliminary relaxation analysis suggested the presence of chemical exchange in the antibody-antigen complex that could not be observed by X-ray crystallography. These data demonstrate that fluorine NMR can be an extremely useful tool for discerning structural changes in scFv antibody-antigen complexes with altered function that may not be discernible by other biophysical techniques.« less
Monoclonal TCR-redirected tumor cell killing.
Liddy, Nathaniel; Bossi, Giovanna; Adams, Katherine J; Lissina, Anna; Mahon, Tara M; Hassan, Namir J; Gavarret, Jessie; Bianchi, Frayne C; Pumphrey, Nicholas J; Ladell, Kristin; Gostick, Emma; Sewell, Andrew K; Lissin, Nikolai M; Harwood, Naomi E; Molloy, Peter E; Li, Yi; Cameron, Brian J; Sami, Malkit; Baston, Emma E; Todorov, Penio T; Paston, Samantha J; Dennis, Rebecca E; Harper, Jane V; Dunn, Steve M; Ashfield, Rebecca; Johnson, Andy; McGrath, Yvonne; Plesa, Gabriela; June, Carl H; Kalos, Michael; Price, David A; Vuidepot, Annelise; Williams, Daniel D; Sutton, Deborah H; Jakobsen, Bent K
2012-06-01
T cell immunity can potentially eradicate malignant cells and lead to clinical remission in a minority of patients with cancer. In the majority of these individuals, however, there is a failure of the specific T cell receptor (TCR)–mediated immune recognition and activation process. Here we describe the engineering and characterization of new reagents termed immune-mobilizing monoclonal TCRs against cancer (ImmTACs). Four such ImmTACs, each comprising a distinct tumor-associated epitope-specific monoclonal TCR with picomolar affinity fused to a humanized cluster of differentiation 3 (CD3)-specific single-chain antibody fragment (scFv), effectively redirected T cells to kill cancer cells expressing extremely low surface epitope densities. Furthermore, these reagents potently suppressed tumor growth in vivo. Thus, ImmTACs overcome immune tolerance to cancer and represent a new approach to tumor immunotherapy.
Antisperm contraceptive vaccines: where we are and where we are going?
Naz, Rajesh K
2011-07-01
This is a review of current status and future perspectives on the development of antisperm contraceptive vaccines (CV) and immunocontraceptives. The development of antisperm CV is an exciting proposition. There is a strong rationale and recent data indicating that this proposition can translate into reality. The search for novel sperm-specific antigens/genes, that can be used for CV, continues using various recent developing technologies. Various approaches of proteomics, genomics, reproductive biology, mucosal immunity and vaccinology and several novel technologies such as gene knockout technology, phage display technology, antibody engineering, differential display technique, subtractive hybridization, and hybridoma technology are being used to delineate sperm-specific antigens and construct CV. Various sperm antigens/genes have been delineated, cloned, and sequenced from various laboratories. Vaccination with these sperm antigens (recombinant/synthetic peptide/DNA) causes a reversible contraceptive effect in females and males of various animal species, by inducing a systemic and local antisperm antibody response. The efficacy is enhanced by combination vaccination, including peptides based on various sperm antigens. Several human novel scFv antibodies with unique complementarity-determining regions (CDRs), that react with specific well-defined fertility-related sperm antigens, have been synthesized. These human infertility-related antibodies may find application in the development of novel immunocontraceptives. Besides finding the novel sperm antigens, the present and future focus is on enhancing the immunogenicity, bioefficacy, and on obliterating the inter-individual variability of the immune response, and proceeding for primate and human clinical trials. Multi-epitope vaccines combining sperm proteins involved in various steps of fertilization cascade have been found to enhance the immunogenicity and bioefficacy of the contraceptive effect. The in vitro synthesis of infertility-related human scFv antibodies may provide unique once-a-month immunocontraceptives, the first of its kind, for human use. The multi-epitope CV and preformed engineered human antibodies of defined specificity may obliterate the concern related to inter-individual variability of the immune response. © 2011 John Wiley & Sons A/S.
2007-03-01
inset) defined the on rate as k1 =1.2×10 8 M−1s−1. The KIUN CO RR E Figure 1. Progress curves of MT-SP1 inhibition by scFv inhibitors reveal multiple...Farady 5d. PROJECT NUMBER 5e. TASK NUMBER E -Mail: christopher.farady@ucsf.edu 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND...library; pNA pAB, p-aminobenzamidine; ESI, elec E -mail address of the correspondi craik@cgl.ucsf.edu 0022-2836/$ - see front matter © 2007 P Please
Zhang, Jianhua; Liu, Shanhong; Shang, Zhigang; Shi, Li; Yun, Jun
2012-08-22
We investigated the relationship of End-to-end distance between VH and VL with different peptide linkers and the activity of single-chain antibodies by computer-aided simulation. First, we developed (G4S)n (where n = 1-9) as the linker to connect VH and VL, and estimated the 3D structure of single-chain Fv antibody (scFv) by homologous modeling. After molecular models were evaluated and optimized, the coordinate system of every protein was built and unified into one coordinate system, and End-to-end distances calculated using 3D space coordinates. After expression and purification of scFv-n with (G4S)n as n = 1, 3, 5, 7 or 9, the immunoreactivity of purified ND-1 scFv-n was determined by ELISA. A multi-factorial relationship model was employed to analyze the structural factors affecting scFv: rn=ABn-ABO2+CDn-CDO2+BCn-BCst2. The relationship between immunoreactivity and r-values revealed that fusion protein structure approached the desired state when the r-value = 3. The immunoreactivity declined as the r-value increased, but when the r-value exceeded a certain threshold, it stabilized. We used a linear relationship to analyze structural factors affecting scFv immunoreactivity.
Patel, Rekha; Andrien, Bruce A
2010-01-01
Monoclonal antibodies (mAbs) and antibody fragments have become an emerging class of therapeutics since 1986. Their versatility enables them to be engineered for optimal efficiency and decreased immunogenicity, and the path to market has been set by recent regulatory approvals. One of the initial criteria for success of any protein or antibody therapeutic is to understand its binding characteristics to the target antigen. Surface plasmon resonance (SPR) has been widely used and is an important tool for ligand-antigen binding characterization. In this work, the binding kinetics of a recombinant mAb and its single-chain antibody homolog, single-chain variable fragment (scFv), was analyzed by SPR. These two proteins target the same antigen. The binding kinetics of the mAb (bivalent antibody) and scFv (monovalent scFv) for this antigen was analyzed along with an assessment of the thermodynamics of the binding interactions. Alternative binding configurations were investigated to evaluate potential experimental bias because theoretically experimental binding configuration should have no impact on binding kinetics. Self-association binding kinetics in the proteins' respective formulation solutions and antigen epitope mapping were also evaluated. Functional characterization of monoclonal and single-chain antibodies has become just as important as structural characterization in the biotechnology field.
Hayhurst, Andrew; Happe, Scott; Mabry, Robert; Koch, Zephyr; Iverson, Brent L; Georgiou, George
2003-05-01
Brucella melitensis is a highly infectious animal pathogen able to cause a recurring debilitating disease in humans and is therefore high on the list of biological warfare agents. Immunoglobulin genes from mice immunized with gamma-irradiated B. melitensis strain 16M were used to construct a library that was screened by phage display against similarly prepared bacteria. The selected phage particles afforded a strong enzyme-linked immunosorbent assay (ELISA) signal against gamma-irradiated B. melitensis cells. However, extensive efforts to express the respective single chain antibody variable region fragment (scFv) in soluble form failed due to: (i) poor solubility and (ii) in vivo degradation of the c-myc tag used for the detection of the recombinant antibodies. Both problems could be addressed by: (i) fusing a human kappa light chain constant domain (Ck) chain to the scFv to generate single chain antibody fragment (scAb) antibody fragments and (ii) by co-expression of the periplasmic chaperone Skp. While soluble, functional antibodies could be produced in this manner, phage-displaying scFvs or scAbs were still found to be superior ELISA reagents for immunoassays, due to the large signal amplification afforded by anti-phage antibodies. The isolated phage antibodies were shown to be highly specific to B. melitensis and did not recognize Yersinia pseudotuberculosis in contrast to the existing diagnostic monoclonal YST 9.2.1.
Xie, Jiasen; Zhou, Zishan; Jiao, Shunchang; Li, Xiaokun
2018-01-01
A chimeric antigen receptor (CAR) is a type of fusion protein that comprises an antigen-recognition domain and signaling domains. In the present study, a programmed death-ligand 1 (PD-L1)-specific CAR, comprised of a single-chain variable fragment (scFv) derived from a monoclonal antibody, co-stimulatory domains of cluster of differentiation (CD) 28 and 4-1BB and a T-cell-activation domain derived from CD3ζ, was designed. The construction was cloned and packaged into the lentiviral vector pLVX. Flow cytometry confirmed that peripheral blood mononuclear cells were efficiently transduced and that the CAR was successfully expressed on T cells. The cytotoxicity of transduced T cells was detected using PD-L1-positive NCI-H358 bronchioalveolar carcinoma cells and A549 lung adenocarcinoma cells (with a low expression of PD-L1, only in the A549 cells). The results demonstrated mild cytotoxicity at an effector-to-target ratio of 10:1. An ELISA revealed a significant increase in the level of interferon-γ released from T cells transduced with scFv-28Bz when the cells were co-cultured with PD-L1-positive NCI-H358 cells, while interkeukin-2 and tumor necrosis factor-α levels remained unchanged. These data indicated a potential method for the treatment of solid tumors. PMID:29928397
Human scFv antibodies (Afribumabs) against Africanized bee venom: Advances in melittin recognition.
Pessenda, Gabriela; Silva, Luciano C; Campos, Lucas B; Pacello, Elenice M; Pucca, Manuela B; Martinez, Edson Z; Barbosa, José E
2016-03-15
Africanized Apis mellifera bees, also known as killer bees, have an exceptional defensive instinct, characterized by mass attacks that may cause envenomation or death. From the years 2000-2013, 77,066 bee accidents occurred in Brazil. Bee venom comprises several substances, including melittin and phospholipase A2 (PLA2). Due to the lack of antivenom for bee envenomation, this study aimed to produce human monoclonal antibody fragments (single chain fragment variable; scFv), by using phage display technology. These fragments targeted melittin and PLA2, the two major components of bee venom, to minimize their toxic effects in cases of mass envenomation. Two phage antibody selections were performed using purified melittin. As the commercial melittin is contaminated with PLA2, phages specific to PLA2 were also obtained during one of the selections. Specific clones for melittin and PLA2 were selected for the production of soluble scFvs, named here Afribumabs: prefix: afrib- (from Africanized bee); stem/suffix: -umab (fully human antibody). Afribumabs 1 and 2 were tested in in vitro and in vivo assays to assess their ability to inhibit the toxic actions of purified melittin, PLA2, and crude bee venom. Afribumabs reduced hemolysis caused by purified melittin and PLA2 and by crude venom in vitro and reduced edema formation in the paws of mice and prolonged the survival of venom-injected animals in vivo. These results demonstrate that Afribumabs may contribute to the production of the first non-heterologous antivenom treatment against bee envenomation. Such a treatment may overcome some of the difficulties associated with conventional immunotherapy techniques. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sequential cancer immunotherapy: targeted activity of dimeric TNF and IL-8
Adrian, Nicole; Siebenborn, Uta; Fadle, Natalie; Plesko, Margarita; Fischer, Eliane; Wüest, Thomas; Stenner, Frank; Mertens, Joachim C.; Knuth, Alexander; Ritter, Gerd; Old, Lloyd J.; Renner, Christoph
2009-01-01
Polymorphonuclear neutrophils (PMNs) are potent effectors of inflammation and their attempts to respond to cancer are suggested by their systemic, regional and intratumoral activation. We previously reported on the recruitment of CD11b+ leukocytes due to tumor site-specific enrichment of TNF activity after intravenous administration of a dimeric TNF immunokine with specificity for fibroblast activation protein (FAP). However, TNF-induced chemo-attraction and extravasation of PMNs from blood into the tumor is a multistep process essentially mediated by interleukin 8. With the aim to amplify the TNF-induced and IL-8-mediated chemotactic response, we generated immunocytokines by N-terminal fusion of a human anti-FAP scFv fragment with human IL-8 (IL-872) and its N-terminally truncated form IL-83-72. Due to the dramatic difference in chemotaxis induction in vitro, we favored the mature chemokine fused to the anti-FAP scFv for further investigation in vivo. BALB/c nu/nu mice were simultaneously xenografted with FAP-positive or -negative tumors and extended chemo-attraction of PMNs was only detectable in FAP-expressing tissue after intravenous administration of the anti-FAP scFv-IL-872 construct. As TNF-activated PMNs are likewise producers and primary targets for IL-8, we investigated the therapeutic efficacy of co-administration of both effectors: Sequential application of scFv-IL-872 and dimeric IgG1-TNF fusion proteins significantly enhanced anti-tumor activity when compared either to a single effector treatment regimen or sequential application of non-targeted cytokines, indicating that the tumor-restricted sequential application of IL-872 and TNF is a promising approach for cancer therapy. PMID:19267427
Danpaiboon, Witchuda; Reamtong, Onrapak; Sookrung, Nitat; Seesuay, Watee; Sakolvaree, Yuwaporn; Thanongsaksrikul, Jeeraphong; Dong-din-on, Fonthip; Srimanote, Potjanee; Thueng-in, Kanyarat; Chaicumpa, Wanpen
2014-05-13
Venomous snakebites are an important health problem in tropical and subtropical countries. King cobra (Ophiophagus hannah) is the largest venomous snake found in South and Southeast Asia. In this study, the O. hannah venom proteome and the venom components cross-reactive to N. kaouthia monospecific antivenin were studied. O. hannah venom consisted of 14 different protein families, including three finger toxins, phospholipases, cysteine-rich secretory proteins, cobra venom factor, muscarinic toxin, L-amino acid oxidase, hypothetical proteins, low cysteine protein, phosphodiesterase, proteases, vespryn toxin, Kunitz, growth factor activators and others (coagulation factor, endonuclease, 5'-nucleotidase). N. kaouthia antivenin recognized several functionally different O. hannah venom proteins and mediated paratherapeutic efficacy by rescuing the O. hannah envenomed mice from lethality. An engineered human ScFv specific to N. kaouthia long neurotoxin (NkLN-HuScFv) cross-neutralized the O. hannah venom and extricated the O. hannah envenomed mice from death in a dose escalation manner. Homology modeling and molecular docking revealed that NkLN-HuScFv interacted with residues in loops 2 and 3 of the neurotoxins of both snake species, which are important for neuronal acetylcholine receptor binding. The data of this study are useful for snakebite treatment when and where the polyspecific antivenin is not available. Because the supply of horse-derived antivenin is limited and the preparation may cause some adverse effects in recipients, a cocktail of recombinant human ScFvs for various toxic venom components shared by different venomous snakes, exemplified by the in vitro produced NkLN-HuScFv in this study, should contribute to a possible future route for an improved alternative to the antivenins.
Shukla, Girja S; Krag, David N; Peletskaya, Elena N; Pero, Stephanie C; Sun, Yu-Jing; Carman, Chelsea L; McCahill, Laurence E; Roland, Thomas A
2013-08-01
Phage display is a powerful method for target discovery and selection of ligands for cancer treatment and diagnosis. Our goal was to select tumor-binding antibodies in cancer patients. Eligibility criteria included absence of preexisting anti-phage-antibodies and a Stage IV cancer status. All patients were intravenously administered 1 × 10(11) TUs/kg of an scFv library 1 to 4 h before surgical resection of their tumors. No significant adverse events related to the phage library infusion were observed. Phage were successfully recovered from all tumors. Individual clones from each patient were assessed for binding to the tumor from which clones were recovered. Multiple tumor-binding phage-antibodies were identified. Soluble scFv antibodies were produced from the phage clones showing higher tumor binding. The tumor-homing phage-antibodies and derived soluble scFvs were found to bind varying numbers (0-5) of 8 tested normal human tissues (breast, cervix, colon, kidney, liver, spleen, skin, and uterus). The clones that showed high tumor-specificity were found to bind corresponding tumors from other patients also. Clone enrichment was observed based on tumor binding and DNA sequence data. Clone sequences of multiple variable regions showed significant matches to certain cancer-related antibodies. One of the clones (07-2,355) that was found to share a 12-amino-acid-long motif with a reported IL-17A antibody was further studied for competitive binding for possible antigen target identification. We conclude that these outcomes support the safety and utility of phage display library panning in cancer patients for ligand selection and target discovery for cancer treatment and diagnosis.
Generation and evaluation of antibody agents for molecular imaging of CD44v6-expressing cancers
Haylock, Anna-Karin; Nilvebrant, Johan; Mortensen, Anja; Velikyan, Irina; Nestor, Marika; Falk, Ronny
2017-01-01
Aim The aim of this study was to generate and characterize scFv antibodies directed to human CD44v6, as well as to radiolabel and evaluate top candidates in vitro and in vivo for their potential use in CD44v6-targeted molecular imaging in cancer patients. Materials and methods Phage display selections were used to isolate CD44v6-specific scFvs. A chain shuffling strategy was employed for affinity maturation based on a set of CD44v6-specific first-generation clones. Two second-generation scFv clones were then chosen for labeling with 111In or 125I and assessed for CD44v6-specific binding on cultured tumor cells. In vivo uptake and distribution was evaluated in tumor-bearing mice using a dual tumor model. Finally, a proof-of-concept small animal PET-CT study was performed on one of the candidates labeled with 124I. Results Two affinity-matured clones, CD44v6-scFv-A11 and CD44v6-scFv-H12, displayed promising binding kinetics. Seven out of eight radiolabeled conjugates demonstrated CD44v6-specific binding. In vivo studies on selected candidates demonstrated very advantageous tumor-to-organ ratios, in particular for iodinated conjugates, where 125I-labeled scFvs exhibited favorable kinetics and tumor-to-blood ratios above five already at 24 hours p.i.. The small animal PET-CT study using 124I-labeled CD44v6-scFv-H12 was in line with the biodistribution data, clearly visualizing the high CD44v6-expressing tumor. Conclusion The single chain fragments, CD44v6-scFv-A11 and CD44v6-scFv-H12 specifically bind to CD44v6, and the radiolabeled counterparts provide high tumor-to-blood ratios and fast clearance from organs and blood. We conclude that radioiodinated CD44v6-scFv-A11 and CD44v6-scFv-H12 possess features highly suitable for stringent molecular imaging. PMID:29029420
Thakkar, Shraddha; Nanaware-Kharade, Nisha; Celikel, Reha; Peterson, Eric C.; Varughese, Kottayil I.
2014-01-01
Methamphetamine (METH) abuse is a worldwide threat, without any FDA approved medications. Anti-METH IgGs and single chain fragments (scFvs) have shown efficacy in preclinical studies. Here we report affinity enhancement of an anti-METH scFv for METH and its active metabolite amphetamine (AMP), through the introduction of point mutations, rationally designed to optimize the shape and hydrophobicity of the antibody binding pocket. The binding affinity was measured using saturation binding technique. The mutant scFv-S93T showed 3.1 fold enhancement in affinity for METH and 26 fold for AMP. The scFv-I37M and scFv-Y34M mutants showed enhancement of 94, and 8 fold for AMP, respectively. Structural analysis of scFv-S93T:METH revealed that the substitution of Ser residue by Thr caused the expulsion of a water molecule from the cavity, creating a more hydrophobic environment for the binding that dramatically increases the affinities for METH and AMP. PMID:24419156
Lee, Joungmin; Kim, Minjae; Seo, Youngsil; Lee, Yeonjin; Park, Hyunjoon; Byun, Sung June; Kwon, Myung-Hee
2017-11-01
The antigen-binding properties of single chain Fv antibodies (scFvs) can vary depending on the position and type of fusion tag used, as well as the host cells used for expression. The issue is even more complicated with a catalytic scFv antibody that binds and hydrolyses a specific antigen. Herein, we investigated the antigen-binding and -hydrolysing activities of the catalytic anti-nucleic acid antibody 3D8 scFv expressed in Escherichia coli or HEK293f cells with or without additional amino acid residues at the N- and C-termini. DNA-binding activity was retained in all recombinant forms. However, the DNA-hydrolysing activity varied drastically between forms. The DNA-hydrolysing activity of E. coli-derived 3D8 scFvs was not affected by the presence of a C-terminal human influenza haemagglutinin (HA) or His tag. By contrast, the activity of HEK293f-derived 3D8 scFvs was completely lost when additional residues were included at the N-terminus and/or when a His tag was incorporated at the C-terminus, whereas a HA tag at the C-terminus did not diminish activity. Thus, we demonstrate that the antigen-binding and catalytic activities of a catalytic antibody can be separately affected by the presence of additional residues at the N- and C-termini, and by the host cell type. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Wang, Han; Yu, Rui; Fang, Ting; Yu, Ting; Chi, Xiangyang; Zhang, Xiaopeng; Liu, Shuling; Fu, Ling; Yu, Changming; Chen, Wei
2016-09-11
Tetanus neurotoxin (TeNT) produced by Clostridium tetani is one of the most poisonous protein substances. Neutralizing antibodies against TeNT can effectively prevent and cure toxicosis. Using purified Hc fragments of TeNT (TeNT-Hc) as an antigen, three specific neutralizing antibody clones recognizing different epitopes were selected from a human immune scFv antibody phage display library. The three antibodies (2-7G, 2-2D, and S-4-7H) can effectively inhibit the binding between TeNT-Hc and differentiated PC-12 cells in vitro. Moreover, 2-7G inhibited TeNT-Hc binding to the receptor via carbohydrate-binding sites of the W pocket while 2-2D and S-4-7H inhibited binding of the R pocket. Although no single mAb completely protected mice from the toxin, they could both prolong survival when challenged with 20 LD50s (50% of the lethal dose) of TeNT. When used together, the mAbs completely neutralized 1000 LD50s/mg Ab, indicating their high neutralizing potency in vivo. Antibodies recognizing different carbohydrate-binding pockets could have higher synergistic toxin neutralization activities than those that recognize the same pockets. These results could lead to further production of neutralizing antibody drugs against TeNT and indicate that using TeNT-Hc as an antigen for screening human antibodies for TeNT intoxication therapy from human immune antibody library was convenient and effective.
Recombinant antibody mediated delivery of organelle-specific DNA pH sensors along endocytic pathways
NASA Astrophysics Data System (ADS)
Modi, Souvik; Halder, Saheli; Nizak, Clément; Krishnan, Yamuna
2013-12-01
DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing the sequence of the pH sensitive domain of the DNA sensor, we have been able to tune their pH sensitive regimes and create a family of DNA sensors spanning ranges from pH 4 to 7.6. To enable a generalizable targeting methodology, this new sensor design also incorporates a `handle' domain. We have identified, using a phage display screen, a set of three recombinant antibodies (scFv) that bind sequence specifically to the handle domain. Sequence analysis of these antibodies revealed several conserved residues that mediate specific interactions with the cognate DNA duplex. We also found that all three scFvs clustered into different branches indicating that their specificity arises from mutations in key residues. When one of these scFvs is fused to a membrane protein (furin) that traffics via the cell surface, the scFv-furin chimera binds the `handle' and ferries a family of DNA pH sensors along the furin endocytic pathway. Post endocytosis, all DNA nanodevices retain their functionality in cellulo and provide spatiotemporal pH maps of retrogradely trafficking furin inside living cells. This new molecular technology of DNA-scFv-protein chimeras can be used to site-specifically complex DNA nanostructures for bioanalytical applications.DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing the sequence of the pH sensitive domain of the DNA sensor, we have been able to tune their pH sensitive regimes and create a family of DNA sensors spanning ranges from pH 4 to 7.6. To enable a generalizable targeting methodology, this new sensor design also incorporates a `handle' domain. We have identified, using a phage display screen, a set of three recombinant antibodies (scFv) that bind sequence specifically to the handle domain. Sequence analysis of these antibodies revealed several conserved residues that mediate specific interactions with the cognate DNA duplex. We also found that all three scFvs clustered into different branches indicating that their specificity arises from mutations in key residues. When one of these scFvs is fused to a membrane protein (furin) that traffics via the cell surface, the scFv-furin chimera binds the `handle' and ferries a family of DNA pH sensors along the furin endocytic pathway. Post endocytosis, all DNA nanodevices retain their functionality in cellulo and provide spatiotemporal pH maps of retrogradely trafficking furin inside living cells. This new molecular technology of DNA-scFv-protein chimeras can be used to site-specifically complex DNA nanostructures for bioanalytical applications. Electronic supplementary information (ESI) available: Detailed description of all oligonucleotide sequences used in this study; list of figures that support claims from the main text. Mainly these show sensor sequences, phage display results, scFv purification and binding data, cell images clamped at different pH and co-localization studies with endocytic tracers. See DOI: 10.1039/c3nr03769j
Balalaeva, Irina V; Zdobnova, Tatiana A; Krutova, Irina V; Brilkina, Anna A; Lebedenko, Ekaterina N; Deyev, Sergey M
2012-11-01
Far-red and near-infrared fluorescent quantum dots (QDs) have become advancing contrast agents for efficient whole-body tumor imaging. In this study, we investigated the possibility of the vital fluorescence imaging of tumor using two contrast agents on the basis of QDs: bioinert QDs coated with polyethyleneglycol and QDs bound with anti-HER2/neu scFv antibodies. HER2/neu-positive breast cancer tumor xenografts in nude mice were used as a model. It was shown that both bioinert and tumor-targeted QD probes can be successfully applied for visualization of the tumor using in vivo imaging method, but fluorescent signal of QD-4D5scFv in tumors was considerably stronger than that of QD-PEG. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canul-Tec, Juan Carlos; Riaño-Umbarila, Lidia; Rudiño-Piñera, Enrique
2011-08-09
It has previously been reported that several single-chain antibody fragments of human origin (scFv) neutralize the effects of two different scorpion venoms through interactions with the primary toxins of Centruroides noxius Hoffmann (Cn2) and Centruroides suffusus suffusus (Css2). Here we present the crystal structure of the complex formed between one scFv (9004G) and the Cn2 toxin, determined in two crystal forms at 2.5 and 1.9 {angstrom} resolution. A 15-residue span of the toxin is recognized by the antibody through a cleft formed by residues from five of the complementarity-determining regions of the scFv. Analysis of the interface of the complexmore » reveals three features. First, the epitope of toxin Cn2 overlaps with essential residues for the binding of {beta}-toxins to its Na+ channel receptor site. Second, the putative recognition of Css2 involves mainly residues that are present in both Cn2 and Css2 toxins. Finally, the effect on the increase of affinity of previously reported key residues during the maturation process of different scFvs can be inferred from the structure. Taken together, these results provide the structural basis that explain the mechanism of the 9004G neutralizing activity and give insight into the process of directed evolution that gave rise to this family of neutralizing scFvs.« less
Greineder, Colin F; Brenza, Jacob B; Carnemolla, Ronald; Zaitsev, Sergei; Hood, Elizabeth D; Pan, Daniel C; Ding, Bi-Sen; Esmon, Charles T; Chacko, Ann Marie; Muzykantov, Vladimir R
2015-08-01
Anchoring pharmacologic agents to the vascular lumen has the potential to modulate critical processes at the blood-tissue interface, avoiding many of the off-target effects of systemically circulating agents. We report a novel strategy for endothelial dual targeting of therapeutics, which both enhances drug delivery and enables targeted agents to partner enzymatically to generate enhanced biologic effect. Based on the recent discovery that paired antibodies directed to adjacent epitopes of platelet endothelial cell adhesion molecule (PECAM)-1 stimulate each other's binding, we fused single-chain fragments (scFv) of paired anti-mouse PECAM-1 antibodies to recombinant murine thrombomodulin (TM) and endothelial protein C receptor (EPCR), endothelial membrane proteins that partner in activation of protein C (PC). scFv/TM and scFv/EPCR bound to mouse endothelial PECAM-1 with high affinity (EC50 1.5 and 3.8 nM, respectively), and codelivery induced a 5-fold increase in PC activation not seen when TM and EPCR are anchored to distinct cell adhesion molecules. In a mouse model of acute lung injury, dual targeting reduces both the expression of lung inflammatory markers and trans-endothelial protein leak by as much as 40%, as compared to either agent alone. These findings provide proof of principle for endothelial dual targeting, an approach with numerous potential biomedical applications. © FASEB.
Sebollela, Adriano; Cline, Erika N; Popova, Izolda; Luo, Kevin; Sun, Xiaoxia; Ahn, Jay; Barcelos, Milena A; Bezerra, Vanessa N; Lyra E Silva, Natalia M; Patel, Jason; Pinheiro, Nathalia R; Qin, Lei A; Kamel, Josette M; Weng, Anthea; DiNunno, Nadia; Bebenek, Adrian M; Velasco, Pauline T; Viola, Kirsten L; Lacor, Pascale N; Ferreira, Sergio T; Klein, William L
2017-07-03
Brain accumulation of soluble oligomers of the amyloid-β peptide (AβOs) is increasingly considered a key early event in the pathogenesis of Alzheimer's disease (AD). A variety of AβO species have been identified, both in vitro and in vivo, ranging from dimers to 24mers and higher order oligomers. However, there is no consensus in the literature regarding which AβO species are most germane to AD pathogenesis. Antibodies capable of specifically recognizing defined subpopulations of AβOs would be a valuable asset in the identification, isolation, and characterization of AD-relevant AβO species. Here, we report the characterization of a human single chain antibody fragment (scFv) denoted NUsc1, one of a number of scFvs we have identified that stringently distinguish AβOs from both monomeric and fibrillar Aβ. NUsc1 readily detected AβOs previously bound to dendrites in cultured hippocampal neurons. In addition, NUsc1 blocked AβO binding and reduced AβO-induced neuronal oxidative stress and tau hyperphosphorylation in cultured neurons. NUsc1 further distinguished brain extracts from AD-transgenic mice from wild type (WT) mice, and detected endogenous AβOs in fixed AD brain tissue and AD brain extracts. Biochemical analyses indicated that NUsc1 targets a subpopulation of AβOs with apparent molecular mass greater than 50 kDa. Results indicate that NUsc1 targets a particular AβO species relevant to AD pathogenesis, and suggest that NUsc1 may constitute an effective tool for AD diagnostics and therapeutics. © 2017 International Society for Neurochemistry.
Zhang, Xiao; Xu, Chongxin; Zhang, Cunzheng; Liu, Yuan; Xie, Yajing; Liu, Xianjin
2014-04-01
ScFvs are composed of the variable regions of the heavy and light chains via a short linker that maintain the specific antigen binding abilities of antibodies. In this study, we constructed a naïve mouse phage displayed library to generate scFvs against Cry1Ab toxin. After affinity panning, positive phage-scFvs were isolated, sequenced and characterized by ELISA. The best binding ability scFv-G9 was expressed and purified. SDS-PAGE indicated that the relative molecular mass of scFv was estimated at 28 kDa. The purified scFv-G9 was used to develop a new DAS-ELISA for detecting Cry1Ab toxin, within minimum detection limit of 0.008 μg mL(-1), a working range 0.018-6.23 μg mL(-1), and the linear curve displayed an acceptable correlation coefficient of 0.98. The cross-reactivity showed that scFv-G9 had strongly binding ability to Cry1Ac toxin, but not to Cry1B, Cry1C and Cry1F toxin. The average recoveries of Cry1Ab toxin from spiked leaf and rice samples were in the range 92.1-94.8%, and 91.6-98.6%, respectively, with a coefficient of variation (C.V) less than 5.0%. These results showed promising applications of scfv-G9 for detecting Cry1Ab toxin with new DAS-ELISA. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ahn, Hye-Mi; Ryu, Jihye; Song, Jin Myeong; Lee, Yunhee; Kim, Hye-Jin; Ko, Dongjoon; Choi, Inpyo; Kim, Sang Jick; Lee, Jung Weon; Kim, Semi
2017-01-01
The transmembrane four L6 family member 5 (TM4SF5) protein is a novel molecular target for the prevention and treatment of hepatocellular carcinoma. TM4SF5 is highly expressed in liver, colon, esophageal, and pancreatic cancers and is implicated in tumor progression. Here, we screened monoclonal antibodies that specifically bound to the extracellular loop 2 (EC2) of TM4SF5 from a phage-displayed murine antibody (single-chain variable fragment; scFv) library. We constructed and characterized chimeric antibodies, Ab27 and Ab79, of scFv fused with Fc domain of human IgG1. The affinity (KD) of Ab27 and Ab79 for soluble EC2 was approximately 9.2 nM and 16.9 nM, respectively, as determined by surface plasmon resonance analysis. Ab27 and Ab79 efficiently bound to native TM4SF5 on the cell surface were internalized into the cancer cells, leading to a decrease in cell surface TM4SF5. Ab27 and Ab79 inhibited the proliferation and invasion of TM4SF5-positive liver and colon cancer cells and reduced FAK and c-Src phosphorylation. Ab27 and Ab79 also enhanced anoikis sensitivity and reduced survivin. Ab27 mediated antibody-dependent cell-mediated cytotoxicity in vitro. Ab27 and Ab79 efficiently inhibited tumor growth in a liver cancer xenograft model. These results strongly support the further development of Ab27 as a novel anti-cancer agent in the clinic. PMID:28255353
Engineering intracellular active transport systems as in vivo biomolecular tools.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachand, George David; Carroll-Portillo, Amanda
2006-11-01
Active transport systems provide essential functions in terms of cell physiology and metastasis. These systems, however, are also co-opted by invading viruses, enabling directed transport of the virus to and from the cell's nucleus (i.e., the site of virus replication). Based on this concept, fundamentally new approaches for interrogating and manipulating the inner workings of living cells may be achievable by co-opting Nature's active transport systems as an in vivo biomolecular tool. The overall goal of this project was to investigate the ability to engineer kinesin-based transport systems for in vivo applications, specifically the collection of effector proteins (e.g., transcriptionalmore » regulators) within single cells. In the first part of this project, a chimeric fusion protein consisting of kinesin and a single chain variable fragment (scFv) of an antibody was successfully produced through a recombinant expression system. The kinesin-scFv retained both catalytic and antigenic functionality, enabling selective capture and transport of target antigens. The incorporation of a rabbit IgG-specific scFv into the kinesin established a generalized system for functionalizing kinesin with a wide range of target-selective antibodies raised in rabbits. The second objective was to develop methods of isolating the intact microtubule network from live cells as a platform for evaluating kinesin-based transport within the cytoskeletal architecture of a cell. Successful isolation of intact microtubule networks from two distinct cell types was demonstrated using glutaraldehyde and methanol fixation methods. This work provides a platform for inferring the ability of kinesin-scFv to function in vivo, and may also serve as a three-dimensional scaffold for evaluating and exploiting kinesin-based transport for nanotechnological applications. Overall, the technology developed in this project represents a first-step in engineering active transport system for in vivo applications. Further development could potentially enable selective capture of intracellular antigens, targeted delivery of therapeutic agents, or disruption of the transport systems and consequently the infection and pathogenesis cycle of biothreat agents.« less
Souriau, Christelle; Rothacker, Julie; Hoogenboom, Hennie R; Nice, Edouard
2004-09-01
Antibodies to EGFR have been shown to display anti-tumour effects mediated in part by inhibition of cellular proliferation and angiogenesis, and by enhancement of apoptosis. Humanised antibodies are preferred for clinical use to reduce complications with HAMA and HAHA responses frequently seen with murine and chimaeric antibodies. We have used depletion and subtractive selection strategies on cells expressing the EGFR to sample two large antibody fragment phage display libraries for the presence of human antibodies which are specific for the EGFR. Four Fab fragments and six scFv fragments were identified, with affinities of up to 2.2nM as determined by BIAcore analysis using global fitting of the binding curves to obtain the individual rate constants (ka and kd). This overall approach offers a generic screening method for the identification of growth factor specific antibodies and antibody fragments from large expression libraries and has potential for the rapid development of new therapeutic and diagnostic reagents.
Thammasit, Patcharin; Sangboonruang, Sirikwan; Suwanpairoj, Supattara; Khamaikawin, Wannisa; Intasai, Nutjeera; Kasinrerk, Watchara; Tayapiwatana, Chatchai; Tragoolpua, Khajornsak
2015-01-01
Extracellular matrix metalloproteinase inducer (EMMPRIN) is a human leukocyte surface molecule that is enriched on the surface of many cancer cells, and it plays an important role in proliferation and metastasis. In this study, we utilized the chimeric adenoviral vector Ad5/F35 carrying gene encoding scFv against EMMPRIN (scFv-M6-1B9) to down-regulate EMMPRIN cell surface expression and investigated programmed cell death response in colorectal cancer (CRC) cell, Caco-2. The scFv-M6-1B9 intrabody exhibits robust activity in reducing EMMPRIN cell surface expression. This approach led to the inducing of apoptosis, which was relative to the increasing of apoptotic bodies in sub-G1 peak, phosphatidylserine externalization, as well as TUNEL-positive cells. In addition, real-time RT-PCR and western blotting analysis indicated that apoptosis was enhanced through the mitochondrial pathway, a marked reduction of Bcl-2, leading to the translocation of cytochrome c and also the dramatic activation of caspase-3. Moreover, carcinoembryonic antigen (CEA), a tumor marker for CRC, was found to have significantly diminished in both secreted protein and mRNA levels. In conclusion, these findings suggest that EMMPRIN down-regulation by scFv-M6-1B9 intrabody has great potential in enhancing the efficacy of apoptosis induction through the mitochondrial pathway and in effecting a decline in the CEA level. Thus, its benefits could be applied to project the future prospects for targeted gene therapy and therapeutic application in monitoring colorectal cancer. PMID:25663946
Targeting nanodisks via a single chain variable antibody--apolipoprotein chimera.
Iovannisci, David M; Beckstead, Jennifer A; Ryan, Robert O
2009-02-06
Nanodisks (ND) are nanometer scale complexes of phospholipid and apolipoprotein that have been shown to function as drug delivery vehicles. ND harboring significant quantities of the antifungal agent, amphotericin B, or the bioactive isoprenoid, all trans retinoic acid, have been generated and characterized. As currently formulated, ND possess limited targeting capability. In this study, we constructed a single chain variable antibody (scFv).apolipoprotein chimera and assessed the ability of this fusion protein to form ND and recognize the antigen to which the scFv is directed. Data obtained revealed that alpha-vimentin scFv.apolipoprotein A-I is functional in ND formation and antigen recognition, opening the door to the use of such chimeras in targeting drug-enriched ND to specific tissues.
Velez‐Suberbie, M. Lourdes; Betts, John P. J.; Walker, Kelly L.; Robinson, Colin; Zoro, Barney
2017-01-01
High throughput automated fermentation systems have become a useful tool in early bioprocess development. In this study, we investigated a 24 x 15 mL single use microbioreactor system, ambr 15f, designed for microbial culture. We compared the fed‐batch growth and production capabilities of this system for two Escherichia coli strains, BL21 (DE3) and MC4100, and two industrially relevant molecules, hGH and scFv. In addition, different carbon sources were tested using bolus, linear or exponential feeding strategies, showing the capacity of the ambr 15f system to handle automated feeding. We used power per unit volume (P/V) as a scale criterion to compare the ambr 15f with 1 L stirred bioreactors which were previously scaled‐up to 20 L with a different biological system, thus showing a potential 1,300 fold scale comparability in terms of both growth and product yield. By exposing the cells grown in the ambr 15f system to a level of shear expected in an industrial centrifuge, we determined that the cells are as robust as those from a bench scale bioreactor. These results provide evidence that the ambr 15f system is an efficient high throughput microbial system that can be used for strain and molecule selection as well as rapid scale‐up. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:58–68, 2018 PMID:28748655
Nano/biosensors based on large-area graphene
NASA Astrophysics Data System (ADS)
Ducos, Pedro Jose
Two dimensional materials have properties that make them ideal for applications in chemical and biomolecular sensing. Their high surface/volume ratio implies that all atoms are exposed to the environment, in contrast to three dimensional materials with most atoms shielded from interactions inside the bulk. Graphene additionally has an extremely high carrier mobility, even at ambient temperature and pressure, which makes it ideal as a transduction device. The work presented in this thesis describes large-scale fabrication of Graphene Field Effect Transistors (GFETs), their physical and chemical characterization, and their application as biomolecular sensors. Initially, work was focused on developing an easily scalable fabrication process. A large-area graphene growth, transfer and photolithography process was developed that allowed the scaling of production of devices from a few devices per single transfer in a chip, to over a thousand devices per transfer in a full wafer of fabrication. Two approaches to biomolecules sensing were then investigated, through nanoparticles and through chemical linkers. Gold and platinum Nanoparticles were used as intermediary agents to immobilize a biomolecule. First, gold nanoparticles were monodispersed and functionalized with thiolated probe DNA to yield DNA biosensors with a detection limit of 1 nM and high specificity against noncomplementary DNA. Second, devices are modified with platinum nanoparticles and functionalized with thiolated genetically engineered scFv HER3 antibodies to realize a HER3 biosensor. Sensors retain the high affinity from the scFv fragment and show a detection limit of 300 pM. We then show covalent and non-covalent chemical linkers between graphene and antibodies. The chemical linker 1-pyrenebutanoic acid succinimidyl ester (pyrene) stacks to the graphene by Van der Waals interaction, being a completely non-covalent interaction. The linker 4-Azide-2,3,5,6-tetrafluorobenzoic acid, succinimidyl ester (azide) is a photoactivated perfluorophenyl azide that covalently binds to graphene. A comparison is shown for genetically engineered scFv HER3 antibodies and show a low detection limit of 10 nM and 100 pM for the pyrene and azide, respectively. Finally, we use the azide linker to demonstrate a large-scale fabrication of a multiplexed array for Lyme disease. Simultaneous detection of a mixture of two target proteins of the Lyme disease bacterium (Borrelia burgdorferi), this is done by separating the antibodies corresponding to each target in the mixture to different regions of the chip. We show we can differentiate concentrations of the two targets.
Investigation of the effect of physical parameters on the design of tumour targeting agents
NASA Astrophysics Data System (ADS)
Casey, Joanne Lois
Tumour targeting using radiolabelled antibodies for radioimmunodetection (RAID) and radioimmunotherapy (RIT) has been studied for many years. The main factors that have limited clinical success are low tumour uptake, immunogenicity and poor therapeutic ratios. This thesis has applied current technology to make advances in this area of research. The effect of physical parameters (antibody size, valency, affinity and charge) on the design of tumour targeting agents was studied by constructing divalent (DFM) and trivalent (TFM) forms of the murine anti-CEA antibody A5B7 Fab' by chemical cross-linking. This involves partial reduction of the hinge disulphides to expose thiol (-SH) groups and subsequent reaction with a maleimide cross-linker to form a thioether bond at the hinge region. Previous studies have suggested that the stability of thioether bonds is superior to naturally occurring disulphide bonds present at the hinge region of IgG and F(ab')2. The aim was to compare the functional affinities and in vivo tumour targeting in nude mice bearing human tumour xenografts of DFM and TFM to similar sized parent IgG and F(ab')2. Radiolabelling with 131I and 90Y was also compared with a view to determine which combination would be optimal for RIT. Results clearly demonstrated a significantly faster on-rate of DFM compared to all other antibody forms and estimated dosimetry analysis suggested that DFM would be the most suitable antibody form radiolabelled with 131I for RIT. Both F(ab')2 and DFM showed high kidney uptake levels on labelling with which is unacceptable for RIT. Despite the improved tumour: blood ratios for TFM, the increased estimated dose to normal tissues and lower therapeutic effect in RIT studies suggests that the most promising combination with the radionuclide appears to be IgG. A humanised version of A5B7 hFab' has been constructed previously in order to reduce its immunogenicity in man. The in vivo stability of hDFM proved to be superior to hF(ab')2 in the nude mouse xenograft model. To study the safety, stability and tumour targeting of hDFM a clinical trial using 131I was described here including details of production, characterisation, pharmacokinetics and dosimetry. ScFv's are known to have favourable tumour targeting characteristics compared to whole antibodies for RAID. To evaluate the clinical potential of a scFv, the methodology to prepare a phage derived scFv with the aid of a subcloned hexahistidine tail was described here. To enhance the clinical potential of scFv's a construct consisting of a hinge region containing a single cysteine residue was constructed. This enabled site-specific 99mTc-labelling and could facilitate multimerisation. One of the major limitations revealed by this and other studies is the problem associated with renal accretion of antibody fragments. Various modification techniques and blocking effects were used here in attempt to reduce the kidney uptake levels in mouse models. Reduction of the pi of A5B7 Fab by attachment of NHS-ester groups was effective in lowering kidney uptake levels, but losses in immunoreactivity could limit this approach. Attachment of PEG (5kD) to DFM did not adversely affect immunoreactivity and increased the circulation time of DFM in vivo. This has implications for reducing kidney uptake levels at early time points, in addition PEG is known to reduce immunogenicity of proteins.
Biocompatible coupling of therapeutic fusion proteins to human erythrocytes
Villa, Carlos H.; Pan, Daniel C.; Johnston, Ian H.; Greineder, Colin F.; Walsh, Landis R.; Hood, Elizabeth D.; Cines, Douglas B.; Poncz, Mortimer; Siegel, Don L.
2018-01-01
Carriage of drugs by red blood cells (RBCs) modulates pharmacokinetics, pharmacodynamics, and immunogenicity. However, optimal targets for attaching therapeutics to human RBCs and adverse effects have not been studied. We engineered nonhuman-primate single-chain antibody fragments (scFvs) directed to human RBCs and fused scFvs with human thrombomodulin (hTM) as a representative biotherapeutic cargo (hTM-scFv). Binding fusions to RBCs on band 3/glycophorin A (GPA; Wright b [Wrb] epitope) and RhCE (Rh17/Hr0 epitope) similarly endowed RBCs with hTM activity, but differed in their effects on RBC physiology. scFv and hTM-scFv targeted to band 3/GPA increased membrane rigidity and sensitized RBCs to hemolysis induced by mechanical stress, while reducing sensitivity to hypo-osmotic hemolysis. Similar properties were seen for other ligands bound to GPA and band 3 on human and murine RBCs. In contrast, binding of scFv or hTM-scFv to RhCE did not alter deformability or sensitivity to mechanical and osmotic stress at similar copy numbers bound per RBCs. Contrasting responses were also seen for immunoglobulin G antibodies against band 3, GPA, and RhCE. RBC-bound hTM-scFv generated activated protein C (APC) in the presence of thrombin, but RhCE-targeted hTM-scFv demonstrated greater APC generation per bound copy. Both Wrb- and RhCE-targeted fusion proteins inhibited fibrin deposition induced by tumor necrosis factor-α in an endothelialized microfluidic model using human whole blood. RhCE-bound hTM-scFv more effectively reduced platelet and leukocyte adhesion, whereas anti-Wrb scFv appeared to promote platelet adhesion. These data provide a translational framework for the development of engineered affinity ligands to safely couple therapeutics to human RBCs. PMID:29365311
Overcoming codon-usage bias in heterologous protein expression in Streptococcus gordonii.
Lee, Song F; Li, Yi-Jing; Halperin, Scott A
2009-11-01
One of the limitations facing the development of Streptococcus gordonii into a successful vaccine vector is the inability of this bacterium to express high levels of heterologous proteins. In the present study, we have identified 12 codons deemed as rare codons in S. gordonii and seven other streptococcal species. tRNA genes encoding 10 of the 12 rare codons were cloned into a plasmid. The plasmid was transformed into strains of S. gordonii expressing the fusion protein SpaP/S1, the anti-complement receptor 1 (CR1) single-chain variable fragment (scFv) antibody, or the Toxoplasma gondii cyclophilin C18 protein. These three heterologous proteins contained high percentages of amino acids encoded by rare codons. The results showed that the production of SpaP/S1, anti-CR1 scFv and C18 increased by 2.7-, 120- and 10-fold, respectively, over the control strains. In contrast, the production of the streptococcal SpaP protein without the pertussis toxin S1 fragment was not affected by tRNA gene supplementation, indicating that the increased production of SpaP/S1 protein was due to the ability to overcome the limitation caused by rare codons required for the S1 fragment. The increase in anti-CR1 scFv production was also observed in Streptococcus mutans following tRNA gene supplementation. Collectively, the findings in the present study demonstrate for the first time, to the best of our knowledge, that codon-usage bias exists in Streptococcus spp. and the limitation of heterologous protein expression caused by codon-usage bias can be overcome by tRNA supplementation.
Syvänen, Stina; Hultqvist, Greta; Gustavsson, Tobias; Gumucio, Astrid; Laudon, Hanna; Söderberg, Linda; Ingelsson, Martin; Lannfelt, Lars; Sehlin, Dag
2018-05-24
Amyloid-β (Aβ) immunotherapy is one of the most promising disease-modifying strategies for Alzheimer's disease (AD). Despite recent progress targeting aggregated forms of Aβ, low antibody brain penetrance remains a challenge. In the present study, we used transferrin receptor (TfR)-mediated transcytosis to facilitate brain uptake of our previously developed Aβ protofibril-selective mAb158, with the aim of increasing the efficacy of immunotherapy directed toward soluble Aβ protofibrils. Aβ protein precursor (AβPP)-transgenic mice (tg-ArcSwe) were given a single dose of mAb158, modified for TfR-mediated transcytosis (RmAb158-scFv8D3), in comparison with an equimolar dose or a tenfold higher dose of unmodified recombinant mAb158 (RmAb158). Soluble Aβ protofibrils and total Aβ in the brain were measured by enzyme-linked immunosorbent assay (ELISA). Brain distribution of radiolabeled antibodies was visualized by positron emission tomography (PET) and ex vivo autoradiography. ELISA analysis of Tris-buffered saline brain extracts demonstrated a 40% reduction of soluble Aβ protofibrils in both RmAb158-scFv8D3- and high-dose RmAb158-treated mice, whereas there was no Aβ protofibril reduction in mice treated with a low dose of RmAb158. Further, ex vivo autoradiography and PET imaging revealed different brain distribution patterns of RmAb158-scFv8D3 and RmAb158, suggesting that these antibodies may affect Aβ levels by different mechanisms. With a combination of biochemical and imaging analyses, this study demonstrates that antibodies engineered to be transported across the blood-brain barrier can be used to increase the efficacy of Aβ immunotherapy. This strategy may allow for decreased antibody doses and thereby reduced side effects and treatment costs.
Molek, Peter; Vodnik, Miha; Strukelj, Borut; Bratkovič, Tomaž
2014-09-26
Initially considered the main endogenous anorexigenic factor, fat-derived leptin turned out to be a markedly pleiotropic hormone, influencing diverse physiological processes. Moreover, hyperleptinemia in obese individuals has been linked to the onset or progression of serious disorders, such as cancer, autoimmune diseases, and atherosclerosis, and antagonizing peripheral leptin's signalization has been shown to improve these conditions. To develop an antibody-based leptin antagonist we have devised a tailored panning procedure and screened two phage display libraries of single chain variable antibody fragments (scFvs) against recombinant leptin receptor. One of the scFvs was expressed in Escherichia coli and its interaction with leptin receptor was characterized in more detail. It was found to recognize a discontinuous epitope and to compete with leptin for receptor binding with IC50 and Kd values in the nanomolar range. The reported scFv represents a lead for development of leptin antagonists that may ultimately find use in therapy of various hyperleptinemia-related disorders. Copyright © 2014 Elsevier Inc. All rights reserved.
2017-05-01
a quality program for the standardization of test methods to support comprehensive characterization and comparison of the physical and functional...1 2. MATERIALS AND METHODS ...4 2.8 SPR Methodology
2016-08-01
platforms. 15. SUBJECT TERMS Antibody Antibody Technology Program (ATP) Quality Enzyme-linked immunosorbent assay ( ELISA ) Biosurveillance Single-chain...2.6 Thermal Stress Test............................................................................................4 2.7 ELISA ...3.5 ELISA Results .................................................................................................11 3.6 SPR Results
Polyfunctional response by ImmTAC (IMCgp100) redirected CD8+ and CD4+ T cells.
Boudousquie, Caroline; Bossi, Giovanna; Hurst, Jacob M; Rygiel, Karolina A; Jakobsen, Bent K; Hassan, Namir J
2017-11-01
The success of immune system-based cancer therapies depends on a broad immune response engaging a range of effector cells and mechanisms. Immune mobilizing monoclonal T cell receptors (TCRs) against cancer (ImmTAC™ molecules: fusion proteins consisting of a soluble, affinity enhanced TCR and an anti-CD3 scFv antibody) were previously shown to redirect CD8 + and CD4 + T cells against tumours. Here we present evidence that IMCgp100 (ImmTAC recognizing a peptide derived from the melanoma-specific protein, gp100, presented by HLA-A*0201) efficiently redirects and activates effector and memory cells from both CD8 + and CD4 + repertoires. Using isolated subpopulations of T cells, we find that both terminally differentiated and effector memory CD8 + T cells redirected by IMCgp100 are potent killers of melanoma cells. Furthermore, CD4 + effector memory T cells elicit potent cytotoxic activity leading to melanoma cell killing upon redirection by IMCgp100. The majority of T cell subsets belonging to both the CD8 + and CD4 + repertoires secrete key pro-inflammatory cytokines (tumour necrosis factor-α, interferon-γ, interleukin-6) and chemokines (macrophage inflammatory protein-1α-β, interferon-γ-inducible protein-10, monocyte chemoattractant protein-1). At an individual cell level, IMCgp100-redirected T cells display a polyfunctional phenotype, which is a hallmark of a potent anti-cancer response. This study demonstrates that IMCgp100 induces broad immune responses that extend beyond the induction of CD8 + T cell-mediated cytotoxicity. These findings are of particular importance because IMCgp100 is currently undergoing clinical trials as a single agent or in combination with check point inhibitors for patients with malignant melanoma. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.
Borek, Aleksandra; Sokolowska-Wedzina, Aleksandra; Chodaczek, Grzegorz; Otlewski, Jacek
2018-01-01
Fibroblast growth factor receptors (FGFRs) are promising targets for antibody-based cancer therapies, as their substantial overexpression has been found in various tumor cells. Aberrant activation of FGF receptor 2 (FGFR2) signaling through overexpression of FGFR2 and/or its ligands, mutations, or receptor amplification has been reported in multiple cancer types, including gastric, colorectal, endometrial, ovarian, breast and lung cancer. In this paper, we describe application of the phage display technology to produce a panel of high affinity single chain variable antibody fragments (scFvs) against the extracellular ligand-binding domain of FGFR2 (ECD_FGFR2). The binders were selected from the human single chain variable fragment scFv phage display libraries Tomlinson I + J and showed high specificity and binding affinity towards human FGFR2 with nanomolar KD values. To improve the affinity of the best binder selected, scFvF7, we reformatted it to a bivalent diabody format, or fused it with the Fc region (scFvF7-Fc). The scFvF7-Fc antibody construct presented the highest affinity for FGFR2, with a KD of 0.76 nM, and was selectively internalized into cancer cells overexpressing FGFR2, Snu-16 and NCI-H716. Finally, we prepared a conjugate of scFvF7-Fc with the cytotoxic drug monomethyl-auristatin E (MMAE) and evaluated its cytotoxicity. The conjugate delivered MMAE selectively to FGFR2-positive tumor cells. These results indicate that scFvF7-Fc-vcMMAE is a highly potent molecule for the treatment of cancers with FGFR2 overexpression.
T Cell Receptor Engineering and Analysis Using the Yeast Display Platform
Smith, Sheena N.; Harris, Daniel T.; Kranz, David M.
2017-01-01
The αβ heterodimeric T cell receptor (TCR) recognizes peptide antigens that are transported to the cell surface as a complex with a protein encoded by the major histocompatibility complex (MHC). T cells thus evolved a strategy to sense these intracellular antigens, and to respond either by eliminating the antigen-presenting cell (e.g. a virus-infected cell) or by secreting factors that recruit the immune system to the site of the antigen. The central role of the TCR in the binding of antigens as peptide-MHC (pepMHC) ligands has now been studied thoroughly. Interestingly, despite their exquisite sensitivity (e.g. T cell activation by as few as 1 to 3 pepMHC complexes on a single target cell), TCRs are known to have relatively low affinities for pepMHC, with KD values in the micromolar range. There has been interest in engineering the affinity of TCRs in order to use this class of molecules in ways similar to now done with antibodies. By doing so, it would be possible to harness the potential of TCRs as therapeutics against a much wider array of antigens that include essentially all intracellular targets. To engineer TCRs, and to analyze their binding features more rapidly, we have used a yeast display system as a platform. Expression and engineering of a single-chain form of the TCR, analogous to scFv fragments from antibodies, allow the TCR to be affinity matured with a variety of possible pepMHC ligands. In addition, the yeast display platform allows one to rapidly generate TCR variants with diverse binding affinities and to analyze specificity and affinity without the need for purification of soluble forms of the TCRs. The present chapter describes the methods for engineering and analyzing single-chain TCRs using yeast display. PMID:26060072
Dual-Targeted Theranostic Delivery of miRs Arrests Abdominal Aortic Aneurysm Development.
Wang, Xiaowei; Searle, Amy Kate; Hohmann, Jan David; Liu, Ao Leo; Abraham, Meike-Kristin; Palasubramaniam, Jathushan; Lim, Bock; Yao, Yu; Wallert, Maria; Yu, Eefang; Chen, Yung-Chih; Peter, Karlheinz
2018-04-04
Abdominal aortic aneurysm (AAA) is an often deadly disease without medical, non-invasive treatment options. The upregulation of vascular cell adhesion molecule-1 (VCAM-1) on aortic endothelium provides an early target epitope for a novel biotechnological theranostic approach. MicroRNA-126 was used as a therapeutic agent, based on its capability to downregulate VCAM-1 expression in endothelial cells and thereby reduces leukocyte adhesion and exerts anti-inflammatory effects. Ultrasound microbubbles were chosen as carriers, allowing both molecular imaging as well as targeted therapy of AAA. Microbubbles were coupled with a VCAM-1-targeted single-chain antibody (scFv mVCAM-1 ) and a microRNA-126 mimic (M 126 ) constituting theranostic microbubbles (Targ MB -M 126 ). Targ MB -M 126 downregulates VCAM-1 expression in vitro and in an in vivo acute inflammatory murine model. Most importantly, using Targ MB -M 126 and ultrasound-guided burst delivery of M 126 , the development of AAA in an angiotensin-II-induced mouse model can be prevented. Overall, we describe a unique biotechnological theranostic approach with the potential for early diagnosis and long-sought-after medical therapy of AAA. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Sadreddini, Sanam; Seifi-Najmi, Mehrnosh; Ghasemi, Babollah; Kafil, Hossein Samadi; Alinejad, Vahideh; Sadreddini, Sevil; Younesi, Vahid; Jadidi-Niaragh, Farhad; Yousefi, Mehdi
2015-12-23
Tetanus neurotoxin (TeNT) is composed of a light (LC) and heavy chain (HC) polypeptides, released by anaerobic bacterium Clostridium tetani and can cause fatal life-threatening infectious disease. Toxin HC and LC modules represents receptor binding and zinc metalloprotease activity, respectively. The passive administration of animal-derived antibodies against tetanus toxin has been considered as the mainstay therapy for years. However, this treatment is associated with several adverse effects due to the presence of anti-isotype antibodies. In the present study, we have produced the fully human single chain antibody fragments (HuScFv) from two human antibody phage display libraries. Twenty-four different HuscFvs were isolated from two anti TeNT immune libraries. Our produced human ScFv (HuScFv) were converted to IgG platform and analyzed regarding their specific reactivity to TeNT. All of the selected scFvs have the same VL but different VH. Three HuscFvs from the first library (TTX15, 51, 75) and two HuscFvs from the second library (TTX16, 20) were chosen to convert to IgG1 using pOptiVEC and pcDNA3.3 systems. Production of IgG1 from transfected DG44 and binding capacity of them to tetanus toxin and toxoid were measured by ELISA. ELISA results showed no detectable production of TTX16 and TTX20 IgG1. Although, TTX51 and TTX75 were converted and produced as IgG1, no reactivity to tetanus toxin and toxoid was observed. However, TTX15 was successfully produced as whole IgG1 platform with reactivity to both tetanus toxin and toxoid. The latter would be an appropriate replacement for conventional polyclonal antibodies if would meet the further characterization including specificity determination, affinity measurement and toxin neutralizing assays. Our results demonstrated production of functional IgG1 derived from TTX15 scFv and might be an appropriate replacement for polyclonal Tetabulin but it needs further characterization.
Velez-Suberbie, M Lourdes; Betts, John P J; Walker, Kelly L; Robinson, Colin; Zoro, Barney; Keshavarz-Moore, Eli
2018-01-01
High throughput automated fermentation systems have become a useful tool in early bioprocess development. In this study, we investigated a 24 x 15 mL single use microbioreactor system, ambr 15f, designed for microbial culture. We compared the fed-batch growth and production capabilities of this system for two Escherichia coli strains, BL21 (DE3) and MC4100, and two industrially relevant molecules, hGH and scFv. In addition, different carbon sources were tested using bolus, linear or exponential feeding strategies, showing the capacity of the ambr 15f system to handle automated feeding. We used power per unit volume (P/V) as a scale criterion to compare the ambr 15f with 1 L stirred bioreactors which were previously scaled-up to 20 L with a different biological system, thus showing a potential 1,300 fold scale comparability in terms of both growth and product yield. By exposing the cells grown in the ambr 15f system to a level of shear expected in an industrial centrifuge, we determined that the cells are as robust as those from a bench scale bioreactor. These results provide evidence that the ambr 15f system is an efficient high throughput microbial system that can be used for strain and molecule selection as well as rapid scale-up. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:58-68, 2018. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.
Greineder, Colin F.; Brenza, Jacob B.; Carnemolla, Ronald; Zaitsev, Sergei; Hood, Elizabeth D.; Pan, Daniel C.; Ding, Bi-Sen; Esmon, Charles T.; Chacko, Ann Marie; Muzykantov, Vladimir R.
2015-01-01
Anchoring pharmacologic agents to the vascular lumen has the potential to modulate critical processes at the blood–tissue interface, avoiding many of the off-target effects of systemically circulating agents. We report a novel strategy for endothelial dual targeting of therapeutics, which both enhances drug delivery and enables targeted agents to partner enzymatically to generate enhanced biologic effect. Based on the recent discovery that paired antibodies directed to adjacent epitopes of platelet endothelial cell adhesion molecule (PECAM)-1 stimulate each other’s binding, we fused single-chain fragments (scFv) of paired anti-mouse PECAM-1 antibodies to recombinant murine thrombomodulin (TM) and endothelial protein C receptor (EPCR), endothelial membrane proteins that partner in activation of protein C (PC). scFv/TM and scFv/EPCR bound to mouse endothelial PECAM-1 with high affinity (EC50 1.5 and 3.8 nM, respectively), and codelivery induced a 5-fold increase in PC activation not seen when TM and EPCR are anchored to distinct cell adhesion molecules. In a mouse model of acute lung injury, dual targeting reduces both the expression of lung inflammatory markers and trans-endothelial protein leak by as much as 40%, as compared to either agent alone. These findings provide proof of principle for endothelial dual targeting, an approach with numerous potential biomedical applications.—Greineder, C. F., Brenza, J. B., Carnemolla, R., Zaitsev, S., Hood, E. D., Pan, D. C., Ding, B.-S., Esmon, C. T., Chacko, A. M., Muzykantov, V. R. Dual targeting of therapeutics to endothelial cells: collaborative enhancement of delivery and effect. PMID:25953848
Brockmann, Eeva-Christine; Huovinen, Tuomas; Guglielmetti, Simone; Mora, Diego; Taverniti, Valentina; Arioli, Stefania; De Noni, Ivano; Lamminmäki, Urpo
2014-01-01
Single-chain variable-fragment antibodies (scFvs) have considerable potential in immunological detection and localization of bacterial surface structures. In this study, synthetic phage-displayed antibody libraries were used to select scFvs against immunologically active S-layer protein of Lactobacillus helveticus MIMLh5. After three rounds of panning, five relevant phage clones were obtained, of which four were specific for the S-layer protein of L. helveticus MIMLh5 and one was also capable of binding to the S-layer protein of L. helveticus ATCC 15009. All five anti-S-layer scFvs were expressed in Escherichia coli XL1-Blue, and their specificity profiles were characterized by Western blotting. The anti-S-layer scFv PolyH4, with the highest specificity for the S-layer protein of L. helveticus MIMLh5, was used to detect the S-layer protein in Grana Padano protected-designation-of-origin (PDO) cheese extracts by Western blotting. These results showed promising applications of this monoclonal antibody for the detection of immunomodulatory S-layer protein in dairy (and dairy-based) foods. PMID:24242242
USDA-ARS?s Scientific Manuscript database
Xylella fastidiosa is a gram-negative member of the gamma proteobacteria. Xylella fastidiosa subsp pauca causes citrus variegated chlorosis in Brazil and enjoys ‘select agent’ status in the United States. Antibody based detection assays are commercially available for Xylella fastidiosa, and are ef...
USDA-ARS?s Scientific Manuscript database
Xylella fastidiosa is a member of the gamma proteobacteria. It is fastidious, insect-vectored and xylem-limited and causes a variety of diseases, some severe, on a wide range of economically important perennial crops, including grape and citrus. Xylella fastidiosa subsp pauca causes citrus variegat...
Bhaskaran, S; Jay, C M; Berghman, L R; Wagner, G G; Waghela, S D
2005-08-01
Bovine colibacillosis caused by enterotoxigenic Escherichia coli (ETEC) is a worldwide problem. Adhesion of ETEC to intestinal cell receptors mediated by the surface protein F5 fimbriae is the initial step in the establishment of colibacillosis. Prevention of ETEC F5(+) adhesion to enterocytes protects newborn calves against collibacillosis. On the enterocytes, the F5 fimbriae bind to a ganglioside that is also found on horse red blood cells. Thus, the presence of F5 fimbriae induces haemagglutination, which is useful as an indicator in a functional assay system. In this study, recombinant anti-F5 scFv antibody fragment produced in E. coli HB2151 reacted with F5 fimbriae in ELISA and Western immunoblot, and prevented haemagglutination induced by the binding of the F5 fimbriae to its natural host receptors on horse red blood cells. Given the ease with which recombinant antibodies can be mass-produced, the presently described scFv may hold promise as a prophylactic agent for colibacillosis.
Song, Yong-Hong; Sun, Xue-Wen; Jiang, Bo; Liu, Ji-En; Su, Xian-Hui
2015-12-01
Design of experiment (DoE) is a statistics-based technique for experimental design that could overcome the shortcomings of traditional one-factor-at-a-time (OFAT) approach for protein purification optimization. In this study, a DoE approach was applied for optimizing purification of a recombinant single-chain variable fragment (scFv) against type 1 insulin-like growth factor receptor (IGF-1R) expressed in Escherichia coli. In first capture step using Capto L, a 2-level fractional factorial analysis and successively a central composite circumscribed (CCC) design were used to identify the optimal elution conditions. Two main effects, pH and trehalose, were identified, and high recovery (above 95%) and low aggregates ratio (below 10%) were achieved at the pH range from 2.9 to 3.0 with 32-35% (w/v) trehalose added. In the second step using cation exchange chromatography, an initial screening of media and elution pH and a following CCC design were performed, whereby the optimal selectivity of the scFv was obtained on Capto S at pH near 6.0, and the optimal conditions for fulfilling high DBC and purity were identified as pH range of 5.9-6.1 and loading conductivity range of 5-12.5 mS/cm. Upon a further gel filtration, the final purified scFv with a purity of 98% was obtained. Finally, the optimized conditions were verified by a 20-fold scale-up experiment. The purities and yields of intermediate and final products all fell within the regions predicted by DoE approach, suggesting the robustness of the optimized conditions. We proposed that the DoE approach described here is also applicable in production of other recombinant antibody constructs. Copyright © 2015 Elsevier Inc. All rights reserved.
Kleinpeter, Patricia; Fend, Laetitia; Thioudellet, Christine; Geist, Michel; Sfrontato, Nathalie; Koerper, Véronique; Fahrner, Catherine; Schmitt, Doris; Gantzer, Murielle; Remy-Ziller, Christelle; Brandely, Renée; Villeval, Dominique; Rittner, Karola; Silvestre, Nathalie; Erbs, Philippe; Zitvogel, Laurence; Quéméneur, Eric; Préville, Xavier; Marchand, Jean-Baptiste
2016-01-01
We report here the successful vectorization of a hamster monoclonal IgG (namely J43) recognizing the murine Programmed cell death-1 (mPD-1) in Western Reserve (WR) oncolytic vaccinia virus. Three forms of mPD-1 binders have been inserted into the virus: whole antibody (mAb), Fragment antigen-binding (Fab) or single-chain variable fragment (scFv). MAb, Fab and scFv were produced and assembled with the expected patterns in supernatants of cells infected by the recombinant viruses. The three purified mPD-1 binders were able to block the binding of mPD-1 ligand to mPD-1 in vitro . Moreover, mAb was detected in tumor and in serum of C57BL/6 mice when the recombinant WR-mAb was injected intratumorally (IT) in B16F10 and MCA 205 tumors. The concentration of circulating mAb detected after IT injection was up to 1,900-fold higher than the level obtained after a subcutaneous (SC) injection (i.e., without tumor) confirming the virus tropism for tumoral cells and/or microenvironment. Moreover, the overall tumoral accumulation of the mAb was higher and lasted longer after IT injection of WR-mAb1, than after IT administration of 10 µg of J43. The IT injection of viruses induced a massive infiltration of immune cells including activated lymphocytes (CD8 + and CD4 + ). Interestingly, in the MCA 205 tumor model, WR-mAb1 and WR-scFv induced a therapeutic control of tumor growth similar to unarmed WR combined to systemically administered J43 and superior to that obtained with an unarmed WR. These results pave the way for next generation of oncolytic vaccinia armed with immunomodulatory therapeutic proteins such as mAbs.
Kleinpeter, Patricia; Fend, Laetitia; Thioudellet, Christine; Geist, Michel; Sfrontato, Nathalie; Koerper, Véronique; Fahrner, Catherine; Schmitt, Doris; Gantzer, Murielle; Remy-Ziller, Christelle; Brandely, Renée; Villeval, Dominique; Rittner, Karola; Silvestre, Nathalie; Erbs, Philippe; Zitvogel, Laurence; Quéméneur, Eric; Préville, Xavier; Marchand, Jean-Baptiste
2016-01-01
ABSTRACT We report here the successful vectorization of a hamster monoclonal IgG (namely J43) recognizing the murine Programmed cell death-1 (mPD-1) in Western Reserve (WR) oncolytic vaccinia virus. Three forms of mPD-1 binders have been inserted into the virus: whole antibody (mAb), Fragment antigen-binding (Fab) or single-chain variable fragment (scFv). MAb, Fab and scFv were produced and assembled with the expected patterns in supernatants of cells infected by the recombinant viruses. The three purified mPD-1 binders were able to block the binding of mPD-1 ligand to mPD-1 in vitro. Moreover, mAb was detected in tumor and in serum of C57BL/6 mice when the recombinant WR-mAb was injected intratumorally (IT) in B16F10 and MCA 205 tumors. The concentration of circulating mAb detected after IT injection was up to 1,900-fold higher than the level obtained after a subcutaneous (SC) injection (i.e., without tumor) confirming the virus tropism for tumoral cells and/or microenvironment. Moreover, the overall tumoral accumulation of the mAb was higher and lasted longer after IT injection of WR-mAb1, than after IT administration of 10 µg of J43. The IT injection of viruses induced a massive infiltration of immune cells including activated lymphocytes (CD8+ and CD4+). Interestingly, in the MCA 205 tumor model, WR-mAb1 and WR-scFv induced a therapeutic control of tumor growth similar to unarmed WR combined to systemically administered J43 and superior to that obtained with an unarmed WR. These results pave the way for next generation of oncolytic vaccinia armed with immunomodulatory therapeutic proteins such as mAbs. PMID:27853644
2016-03-01
performance in an enzyme-linked immunosorbent assay ( ELISA ), with little regard for quantification of the full spectrum of variables affecting antibody...Program (ATP) Quality MS2 coat protein (MS2CP) Enzyme-linked immunosorbent assay ( ELISA ) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...5 2.7 ELISA ................................................................................................................5
Fatemi, Farnaz; Amini, Seyed Mohammad; Kharrazi, Sharmin; Rasaee, Mohammad Javad; Mazlomi, Mohammad Ali; Asadi-Ghalehni, Majid; Rajabibazl, Masoumeh; Sadroddiny, Esmaeil
2017-11-01
The most common techniques of antibody phage display are based on the use of M13 filamentous bacteriophages. This study introduces a new genetically engineered M13K07 helper phage displaying multiple copies of a known gold binding peptide on p8 coat proteins. The recombinant helper phages were used to rescue a phagemid vector encoding the p3 coat protein fused to the nuclear matrix protein 22 (NMP22) ScFv antibody. Transmission electron microscopy (TEM), UV-vis absorbance spectroscopy, and field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectroscopy (EDX) analysis revealed that the expression of gold binding peptide 1 (GBP1) on major coat protein p8 significantly enhances the gold-binding affinity of M13 phages. The recombinant bacteriophages at concentrations above 5×10 4 pfu/ml red-shifted the UV-vis absorbance spectra of gold nanoparticles (AuNPs); however, the surface plasmon resonance of gold nanoparticles was not changed by the wild type bacteriophages at concentrations up to 10 12 pfu/ml. The phage ELISA assay demonstrated the high affinity binding of bifunctional bacteriophages to NMP22 antigen at concentrations of 10 5 and 10 6 pfu/ml. Thus, the p3 end of the bifunctional bacteriophages would be able to bind to specific target antigen, while the AuNPs were assembled along the coat of virus for signal generation. Our results indicated that the complex of antigen-bacteriophages lead to UV-vis spectral changes of AuNPs and NMP22 antigen in concentration range of 10-80μg/ml can be detected by bifunctional bacteriophages at concentration of 10 4 pfu/ml. The ability of bifunctional bacteriophages to bind to antigen and generate signal at the same time, makes this approach applicable for identifying different antigens in immunoassay techniques. Copyright © 2017 Elsevier B.V. All rights reserved.
Modification of Antibody Function by Mutagenesis.
Dasch, James R; Dasch, Amy L
2017-09-01
The ability to "fine-tune" recombinant antibodies by mutagenesis separates recombinant antibodies from hybridoma-derived antibodies because the latter are locked with respect to their properties. Recombinant antibodies can be modified to suit the application: Changes in isotype, format (e.g., scFv, Fab, bispecific antibodies), and specificity can be made once the heavy- and light-chain sequences are available. After immunoglobulin heavy and light chains for a particular antibody have been cloned, the binding site-namely, the complementarity determining regions (CDR)-can be manipulated by mutagenesis to obtain antibody variants with improved properties. The method described here is relatively simple, uses commercially available reagents, and is effective. Using the pComb3H vector, a commercial mutagenesis kit, PfuTurbo polymerase (Agilent), and two mutagenic primers, a library of phage with mutagenized heavy and light CDR3 can be obtained. © 2017 Cold Spring Harbor Laboratory Press.
Xi, Hualong; Zhang, Kaixin; Yin, Yanchun; Gu, Tiejun; Sun, Qing; Li, Zhuang; Cheng, Yue; Jiang, Chunlai; Kong, Wei; Wu, Yongge
2017-06-01
Rabies is an acute zoonotic infectious disease with a high fatality rate but is preventable with vaccination and rabies immunoglobulin (RIG). The single-chain Fv fragment (scFv), a small engineered antigen-binding protein derived from antibody variable heavy (V H ) and light (V L ) chains connected by a peptide linker, can potentially be used to replace RIG. Here, we produced two peptides V H -JUN-HIS and V L -FOS-HA separately in Escherichia coli and assembled them to form zipFv successfully in vitro. The new zipFv utilizes FOS and JUN leucine zippers to form an antibody structure similar to the IgG counterpart with two free N-terminal ends of V H and V L . The zipFv protein showed notable improvement in binding ability and affinity over its corresponding scFv. The zipFv also demonstrated greater stability in serum and the same protective rate as RIG against challenge with a standard rabies virus (CVS-24) in mice. Our results indicated zipFv as a novel and efficient antibody form with enhanced neutralizing potency. Copyright © 2017. Published by Elsevier B.V.
Cai, Zheng; Fu, Ting; Nagai, Yasuhiro; Lam, Lian; Yee, Marla; Zhu, Zhiqiang; Zhang, Hongtao
2013-01-01
Recruitment of immune cells to tumor cells targeted by a therapeutic antibody can heighten the antitumor efficacy of the antibody. For example, p185her2/neu-targeting antibodies not only downregulate the p185her2/neu kinase (ERBB2) but also trigger complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC) through the antibody Fc region. Here we describe a generalized strategy to improve immune cell recruitment to targeted cancer cells, using a modified scFv antibody we call a “grababody” that binds the target protein and endogenous immunoglobulins. The model system we used to illustrate the utility of this platform recognizes p185her2/neu and includes an IgG binding domain. The recombinant scFv grababody that was created recruited circulating human IgGs and attracted immune cells carrying Fc receptors to tumor cells that expressed p185her2/neu. The presence of the IgG binding domain significantly enhanced CDC and ADCC activity and improved anti-tumor activity in vivo. Our results illustrate a novel general approach to improve antibody-like proteins for therapeutic applications. PMID:23396586
Ozaki, Christiane Y; Silveira, Caio R F; Andrade, Fernanda B; Nepomuceno, Roberto; Silva, Anderson; Munhoz, Danielle D; Yamamoto, Bruno B; Luz, Daniela; Abreu, Patrícia A E; Horton, Denise S P Q; Elias, Waldir P; Ramos, Oscar H P; Piazza, Roxane M F
2015-01-01
Diarrhea is a prevalent pathological condition frequently associated to the colonization of the small intestine by enterotoxigenic Escherichia coli (ETEC) strains, known to be endemic in developing countries. These strains can produce two enterotoxins associated with the manifestation of clinical symptoms that can be used to detect these pathogens. Although several detection tests have been developed, minimally equipped laboratories are still in need of simple and cost-effective methods. With the aim to contribute to the development of such diagnostic approaches, we describe here two mouse hybridoma-derived single chain fragment variable (scFv) that were produced in E. coli against enterotoxins of ETEC strains. Recombinant scFv were developed against ETEC heat-labile toxin (LT) and heat-stable toxin (ST), from previously isolated hybridoma clones. This work reports their design, construction, molecular and functional characterization against LT and ST toxins. Both antibody fragments were able to recognize the cell-interacting toxins by immunofluorescence, the purified toxins by ELISA and also LT-, ST- and LT/ST-producing ETEC strains. The developed recombinant scFvs against LT and ST constitute promising starting point for simple and cost-effective ETEC diagnosis.
Specific Visualization of Tumor Cells Using Upconversion Nanophosphors
Grebenik, E. A.; Generalova, A. N.; Nechaev, A. V.; Khaydukov, E.V.; Mironova, K. E.; Stremovskiy, O. A.; Lebedenko, E.N.; Zvyagin, A. V.; Deyev, S. M.
2014-01-01
The development of targeted constructs on the basis of photoluminescent nanoparticles with a high photo- and chemical stability and absorption/emission spectra in the “transparency window” of biological tissues is an important focus area of present-day medical diagnostics. In this work, a targeted two-component construct on the basis of upconversion nanophosphors (UCNPs) and anti-tumor 4D5 scFv was developed for selective labeling of tumor cells overexpressing the HER2 tumor marker characteristic of a number of human malignant tumors. A high affinity barnase : barstar (Bn : Bs) protein pair, which exhibits high stability in a wide range of pH and temperatures, was exploited as a molecular adapter providing self-assembly of the two-component construct. High selectivity for the binding of the two-component 4D5 scFv-Bn : UCNP-Bs construct to human breast adenocarcinoma SK-BR-3 cells overexpressing HER2 was demonstrated. This approach provides an opportunity to produce similar constructs for the visualization of different specific markers in pathogenic tissues, including malignant tumors. PMID:25558394
The complementarity-determining region sequences in IgY antivenom hypervariable regions.
da Rocha, David Gitirana; Fernandez, Jorge Hernandez; de Almeida, Claudia Maria Costa; da Silva, Claudia Letícia; Magnoli, Fabio Carlos; da Silva, Osmair Élder; da Silva, Wilmar Dias
2017-08-01
The data presented in this article are related to the research article entitled "Development of IgY antibodies against anti-snake toxins endowed with highly lethal neutralizing activity" (da Rocha et al., 2017) [1]. Complementarity-determining region (CDR) sequences are variable antibody (Ab) sequences that respond with specificity, duration and strength to identify and bind to antigen (Ag) epitopes. B lymphocytes isolated from hens immunized with Bitis arietans (Ba) and anti- Crotalus durissus terrificus (Cdt) venoms and expressing high specificity, affinity and toxicity neutralizing antibody titers were used as DNA sources. The VLF1, CDR1, CDR2, VLR1 and CDR3 sequences were validated by BLASTp, and values corresponding to IgY V L and V H anti-Ba or anti-Cdt venoms were identified, registered [ Gallus gallus IgY Fv Light chain (GU815099)/ Gallus gallus IgY Fv Heavy chain (GU815098)] and used for molecular modeling of IgY scFv anti-Ba. The resulting CDR1, CDR2 and CDR3 sequences were combined to construct the three - dimensional structure of the Ab paratope.
Bivalent monoclonal IgY antibody formats by conversion of recombinant antibody fragments.
Greunke, Kerstin; Spillner, Edzard; Braren, Ingke; Seismann, Henning; Kainz, Sabine; Hahn, Ulrich; Grunwald, Thomas; Bredehorst, Reinhard
2006-07-13
Monoclonal IgY have the potential to become unique tools for diagnostic research and therapeutic purposes since avian antibodies provide several advantages due to their phylogenetic difference when compared to mammalian antibodies. The mechanism of avian immunoglobulin gene diversification renders chicken an excellent source for the generation of recombinant scFv as well as Fab antibody libraries of high diversity. One major limitation of these antibody fragments, however, is their monovalent format, impairing the functional affinity of the molecules and, thereby, their applicability in prevalent laboratory methods. In this study, we generated vectors for conversion of avian recombinant antibody fragments into different types of bivalent IgY antibody formats. To combine the properties of established mammalian monoclonal antibodies with those of IgY constant domains, we additionally generated bivalent murine/avian chimeric antibody constructs. When expressed in HEK-293 cells, all constructs yielded bivalent disulfide-linked antibodies, which exhibit a glycosylation pattern similar to that of native IgY as assessed by lectin blot analysis. After purification by one step procedures, the chimeric and the entire avian bivalent antibody formats were analyzed for antigen binding and interaction with secondary reagents. The data demonstrate that all antibody formats provide comparable antigen binding characteristics and the well established properties of avian constant domains.
Leow, Chiuan Herng; Jones, Martina; Cheng, Qin; Mahler, Stephen; McCarthy, James
2014-07-18
Early and accurate diagnosis of Plasmodium falciparum infection is important for providing appropriate treatment to patients with malaria. However, technical limitations of currently available diagnostic tests limit their use in control programs. One possible explanation for the vulnerability of current antibodies used in RDTs is their propensity to degrade at high ambient temperatures. Isolation of new antibodies with better thermal stability represents an appealing approach to improve the performance of RDTs. In this study, phage display technology was deployed to isolate novel binders by screening a human naïve scFv antibody library against recombinant Plasmodium falciparum histidine rich protein 2 (rPfHRP2). The isolated scFv clones were reformatted to whole IgG and the recombinant mAbs were produced in a mammalian CHO cell expression system. To verify the biological activity of these purified recombinant mAbs, range of functional assays were characterized. Two unique clones (D2 and F9) were isolated after five rounds of biopanning. The reformatted and expressed antibodies demonstrated high binding specificity to malaria recombinant PfHRP2 and native proteins. When 5 μg/mL of mAbs applied, mAb C1-13 had the highest sensitivity, with an OD value of 1, the detection achieved 5 ng/mL of rPfHRP2, followed by mAbs D2 and F9 at 10 ng/mL and 100 ng/mL of rPfHRP2, respectively. Although the sensitivity of mAbs D2 and F9 was lower than the control, these recombinant human mAbs have shown better stability compared to mouse mAb C1-13 at various temperatures in DSC and blot assays. In view of epitope mapping, the predominant motif of rPfHRP2 recognized by mAb D2 was AHHAADAHHA, whereas mAb F9 was one amino acid shorter, resulting in AHHAADAHH. mAb F9 had the strongest binding affinity to rPfHRP2 protein, with a KD value of 4.27 × 10(-11) M, followed by control mAb C1-13 at 1.03 × 10(-10) M and mAb D2 at 3.05 × 10(-10) M. Overall, the performance of these mAbs showed comparability to currently available PfHRP2-specific mouse mAb C1-13. The stability of these novel binders indicate that they merit further work to evaluate their utility in the development of new generation point of care diagnosis of malaria.
[Targeted detecting HER2 expression with recombinant anti HER2 ScFv-GFP fusion antibody].
Gao, Guohui; Chen, Chong; Yang, Yanmei; Yang, Han; Wang, Jindan; Zheng, Yi; Huang, Qidi; Hu, Xiaoqu
2012-08-01
To verify the reliability of targeted detecting HER2 positive cancer cells and clinical pathological tissue specimens with a recombinant anti HER2 single chain antibody in single chain Fv fragment (scFv) format, we have constructed the fusion variable regions of the ScFv specific for HER2/neu. labeled a green-fluorescent protein(GFP). The humanized recombinant Anti HER2 ScFv-GFP gene was inserted into pFast Bac HT A, and expressed in insect cells sf9. Then the recombinant fusion protein Anti HER2 ScFv-GFP was properly purified with Ni2+-NTA affinity chromatography from the infected sf9 cells used to test the specificity of the fusion antibody for HER2 positive cancer cells. Firstly, the purified antibody incubated with HER2 positive breast cancer cells SKBR3, BT474 and HER2 negative breast cancer cells MCF7 for 12 h/24 h/48 h at 37 degrees C, in order to confirm targeted detecting HER2 positive breast cancer cells by Laser Confocal Microscopy. Furthermore, the same clinical pathological tissue samples were assessed by immunohistochemistry (IHC) and the fusion antibody Anti HER2 ScFv-GFP in the meanwhile. The data obtained indicated that the recombinant eukaryotic expression plasmid pFast Bac HT A/Anti HER2 ScFv-GFP was constructed successfully In addition, obvious green fluorescent was observed in insect cells sf9. When the purified fusion antibody was incubated with different cancer cells, much more green fluorescent was observed on the surface of the HER2 positive cancer cells SKBR3 and BT474. In contrast, no green fluorescent on the surface of the HER2 negative cancer cells MCF7 was detected. The concentration of the purified fusion antibody was 115.5 microg/mL, of which protein relative molecular weight was 60 kDa. The analysis showed the purity was about 97% and the titer was about 1:64. The detection results of IHC and fusion antibody testing indicated the conformity. In summary, the study showed that the new fusion antibody Anti HER2 ScFv-GFP can test HER2 positive cancer cells, indicating a potential candidate method for clinical HER2 positive specimens detection.
Nawaz, Saima; Mullen, Gregory E D; Sunassee, Kavitha; Bordoloi, Jayanta; Blower, Philip J; Ballinger, James R
2017-10-25
Labelling proteins with gallium-68 using bifunctional chelators is often problematic because of unsuitably harsh labelling conditions such as low pH or high temperature and may entail post-labelling purification. To determine whether tris(hydroxypyridinone) (THP) bifunctional chelators offer a potential solution to this problem, we have evaluated the labelling and biodistribution of a THP conjugate with a new single-chain antibody against the prostate-specific membrane antigen (PSMA), an attractive target for staging prostate cancer (PCa). A single-chain variable fragment (scFv) of J591, a monoclonal antibody that recognises an external epitope of PSMA, was prepared in order to achieve biokinetics matched to the half-life of gallium-68. The scFv, J591c-scFv, was engineered with a C-terminal cysteine. J591c-scFv was produced in HEK293T cells and purified by size-exclusion chromatography. A maleimide THP derivative (THP-mal) was coupled site-specifically to the C-terminal cysteine residue. The THP-mal-J591c-scFv conjugate was labelled with ammonium acetate-buffered gallium-68 from a 68 Ge/ 68 Ga generator at room temperature and neutral pH. The labelled conjugate was evaluated in the PCa cell line DU145 and its PSMA-overexpressing variant in vitro and xenografted in SCID mice. J591c-scFv was produced in yields of 4-6 mg/l culture supernatant and efficiently coupled with the THP-mal bifunctional chelator. Labelling yields > 95% were achieved at room temperature following incubation of 5 μg conjugate with gallium-68 for 5 min without post-labelling purification. 68 Ga-THP-mal-J591c-scFv was stable in serum and showed selective binding to the DU145-PSMA cell line, allowing an IC50 value of 31.5 nM to be determined for unmodified J591c-scFv. Serial PET/CT imaging showed rapid, specific tumour uptake and clearance via renal elimination. Accumulation in DU145-PSMA xenografts at 90 min post-injection was 5.4 ± 0.5%ID/g compared with 0.5 ± 0.2%ID/g in DU145 tumours (n = 4). The bifunctional chelator THP-mal enabled simple, rapid, quantitative, one-step room temperature radiolabelling of a protein with gallium-68 at neutral pH without a need for post-labelling purification. The resultant gallium-68 complex shows high affinity for PSMA and favourable in vivo targeting properties in a xenograft model of PCa.
Van Blarcom, Thomas J.; Sofer-Podesta, Carolina; Ang, John; Boyer, Julie L.; Crystal, Ronald G.; Georgiou, George
2013-01-01
Genetic transfer of neutralizing antibodies has been shown to confer strong and persistent protection against bacterial and viral infectious agents. While it is well established that for many exogenous neutralizing antibodies increased antigen affinity correlates with protection, the effect of antigen affinity on antibodies produced in situ following adenoviral gene transfer has not been examined. The mouse IgG2b monoclonal antibody 2C12.4 recognizes the Yersinia pestis Type III secretion apparatus protein LcrV (V antigen) and confers protection in mice when administered as an IgG intraperitoneally or, following genetic immunization with engineered, replication-defective serotype 5 human adenovirus (Ad) 1. 2C12.4 was expressed as a scFv fragment in E. coli and was shown to display a KD=3.5 nM by surface plasmon resonance (SPR) analysis. The 2C12.4 scFv was subjected to random mutagenesis and variants with increased affinity were isolated by flow cytometry using the Anchored Periplasmic Expression (APEx) bacterial display system. After a single round of mutagenesis, variants displaying up to 35-fold lower KD values (H8, KD=100 pM) were isolated. The variable domains of the H8 scFv were used to replace those of the parental 2C12.4 IgG encoded in the Ad vector, AdαV giving rise to AdαV.H8. The two adenoviral vectors resulted in similar titers of anti-V antigen antibodies 3 days post-immunization with 109, 1010 or 1011 particle units. Following intranasal challenge with 363 LD50Y. pestis CO92, 54% of the mice immunized with 1010 pu of AdαV.H8 survived at the 14 day end point compared to only 15% survivors for the group immunized with AdαV expressing the lower affinity 2C12.4 (P<0.04, AdαV versus AdαV.H8). These results indicate that affinity maturation of a neutralizing antibody delivered by genetic transfer may confer increased protection not only for Y. pestis challenge but possibly for other pathogens. PMID:20393511
Generation and analysis of the improved human HAL9/10 antibody phage display libraries.
Kügler, Jonas; Wilke, Sonja; Meier, Doris; Tomszak, Florian; Frenzel, André; Schirrmann, Thomas; Dübel, Stefan; Garritsen, Henk; Hock, Björn; Toleikis, Lars; Schütte, Mark; Hust, Michael
2015-02-19
Antibody phage display is a proven key technology that allows the generation of human antibodies for diagnostics and therapy. From naive antibody gene libraries - in theory - antibodies against any target can be selected. Here we describe the design, construction and characterization of an optimized antibody phage display library. The naive antibody gene libraries HAL9 and HAL10, with a combined theoretical diversity of 1.5×10(10) independent clones, were constructed from 98 healthy donors using improved phage display vectors. In detail, most common phagemids employed for antibody phage display are using a combined His/Myc tag for detection and purification. We show that changing the tag order to Myc/His improved the production of soluble antibodies, but did not affect antibody phage display. For several published antibody libraries, the selected number of kappa scFvs were lower compared to lambda scFvs, probably due to a lower kappa scFv or Fab expression rate. Deletion of a phenylalanine at the end of the CL linker sequence in our new phagemid design increased scFv production rate and frequency of selected kappa antibodies significantly. The HAL libraries and 834 antibodies selected against 121 targets were analyzed regarding the used germline V-genes, used V-gene combinations and CDR-H3/-L3 length and composition. The amino acid diversity and distribution in the CDR-H3 of the initial library was retrieved in the CDR-H3 of selected antibodies showing that all CDR-H3 amino acids occurring in the human antibody repertoire can be functionally used and is not biased by E. coli expression or phage selection. Further, the data underline the importance of CDR length variations. The highly diverse universal antibody gene libraries HAL9/10 were constructed using an optimized scFv phagemid vector design. Analysis of selected antibodies revealed that the complete amino acid diversity in the CDR-H3 was also found in selected scFvs showing the functionality of the naive CDR-H3 diversity.
Single-Chain Fv-Based Anti-HIV Proteins: Potential and Limitations
West, Anthony P.; Galimidi, Rachel P.; Gnanapragasam, Priyanthi N. P.
2012-01-01
The existence of very potent, broadly neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) offers the potential for prophylaxis against HIV-1 infection by passive immunization or gene therapy. Both routes permit the delivery of modified forms of IgGs. Smaller reagents are favored when considering ease of tissue penetration and the limited capacities of gene therapy vectors. Immunoadhesin (single-chain fragment variable [scFv]-Fc) forms of IgGs are one class of relatively small reagent that has been explored for delivery by adeno-associated virus. Here we investigated the neutralization potencies of immunoadhesins compared to those of their parent IgGs. For the antibodies VRC01, PG9, and PG16, the immunoadhesins showed modestly reduced potencies, likely reflecting reduced affinities compared to those of the parent IgG, and the VRC01 immunoadhesin formed dimers and multimers with reduced neutralization potencies. Although scFv forms of neutralizing antibodies may exhibit affinity reductions, they provide a means of building reagents with multiple activities. Attachment of the VRC01 scFv to PG16 IgG yielded a bispecific reagent whose neutralization activity combined activities from both parent antibodies. Although the neutralization activity due to each component was partially reduced, the combined reagent is attractive since fewer strains escaped neutralization. PMID:22013046
Growth promotion of genetically modified hematopoietic progenitors using an antibody/c-Mpl chimera.
Kawahara, Masahiro; Chen, Jianhong; Sogo, Takahiro; Teng, Jinying; Otsu, Makoto; Onodera, Masafumi; Nakauchi, Hiromitsu; Ueda, Hiroshi; Nagamune, Teruyuki
2011-09-01
Thrombopoietin is a potent cytokine that exerts proliferation of hematopoietic stem cells (HSCs) through its cognate receptor, c-Mpl. Therefore, mimicry of c-Mpl signaling by a receptor recognizing an artificial ligand would be attractive to attain specific expansion of genetically modified HSCs. Here we propose a system enabling selective expansion of genetically modified cells using an antibody/receptor chimera that can be activated by a specific antigen. We constructed an antibody/c-Mpl chimera, in which single-chain Fv (ScFv) of an anti-fluorescein antibody was tethered to the extracellular D2 domain of the erythropoietin receptor and transmembrane/cytoplasmic domains of c-Mpl. When the chimera was expressed in interleukin (IL)-3-dependent pro-B cell line Ba/F3, genetically modified cells were selectively expanded in the presence of fluorescein-conjugated BSA (BSA-FL) as a specific antigen. Furthermore, highly purified mouse HSCs transduced with the retrovirus carrying antibody/c-Mpl chimera gene proliferated in vitro in response to BSA-FL, and the cells retained in vivo long-term repopulating abilities. These results demonstrate that the antibody/c-Mpl chimera is capable of signal transduction that mimics wild-type c-Mpl signaling. Copyright © 2011 Elsevier Ltd. All rights reserved.
Müller, Tina; Uherek, Christoph; Maki, Guitta; Chow, Kai Uwe; Schimpf, Annemarie; Klingemann, Hans-Georg; Tonn, Torsten; Wels, Winfried S
2008-03-01
Despite the clinical success of CD20-specific antibody rituximab, malignancies of B-cell origin continue to present a major clinical challenge, in part due to an inability of the antibody to activate antibody-dependent cell-mediated cytotoxicity (ADCC) in some patients, and development of resistance in others. Expression of chimeric antigen receptors in effector cells operative in ADCC might allow to bypass insufficient activation via FcgammaRIII and other resistance mechanisms that limit natural killer (NK)-cell activity. Here we have generated genetically modified NK cells carrying a chimeric antigen receptor that consists of a CD20-specific scFv antibody fragment, via a flexible hinge region connected to the CD3zeta chain as a signaling moiety. As effector cells we employed continuously growing, clinically applicable human NK-92 cells. While activity of the retargeted NK-92 against CD20-negative targets remained unchanged, the gene modified NK cells displayed markedly enhanced cytotoxicity toward NK-sensitive CD20 expressing cells. Importantly, in contrast to parental NK-92, CD20-specific NK cells efficiently lysed CD20 expressing but otherwise NK-resistant established and primary lymphoma and leukemia cells, demonstrating that this strategy can overcome NK-cell resistance and might be suitable for the development of effective cell-based therapeutics for the treatment of B-cell malignancies.
Johnson, Jennifer L; Entzminger, Kevin C; Hyun, Jeongmin; Kalyoncu, Sibel; Heaner, David P; Morales, Ivan A; Sheppard, Aly; Gumbart, James C; Maynard, Jennifer A; Lieberman, Raquel L
2015-04-01
Crystallization chaperones are attracting increasing interest as a route to crystal growth and structure elucidation of difficult targets such as membrane proteins. While strategies to date have typically employed protein-specific chaperones, a peptide-specific chaperone to crystallize multiple cognate peptide epitope-containing client proteins is envisioned. This would eliminate the target-specific chaperone-production step and streamline the co-crystallization process. Previously, protein engineering and directed evolution were used to generate a single-chain variable (scFv) antibody fragment with affinity for the peptide sequence EYMPME (scFv/EE). This report details the conversion of scFv/EE to an anti-EE Fab format (Fab/EE) followed by its biophysical characterization. The addition of constant chains increased the overall stability and had a negligible impact on the antigen affinity. The 2.0 Å resolution crystal structure of Fab/EE reveals contacts with larger surface areas than those of scFv/EE. Surface plasmon resonance, an enzyme-linked immunosorbent assay, and size-exclusion chromatography were used to assess Fab/EE binding to EE-tagged soluble and membrane test proteins: namely, the β-barrel outer membrane protein intimin and α-helical A2a G protein-coupled receptor (A2aR). Molecular-dynamics simulation of the intimin constructs with and without Fab/EE provides insight into the energetic complexities of the co-crystallization approach.
Kanagawa, N; Yanagawa, T; Nakagawa, T; Okada, N; Nakagawa, S
2013-01-01
Angiogenesis is required for normal physiologic processes, but it is also involved in tumor growth, progression and metastasis. Here, we report the development of an immune-based antiangiogenic strategy based on the generation of T lymphocytes that possess killing specificity for cells expressing vascular endothelial growth factor receptor 2 (VEGFR2). To target VEGFR2-expressing cells, we engineered cytotoxic T lymphocyte (CTL) expressing chimeric T-cell receptors (cTCR-CTL) comprised of a single-chain variable fragment (scFv) against VEGFR2 linked to an intracellular signaling sequence derived from the CD3ζ chain of the TCR and CD28 by retroviral gene transduction methods. The cTCR-CTL exhibited efficient killing specificity against VEGFR2 and a tumor-targeting function in vitro and in vivo. Reflecting such abilities, we confirmed that the cTCR-CTL strongly inhibited the growth of a variety of syngeneic tumors after adoptive transfer into tumor-bearing mice without consequent damage to normal tissue. In addition, CTL expressing both cTCR and tumor-specific TCR induced complete tumor regression due to enhanced tumor infiltration by the CTL and long-term antigen-specific function. These findings provide evidence that the tumor vessel-injuring ability improved the antitumor effect of CTLs in adoptive immunotherapy for a broad range of cancers by inducing immune-mediated destruction of the tumor neovasculature.
Ji, Xiaonan; Shen, Yanli; Sun, Hao; Gao, Xiangdong
2016-08-01
Human hepatocellular carcinoma (HCC) has a high rate of tumor recurrence and metastasis, resulting in shortened survival time. The function of alpha-fetoprotein (AFP) as a regulatory factor in the growth of HCC cells has been well defined. The aim of this study was to investigate the use of a novel AFP-specific single-chain variable fragment that blocked AFP and inhibited HCC cell growth. The results indicated that the anti-AFP single-chain variable fragment (scFv) induced growth inhibition of AFP-expressing HCC cell lines in vitro through induction of G1 cell cycle arrest and apoptosis. The mechanism of apoptosis probably involved with blocking AFP internalization and regulation of the PTEN/PI3K/Akt signaling network. Moreover, the anti-AFP-scFv also effectively sensitized the HepG2 cells to paclitaxel (PTX) at a lower concentration. The combination effect of PTX and anti-AFP-scFv displayed a synergistic effect on HepG2 cells both in vitro and in vivo. Our results demonstrated that targeting AFP by specific antibodies has potential immunotherapeutic efficacy in human HCC.
Synthetic Fab Fragments that Bind the HIV-1 gp41 Heptad Repeat Regions
Liu, Yanyun; Regula, Lauren K.; Stewart, Alex; Lai, Jonathan R.
2011-01-01
Recent work has demonstrated that antibody phage display libraries containing restricted diversity in the complementarity determining regions (CDRs) can be used to target a wide variety of antigens with high affinity and specificity. In the most extreme case, antibodies whose combining sites are comprised of only two residues – tyrosine and serine – have been identified against several protein antigens. [F. A. Fellouse, B. Li, D. M. Compaan, A. A. Peden, S. G. Hymowitz, and S. S. Sidhu, J. Mol. Biol., 348 (2005) 1153–1162.] Here, we report the isolation and characterization of antigen-binding fragments (Fabs) from such “minimalist” diversity synthetic antibody libraries that bind the heptad repeat regions of human immunodeficiency virus type 1 (HIV-1) gp41. We show that these Fabs are highly specific for the HIV-1 epitope and comparable in affinity to a single chain variable fragment (scFv) derived from a natural antibody repertoire that targets the same region. Since the heptad repeat regions of HIV-1 gp41 are required for viral entry, these Fabs have potential for use in therapeutic, research, or diagnostic applications. PMID:21925149
Zhen, Le; Ford, Nicole; Gale, Debra K; Roesijadi, Guritno; Rorrer, Gregory L
2016-05-15
A selective and label-free biosensor for detection of the explosive compound 2,4,6-trinitrotoluene (TNT) in aqueous solution was developed based on the principle of photoluminescence quenching of upon immunocomplex formation with antibody-functionalized diatom frustule biosilica. The diatom frustule is an intricately nanostructured, highly porous biogenic silica material derived from the shells of microscopic algae called diatoms. This material emits strong visible blue photoluminescence (PL) upon UV excitation. PL-active frustule biosilica was isolated from cultured cells of the marine diatom Pinnularia sp. and functionalized with a single chain variable fragment (scFv) derived from an anti-TNT monoclonal antibody. When TNT was bound to the anti-TNT scFv-functionalized diatom frustule biosilica, the PL emission from the biosilica was partially quenched due to the electrophilic nature of the nitro (-NO2) groups on the TNT molecule. The dose-response curve for immunocomplex formation of TNT on the scFv-functionalized diatom frustule biosilica had a half-saturation binding constant of 6.4 ± 2.4·10(-8)M and statistically-significant measured detection limit of 3.5·10(-8)M. The binding and detection were selective for TNT and TNB (trinitrobenzene) but not RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) or 2,6-DNT (2,6-dinitrotoluene). Copyright © 2016. Published by Elsevier B.V.
The use of nanoparticles as a promising therapeutic approach in cancer immunotherapy.
Hosseini, Maryam; Haji-Fatahaliha, Mostafa; Jadidi-Niaragh, Farhad; Majidi, Jafar; Yousefi, Mehdi
2016-06-01
Cancer is one of the most important causes of death all over the world, which has not yet been treated efficiently. Although several therapeutic approaches have been used, some side effects such as toxicity and drug resistance have been observed in patients, particularly with chemotherapy. The nanoparticle-mediated drug delivery systems (DDS) have a great potential to improve cancer treatment by transferring therapeutic factors directly to the tumor site. Such a treatment significantly decreases the adverse effects associated with cancer therapy on healthy tissues. Two main strategies, including passive and active methods, have been considered to be effective techniques which can target the drugs to the tumor sites. The current review sheds some light on the place of nanotechnology in cancer drug delivery, and introduces nanomaterials and their specific characteristics that can be used in tumor therapy. Moreover, passive and active targeting approaches focus on antibodies, particularly single chain variable fragments (scFv), as a novel and important ligand in a drug delivery system.
Li, He; Huang, Yao; Jiang, Du-Qing; Cui, Lian-Zhen; He, Zhou; Wang, Chao; Zhang, Zhi-Wei; Zhu, Hai-Li; Ding, Yong-Mei; Li, Lin-Fang; Li, Qiang; Jin, Hua-Jun; Qian, Qi-Jun
2018-02-07
Effective control of non-small-cell lung cancer (NSCLC) remains clinically challenging, especially during advanced stages of the disease. This study developed an adoptive T-cell treatment through expression of a chimeric antigen receptor (CAR) to target human epidermal growth factor receptor (EGFR) in NSCLC. We optimized the non-viral piggyBac transposon system to engineer human T cells for the expression of EGFR-CAR, consisting of EGFR scFv, transmembrane domain, and intracellular 4-1BB-CD3ζ signaling domains. The modified CAR T cells exhibited expansion capability and anticancer efficacy in a time- and antigen-dependent manner in vitro as well as regression of EGFR-positive human lung cancer xenografts in vivo. EGFR-CAR T therapy is a promising strategy to improve the efficacy and potency of the adoptive immunotherapy in NSCLC. Moreover, EGFR-CAR T therapy could become a clinical application for NSCLC patients in the future.
Specific targeting to B cells by lipid-based nanoparticles conjugated with a novel CD22-ScFv.
Loomis, Kristin; Smith, Brandon; Feng, Yang; Garg, Himanshu; Yavlovich, Amichai; Campbell-Massa, Ryan; Dimitrov, Dimiter S; Blumenthal, Robert; Xiao, Xiaodong; Puri, Anu
2010-04-01
The CD22 antigen is a viable target for therapeutic intervention for B-cell lymphomas. Several therapeutic anti-CD22 antibodies as well as an anti-CD22-based immunotoxin (HA22) are currently under investigation in clinical settings. Coupling of anti-CD22 reagents with a nano-drug delivery vehicle is projected to significantly improve treatment efficacies. Therefore, we generated a mutant of the targeting segment of HA22 (a CD22 scFv) to increase its soluble expression (mut-HA22), and conjugated it to the surface of sonicated liposomes to generate immunoliposomes (mut-HA22-liposomes). We examined liposome binding and uptake by CD22(+) B-lymphocytes (BJAB) by using calcein and/or rhodamine PE-labeled liposomes. We also tested the effect of targeting on cellular toxicity with doxorubicin-loaded liposomes. We report that: (i) Binding of mut-HA22-liposomes to BJAB cells was significantly greater than liposomes not conjugated with mut-HA22 (control liposomes), and mut-HA22-liposomes bind to and are taken in by BJAB cells in a dose and temperature-dependent manner, respectively; (ii) This binding occurred via the interaction with the cellular CD22 as pre-incubation of the cells with mut-HA22 blocked subsequent liposome binding; (iii) Intracellular localization of mut-HA22-liposomes at 37 degrees C but not at 4 degrees C indicated that our targeted liposomes were taken up through an energy dependent process via receptor-mediated endocytosis; and (iv) Mut-HA22-liposomes loaded with doxorubicin exhibited at least 2-3 fold more accumulation of doxorubicin in BJAB cells as compared to control liposomes. Moreover, these liposomes showed at least a 2-4 fold enhanced killing of BJAB or Raji cells (CD22(+)), but not SUP-T1 cells (CD22(-)). Taken together these data suggest that these 2nd-generation liposomes may serve as promising carriers for targeted drug delivery to treat patients suffering from B-cell lymphoma. Published by Elsevier Inc.
Novel Listeria Vectors Secreting Gut Flora Altering Agents to Prevent Colon Cancer and Treat Colitis
2016-09-01
L1 KO cell line using CRISPR to optimize library screening for anti-B7-H1 scFv. We collected useful data on immune and signaling events in colon...down B7-H1 in the B16F10 line for screening, but this was also inefficient. We then used CRISPR /Cas9 to effect a total KO of B7-H1 in the B16F10 cell
Chicken scFvs with an Artificial Cysteine for Site-Directed Conjugation
Kim, Soohyun; Kim, Hyori; Chung, Junho
2016-01-01
For the site-directed conjugation of chemicals and radioisotopes to the chicken-derived single-chain variable fragment (scFv), we investigated amino acid residues replaceable with cysteine. By replacing each amino acid of the 157 chicken variable region framework residues (FR, 82 residues on VH and 75 on VL) with cysteine, 157 artificial cysteine mutants were generated and characterized. At least 27 residues on VL and 37 on VH could be replaced with cysteine while retaining the binding activity of the original scFv. We prepared three VL (L5, L6 and L7) and two VH (H13 and H16) mutants as scFv-Ckappa fusion proteins and showed that PEG-conjugation to the sulfhydryl group of the artificial cysteine was achievable in all five mutants. Because the charge around the cysteine residue affects the in vivo stability of thiol-maleimide conjugation, we prepared 16 charge-variant artificial cysteine mutants by replacing the flanking residues of H13 with charged amino acids and determined that the binding activity was not affected in any of the mutants except one. We prepared four charge-variant H13 artificial cysteine mutants (RCK, DCE, ECD and ECE) as scFv-Ckappa fusion proteins and confirmed that the reactivity of the sulfhydryl group on cysteine is active and their binding activity is retained after the conjugation process. PMID:26764487
Ghevaert, Cedric; Wilcox, David A; Fang, Juan; Armour, Kathryn L; Clark, Mike R; Ouwehand, Willem H; Williamson, Lorna M
2008-08-01
Fetomaternal alloimmune thrombocytopenia (FMAIT) is caused by maternal generation of antibodies specific for paternal platelet antigens and can lead to fetal intracranial hemorrhage. A SNP in the gene encoding integrin beta3 causes a clinically important maternal-paternal antigenic difference; Leu33 generates the human platelet antigen 1a (HPA-1a), whereas Pro33 generates HPA-1b. As a potential treatment to prevent fetal intracranial hemorrhage in HPA-1a alloimmunized pregnancies, we generated an antibody that blocks the binding of maternal HPA-1a-specific antibodies to fetal HPA-1a1b platelets by combining a high-affinity human HPA-1a-specific scFv (B2) with an IgG1 constant region modified to minimize Fcgamma receptor-dependent platelet destruction (G1Deltanab). B2G1Deltanab saturated HPA-1a+ platelets and substantially inhibited binding of clinical HPA-1a-specific sera to HPA-1a+ platelets. The response of monocytes to B2G1Deltanab-sensitized platelets was substantially less than their response to unmodified B2G1, as measured by chemiluminescence. In addition, B2G1Deltanab inhibited chemiluminescence induced by B2G1 and HPA-1a-specific sera. In a chimeric mouse model, B2G1 and polyclonal Ig preparations from clinical HPA-1a-specific sera reduced circulating HPA-1a+ platelets, concomitant with transient thrombocytopenia. As the Deltanab constant region is uninformative in mice, F(ab')2 B2G1 was used as a proof of principle blocking antibody and prevented the in vivo platelet destruction seen with B2G1 and polyclonal HPA-1a-specific antibodies. These results provide rationale for human clinical studies.
A chimeric antigen receptor for TRAIL-receptor 1 induces apoptosis in various types of tumor cells.
Kobayashi, Eiji; Kishi, Hiroyuki; Ozawa, Tatsuhiko; Hamana, Hiroshi; Nakagawa, Hidetoshi; Jin, Aishun; Lin, Zhezhu; Muraguchi, Atsushi
2014-10-31
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and its associated receptors (TRAIL-R/TR) are attractive targets for cancer therapy because TRAIL induces apoptosis in tumor cells through TR while having little cytotoxicity on normal cells. Therefore, many agonistic monoclonal antibodies (mAbs) specific for TR have been produced, and these induce apoptosis in multiple tumor cell types. However, some TR-expressing tumor cells are resistant to TR-specific mAb-induced apoptosis. In this study, we constructed a chimeric antigen receptor (CAR) of a TRAIL-receptor 1 (TR1)-specific single chain variable fragment (scFv) antibody (TR1-scFv-CAR) and expressed it on a Jurkat T cell line, the KHYG-1 NK cell line, and human peripheral blood lymphocytes (PBLs). We found that the TR1-scFv-CAR-expressing Jurkat cells killed target cells via TR1-mediated apoptosis, whereas TR1-scFv-CAR-expressing KHYG-1 cells and PBLs killed target cells not only via TR1-mediated apoptosis but also via CAR signal-induced cytolysis, resulting in cytotoxicity on a broader range if target cells than with TR1-scFv-CAR-expressing Jurkat cells. The results suggest that TR1-scFv-CAR could be a new candidate for cancer gene therapy. Copyright © 2014 Elsevier Inc. All rights reserved.
Peterson, Eric C.; Gentry, W. Brooks
2015-01-01
Monoclonal antibody-based medications designed to bind (+)-methamphetamine (METH) with high affinity are among the newest approaches to the treatment of METH abuse, and the associated medical complications. The potential clinical indications for these medications include treatment of overdose, reduction of drug dependence, and protection of vulnerable populations from METH-related complications. Research designed to discover and conduct preclinical and clinical testing of these antibodies suggest a scientific vision for how intact mAb (singular and plural) or small antigen binding fragments of mAb could be engineered to optimize the proteins for specific therapeutic applications. In this review we discuss keys to success in this development process including choosing predictors of specificity, efficacy, duration of action, and safety of the medications in disease models of acute and chronic drug abuse. We consider important aspects of METH-like hapten design and how hapten structural features influence specificity and affinity, with an example of a high-resolution x-ray crystal structure of a high affinity antibody to demonstrate this structural relationship. Additionally, several prototype anti-METH mAb forms such as antigen binding fragments (Fab) and single chain variable fragments (scFv) are under development. Unique, customizable aspects of these fragments are presented with specific possible clinical indications. Finally, we discuss clinical trial progress of the first in kind anti-METH mAb, for which the METH is the disease target instead of vulnerable central nervous system networks of receptors, binding sites and neuronal connections. PMID:24484976
Kampmeier, Florian; Niesen, Judith; Koers, Alexander; Ribbert, Markus; Brecht, Andreas; Fischer, Rainer; Kiessling, Fabian; Barth, Stefan; Thepen, Theo
2010-10-01
The epidermal growth factor receptor (EGFR) is overexpressed in several types of cancer and its inhibition can effectively inhibit tumour progression. The purpose of this study was to design an EGFR-specific imaging probe that combines efficient tumour targeting with rapid systemic clearance to facilitate non-invasive assessment of EGFR expression. Genetic fusion of a single-chain antibody fragment with the SNAP-tag produced a 48-kDa antibody derivative that can be covalently and site-specifically labelled with substrates containing 0 (6)-benzylguanine. The EGFR-specific single-chain variable fragment (scFv) fusion protein 425(scFv)SNAP was labelled with the near infrared (NIR) dye BG-747, and its accumulation, specificity and kinetics were monitored using NIR fluorescence imaging in a subcutaneous pancreatic carcinoma xenograft model. The 425(scFv)SNAP fusion protein accumulates rapidly and specifically at the tumour site. Its small size allows efficient renal clearance and a high tumour to background ratio (TBR) of 33.2 +/- 6.3 (n = 4) 10 h after injection. Binding of the labelled antibody was efficiently competed with a 20-fold excess of unlabelled probe, resulting in an average TBR of 6 +/- 1.35 (n = 4), which is similar to that obtained with a non-tumour-specific probe (5.44 +/- 1.92, n = 4). When compared with a full-length antibody against EGFR (cetuximab), 425(scFv)SNAP-747 showed significantly higher TBRs and complete clearance 72 h post-injection. The 425(scFv)SNAP fusion protein combines rapid and specific targeting of EGFR-positive tumours with a versatile and robust labelling technique that facilitates the attachment of fluorophores for use in optical imaging. The same approach could be used to couple a chelating agent for use in nuclear imaging.
Continuous microfluidic assortment of interactive ligands (CMAIL)
NASA Astrophysics Data System (ADS)
Hsiao, Yi-Hsing; Huang, Chao-Yang; Hu, Chih-Yung; Wu, Yen-Yu; Wu, Chung-Hsiun; Hsu, Chia-Hsien; Chen, Chihchen
2016-08-01
Finding an interactive ligand-receptor pair is crucial to many applications, including the development of monoclonal antibodies. Biopanning, a commonly used technique for affinity screening, involves a series of washing steps and is lengthy and tedious. Here we present an approach termed continuous microfluidic assortment of interactive ligands, or CMAIL, for the screening and sorting of antigen-binding single-chain variable antibody fragments (scFv) displayed on bacteriophages (phages). Phages carrying native negative charges on their coat proteins were electrophoresed through a hydrogel matrix functionalized with target antigens under two alternating orthogonal electric fields. During the weak horizontal electric field phase, phages were differentially swept laterally depending on their affinity for the antigen, and all phages were electrophoresed down to be collected during the strong vertical electric field phase. Phages of different affinity were spatially separated, allowing the continuous operation. More than 105 CFU (colony forming unit) antigen-interacting phages were isolated with ~100% specificity from a phage library containing 3 × 109 individual members within 40 minutes of sorting using CMAIL. CMAIL is rapid, sensitive, specific, and does not employ washing, elution or magnetic beads. In conclusion, we have developed an efficient and cost-effective method for isolating and sorting affinity reagents involving phage display.
Immune TB Antibody Phage Display Library as a Tool To Study B Cell Immunity in TB Infections.
Hamidon, Nurul Hamizah; Suraiya, Siti; Sarmiento, Maria E; Acosta, Armando; Norazmi, Mohd Nor; Lim, Theam Soon
2018-03-01
B cells and in particular antibodies has always played second fiddle to cellular immunity in regard to tuberculosis (TB). However, recent studies has helped position humoral immunity especially antibodies back into the foray in relation to TB immunity. Therefore, the ability to correlate the natural antibody responses of infected individuals toward TB antigens would help strengthen this concept. Phage display is an intriguing approach that can be utilized to study antibody-mediated responses against a particular infection via harvesting the B cell repertoire from infected individuals. The development of disease-specific antibody libraries or immune libraries is useful to better understand antibody-mediated immune responses against specific disease antigens. This study describes the generation of an immune single-chain variable fragment (scFv) library derived from TB-infected individuals. The immune library with an estimated diversity of 10 9 independent clones was then applied for the identification of monoclonal antibodies against Mycobacterium tuberculosis α-crystalline as a model antigen. Biopanning of the library isolated three monoclonal antibodies with unique gene usage. This strengthens the role of antibodies in TB immunity in addition to the role played by cellular immunity. The developed library can be applied against other TB antigens and aid antibody-derived TB immunity studies in the future.
Zahorsky-Reeves, Joanne L; Kearns-Jonker, Mary K; Lam, Tuan T; Jackson, Jeremy R; Morris, Randall E; Starnes, Vaughn A; Cramer, Donald V
2007-03-01
Recent work has indicated a role for anti-Gal alpha 1-3Gal (Gal) and anti-non-Gal xenoantibodies in the primate humoral rejection response against human-decay accelerating factor (hDAF) transgenic pig organs. Our laboratory has shown that anti-porcine xenograft antibodies in humans and non-human primates are encoded by a small number of germline IgV(H) progenitors. In this study, we extended our analysis to identify the IgV(H) genes encoding xenoantibodies in immunosuppressed cynomolgus monkeys (Macaca fascicularis) transplanted with hDAF-transgenic pig organs. Three immunosuppressed monkeys underwent heterotopic heart transplantation with hDAF porcine heart xenografts. Two of three animals were given GAS914, a poly-L-lysine derivative shown to bind to anti-Gal xenoantibodies and neutralize them. One animal rejected its heart at post-operative day (POD) 39; a second animal rejected the transplanted heart at POD 78. The third monkey was euthanized on POD 36 but the heart was not rejected. Peripheral blood leukocytes (PBL) and serum were obtained from each animal before and at multiple time points after transplantation. We analyzed the immune response by enzyme-linked immunosorbent assay (ELISA) to confirm whether anti-Gal or anti-non-Gal xenoantibodies were induced after graft placement. Immunoglobulin heavy-chain gene (V(H)) cDNA libraries were then produced and screened. We generated soluble single-chain antibodies (scFv) to establish the binding specificity of the cloned immunoglobulin genes. Despite immunosuppression, which included the use of the polymer GAS914, the two animals that rejected their hearts showed elevated levels of cytotoxic anti-pig red blood cell (RBC) antibodies and anti-pig aortic endothelial cell (PAEC) antibodies. The monkey that did not reject its graft showed a decline in serum anti-RBC, anti-PAEC, and anti-Gal xenoantibodies when compared with pre-transplant levels. A V(H)3 family gene with a high level of sequence similarity to an allele of V(H)3-11, designated V(H)3-11(cyno), was expressed at elevated levels in the monkey that was not given GAS914 and whose graft was not rejected until POD 78. IgM but not IgG xenoantibodies directed at N-acetyl lactosamine (a precursor of the Gal epitope) were also induced in this animal. We produced soluble scFv from this new gene to determine whether this antibody could bind to the Gal carbohydrate, and demonstrated that this protein was capable of blocking the binding of human serum xenoantibody to Gal oligosaccharide, as had previously been shown with human V(H)3-11 scFv. DAF-transgenic organs transplanted into cynomolgus monkeys induce anti-Gal and anti-non-Gal xenoantibody responses mediated by both IgM and IgG xenoantibodies. Anti-non-Gal xenoantibodies are induced at high levels in animals treated with GAS914. Antibodies that bind to the Gal carbohydrate and to N-acetyl lactosamine are induced in the absence of GAS914 treatment. The animal whose heart remained beating for 78 days demonstrated increased usage of an antibody encoded by a germline progenitor that is structurally related, but distinct from IGHV311. This antibody binds to the Gal carbohydrate but does not induce the rapid rejection of the xenograft when expressed at high levels as early as day 8 post-transplantation.
Moeller, Maria; Haynes, Nicole M; Trapani, Joseph A; Teng, Michele W L; Jackson, Jacob T; Tanner, Jane E; Cerutti, Loretta; Jane, Stephen M; Kershaw, Michael H; Smyth, Mark J; Darcy, Phillip K
2004-05-01
T cells engineered to express single-chain antibody receptors that incorporate TCR-zeta and cluster designation (CD)28 signaling domains (scFv-alpha-erbB2-CD28-zeta) can be redirected in vivo to cancer cells that lack triggering costimulatory molecules. To assess the contribution of CD28 signaling to the function of the scFv-CD28-zeta receptor, we expressed a series of mutated scFv-CD28-zeta receptors directed against erbB2. Residues known to be critical for CD28 signaling were mutated from tyrosine to phenylalanine at position 170 or proline to alanine at positions 187 and 190. Primary mouse T cells expressing either of the mutant receptors demonstrated impaired cytokine (IFN-gamma and GM-CSF) production and decreased proliferation after antigen ligation in vitro and decreased antitumor efficacy in vivo compared with T cells expressing the wild-type scFv-CD28-zeta receptor, suggesting a key signaling role for the CD28 component of the scFv-CD28-zeta receptor. Importantly, cell surface expression, binding capacity and cytolytic activity mediated by the scFv-CD28-zeta receptor were not diminished by either mutation. Overall, this study has definitively demonstrated a functional role for the CD28 component of the scFv-CD28-zeta receptor and has shown that incorporation of costimulatory activity in chimeric scFv receptors is a powerful approach for improving adoptive cancer immunotherapy.
Premsukh, Arjune; Lavoie, Joelle M; Cizeau, Jeannick; Entwistle, Joycelyn; MacDonald, Glen C
2011-07-01
VB4-845 is a recombinant immunotoxin comprised of an anti-epithelial cell adhesion molecule (EpCAM) scFv fused to a truncated form of the bacterial toxin, Pseudomonas exotoxin A. VB4-845, purified from TB fed-batch fermentation, showed clinical efficacy when administered locally to treat non-muscle invasive bladder cancer (NMIBC) and squamous cell carcinomas of the head and neck (SCCHN). Here, we describe the implementation of an Escherichia coli high cell density (HCD) cultivation and purification process for VB4-845. HCD cultivation was a prerequisite for achieving higher yields necessary for Phase III clinical trials and commercialization. Using this process, the VB4-845 titer in the supernatant was increased by 30-fold over the original TB fed-batch cultivation. To obtain clinical grade material, a process involving a five-step column purification procedure was implemented and led to an overall recovery of ∼ 40%. VB4-845 purity of >97% was achieved after the first three columns following the removal of low-molecular weight product-related impurities and aggregates. Endotoxins were effectively separated from VB4-845 on the Q-columns and by washing the Ni-column with a detergent buffer while host cell proteins were removed using ceramic hydroxyapatite. Comparability studies demonstrated that the purified product from the Phase III process was identical to the Phase II reference standard produced using TB fed-batch fermentation. Copyright © 2011 Elsevier Inc. All rights reserved.
Tailoring in vitro evolution for protein affinity or stability
Jermutus, Lutz; Honegger, Annemarie; Schwesinger, Falk; Hanes, Jozef; Plückthun, Andreas
2001-01-01
We describe a rapid and general technology working entirely in vitro to evolve either the affinity or the stability of ligand-binding proteins, depending on the chosen selection pressure. Tailored in vitro selection strategies based on ribosome display were combined with in vitro diversification by DNA shuffling to evolve either the off-rate or thermodynamic stability of single-chain Fv antibody fragments (scFvs). To demonstrate the potential of this method, we chose to optimize two proteins already possessing favorable properties. A scFv with an initial affinity of 1.1 nM (koff at 4°C of 10−4 s−1) was improved 30-fold by the use of off-rate selections over a period of several days. As a second example, a generic selection strategy for improved stability exploited the property of ribosome display that the conditions can be altered under which the folding of the displayed protein occurs. We used decreasing redox potentials in the selection step to select for molecules stable in the absence of disulfide bonds. They could be functionally expressed in the reducing cytoplasm, and, when allowed to form disulfides again, their stability had increased to 54 kJ/mol from an initial value of 24 kJ/mol. Sequencing revealed that the evolved mutant proteins had used different strategies of residue changes to adapt to the selection pressure. Therefore, by a combination of randomization and appropriate selection strategies, an in vitro evolution of protein properties in a predictable direction is possible. PMID:11134506
Krebber, A; Bornhauser, S; Burmester, J; Honegger, A; Willuda, J; Bosshard, H R; Plückthun, A
1997-02-14
A prerequisite for the use of recombinant antibody technologies starting from hybridomas or immune repertoires is the reliable cloning of functional immunoglobulin genes. For this purpose, a standard phage display system was optimized for robustness, vector stability, tight control of scFv-delta geneIII expression, primer usage for PCR amplification of variable region genes, scFv assembly strategy and subsequent directional cloning using a single rare cutting restriction enzyme. This integrated cloning, screening and selection system allowed us to rapidly obtain antigen binding scFvs derived from spleen-cell repertoires of mice immunized with ampicillin as well as from all hybridoma cell lines tested to date. As representative examples, cloning of monoclonal antibodies against a his tag, leucine zippers, the tumor marker EGP-2 and the insecticide DDT is presented. Several hybridomas whose genes could not be cloned in previous experimental setups, but were successfully obtained with the present system, expressed high amounts of aberrant heavy and light chain mRNAs, which were amplified by PCR and greatly exceeded the amount of binding antibody sequences. These contaminating variable region genes were successfully eliminated by employing the optimized phage display system, thus avoiding time consuming sequencing of non-binding scFv genes. To maximize soluble expression of functional scFvs subsequent to cloning, a compatible vector series to simplify modification, detection, multimerization and rapid purification of recombinant antibody fragments was constructed.
Khajeh, Shirin; Tohidkia, Mohammad Reza; Aghanejad, Ayuob; Mehdipour, Tayebeh; Fathi, Farzaneh; Omidi, Yadollah
2018-06-09
Glycine-extended gastrin 17 (G17-Gly), a dominant processing intermediate of gastrin gene, has been implicated in the development or maintenance of colorectal cancers (CRCs). Hence, neutralizing G17-Gly activity by antibody entities can provide a potential therapeutic strategy in the patients with CRCs. To this end, we isolated fully human antibody fragments from a phage antibody library through biopanning against different epitopes of G17-Gly in order to obtain the highest possible antibody diversity. ELISA screening and sequence analysis identified 2 scFvs and 4 V L antibody fragments. Kinetic analysis of the antibody fragments by SPR revealed K D values to be in the nanomolar range (87.9-334 nM). The selected anti-G17-Gly antibody fragments were analyzed for growth inhibition and apoptotic assays in a CRC cell line, HCT-116, which is well-characterized for expressing gastrin intermediate species but not amidated gastrin. The antibody fragments exhibited significant inhibition of HCT-116 cells proliferation ranging from 36.5 to 73% of controls. Further, Annexin V/PI staining indicated that apoptosis rates of scFv H8 and V L G8 treated cells were 45.8 and 63%, respectively. Based on these results, we for the first time, demonstrated the isolation of anti-G17-Gly human scFv and V L antibodies with potential therapeutic applications in G17-Gly-responsive tumors.
Tsai, Y-S; Shiau, A-L; Chen, Y-F; Tsai, H-T; Tzai, T-S; Wu, C-L
2010-01-01
The objective of this study was to develop an HER2-targeted, envelope-modified Moloney murine leukemia virus (MoMLV)-based gammaretroviral vector carrying interleukin (IL)-12 gene for bladder cancer therapy. It displayed a chimeric envelope protein containing a single-chain variable fragment (scFv) antibody to the HER2 receptor and carried the mouse IL-12 gene. The fragment of anti-erbB2scFv was constructed into the proline-rich region of the viral envelope of the packaging vector lacking a transmembrane subunit of the carboxyl terminal region of surface subunit. As compared with envelope-unmodified gammaretroviruses, envelope-modified ones had extended viral tropism to human HER2-expressing bladder cancer cell lines, induced apoptosis, and affected cell cycle progression despite lower viral titers. Moreover, animal studies showed that envelope-modified gammaretroviruses carrying IL-12 gene exerted higher antitumor activity in terms of retarding tumor growth and prolonging the survival of tumor-bearing mice than unmodified ones, which were associated with enhanced tumor cell apoptosis as well as increased intratumoral levels of IL-12, interferon-gamma, IL-1beta, and tumor necrosis factor-alpha proteins. Therefore, the antitumor activity of gammaretroviruses carrying the IL-12 gene was enhanced through genetic modification of the envelope targeting HER2 receptor, which may be a promising strategy for bladder cancer therapy.
Lee, Euiyeon; Jeon, Hyunjin; Kang, Chungwon; Woo, Seonock; Yum, Seungshic; Kwon, Youngeun
2018-01-01
Environmental pollution by various industrial chemicals and biological agents poses serious risks to human health. Especially, marine contamination by potentially toxic elements (PTEs) has become a global concern in recent years. Many efforts have been undertaken to monitor the PTE contamination of the aquatic environment. However, there are few approaches available to assess the PTE exposure of aquatic organisms. In this research, we developed a strategy to evaluate the heavy metal exposure of marine organisms, by measuring the expression levels of metallothionein protein derived from Oryzias javanicus (OjaMT). OjaMT is a biomarker of heavy metal exposure because the expression level increases upon heavy metal exposure. The developed assay is based on a real-time, label-free surface plasmon resonance (SPR) measurement. Anti-OjaMT antibody and anti-OjaMT single-chain fragment of variable region (scFv) were used as detection probes. Two types of SPR sensor chips were fabricated, by immobilizing antibody or Cys3-tagged scFv (scFv-Cys3) in a controlled orientation and were tested for in situ label-free OjaMT detection. Compared to the antibody-presenting sensor chips, the scFv-presenting sensor chips showed improved performance, displaying enhanced sensitivity and enabling semi-quantitative detection. The portable SPR system combined with scFv-immobilized sensor chips is expected to provide an excellent point-of-care testing system that can monitor target biomarkers in real time. PMID:29614840
Riet, Tobias; Holzinger, Astrid; Dörrie, Jan; Schaft, Niels; Schuler, Gerold; Abken, Hinrich
2013-01-01
Redirecting T cells with a chimeric antigen receptor (CAR) of predefined specificity showed remarkable efficacy in the adoptive therapy trials of malignant diseases. The CAR consists of a single chain fragment of variable region (scFv) antibody targeting domain covalently linked to the CD3ζ signalling domain of the T cell receptor complex to mediate T cell activation upon antigen engagement. By using an antibody-derived targeting domain a CAR can potentially redirect T cells towards any target expressed on the cell surface as long as a binding domain is available. Antibody-mediated targeting moreover circumvents MHC restriction of the targeted antigen, thereby broadening the potential of applicability of adoptive T cell therapy. While T cells were so far genetically modified by viral transduction, transient modification with a CAR by RNA transfection gained increasing interest during the last years. This chapter focuses on methods to modify human T cells from peripheral blood with a CAR by electroporation of in vitro transcribed RNA and to test modified T cells for function for use in adoptive immunotherapy.
Antiviral Activity of HIV gp120 Targeting Bispecific T Cell Engager (BiTE®) Antibody Constructs.
Brozy, Johannes; Schlaepfer, Erika; Mueller, Christina K S; Rochat, Mary-Aude; Rampini, Silvana K; Myburgh, Renier; Raum, Tobias; Kufer, Peter; Baeuerle, Patrick A; Muenz, Markus; Speck, Roberto F
2018-05-02
Today's gold standard in HIV therapy is the combined antiretroviral therapy (cART). It requires strict adherence by patients and life-long medication, which can lower the viral load below detection limits and prevent HIV-associated immunodeficiency, but cannot cure patients. The bispecific T cell engaging (BiTE®) antibody technology has demonstrated long-term relapse-free outcomes in patients with relapsed and refractory acute lymphocytic leukemia. We here generated BiTE® antibody constructs that target the HIV-1 envelope protein gp120 (HIV gp120) using either the scFv B12 or VRC01, the first two extracellular domains (1+2) of human CD4 alone or joined to the single chain variable fragment (scFv) of the antibody 17b fused to an anti-human CD3ϵ scFv. These engineered human BiTE® antibody constructs showed engagement of T cells for redirected lysis of HIV gp120-transfected CHO cells. Furthermore, they substantially inhibited HIV-1 replication in PBMCs as well as in macrophages co-cultured with autologous CD8+ T-cells, the most potent being the human CD4(1+2) BiTE® antibody construct and the CD4(1+2)L17b BiTE® antibody construct. The CD4(1+2) h BiTE® antibody construct promoted HIV infection of human CD4-/CD8+ T cells. In contrast, the neutralizing B12 and the VRC01 BiTE® antibody constructs as well as the CD4(1+2)L17b BiTE® antibody construct did not. Thus, BiTE® antibody constructs targeting HIV gp120 are very promising for constraining HIV and warrant further development as novel antiviral therapy with curative potential. Importance HIV is a chronic infection well controlled with the current cART. However, we lack cure of HIV, and the HIV pandemic goes on. Here we showed in vitro and ex vivo t hat a bispecific T-cell engaging (BiTE®) antibody construct targeting HIV gp120 resulted in substantially reduced HIV replication. In addition, these BiTE® antibody constructs display efficient killing of gp120 expressing cells and inhibited replication in ex vivo HIV-infected PBMCs or macrophages. We believe that BiTE® antibody constructs recognizing HIV gp120 could be a very valuable strategy for a cure of HIV in combination with cART and compounds, which reverse latency. Copyright © 2018 American Society for Microbiology.
Xu, Liang; Carrer, Andrea; Zonta, Francesco; Qu, Zhihu; Ma, Peixiang; Li, Sheng; Ceriani, Federico; Buratto, Damiano; Crispino, Giulia; Zorzi, Veronica; Ziraldo, Gaia; Bruno, Francesca; Nardin, Chiara; Peres, Chiara; Mazzarda, Flavia; Salvatore, Anna M.; Raspa, Marcello; Scavizzi, Ferdinando; Chu, Youjun; Xie, Sichun; Yang, Xuemei; Liao, Jun; Liu, Xiao; Wang, Wei; Wang, Shanshan; Yang, Guang; Lerner, Richard A.; Mammano, Fabio
2017-01-01
Background: Mutations leading to changes in properties, regulation, or expression of connexin-made channels have been implicated in 28 distinct human hereditary diseases. Eight of these result from variants of connexin 26 (Cx26), a protein critically involved in cell-cell signaling in the inner ear and skin. Lack of non-toxic drugs with defined mechanisms of action poses a serious obstacle to therapeutic interventions for diseases caused by mutant connexins. In particular, molecules that specifically modulate connexin hemichannel function without affecting gap junction channels are considered of primary importance for the study of connexin hemichannel role in physiological as well as pathological conditions. Monoclonal antibodies developed in the last three decades have become the most important class of therapeutic biologicals. Recombinant methods permit rapid selection and improvement of monoclonal antibodies from libraries with large diversity. Methods: By screening a combinatorial library of human single-chain fragment variable (scFv) antibodies expressed in phage, we identified a candidate that binds an extracellular epitope of Cx26. We characterized antibody action using a variety of biochemical and biophysical assays in HeLa cells, organotypic cultures of mouse cochlea and human keratinocyte-derived cells. Results: We determined that the antibody is a remarkably efficient, non-toxic, and completely reversible inhibitor of hemichannels formed by connexin 26 and does not affect direct cell-cell communication via gap junction channels. Importantly, we also demonstrate that the antibody efficiently inhibits hyperative mutant Cx26 hemichannels implicated in autosomal dominant non-syndromic hearing impairment accompanied by keratitis and hystrix-like ichthyosis-deafness (KID/HID) syndrome. We solved the crystal structure of the antibody, identified residues that are critical for binding and used molecular dynamics to uncover its mechanism of action. Conclusions: Although further studies will be necessary to validate the effect of the antibody in vivo, the methodology described here can be extended to select antibodies against hemichannels composed by other connexin isoforms and, consequently, to target other pathologies associated with hyperactive hemichannels. Our study highlights the potential of this approach and identifies connexins as therapeutic targets addressable by screening phage display libraries expressing human randomized antibodies. PMID:29018324
Recombinant anti-podoplanin (NZ-1) immunotoxin for the treatment of malignant brain tumors
Chandramohan, Vidyalakshmi; Bao, Xuhui; Kaneko, Mika Kato; Kato, Yukinari; Keir, Stephen T.; Szafranski, Scott E.; Kuan, Chien-Tsun; Pastan, Ira H.; Bigner, Darell D.
2013-01-01
Current study demonstrates the glioma tumor antigen podoplanin to be present at very high levels (>90%) in both glioblastoma (D2159MG, D08-0308MG, and D08-0493MG) and medulloblastoma (D283MED, D425MED, and DAOY) xenografts and cell line. We constructed a novel recombinant single-chain antibody variable region fragment (scFv), NZ-1, specific for podoplanin from the NZ-1 hybridoma. NZ-1-scFv was then fused to Pseudomonas exotoxin A, carrying a C-terminal KDEL peptide (NZ-1-PE38KDEL). The immunotoxin was further stabilized by a disulfide (ds) bond between the heavy-chain and light-chain variable regions as the construct NZ-1-(scdsFv)-PE38KDEL. NZ-1-(scdsFv)-PE38KDEL exhibited significant reactivity to glioblastoma and medulloblastoma cells. The affinity of NZ-1-(scdsFv), NZ-1-(scdsFv)-PE38KDEL and NZ-1 antibody, for podoplanin peptide was 2.1×10−8 M, 8.0×10−8 M, and 3.9×10−10 M, respectively. In a protein stability assay, NZ-1-(scdsFv)-PE38KDEL retained 33-98% of its activity while that of NZ-1-PE38KDEL declined to 13% of its initial levels after incubation at 37°C for 3 days. In vitro cytotoxicity of the NZ-1-(scdsFv)-PE38KDEL was measured in cells isolated from glioblastoma xenografts, D2159MG, D08-0308MG, D08-0493MG, and in the medulloblastoma D283MED, D425MED, and DOAY xenografts and cell line. The NZ-1-(scdsFv)-PE38KDEL immunotoxin was highly cytotoxic, with an IC50 in the range of 1.6–29 ng/mL. Significantly, NZ-1-(scdsFv)-PE38KDEL demonstrated tumor-growth delay, averaging 24 days (P<0.001) and 21 days (P<0.001) in D2159MG and D283MED in vivo tumor models, respectively. Crucially, in the D425MED intracranial tumor model, NZ-1-(scdsFv)-PE38KDEL caused a 41% increase in survival (P≤0.001). In preclinical studies, NZ-1-(scdsFv)-PE38KDEL exhibited significant potential as a targeting agent for malignant brain tumors. PMID:23115013
Recombinant anti-podoplanin (NZ-1) immunotoxin for the treatment of malignant brain tumors.
Chandramohan, Vidyalakshmi; Bao, Xuhui; Kato Kaneko, Mika; Kato, Yukinari; Keir, Stephen T; Szafranski, Scott E; Kuan, Chien-Tsun; Pastan, Ira H; Bigner, Darell D
2013-05-15
Our study demonstrates the glioma tumor antigen podoplanin to be present at very high levels (>90%) in both glioblastoma (D2159MG, D08-0308MG and D08-0493MG) and medulloblastoma (D283MED, D425MED and DAOY) xenografts and cell line. We constructed a novel recombinant single-chain antibody variable region fragment (scFv), NZ-1, specific for podoplanin from the NZ-1 hybridoma. NZ-1-scFv was then fused to Pseudomonas exotoxin A, carrying a C-terminal KDEL peptide (NZ-1-PE38KDEL). The immunotoxin (IT) was further stabilized by a disulfide (ds) bond between the heavy-chain and light-chain variable regions as the construct NZ-1-(scdsFv)-PE38KDEL. NZ-1-(scdsFv)-PE38KDEL exhibited significant reactivity to glioblastoma and medulloblastoma cells. The affinity of NZ-1-(scdsFv), NZ-1-(scdsFv)-PE38KDEL and NZ-1 antibody for podoplanin peptide was 2.1 × 10(-8) M, 8.0 × 10(-8) M and 3.9 × 10(-10) M, respectively. In a protein stability assay, NZ-1-(scdsFv)-PE38KDEL retained 33-98% of its activity, whereas that of NZ-1-PE38KDEL declined to 13% of its initial levels after incubation at 37°C for 3 days. In vitro cytotoxicity of the NZ-1-(scdsFv)-PE38KDEL was measured in cells isolated from glioblastoma xenografts, D2159MG, D08-0308MG and D08-0493MG, and in the medulloblastoma D283MED, D425MED and DOAY xenografts and cell line. The NZ-1-(scdsFv)-PE38KDEL IT was highly cytotoxic, with an 50% inhibitory concentration in the range of 1.6-29 ng/ml. Significantly, NZ-1-(scdsFv)-PE38KDEL demonstrated tumor growth delay, averaging 24 days (p < 0.001) and 21 days (p < 0.001) in D2159MG and D283MED in vivo tumor models, respectively. Crucially, in the D425MED intracranial tumor model, NZ-1-(scdsFv)-PE38KDEL caused a 41% increase in survival (p ≤ 0.001). In preclinical studies, NZ-1-(scdsFv)-PE38KDEL exhibited significant potential as a targeting agent for malignant brain tumors. Copyright © 2012 UICC.
Hybrid Nanotechnologies for Detection and Synergistic Therapies for Breast Cancer
2012-10-01
5%-TCA TCG ATG GAG GTG CAG CTG GTG GAG-3%) and FdSeq1 and ligated into pCR2.1 TOPO. The ClaI/NotI-digested frag- ment was ligated into the ClaI/NotI...binding of each scFv clone (bold line) and the backgrounds of phycoerythrin-conjugated secondary antibodies ( gray ). FIGURE 3. Targeting of fluorescently...of the neuropilin family, is a high affinity receptor for the semaphorins Sema E and Sema IV but not Sema III. Neuron 19: 547–559. Dallas NA, Gray MJ
Xu, Xuequn; Qiu, Jin; Sun, Yi
2017-07-03
Chimeric antigen receptor T cells are T cells genetically engineered with CAR constructs which mainly contain scFV and TCR zeta chain. With promising development in blood cancers, CAR T trials are also applied in solid cancers. However, the treatment effect in solid cancers is lower than expected. This review summarizes difference of CAR T applications in solid and blood cancers. Future challenges of CAR T cell treatment in solid cancer are also discussed using ovarian cancer as an example.
Santoro, Stephen P.; Kim, Soorin; Motz, Gregory T.; Alatzoglou, Dimitrios; Li, Chunsheng; Irving, Melita; Powell, Daniel J.; Coukos, George
2014-01-01
Aberrant blood vessels enable tumor growth, provide a barrier to immune infiltration, and serve as a source of pro-tumorigenic signals. Targeting tumor blood vessels for destruction, or tumor vascular disruption therapy, can therefore provide significant therapeutic benefit. Here we describe the ability of chimeric antigen receptor (CAR)-bearing T cells to recognize human prostate-specific membrane antigen (hPSMA) on endothelial targets in vitro as well as in vivo. CAR T cells were generated using the anti-PSMA scFv, J591, and the intracellular signaling domains: CD3ζ, CD28, and/or CD137/4-1BB. We found that all anti-hPSMA CAR T cells recognized and eliminated PSMA+ endothelial targets in vitro, regardless of the signaling domain. T cells bearing the 3rd generation anti-hPSMA CAR, P28BBζ, were able to recognize and kill primary human endothelial cells isolated from gynecologic cancers. In addition, the P28BBζ CAR T cells mediated regression of hPSMA-expressing vascular neoplasms in mice. Finally, in murine models of ovarian cancers populated by murine vessels expressing hPSMA, the P28BBζ CAR T cells were able to ablate PSMA+ vessels, cause secondary depletion of tumor cells, and reduce tumor burden. Taken together, these results provide strong rationale for the use of CAR T cells as agents of tumor vascular disruption, specifically those targeting PSMA. PMID:25358763
Genßler, Sabrina; Burger, Michael C; Zhang, Congcong; Oelsner, Sarah; Mildenberger, Iris; Wagner, Marlies; Steinbach, Joachim P; Wels, Winfried S
2016-04-01
Epidermal growth factor receptor (EGFR) and its mutant form EGFRvIII are overexpressed in a large proportion of glioblastomas (GBM). Immunotherapy with an EGFRvIII-specific vaccine has shown efficacy against GBM in clinical studies. However, immune escape by antigen-loss variants and lack of control of EGFR wild-type positive clones limit the usefulness of this approach. Chimeric antigen receptor (CAR)-engineered natural killer (NK) cells may represent an alternative immunotherapeutic strategy. For targeting to GBM, we generated variants of the clinically applicable human NK cell line NK-92 that express CARs carrying a composite CD28-CD3ζ domain for signaling, and scFv antibody fragments for cell binding either recognizing EGFR, EGFRvIII, or an epitope common to both antigens. In vitro analysis revealed high and specific cytotoxicity of EGFR-targeted NK-92 against established and primary human GBM cells, which was dependent on EGFR expression and CAR signaling. EGFRvIII-targeted NK-92 only lysed EGFRvIII-positive GBM cells, while dual-specific NK cells expressing a cetuximab-based CAR were active against both types of tumor cells. In immunodeficient mice carrying intracranial GBM xenografts either expressing EGFR, EGFRvIII or both receptors, local treatment with dual-specific NK cells was superior to treatment with the corresponding monospecific CAR NK cells. This resulted in a marked extension of survival without inducing rapid immune escape as observed upon therapy with monospecific effectors. Our results demonstrate that dual targeting of CAR NK cells reduces the risk of immune escape and suggest that EGFR/EGFRvIII-targeted dual-specific CAR NK cells may have potential for adoptive immunotherapy of glioblastoma.
Zimmermann, Jana; Saalbach, Isolde; Jahn, Doreen; Giersberg, Martin; Haehnel, Sigrun; Wedel, Julia; Macek, Jeanette; Zoufal, Karen; Glünder, Gerhard; Falkenburg, Dieter; Kipriyanov, Sergey M
2009-09-11
Coccidiosis caused by protozoans of genus Eimeria is a chicken parasitic disease of great economical importance. Conventional disease control strategies depend on vaccination and prophylactic use of anticoccidial drugs. Alternative solution to prevent and treat coccidiosis could be provided by passive immunization using orally delivered neutralizing antibodies. We investigated the possibility to mitigate the parasitic infection by feeding poultry with antibody expressing transgenic crop seeds. Using the phage display antibody library, we generated a panel of anti-Eimeria scFv antibody fragments with high sporozoite-neutralizing activity. These antibodies were expressed either transiently in agrobacteria-infiltrated tobacco leaves or stably in seeds of transgenic pea plants. Comparison of the scFv antibodies purified either from tobacco leaves or from the pea seeds demonstrated no difference in their antigen-binding activity and molecular form compositions. Force-feeding experiments demonstrated that oral delivery of flour prepared from the transgenic pea seeds had higher parasite neutralizing activity in vivo than the purified antibody fragments isolated from tobacco. The pea seed content was found to protect antibodies against degradation by gastrointestinal proteases (>100-fold gain in stability). Ad libitum feeding of chickens demonstrated that the transgenic seeds were well consumed and not shunned. Furthermore, feeding poultry with shred prepared from the antibody expressing pea seeds led to significant mitigation of infection caused both by high and low challenge doses of Eimeria oocysts. The results suggest that our strategy offers a general approach to control parasitic infections in production animals using cost-effective antibody expression in crop seeds affordable for the animal health market.
Crosby, Natasha M; Ghosh, Mistuni; Su, Betty; Beckstead, Jennifer A; Kamei, Ayako; Simonsen, Jens B; Luo, Bing; Gordon, Leo I; Forte, Trudy M; Ryan, Robert O
2015-08-01
A fusion protein comprising an α-CD20 single chain variable fragment (scFv) antibody, a spacer peptide, and human apolipoprotein (apo) A-I was constructed and expressed in Escherichia coli. The lipid interaction properties intrinsic to apoA-I as well as the antigen recognition properties of the scFv were retained by the chimera. scFv•apoA-I was formulated into nanoscale reconstituted high-density lipoprotein particles (termed nanodisks; ND) and incubated with cultured cells. α-CD20 scFv•apoA-I ND bound to CD20-positive non-Hodgkins lymphoma (NHL) cells (Ramos and Granta) but not to CD20-negative T lymphocytes (i.e., Jurkat). Binding to NHL cells was partially inhibited by pre-incubation with rituximab, a monoclonal antibody directed against CD20. Confocal fluorescence microscopy analysis of Granta cells following incubation with α-CD20 scFv•apoA-I ND formulated with the intrinsically fluorescent hydrophobic polyphenol, curcumin, revealed α-CD20 scFv•apoA-I localizes to the cell surface, while curcumin off-loads and gains entry to the cell. Compared to control incubations, viability of cultured NHL cells was decreased upon incubation with α-CD20 scFv•apoA-I ND harboring curcumin. Thus, formulation of curcumin ND with α-CD20 scFv•apoA-I as the scaffold component confers cell targeting and enhanced bioactive agent delivery, providing a strategy to minimize toxicity associated with chemotherapeutic agents.
Seal, S N; Hoet, R M; Raats, J M; Radic, M Z
2000-09-01
To examine anti-double-stranded DNA (anti-dsDNA) IgG autoantibodies from the bone marrow of individuals with systemic lupus erythematosus (SLE). A library of single-chain variable fragments (scFv) was constructed from SLE bone marrow complementary DNA of gamma, kappa, and lambda isotype by cloning into the pHENIX phagemid vector. The library was screened with dsDNA in solution, and 2 anti-DNA phage, DNA1 and DNA4, were isolated and their Ig V genes sequenced. Soluble scFv corresponding to DNA1 and DNA4, and their heavy (H)- and light (L)-chain recombinants, were prepared, purified, and analyzed for binding to DNA by enzyme-linked immunosorbent assay. DNA1 and DNA4 used different Ig H-chain (3-30 and 5-51, respectively) and L-chain (DPK15 and DPK22, respectively) V genes. The ratios of replacement mutations to silent mutations in DNA1 and DNA4 suggest that their V genes were selected for improved antigen binding in vivo. The recombinant between DNA4VH and DNA1VL showed the highest relative affinity for both single-stranded DNA and dsDNA. These 2 Ig subunits contained third complementarity-determining region arginines and had acquired the majority of replacement mutations. Anti-dsDNA IgG autoantibodies from the bone marrow of SLE patients exploit diverse V genes and cationic V-D-J and V-J junctions for DNA binding, and accumulate replacement mutations that enhance binding.
Fab-based bispecific antibody formats with robust biophysical properties and biological activity.
Wu, Xiufeng; Sereno, Arlene J; Huang, Flora; Lewis, Steven M; Lieu, Ricky L; Weldon, Caroline; Torres, Carina; Fine, Cody; Batt, Micheal A; Fitchett, Jonathan R; Glasebrook, Andrew L; Kuhlman, Brian; Demarest, Stephen J
2015-01-01
A myriad of innovative bispecific antibody (BsAb) platforms have been reported. Most require significant protein engineering to be viable from a development and manufacturing perspective. Single-chain variable fragments (scFvs) and diabodies that consist only of antibody variable domains have been used as building blocks for making BsAbs for decades. The drawback with Fv-only moieties is that they lack the native-like interactions with CH1/CL domains that make antibody Fab regions stable and soluble. Here, we utilize a redesigned Fab interface to explore 2 novel Fab-based BsAbs platforms. The redesigned Fab interface designs limit heavy and light chain mixing when 2 Fabs are co-expressed simultaneously, thus allowing the use of 2 different Fabs within a BsAb construct without the requirement of one or more scFvs. We describe the stability and activity of a HER2×HER2 IgG-Fab BsAb, and compare its biophysical and activity properties with those of an IgG-scFv that utilizes the variable domains of the same parental antibodies. We also generated an EGFR × CD3 tandem Fab protein with a similar format to a tandem scFv (otherwise known as a bispecific T cell engager or BiTE). We show that the Fab-based BsAbs have superior biophysical properties compared to the scFv-based BsAbs. Additionally, the Fab-based BsAbs do not simply recapitulate the activity of their scFv counterparts, but are shown to possess unique biological activity.
Fab-based bispecific antibody formats with robust biophysical properties and biological activity
Wu, Xiufeng; Sereno, Arlene J; Huang, Flora; Lewis, Steven M; Lieu, Ricky L; Weldon, Caroline; Torres, Carina; Fine, Cody; Batt, Micheal A; Fitchett, Jonathan R; Glasebrook, Andrew L; Kuhlman, Brian; Demarest, Stephen J
2015-01-01
A myriad of innovative bispecific antibody (BsAb) platforms have been reported. Most require significant protein engineering to be viable from a development and manufacturing perspective. Single-chain variable fragments (scFvs) and diabodies that consist only of antibody variable domains have been used as building blocks for making BsAbs for decades. The drawback with Fv-only moieties is that they lack the native-like interactions with CH1/CL domains that make antibody Fab regions stable and soluble. Here, we utilize a redesigned Fab interface to explore 2 novel Fab-based BsAbs platforms. The redesigned Fab interface designs limit heavy and light chain mixing when 2 Fabs are co-expressed simultaneously, thus allowing the use of 2 different Fabs within a BsAb construct without the requirement of one or more scFvs. We describe the stability and activity of a HER2×HER2 IgG-Fab BsAb, and compare its biophysical and activity properties with those of an IgG-scFv that utilizes the variable domains of the same parental antibodies. We also generated an EGFR × CD3 tandem Fab protein with a similar format to a tandem scFv (otherwise known as a bispecific T cell engager or BiTE). We show that the Fab-based BsAbs have superior biophysical properties compared to the scFv-based BsAbs. Additionally, the Fab-based BsAbs do not simply recapitulate the activity of their scFv counterparts, but are shown to possess unique biological activity. PMID:25774965
Zimmermann, Jana; Saalbach, Isolde; Jahn, Doreen; Giersberg, Martin; Haehnel, Sigrun; Wedel, Julia; Macek, Jeanette; Zoufal, Karen; Glünder, Gerhard; Falkenburg, Dieter; Kipriyanov, Sergey M
2009-01-01
Background Coccidiosis caused by protozoans of genus Eimeria is a chicken parasitic disease of great economical importance. Conventional disease control strategies depend on vaccination and prophylactic use of anticoccidial drugs. Alternative solution to prevent and treat coccidiosis could be provided by passive immunization using orally delivered neutralizing antibodies. We investigated the possibility to mitigate the parasitic infection by feeding poultry with antibody expressing transgenic crop seeds. Results Using the phage display antibody library, we generated a panel of anti-Eimeria scFv antibody fragments with high sporozoite-neutralizing activity. These antibodies were expressed either transiently in agrobacteria-infiltrated tobacco leaves or stably in seeds of transgenic pea plants. Comparison of the scFv antibodies purified either from tobacco leaves or from the pea seeds demonstrated no difference in their antigen-binding activity and molecular form compositions. Force-feeding experiments demonstrated that oral delivery of flour prepared from the transgenic pea seeds had higher parasite neutralizing activity in vivo than the purified antibody fragments isolated from tobacco. The pea seed content was found to protect antibodies against degradation by gastrointestinal proteases (>100-fold gain in stability). Ad libitum feeding of chickens demonstrated that the transgenic seeds were well consumed and not shunned. Furthermore, feeding poultry with shred prepared from the antibody expressing pea seeds led to significant mitigation of infection caused both by high and low challenge doses of Eimeria oocysts. Conclusion The results suggest that our strategy offers a general approach to control parasitic infections in production animals using cost-effective antibody expression in crop seeds affordable for the animal health market. PMID:19747368
Song, De-Gang; Ye, Qunrui; Poussin, Mathilde; Liu, Lin; Figini, Mariangela; Powell, Daniel J.
2015-01-01
Chimeric antigen receptors (CARs) can redirect T cells against antigen-expressing tumors in an HLA-independent manner. To date, various CARs have been constructed using mouse single chain antibody variable fragments (scFvs) of high affinity that are immunogenic in humans and have the potential to mediate “on-target” toxicity. Here, we developed and evaluated a fully human CAR comprised of the human C4 folate receptor-alpha (αFR)-specific scFv coupled to intracellular T cell signaling domains. Human T cells transduced to express the C4 CAR specifically secreted proinflammatory cytokine and exerted cytolytic functions when cultured with αFR-expressing tumors in vitro. Adoptive transfer of C4 CAR T cells mediated the regression of large, established human ovarian cancer in a xenogeneic mouse model. Relative to a murine MOv19 scFv-based αFR CAR, C4 CAR T cells mediated comparable cytotoxic tumor activity in vitro and in vivo but had lower affinity for αFR protein and exhibited reduced recognition of normal cells expressing low levels of αFR. Thus, T cells expressing a fully human CAR of intermediate affinity can efficiently kill antigen-expressing tumors in vitro and in vivo and may overcome issues of transgene immunogenicity and “on-target off-tumor” toxicity that plague trials utilizing CARs containing mouse-derived, high affinity scFvs. PMID:26101914
Nucleic Acid Nanostructures: Bottom-Up Control of Geometry on the Nanoscale
Seeman, Nadrian C.; Lukeman, Philip S.
2012-01-01
DNA may seem an unlikely molecule from which to build nanostructures, but this is not correct. The specificity of interaction that enables DNA to function so successfully as genetic material also enables its use as a smart molecule for construction on the nanoscale. The key to using DNA for this purpose is the design of stable branched molecules, which expand its ability to interact specifically with other nucleic acid molecules. The same interactions used by genetic engineers can be used to make cohesive interactions with other DNA molecules that lead to a variety of new species. Branched DNA molecules are easy to design, and the can assume a variety of structural motifs. These can be used for purposes both of specific construction, such as polyhedra, and for the assembly of topological targets. A variety of two-dimensional periodic arrays with specific patterns have been made. DNA nanomechanical devices have been built with a series of different triggers, small molecules, nucleic acid molecules and proteins. Recently, progress has been made in self-replication of DNA nano-constructs, and in the scaffolding of other species into DNA arrangements. PMID:25152542
Ghevaert, Cedric; Wilcox, David A.; Fang, Juan; Armour, Kathryn L.; Clark, Mike R.; Ouwehand, Willem H.; Williamson, Lorna M.
2008-01-01
Fetomaternal alloimmune thrombocytopenia (FMAIT) is caused by maternal generation of antibodies specific for paternal platelet antigens and can lead to fetal intracranial hemorrhage. A SNP in the gene encoding integrin β3 causes a clinically important maternal-paternal antigenic difference; Leu33 generates the human platelet antigen 1a (HPA-1a), whereas Pro33 generates HPA-1b. As a potential treatment to prevent fetal intracranial hemorrhage in HPA-1a alloimmunized pregnancies, we generated an antibody that blocks the binding of maternal HPA-1a–specific antibodies to fetal HPA-1a1b platelets by combining a high-affinity human HPA-1a–specific scFv (B2) with an IgG1 constant region modified to minimize Fcγ receptor–dependent platelet destruction (G1Δnab). B2G1Δnab saturated HPA-1a+ platelets and substantially inhibited binding of clinical HPA-1a–specific sera to HPA-1a+ platelets. The response of monocytes to B2G1Δnab-sensitized platelets was substantially less than their response to unmodified B2G1, as measured by chemiluminescence. In addition, B2G1Δnab inhibited chemiluminescence induced by B2G1 and HPA-1a–specific sera. In a chimeric mouse model, B2G1 and polyclonal Ig preparations from clinical HPA-1a–specific sera reduced circulating HPA-1a+ platelets, concomitant with transient thrombocytopenia. As the Δnab constant region is uninformative in mice, F(ab′)2 B2G1 was used as a proof of principle blocking antibody and prevented the in vivo platelet destruction seen with B2G1 and polyclonal HPA-1a–specific antibodies. These results provide rationale for human clinical studies. PMID:18654666
Recent advances in developing small molecules targeting RNA.
Guan, Lirui; Disney, Matthew D
2012-01-20
RNAs are underexploited targets for small molecule drugs or chemical probes of function. This may be due, in part, to a fundamental lack of understanding of the types of small molecules that bind RNA specifically and the types of RNA motifs that specifically bind small molecules. In this review, we describe recent advances in the development and design of small molecules that bind to RNA and modulate function that aim to fill this void.
Proteoform-specific protein binding of small molecules in complex matrices
USDA-ARS?s Scientific Manuscript database
Characterizing the specific binding between protein targets and small molecules is critically important for drug discovery. Conventional assays require isolation and purification of small molecules from complex matrices through multistep chromatographic fractionation, which may alter their original ...
Ligand-targeted theranostic nanomedicines against cancer
Yao, Virginia J.; D'Angelo, Sara; Butler, Kimberly S.; ...
2016-01-06
Nanomedicines have significant potential for cancer treatment. Although the majority of nanomedicines currently tested in clinical trials utilize simple, biocompatible liposome-based nanocarriers, their widespread use is limited by non-specificity and low target site concentration and thus, do not provide a substantial clinical advantage over conventional, systemic chemotherapy. In the past 20 years, we have identified specific receptors expressed on the surfaces of tumor endothelial and perivascular cells, tumor cells, the extracellular matrix and stromal cells using combinatorial peptide libraries displayed on bacteriophage. These studies corroborate the notion that unique receptor proteins such as IL-11Rα, GRP78, EphA5, among others, are differentiallymore » overexpressed in tumors and present opportunities to deliver tumor-specific therapeutic drugs. By using peptides that bind to tumor-specific cell-surface receptors, therapeutic agents such as apoptotic peptides, suicide genes, imaging dyes or chemotherapeutics can be precisely and systemically delivered to reduce tumor growth in vivo, without harming healthy cells. Given the clinical applicability of peptide-based therapeutics, targeted delivery of nanocarriers loaded with therapeutic cargos seems plausible. We propose a modular design of a functionalized protocell in which a tumor-targeting moiety, such as a peptide or recombinant human antibody single chain variable fragment (scFv), is conjugated to a lipid bilayer surrounding a silica-based nanocarrier core containing a protected therapeutic cargo. The functionalized protocell can be tailored to a specific cancer subtype and treatment regimen by exchanging the tumor-targeting moiety and/or therapeutic cargo or used in combination to create unique, theranostic agents. In this review, we summarize the identification of tumor-specific receptors through combinatorial phage display technology and the use of antibody display selection to identify recombinant human scFvs against these tumor-specific receptors. We compare the characteristics of different types of simple and complex nanocarriers, and discuss potential types of therapeutic cargos and conjugation strategies. As a result, the modular design of functionalized protocells may improve the efficacy and safety of nanomedicines for future cancer therapy.« less
Ligand-targeted theranostic nanomedicines against cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Virginia J.; D'Angelo, Sara; Butler, Kimberly S.
Nanomedicines have significant potential for cancer treatment. Although the majority of nanomedicines currently tested in clinical trials utilize simple, biocompatible liposome-based nanocarriers, their widespread use is limited by non-specificity and low target site concentration and thus, do not provide a substantial clinical advantage over conventional, systemic chemotherapy. In the past 20 years, we have identified specific receptors expressed on the surfaces of tumor endothelial and perivascular cells, tumor cells, the extracellular matrix and stromal cells using combinatorial peptide libraries displayed on bacteriophage. These studies corroborate the notion that unique receptor proteins such as IL-11Rα, GRP78, EphA5, among others, are differentiallymore » overexpressed in tumors and present opportunities to deliver tumor-specific therapeutic drugs. By using peptides that bind to tumor-specific cell-surface receptors, therapeutic agents such as apoptotic peptides, suicide genes, imaging dyes or chemotherapeutics can be precisely and systemically delivered to reduce tumor growth in vivo, without harming healthy cells. Given the clinical applicability of peptide-based therapeutics, targeted delivery of nanocarriers loaded with therapeutic cargos seems plausible. We propose a modular design of a functionalized protocell in which a tumor-targeting moiety, such as a peptide or recombinant human antibody single chain variable fragment (scFv), is conjugated to a lipid bilayer surrounding a silica-based nanocarrier core containing a protected therapeutic cargo. The functionalized protocell can be tailored to a specific cancer subtype and treatment regimen by exchanging the tumor-targeting moiety and/or therapeutic cargo or used in combination to create unique, theranostic agents. In this review, we summarize the identification of tumor-specific receptors through combinatorial phage display technology and the use of antibody display selection to identify recombinant human scFvs against these tumor-specific receptors. We compare the characteristics of different types of simple and complex nanocarriers, and discuss potential types of therapeutic cargos and conjugation strategies. As a result, the modular design of functionalized protocells may improve the efficacy and safety of nanomedicines for future cancer therapy.« less
Frigerio, B; Fracasso, G; Luison, E; Cingarlini, S; Mortarino, M; Coliva, A; Seregni, E; Bombardieri, E; Zuccolotto, G; Rosato, A; Colombatti, M; Canevari, S; Figini, M
2013-06-01
Prostate carcinoma is the most common non-cutaneous cancer in developed countries and represents the second leading cause of death. Early stage androgen dependent prostate carcinoma responds well to conventional therapies, but relatively few treatment options exist for patients with hormone-refractory prostate cancer. One of the most suitable targets for antibody-mediated approaches is prostate specific membrane antigen (PSMA) which is a well known tumour associated antigen. PSMA is a type II integral cell-surface membrane protein that is not secreted, and its expression density and enzymatic activity are increased progressively in prostate cancer compared to normal prostate epithelium, thereby making PSMA an ideal target for monoclonal antibody imaging and therapy. To obtain a small protein that can better penetrate tissue, we have engineered a single-chain variable fragment (scFv) starting from the variable heavy and light domains of the murine anti-PSMA monoclonal antibody D2B. scFvD2B was analysed in vitro for activity, stability, internalisation ability and in vivo for targeting specificity. Maintenance of function and immunoreactivity as well as extremely high radiolabelling efficiency and radiochemical purity were demonstrated by in vitro assays and under different experimental conditions. Despite its monovalent binding, scFvD2B retained a good strength of binding and was able to internalise around 40% of bound antigen. In vivo we showed its ability to specifically target only PSMA expressing prostate cancer xenografts. Due to these advantageous properties, scFvD2B has the potential to become a good theranostic reagent for early detection and therapy of prostate cancers. Published by Elsevier Ltd.
1989-01-01
The structures of Ia molecules expressed by two BALB/c B cell lymphoma lines, A20-1.11 (A20) and 2PK3, were analyzed in an effort to explain the differences in antigen-presenting capacity displayed by these cells. Alloreactive T cell hybridomas specific for I-Ad and antigen- specific, I-Ad-restricted T cells responded well to A20 as the APC. The same alloreactive T cell hybridomas responded weakly or not at all to 2PK3 and the responses of the antigen-specific, I-Ad-restricted T cells were consistently lower to antigen presented by 2PK3 as compared with A20. T cells restricted to I-Ed responded equally well to either A20 or 2PK3 as APC. Additionally 2PK3, but not A20, stimulated a strong syngeneic mixed lymphocyte response. Structural analyses of the Ia antigens revealed that I-A and I-E molecules were expressed by A20, whereas an I-E and a novel I-A-like molecule were expressed by 2PK3. The novel class II molecule was affinity purified from 2PK3 cells using an mAb specific for Ad beta (MK-D6), and this molecule was subsequently shown by an RIA to react with an E alpha-specific mAb (14-4-4S) as well. Chain-specific polyclonal antisera raised against I-A and I-E alpha and beta chains indicated that the 2PK3 "I-A" alpha chain reacted in immunoblot with E alpha-specific and not A alpha-specific antisera, whereas the beta chain reacted with A beta- and not E beta-specific antisera. Peptide map and partial amino acid sequence analyses indicated that the "I-A" molecule expressed by 2PK3 represented a mixed isotype structure resulting from the pairing of Ed alpha with Ad beta. By immunofluorescence staining analysis, 2PK3 did not react with an mAb specific for Ad alpha. 2PK3 was capable of limited antigen presentation through the mixed isotype molecule to I-Ad-restricted OVA-specific T cell hybridomas, although the responses induced were low compared with presentation through I-A on A20. Previous descriptions of the expression of mixed isotype class II molecules in the mouse have resulted primarily from DNA-mediated gene transfer experiments. The results presented indicate that a mixed isotype class II molecule can be expressed naturally. PMID:2647893
Tani, Hiroaki; Osbourn, Jane K; Walker, Edward H; Rush, Robert A; Ferguson, Ian A
2013-01-01
The neurotrophin receptor p75(NTR) is utilized by a variety of pathogens to gain entry into the central nervous system (CNS). We tested if this entry portal might be exploited using a phage display library to isolate internalizing antibodies that target the CNS in vivo. By applying a phage library that expressed human single chain variable fragment (scFv) antibodies on their surface to a transected sciatic nerve, we showed that (1) phage conjugated to anti-p75(NTR) antibody or phage scFv library pre-panned against p75(NTR) are internalized by neurons expressing p75(NTR); (2) subsequent retrograde axonal transport separates internalized phage from the applied phage; and, (3) internalized phage can be recovered from a proximal ligature made on a nerve. This approach resulted in 13-fold increase in the number of phage isolated from the injured nerve compared with the starting population, and isolation of 18 unique internalizing p75(NTR) antibodies that were transported from the peripheral nerve into the spinal cord, through the blood-brain barrier. In addition, antibodies recognizing other potentially internalized antigens were identified through in vivo selection using a fully diverse library. Because p75(NTR) expression is upregulated in motor neurons in response to injury and in disease, the p75(NTR) antibodies may have substantial potential for cell-targeted drug/gene delivery. In addition, this novel selection method provides the potential to generate panels of antibodies that could be used to identify further internalization targets, which could aid drug delivery across the blood-brain barrier.
Zhu, Guijie; Zhao, Peng; Deng, Nan; Tao, Dingyin; Sun, Liangliang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui
2012-09-18
Single chain variable fragment (scFv) displaying the M13 phage library was covalently immobilized on magnetic microspheres and used as a protein equalizer for the treatment of human serum. First, scFv displaying M13 phage library functionalized magnetic microspheres (scFv@M13@MM) was incubated with a human serum sample. Second, captured proteins on scFv@M13@MM were eluted with 2 M NaCl, 50 mM glycine-hydrochloric acid (Gly-HCl), and 20% (v/v) acetonitrile with 0.5% (v/v) trifluoroacetic acid in sequence. Finally, the tightly bonded proteins were released by the treatment with thrombin. The eluates were first analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with silver staining. Results indicated that the difference of protein concentration was reduced obviously in NaCl and Gly-HCl fractions compared with untreated human serum sample. The eluates were also digested with trypsin, followed by online 2D-strong cation exchange (SCX)-RPLC-ESI-MS/MS analysis. Results demonstrated that the number of proteins identified from an scFv@M13@MM treated human serum sample was improved 100% compared with that from the untreated sample. In addition, the spectral count of 10 high abundance proteins (serum albumin, serotransferrin, α-2-macroglobulin, α-1-antitrypsin, apolipoprotein B-100, Ig γ-2 chain C region, haptoglobin, hemopexin, α-1-acid glycoprotein 1, and α-2-HS-glycoprotein) decreased evidently after scFv@M13@MM treatment. All these results demonstrate that scFv@M13@MM could efficiently remove high-abundance proteins, reduce the protein concentration difference of human serum, and result in more protein identification.
Tani, Hiroaki; Osbourn, Jane K.; Walker, Edward H.; Rush, Robert A.; Ferguson, Ian A.
2013-01-01
The neurotrophin receptor p75NTR is utilized by a variety of pathogens to gain entry into the central nervous system (CNS). We tested if this entry portal might be exploited using a phage display library to isolate internalizing antibodies that target the CNS in vivo. By applying a phage library that expressed human single chain variable fragment (scFv) antibodies on their surface to a transected sciatic nerve, we showed that (1) phage conjugated to anti-p75NTR antibody or phage scFv library pre-panned against p75NTR are internalized by neurons expressing p75NTR; (2) subsequent retrograde axonal transport separates internalized phage from the applied phage; and, (3) internalized phage can be recovered from a proximal ligature made on a nerve. This approach resulted in 13-fold increase in the number of phage isolated from the injured nerve compared with the starting population, and isolation of 18 unique internalizing p75NTR antibodies that were transported from the peripheral nerve into the spinal cord, through the blood-brain barrier. In addition, antibodies recognizing other potentially internalized antigens were identified through in vivo selection using a fully diverse library. Because p75NTR expression is upregulated in motor neurons in response to injury and in disease, the p75NTR antibodies may have substantial potential for cell-targeted drug/gene delivery. In addition, this novel selection method provides the potential to generate panels of antibodies that could be used to identify further internalization targets, which could aid drug delivery across the blood-brain barrier. PMID:23549155
Reversible Aptamer-Au Plasmon Rulers for Secreted Single Molecules
Lee, Somin Eunice; Chen, Qian; Bhat, Ramray; ...
2015-06-03
Plasmon rulers, consisting of pairs of gold nanoparticles, allow single-molecule analysis without photobleaching or blinking; however, current plasmon rulers are irreversible, restricting detection to only single events. Here, we present a reversible plasmon ruler, comprised of coupled gold nanoparticles linked by a single aptamer, capable of binding individual secreted molecules with high specificity. We show that the binding of target secreted molecules to the reversible plasmon ruler is characterized by single-molecule sensitivity, high specificity, and reversibility. Lastly, such reversible plasmon rulers should enable dynamic and adaptive live-cell measurement of secreted single molecules in their local microenvironment.
Selection of Human Antibody Fragments which Bind Novel Breast Tumor Antigens
1996-09-01
OmniGene cycler. The products were gel C6.5 must occur rarely in the repertoire, since none purified, isolated from the gel using DEAE membranes, of 92...C6VHCDR3A, C6VHCDR3B, C6VHCDR3C, and minute) using a Hybaid OmniGene cycler. To introduce C6VHCDR3D. a Notl restriction site at the 3’ end of the scFv gene...34C for 20 30 sec, 55 *C for 30 sec and 72°C for 30 sec) using a Hybaid OmniGene cycler. The products were gel purified, isolated from the gel using
Construction of human antibody gene libraries and selection of antibodies by phage display.
Frenzel, André; Kügler, Jonas; Wilke, Sonja; Schirrmann, Thomas; Hust, Michael
2014-01-01
Antibody phage display is the most commonly used in vitro selection technology and has yielded thousands of useful antibodies for research, diagnostics, and therapy.The prerequisite for successful generation and development of human recombinant antibodies using phage display is the construction of a high-quality antibody gene library. Here, we describe the methods for the construction of human immune and naive scFv gene libraries.The success also depends on the panning strategy for the selection of binders from these libraries. In this article, we describe a panning strategy that is high-throughput compatible and allows parallel selection in microtiter plates.
Chin, Stacey E; Ferraro, Franco; Groves, Maria; Liang, Meina; Vaughan, Tristan J; Dobson, Claire L
2015-01-01
Anti-idiotype antibodies against a therapeutic antibody are key reagents for the development of immunogenicity and pharmacokinetic (PK) assays during pre-clinical and clinical development. Here we have used a combination of phage and ribosome display to isolate a panel of monoclonal anti-idiotype antibodies with sub-nanomolar affinity and high specificity to a human anti-IgE monoclonal antibody. Anti-idiotype antibodies were enriched from scFv libraries using phage display, and a biochemical epitope competition assay was used to identify anti-idiotypes which neutralized IgE binding, which was essential for the intended use of the anti-idiotypes as positive controls in neutralizing anti-drug antibody (Nab) assays. The phage display-derived anti-idiotype antibodies were rapidly affinity-matured using a random point mutagenesis approach in ribosome display. Ten anti-idiotype antibodies with improved neutralizing activity relative to the parent antibodies displayed sub-nanomolar affinity for the anti-IgE antibody, representing up to 20-fold improvements in affinity from just two rounds of affinity-based selection. The optimized anti-idiotype antibodies retained the specificity of the parent antibodies, and importantly, were fit for purpose for use in PK and anti-drug antibody (ADA) assays. The approach we describe here for generation of anti-idiotype antibodies to an anti-IgE antibody is generically applicable for the rapid isolation and affinity maturation of anti-idiotype antibodies to any antibody-based drug candidate. Copyright © 2014 Elsevier B.V. All rights reserved.
Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape
Mukherjee, Malini; Grada, Zakaria; Pignata, Antonella; Landi, Daniel; Navai, Shoba A.; Wakefield, Amanda; Bielamowicz, Kevin; Chow, Kevin K.H.; Brawley, Vita S.; Byrd, Tiara T.; Krebs, Simone; Gottschalk, Stephen; Wels, Winfried S.; Baker, Matthew L.; Dotti, Gianpietro; Mamonkin, Maksim; Brenner, Malcolm K.
2016-01-01
In preclinical models of glioblastoma, antigen escape variants can lead to tumor recurrence after treatment with CAR T cells that are redirected to single tumor antigens. Given the heterogeneous expression of antigens on glioblastomas, we hypothesized that a bispecific CAR molecule would mitigate antigen escape and improve the antitumor activity of T cells. Here, we created a CAR that joins a HER2-binding scFv and an IL13Rα2-binding IL-13 mutein to make a tandem CAR exodomain (TanCAR) and a CD28.ζ endodomain. We determined that patient TanCAR T cells showed distinct binding to HER2 or IL13Rα2 and had the capability to lyse autologous glioblastoma. TanCAR T cells exhibited activation dynamics that were comparable to those of single CAR T cells upon encounter of HER2 or IL13Rα2. We observed that TanCARs engaged HER2 and IL13Rα2 simultaneously by inducing HER2-IL13Rα2 heterodimers, which promoted superadditive T cell activation when both antigens were encountered concurrently. TanCAR T cell activity was more sustained but not more exhaustible than that of T cells that coexpressed a HER2 CAR and an IL13Rα2 CAR, T cells with a unispecific CAR, or a pooled product. In a murine glioblastoma model, TanCAR T cells mitigated antigen escape, displayed enhanced antitumor efficacy, and improved animal survival. Thus, TanCAR T cells show therapeutic potential to improve glioblastoma control by coengaging HER2 and IL13Rα2 in an augmented, bivalent immune synapse that enhances T cell functionality and reduces antigen escape. PMID:27427982
Qi, Jianying; Ye, Xianlong; Ren, Guiping; Kan, Fangming; Zhang, Yu; Guo, Mo; Zhang, Zhiyi; Li, Deshan
2014-02-01
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease that mainly causes the synovial joint inflammation and cartilage destruction. Interleukin-1β (IL-1β) is an important proinflammatory cytokine involved in the pathogenesis of RA. In this study, we constructed and expressed anti-IL-1β-full-length antibody in CHO-K1-SV, anti-IL-1β-Fab and anti-IL-1β-scFv in Rosetta. We compared the therapeutic efficacy of three anti-IL-1β antibodies for CIA mice. Mice with CIA were subcutaneously injected with humanized anti-IL-1β-scFv, anti-IL-1β-Fab or anti-IL-1β-full-length antibody. The effects of treatment were determined by arthritis severity score, autoreactive humoral, cellular immune responses, histological lesion and cytokines production. Compared with anti-IL-1β-scFv treatments, anti-IL-1β-Fab and anti-IL-1β-full-length antibody therapy resulted in more significant effect in alleviating the severity of arthritis by preventing bone damage and cartilage destruction, reducing humoral and cellular immune responses, and down-regulating the expression of IL-1β, IL-6, IL-2, IFN-γ, TNF-α and MMP-3 in inflammatory tissue. The therapeutic effects of anti-IL-1β-Fab and anti-IL-1β-full-length antibodies on CIA mice had no significant difference. However, production of anti-IL-1β-full-length antibody in eukaryotic system is, in general, time-consuming and more expensive than that of anti-IL-1β-Fab in prokaryotic systems. In conclusion, as a small molecule antibody, anti-IL-1β-Fab is an ideal candidate for RA therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.
The role of water molecules in stereoselectivity of glucose/galactose-binding protein
NASA Astrophysics Data System (ADS)
Kim, Minsup; Cho, Art E.
2016-11-01
Using molecular dynamics (MD) simulation methods, we attempted to explain the experimental results on ligand specificity of glucose/galactose-binding protein (GGBP) to β-D-glucose and β-D-galactose. For the simulation, a three-dimensional structure of GGBP was prepared, and homology modeling was performed to generate variant structures of GGBP with mutations at Asp14. Then, docking was carried out to find a reasonable β-D-glucose and β-D-galactose binding conformations with GGBP. Subsequent molecular dynamics simulations of β-D-glucose-GGBP and β-D-galactose-GGBP complexes and estimation of the orientation and stability of water molecules at the binding site revealed how water molecules influence ligand specificity. In our simulation, water molecules mediated interactions of β-D-glucose or β-D-galactose with residue 14 of GGBP. In this mechanism, the Phe16Ala mutant leaves both sugar molecules free to move, and the specific role of water molecules were eliminated, while the wild type, Asp14Asn mutant, and Asp14Glu mutant make hydrogen bond interactions with β-D-glucose more favorable. Our results demonstrate that bound water molecules at the binding site of GGBP are related to localized conformational change, contributing to ligand specificity of GGBP for β-D-glucose over β-D-galactose.
Ball, David A.; Mehta, Gunjan D.; Salomon-Kent, Ronit; Mazza, Davide; Morisaki, Tatsuya; Mueller, Florian; McNally, James G.; Karpova, Tatiana S.
2016-01-01
In vivo single molecule tracking has recently developed into a powerful technique for measuring and understanding the transient interactions of transcription factors (TF) with their chromatin response elements. However, this method still lacks a solid foundation for distinguishing between specific and non-specific interactions. To address this issue, we took advantage of the power of molecular genetics of yeast. Yeast TF Ace1p has only five specific sites in the genome and thus serves as a benchmark to distinguish specific from non-specific binding. Here, we show that the estimated residence time of the short-residence molecules is essentially the same for Hht1p, Ace1p and Hsf1p, equaling 0.12–0.32 s. These three DNA-binding proteins are very different in their structure, function and intracellular concentration. This suggests that (i) short-residence molecules are bound to DNA non-specifically, and (ii) that non-specific binding shares common characteristics between vastly different DNA-bound proteins and thus may have a common underlying mechanism. We develop new and robust procedure for evaluation of adverse effects of labeling, and new quantitative analysis procedures that significantly improve residence time measurements by accounting for fluorophore blinking. Our results provide a framework for the reliable performance and analysis of single molecule TF experiments in yeast. PMID:27566148
Murata, Kenji; Kanno, Shunsuke; Nishio, Hisanori; Saito, Mitsumasa; Tanaka, Tamami; Yamamura, Kenichiro; Sakai, Yasunari; Takada, Hidetoshi; Miyamoto, Tomofumi; Mizuno, Yumi; Ouchi, Kazunobu; Waki, Kenji; Hara, Toshiro
2014-01-01
Background Kawasaki disease (KD) is a systemic vasculitis of unknown etiology. The innate immune system is involved in its pathophysiology at the acute phase. We have recently established a novel murine model of KD coronary arteritis by oral administration of a synthetic microbe-associated molecular pattern (MAMP). On the hypothesis that specific MAMPs exist in KD sera, we have searched them to identify KD-specific molecules and to assess the pathogenesis. Methods We performed liquid chromatography-mass spectrometry (LC-MS) analysis of fractionated serum samples from 117 patients with KD and 106 controls. Microbiological and LC-MS evaluation of biofilm samples were also performed. Results KD samples elicited proinflammatory cytokine responses from human coronary artery endothelial cells (HCAECs). By LC-MS analysis of KD serum samples collected at 3 different periods, we detected a variety of KD-specific molecules in the lipophilic fractions that showed distinct m/z and MS/MS fragmentation patterns in each cluster. Serum KD-specific molecules showed m/z and MS/MS fragmentation patterns almost identical to those of MAMPs obtained from the biofilms formed in vitro (common MAMPs from Bacillus cereus, Yersinia pseudotuberculosis and Staphylococcus aureus) at the 1st study period, and from the biofilms formed in vivo (common MAMPs from Bacillus cereus, Bacillus subtilis/Bacillus cereus/Yersinia pseudotuberculosis and Staphylococcus aureus) at the 2nd and 3rd periods. The biofilm extracts from Bacillus cereus, Bacillus subtilis, Yersinia pseudotuberculosis and Staphylococcus aureus also induced proinflammatory cytokines by HCAECs. By the experiments with IgG affinity chromatography, some of these serum KD-specific molecules bound to IgG. Conclusions We herein conclude that serum KD-specific molecules were mostly derived from biofilms and possessed molecular structures common to MAMPs from Bacillus cereus, Bacillus subtilis, Yersinia pseudotuberculosis and Staphylococcus aureus. Discovery of these KD-specific molecules might offer novel insight into the diagnosis and management of KD as well as its pathogenesis. PMID:25411968
Oelsner, Sarah; Wagner, Juliane; Friede, Miriam E; Pfirrmann, Verena; Genßler, Sabrina; Rettinger, Eva; Buchholz, Christian J; Pfeifer, Heike; Schubert, Ralf; Ottmann, Oliver G; Ullrich, Evelyn; Bader, Peter; Wels, Winfried S
2016-10-15
Pre-emptive cancer immunotherapy by donor lymphocyte infusion (DLI) using cytokine-induced killer (CIK) cells may be beneficial to prevent relapse with a reduced risk of causing graft-versus-host-disease. CIK cells are a heterogeneous effector cell population including T cells (CD3(+) CD56(-) ), natural killer (NK) cells (CD3(-) CD56(+) ) and natural killer T (T-NK) cells (CD3(+) CD56(+) ) that exhibit non-major histocompatibility complex (MHC)-restricted cytotoxicity and are generated by ex vivo expansion of peripheral blood mononuclear cells in the presence of interferon (IFN)-γ, anti-CD3 antibody, interleukin-2 (IL-2) and interleukin-15 (IL-15). To facilitate selective target-cell recognition and enhance specific cytotoxicity against B-cell acute lymphoblastic leukemia (B-ALL), we transduced CIK cells with a lentiviral vector encoding a chimeric antigen receptor (CAR) that carries a composite CD28-CD3ζ domain for signaling and a CD19-specific scFv antibody fragment for cell binding (CAR 63.28.z). In vitro analysis revealed high and specific cell killing activity of CD19-targeted CIK/63.28.z cells against otherwise CIK-resistant cancer cell lines and primary B-ALL blasts, which was dependent on CD19 expression and CAR signaling. In a xenograft model in immunodeficient mice, treatment with CIK/63.28.z cells in contrast to therapy with unmodified CIK cells resulted in complete and durable molecular remissions of established primary pre-B-ALL. Our results demonstrate potent antileukemic activity of CAR-engineered CIK cells in vitro and in vivo, and suggest this strategy as a promising approach for adoptive immunotherapy of refractory pre-B-ALL. © 2016 UICC.
Martz, Eric; Burakoff, Steven J.; Benacerraf, Baruj
1974-01-01
Specific lysis of tumor cells by thymus-derived lymphocytes from alloimmunized mice (T-effector specific lysis) was studied with target cells labeled with isotopes attached to both small (14C-labeled nicotinamide) and large (51Cr-labeled) molecules. The results confirm and extend previous reports that target cells release small molecules considerably earlier than large molecules during T-effector specific lysis. After interruption of T-effector specific lysis by specific antibody and complement directed against the killer cells, or by ethylenediaminetetraacetic acid, release of both isotopes continued, eventually reaching identical levels of specific release, the value of which represents the fraction of the target cell population which had been committed to die at the time these treatments were applied. On the other hand, release of both isotopes during T-effector specific lysis stops immediately when the cultures are cooled to 0°. Thus, while ethylenediaminetetraacetic acid or specific complement-mediated lysis of the killer cells merely prevents the initiation of any new damage to target cells, cooling to 0° also stops the lytic process in already-damaged target cells. The colloid osmotic phase of target cell lysis induced by specific antibody and complement was similarly stopped at 0° in tumor cells, but not in erythrocytes. Thus, in tumor target cells, both T-effector specific lysis and complement cause a sequential release of progressively larger molecules which can be immediately stopped at any point by cooling to 0°. PMID:4359327
Habchi, Johnny; Chia, Sean; Limbocker, Ryan; Mannini, Benedetta; Ahn, Minkoo; Perni, Michele; Hansson, Oskar; Arosio, Paolo; Kumita, Janet R; Challa, Pavan Kumar; Cohen, Samuel I A; Linse, Sara; Dobson, Christopher M; Knowles, Tuomas P J; Vendruscolo, Michele
2017-01-10
The aggregation of the 42-residue form of the amyloid-β peptide (Aβ42) is a pivotal event in Alzheimer's disease (AD). The use of chemical kinetics has recently enabled highly accurate quantifications of the effects of small molecules on specific microscopic steps in Aβ42 aggregation. Here, we exploit this approach to develop a rational drug discovery strategy against Aβ42 aggregation that uses as a read-out the changes in the nucleation and elongation rate constants caused by candidate small molecules. We thus identify a pool of compounds that target specific microscopic steps in Aβ42 aggregation. We then test further these small molecules in human cerebrospinal fluid and in a Caenorhabditis elegans model of AD. Our results show that this strategy represents a powerful approach to identify systematically small molecule lead compounds, thus offering an appealing opportunity to reduce the attrition problem in drug discovery.
Drop-out phagemid vector for switching from phage displayed affinity reagents to expression formats.
Pershad, Kritika; Sullivan, Mark A; Kay, Brian K
2011-05-15
Affinity reagents that are generated by phage display are typically subcloned into an expression vector for further biochemical characterization. This insert transfer process is time consuming and laborious especially if many inserts are to be subcloned. To simplify the transfer process, we have constructed a "drop-out" phagemid vector that can be rapidly converted to an expression vector by a simple restriction enzyme digestion with MfeI (to "drop-out" the gene III coding sequence), which generates alkaline phosphatase (AP) fusions of the affinity reagents on religation. Subsequently, restriction digestion with AscI drops out the AP coding region and religation generates affinity reagents with a C-terminal six-histidine tag. To validate the usefulness of this vector, four different human single chain Fragments of variable regions (scFv) were tested, three of which show specific binding to three zebrafish (Danio rerio) proteins, namely suppression of tumorigenicity 13, recoverin, and Ppib and the fourth binds to human Lactoferrin protein. For each of the constructs tested, the gene III and AP drop-out efficiency was between 90% and 100%. This vector is especially useful in speeding up the downstream screening of affinity reagents and bypassing the time-consuming subcloning experiments. Copyright © 2011 Elsevier Inc. All rights reserved.
Pyo, Suhkneung; Kang, Chung Hyo; Lee, Chong Ock; Lee, Heung Kyoung; Choi, Sang Un; Park, Chi Hoon
2018-01-01
Gastric cancer is a malignancy that has a high mortality rate. Although progress has been made in the treatment of gastric cancer, many patients experience cancer recurrence and metastasis. Folate receptor 1 (FOLR1) is overexpressed on the cell surface in over one-third of gastric cancer patients, but rarely is expressed in normal tissue. This makes FOLR1 a potential target for chimeric antigen receptor (CAR) T cell immunotherapy, although the function of FOLR1 has not been elucidated. CAR are engineered fusion receptor composed of an antigen recognition region and signaling domains. T cells expressing CAR have specific activation and cytotoxic effects against cancer cells containing the target antigen. In this study, we generated a CAR that targets FOLR1 composed of a single-chain variable fragment (scFv) of FOLR1 antibody and signaling domains consisting of CD28 and CD3ζ. Both FOLR1-CAR KHYG-1, a natural killer cell line, and FOLR1-CAR T cells recognized FOLR1-positive gastric cancer cells in a MHC-independent manner and induced secretion of various cytokines and caused cell death. Conclusively, this is the first study to demonstrate that CAR KHYG-1/T cells targeting FOLR1 are effective against FOLR1-positive gastric cancer cells. PMID:29874279
Weber, Malte; Weiss, Etienne; Engel, Alfred M
2003-07-01
Scl-70 is the major antigen recognised by autoantibodies in the sera of patients with systemic sclerosis (SSc). The autoantibodies that specifically react with Scl-70 are highly characteristic of the disease and represent valuable markers for the diagnosis of SSc. We describe a novel strategy for cloning autoantibody fragments starting with a small blood sample from an SSc patient. B cells isolated from the collected peripheral blood mononuclear cells (PBMCs) were cultured in vitro using the EL4-B5 system. Anti-Scl-70 IgG-producing cells were pooled for RNA preparation followed by the generation of phagemid libraries of approximately 10(7) independent single-chain Fvs (scFvs). The screening of these libraries by phage display allowed us to isolate four anti-Scl-70 scFvs following three rounds of biopanning. About 10 times more starting blood material was needed to generate scFv libraries of similar size from PBMCs of an SSc patient and only two anti-Scl-70 scFvs were isolated after three rounds of phage selection. Together, this work shows that functional autoantibody fragments can be advantageously cloned after in vitro expansion of B cells. The isolated anti-Scl-70 autoantibody fragments represent useful tools for calibrating SSc diagnostic assays.
Abe, Ryoji; Jeong, Hee-Jin; Arakawa, Dai; Dong, Jinhua; Ohashi, Hiroyuki; Kaigome, Rena; Saiki, Fujio; Yamane, Kyosuke; Takagi, Hiroaki; Ueda, Hiroshi
2014-04-11
Recently, we described a novel reagentless fluorescent biosensor strategy named Quenchbody, which functions via the antigen-dependent removal of the quenching effect on a fluorophore that is attached to a single-chain antibody variable region. To explore the practical utility of Quenchbodies, we prepared antibody Fab fragments that were fluorolabeled at either one or two of the N-terminal regions, using a cell-free translation-mediated position-specific protein labeling system. Unexpectedly, the Fab fragment labeled at the heavy chain N-terminal region demonstrated a deeper quenching and antigen-dependent release compared to that observed using scFv. Moreover, when the Fab was fluorolabeled at the two N-termini with either the same dye or with two different dyes, an improved response due to enhanced quenching via dye-dye interactions was observed. On the basis of this approach, several targets, including peptides, proteins, and haptens, as well as narcotics, were quantified with a higher response up to 50-fold. In addition, differentiation of osteosarcoma to osteoblasts was successfully imaged using a similarly fluorolabeled recombinant Fab protein prepared from E. coli. Due to its versatility, this "Ultra-Quenchbody" is expected to exhibit a range of applications from in vitro diagnostics to the live imaging of various targets in situ.
Alonso-Camino, Vanesa; Sánchez-Martín, David; Compte, Marta; Nuñez-Prado, Natalia; Diaz, Rosa M; Vile, Richard; Alvarez-Vallina, Luis
2013-01-01
A human single-chain variable fragment (scFv) antibody library was expressed on the surface of human T cells after transduction with lentiviral vectors (LVs). The repertoire was fused to a first-generation T cell receptor ζ (TCRζ)-based chimeric antigen receptor (CAR). We used this library to isolate antibodies termed CARbodies that recognize antigens expressed on the tumor cell surface in a proof-of-principle system. After three rounds of activation-selection there was a clear repertoire restriction, with the emergence dominant clones. The CARbodies were purified from bacterial cultures as soluble and active proteins. Furthermore, to validate its potential application for adoptive cell therapy, human T cells were transduced with a LV encoding a second-generation costimulatory CAR (CARv2) bearing the selected CARbodies. Transduced human primary T cells expressed significant levels of the CARbodies-based CARv2 fusion protein on the cell surface, and importantly could be specifically activated, after stimulation with tumor cells. This approach is a promising tool for the generation of antibodies fully adapted to the display format (CAR) and the selection context (cell synapse), which could extend the scope of current adoptive cell therapy strategies with CAR-redirected T cells. PMID:23695536
Generalized extracellular molecule sensor platform for programming cellular behavior.
Scheller, Leo; Strittmatter, Tobias; Fuchs, David; Bojar, Daniel; Fussenegger, Martin
2018-04-23
Strategies for expanding the sensor space of designer receptors are urgently needed to tailor cell-based therapies to respond to any type of medically relevant molecules. Here, we describe a universal approach to designing receptor scaffolds that enables antibody-specific molecular input to activate JAK/STAT, MAPK, PLCG or PI3K/Akt signaling rewired to transgene expression driven by synthetic promoters. To demonstrate its scope, we equipped the GEMS (generalized extracellular molecule sensor) platform with antibody fragments targeting a synthetic azo dye, nicotine, a peptide tag and the PSA (prostate-specific antigen) biomarker, thereby covering inputs ranging from small molecules to proteins. These four GEMS devices provided robust signaling and transgene expression with high signal-to-noise ratios in response to their specific ligands. The sensitivity of the nicotine- and PSA-specific GEMS devices matched the clinically relevant concentration ranges, and PSA-specific GEMS were able to detect pathological PSA levels in the serum of patients diagnosed with prostate cancer.
Development of Single-Stranded DNA Aptamers for Specific Bisphenol A Detection
Jo, Minjoung; Ahn, Ji-Young; Lee, Joohyung; Lee, Seram; Hong, Sun Woo; Yoo, Jae-Wook; Kang, Jeehye; Dua, Pooja
2011-01-01
The development of reagents with high affinity and specificity to small molecules is crucial for the high-throughput detection of chemical compounds, such as toxicants or pollutants. Aptamers are short and single-stranded (ss) oligonucleotides able to recognize target molecules with high affinity. Here, we report the selection of ssDNA aptamers that bind to Bisphenol A (BPA), an environmental hormone. Using SELEX process, we isolated high affinity aptamers to BPA from a 1015 random library of 60 mer ssDNAs. The selected aptamers bound specifically to BPA, but not to structurally similar molecules, such as Bisphenol B with one methyl group difference, or 4,4′-Bisphenol with 2 methyl groups difference. Using these aptamers, we developed an aptamer-based sol–gel biochip and detected BPA dissolved in water. This novel BPA aptamer-based detection can be further applied to the universal and high-specificity detection of small molecules. PMID:21413891
Single-Molecule Probing the Energy Landscape of Enzymatic Reaction and Non-Covalent Interactions
NASA Astrophysics Data System (ADS)
Lu, H. Peter; Hu, Dehong; Chen, Yu; Vorpagel, Erich R.
2002-03-01
We have applied single-molecule spectroscopy under physiological conditions to study the mechanisms and dynamics of T4 lysozyme enzymatic reactions, characterizing mode-specific protein conformational dynamics. Enzymatic reaction turnovers and the associated structure changes of individual protein molecules were observed simultaneously in real-time. The overall reaction rates were found to vary widely from molecule-to-molecule, and the initial non-specific binding of the enzyme to the substrate was seen to dominate this inhomogeneity. The reaction steps subsequent to the initial binding were found to have homogeneous rates. Molecular dynamics simulation has been applied to elucidate the mechanism and intermediate states of the single-molecule enzymatic reaction. Combining the analysis of single-molecule experimental trajectories, MD simulation trajectories, and statistical modeling, we have revealed the nature of multiple intermediate states involved in the active enzyme-substrate complex formation and the associated conformational change mechanism and dynamics.
Ligand-targeted theranostic nanomedicines against cancer.
Yao, Virginia J; D'Angelo, Sara; Butler, Kimberly S; Theron, Christophe; Smith, Tracey L; Marchiò, Serena; Gelovani, Juri G; Sidman, Richard L; Dobroff, Andrey S; Brinker, C Jeffrey; Bradbury, Andrew R M; Arap, Wadih; Pasqualini, Renata
2016-10-28
Nanomedicines have significant potential for cancer treatment. Although the majority of nanomedicines currently tested in clinical trials utilize simple, biocompatible liposome-based nanocarriers, their widespread use is limited by non-specificity and low target site concentration and thus, do not provide a substantial clinical advantage over conventional, systemic chemotherapy. In the past 20years, we have identified specific receptors expressed on the surfaces of tumor endothelial and perivascular cells, tumor cells, the extracellular matrix and stromal cells using combinatorial peptide libraries displayed on bacteriophage. These studies corroborate the notion that unique receptor proteins such as IL-11Rα, GRP78, EphA5, among others, are differentially overexpressed in tumors and present opportunities to deliver tumor-specific therapeutic drugs. By using peptides that bind to tumor-specific cell-surface receptors, therapeutic agents such as apoptotic peptides, suicide genes, imaging dyes or chemotherapeutics can be precisely and systemically delivered to reduce tumor growth in vivo, without harming healthy cells. Given the clinical applicability of peptide-based therapeutics, targeted delivery of nanocarriers loaded with therapeutic cargos seems plausible. We propose a modular design of a functionalized protocell in which a tumor-targeting moiety, such as a peptide or recombinant human antibody single chain variable fragment (scFv), is conjugated to a lipid bilayer surrounding a silica-based nanocarrier core containing a protected therapeutic cargo. The functionalized protocell can be tailored to a specific cancer subtype and treatment regimen by exchanging the tumor-targeting moiety and/or therapeutic cargo or used in combination to create unique, theranostic agents. In this review, we summarize the identification of tumor-specific receptors through combinatorial phage display technology and the use of antibody display selection to identify recombinant human scFvs against these tumor-specific receptors. We compare the characteristics of different types of simple and complex nanocarriers, and discuss potential types of therapeutic cargos and conjugation strategies. The modular design of functionalized protocells may improve the efficacy and safety of nanomedicines for future cancer therapy. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Nagamani, S; Gaur, A S; Tanneeru, K; Muneeswaran, G; Madugula, S S; Consortium, Mpds; Druzhilovskiy, D; Poroikov, V V; Sastry, G N
2017-11-01
Molecular property diagnostic suite (MPDS) is a Galaxy-based open source drug discovery and development platform. MPDS web portals are designed for several diseases, such as tuberculosis, diabetes mellitus, and other metabolic disorders, specifically aimed to evaluate and estimate the drug-likeness of a given molecule. MPDS consists of three modules, namely data libraries, data processing, and data analysis tools which are configured and interconnected to assist drug discovery for specific diseases. The data library module encompasses vast information on chemical space, wherein the MPDS compound library comprises 110.31 million unique molecules generated from public domain databases. Every molecule is assigned with a unique ID and card, which provides complete information for the molecule. Some of the modules in the MPDS are specific to the diseases, while others are non-specific. Importantly, a suitably altered protocol can be effectively generated for another disease-specific MPDS web portal by modifying some of the modules. Thus, the MPDS suite of web portals shows great promise to emerge as disease-specific portals of great value, integrating chemoinformatics, bioinformatics, molecular modelling, and structure- and analogue-based drug discovery approaches.
1994-01-01
GL183 or EB6 (p58) molecules have been shown to function as receptors for different HLA-C alleles and to deliver an inhibitory signal to natural killer (NK) cells, thus preventing lysis of target cells. In this study, we analyzed a subset of NK cells characterized by a p58- negative surface phenotype. We show that p58-negative clones, although specific for class I molecules do not recognize HLA-C alleles. In addition, by the use of appropriate target cells transfected with different HLA-class I alleles we identified HLA-B7 as the protective element recognized by a fraction of p58-negative clones. In an attempt to identify the receptor molecules expressed by HLA-B7-specific clones, monoclonal antibodies (mAbs) were selected after mice immunization with such clones. Two of these mAbs, termed XA-88 and XA-185, and their F(ab')2 fragments, were found to reconstitute lysis of B7+ target cells by B7-specific NK clones. Both mAbs were shown to be directed against the recently clustered Kp43 molecule (CD94). Thus, mAb-mediated masking of Kp43 molecules interferes with recognition of HLA-B7 and results in target cell lysis. Moreover, in a redirected killing assay, the cross- linking of Kp43 molecules mediated by the XA185 mAb strongly inhibited the cytolytic activity of HLA-B7-specific NK clones, thus mimicking the functional effect of B7 molecules. Taken together, these data strongly suggest that Kp43 molecules function as receptors for HLA-B7 and that this receptor/ligand interaction results in inhibition of the NK- mediated cytolytic activity. Indirect immunofluorescence and FACS analysis of a large number of random NK clones showed that Kp43 molecules (a) were brightly expressed on a subset of p58-negative clones, corresponding to those specific for HLA-B7; (b) displayed a medium/low fluorescence in the p58-negative clones that are not B7- specific as well as in most p58+ NK clones; and (c) were brightly expressed as in the p58+ clone ET34 (GL183-/EB6+, Cw4-specific). Functional analysis revealed that Kp43 functioned as an inhibitory receptor only in NK clones displaying bright fluorescence. These studies also indicate that some NK clones (e.g., the ET34) can coexpress two distinct receptors (p58 and Kp43) for different class I alleles (Cw4 and B7). Finally, we show that Kp43 molecules function as receptors only for some HLA-B alleles and that still undefined receptor(s) must exist for other HLA-B alleles including B27. PMID:8046333
Diebolder, Philipp; Keller, Armin; Haase, Stephanie; Schlegelmilch, Anne; Kiefer, Jonathan D; Karimi, Tamana; Weber, Tobias; Moldenhauer, Gerhard; Kehm, Roland; Eis-Hübinger, Anna M; Jäger, Dirk; Federspil, Philippe A; Herold-Mende, Christel; Dyckhoff, Gerhard; Kontermann, Roland E; Arndt, Michaela AE; Krauss, Jürgen
2014-01-01
The development of efficient strategies for generating fully human monoclonal antibodies with unique functional properties that are exploitable for tailored therapeutic interventions remains a major challenge in the antibody technology field. Here, we present a methodology for recovering such antibodies from antigen-encountered human B cell repertoires. As the source for variable antibody genes, we cloned immunoglobulin G (IgG)-derived B cell repertoires from lymph nodes of 20 individuals undergoing surgery for head and neck cancer. Sequence analysis of unselected “LYmph Node Derived Antibody Libraries” (LYNDAL) revealed a naturally occurring distribution pattern of rearranged antibody sequences, representing all known variable gene families and most functional germline sequences. To demonstrate the feasibility for selecting antibodies with therapeutic potential from these repertoires, seven LYNDAL from donors with high serum titers against herpes simplex virus (HSV) were panned on recombinant glycoprotein B of HSV-1. Screening for specific binders delivered 34 single-chain variable fragments (scFvs) with unique sequences. Sequence analysis revealed extensive somatic hypermutation of enriched clones as a result of affinity maturation. Binding of scFvs to common glycoprotein B variants from HSV-1 and HSV-2 strains was highly specific, and the majority of analyzed antibody fragments bound to the target antigen with nanomolar affinity. From eight scFvs with HSV-neutralizing capacity in vitro, the most potent antibody neutralized 50% HSV-2 at 4.5 nM as a dimeric (scFv)2. We anticipate our approach to be useful for recovering fully human antibodies with therapeutic potential. PMID:24256717
Diebolder, Philipp; Keller, Armin; Haase, Stephanie; Schlegelmilch, Anne; Kiefer, Jonathan D; Karimi, Tamana; Weber, Tobias; Moldenhauer, Gerhard; Kehm, Roland; Eis-Hübinger, Anna M; Jäger, Dirk; Federspil, Philippe A; Herold-Mende, Christel; Dyckhoff, Gerhard; Kontermann, Roland E; Arndt, Michaela A E; Krauss, Jürgen
2014-01-01
The development of efficient strategies for generating fully human monoclonal antibodies with unique functional properties that are exploitable for tailored therapeutic interventions remains a major challenge in the antibody technology field. Here, we present a methodology for recovering such antibodies from antigen-encountered human B cell repertoires. As the source for variable antibody genes, we cloned immunoglobulin G (IgG)-derived B cell repertoires from lymph nodes of 20 individuals undergoing surgery for head and neck cancer. Sequence analysis of unselected “LYmph Node Derived Antibody Libraries” (LYNDAL) revealed a naturally occurring distribution pattern of rearranged antibody sequences, representing all known variable gene families and most functional germline sequences. To demonstrate the feasibility for selecting antibodies with therapeutic potential from these repertoires, seven LYNDAL from donors with high serum titers against herpes simplex virus (HSV) were panned on recombinant glycoprotein B of HSV-1. Screening for specific binders delivered 34 single-chain variable fragments (scFvs) with unique sequences. Sequence analysis revealed extensive somatic hypermutation of enriched clones as a result of affinity maturation. Binding of scFvs to common glycoprotein B variants from HSV-1 and HSV-2 strains was highly specific, and the majority of analyzed antibody fragments bound to the target antigen with nanomolar affinity. From eight scFvs with HSV-neutralizing capacity in vitro,the most potent antibody neutralized 50% HSV-2 at 4.5 nM as a dimeric (scFv)2. We anticipate our approach to be useful for recovering fully human antibodies with therapeutic potential.
Zhuang, Xiaolei; Watts, Norman R; Palmer, Ira W; Kaufman, Joshua D; Dearborn, Altaira D; Trenbeath, Joni L; Eren, Elif; Steven, Alasdair C; Rader, Christoph; Wingfield, Paul T
2017-10-06
Hepatitis B virus (HBV) infection afflicts millions worldwide, causing cirrhosis and liver cancer. HBV e-antigen (HBeAg), a clinical marker for disease severity, is a soluble variant of the viral capsid protein. HBeAg is not required for viral replication but is implicated in establishing immune tolerance and chronic infection. The structure of recombinant e-antigen (rHBeAg) was recently determined, yet to date, the exact nature and quantitation of HBeAg still remain uncertain. Here, to further characterize HBeAg, we used phage display to produce a panel of chimeric rabbit/human monoclonal antibody fragments (both Fab and scFv) against rHBeAg. Several of the Fab/scFv, expressed in Escherichia coli , had unprecedentedly high binding affinities ( K d ∼10 -12 m) and high specificity. We used Fab/scFv in the context of an enzyme-linked immunosorbent assay (ELISA) for HBeAg quantification, which we compared with commercially available kits and verified with seroconversion panels, the WHO HBeAg standard, rHBeAg, and patient plasma samples. We found that the specificity and sensitivity are superior to those of existing commercial assays. To identify potential fine differences between rHBeAg and HBeAg, we used these Fabs in microscale immunoaffinity chromatography to purify HBeAg from individual patient plasmas. Western blotting and MS results indicated that rHBeAg and HBeAg are essentially structurally identical, although HBeAg from different patients exhibits minor carboxyl-terminal heterogeneity. We discuss several potential applications for the humanized Fab/scFv.
Kavanagh, Owen; Elliott, Christopher T; Campbell, Katrina
2015-04-01
Rapid immunoanalytical screening of food and environmental samples for small molecular weight (hapten) biotoxin contaminations requires the production of antibody reagents that possess the requisite sensitivity and specificity. To date animal-derived polyclonal (pAb) and monoclonal (mAb) antibodies have provided the binding element of the majority of these assays but recombinant antibodies (rAb) isolated from in vitro combinatorial phage display libraries are an exciting alternative due to (1) circumventing the need for experimental animals, (2) speed of production in commonly used in vitro expression systems and (3) subsequent molecular enhancement of binder performance. Short chain variable fragments (scFv) have been the most commonly employed rAb reagents for hapten biotoxin detection over the last two decades but antibody binding fragments (Fab) and single domain antibodies (sdAb) are increasing in popularity due to increased expression efficiency of functional binders and superior resistance to solvents. rAb-based immunochromatographic assays and surface plasmon resonance (SPR) biosensors have been reported to detect sub-regulatory levels of fungal (mycotoxins), marine (phycotoxins) and aquatic biotoxins in a wide range of food and environmental matrices, however this technology has yet to surpass the performances of the equivalent mAb- and pAb-based formats. As such the full potential of rAb technology in hapten biotoxin detection has yet to be achieved, but in time the inherent advantages of engineered rAb are set to provide the next generation of ultra-high performing binder reagents for the rapid and specific detection of hapten biotoxins.
Molecular locks and keys: the role of small molecules in phytohormone research
Fonseca, Sandra; Rosado, Abel; Vaughan-Hirsch, John; Bishopp, Anthony; Chini, Andrea
2014-01-01
Plant adaptation, growth and development rely on the integration of many environmental and endogenous signals that collectively determine the overall plant phenotypic plasticity. Plant signaling molecules, also known as phytohormones, are fundamental to this process. These molecules act at low concentrations and regulate multiple aspects of plant fitness and development via complex signaling networks. By its nature, phytohormone research lies at the interface between chemistry and biology. Classically, the scientific community has always used synthetic phytohormones and analogs to study hormone functions and responses. However, recent advances in synthetic and combinational chemistry, have allowed a new field, plant chemical biology, to emerge and this has provided a powerful tool with which to study phytohormone function. Plant chemical biology is helping to address some of the most enduring questions in phytohormone research such as: Are there still undiscovered plant hormones? How can we identify novel signaling molecules? How can plants activate specific hormone responses in a tissue-specific manner? How can we modulate hormone responses in one developmental context without inducing detrimental effects on other processes? The chemical genomics approaches rely on the identification of small molecules modulating different biological processes and have recently identified active forms of plant hormones and molecules regulating many aspects of hormone synthesis, transport and response. We envision that the field of chemical genomics will continue to provide novel molecules able to elucidate specific aspects of hormone-mediated mechanisms. In addition, compounds blocking specific responses could uncover how complex biological responses are regulated. As we gain information about such compounds we can design small alterations to the chemical structure to further alter specificity, enhance affinity or modulate the activity of these compounds. PMID:25566283
Ball, David A; Mehta, Gunjan D; Salomon-Kent, Ronit; Mazza, Davide; Morisaki, Tatsuya; Mueller, Florian; McNally, James G; Karpova, Tatiana S
2016-12-01
In vivo single molecule tracking has recently developed into a powerful technique for measuring and understanding the transient interactions of transcription factors (TF) with their chromatin response elements. However, this method still lacks a solid foundation for distinguishing between specific and non-specific interactions. To address this issue, we took advantage of the power of molecular genetics of yeast. Yeast TF Ace1p has only five specific sites in the genome and thus serves as a benchmark to distinguish specific from non-specific binding. Here, we show that the estimated residence time of the short-residence molecules is essentially the same for Hht1p, Ace1p and Hsf1p, equaling 0.12-0.32 s. These three DNA-binding proteins are very different in their structure, function and intracellular concentration. This suggests that (i) short-residence molecules are bound to DNA non-specifically, and (ii) that non-specific binding shares common characteristics between vastly different DNA-bound proteins and thus may have a common underlying mechanism. We develop new and robust procedure for evaluation of adverse effects of labeling, and new quantitative analysis procedures that significantly improve residence time measurements by accounting for fluorophore blinking. Our results provide a framework for the reliable performance and analysis of single molecule TF experiments in yeast. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Habchi, Johnny; Chia, Sean; Limbocker, Ryan; Mannini, Benedetta; Ahn, Minkoo; Perni, Michele; Hansson, Oskar; Arosio, Paolo; Kumita, Janet R.; Challa, Pavan Kumar; Cohen, Samuel I. A.; Dobson, Christopher M.; Knowles, Tuomas P. J.; Vendruscolo, Michele
2017-01-01
The aggregation of the 42-residue form of the amyloid-β peptide (Aβ42) is a pivotal event in Alzheimer’s disease (AD). The use of chemical kinetics has recently enabled highly accurate quantifications of the effects of small molecules on specific microscopic steps in Aβ42 aggregation. Here, we exploit this approach to develop a rational drug discovery strategy against Aβ42 aggregation that uses as a read-out the changes in the nucleation and elongation rate constants caused by candidate small molecules. We thus identify a pool of compounds that target specific microscopic steps in Aβ42 aggregation. We then test further these small molecules in human cerebrospinal fluid and in a Caenorhabditis elegans model of AD. Our results show that this strategy represents a powerful approach to identify systematically small molecule lead compounds, thus offering an appealing opportunity to reduce the attrition problem in drug discovery. PMID:28011763
Tran, Tuan; Disney, Matthew D
2012-01-01
RNA is an important therapeutic target but information about RNA-ligand interactions is limited. Here, we report a screening method that probes over 3,000,000 combinations of RNA motif-small molecule interactions to identify the privileged RNA structures and chemical spaces that interact. Specifically, a small molecule library biased for binding RNA was probed for binding to over 70,000 unique RNA motifs in a high throughput solution-based screen. The RNA motifs that specifically bind each small molecule were identified by microarray-based selection. In this library-versus-library or multidimensional combinatorial screening approach, hairpin loops (among a variety of RNA motifs) were the preferred RNA motif space that binds small molecules. Furthermore, it was shown that indole, 2-phenyl indole, 2-phenyl benzimidazole and pyridinium chemotypes allow for specific recognition of RNA motifs. As targeting RNA with small molecules is an extremely challenging area, these studies provide new information on RNA-ligand interactions that has many potential uses.
Tran, Tuan; Disney, Matthew D.
2012-01-01
RNA is an important therapeutic target but information about RNA-ligand interactions is limited. Here we report a screening method that probes over 3,000,000 combinations of RNA motif-small molecule interactions to identify the privileged RNA structures and chemical spaces that interact. Specifically, a small molecule library biased for binding RNA was probed for binding to over 70,000 unique RNA motifs in a high throughput solution-based screen. The RNA motifs that specifically bind each small molecule were identified by microarray-based selection. In this library-versus-library or multidimensional combinatorial screening approach, hairpin loops (amongst a variety of RNA motifs) were the preferred RNA motif space that binds small molecules. Furthermore, it was shown that indole, 2-phenyl indole, 2-phenyl benzimidazole, and pyridinium chemotypes allow for specific recognition of RNA motifs. Since targeting RNA with small molecules is an extremely challenging area, these studies provide new information on RNA-ligand interactions that has many potential uses. PMID:23047683
Wang, B; Lou, Z; Park, B; Kwon, Y; Zhang, H; Xu, B
2015-01-07
We used atomic force microscopy (AFM) and surface plasmon resonance (SPR) to study the surface conformations of an anti-ricin aptamer and its specific binding affinity for ricin molecules. The effect of surface modification of the Au(111) substrate on the aptamer affinity was also estimated. The AFM topography images had a resolution high enough to distinguish different aptamer conformations. The specific binding site on the aptamer molecule was clearly located by the AFM recognition images. The aptamer on a Au(111) surface modified with carboxymethylated-dextran (CD) showed both similarities to and differences from the one without CD modification. The influence of CD modification was evaluated using AFM images of various aptamer conformations on the Au(111) surface. The affinity between ricin and the anti-ricin aptamer was estimated using the off-rate values measured using AFM and SPR. The SPR measurements of the ricin sample were conducted in the range from 83.3 pM to 8.33 nM, and the limit of detection was estimated as 25 pM (1.5 ng mL(-1)). The off-rate values of the ricin-aptamer interactions were estimated using both single-molecule dynamic force spectroscopy (DFS) and SPR as (7.3 ± 0.4) × 10(-4) s(-1) and (1.82 ± 0.067) × 10(-2) s(-1), respectively. The results show that single-molecule measurements can obtain different reaction parameters from bulk solution measurements. In AFM single-molecule measurements, the various conformations of the aptamer immobilized on the gold surface determined the availability of each specific binding site to the ricin molecules. The SPR bulk solution measurements averaged the signals from specific and non-specific interactions. AFM images and DFS measurements provide more specific information on the interactions of individual aptamer and ricin molecules.
Limited number of immunoglobulin VH regions expressed in the mutant rabbit "Alicia".
DiPietro, L A; Short, J A; Zhai, S K; Kelus, A S; Meier, D; Knight, K L
1990-06-01
A unique feature of rabbit Ig is the presence of VH region allotypic specificities. In normal rabbits, more than 80% of circulating immunoglobulin molecules bear the VHa allotypic specificities, al, a2 or a3; the remaining 10% to 20% of immunoglobulin molecules lack VHa allotypic specificities and are designated VHa-. A mutant rabbit designated Alicia, in contrast, has predominantly serum immunoglobulin molecules that lack the VHa allotypic specificities (Kelus and Weiss, Proc. Natl. Acad. Sci. USA 1986. 83: 4883). To study the nature and molecular complexity of VHa- molecules, we cloned and determined the nucleotide sequence of seven cDNA prepared from splenic RNA of an Alicia rabbit. Six of the clones appeared to encode VHa- molecules; the framework regions encoded by these clones were remarkably similar to each other, each having an unusual insertion of four amino acids at position 10. This insertion of four amino acids has been seen in only 2 of 54 sequenced rabbit VH genes. The similarity of the sequences of the six VHa- clones to each other and their dissimilarity to most other VH genes leads us to suggest that the VHa- molecules in Alicia rabbits are derived predominantly from one or a small number of very similar VH genes. Such preferential utilization of a small number of VH genes may explain the allelic inheritance of VH allotypes.
Structure-guided Discovery of Dual-recognition Chemibodies.
Cheng, Alan C; Doherty, Elizabeth M; Johnstone, Sheree; DiMauro, Erin F; Dao, Jennifer; Luthra, Abhinav; Ye, Jay; Tang, Jie; Nixey, Thomas; Min, Xiaoshan; Tagari, Philip; Miranda, Les P; Wang, Zhulun
2018-05-15
Small molecules and antibodies each have advantages and limitations as therapeutics. Here, we present for the first time to our knowledge, the structure-guided design of "chemibodies" as small molecule-antibody hybrids that offer dual recognition of a single target by both a small molecule and an antibody, using DPP-IV enzyme as a proof of concept study. Biochemical characterization demonstrates that the chemibodies present superior DPP-IV inhibition compared to either small molecule or antibody component alone. We validated our design by successfully solving a co-crystal structure of a chemibody in complex with DPP-IV, confirming specific binding of the small molecule portion at the interior catalytic site and the Fab portion at the protein surface. The discovery of chemibodies presents considerable potential for novel therapeutics that harness the power of both small molecule and antibody modalities to achieve superior specificity, potency, and pharmacokinetic properties.
Screening of Small Molecule Interactor Library by Using In-Cell NMR Spectroscopy (SMILI-NMR)
Xie, Jingjing; Thapa, Rajiv; Reverdatto, Sergey; Burz, David S.; Shekhtman, Alexander
2011-01-01
We developed an in-cell NMR assay for screening small molecule interactor libraries (SMILI-NMR) for compounds capable of disrupting or enhancing specific interactions between two or more components of a biomolecular complex. The method relies on the formation of a well-defined biocomplex and utilizes in-cell NMR spectroscopy to identify the molecular surfaces involved in the interaction at atomic scale resolution. Changes in the interaction surface caused by a small molecule interfering with complex formation are used as a read-out of the assay. The in-cell nature of the experimental protocol insures that the small molecule is capable of penetrating the cell membrane and specifically engaging the target molecule(s). Utility of the method was demonstrated by screening a small dipeptide library against the FKBP–FRB protein complex involved in cell cycle arrest. The dipeptide identified by SMILI-NMR showed biological activity in a functional assay in yeast. PMID:19422228
Evaluation of a maleimido derivative of CHX-A” DTPA for site-specific labeling of Affibody molecules
Tolmachev, Vladimir; Xu, Heng; Wållberg, Helena; Ahlgren, Sara; Hjertman, Magnus; Sjöberg, Anna; Sandström, Mattias; Abrahmsén, Lars; Brechbiel, Martin W.; Orlova, Anna
2008-01-01
Affibody molecules are a new class of small targeting proteins based on a common threehelix bundle structure. Affibody molecules binding a desired target may be selected using phage-display technology. An Affibody molecule ZHER2:342 binding with subnanomolar affinity to the tumor antigen HER2 has recently been developed for radionuclide imaging in vivo. Introduction of a single cysteine into the cysteine-free Affibody scaffold provides a unique thiol group for site-specific labeling of recombinant Affibody molecules. The recently developed maleimido-CHX-A” DTPA was site-specifically conjugated at the C-terminal cysteine of ZHER2:2395-C, a variant of ZHER2:342, providing a homogenous conjugate with a dissociation constant of 56 pM. The yield of labeling with 111In was > 99% after 10 min at room temperature. In vitro cell tests demonstrated specific binding of 111In-CHX-A” DTPAZ2395-C to HER2-expressing cell-line SKOV-3 and good cellular retention of radioactivity. In normal mice, the conjugate demonstrated rapid clearance from all non-specific organs except kidney. In mice bearing SKOV-3 xenografts, the tumor uptake of 111In-CHX-A” DTPAZ2395-C was 17.3 ± 4.8 % IA/g and the tumor-to-blood ratio 86 ± 46 (4 h post-injection). HER2-exprssing xenografts were clearly visualized 1 h post-injection. In conclusion, coupling of maleimido-CHX-A” DTPA to cysteine-containing Affibody molecules provides welldefined uniform conjugate, which can be rapidly labeled at room temperature and provides high-contrast imaging of molecular targets in vivo. PMID:18620447
Automatic Molecular Design using Evolutionary Techniques
NASA Technical Reports Server (NTRS)
Globus, Al; Lawton, John; Wipke, Todd; Saini, Subhash (Technical Monitor)
1998-01-01
Molecular nanotechnology is the precise, three-dimensional control of materials and devices at the atomic scale. An important part of nanotechnology is the design of molecules for specific purposes. This paper describes early results using genetic software techniques to automatically design molecules under the control of a fitness function. The fitness function must be capable of determining which of two arbitrary molecules is better for a specific task. The software begins by generating a population of random molecules. The population is then evolved towards greater fitness by randomly combining parts of the better individuals to create new molecules. These new molecules then replace some of the worst molecules in the population. The unique aspect of our approach is that we apply genetic crossover to molecules represented by graphs, i.e., sets of atoms and the bonds that connect them. We present evidence suggesting that crossover alone, operating on graphs, can evolve any possible molecule given an appropriate fitness function and a population containing both rings and chains. Prior work evolved strings or trees that were subsequently processed to generate molecular graphs. In principle, genetic graph software should be able to evolve other graph representable systems such as circuits, transportation networks, metabolic pathways, computer networks, etc.
Zdobnova, Tatiana; Sokolova, Evgeniya; Stremovskiy, Oleg; Karpenko, Dmitry; Telford, William; Turchin, Ilya; Balalaeva, Irina; Deyev, Sergey
2015-01-01
We have created a novel fluorescent model of a human ovarian carcinoma xenograft overexpressing receptor HER2, a promising molecular target of solid tumors. The model is based on a newly generated SKOV-kat cell line stably expressing far-red fluorescent protein Katushka. Katushka is most suitable for the in vivo imaging due to an optimal combination of high brightness and emission in the “window of tissue transparency”. The relevance of the fluorescent model for the in vivo monitoring of tumor growth and response to treatment was demonstrated using a newly created HER2-targeted recombinant immunotoxin based on the 4D5scFv antibody and a fragment of the Pseudomonas exotoxin A. PMID:26436696
Linssen, B; Kinney, R M; Aguilar, P; Russell, K L; Watts, D M; Kaaden, O R; Pfeffer, M
2000-04-01
Specific and sensitive reverse transcription-PCR (RT-PCR) assays were developed for the detection of eastern, western, and Venezuelan equine encephalitis viruses (EEE, WEE, and VEE, respectively). Tests for specificity included all known alphavirus species. The EEE-specific RT-PCR amplified a 464-bp region of the E2 gene exclusively from 10 different EEE strains from South and North America with a sensitivity of about 3,000 RNA molecules. In a subsequent nested PCR, the specificity was confirmed by the amplification of a 262-bp fragment, increasing the sensitivity of this assay to approximately 30 RNA molecules. The RT-PCR for WEE amplified a fragment of 354 bp from as few as 2,000 RNA molecules. Babanki virus, as well as Mucambo and Pixuna viruses (VEE subtypes IIIA and IV), were also amplified. However, the latter viruses showed slightly smaller fragments of about 290 and 310 bp, respectively. A subsequent seminested PCR amplified a 195-bp fragment only from the 10 tested strains of WEE from North and South America, rendering this assay virus specific and increasing its sensitivity to approximately 20 RNA molecules. Because the 12 VEE subtypes showed too much divergence in their 26S RNA nucleotide sequences to detect all of them by the use of nondegenerate primers, this assay was confined to the medically important and closely related VEE subtypes IAB, IC, ID, IE, and II. The RT-PCR-seminested PCR combination specifically amplified 342- and 194-bp fragments of the region covering the 6K gene in VEE. The sensitivity was 20 RNA molecules for subtype IAB virus and 70 RNA molecules for subtype IE virus. In addition to the subtypes mentioned above, three of the enzootic VEE (subtypes IIIB, IIIC, and IV) showed the specific amplicon in the seminested PCR. The practicability of the latter assay was tested with human sera gathered as part of the febrile illness surveillance in the Amazon River Basin of Peru near the city of Iquitos. All of the nine tested VEE-positive sera showed the expected 194-bp amplicon of the VEE-specific RT-PCR-seminested PCR.
Monasta, Lorenzo; Pierobon, Chiara; Princivalle, Andrea; Martelossi, Stefano; Marcuzzi, Annalisa; Pasini, Francesco; Perbellini, Luigi
2017-01-01
Inflammatory bowel diseases (IBD) profoundly affect quality of life and have been gradually increasing in incidence, prevalence and severity in many areas of the world, and in children in particular. Patients with suspected IBD require careful history and clinical examination, while definitive diagnosis relies on endoscopic and histological findings. The aim of the present study was to investigate whether the alveolar air of pediatric patients with IBD presents a specific volatile organic compounds' (VOCs) pattern when compared to controls. Patients 10-17 years of age, were divided into four groups: Crohn's disease (CD), ulcerative colitis (UC), controls with gastrointestinal symptomatology, and surgical controls with no evidence of gastrointestinal problems. Alveolar breath was analyzed by ion molecule reaction mass spectrometry. Four models were built starting from 81 molecules plus the age of subjects as independent variables, adopting a penalizing LASSO logistic regression approach: 1) IBDs vs. controls, finally based on 18 VOCs plus age (sensitivity = 95%, specificity = 69%, AUC = 0.925); 2) CD vs. UC, finally based on 13 VOCs plus age (sensitivity = 94%, specificity = 76%, AUC = 0.934); 3) IBDs vs. gastroenterological controls, finally based on 15 VOCs plus age (sensitivity = 94%, specificity = 65%, AUC = 0.918); 4) IBDs vs. controls, built starting from the 21 directly or indirectly calibrated molecules only, and finally based on 12 VOCs plus age (sensitivity = 94%, specificity = 71%, AUC = 0.888). The molecules identified by the models were carefully studied in relation to the concerned outcomes. This study, with the creation of models based on VOCs profiles, precise instrumentation and advanced statistical methods, can contribute to the development of new non-invasive, fast and relatively inexpensive diagnostic tools, with high sensitivity and specificity. It also represents a crucial step towards gaining further insights on the etiology of IBD through the analysis of specific molecules which are the expression of the particular metabolism that characterizes these patients.
Biosensors engineered from conditionally stable ligand-binding domains
Church, George M.; Feng, Justin; Mandell, Daniel J.; Baker, David; Fields, Stanley; Jester, Benjamin Ward; Tinberg, Christine Elaine
2017-09-19
Disclosed is a biosensor engineered to conditionally respond to the presence of specific small molecules, the biosensors including conditionally stable ligand-binding domains (LBDs) which respond to the presence of specific small molecules, wherein readout of binding is provided by reporter genes or transcription factors (TFs) fused to the LBDs.
NASA Technical Reports Server (NTRS)
Joyce, Gerald F. (Inventor); Breaker, Ronald R. (Inventor)
1998-01-01
The present invention discloses deoxyribonucleic acid enzymes--catalytic or enzymatic DNA molecules--capable of cleaving nucleic acid sequences or molecules, particularly RNA, in a site-specific manner, as well as compositions including same. Methods of making and using the disclosed enzymes and compositions are also disclosed.
Chen, Qihui
2018-06-07
Selective probing one molecule from one class similar molecules is highly challenging due to their similar chemical and physical properties. Here, a novel metal-organic framework FJI-H15 with flexible porous cages has been designed and synthesized, which can specifically recognize ethyl-benzene with ultrahigh enhancement efficiency from series of alkyl-aromatics, in which an unusual size-dependent interaction has been found and proved. While it also can selectively detect phenolic-nitroaromatics among series of nitro-aromatics based on energy transferring and electrostatic interaction. Such unusual specificity and variable mechanisms responding to different type molecules has not been reported, which will provide a new strategy for developing more effective chemo-sensor based on MOFs for probing small structural differences in molecules. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Engineered kinesin motor proteins amenable to small-molecule inhibition
Engelke, Martin F.; Winding, Michael; Yue, Yang; Shastry, Shankar; Teloni, Federico; Reddy, Sanjay; Blasius, T. Lynne; Soppina, Pushpanjali; Hancock, William O.; Gelfand, Vladimir I.; Verhey, Kristen J.
2016-01-01
The human genome encodes 45 kinesin motor proteins that drive cell division, cell motility, intracellular trafficking and ciliary function. Determining the cellular function of each kinesin would benefit from specific small-molecule inhibitors. However, screens have yielded only a few specific inhibitors. Here we present a novel chemical-genetic approach to engineer kinesin motors that can carry out the function of the wild-type motor yet can also be efficiently inhibited by small, cell-permeable molecules. Using kinesin-1 as a prototype, we develop two independent strategies to generate inhibitable motors, and characterize the resulting inhibition in single-molecule assays and in cells. We further apply these two strategies to create analogously inhibitable kinesin-3 motors. These inhibitable motors will be of great utility to study the functions of specific kinesins in a dynamic manner in cells and animals. Furthermore, these strategies can be used to generate inhibitable versions of any motor protein of interest. PMID:27045608
SISGR: Room Temperature Single-Molecule Detection and Imaging by Stimulated Emission Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Xiaoliang Sunney
Single-molecule spectroscopy has made considerable impact on many disciplines including chemistry, physics, and biology. To date, most single-molecule spectroscopy work is accomplished by detecting fluorescence. On the other hand, many naturally occurring chromophores, such as retinal, hemoglobin and cytochromes, do not have detectable fluorescence. There is an emerging need for single-molecule spectroscopy techniques that do not require fluorescence. In the last proposal period, we have successfully demonstrated stimulated emission microscopy, single molecule absorption, and stimulated Raman microscopy based on a high-frequency modulation transfer technique. These first-of-a- kind new spectroscopy/microscopy methods tremendously improved our ability to observe molecules that fluorescence weakly,more » even to the limit of single molecule detection for absorption measurement. All of these methods employ two laser beams: one (pump beam) excites a single molecule to a real or virtual excited state, and the other (probe beam) monitors the absorption/emission property of the single. We extract the intensity change of the probe beam with high sensitivity by implementing a high-frequency phase-sensitive detection scheme, which offers orders of magnitude improvement in detection sensitivity over direct absorption/emission measurement. However, single molecule detection based on fluorescence or absorption is fundamentally limited due to their broad spectral response. It is important to explore other avenues in single molecule detection and imaging which provides higher molecular specificity for studying a wide variety of heterogeneous chemical and biological systems. This proposal aimed to achieve single-molecule detection sensitivity with near resonance stimulated Raman scattering (SRS) microscopy. SRS microscopy was developed in our lab as a powerful technique for imaging heterogeneous samples based on their intrinsic vibrational contrasts, which provides much higher molecular specificity than absorption and fluorescence. Current sensitivity limit of SRS microscopy has not yet reached single molecule detection. We proposed to capitalize on our state-of-the-art SRS microscopy and develop near-resonance enhanced SRS for single molecule detection of carotenoids and heme proteins. The specific aims we pursued are: (1) building the next SRS generation microscope that utilizes near resonance enhancement to allow detection and imaging of single molecules with undetectable fluorescence, such as -carotene. (2) using near-resonance SRS as a contrast mechanism to study dye-sensitize semiconductor interface, elucidating the heterogeneous electron ejection kinetics with high spatial and temporal resolution. (3) studying the binding and unbinding of oxygen in single hemoglobin molecules in order to gain molecular level understanding of the long-standing issue of cooperativity. The new methods developed in the fund period of this grant have advanced the detection sensitivity in many aspects. Near-resonance SRS improved the signal by using shorter wavelengths for SRS microscopy. Frequency modulation and multi-color SRS target the reduction of background to improve the chemical specificity of SRS while maintaining the high imaging speed. Time-domain coherent Raman scattering microscopy targets to reduce the noise floor of coherent Raman microscopy. These methods have already demonstrated first-of-a-kind new applications in biology and medical research. However, we are still one order of magnitude away from single molecule limit. It is important to continue to improve the laser specification and develop new imaging methods to finally achieve label-free single molecule microscopy.« less
Secondary structure prediction and structure-specific sequence analysis of single-stranded DNA.
Dong, F; Allawi, H T; Anderson, T; Neri, B P; Lyamichev, V I
2001-08-01
DNA sequence analysis by oligonucleotide binding is often affected by interference with the secondary structure of the target DNA. Here we describe an approach that improves DNA secondary structure prediction by combining enzymatic probing of DNA by structure-specific 5'-nucleases with an energy minimization algorithm that utilizes the 5'-nuclease cleavage sites as constraints. The method can identify structural differences between two DNA molecules caused by minor sequence variations such as a single nucleotide mutation. It also demonstrates the existence of long-range interactions between DNA regions separated by >300 nt and the formation of multiple alternative structures by a 244 nt DNA molecule. The differences in the secondary structure of DNA molecules revealed by 5'-nuclease probing were used to design structure-specific probes for mutation discrimination that target the regions of structural, rather than sequence, differences. We also demonstrate the performance of structure-specific 'bridge' probes complementary to non-contiguous regions of the target molecule. The structure-specific probes do not require the high stringency binding conditions necessary for methods based on mismatch formation and permit mutation detection at temperatures from 4 to 37 degrees C. Structure-specific sequence analysis is applied for mutation detection in the Mycobacterium tuberculosis katG gene and for genotyping of the hepatitis C virus.
Rapid method to detect duplex formation in sequencing by hybridization methods
Mirzabekov, A.D.; Timofeev, E.N.; Florentiev, V.L.; Kirillov, E.V.
1999-01-19
A method for determining the existence of duplexes of oligonucleotide complementary molecules is provided. A plurality of immobilized oligonucleotide molecules, each of a specific length and each having a specific base sequence, is contacted with complementary, single stranded oligonucleotide molecules to form a duplex. Each duplex facilitates intercalation of a fluorescent dye between the base planes of the duplex. The invention also provides for a method for constructing oligonucleotide matrices comprising confining light sensitive fluid to a surface and exposing the light-sensitive fluid to a light pattern. This causes the fluid exposed to the light to coalesce into discrete units and adhere to the surface. This places each of the units in contact with a set of different oligonucleotide molecules so as to allow the molecules to disperse into the units. 13 figs.
Rapid method to detect duplex formation in sequencing by hybridization methods
Mirzabekov, Andrei Darievich; Timofeev, Edward Nikolaevich; Florentiev, Vladimer Leonidovich; Kirillov, Eugene Vladislavovich
1999-01-01
A method for determining the existence of duplexes of oligonucleotide complementary molecules is provided whereby a plurality of immobilized oligonucleotide molecules, each of a specific length and each having a specific base sequence, is contacted with complementary, single stranded oligonucleotide molecules to form a duplex so as to facilitate intercalation of a fluorescent dye between the base planes of the duplex. The invention also provides for a method for constructing oligonucleotide matrices comprising confining light sensitive fluid to a surface, exposing said light-sensitive fluid to a light pattern so as to cause the fluid exposed to the light to coalesce into discrete units and adhere to the surface; and contacting each of the units with a set of different oligonucleotide molecules so as to allow the molecules to disperse into the units.
Zanetti-Domingues, Laura C; Tynan, Christopher J; Rolfe, Daniel J; Clarke, David T; Martin-Fernandez, Marisa
2013-01-01
Single-molecule techniques are powerful tools to investigate the structure and dynamics of macromolecular complexes; however, data quality can suffer because of weak specific signal, background noise and dye bleaching and blinking. It is less well-known, but equally important, that non-specific binding of probe to substrates results in a large number of immobile fluorescent molecules, introducing significant artifacts in live cell experiments. Following from our previous work in which we investigated glass coating substrates and demonstrated that the main contribution to this non-specific probe adhesion comes from the dye, we carried out a systematic investigation of how different dye chemistries influence the behaviour of spectrally similar fluorescent probes. Single-molecule brightness, bleaching and probe mobility on the surface of live breast cancer cells cultured on a non-adhesive substrate were assessed for anti-EGFR affibody conjugates with 14 different dyes from 5 different manufacturers, belonging to 3 spectrally homogeneous bands (491 nm, 561 nm and 638 nm laser lines excitation). Our results indicate that, as well as influencing their photophysical properties, dye chemistry has a strong influence on the propensity of dye-protein conjugates to adhere non-specifically to the substrate. In particular, hydrophobicity has a strong influence on interactions with the substrate, with hydrophobic dyes showing much greater levels of binding. Crucially, high levels of non-specific substrate binding result in calculated diffusion coefficients significantly lower than the true values. We conclude that the physic-chemical properties of the dyes should be considered carefully when planning single-molecule experiments. Favourable dye characteristics such as photostability and brightness can be offset by the propensity of a conjugate for non-specific adhesion.
Rolfe, Daniel J.; Clarke, David T.; Martin-Fernandez, Marisa
2013-01-01
Single-molecule techniques are powerful tools to investigate the structure and dynamics of macromolecular complexes; however, data quality can suffer because of weak specific signal, background noise and dye bleaching and blinking. It is less well-known, but equally important, that non-specific binding of probe to substrates results in a large number of immobile fluorescent molecules, introducing significant artifacts in live cell experiments. Following from our previous work in which we investigated glass coating substrates and demonstrated that the main contribution to this non-specific probe adhesion comes from the dye, we carried out a systematic investigation of how different dye chemistries influence the behaviour of spectrally similar fluorescent probes. Single-molecule brightness, bleaching and probe mobility on the surface of live breast cancer cells cultured on a non-adhesive substrate were assessed for anti-EGFR affibody conjugates with 14 different dyes from 5 different manufacturers, belonging to 3 spectrally homogeneous bands (491 nm, 561 nm and 638 nm laser lines excitation). Our results indicate that, as well as influencing their photophysical properties, dye chemistry has a strong influence on the propensity of dye-protein conjugates to adhere non-specifically to the substrate. In particular, hydrophobicity has a strong influence on interactions with the substrate, with hydrophobic dyes showing much greater levels of binding. Crucially, high levels of non-specific substrate binding result in calculated diffusion coefficients significantly lower than the true values. We conclude that the physic-chemical properties of the dyes should be considered carefully when planning single-molecule experiments. Favourable dye characteristics such as photostability and brightness can be offset by the propensity of a conjugate for non-specific adhesion. PMID:24066121
Ryu, Kyoung-Seok; Tugarinov, Vitali; Clore, G Marius
2014-10-15
The kinetics of translocation of the homeodomain transcription factor HoxD9 between specific sites of the same or opposite polarities on the same DNA molecule have been studied by (15)Nz-exchange NMR spectroscopy. We show that exchange occurs by two facilitated diffusion mechanisms: a second-order intermolecular exchange reaction between specific sites located on different DNA molecules without the protein dissociating into free solution that predominates at high concentrations of free DNA, and a first-order intramolecular process involving direct transfer between specific sites located on the same DNA molecule. Control experiments using a mixture of two DNA molecules, each possessing only a single specific site, indicate that transfer between specific sites by full dissociation of HoxD9 into solution followed by reassociation is too slow to measure by z-exchange spectroscopy. Intramolecular transfer with comparable rate constants occurs between sites of the same and opposing polarity, indicating that both rotation-coupled sliding and hopping/flipping (analogous to geminate recombination) occur. The half-life for intramolecular transfer (0.5-1 s) is many orders of magnitude larger than the calculated transfer time (1-100 μs) by sliding, leading us to conclude that the intramolecular transfer rates measured by z-exchange spectroscopy represent the rate-limiting step for a one-base-pair shift from the specific site to the immediately adjacent nonspecific site. At zero concentration of added salt, the intramolecular transfer rate constants between sites of opposing polarity are smaller than those between sites of the same polarity, suggesting that hopping/flipping may become rate-limiting at very low salt concentrations.
Asamitsu, Sefan; Obata, Shunsuke; Phan, Anh Tuân; Hashiya, Kaori; Bando, Toshikazu; Sugiyama, Hiroshi
2018-03-20
A G-quadruplex (quadruplex) is a nucleic acid secondary structure adopted by guanine-rich sequences and is considered to be relevant to various pharmacological and biological contexts. Although a number of researchers have endeavored to discover and develop quadruplex-interactive molecules, poor ligand designability originating from topological similarity of the skeleton of diverse quadruplexes has remained a bottleneck for gaining specificity for individual quadruplexes. This work reports on hybrid molecules that were constructed with dual DNA-binding components, a cyclic imidazole/lysine polyamide (cIKP), and a hairpin pyrrole/imidazole polyamide (hPIP), with the aim toward specific quadruplex targeting by reading out the local duplex DNA sequence adjacent to designated quadruplexes in the genome. By means of circular dichroism (CD), fluorescence resonance energy transfer (FRET), surface plasmon resonance (SPR), and NMR techniques, we showed the dual and simultaneous recognition of the respective segment via hybrid molecules, and the synergistic and mutual effect of each binding component that was appropriately linked on higher binding affinity and modest sequence specificity. Monitoring quadruplex and duplex imino protons of the quadruplex/duplex motif titrated with hybrid molecules clearly revealed distinct features of the binding of hybrid molecules to the respective segments upon their simultaneous recognition. A series of the systematic and detailed binding assays described here showed that the concept of simultaneous recognition of quadruplex and its proximal duplex by hybrid molecules constructed with the dual DNA-binding components may provide a new strategy for ligand design, enabling targeting of a large variety of designated quadruplexes at specific genome locations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mortara, Lorenzo; Balza, Enrica; Sassi, Francesca; Castellani, Patrizia; Carnemolla, Barbara; De Lerma Barbaro, Andrea; Fossati, Sara; Tosi, Giovanna; Accolla, Roberto S; Borsi, Laura
2007-12-01
Treatment of tumor-bearing mice with mouse (m)TNF-alpha, targeted to tumor vasculature by the anti-ED-B fibronectin domain antibody L19(scFv) and combined with melphalan, induces a therapeutic immune response. Upon treatment, a highly efficient priming of CD4+ T cells and consequent activation and maturation of CD8+ CTL effectors is generated, as demonstrated by in vivo depletion and adoptive cell transfer experiments. Immunohistochemical analysis of the tumor tissue demonstrated massive infiltration of CD4+ and CD8+ T cells 6 days after treatment and much earlier in the anamnestic response to tumor challenge in cured mice. In fact, the curative treatment with L19mTNF-alpha and melphalan resulted in long-lasting antitumor immune memory, accompanied by a mixed Th1/Th2-type response and significant in vitro tumor-specific cytolytic activity. Finally, the combined treatment reduced the percentage and absolute number of CD4+CD25+ regulatory T cells in the tumor-draining lymph nodes of mice responding to therapy, and this was associated with the establishment of protective immunity. These findings pave the way for alternative therapeutic strategies based on the targeted delivery of biological and pharmacological cytotoxic compounds that not only kill most of the tumor cells but, more importantly, trigger an effective and long-lasting antitumor adaptive immune response.
Haynes, Nicole M; Trapani, Joseph A; Teng, Michele W L; Jackson, Jacob T; Cerruti, Loretta; Jane, Stephen M; Kershaw, Michael H; Smyth, Mark J; Darcy, Phillip K
2002-11-15
A new strategy to improve the therapeutic utility of redirected T cells for cancer involves the development of novel Ag-specific chimeric receptors capable of stimulating optimal and sustained T cell antitumor activity in vivo. Given that T cells require both primary and costimulatory signals for optimal activation and that many tumors do not express critical costimulatory ligands, modified single-chain Ab receptors have been engineered to codeliver CD28 costimulation. In this study, we have compared the antitumor potency of primary T lymphocytes expressing carcinoembryonic Ag (CEA)-reactive chimeric receptors that incorporate either TCR-zeta or CD28/TCR-zeta signaling. Although both receptor-transduced T cell effector populations demonstrated cytolysis of CEA(+) tumors in vitro, T cells expressing the single-chain variable fragment of Ig (scFv)-CD28-zeta chimera had a far greater capacity to control the growth of CEA(+) xenogeneic and syngeneic colon carcinomas in vivo. The observed enhanced antitumor activity of T cells expressing the scFv-CD28-zeta receptor was critically dependent on perforin and the production of IFN-gamma. Overall, this study has illustrated the ability of a chimeric scFv receptor capable of harnessing the signaling machinery of both TCR-zeta and CD28 to augment T cell immunity against tumors that have lost expression of both MHC/peptide and costimulatory ligands in vivo.
2015-01-01
High-affinity antibodies binding to linear peptides in solution are a prerequisite for performing immuno-MRM, an emerging technology for protein quantitation with high precision and specificity using peptide immunoaffinity enrichment coupled to stable isotope dilution and targeted mass spectrometry. Recombinant antibodies can be generated from appropriate libraries in high-throughput in an automated laboratory and thus may offer advantages over conventional monoclonal antibodies. However, recombinant antibodies are typically obtained as fragments (Fab or scFv) expressed from E. coli, and it is not known whether these antibody formats are compatible with the established protocols and whether the affinities necessary for immunocapture of small linear peptides can be achieved with this technology. Hence, we performed a feasibility study to ask: (a) whether it is feasible to isolate high-affinity Fabs to small linear antigens and (b) whether it is feasible to incorporate antibody fragments into robust, quantitative immuno-MRM assays. We describe successful isolation of high-affinity Fab fragments against short (tryptic) peptides from a human combinatorial Fab library. We analytically characterize three immuno-MRM assays using recombinant Fabs, full-length IgGs constructed from these Fabs, or traditional monoclonals. We show that the antibody fragments show similar performance compared with traditional mouse- or rabbit-derived monoclonal antibodies. The data establish feasibility of isolating and incorporating high-affinity Fabs into peptide immuno-MRM assays. PMID:24568200
Whiteaker, Jeffrey R; Zhao, Lei; Frisch, Christian; Ylera, Francisco; Harth, Stefan; Knappik, Achim; Paulovich, Amanda G
2014-04-04
High-affinity antibodies binding to linear peptides in solution are a prerequisite for performing immuno-MRM, an emerging technology for protein quantitation with high precision and specificity using peptide immunoaffinity enrichment coupled to stable isotope dilution and targeted mass spectrometry. Recombinant antibodies can be generated from appropriate libraries in high-throughput in an automated laboratory and thus may offer advantages over conventional monoclonal antibodies. However, recombinant antibodies are typically obtained as fragments (Fab or scFv) expressed from E. coli, and it is not known whether these antibody formats are compatible with the established protocols and whether the affinities necessary for immunocapture of small linear peptides can be achieved with this technology. Hence, we performed a feasibility study to ask: (a) whether it is feasible to isolate high-affinity Fabs to small linear antigens and (b) whether it is feasible to incorporate antibody fragments into robust, quantitative immuno-MRM assays. We describe successful isolation of high-affinity Fab fragments against short (tryptic) peptides from a human combinatorial Fab library. We analytically characterize three immuno-MRM assays using recombinant Fabs, full-length IgGs constructed from these Fabs, or traditional monoclonals. We show that the antibody fragments show similar performance compared with traditional mouse- or rabbit-derived monoclonal antibodies. The data establish feasibility of isolating and incorporating high-affinity Fabs into peptide immuno-MRM assays.
Carneiro, A P; Reis, C F; Morari, E C; Maia, Y C P; Nascimento, R; Bonatto, J M C; de Souza, M A; Goulart, L R; Ward, L S
2014-01-01
Background: This study aimed to identify novel biomarkers for thyroid carcinoma diagnosis and prognosis. Methods: We have constructed a human single-chain variable fragment (scFv) antibody library that was selected against tumour thyroid cells using the BRASIL method (biopanning and rapid analysis of selective interactive ligands) and phage display technology. Results: One highly reactive clone, scFv-C1, with specific binding to papillary thyroid tumour proteins was confirmed by ELISA, which was further tested against a tissue microarray that comprised of 229 thyroid tissues, including: 110 carcinomas (38 papillary thyroid carcinomas (PTCs), 42 follicular carcinomas, 30 follicular variants of PTC), 18 normal thyroid tissues, 49 nodular goitres (NG) and 52 follicular adenomas. The scFv-C1 was able to distinguish carcinomas from benign lesions (P=0.0001) and reacted preferentially against T1 and T2 tumour stages (P=0.0108). We have further identified an OTU domain-containing protein 1, DUBA-7 deubiquitinating enzyme as the scFv-binding antigen using two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Conclusions: The strategy of screening and identifying a cell-surface-binding antibody against thyroid tissues was highly effective and resulted in a useful biomarker that recognises malignancy among thyroid nodules and may help identify lower-risk cases that can benefit from less-aggressive management. PMID:24937664
Generation and characterization of protective antibodies to Marburg virus.
Froude, Jeffrey W; Pelat, Thibaut; Miethe, Sebastian; Zak, Samantha E; Wec, Anna Z; Chandran, Kartik; Brannan, Jennifer Mary; Bakken, Russell R; Hust, Michael; Thullier, Philippe; Dye, John M
Marburg virus (MARV) and Ebola virus (EBOV) have been a source of epidemics and outbreaks for several decades. We present here the generation and characterization of the first protective antibodies specific for wild-type MARV. Non-human primates (NHP), cynomolgus macaques, were immunized with viral-replicon particles expressing the glycoproteins (GP) of MARV (Ci67 isolate). An antibody fragment (single-chain variable fragment, scFv) phage display library was built after four immunogen injections, and screened against the GP 1-649 of MARV. Sequencing of 192 selected clones identified 18 clones with distinct V H and V L sequences. Four of these recombinant antibodies (R4A1, R4B11, R4G2, and R3F6) were produced in the scFv-Fc format for in vivo studies. Mice that were challenged with wild-type Marburg virus (Ci67 isolate) receiving 100 µg of scFv-Fc on days -1, 1 and 3 demonstrated protective efficacies ranging from 75-100%. The amino-acid sequences of the scFv-Fcs are similar to those of their human germline counterparts, sharing an identity ranging between 68 and 100% to human germline immunoglobulin. These results demonstrate for the first time that recombinant antibodies offer protection against wild-type MARV, and suggest they may be promising candidates for further therapeutic development especially due to their human homology.
Organic Molecules On the Surfaces of Iapetus and Phoebe
NASA Technical Reports Server (NTRS)
Pendleton, Yvonne J.; Dalle Ore, Cristina M.; Clark, Roger N.; Cruikshank, Dale P.
2017-01-01
Absorption bands of both aliphatic and aromatic organic molecules are found in the reflectance spectra of Saturn satellites Iapetus, Phoebe, and Hyperion obtained with the Cassini Visible-Infrared Mapping Spectrometer (VIMS). The VIMS data do not fully resolve the individual bands of C-H functional groups specific to particular molecules, but instead show absorption envelopes representing blended clusters of the bands of aromatic (approximately 3.28 microns) and aliphatic (approximately 3.4 microns) hydrocarbons known in spectra of interstellar dust. In Cruikshank et al. (2014), we matched components of the unresolved hydrocarbon band envelopes with clusters of bands of a range of functional groups in specific types of organic compounds (e.g., normal and N-substituted polycyclic aromatic hydrocarbons, olefins, cycloalkanes, and molecules with lone-pair interactions of N and O with CH3+). In the work reported here, we revisit the spectra of Iapetus and Phoebe using VIMS data processed with improved radiometric and wavelength calibration (denoted RC19). The band envelopes of both aromatic and aliphatic hydrocarbons are now more clearly defined, corroborating the provisional assignment of specific classes of molecules in Cruikshank et al. 2014, but permitting a more reliable quantitative assessment of the relative contributions of those classes, and a revision to the earlier estimate of the ratio of the abundances of aromatic to aliphatic molecules.
USDA-ARS?s Scientific Manuscript database
The binding of peptides to classical major histocompatibility complex (MHC) class-I proteins is the single most selective step in antigen presentation. However, the peptide binding specificity of cattle MHC (bovine leucocyte antigen, BoLA) class I (BoLA-I) molecules remains poorly characterized. Her...
Construction and evaluation of a novel humanized HER2-specific chimeric receptor
2014-01-01
Introduction The human epidermal growth factor receptor 2 (HER2) represents one of the most studied tumor-associated antigens (TAAs) for cancer immunotherapy. The monoclonal antibody (mAb) trastuzumab has improved the outcomes of patients with HER2+ breast cancer. However, a large number of HER2+ tumors are not responsive to, or become resistant to, trastuzumab-based therapy, and thus more effective therapies targeting HER2 are needed. Methods HER2-specific T cells were generated by the transfer of genes that encode chimeric antigen receptor (CAR). Using a multistep overlap extension PCR method, we constructed a novel, humanized HER2 CAR-containing, chA21 single-chain variable fragment (scFv) region of antigen-specific mAb and T-cell intracellular signaling chains made up of CD28 and CD3ζ. An interferon γ and interleukin 2 enzyme-linked immunosorbent assay and a chromium-51 release assay were used to evaluate the antitumor immune response of CAR T cells in coculture with tumor cells. Furthermore, SKBR3 tumor–bearing nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice were treated with HER2 CAR T cells to evaluate antitumor activity. Human CD3+ T cell accumulation in tumor xenograft was detected by immunohistochemistry. Results chA21-28z CAR was successfully constructed, and both CD4+ and CD8+ T cells were transduced. The expanded HER2 CAR T cells expressed a central memory phenotype and specifically reacted against HER2+ tumor cell lines. Furthermore, the SKBR3 tumor xenograft model revealed that HER2 CAR T cells significantly inhibited tumor growth in vivo. Immunohistochemical analysis showed robust accumulation of human CD3+ T cells in regressing SKBR3 lesions. Conclusions The results of this study show that novel chA21 scFv-based, HER2-specific CAR T cells not only recognized and killed HER2+ breast and ovarian cancer cells ex vivo but also induced regression of experimental breast cancer in vivo. Our data support further exploration of the HER2 CAR T-cell therapy for HER2-expressing cancers. PMID:24919843
Genetics Home Reference: CLN7 disease
... unknown. The MFSD8 protein is embedded in the membrane of cell compartments called lysosomes , which digest and recycle different types of molecules. Based on the structure of the protein, MFSD8 probably transports molecules across the lysosomal membrane, but the specific molecules it moves have not ...
Non-Invasive Monitoring of CNS MHC-I Molecules in Ischemic Stroke Mice.
Xia, Jing; Zhang, Ying; Zhao, Huanhuan; Wang, Jie; Gao, Xueren; Chen, Jinpeng; Fu, Bo; Shen, Yuqing; Miao, Fengqin; Zhang, Jianqiong; Teng, Gaojun
2017-01-01
Ischemic stroke is one of the leading causes of morbidity and mortality worldwide. The expression of major histocompatibility complex class I (MHC-I) molecules in the central nervous system, which are silenced under normal physiological conditions, have been reported to be induced by injury stimulation. The purpose of this study was to determine whether MHC-I molecules could serve as molecular targets for the acute phase of ischemic stroke and to assess whether a high-affinity peptide specific for MHC-I molecules could be applied in the near-infrared imaging of cerebral ischemic mice. Quantitative real-time PCR and Western blotting were used to detect the expression of MHC-I molecules in two mouse models of cerebral ischemic stroke and an in vitro model of ischemia. The NetMHC 4.0 server was used to screen a high-affinity peptide specific for mouse MHC-I molecules. The Rosetta program was used to identify the specificity and affinity of the screened peptide (histocompatibility-2 binding peptide, H2BP). The results demonstrated that MHC-I molecules could serve as molecular targets for the acute phase of ischemic stroke. Cy5.5-H2BP molecular probes could be applied in the near-infrared imaging of cerebral ischemic mice. Research on the expression of MHC-I molecules in the acute phase after ischemia and MHC-I-targeted imaging may not only be helpful for understanding the mechanism of ischemic and hypoxic brain injury and repair but also has potential application value in the imaging of ischemic stroke.
Chen, Bor-Sen
2016-01-01
Bacteria navigate environments full of various chemicals to seek favorable places for survival by controlling the flagella’s rotation using a complicated signal transduction pathway. By influencing the pathway, bacteria can be engineered to search for specific molecules, which has great potential for application to biomedicine and bioremediation. In this study, genetic circuits were constructed to make bacteria search for a specific molecule at particular concentrations in their environment through a synthetic biology method. In addition, by replacing the “brake component” in the synthetic circuit with some specific sensitivities, the bacteria can be engineered to locate areas containing specific concentrations of the molecule. Measured by the swarm assay qualitatively and microfluidic techniques quantitatively, the characteristics of each “brake component” were identified and represented by a mathematical model. Furthermore, we established another mathematical model to anticipate the characteristics of the “brake component”. Based on this model, an abundant component library can be established to provide adequate component selection for different searching conditions without identifying all components individually. Finally, a systematic design procedure was proposed. Following this systematic procedure, one can design a genetic circuit for bacteria to rapidly search for and locate different concentrations of particular molecules by selecting the most adequate “brake component” in the library. Moreover, following simple procedures, one can also establish an exclusive component library suitable for other cultivated environments, promoter systems, or bacterial strains. PMID:27096615
Immunopharmacotherapeutic Manifolds and Modulation of Cocaine Overdose
Treweek, Jennifer B.; Roberts, Amanda J.; Janda, Kim D.
2011-01-01
Cocaine achieves its psychostimulant, reinforcing properties through selectively blocking dopamine transporters, and this neurobiological mechanism impedes the use of classical receptor-antagonist pharmacotherapies to outcompete cocaine at CNS sites. Passive immunization with monoclonal antibodies (mAb) specific for cocaine circumvents this problem as drug is sequestered in the periphery prior to entry into the brain. To optimize an immunopharmacotherapeutic strategy for reversing severe cocaine toxicity, the therapeutic properties of mAb GNC92H2 IgG were compared to those of its engineered formats in a mouse overdose model. Whereas the extended half-life of an IgG justifies its application to the prophylactic treatment of addiction, the rapid, thorough biodistribution of mAb-based fragments, including F(ab')2, Fab and scFv, may correlate to accelerated scavenging of cocaine and reversal of toxicity. To test this hypothesis, mice were administered the anti-cocaine IgG (180 mg/kg, i.v.) or GNC92H2-based agent after receiving an LD50 cocaine dose (93 mg/kg, i.p.), and the timeline of overdose symptoms was recorded. All formats lowered the rate of lethality despite the >100-fold molar excess of drug to antibody binding capacity. However, only F(ab')2-92H2 and Fab-92H2 significantly attenuated the progression of premorbid behaviors, and Fab-92H2 prevented seizure generation in a percentage of mice. The calculation of serum half-life of each format demonstrated that the pharmacokinetic profile of Fab-92H2 (elimination half-life, t1/2 ∼ 100 minutes) best approximated that of cocaine. These results not only confirm the importance of highly specific and tight drug binding by the mAb, but also highlight the benefit of aligning the pharmacokinetic and pharmacodynamic properties of the immunopharmacotherapeutic with the targeted drug. PMID:21356233
Trott, Maria; Weiß, Svenja; Antoni, Sascha; Koch, Joachim; von Briesen, Hagen; Hust, Michael; Dietrich, Ursula
2014-01-01
HIV neutralizing antibodies (nAbs) represent an important tool in view of prophylactic and therapeutic applications for HIV-1 infection. Patients chronically infected by HIV-1 represent a valuable source for nAbs. HIV controllers, including long-term non-progressors (LTNP) and elite controllers (EC), represent an interesting subgroup in this regard, as here nAbs can develop over time in a rather healthy immune system and in the absence of any therapeutic selection pressure. In this study, we characterized two particular antibodies that were selected as scFv antibody fragments from a phage immune library generated from an LTNP with HIV neutralizing antibodies in his plasma. The phage library was screened on recombinant soluble gp140 envelope (Env) proteins. Sequencing the selected peptide inserts revealed two major classes of antibody sequences. Binding analysis of the corresponding scFv-Fc derivatives to various trimeric and monomeric Env constructs as well as to peptide arrays showed that one class, represented by monoclonal antibody (mAb) A2, specifically recognizes an epitope localized in the pocket binding domain of the C heptad repeat (CHR) in the ectodomain of gp41, but only in the trimeric context. Thus, this antibody represents an interesting tool for trimer identification. MAb A7, representing the second class, binds to structural elements of the third variable loop V3 and neutralizes tier 1 and tier 2 HIV-1 isolates of different subtypes with matching critical amino acids in the linear epitope sequence. In conclusion, HIV controllers are a valuable source for the selection of functionally interesting antibodies that can be selected on soluble gp140 proteins with properties from the native envelope spike. PMID:24828352
Bochicchio, Anna; Jordaan, Sandra; Losasso, Valeria; Chetty, Shivan; Perera, Rodrigo Casasnovas; Ippoliti, Emiliano; Barth, Stefan; Carloni, Paolo
2017-02-17
Targeted human cytolytic fusion proteins (hCFPs) are humanized immunotoxins for selective treatment of different diseases including cancer. They are composed of a ligand specifically binding to target cells genetically linked to a human apoptosis-inducing enzyme. hCFPs target cancer cells via an antibody or derivative (scFv) specifically binding to e.g., tumor associated antigens (TAAs). After internalization and translocation of the enzyme from endocytosed endosomes, the human enzymes introduced into the cytosol are efficiently inducing apoptosis. Under in vivo conditions such enzymes are subject to tight regulation by native inhibitors in order to prevent inappropriate induction of cell death in healthy cells. Tumor cells are known to upregulate these inhibitors as a survival mechanism resulting in escape of malignant cells from elimination by immune effector cells. Cytosolic inhibitors of Granzyme B and Angiogenin (Serpin P9 and RNH1, respectively), reduce the efficacy of hCFPs with these enzymes as effector domains, requiring detrimentally high doses in order to saturate inhibitor binding and rescue cytolytic activity. Variants of Granzyme B and Angiogenin might feature reduced affinity for their respective inhibitors, while retaining or even enhancing their catalytic activity. A powerful tool to design hCFPs mutants with improved potency is given by in silico methods. These include molecular dynamics (MD) simulations and enhanced sampling methods (ESM). MD and ESM allow predicting the enzyme-protein inhibitor binding stability and the associated conformational changes, provided that structural information is available. Such "high-resolution" detailed description enables the elucidation of interaction domains and the identification of sites where particular point mutations may modify those interactions. This review discusses recent advances in the use of MD and ESM for hCFP development from the viewpoints of scientists involved in both fields.
Bochicchio, Anna; Jordaan, Sandra; Losasso, Valeria; Chetty, Shivan; Casasnovas Perera, Rodrigo; Ippoliti, Emiliano; Barth, Stefan; Carloni, Paolo
2017-01-01
Targeted human cytolytic fusion proteins (hCFPs) are humanized immunotoxins for selective treatment of different diseases including cancer. They are composed of a ligand specifically binding to target cells genetically linked to a human apoptosis-inducing enzyme. hCFPs target cancer cells via an antibody or derivative (scFv) specifically binding to e.g., tumor associated antigens (TAAs). After internalization and translocation of the enzyme from endocytosed endosomes, the human enzymes introduced into the cytosol are efficiently inducing apoptosis. Under in vivo conditions such enzymes are subject to tight regulation by native inhibitors in order to prevent inappropriate induction of cell death in healthy cells. Tumor cells are known to up-regulate these inhibitors as a survival mechanism resulting in escape of malignant cells from elimination by immune effector cells. Cytosolic inhibitors of Granzyme B and Angiogenin (Serpin P9 and RNH1, respectively), reduce the efficacy of hCFPs with these enzymes as effector domains, requiring detrimentally high doses in order to saturate inhibitor binding and rescue cytolytic activity. Variants of Granzyme B and Angiogenin might feature reduced affinity for their respective inhibitors, while retaining or even enhancing their catalytic activity. A powerful tool to design hCFPs mutants with improved potency is given by in silico methods. These include molecular dynamics (MD) simulations and enhanced sampling methods (ESM). MD and ESM allow predicting the enzyme-protein inhibitor binding stability and the associated conformational changes, provided that structural information is available. Such “high-resolution” detailed description enables the elucidation of interaction domains and the identification of sites where particular point mutations may modify those interactions. This review discusses recent advances in the use of MD and ESM for hCFP development from the viewpoints of scientists involved in both fields. PMID:28536352
Zhou, Bin; Wirsching, Peter; Janda, Kim D
2002-04-16
A naive, human single-chain Fv (scFv) phage-display library was used in bio-panning against live, native spores of Bacillus subtilis IFO 3336 suspended in solution. A direct in vitro panning and enzyme-linked immunosorbent assay-based selection afforded a panel of nine scFv-phage clones of which two, 5B and 7E, were chosen for further study. These two clones differed in their relative specificity and affinity for spores of B. subtilis IFO 3336 vs. a panel of spores from 11 other Bacillus species/strains. A variety of enzyme-linked immunosorbent assay protocols indicated these scFv-phage clones recognized different spore epitopes. Notably, some spore epitopes markedly changed between the free and microtiter-plate immobilized state as revealed by antibody-phage binding. An additional library selection procedure also was examined by constructing a Fab chain-shuffled sublibrary from the nine positive clones and by using a subtractive panning strategy to remove crossreactivity with B. licheniformis 5A24. The Fab-phage clone 52 was improved compared with 5B and was comparable to 7E in binding B. subtilis IFO 3336 vs. B. licheniformis 5A24, yet showed a distinctive crossreactivity pattern with other spores. We also developed a method to directly detect individual spores by using fluorescently labeled antibody-phage. Finally, a variety of "powders" that might be used in deploying spores of B. anthracis were examined for antibody-phage binding. The strategies described provide a foundation to discover human antibodies specific for native spores of B. anthracis that can be developed as diagnostic and therapeutic reagents.
Tetravalent anti-CD20/CD3 bispecific antibody for the treatment of B cell lymphoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Chia-Yen; Chen, Gregory J.; Tai, Pei-Han
Bispecific antibodies (bsAbs) are second generation antibodies for therapeutic application in immunotherapy. One of the major strategies of the bsAb platform is the recruitment of immune effector T cells by incorporating an anti-CD3 domain. A bispecific T-cell engager (BiTE), with one end having an affinity for CD3 and the other end with affinity for CD19, has been approved in the US and Europe for the treatment of acute lymphoblastic leukemia. However, due to their small size and lack of Fc region, these single-chain variable fragment (scFv) bsAbs have short half-lives in vivo. Additionally, poor solubility, structural instability, and low production yieldsmore » have also become major challenges in the bulk production process. To overcome these challenges, we have engineered a tetravalent bsAb with bivalent binding specificity for the CD20 and CD3 antigen in an immunoglobulin G (IgG) format. The fusion of the anti-CD3 scFvs to the CD20 antibody via a linker-hinge domain (LHD) results in improved antibody stabilization and properties. Here we demonstrate this antibody's highly efficient cancer cell elimination in a dose-dependent manner in a CD20-expressing B lymphoblastoid cell line in vitro. Our data suggest the potential clinical application of this bsAb for the treatment of CD20-expressing B cell malignancies. - Highlights: • A bispecific antibody (bsAb) can increase immunotherapeutic efficacy. • A tetravalent bsAb with binding specificity for the CD20 and CD3 antigens is proposed. • A linker-hinge domain (LHD) within the bsAb results in improved antibody properties.« less
De Marni, Marzia L; Monegal, Ana; Venturini, Samuele; Vinati, Simone; Carbone, Roberta; de Marco, Ario
2012-02-01
The preparation of effective conventional antibody microarrays depends on the availability of high quality material and on the correct accessibility of the antibody active moieties following their immobilization on the support slide. We show that spotting bacteria that expose recombinant antibodies on their external surface directly on nanostructured-TiO(2) or epoxy slides (purification-independent microarray - PIM) is a simple and reliable alternative for preparing sensitive and specific microarrays for antigen detection. Variable domains of single heavy-chain antibodies (VHHs) against fibroblast growth factor receptor 1 (FGFR1) were used to capture the antigen diluted in serum or BSA solution. The FGFR1 detection was performed by either direct antigen labeling or using a sandwich system in which FGFR1 was first bound to its antibody and successively identified using a labeled FGF. In both cases the signal distribution within each spot was uniform and spot morphology regular. The signal-to-noise ratio of the signal was extremely elevated and the specificity of the system was proved statistically. The LOD of the system for the antigen was calculated being 0.4ng/mL and the dynamic range between 0.4ng/mL and 10μg/mL. The microarrays prepared with bacteria exposing antibodies remain fully functional for at least 31 days after spotting. We finally demonstrated that the method is suitable for other antigen-antibody pairs and expect that it could be easily adapted to further applications such as the display of scFv and IgG antibodies or the autoantibody detection using protein PIMs. Copyright © 2011. Published by Elsevier Inc.
Schmohl, Joerg U.; Felices, Martin; Todhunter, Deborah; Taras, Elizabeth; Miller, Jeffrey S.; Vallera, Daniel A.
2016-01-01
Background The design of a highly effective anti-cancer immune-engager would include targeting of highly drug refractory cancer stem cells (CSC). The design would promote effective antibody-dependent cell-mediated cytotoxicity (ADCC) and simultaneously promote costimulation to expand and self-sustain the effector NK cell population. Based on our bispecific NK cell engager platform we constructed a tetraspecific killer engager (TetraKE) comprising single-chain variable fragments (scFvs) binding FcγRIII (CD16) on NK cells, EpCAM on carcinoma cells and CD133 on cancer stem cells in order to promote ADCC. Furthermore, an Interleukin (IL)-15-crosslinker enhanced NK cell related proliferation resulting in a highly active drug termed 1615EpCAM133. Results Proliferation assays showed TetraKE promoted proliferation and enhanced NK cell survival. Drug-target binding, NK cell related degranulation, and IFN-γ production was specific for both tumor related antigens in EpCAM and CD133 bearing cancer cell lines. The TetraKE showed higher killing activity and superior dose dependent degranulation. Cytokine profiling showed a moderately enhanced IFN-γ production, enhanced GM-CSF production, but no evidence of induction of excessive cytokine release. Methods Assembly and synthesis of hybrid genes encoding the TetraKE were performed using DNA shuffling and ligation. The TetraKE was tested for efficacy, specificity, proliferation, survival, and cytokine production using carcinoma cell lines and functional assays measuring NK cell activity. Conclusion 1615EpCAM133 combines improved induction of ADCC with enhanced proliferation, limited cytokine response, and prolonged survival and proliferation of NK cells. By linking scFv-related targeting of carcinoma and CSCs with a sustaining IL-15 signal, our new construct shows great promise to target cancer and CSCs. PMID:27650544
D’Souza, Jimson W.; Shchaveleva, Irina; Marks, James D.; Litwin, Samuel; Robinson, Matthew K.
2014-01-01
Background Inappropriate signaling through the epidermal growth factor receptor family (EGFR1/ERBB1, ERBB2/HER2, ERBB3/HER3, and ERBB4/HER4) of receptor tyrosine kinases leads to unregulated activation of multiple downstream signaling pathways that are linked to cancer formation and progression. In particular, ERBB3 plays a critical role in linking ERBB signaling to the phosphoinositide 3-kinase and Akt signaling pathway and increased levels of ERBB3-dependent signaling is also increasingly recognized as a mechanism for acquired resistance to ERBB-targeted therapies. Methods We had previously reported the isolation of a panel of anti-ERBB3 single-chain Fv antibodies through use of phage-display technology. In the current study scFv specific for domain I (F4) and domain III (A5) were converted into human IgG1 formats and analyzed for efficacy. Results Treatment of cells with an oligoclonal mixture of the A5/F4 IgGs appeared more effective at blocking both ligand-induced and ligand-independent signaling through ERBB3 than either single IgG alone. This correlated with improved ability to inhibit the cell growth both as a single agent and in combination with other ERBB-targeted therapies. Treatment of NCI-N87 tumor xenografts with the A5/F4 oligoclonal led to a statistically significant decrease in tumor growth rate that was further enhanced in combination with trastuzumab. Conclusion These results suggest that an oligoclonal antibody mixture may be a more effective approach to downregulate ERBB3-dependent signaling. PMID:25386657
Identification of Cell Surface Molecules Involved in Dystroglycan-Independent Lassa Virus Cell Entry
Ströher, Ute; Ebihara, Hideki; Feldmann, Heinz
2012-01-01
Although O-mannosylated dystroglycan is a receptor for Lassa virus, a causative agent of Lassa fever, recent findings suggest the existence of an alternative receptor(s). Here we identified four molecules as receptors for Lassa virus: Axl and Tyro3, from the TAM family, and dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and liver and lymph node sinusoidal endothelial calcium-dependent lectin (LSECtin), from the C-type lectin family. These molecules enhanced the binding of Lassa virus to cells and mediated infection independently of dystroglycan. Axl- or Tyro3-mediated infection required intracellular signaling via the tyrosine kinase activity of Axl or Tyro3, whereas DC-SIGN- or LSECtin-mediated infection and binding were dependent on a specific carbohydrate and on ions. The identification of these four molecules as Lassa virus receptors advances our understanding of Lassa virus cell entry. PMID:22156524
Mirzabekov, Andrei Darievich; Yershov, Gennadiy Moiseyevich; Guschin, Dmitry Yuryevich; Gemmell, Margaret Anne; Shick, Valentine V.; Proudnikov, Dmitri Y.; Timofeev, Edward N.
2002-01-01
A method for determining the existence of duplexes of oligonucleotide complementary molecules is provided whereby a plurality of immobilized oligonucleotide molecules, each of a specific length and each having a specific base sequence, is contacted with complementary, single stranded oligonucleotide molecules to form a duplex so as to facilitate intercalation of a fluorescent dye between the base planes of the duplex. The invention also provides for a method for constructing oligonucleotide matrices comprising confining light sensitive fluid to a surface, exposing said light-sensitive fluid to a light pattern so as to cause the fluid exposed to the light to polymerize into discrete units and adhere to the surface; and contacting each of the units with a set of different oligonucleotide molecules so as to allow the molecules to disperse into the units.
USDA-ARS?s Scientific Manuscript database
The molecular details of DNA aptamer-ricin interactions were investigated. The toxic protein ricin molecules were immobilized on Au(111) surface using N-hydroxysuccinimide (NHS) ester to specifically react with lysine residues located on the ricin B chains. A single ricin molecule was visualized in ...
Tumor suppressor molecules and methods of use
Welch, Peter J.; Barber, Jack R.
2004-09-07
The invention provides substantially pure tumor suppressor nucleic acid molecules and tumor suppressor polypeptides. The invention also provides hairpin ribozymes and antibodies selective for these tumor suppressor molecules. Also provided are methods of detecting a neoplastic cell in a sample using detectable agents specific for the tumor suppressor nucleic acids and polypeptides.
NADPH oxidases (NOXes) and reactive oxygen in viral infections, with emphasis on influenza
USDA-ARS?s Scientific Manuscript database
The body makes highly reactive molecules, at times as a by-product of other processes, but also sometimes intentionally. This book chapter reviews both the generation of these molecules and how the molecules can impact viral infections. There is a specific focus on influenza virus infections....
Lilienthal, Nils; Lohmann, Gregor; Crispatzu, Giuliano; Vasyutina, Elena; Zittrich, Stefan; Mayer, Petra; Herling, Carmen Diana; Tur, Mehmet Kemal; Hallek, Michael; Pfitzer, Gabriele; Barth, Stefan; Herling, Marco
2016-05-01
The serine/threonine death-associated protein kinases (DAPK) provide pro-death signals in response to (oncogenic) cellular stresses. Lost DAPK expression due to (epi)genetic silencing is found in a broad spectrum of cancers. Within B-cell lymphomas, deficiency of the prototypic family member DAPK1 represents a predisposing or early tumorigenic lesion and high-frequency promoter methylation marks more aggressive diseases. On the basis of protein studies and meta-analyzed gene expression profiling data, we show here that within the low-level context of B-lymphocytic DAPK, particularly CLL cells have lost DAPK1 expression. To target this potential vulnerability, we conceptualized B-cell-specific cytotoxic reconstitution of the DAPK1 tumor suppressor in the format of an immunokinase. After rounds of selections for its most potent cytolytic moiety and optimal ligand part, a DK1KD-SGIII fusion protein containing a constitutive DAPK1 mutant, DK1KD, linked to the scFv SGIII against the B-cell-exclusive endocytic glyco-receptor CD22 was created. Its high purity and large-scale recombinant production provided a stable, selectively binding, and efficiently internalizing construct with preserved robust catalytic activity. DK1KD-SGIII specifically and efficiently killed CD22-positive cells of lymphoma lines and primary CLL samples, sparing healthy donor- or CLL patient-derived non-B cells. The mode of cell death was predominantly PARP-mediated and caspase-dependent conventional apoptosis as well as triggering of an autophagic program. The notoriously high apoptotic threshold of CLL could be overcome by DK1KD-SGIII in vitro also in cases with poor prognostic features, such as therapy resistance. The manufacturing feasibility of the novel CD22-targeting DAPK immunokinase and its selective antileukemic efficiency encourage intensified studies towards specific clinical application. Mol Cancer Ther; 15(5); 971-84. ©2016 AACR. ©2016 American Association for Cancer Research.
NASA Astrophysics Data System (ADS)
Lerner, Mitchell; Dailey, Jennifer; Goldsmith, Brett; Robinson, Matthew; Johnson, A. T. Charlie
2011-03-01
We have developed a novel detection method for osteopontin (OPN) by attaching an engineered single chain variable fragment (scFv) protein with high binding affinity for OPN to a carbon nanotube transistor. Osteopontin is a potential new biomarker for prostate cancer; its presence in humans is already associated with several forms of cancer, arthritis, osteoporosis and stress. Prostate cancer is the most commonly diagnosed cancer and second leading cause of cancer deaths among American men and as such represents a major public health issue. Detection of early-stage cancer often results in successful treatment, with long term disease-free survival in 60-90% of patients. Electronic transport measurements are used to detect the presence of OPN in solution at clinically relevant concentrations.
A versatile targeting system with lentiviral vectors bearing the biotin-adaptor peptide
Morizono, Kouki; Xie, Yiming; Helguera, Gustavo; Daniels, Tracy R.; Lane, Timothy F.; Penichet, Manuel L.; Chen, Irvin S. Y.
2010-01-01
Background Targeted gene transduction in vivo is the ultimate preferred method for gene delivery. We previously developed targeting lentiviral vectors that specifically recognize cell surface molecules with conjugated antibodies and mediate targeted gene transduction both in vitro and in vivo. Although effective in some experimental settings, the conjugation of virus with antibodies is mediated by the interaction between protein A and the Fc region of antibodies, which is not as stable as covalent conjugation. We have now developed a more stable conjugation strategy utilizing the interaction between avidin and biotin. Methods We inserted the biotin-adaptor-peptide, which was biotinylated by secretory biotin ligase at specific sites, into our targeting envelope proteins, enabling conjugation of the pseudotyped virus with avidin, streptavidin or neutravidin. Results When conjugated with avidin-antibody fusion proteins or the complex of avidin and biotinylated targeting molecules, the vectors could mediate specific transduction to targeted cells recognized by the targeting molecules. When conjugated with streptavidin-coated magnetic beads, transduction by the vectors was targeted to the locations of magnets. Conclusions This targeting vector system can be used for broad applications of targeted gene transduction using biotinylated targeting molecules or targeting molecules fused with avidin. PMID:19455593
NASA Astrophysics Data System (ADS)
Di Lella, Santiago; Petruk, Ariel A.; Armiño, Diego J. Alonso de; Álvarez, Rosa M. S.
2010-08-01
Water molecules, rigidly associated to protein surfaces, play a key role in stabilizing biomolecules and participating in their biological functions. Recent studies on the solvation properties of the carbohydrate recognition domain of Galectin-1 by means of molecular dynamic simulations have revealed the existence of several water sites which were well correlated to both the bound water molecules observed in the crystal structure of the protein in the free state and to some of the hydroxyl groups of the carbohydrate ligand observed in the crystal structure of the complexed protein. In this work, we present a study using quantum mechanical methods (B3LYP/6-311++G(3df,3dp)//B3LYP/6-31+G(d)) to determine the energy involved in the binding of these water molecules to specific amino acids in the carbohydrate recognition domain of the protein. By modeling the hydroxyl groups of the carbohydrate by methanol, the energies associated to the local interactions between the ligand and the protein have been evaluated by replacing specific water molecules with methanol. The values of the binding energies have been compared to those previously obtained by the molecular dynamic method.
Dreyfus, David H; Tompkins, S Mark; Fuleihan, Ramsay; Ghoda, Lucy Y
2007-01-01
Respiratory diseases provide an attractive target for gene silencing using small nucleic acids since the respiratory epithelium can be reached by inhalation therapy. Natural surfactant appears to facilitate the uptake and distribution of these types of molecules making aerosolized nucleic acids a possible new class of therapeutics. This article will review the rationale for the use of External Guide Sequence (EGS) in targeting specific mRNA molecules for RNase P-mediated intracellular destruction. Specific destruction of target mRNA results in gene-specific silencing similar to that instigated by siRNA via the RISC complex. The application of EGS molecules specific for influenza genes are discussed as well as the potential for synergy with siRNA. Furthermore, EGS could be adapted to target other respiratory diseases of viral etiology as well as conditions such as asthma. PMID:19707312
In vitro selection of shape-changing DNA nanostructures capable of binding-induced cargo release.
Oh, Seung Soo; Plakos, Kory; Xiao, Yi; Eisenstein, Michael; Soh, H Tom
2013-11-26
Many biological systems employ allosteric regulatory mechanisms, which offer a powerful means of directly linking a specific binding event to a wide spectrum of molecular functionalities. There is considerable interest in generating synthetic allosteric regulators that can perform useful molecular functions for applications in diagnostics, imaging and targeted therapies, but generating such molecules through either rational design or directed evolution has proven exceptionally challenging. To address this need, we present an in vitro selection strategy for generating conformation-switching DNA nanostructures that selectively release a small-molecule payload in response to binding of a specific trigger molecule. As an exemplar, we have generated a DNA nanostructure that hybridizes with a separate 'cargo strand' containing an abasic site. This abasic site stably sequesters a fluorescent cargo molecule in an inactive state until the DNA nanostructure encounters an ATP trigger molecule. This ATP trigger causes the nanostructure to release the cargo strand, thereby liberating the fluorescent payload and generating a detectable fluorescent readout. Our DNA nanostructure is highly sensitive, with an EC50 of 30 μM, and highly specific, releasing its payload in response to ATP but not to other chemically similar nucleotide triphosphates. We believe that this selection approach could be generalized to generate synthetic nanostructures capable of selective and controlled release of other small-molecule cargos in response to a variety of triggers, for both research and clinical applications.
Karthigeyan, Dhanasekaran; Siddhanta, Soumik; Kishore, Annavarapu Hari; Perumal, Sathya S R R; Ågren, Hans; Sudevan, Surabhi; Bhat, Akshay V; Balasubramanyam, Karanam; Subbegowda, Rangappa Kanchugarakoppal; Kundu, Tapas K; Narayana, Chandrabhas
2014-07-22
We demonstrate the use of surface-enhanced Raman spectroscopy (SERS) as an excellent tool for identifying the binding site of small molecules on a therapeutically important protein. As an example, we show the specific binding of the common antihypertension drug felodipine to the oncogenic Aurora A kinase protein via hydrogen bonding interactions with Tyr-212 residue to specifically inhibit its activity. Based on SERS studies, molecular docking, molecular dynamics simulation, biochemical assays, and point mutation-based validation, we demonstrate the surface-binding mode of this molecule in two similar hydrophobic pockets in the Aurora A kinase. These binding pockets comprise the same unique hydrophobic patches that may aid in distinguishing human Aurora A versus human Aurora B kinase in vivo. The application of SERS to identify the specific interactions between small molecules and therapeutically important proteins by differentiating competitive and noncompetitive inhibition demonstrates its ability as a complementary technique. We also present felodipine as a specific inhibitor for oncogenic Aurora A kinase. Felodipine retards the rate of tumor progression in a xenografted nude mice model. This study reveals a potential surface pocket that may be useful for developing small molecules by selectively targeting the Aurora family kinases.
Generation of Gene-Engineered Chimeric DNA Molecules for Specific Therapy of Autoimmune Diseases
Gesheva, Vera; Szekeres, Zsuzsanna; Mihaylova, Nikolina; Dimitrova, Iliyana; Nikolova, Maria; Erdei, Anna; Prechl, Jozsef
2012-01-01
Abstract Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the development of self-reactive B and T cells and autoantibody production. In particular, double-stranded DNA-specific B cells play an important role in lupus progression, and their selective elimination is a reasonable approach for effective therapy of SLE. DNA-based vaccines aim at the induction of immune response against the vector-encoded antigen. Here, we are exploring, as a new DNA-based therapy of SLE, a chimeric DNA molecule encoding a DNA-mimotope peptide, and the Fv but not the immunogenic Fc fragment of an FcγRIIb-specific monoclonal antibody. This DNA construct was inserted in the expression vector pNut and used as a naked DNA vaccine in a mouse model of lupus. The chimeric DNA molecule can be expressed in eukaryotic cells and cross-links cell surface receptors on DNA-specific B cells, delivering an inhibitory intracellular signal. Intramuscular administration of the recombinant DNA molecule to lupus-prone MRL/lpr mice prevented increase in IgG anti-DNA antibodies and was associated with a low degree of proteinuria, modulation of cytokine profile, and suppression of lupus nephritis. PMID:23075110
Nielsen, Morten; Justesen, Sune; Lund, Ole; Lundegaard, Claus; Buus, Søren
2010-11-13
Binding of peptides to Major Histocompatibility class II (MHC-II) molecules play a central role in governing responses of the adaptive immune system. MHC-II molecules sample peptides from the extracellular space allowing the immune system to detect the presence of foreign microbes from this compartment. Predicting which peptides bind to an MHC-II molecule is therefore of pivotal importance for understanding the immune response and its effect on host-pathogen interactions. The experimental cost associated with characterizing the binding motif of an MHC-II molecule is significant and large efforts have therefore been placed in developing accurate computer methods capable of predicting this binding event. Prediction of peptide binding to MHC-II is complicated by the open binding cleft of the MHC-II molecule, allowing binding of peptides extending out of the binding groove. Moreover, the genes encoding the MHC molecules are immensely diverse leading to a large set of different MHC molecules each potentially binding a unique set of peptides. Characterizing each MHC-II molecule using peptide-screening binding assays is hence not a viable option. Here, we present an MHC-II binding prediction algorithm aiming at dealing with these challenges. The method is a pan-specific version of the earlier published allele-specific NN-align algorithm and does not require any pre-alignment of the input data. This allows the method to benefit also from information from alleles covered by limited binding data. The method is evaluated on a large and diverse set of benchmark data, and is shown to significantly out-perform state-of-the-art MHC-II prediction methods. In particular, the method is found to boost the performance for alleles characterized by limited binding data where conventional allele-specific methods tend to achieve poor prediction accuracy. The method thus shows great potential for efficient boosting the accuracy of MHC-II binding prediction, as accurate predictions can be obtained for novel alleles at highly reduced experimental costs. Pan-specific binding predictions can be obtained for all alleles with know protein sequence and the method can benefit by including data in the training from alleles even where only few binders are known. The method and benchmark data are available at http://www.cbs.dtu.dk/services/NetMHCIIpan-2.0.
Genetics Home Reference: generalized arterial calcification of infancy
... helps break down a molecule called adenosine triphosphate (ATP), specifically when it is found outside the cell (extracellular). Extracellular ATP is quickly broken down into other molecules called ...
Hitting the sweet spot-glycans as targets of fungal defense effector proteins.
Künzler, Markus
2015-05-06
Organisms which rely solely on innate defense systems must combat a large number of antagonists with a comparably low number of defense effector molecules. As one solution of this problem, these organisms have evolved effector molecules targeting epitopes that are conserved between different antagonists of a specific taxon or, if possible, even of different taxa. In order to restrict the activity of the defense effector molecules to physiologically relevant taxa, these target epitopes should, on the other hand, be taxon-specific and easily accessible. Glycans fulfill all these requirements and are therefore a preferred target of defense effector molecules, in particular defense proteins. Here, we review this defense strategy using the example of the defense system of multicellular (filamentous) fungi against microbial competitors and animal predators.
Woo Kim, Hyun; Rhee, Young Min
2012-07-30
Recently, many polarizable force fields have been devised to describe induction effects between molecules. In popular polarizable models based on induced dipole moments, atomic polarizabilities are the essential parameters and should be derived carefully. Here, we present a parameterization scheme for atomic polarizabilities using a minimization target function containing both molecular and atomic information. The main idea is to adopt reference data only from quantum chemical calculations, to perform atomic polarizability parameterizations even when relevant experimental data are scarce as in the case of electronically excited molecules. Specifically, our scheme assigns the atomic polarizabilities of any given molecule in such a way that its molecular polarizability tensor is well reproduced. We show that our scheme successfully works for various molecules in mimicking dipole responses not only in ground states but also in valence excited states. The electrostatic potential around a molecule with an externally perturbing nearby charge also exhibits a near-quantitative agreement with the reference data from quantum chemical calculations. The limitation of the model with isotropic atoms is also discussed to examine the scope of its applicability. Copyright © 2012 Wiley Periodicals, Inc.
Dressman, Devin; Yan, Hai; Traverso, Giovanni; Kinzler, Kenneth W.; Vogelstein, Bert
2003-01-01
Many areas of biomedical research depend on the analysis of uncommon variations in individual genes or transcripts. Here we describe a method that can quantify such variation at a scale and ease heretofore unattainable. Each DNA molecule in a collection of such molecules is converted into a single magnetic particle to which thousands of copies of DNA identical in sequence to the original are bound. This population of beads then corresponds to a one-to-one representation of the starting DNA molecules. Variation within the original population of DNA molecules can then be simply assessed by counting fluorescently labeled particles via flow cytometry. This approach is called BEAMing on the basis of four of its principal components (beads, emulsion, amplification, and magnetics). Millions of individual DNA molecules can be assessed in this fashion with standard laboratory equipment. Moreover, specific variants can be isolated by flow sorting and used for further experimentation. BEAMing can be used for the identification and quantification of rare mutations as well as to study variations in gene sequences or transcripts in specific populations or tissues. PMID:12857956
Magnetic Trapping and Coherent Control of Laser-Cooled Molecules
NASA Astrophysics Data System (ADS)
Williams, H. J.; Caldwell, L.; Fitch, N. J.; Truppe, S.; Rodewald, J.; Hinds, E. A.; Sauer, B. E.; Tarbutt, M. R.
2018-04-01
We demonstrate coherent microwave control of the rotational, hyperfine, and Zeeman states of ultracold CaF molecules, and the magnetic trapping of these molecules in a single, selectable quantum state. We trap about 5 ×103 molecules for almost 2 s at a temperature of 70 (8 ) μ K and a density of 1.2 ×105 cm-3. We measure the state-specific loss rate due to collisions with background helium.
Roterman, I; KrUl, M; Nowak, M; Konieczny, L; Rybarska, J; Stopa, B; Piekarska, B; Zemanek, G
2001-01-01
The complexing of Congo red in two different ligand forms - unimolecular and supramolecular (seven molecules in a micelle) - with eight deca-peptides organized in a b-sheet was tested by computational analysis to identify its dye-binding preferences. Polyphenylananine and polylysine peptides were selected to represent the specific side chain interactions expected to ensure particularly the stabilization of the dye-protein complex. Polyalanine was used to verify the participation of non-specific backbone-derived interactions. The initial complexes for calculation were constructed by intercalating the dye between the peptides in the middle of the beta-sheet. The long axis of the dye molecule (in the case of unimolecular systems) or the long axis of the ribbon-like micelle (in the case of the supramolecular dye form) was oriented parallel to the peptide backbone. This positioning maximally reduced the exposure of the hydrophobic diphenyl (central dye fragment) to water. In general the complexes of supramolecular Congo red ligands appeared more stable than those formed by individual dye molecules. Specific interactions (electrostatic and/or ring stacking) dominated as binding forces in the case of the single molecule, while non-specific surface adsorption seemed decisive in complexing with the supramolecular ligand. Both the unimolecular and supramolecular versions of the dye ligand were found to be likely to form complexes of sufficient stability with peptides. The low stability of the protein and the gap accessible to penetration in the peptide sheet seem sufficient for supramolecular ligand binding, but the presence of positively charged or hydrophobic amino acids may strengthen binding significantly. The need for specific interaction makes single-molecule Congo red binding rather unusual as a general amyloid protein ligand. The structural feature of Congo red, which enables specific and common interaction with amyloid proteins, probably derives from the ribbon-like self-assembled form of the dye.
Connexin Channel Permeability to Cytoplasmic Molecules
Harris, Andrew L.
2007-01-01
Connexin channels are known to be permeable to a variety of cytoplasmic molecules. The first observation of second messenger junctional permeability, made ∼30 years ago, sparked broad interest in gap junction channels as mediators of intercellular molecular signaling. Since then, much has been learned about the diversity of connexin channels with regard to isoform diversity, tissue and developmental distribution, modes of channel regulation, assembly and expression, biochemical modification and permeability, all of which appear to be dynamically regulated. This information has expanded the potential roles of connexin channels in development, physiology and disease, and made their elucidation much more complex - 30 years ago such an orchestra of junctional dynamics was unanticipated. Only recently, however, have investigators been able to directly address, in this more complex framework, the key issue: What specific biological molecules, second messengers and others, are able to permeate the various types of connexin channels, and how well? An important related issue, given the ever-growing list of connexin-related pathologies, is how these permeabilities are altered by disease-causing connexin mutations. Together, many studies show that a variety of cytoplasmic molecules can permeate the different types of connexin channels. A few studies reveal differences in permeation by different molecules through a particular type of connexin channel, and differences in permeation by a particular molecule through different types of connexin channels. This article describes and evaluates the various methods used to obtain these data, presents an annotated compilation of the results, and discusses the findings in the context of what can be inferred about mechanism of selectivity and potential relevance to signaling. The data strongly suggest that highly specific interactions take place between connexin pores and specific biological molecular permeants, and that those interactions determine which cytoplasmic molecules can permeate and how well. At this time, the nature of those interactions is unclear. One hopes that with more detailed permeability and structural information, the specific molecular mechanisms of the selectivity can be elucidated. PMID:17470375
Selb, Regina; Eckl-Dorna, Julia; Neunkirchner, Alina; Schmetterer, Klaus; Marth, Katharina; Gamper, Jutta; Jahn-Schmid, Beatrice; Pickl, Winfried F; Valenta, Rudolf; Niederberger, Verena
2017-01-01
Increasing evidence suggests that the low-affinity receptor for IgE, CD23, plays an important role in controlling the activity of allergen-specific T cells through IgE-facilitated allergen presentation. We sought to determine the number of CD23 molecules on immune cells in allergic patients and to investigate whether the number of CD23 molecules on antigen-presenting cells is associated with IgE levels and influences allergen uptake and allergen-specific T-cell activation. Numbers of CD23 molecules on immune cells of allergic patients were quantified by using flow cytometry with QuantiBRITE beads and compared with total and allergen-specific IgE levels, as well as with allergen-induced immediate skin reactivity. Allergen uptake and allergen-specific T-cell activation in relation to CD23 surface density were determined by using flow cytometry in combination with confocal microscopy and T cells transfected with the T-cell receptor specific for the birch pollen allergen Bet v 1, respectively. Defined IgE-allergen immune complexes were formed with human monoclonal allergen-specific IgE and Bet v 1. In allergic patients the vast majority of CD23 molecules were expressed on naive IgD + B cells. The density of CD23 molecules on B cells but not the number of CD23 + cells correlated with total IgE levels (R S = 0.53, P = .03) and allergen-induced skin reactions (R S = 0.63, P = .008). Uptake of allergen-IgE complexes into B cells and activation of allergen-specific T cells depended on IgE binding to CD23 and were associated with CD23 surface density. Addition of monoclonal IgE to cultured PBMCs significantly (P = .04) increased CD23 expression on B cells. CD23 surface density on B cells of allergic patients is correlated with allergen-specific IgE levels and determines allergen uptake and subsequent activation of T cells. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Sioud, Mouldy; Westby, Phuong; Vasovic, Vlada; Fløisand, Yngvar; Peng, Qian
2018-04-16
mAbs have emerged as a promising strategy for the treatment of cancer. However, in several malignancies, no effective antitumor mAbs are yet available. Identifying therapeutic mAbs that recognize common tumor antigens could render the treatment widely applicable. Here, a human single-chain variable fragment (scFv) antibody library was sequentially affinity selected against a panel of human cancer cell lines and an antibody fragment (named MS5) that bound to solid and blood cancer cells was identified. The MS5 scFv was fused to the human IgG1 Fc domain to generate an antibody (MS5-Fc fusion) that induced antibody-dependent cellular cytotoxicity and phagocytosis of cancer cells by macrophages. In addition, the MS5-Fc antibody bound to primary leukemia cells and induced antibody-dependent cellular cytotoxicity. In the majority of analyzed cancer cells, the MS5-Fc antibody induced cell surface redistribution of the receptor complexes, but not internalization, thus maximizing the accessibility of the IgG1 Fc domain to immune effector cells. In vitro stability studies showed that the MS5-Fc antibody was stable after 6 d of incubation in human serum, retaining ∼60% of its initial intact form. After intravenous injections, the antibody localized into tumor tissues and inhibited the growth of 3 different human tumor xenografts (breast, lymphoma, and leukemia). These antitumor effects were associated with tumor infiltration by macrophages and NK cells. In the Ramos B-cell lymphoma xenograft model, the MS5-Fc antibody exhibited a comparable antitumor effect as rituximab, a chimeric anti-CD20 IgG1 mAb. These results indicate that human antibodies with pan-cancer abilities can be generated from phage display libraries, and that the engineered MS5-Fc antibody could be an attractive agent for further clinical investigation.-Sioud, M., Westby, P., Vasovic, V., Fløisand, Y., Peng, Q. Development of a new high-affinity human antibody with antitumor activity against solid and blood malignancies.
In situ magnetic separation of antibody fragments from Escherichia coli in complex media
2013-01-01
Background In situ magnetic separation (ISMS) has emerged as a powerful tool to overcome process constraints such as product degradation or inhibition of target production. In the present work, an integrated ISMS process was established for the production of his-tagged single chain fragment variable (scFv) D1.3 antibodies (“D1.3”) produced by E. coli in complex media. This study investigates the impact of ISMS on the overall product yield as well as its biocompatibility with the bioprocess when metal-chelate and triazine-functionalized magnetic beads were used. Results Both particle systems are well suited for separation of D1.3 during cultivation. While the triazine beads did not negatively impact the bioprocess, the application of metal-chelate particles caused leakage of divalent copper ions in the medium. After the ISMS step, elevated copper concentrations above 120 mg/L in the medium negatively influenced D1.3 production. Due to the stable nature of the model protein scFv D1.3 in the biosuspension, the application of ISMS could not increase the overall D1.3 yield as was shown by simulation and experiments. Conclusions We could demonstrate that triazine-functionalized beads are a suitable low-cost alternative to selectively adsorb D1.3 fragments, and measured maximum loads of 0.08 g D1.3 per g of beads. Although copper-loaded metal-chelate beads did adsorb his-tagged D1.3 well during cultivation, this particle system must be optimized by minimizing metal leakage from the beads in order to avoid negative inhibitory effects on growth of the microorganisms and target production. Hereby, other types of metal chelate complexes should be tested to demonstrate biocompatibility. Such optimized particle systems can be regarded as ISMS platform technology, especially for the production of antibodies and their fragments with low stability in the medium. The proposed model can be applied to design future ISMS experiments in order to maximize the overall product yield while the amount of particles being used is minimized as well as the number of required ISMS steps. PMID:23688064
Joshi, Priyanka; Chia, Sean; Habchi, Johnny; Knowles, Tuomas P J; Dobson, Christopher M; Vendruscolo, Michele
2016-03-14
The aggregation process of intrinsically disordered proteins (IDPs) has been associated with a wide range of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Currently, however, no drug in clinical use targets IDP aggregation. To facilitate drug discovery programs in this important and challenging area, we describe a fragment-based approach of generating small-molecule libraries that target specific IDPs. The method is based on the use of molecular fragments extracted from compounds reported in the literature to inhibit of the aggregation of IDPs. These fragments are used to screen existing large generic libraries of small molecules to form smaller libraries specific for given IDPs. We illustrate this approach by describing three distinct small-molecule libraries to target, Aβ, tau, and α-synuclein, which are three IDPs implicated in Alzheimer's and Parkinson's diseases. The strategy described here offers novel opportunities for the identification of effective molecular scaffolds for drug discovery for neurodegenerative disorders and to provide insights into the mechanism of small-molecule binding to IDPs.
Patrizio, Angela; Specht, Christian G.
2016-01-01
Abstract. The ability to count molecules is essential to elucidating cellular mechanisms, as these often depend on the absolute numbers and concentrations of molecules within specific compartments. Such is the case at chemical synapses, where the transmission of information from presynaptic to postsynaptic terminals requires complex interactions between small sets of molecules. Be it the subunit stoichiometry specifying neurotransmitter receptor properties, the copy numbers of scaffold proteins setting the limit of receptor accumulation at synapses, or protein packing densities shaping the molecular organization and plasticity of the postsynaptic density, all of these depend on exact quantities of components. A variety of proteomic, electrophysiological, and quantitative imaging techniques have yielded insights into the molecular composition of synaptic complexes. In this review, we compare the different quantitative approaches and consider the potential of single molecule imaging techniques for the quantification of synaptic components. We also discuss specific neurobiological data to contextualize the obtained numbers and to explain how they aid our understanding of synaptic structure and function. PMID:27335891
Patrizio, Angela; Specht, Christian G
2016-10-01
The ability to count molecules is essential to elucidating cellular mechanisms, as these often depend on the absolute numbers and concentrations of molecules within specific compartments. Such is the case at chemical synapses, where the transmission of information from presynaptic to postsynaptic terminals requires complex interactions between small sets of molecules. Be it the subunit stoichiometry specifying neurotransmitter receptor properties, the copy numbers of scaffold proteins setting the limit of receptor accumulation at synapses, or protein packing densities shaping the molecular organization and plasticity of the postsynaptic density, all of these depend on exact quantities of components. A variety of proteomic, electrophysiological, and quantitative imaging techniques have yielded insights into the molecular composition of synaptic complexes. In this review, we compare the different quantitative approaches and consider the potential of single molecule imaging techniques for the quantification of synaptic components. We also discuss specific neurobiological data to contextualize the obtained numbers and to explain how they aid our understanding of synaptic structure and function.
Laskin, Julia [Richland, WA; Futrell, Jean H [Richland, WA
2008-04-29
The invention relates to a method and apparatus for enhanced sequencing of complex molecules using surface-induced dissociation (SID) in conjunction with mass spectrometric analysis. Results demonstrate formation of a wide distribution of structure-specific fragments having wide sequence coverage useful for sequencing and identifying the complex molecules.
Adamec, Jiri; Yang, Wen-Chu; Regnier, Fred E
2014-01-14
Reagents and methods are provided that permit simultaneous analysis of multiple diverse small molecule analytes present in a complex mixture. Samples are labeled with chemically identical but isotopically distince forms of the labeling reagent, and analyzed using mass spectrometry. A single reagent simultaneously derivatizes multiple small molecule analytes having different reactive functional groups.
Sarkar, S; Kanchibotla, B; Nelson, J D; Edwards, J D; Anderson, J; Tepper, G C; Bandyopadhyay, S
2014-10-08
The fluorescence of organic fluorophore molecules is enhanced when they are placed in contact with certain metals (Al, Ag, Cu, Au, etc.) whose surface plasmon waves couple into the radiative modes of the molecules and increase the radiative efficiency. Here, we report a hitherto unknown size dependence of this metal-enhanced fluorescence (MEF) effect in the nanoscale. When the molecules are deposited in nanoporous anodic alumina films with exposed aluminum at the bottom of the pores, they form organic nanowires standing on aluminum nanoparticles whose plasmon waves have much larger amplitudes. This increases the MEF strongly, resulting in several orders of magnitude increase in the fluorescence intensity of the organic fluorophores. The increase in intensity shows an inverse superlinear dependence on nanowire diameter because the nanowires also act as plasmonic "waveguides" that concentrate the plasmons and increase the coupling of the plasmons with the radiative modes of the molecules. Furthermore, if the nanoporous template housing the nanowires has built-in electric fields due to space charges, a strong molecule-specific red- or blue-shift is induced in the fluorescence peak owing to a renormalization of the dipole moment of the molecule. This can be exploited to detect minute amounts of target molecules in a mixture using their optical signature (fluorescence) despite the presence of confounding background signals. It can result in a unique new technology for biosensing and chemical sensing.
Phelps, Carey; Israels, Brett; Marsh, Morgan C; von Hippel, Peter H; Marcus, Andrew H
2016-12-29
Recent advances in single-molecule fluorescence imaging have made it possible to perform measurements on microsecond time scales. Such experiments have the potential to reveal detailed information about the conformational changes in biological macromolecules, including the reaction pathways and dynamics of the rearrangements involved in processes, such as sequence-specific DNA "breathing" and the assembly of protein-nucleic acid complexes. Because microsecond-resolved single-molecule trajectories often involve "sparse" data, that is, they contain relatively few data points per unit time, they cannot be easily analyzed using the standard protocols that were developed for single-molecule experiments carried out with tens-of-millisecond time resolution and high "data density." Here, we describe a generalized approach, based on time-correlation functions, to obtain kinetic information from microsecond-resolved single-molecule fluorescence measurements. This approach can be used to identify short-lived intermediates that lie on reaction pathways connecting relatively long-lived reactant and product states. As a concrete illustration of the potential of this methodology for analyzing specific macromolecular systems, we accompany the theoretical presentation with the description of a specific biologically relevant example drawn from studies of reaction mechanisms of the assembly of the single-stranded DNA binding protein of the T4 bacteriophage replication complex onto a model DNA replication fork.
RNase H-assisted RNA-primed rolling circle amplification for targeted RNA sequence detection.
Takahashi, Hirokazu; Ohkawachi, Masahiko; Horio, Kyohei; Kobori, Toshiro; Aki, Tsunehiro; Matsumura, Yukihiko; Nakashimada, Yutaka; Okamura, Yoshiko
2018-05-17
RNA-primed rolling circle amplification (RPRCA) is a useful laboratory method for RNA detection; however, the detection of RNA is limited by the lack of information on 3'-terminal sequences. We uncovered that conventional RPRCA using pre-circularized probes could potentially detect the internal sequence of target RNA molecules in combination with RNase H. However, the specificity for mRNA detection was low, presumably due to non-specific hybridization of non-target RNA with the circular probe. To overcome this technical problem, we developed a method for detecting a sequence of interest in target RNA molecules via RNase H-assisted RPRCA using padlocked probes. When padlock probes are hybridized to the target RNA molecule, they are converted to the circular form by SplintR ligase. Subsequently, RNase H creates nick sites only in the hybridized RNA sequence, and single-stranded DNA is finally synthesized from the nick site by phi29 DNA polymerase. This method could specifically detect at least 10 fmol of the target RNA molecule without reverse transcription. Moreover, this method detected GFP mRNA present in 10 ng of total RNA isolated from Escherichia coli without background DNA amplification. Therefore, this method can potentially detect almost all types of RNA molecules without reverse transcription and reveal full-length sequence information.
A family of tissue-specific resistin-like molecules
Steppan, Claire M.; Brown, Elizabeth J.; Wright, Christopher M.; Bhat, Savitha; Banerjee, Ronadip R.; Dai, Charlotte Y.; Enders, Gregory H.; Silberg, Debra G.; Wen, Xiaoming; Wu, Gary D.; Lazar, Mitchell A.
2001-01-01
We have identified a family of resistin-like molecules (RELMs) in rodents and humans. Resistin is a hormone produced by fat cells. RELMα is a secreted protein that has a restricted tissue distribution with highest levels in adipose tissue. Another family member, RELMβ, is a secreted protein expressed only in the gastrointestinal tract, particularly the colon, in both mouse and human. RELMβ gene expression is highest in proliferative epithelial cells and is markedly increased in tumors, suggesting a role in intestinal proliferation. Resistin and the RELMs share a cysteine composition and other signature features. Thus, the RELMs together with resistin comprise a class of tissue-specific signaling molecules. PMID:11209052
A family of tissue-specific resistin-like molecules.
Steppan, C M; Brown, E J; Wright, C M; Bhat, S; Banerjee, R R; Dai, C Y; Enders, G H; Silberg, D G; Wen, X; Wu, G D; Lazar, M A
2001-01-16
We have identified a family of resistin-like molecules (RELMs) in rodents and humans. Resistin is a hormone produced by fat cells. RELMalpha is a secreted protein that has a restricted tissue distribution with highest levels in adipose tissue. Another family member, RELMbeta, is a secreted protein expressed only in the gastrointestinal tract, particularly the colon, in both mouse and human. RELMbeta gene expression is highest in proliferative epithelial cells and is markedly increased in tumors, suggesting a role in intestinal proliferation. Resistin and the RELMs share a cysteine composition and other signature features. Thus, the RELMs together with resistin comprise a class of tissue-specific signaling molecules.
Single molecule optical measurements of orientation and rotations of biological macromolecules.
Shroder, Deborah Y; Lippert, Lisa G; Goldman, Yale E
2016-11-22
Subdomains of macromolecules often undergo large orientation changes during their catalytic cycles that are essential for their activity. Tracking these rearrangements in real time opens a powerful window into the link between protein structure and functional output. Site-specific labeling of individual molecules with polarized optical probes and measurement of their spatial orientation can give insight into the crucial conformational changes, dynamics, and fluctuations of macromolecules. Here we describe the range of single molecule optical technologies that can extract orientation information from these probes, review the relevant types of probes and labeling techniques, and highlight the advantages and disadvantages of these technologies for addressing specific inquiries.
Chondroitin sulfates and their binding molecules in the central nervous system.
Djerbal, L; Lortat-Jacob, H; Kwok, Jcf
2017-06-01
Chondroitin sulfate (CS) is the most abundant glycosaminoglycan (GAG) in the central nervous system (CNS) matrix. Its sulfation and epimerization patterns give rise to different forms of CS, which enables it to interact specifically and with a significant affinity with various signalling molecules in the matrix including growth factors, receptors and guidance molecules. These interactions control numerous biological and pathological processes, during development and in adulthood. In this review, we describe the specific interactions of different families of proteins involved in various physiological and cognitive mechanisms with CSs in CNS matrix. A better understanding of these interactions could promote a development of inhibitors to treat neurodegenerative diseases.
Uhlemann, Thomas; Seidel, Sebastian; Müller, Christian W
2018-03-07
To determine the preferred water molecule binding sites of the polybasic sulfa drugs sulfamethoxazole (SMX) and sulfisoxazole (SIX), we have studied their monomers and monohydrated complexes through laser-desorption conformer-specific UV and IR spectroscopy. Both the SMX and SIX monomer adopt a single conformer in the molecular beam. On the basis of their conformer-specific IR spectra in the NH stretch region, these conformers were assigned to the SMX and SIX global minimum structures, both exhibiting a staggered sulfonamide group and an intramolecular C-HO[double bond, length as m-dash]S hydrogen bond. The SMX-H 2 O and SIX-H 2 O complexes each adopt a single isomer in the molecular beam. Their isomeric structures were determined based on their isomer-specific IR spectra in the NH/OH stretch region. Quantum Theory of Atoms in Molecules analysis of the calculated electron densities revealed that in the SMX-H 2 O complex the water molecule donates an O-HN hydrogen bond to the heterocycle nitrogen atom and accepts an N-HO hydrogen bond from the sulfonamide NH group. In the SIX-H 2 O complex, however, the water molecule does not bind to the heterocycle but instead donates an O-HO[double bond, length as m-dash]S hydrogen bond to the sulfonamide group and accepts an N-HO hydrogen bond from the sulfonamide NH group. Both water complexes are additionally stabilized by a C ph -HOH 2 hydrogen bond. Interacting Quantum Atoms analysis suggests that all intermolecular hydrogen bonds are dominated by the short-range exchange-correlation contribution.
Future perspectives in target-specific immunotherapies of myasthenia gravis
Dalakas, Marinos C.
2015-01-01
Myasthenia gravis (MG) is an autoimmune disease caused by complement-fixing antibodies against acetylcholine receptors (AChR); antigen-specific CD4+ T cells, regulatory T cells (Tregs) and T helper (Th) 17+ cells are essential in antibody production. Target-specific therapeutic interventions should therefore be directed against antibodies, B cells, complement and molecules associated with T cell signaling. Even though the progress in the immunopathogenesis of the disease probably exceeds any other autoimmune disorder, MG is still treated with traditional drugs or procedures that exert a non-antigen specific immunosuppression or immunomodulation. Novel biological agents currently on the market, directed against the following molecular pathways, are relevant and specific therapeutic targets that can be tested in MG: (a) T cell intracellular signaling molecules, such as anti-CD52, anti-interleukin (IL) 2 receptors, anti- costimulatory molecules, and anti-Janus tyrosine kinases (JAK1, JAK3) that block the intracellular cascade associated with T-cell activation; (b) B cells and their trophic factors, directed against key B-cell molecules; (c) complement C3 or C5, intercepting the destructive effect of complement-fixing antibodies; (d) cytokines and cytokine receptors, such as those targeting IL-6 which promotes antibody production and IL-17, or the p40 subunit of IL-12/1L-23 that affect regulatory T cells; and (e) T and B cell transmigration molecules associated with lymphocyte egress from the lymphoid organs. All drugs against these molecular pathways require testing in controlled trials, although some have already been tried in small case series. Construction of recombinant AChR antibodies that block binding of the pathogenic antibodies, thereby eliminating complement and antibody-depended-cell-mediated cytotoxicity, are additional novel molecular tools that require exploration in experimental MG. PMID:26600875
Small-molecule control of protein function through Staudinger reduction
NASA Astrophysics Data System (ADS)
Luo, Ji; Liu, Qingyang; Morihiro, Kunihiko; Deiters, Alexander
2016-11-01
Using small molecules to control the function of proteins in live cells with complete specificity is highly desirable, but challenging. Here we report a small-molecule switch that can be used to control protein activity. The approach uses a phosphine-mediated Staudinger reduction to activate protein function. Genetic encoding of an ortho-azidobenzyloxycarbonyl amino acid using a pyrrolysyl transfer RNA synthetase/tRNACUA pair in mammalian cells enables the site-specific introduction of a small-molecule-removable protecting group into the protein of interest. Strategic placement of this group renders the protein inactive until deprotection through a bioorthogonal Staudinger reduction delivers the active wild-type protein. This developed methodology was applied to the conditional control of several cellular processes, including bioluminescence (luciferase), fluorescence (enhanced green fluorescent protein), protein translocation (nuclear localization sequence), DNA recombination (Cre) and gene editing (Cas9).
Surfactant-free Colloidal Particles with Specific Binding Affinity
2017-01-01
Colloidal particles with specific binding affinity are essential for in vivo and in vitro biosensing, targeted drug delivery, and micrometer-scale self-assembly. Key to these techniques are surface functionalizations that provide high affinities to specific target molecules. For stabilization in physiological environments, current particle coating methods rely on adsorbed surfactants. However, spontaneous desorption of these surfactants typically has an undesirable influence on lipid membranes. To address this issue and create particles for targeting molecules in lipid membranes, we present here a surfactant-free coating method that combines high binding affinity with stability at physiological conditions. After activating charge-stabilized polystyrene microparticles with EDC/Sulfo-NHS, we first coat the particles with a specific protein and subsequently covalently attach a dense layer of poly(ethyelene) glycol. This polymer layer provides colloidal stability at physiological conditions as well as antiadhesive properties, while the protein coating provides the specific affinity to the targeted molecule. We show that NeutrAvidin-functionalized particles bind specifically to biotinylated membranes and that Concanavalin A-functionalized particles bind specifically to the glycocortex of Dictyostelium discoideum cells. The affinity of the particles changes with protein density, which can be tuned during the coating procedure. The generic and surfactant-free coating method reported here transfers the high affinity and specificity of a protein onto colloidal polystyrene microparticles. PMID:28847149
Sun, Shiyu; Zhao, Guangxu; Huang, Yibing; Cai, Mingjun; Shan, Yuping; Wang, Hongda; Chen, Yuxin
2016-07-01
In this study, to systematically investigate the targeting specificity of membrane-active peptides on different types of cell membranes, we evaluated the effects of peptides on different large unilamellar vesicles mimicking prokaryotic, normal eukaryotic, and cancer cell membranes by single-molecule force spectroscopy and spectrum technology. We revealed that cationic membrane-active peptides can exclusively target negatively charged prokaryotic and cancer cell model membranes rather than normal eukaryotic cell model membranes. Using Acholeplasma laidlawii, 3T3-L1, and HeLa cells to represent prokaryotic cells, normal eukaryotic cells, and cancer cells in atomic force microscopy experiments, respectively, we further studied that the single-molecule targeting interaction between peptides and biological membranes. Antimicrobial and anticancer activities of peptides exhibited strong correlations with the interaction probability determined by single-molecule force spectroscopy, which illustrates strong correlations of peptide biological activities and peptide hydrophobicity and charge. Peptide specificity significantly depends on the lipid compositions of different cell membranes, which validates the de novo design of peptide therapeutics against bacteria and cancers.
Kokla, Anna; Blouchos, Petros; Livaniou, Evangelia; Zikos, Christos; Kakabakos, Sotiris E; Petrou, Panagiota S; Kintzios, Spyridon
2013-12-01
Membrane engineering is a generic methodology for increasing the selectivity of a cell biosensor against a target molecule, by electroinserting target-specific receptor-like molecules on the cell surface. Previous studies have elucidated the biochemical aspects of the interaction between various analytes (including viruses) and their homologous membrane-engineered cells. In the present study, purified anti-biotin antibodies from a rabbit antiserum along with in-house prepared biotinylated bovine serum albumin (BSA) were used as a model antibody-antigen pair of molecules for facilitating membrane engineering experiments. It was proven, with the aid of fluorescence microscopy, that (i) membrane-engineered cells incorporated the specific antibodies in the correct orientation and that (ii) the inserted antibodies are selectively interacting with the homologous target molecules. This is the first time the actual working concept of membrane engineering has been visualized, thus providing a final proof of the concept behind this innovative process. In addition, the fluorescence microscopy measurements were highly correlated with bioelectric measurements done with the aid of a bioelectric recognition assay. Copyright © 2013 John Wiley & Sons, Ltd.
Kong, Muwen; Beckwitt, Emily C; Springall, Luke; Kad, Neil M; Van Houten, Bennett
2017-01-01
Single-molecule approaches to solving biophysical problems are powerful tools that allow static and dynamic real-time observations of specific molecular interactions of interest in the absence of ensemble-averaging effects. Here, we provide detailed protocols for building an experimental system that employs atomic force microscopy and a single-molecule DNA tightrope assay based on oblique angle illumination fluorescence microscopy. Together with approaches for engineering site-specific lesions into DNA substrates, these complementary biophysical techniques are well suited for investigating protein-DNA interactions that involve target-specific DNA-binding proteins, such as those engaged in a variety of DNA repair pathways. In this chapter, we demonstrate the utility of the platform by applying these techniques in the studies of proteins participating in nucleotide excision repair. © 2017 Elsevier Inc. All rights reserved.
Analysis of the biological activity of antilymphocyte serum
Perper, R. J.; Monovich, R. E.; Van Gorder, T. J.
1971-01-01
Two IgG subfractions of horse antilymphocyte serum (ALS) were obtained by DEAE Sephadex chromatography. Although the fractions did not differ antigenically, they differed on amino acid and carbohydrate analysis, and in electrophoretic mobility. As demonstrated by binding studies, only the most positively charged population of IgG molecules (fraction 1) obtained from anti-lymphocyte serum had specificity for the small lymphocyte; 50 per cent of the molecules in this population bound specifically to lymphocytes in vitro. As determined by an in vitro correlate of immunosuppressive potency (rosette inhibition), fraction 1 (F1) IgG from ALS contained approximately 4 times the specific activity of fraction 2 (F2). F1 was significantly more effective in prolonging skin graft survival than F2, whereas F2 contained the major component of the non-specific anti-inflammatory activity of serum. The anti-inflammatory effect was mediated by anticomplement activity. F2 was found to be an effective inhibitor of the immunosuppressive activity of F1 both in vivo and in vitro. Quantitative studies indicated that 1 part of F2 could maximally inhibit 4 parts of F1. The percentage of F2 present in serum IgG was inversely related to the skin graft survival elicited by the serum, which indicated that F2 was active as an inhibitor when tested as purified fraction as well as in unfractionated serum. Following immunization when F1 gained immunosuppressive potency, it lost non-specific anti-inflammatory activity. These observations indicated that not only was there a quantitative, as well as a qualitative concentration of immunosuppressive antibodies in F1, but also that this activity was controlled by the concentration of F2. This report, therefore, describes an IgG control mechanism which can limit the expression of antibody induced biological activity. It is suggested that in ALS the immunosuppressive antibody molecules possess a greater net positive charge than the remaining population, and that this is due to the degree of the negative charge on the immunizing antigen. Using DEAE Sephadex chromatography, these populations could be separated into two differently charged populations of molecules, only one of which had significant immunosuppressive capability. This increase in activity resulted from the increase of specific molecules, the loss of non-specific molecules, and was manifest upon the removal of an IgG inhibitor. ImagesFIG. 1FIG. 2 PMID:4943146
Tsang, Julia Yuen-Shan; Tanriver, Yakup; Jiang, Shuiping; Xue, Shao-An; Ratnasothy, Kulachelvy; Chen, Daxin; Stauss, Hans J.; Bucy, R. Pat; Lombardi, Giovanna; Lechler, Robert
2008-01-01
T cell responses to MHC-mismatched transplants can be mediated via direct recognition of allogeneic MHC molecules on the cells of the transplant or via recognition of allogeneic peptides presented on the surface of recipient APCs in recipient MHC molecules — a process known as indirect recognition. As CD4+CD25+ Tregs play an important role in regulating alloresponses, we investigated whether mouse Tregs specific for allogeneic MHC molecules could be generated in vitro and could promote transplantation tolerance in immunocompetent recipient mice. Tregs able to directly recognize allogeneic MHC class II molecules (dTregs) were obtained by stimulating CD4+CD25+ cells from C57BL/6 mice (H-2b) with allogeneic DCs from BALB/c mice (H-2d). To generate Tregs that indirectly recognized allogeneic MHC class II molecules, dTregs were retrovirally transduced with TCR genes conferring specificity for H-2Kd presented by H-2Ab MHC class II molecules. The dual direct and indirect allospecificity of the TCR-transduced Tregs was confirmed in vitro. In mice, TCR-transduced Tregs, but not dTregs, induced long-term survival of partially MHC-mismatched heart grafts when combined with short-term adjunctive immunosuppression. Further, although dTregs were only slightly less effective than TCR-transduced Tregs at inducing long-term survival of fully MHC-mismatched heart grafts, histologic analysis of long-surviving hearts demonstrated marked superiority of the TCR-transduced Tregs. Thus, Tregs specific for allogeneic MHC class II molecules are effective in promoting transplantation tolerance in mice, which suggests that such cells have clinical potential. PMID:18846251
How chimeric antigen receptor design affects adoptive T cell therapy
Gacerez, Albert T.; Arellano, Benjamine; Sentman, Charles L.
2016-01-01
Chimeric antigen receptor (CAR) T cells have been developed to treat tumors and have shown great success against B cell malignancies. Exploiting modular designs and swappable domains, CARs can target an array of cell surface antigens and, upon receptor-ligand interactions, direct signaling cascades, thereby driving T cell effector functions. CARs have been designed using receptors, ligands, or scFv binding domains. Different regions of a CAR have each been found to play a role in determining the overall efficacy of CAR T cells. Therefore, this review provides an overview of CAR construction and common designs. Each CAR region is discussed in the context of its importance to a CAR’s function. Additionally, the review explores how various engineering strategies have been applied to CAR T cells in order to regulate CAR T cell function and activity. PMID:27163336
Kinetic Titration Series with Biolayer Interferometry
Frenzel, Daniel; Willbold, Dieter
2014-01-01
Biolayer interferometry is a method to analyze protein interactions in real-time. In this study, we illustrate the usefulness to quantitatively analyze high affinity protein ligand interactions employing a kinetic titration series for characterizing the interactions between two pairs of interaction patterns, in particular immunoglobulin G and protein G B1 as well as scFv IC16 and amyloid beta (1–42). Kinetic titration series are commonly used in surface plasmon resonance and involve sequential injections of analyte over a desired concentration range on a single ligand coated sensor chip without waiting for complete dissociation between the injections. We show that applying this method to biolayer interferometry is straightforward and i) circumvents problems in data evaluation caused by unavoidable sensor differences, ii) saves resources and iii) increases throughput if screening a multitude of different analyte/ligand combinations. PMID:25229647
Kinetic titration series with biolayer interferometry.
Frenzel, Daniel; Willbold, Dieter
2014-01-01
Biolayer interferometry is a method to analyze protein interactions in real-time. In this study, we illustrate the usefulness to quantitatively analyze high affinity protein ligand interactions employing a kinetic titration series for characterizing the interactions between two pairs of interaction patterns, in particular immunoglobulin G and protein G B1 as well as scFv IC16 and amyloid beta (1-42). Kinetic titration series are commonly used in surface plasmon resonance and involve sequential injections of analyte over a desired concentration range on a single ligand coated sensor chip without waiting for complete dissociation between the injections. We show that applying this method to biolayer interferometry is straightforward and i) circumvents problems in data evaluation caused by unavoidable sensor differences, ii) saves resources and iii) increases throughput if screening a multitude of different analyte/ligand combinations.
Notch signalling coordinates tissue growth and wing fate specification in Drosophila.
Rafel, Neus; Milán, Marco
2008-12-01
During the development of a given organ, tissue growth and fate specification are simultaneously controlled by the activity of a discrete number of signalling molecules. Here, we report that these two processes are extraordinarily coordinated in the Drosophila wing primordium, which extensively proliferates during larval development to give rise to the dorsal thoracic body wall and the adult wing. The developmental decision between wing and body wall is defined by the opposing activities of two secreted signalling molecules, Wingless and the EGF receptor ligand Vein. Notch signalling is involved in the determination of a variety of cell fates, including growth and cell survival. We present evidence that growth of the wing primordium mediated by the activity of Notch is required for wing fate specification. Our data indicate that tissue size modulates the activity range of the signalling molecules Wingless and Vein. These results highlight a crucial role of Notch in linking proliferation and fate specification in the developing wing primordium.
Pacchioni, Mirko; Cornia, Andrea; Fabretti, Antonio C; Zobbi, Laura; Bonacchi, Daniele; Caneschi, Andrea; Chastanet, Guillaume; Gatteschi, Dante; Sessoli, Roberta
2004-11-21
A novel single-molecule magnet of the Mn12 family, [Mn12O12(O2CC6H5)8(L)4(H2O)4].8CH2Cl2, has been synthesised by site-specific ligand exchange using a tailor-made dicarboxylate (L2-), which leads to selective occupation of axial binding sites.
Nanodevices for generating power from molecules and batteryless sensing
Wang, Yinmin; Wang, Xianying; Hamza, Alex V.
2017-01-03
A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter. A membrane permeable to certain molecules around the molecule interaction zone increases specific molecule nanosensor selectivity response.
Nanodevices for generating power from molecules and batteryless sensing
Wang, Yinmin; Wang, Xianying; Hamza, Alex V.
2015-06-09
A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter. A membrane permeable to certain molecules around the molecule interaction zone increases specific molecule nanosensor selectivity response.
Nanodevices for generating power from molecules and batteryless sensing
Wang, Yinmin; Wang, Xianying; Hamza, Alex V.
2014-07-15
A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter. A membrane permeable to certain molecules around the molecule interaction zone increases specific molecule nanosensor selectivity response.
Evidence for Nuclear Tensor Polarization of Deuterium Molecules in Storage Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
van den Brand, J.; Bulten, H.; Zhou, Z.
1997-02-01
Deuterium molecules were obtained by recombination, on a copper surface, of deuterium atoms prepared in specific hyperfine states. The molecules were stored for about 5ms in an open-ended cylindrical cell, placed in a 23mT magnetic field, and their tensor polarization was measured by elastic scattering of 704MeV electrons. The results of the measurements are consistent with the deuterium molecules retaining the tensor polarization of the initial atoms. {copyright} {ital 1997} {ital The American Physical Society}
ERIC Educational Resources Information Center
Gallup, G. A.
1988-01-01
Describes why specific forms of orbitals used to interpret spectroscopy involving electronic transitions may not say much about the electronic structure of molecules. Discusses several theoretical approaches to explain the anomoly. Determines that the Lewis electron-pair model for molecules is a good predictor of spectroscopic results. (ML)
The Virtual Museum of Minerals and Molecules: Molecular Visualization in a Virtual Hands-On Museum
ERIC Educational Resources Information Center
Barak, Phillip; Nater, Edward A.
2005-01-01
The Virtual Museum of Minerals and Molecules (VMMM) is a web-based resource presenting interactive, 3-D, research-grade molecular models of more than 150 minerals and molecules of interest to chemical, earth, plant, and environmental sciences. User interactivity with the 3-D display allows models to be rotated, zoomed, and specific regions of…