Linear-parameter-varying gain-scheduled control of aerospace systems
NASA Astrophysics Data System (ADS)
Barker, Jeffrey Michael
The dynamics of many aerospace systems vary significantly as a function of flight condition. Robust control provides methods of guaranteeing performance and stability goals across flight conditions. In mu-syntthesis, changes to the dynamical system are primarily treated as uncertainty. This method has been successfully applied to many control problems, and here is applied to flutter control. More recently, two techniques for generating robust gain-scheduled controller have been developed. Linear fractional transformation (LFT) gain-scheduled control is an extension of mu-synthesis in which the plant and controller are explicit functions of parameters measurable in real-time. This LFT gain-scheduled control technique is applied to the Benchmark Active Control Technology (BACT) wing, and compared with mu-synthesis control. Linear parameter-varying (LPV) gain-scheduled control is an extension of Hinfinity control to parameter varying systems. LPV gain-scheduled control directly incorporates bounds on the rate of change of the scheduling parameters, and often reduces conservatism inherent in LFT gain-scheduled control. Gain-scheduled LPV control of the BACT wing compares very favorably with the LFT controller. Gain-scheduled LPV controllers are generated for the lateral-directional and longitudinal axes of the Innovative Control Effectors (ICE) aircraft and implemented in nonlinear simulations and real-time piloted nonlinear simulations. Cooper-Harper and pilot-induced oscillation ratings were obtained for an initial design, a reference aircraft and a redesign. Piloted simulation results for the initial LPV gain-scheduled control of the ICE aircraft are compared with results for a conventional fighter aircraft in discrete pitch and roll angle tracking tasks. The results for the redesigned controller are significantly better than both the previous LPV controller and the conventional aircraft.
Expert system for on-board satellite scheduling and control
NASA Technical Reports Server (NTRS)
Barry, John M.; Sary, Charisse
1988-01-01
An Expert System is described which Rockwell Satellite and Space Electronics Division (S&SED) is developing to dynamically schedule the allocation of on-board satellite resources and activities. This expert system is the Satellite Controller. The resources to be scheduled include power, propellant and recording tape. The activities controlled include scheduling satellite functions such as sensor checkout and operation. The scheduling of these resources and activities is presently a labor intensive and time consuming ground operations task. Developing a schedule requires extensive knowledge of the system and subsystems operations, operational constraints, and satellite design and configuration. This scheduling process requires highly trained experts anywhere from several hours to several weeks to accomplish. The process is done through brute force, that is examining cryptic mnemonic data off line to interpret the health and status of the satellite. Then schedules are formulated either as the result of practical operator experience or heuristics - that is rules of thumb. Orbital operations must become more productive in the future to reduce life cycle costs and decrease dependence on ground control. This reduction is required to increase autonomy and survivability of future systems. The design of future satellites require that the scheduling function be transferred from ground to on board systems.
Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems
Xia, Feng; Ma, Longhua; Peng, Chen; Sun, Youxian; Dong, Jinxiang
2008-01-01
There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN. PMID:27879934
Static-dynamic hybrid communication scheduling and control co-design for networked control systems.
Wen, Shixi; Guo, Ge
2017-11-01
In this paper, the static-dynamic hybrid communication scheduling and control co-design is proposed for the networked control systems (NCSs) to solve the capacity limitation of the wireless communication network. The analytical most regular binary sequences (MRBSs) are used as the communication scheduling function for NCSs. When the communication conflicts yielded in the binary sequence MRBSs, a dynamic scheduling strategy is proposed to on-line reallocate the medium access status for each plant. Under such static-dynamic hybrid scheduling policy, plants in NCSs are described as the non-uniform sampled-control systems, whose controller have a group of controller gains and switch according to the sampling interval yielded by the binary sequence. A useful communication scheduling and control co-design framework is proposed for the NCSs to simultaneously decide the controller gains and the parameters used to generate the communication sequences MRBS. Numerical example and realistic example are respectively given to demonstrate the effectiveness of the proposed co-design method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Job Scheduling Under the Portable Batch System
NASA Technical Reports Server (NTRS)
Henderson, Robert L.; Woodrow, Thomas S. (Technical Monitor)
1995-01-01
The typical batch queuing system schedules jobs for execution by a set of queue controls. The controls determine from which queues jobs may be selected. Within the queue, jobs are ordered first-in, first-run. This limits the set of scheduling policies available to a site. The Portable Batch System removes this limitation by providing an external scheduling module. This separate program has full knowledge of the available queued jobs, running jobs, and system resource usage. Sites are able to implement any policy expressible in one of several procedural language. Policies may range from "bet fit" to "fair share" to purely political. Scheduling decisions can be made over the full set of jobs regardless of queue or order. The scheduling policy can be changed to fit a wide variety of computing environments and scheduling goals. This is demonstrated by the use of PBS on an IBM SP-2 system at NASA Ames.
Application of precomputed control laws in a reconfigurable aircraft flight control system
NASA Technical Reports Server (NTRS)
Moerder, Daniel D.; Halyo, Nesim; Broussard, John R.; Caglayan, Alper K.
1989-01-01
A self-repairing flight control system concept in which the control law is reconfigured after actuator and/or control surface damage to preserve stability and pilot command tracking is described. A key feature of the controller is reconfigurable multivariable feedback. The feedback gains are designed off-line and scheduled as a function of the aircraft control impairment status so that reconfiguration is performed simply by updating the gain schedule after detection of an impairment. A novel aspect of the gain schedule design procedure is that the schedule is calculated using a linear quadratic optimization-based simultaneous stabilization algorithm in which the scheduled gain is constrained to stabilize a collection of plant models representing the aircraft in various control failure modes. A description and numerical evaluation of a controller design for a model of a statically unstable high-performance aircraft are given.
A human factors approach to range scheduling for satellite control
NASA Technical Reports Server (NTRS)
Wright, Cameron H. G.; Aitken, Donald J.
1991-01-01
Range scheduling for satellite control presents a classical problem: supervisory control of a large-scale dynamic system, with unwieldy amounts of interrelated data used as inputs to the decision process. Increased automation of the task, with the appropriate human-computer interface, is highly desirable. The development and user evaluation of a semi-automated network range scheduling system is described. The system incorporates a synergistic human-computer interface consisting of a large screen color display, voice input/output, a 'sonic pen' pointing device, a touchscreen color CRT, and a standard keyboard. From a human factors standpoint, this development represents the first major improvement in almost 30 years to the satellite control network scheduling task.
System control of an autonomous planetary mobile spacecraft
NASA Technical Reports Server (NTRS)
Dias, William C.; Zimmerman, Barbara A.
1990-01-01
The goal is to suggest the scheduling and control functions necessary for accomplishing mission objectives of a fairly autonomous interplanetary mobile spacecraft, while maximizing reliability. Goals are to provide an extensible, reliable system conservative in its use of on-board resources, while getting full value from subsystem autonomy, and avoiding the lure of ground micromanagement. A functional layout consisting of four basic elements is proposed: GROUND and SYSTEM EXECUTIVE system functions and RESOURCE CONTROL and ACTIVITY MANAGER subsystem functions. The system executive includes six subfunctions: SYSTEM MANAGER, SYSTEM FAULT PROTECTION, PLANNER, SCHEDULE ADAPTER, EVENT MONITOR and RESOURCE MONITOR. The full configuration is needed for autonomous operation on Moon or Mars, whereas a reduced version without the planning, schedule adaption and event monitoring functions could be appropriate for lower-autonomy use on the Moon. An implementation concept is suggested which is conservative in use of system resources and consists of modules combined with a network communications fabric. A language concept termed a scheduling calculus for rapidly performing essential on-board schedule adaption functions is introduced.
Reliable gain-scheduled control of discrete-time systems and its application to CSTR model
NASA Astrophysics Data System (ADS)
Sakthivel, R.; Selvi, S.; Mathiyalagan, K.; Shi, Y.
2016-10-01
This paper is focused on reliable gain-scheduled controller design for a class of discrete-time systems with randomly occurring nonlinearities and actuator fault. Further, the nonlinearity in the system model is assumed to occur randomly according to a Bernoulli distribution with measurable time-varying probability in real time. The main purpose of this paper is to design a gain-scheduled controller by implementing a probability-dependent Lyapunov function and linear matrix inequality (LMI) approach such that the closed-loop discrete-time system is stochastically stable for all admissible randomly occurring nonlinearities. The existence conditions for the reliable controller is formulated in terms of LMI constraints. Finally, the proposed reliable gain-scheduled control scheme is applied on continuously stirred tank reactor model to demonstrate the effectiveness and applicability of the proposed design technique.
Analysis and design of gain scheduled control systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Shamma, Jeff S.
1988-01-01
Gain scheduling, as an idea, is to construct a global feedback control system for a time varying and/or nonlinear plant from a collection of local time invariant designs. However in the absence of a sound analysis, these designs come with no guarantees on the robustness, performance, or even nominal stability of the overall gain schedule design. Such an analysis is presented for three types of gain scheduling situations: (1) a linear parameter varying plant scheduling on its exogenous parameters, (2) a nonlinear plant scheduling on a prescribed reference trajectory, and (3) a nonlinear plant scheduling on the current plant output. Conditions are given which guarantee that the stability, robustness, and performance properties of the fixed operating point designs carry over to the global gain scheduled designs, such as the scheduling variable should vary slowly and capture the plants nonlinearities. Finally, an alternate design framework is proposed which removes the slowing varying restriction or gain scheduled systems. This framework addresses some fundamental feedback issues previously ignored in standard gain.
Scheduling Dependent Real-Time Activities
1990-08-01
dependency relationships in a way that is suitable for all real - time systems . This thesis provides an algorithm, called DASA, that is effective for...scheduling the class of real - time systems known as supervisory control systems. Simulation experiments that account for the time required to make scheduling
NASA Astrophysics Data System (ADS)
Bürger, Adrian; Sawant, Parantapa; Bohlayer, Markus; Altmann-Dieses, Angelika; Braun, Marco; Diehl, Moritz
2017-10-01
Within this work, the benefits of using predictive control methods for the operation of Adsorption Cooling Machines (ACMs) are shown on a simulation study. Since the internal control decisions of series-manufactured ACMs often cannot be influenced, the work focuses on optimized scheduling of an ACM considering its internal functioning as well as forecasts for load and driving energy occurrence. For illustration, an assumed solar thermal climate system is introduced and a system model suitable for use within gradient-based optimization methods is developed. The results of a system simulation using a conventional scheme for ACM scheduling are compared to the results of a predictive, optimization-based scheduling approach for the same exemplary scenario of load and driving energy occurrence. The benefits of the latter approach are shown and future actions for application of these methods for system control are addressed.
Xing, KeYi; Han, LiBin; Zhou, MengChu; Wang, Feng
2012-06-01
Deadlock-free control and scheduling are vital for optimizing the performance of automated manufacturing systems (AMSs) with shared resources and route flexibility. Based on the Petri net models of AMSs, this paper embeds the optimal deadlock avoidance policy into the genetic algorithm and develops a novel deadlock-free genetic scheduling algorithm for AMSs. A possible solution of the scheduling problem is coded as a chromosome representation that is a permutation with repetition of parts. By using the one-step look-ahead method in the optimal deadlock control policy, the feasibility of a chromosome is checked, and infeasible chromosomes are amended into feasible ones, which can be easily decoded into a feasible deadlock-free schedule. The chromosome representation and polynomial complexity of checking and amending procedures together support the cooperative aspect of genetic search for scheduling problems strongly.
NASA Astrophysics Data System (ADS)
Wang, Qian; Xue, Anke
2018-06-01
This paper has proposed a robust control for the spacecraft rendezvous system by considering the parameter uncertainties and actuator unsymmetrical saturation based on the discrete gain scheduling approach. By changing of variables, we transform the actuator unsymmetrical saturation control problem into a symmetrical one. The main advantage of the proposed method is improving the dynamic performance of the closed-loop system with a region of attraction as large as possible. By the Lyapunov approach and the scheduling technology, the existence conditions for the admissible controller are formulated in the form of linear matrix inequalities. The numerical simulation illustrates the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Xie, Chang; Wen, Jing; Liu, Wenying; Wang, Jiaming
With the development of intelligent dispatching, the intelligence level of network control center full-service urgent need to raise. As an important daily work of network control center, the application of maintenance scheduling intelligent arrangement to achieve high-quality and safety operation of power grid is very important. By analyzing the shortages of the traditional maintenance scheduling software, this paper designs a power grid maintenance scheduling intelligence arrangement supporting system based on power flow forecasting, which uses the advanced technologies in maintenance scheduling, such as artificial intelligence, online security checking, intelligent visualization techniques. It implements the online security checking of maintenance scheduling based on power flow forecasting and power flow adjusting based on visualization, in order to make the maintenance scheduling arrangement moreintelligent and visual.
Scheduling lessons learned from the Autonomous Power System
NASA Technical Reports Server (NTRS)
Ringer, Mark J.
1992-01-01
The Autonomous Power System (APS) project at NASA LeRC is designed to demonstrate the applications of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution systems. The project consists of three elements: the Autonomous Power Expert System (APEX) for Fault Diagnosis, Isolation, and Recovery (FDIR); the Autonomous Intelligent Power Scheduler (AIPS) to efficiently assign activities start times and resources; and power hardware (Brassboard) to emulate a space-based power system. The AIPS scheduler was tested within the APS system. This scheduler is able to efficiently assign available power to the requesting activities and share this information with other software agents within the APS system in order to implement the generated schedule. The AIPS scheduler is also able to cooperatively recover from fault situations by rescheduling the affected loads on the Brassboard in conjunction with the APEX FDIR system. AIPS served as a learning tool and an initial scheduling testbed for the integration of FDIR and automated scheduling systems. Many lessons were learned from the AIPS scheduler and are now being integrated into a new scheduler called SCRAP (Scheduler for Continuous Resource Allocation and Planning). This paper will service three purposes: an overview of the AIPS implementation, lessons learned from the AIPS scheduler, and a brief section on how these lessons are being applied to the new SCRAP scheduler.
NASA Astrophysics Data System (ADS)
Li, Ze
2017-09-01
In allusion to the intermittency and uncertainty of the wind electricity, energy storage and wind generator are combined into a hybrid system to improve the controllability of the output power. A scheduled power tracking control method is proposed based on the reinforcement learning theory and Q-learning algorithm. In this method, the state space of the environment is formed with two key factors, i.e. the state of charge of the energy storage and the difference value between the actual wind power and scheduled power, the feasible action is the output power of the energy storage, and the corresponding immediate rewarding function is designed to reflect the rationality of the control action. By interacting with the environment and learning from the immediate reward, the optimal control strategy is gradually formed. After that, it could be applied to the scheduled power tracking control of the hybrid system. Finally, the rationality and validity of the method are verified through simulation examples.
76 FR 77895 - Schedules of Controlled Substances: Placement of Ezogabine Into Schedule V
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-15
... ester, is a new chemical substance with central nervous system depressant properties and is classified... nervous system as an anticonvulsant and the potential side effects of the drug therein, warrant closer... the central nervous system is alone not enough to merit its inclusion into Schedule IV of the CSA, nor...
Issues in NASA Program and Project Management: Focus on Project Planning and Scheduling
NASA Technical Reports Server (NTRS)
Hoffman, Edward J. (Editor); Lawbaugh, William M. (Editor)
1997-01-01
Topics addressed include: Planning and scheduling training for working project teams at NASA, overview of project planning and scheduling workshops, project planning at NASA, new approaches to systems engineering, software reliability assessment, and software reuse in wind tunnel control systems.
Range and mission scheduling automation using combined AI and operations research techniques
NASA Technical Reports Server (NTRS)
Arbabi, Mansur; Pfeifer, Michael
1987-01-01
Ground-based systems for Satellite Command, Control, and Communications (C3) operations require a method for planning, scheduling and assigning the range resources such as: antenna systems scattered around the world, communications systems, and personnel. The method must accommodate user priorities, last minute changes, maintenance requirements, and exceptions from nominal requirements. Described are computer programs which solve 24 hour scheduling problems, using heuristic algorithms and a real time interactive scheduling process.
Time-critical multirate scheduling using contemporary real-time operating system services
NASA Technical Reports Server (NTRS)
Eckhardt, D. E., Jr.
1983-01-01
Although real-time operating systems provide many of the task control services necessary to process time-critical applications (i.e., applications with fixed, invariant deadlines), it may still be necessary to provide a scheduling algorithm at a level above the operating system in order to coordinate a set of synchronized, time-critical tasks executing at different cyclic rates. The scheduling requirements for such applications and develops scheduling algorithms using services provided by contemporary real-time operating systems.
NASA Technical Reports Server (NTRS)
Krupp, Joseph C.
1991-01-01
The Electric Power Control System (EPCS) created by Decision-Science Applications, Inc. (DSA) for the Lewis Research Center is discussed. This system makes decisions on what to schedule and when to schedule it, including making choices among various options or ways of performing a task. The system is goal-directed and seeks to shape resource usage in an optimal manner using a value-driven approach. Discussed here are considerations governing what makes a good schedule, how to design a value function to find the best schedule, and how to design the algorithm that finds the schedule that maximizes this value function. Results are shown which demonstrate the usefulness of the techniques employed.
Characterization of Tactical Departure Scheduling in the National Airspace System
NASA Technical Reports Server (NTRS)
Capps, Alan; Engelland, Shawn A.
2011-01-01
This paper discusses and analyzes current day utilization and performance of the tactical departure scheduling process in the National Airspace System (NAS) to understand the benefits in improving this process. The analysis used operational air traffic data from over 1,082,000 flights during the month of January, 2011. Specific metrics included the frequency of tactical departure scheduling, site specific variances in the technology's utilization, departure time prediction compliance used in the tactical scheduling process and the performance with which the current system can predict the airborne slot that aircraft are being scheduled into from the airport surface. Operational data analysis described in this paper indicates significant room for improvement exists in the current system primarily in the area of reduced departure time prediction uncertainty. Results indicate that a significant number of tactically scheduled aircraft did not meet their scheduled departure slot due to departure time uncertainty. In addition to missed slots, the operational data analysis identified increased controller workload associated with tactical departures which were subject to traffic management manual re-scheduling or controller swaps. An analysis of achievable levels of departure time prediction accuracy as obtained by a new integrated surface and tactical scheduling tool is provided to assess the benefit it may provide as a solution to the identified shortfalls. A list of NAS facilities which are likely to receive the greatest benefit from the integrated surface and tactical scheduling technology are provided.
A Mechanized Decision Support System for Academic Scheduling.
1986-03-01
an operational system called software. The first step in the development phase is Design . Designers destribute software control by factoring the Data...SUBJECT TERMS (Continue on reverse if necessary and identify by block number) ELD GROUP SUB-GROUP Scheduling, Decision Support System , Software Design ...scheduling system . It will also examine software - design techniques to identify the most appropriate method- ology for this problem. " - Chapter 3 will
Network Control Center User Planning System (NCC UPS)
NASA Astrophysics Data System (ADS)
Dealy, Brian
1991-09-01
NCC UPS is presented in the form of the viewgraphs. The following subject areas are covered: UPS overview; NCC UPS role; major NCC UPS functional requirements; interactive user access levels; UPS interfaces; interactive user subsystem; interface navigation; scheduling screen hierarchy; interactive scheduling input panels; autogenerated schedule request panel; schedule data tabular display panel; schedule data graphic display panel; graphic scheduling aid design; and schedule data graphic display.
Network Control Center User Planning System (NCC UPS)
NASA Technical Reports Server (NTRS)
Dealy, Brian
1991-01-01
NCC UPS is presented in the form of the viewgraphs. The following subject areas are covered: UPS overview; NCC UPS role; major NCC UPS functional requirements; interactive user access levels; UPS interfaces; interactive user subsystem; interface navigation; scheduling screen hierarchy; interactive scheduling input panels; autogenerated schedule request panel; schedule data tabular display panel; schedule data graphic display panel; graphic scheduling aid design; and schedule data graphic display.
An assessment of PERT as a technique for schedule planning and control
NASA Technical Reports Server (NTRS)
Sibbers, C. W.
1982-01-01
The PERT technique including the types of reports which can be computer generated using the NASA/LaRC PPARS System is described. An assessment is made of the effectiveness of PERT on various types of efforts as well as for specific purposes, namely, schedule planning, schedule analysis, schedule control, monitoring contractor schedule performance, and management reporting. This assessment is based primarily on the author's knowledge of the usage of PERT by NASA/LaRC personnel since the early 1960's. Both strengths and weaknesses of the technique for various applications are discussed. It is intended to serve as a reference guide for personnel performing project planning and control functions and technical personnel whose responsibilities either include schedule planning and control or require a general knowledge of the subject.
40 CFR 86.428-80 - Maintenance, scheduled; test vehicles.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Maintenance, scheduled; test vehicles... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission... vehicles. (a) Periodic maintenance on the engine, emission control system, and fuel system of test vehicles...
Hard real-time beam scheduler enables adaptive images in multi-probe systems
NASA Astrophysics Data System (ADS)
Tobias, Richard J.
2014-03-01
Real-time embedded-system concepts were adapted to allow an imaging system to responsively control the firing of multiple probes. Large-volume, operator-independent (LVOI) imaging would increase the diagnostic utility of ultrasound. An obstacle to this innovation is the inability of current systems to drive multiple transducers dynamically. Commercial systems schedule scanning with static lists of beams to be fired and processed; here we allow an imager to adapt to changing beam schedule demands, as an intelligent response to incoming image data. An example of scheduling changes is demonstrated with a flexible duplex mode two-transducer application mimicking LVOI imaging. Embedded-system concepts allow an imager to responsively control the firing of multiple probes. Operating systems use powerful dynamic scheduling algorithms, such as fixed priority preemptive scheduling. Even real-time operating systems lack the timing constraints required for ultrasound. Particularly for Doppler modes, events must be scheduled with sub-nanosecond precision, and acquired data is useless without this requirement. A successful scheduler needs unique characteristics. To get close to what would be needed in LVOI imaging, we show two transducers scanning different parts of a subjects leg. When one transducer notices flow in a region where their scans overlap, the system reschedules the other transducer to start flow mode and alter its beams to get a view of the observed vessel and produce a flow measurement. The second transducer does this in a focused region only. This demonstrates key attributes of a successful LVOI system, such as robustness against obstructions and adaptive self-correction.
Scheduling algorithms for automatic control systems for technological processes
NASA Astrophysics Data System (ADS)
Chernigovskiy, A. S.; Tsarev, R. Yu; Kapulin, D. V.
2017-01-01
Wide use of automatic process control systems and the usage of high-performance systems containing a number of computers (processors) give opportunities for creation of high-quality and fast production that increases competitiveness of an enterprise. Exact and fast calculations, control computation, and processing of the big data arrays - all of this requires the high level of productivity and, at the same time, minimum time of data handling and result receiving. In order to reach the best time, it is necessary not only to use computing resources optimally, but also to design and develop the software so that time gain will be maximal. For this purpose task (jobs or operations), scheduling techniques for the multi-machine/multiprocessor systems are applied. Some of basic task scheduling methods for the multi-machine process control systems are considered in this paper, their advantages and disadvantages come to light, and also some usage considerations, in case of the software for automatic process control systems developing, are made.
Knowledge-Based Scheduling of Arrival Aircraft in the Terminal Area
NASA Technical Reports Server (NTRS)
Krzeczowski, K. J.; Davis, T.; Erzberger, H.; Lev-Ram, Israel; Bergh, Christopher P.
1995-01-01
A knowledge based method for scheduling arrival aircraft in the terminal area has been implemented and tested in real time simulation. The scheduling system automatically sequences, assigns landing times, and assign runways to arrival aircraft by utilizing continuous updates of aircraft radar data and controller inputs. The scheduling algorithm is driven by a knowledge base which was obtained in over two thousand hours of controller-in-the-loop real time simulation. The knowledge base contains a series of hierarchical 'rules' and decision logic that examines both performance criteria, such as delay reductions, as well as workload reduction criteria, such as conflict avoidance. The objective of the algorithm is to devise an efficient plan to land the aircraft in a manner acceptable to the air traffic controllers. This paper describes the scheduling algorithms, gives examples of their use, and presents data regarding their potential benefits to the air traffic system.
Knowledge-based scheduling of arrival aircraft
NASA Technical Reports Server (NTRS)
Krzeczowski, K.; Davis, T.; Erzberger, H.; Lev-Ram, I.; Bergh, C.
1995-01-01
A knowledge-based method for scheduling arrival aircraft in the terminal area has been implemented and tested in real-time simulation. The scheduling system automatically sequences, assigns landing times, and assigns runways to arrival aircraft by utilizing continuous updates of aircraft radar data and controller inputs. The scheduling algorithms is driven by a knowledge base which was obtained in over two thousand hours of controller-in-the-loop real-time simulation. The knowledge base contains a series of hierarchical 'rules' and decision logic that examines both performance criteria, such as delay reduction, as well as workload reduction criteria, such as conflict avoidance. The objective of the algorithms is to devise an efficient plan to land the aircraft in a manner acceptable to the air traffic controllers. This paper will describe the scheduling algorithms, give examples of their use, and present data regarding their potential benefits to the air traffic system.
Satellite antenna management system and method
NASA Technical Reports Server (NTRS)
Leath, Timothy T (Inventor); Azzolini, John D (Inventor)
1999-01-01
The antenna management system and method allow a satellite to communicate with a ground station either directly or by an intermediary of a second satellite, thus permitting communication even when the satellite is not within range of the ground station. The system and method employ five major software components, which are the control and initialization module, the command and telemetry handler module, the contact schedule processor module, the contact state machining module, and the telemetry state machine module. The control and initialization module initializes the system and operates the main control cycle, in which the other modules are called. The command and telemetry handler module handles communication to and from the ground station. The contact scheduler processor module handles the contact entry schedules to allow scheduling of contacts with the second satellite. The contact and telemetry state machine modules handle the various states of the satellite in beginning, maintaining and ending contact with the second satellite and in beginning, maintaining and ending communication with the satellite.
Peer-to-peer Cooperative Scheduling Architecture for National Grid Infrastructure
NASA Astrophysics Data System (ADS)
Matyska, Ludek; Ruda, Miroslav; Toth, Simon
For some ten years, the Czech National Grid Infrastructure MetaCentrum uses a single central PBSPro installation to schedule jobs across the country. This centralized approach keeps a full track about all the clusters, providing support for jobs spanning several sites, implementation for the fair-share policy and better overall control of the grid environment. Despite a steady progress in the increased stability and resilience to intermittent very short network failures, growing number of sites and processors makes this architecture, with a single point of failure and scalability limits, obsolete. As a result, a new scheduling architecture is proposed, which relies on higher autonomy of clusters. It is based on a peer to peer network of semi-independent schedulers for each site or even cluster. Each scheduler accepts jobs for the whole infrastructure, cooperating with other schedulers on implementation of global policies like central job accounting, fair-share, or submission of jobs across several sites. The scheduling system is integrated with the Magrathea system to support scheduling of virtual clusters, including the setup of their internal network, again eventually spanning several sites. On the other hand, each scheduler is local to one of several clusters and is able to directly control and submit jobs to them even if the connection of other scheduling peers is lost. In parallel to the change of the overall architecture, the scheduling system itself is being replaced. Instead of PBSPro, chosen originally for its declared support of large scale distributed environment, the new scheduling architecture is based on the open-source Torque system. The implementation and support for the most desired properties in PBSPro and Torque are discussed and the necessary modifications to Torque to support the MetaCentrum scheduling architecture are presented, too.
Intelligent Planning and Scheduling for Controlled Life Support Systems
NASA Technical Reports Server (NTRS)
Leon, V. Jorge
1996-01-01
Planning in Controlled Ecological Life Support Systems (CELSS) requires special look ahead capabilities due to the complex and long-term dynamic behavior of biological systems. This project characterizes the behavior of CELSS, identifies the requirements of intelligent planning systems for CELSS, proposes the decomposition of the planning task into short-term and long-term planning, and studies the crop scheduling problem as an initial approach to long-term planning. CELSS is studied in the realm of Chaos. The amount of biomass in the system is modeled using a bounded quadratic iterator. The results suggests that closed ecological systems can exhibit periodic behavior when imposed external or artificial control. The main characteristics of CELSS from the planning and scheduling perspective are discussed and requirements for planning systems are given. Crop scheduling problem is identified as an important component of the required long-term lookahead capabilities of a CELSS planner. The main characteristics of crop scheduling are described and a model is proposed to represent the problem. A surrogate measure of the probability of survival is developed. The measure reflects the absolute deviation of the vital reservoir levels from their nominal values. The solution space is generated using a probability distribution which captures both knowledge about the system and the current state of affairs at each decision epoch. This probability distribution is used in the context of an evolution paradigm. The concepts developed serve as the basis for the development of a simple crop scheduling tool which is used to demonstrate its usefulness in the design and operation of CELSS.
A hierarchically distributed architecture for fault isolation expert systems on the space station
NASA Technical Reports Server (NTRS)
Miksell, Steve; Coffer, Sue
1987-01-01
The Space Station Axiomatic Fault Isolating Expert Systems (SAFTIES) system deals with the hierarchical distribution of control and knowledge among independent expert systems doing fault isolation and scheduling of Space Station subsystems. On its lower level, fault isolation is performed on individual subsystems. These fault isolation expert systems contain knowledge about the performance requirements of their particular subsystem and corrective procedures which may be involved in repsonse to certain performance errors. They can control the functions of equipment in their system and coordinate system task schedules. On a higher level, the Executive contains knowledge of all resources, task schedules for all systems, and the relative priority of all resources and tasks. The executive can override any subsystem task schedule in order to resolve use conflicts or resolve errors that require resources from multiple subsystems. Interprocessor communication is implemented using the SAFTIES Communications Interface (SCI). The SCI is an application layer protocol which supports the SAFTIES distributed multi-level architecture.
Real-time control systems: feedback, scheduling and robustness
NASA Astrophysics Data System (ADS)
Simon, Daniel; Seuret, Alexandre; Sename, Olivier
2017-08-01
The efficient control of real-time distributed systems, where continuous components are governed through digital devices and communication networks, needs a careful examination of the constraints arising from the different involved domains inside co-design approaches. Thanks to the robustness of feedback control, both new control methodologies and slackened real-time scheduling schemes are proposed beyond the frontiers between these traditionally separated fields. A methodology to design robust aperiodic controllers is provided, where the sampling interval is considered as a control variable of the system. Promising experimental results are provided to show the feasibility and robustness of the approach.
A study of interactive control scheduling and economic assessment for robotic systems
NASA Technical Reports Server (NTRS)
1982-01-01
A class of interactive control systems is derived by generalizing interactive manipulator control systems. Tasks of interactive control systems can be represented as a network of a finite set of actions which have specific operational characteristics and specific resource requirements, and which are of limited duration. This has enabled the decomposition of the overall control algorithm simultaneously and asynchronously. The performance benefits of sensor referenced and computer-aided control of manipulators in a complex environment is evaluated. The first phase of the CURV arm control system software development and the basic features of the control algorithms and their software implementation are presented. An optimal solution for a production scheduling problem that will be easy to implement in practical situations is investigated.
Autonomous power expert system
NASA Technical Reports Server (NTRS)
Ringer, Mark J.; Quinn, Todd M.
1990-01-01
The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling and dynamic replanning.
Autonomous power expert system
NASA Technical Reports Server (NTRS)
Ringer, Mark J.; Quinn, Todd M.
1990-01-01
The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling an dynamic replanning.
Real-time contingency handling in MAESTRO
NASA Technical Reports Server (NTRS)
Britt, Daniel L.; Geoffroy, Amy L.
1992-01-01
A scheduling and resource management system named MAESTRO was interfaced with a Space Station Module Power Management and Distribution (SSM/PMAD) breadboard at MSFC. The combined system serves to illustrate the integration of planning, scheduling, and control in a realistic, complex domain. This paper briefly describes the functional elements of the combined system, including normal and contingency operational scenarios, then focusses on the method used by the scheduler to handle real-time contingencies.
A multi-group and preemptable scheduling of cloud resource based on HTCondor
NASA Astrophysics Data System (ADS)
Jiang, Xiaowei; Zou, Jiaheng; Cheng, Yaodong; Shi, Jingyan
2017-10-01
Due to the features of virtual machine-flexibility, easy controlling and various system environments, more and more fields utilize the virtualization technology to construct the distributed system with the virtual resources, also including high energy physics. This paper introduce a method used in high energy physics that supports multiple resource group and preemptable cloud resource scheduling, combining virtual machine with HTCondor (a batch system). It makes resource controlling more flexible and more efficient and makes resource scheduling independent of job scheduling. Firstly, the resources belong to different experiment-groups, and the type of user-groups mapping to resource-groups(same as experiment-group) is one-to-one or many-to-one. In order to make the confused group simply to be managed, we designed the permission controlling component to ensure that the different resource-groups can get the suitable jobs. Secondly, for the purpose of elastically allocating resources for suitable resource-group, it is necessary to schedule resources like scheduling jobs. So this paper designs the cloud resource scheduling to maintain a resource queue and allocate an appropriate amount of virtual resources to the request resource-group. Thirdly, in some kind of situations, because of the resource occupied for a long time, resources need to be preempted. This paper adds the preemption function for the resource scheduling that implement resource preemption based on the group priority. Additionally, the way to preempting is soft that when virtual resources are preempted, jobs will not be killed but also be held and rematched later. It is implemented with the help of HTCondor, storing the held job information in scheduler, releasing the job to idle status and doing second matcher. In IHEP (institute of high energy physics), we have built a batch system based on HTCondor with a virtual resources pool based on Openstack. And this paper will show some cases of experiment JUNO and LHAASO. The result indicates that multi-group and preemptable resource scheduling is efficient to support multi-group and soft preemption. Additionally, the permission controlling component has been used in the local computing cluster, supporting for experiment JUNO, CMS and LHAASO, and the scale will be expanded to more experiments at the first half year, including DYW, BES and so on. Its evidence that the permission controlling is efficient.
Centralized mission planning and scheduling system for the Landsat Data Continuity Mission
Kavelaars, Alicia; Barnoy, Assaf M.; Gregory, Shawna; Garcia, Gonzalo; Talon, Cesar; Greer, Gregory; Williams, Jason; Dulski, Vicki
2014-01-01
Satellites in Low Earth Orbit provide missions with closer range for studying aspects such as geography and topography, but often require efficient utilization of space and ground assets. Optimizing schedules for these satellites amounts to a complex planning puzzle since it requires operators to face issues such as discontinuous ground contacts, limited onboard memory storage, constrained downlink margin, and shared ground antenna resources. To solve this issue for the Landsat Data Continuity Mission (LDCM, Landsat 8), all the scheduling exchanges for science data request, ground/space station contact, and spacecraft maintenance and control will be coordinated through a centralized Mission Planning and Scheduling (MPS) engine, based upon GMV’s scheduling system flexplan9 . The synchronization between all operational functions must be strictly maintained to ensure efficient mission utilization of ground and spacecraft activities while working within the bounds of the space and ground resources, such as Solid State Recorder (SSR) and available antennas. This paper outlines the functionalities that the centralized planning and scheduling system has in its operational control and management of the Landsat 8 spacecraft.
Enabling New Operations Concepts for Lunar and Mars Exploration
NASA Astrophysics Data System (ADS)
Jaap, John; Maxwell, Theresa
2005-02-01
The planning and scheduling of human space activities is an expensive and time-consuming task that seldom provides the crew with the control, flexibility, or insight that they need. During the past thirty years, scheduling software has seen only incremental improvements; however, software limitations continue to prevent even evolutionary improvements in the ``operations concept'' that is used for human space missions. Space missions are planned on the ground long before they are executed in space, and the crew has little input or influence on the schedule. In recent years the crew has been presented with a ``job jar'' of activities that they can do whenever they have time, but the contents of the jar is limited to tasks that do not use scarce shared resources and do not have external timing constraints. Consequently, the crew has no control over the schedule of the majority of their own tasks. As humans venture farther from earth for longer durations, it will become imperative that they have the ability to plan and schedule not only their own activities, but also the unattended activities of the systems, equipment, and robots on the journey with them. Significant software breakthroughs are required to enable the change in the operations concept. The crew does not have the time to build or modify the schedule by hand. They only need to issue a request to schedule a task and the system should automatically do the rest. Of course, the crew should not be required to build the complete schedule. Controllers on the ground should contribute the models and schedules where they have the better knowledge. The system must allow multiple simultaneous users, some on earth and some in space. The Mission Operations Laboratory at NASA's Marshall Space Flight Center has been researching and prototyping a modeling schema, scheduling engine, and system architecture that can enable the needed paradigm shift - it can make the crew autonomous. This schema and engine can be the core of a planning and scheduling system that would enable multiple planners, some on the earth and some in space, to build one integrated timeline. Its modeling schema can capture all the task requirements; its scheduling engine can build the schedule automatically; and its architecture can allow those (on earth and in space) with the best knowledge of the tasks to schedule them. This paper describes the enabling technology and proposes an operations concept for astronauts autonomously scheduling their activities and the activities around them.
Enabling New Operations Concepts for Lunar and Mars Exploration
NASA Technical Reports Server (NTRS)
Jaap, John; Maxwell, Theresa
2005-01-01
The planning and scheduling of human space activities is an expensive and time-consuming task that seldom provides the crew with the control, flexibility, or insight that they need. During the past thirty years, scheduling software has seen only incremental improvements; however, software limitations continue to prevent even evolutionary improvements in the operations concept that is used for human space missions. Space missions are planned on the ground long before they are executed in space, and the crew has little input or influence on the schedule. In recent years the crew has been presented with a job jar of activities that they can do whenever they have time, but the contents of the jar is limited to tasks that do not use scarce shared resources and do not have external timing constraints. Consequently, the crew has no control over the schedule of the majority of their own tasks. As humans venture farther from earth for longer durations, it will become imperative that they have the ability to plan and schedule not only their own activities, but also the unattended activities of the systems, equipment, and robots on the journey with them. Significant software breakthroughs are required to enable the change in the operations concept. The crew does not have the time to build or modify the schedule by hand. They only need to issue a request to schedule a task and the system should automatically do the rest. Of course, the crew should not be required to build the complete schedule. Controllers on the ground should contribute the models and schedules where they have the better knowledge. The system must allow multiple simultaneous users, some on earth and some in space. The Mission Operations Laboratory at NASA's Marshall Space flight Center has been researching and prototyping a modeling schema, scheduling engine, and system architecture that can enable the needed paradigm shift - it can make the crew autonomous. This schema and engine can be the core of a planning and scheduling system that would enable multiple planners, some on the earth and some in space, to build one integrated timeline. Its modeling schema can capture all the task requirements; its scheduling engine can build the schedule automatically, and its architecture can allow those (on earth and in space) with the best knowledge of the tasks to schedule them. This paper describes the enabling technology and proposes an operations concept for astronauts autonomously scheduling their activities and the activities around them.
Design of control software for the closed ecology experiment facilities (CEEF)
NASA Astrophysics Data System (ADS)
Miyajima, H.; Abe, K.; Hirosaki, T.; Ishikawa, Y.
A habitation experiment using a closed ecology experiment facilities CEEF was started in fiscal 2005 three experiments in which two humans stayed for one week were conducted Their stays will be extended gradually until fiscal 2009 when an experiment will be launched with two humans staying for four months The CEEF has an ambitious target of acquiring the technology of an advanced life support system and the system is being developed based on the technology of conventional plant systems Especially in respect to supervision and control of the system the system still has little automation This system has many manual operation parts whose starts and stops are determined by human judgment There are even several parts requiring off-line measurements that include analyses performed by hand At present a CEEF behavioral prediction system CPS is being developed as the first stage for controlling such a system In this CPS an operator creates an operational schedule after due consideration However creation of the operational schedule of the complex CEEF is not easy and it is above the operator s capability to fully cope with alterations of the operational schedule that occur during a long-term habitation experiment Therefore we are going to develop an automatic creation function of the operational schedule that will be incorporated into the CPS by the beginning of the habitation experiment in fiscal 2009 This function will enable automation of most of the operational schedule that human operators currently set up In this paper we examine
Autonomous scheduling technology for Earth orbital missions
NASA Technical Reports Server (NTRS)
Srivastava, S.
1982-01-01
The development of a dynamic autonomous system (DYASS) of resources for the mission support of near-Earth NASA spacecraft is discussed and the current NASA space data system is described from a functional perspective. The future (late 80's and early 90's) NASA space data system is discussed. The DYASS concept, the autonomous process control, and the NASA space data system are introduced. Scheduling and related disciplines are surveyed. DYASS as a scheduling problem is also discussed. Artificial intelligence and knowledge representation is considered as well as the NUDGE system and the I-Space system.
A microeconomic scheduler for parallel computers
NASA Technical Reports Server (NTRS)
Stoica, Ion; Abdel-Wahab, Hussein; Pothen, Alex
1995-01-01
We describe a scheduler based on the microeconomic paradigm for scheduling on-line a set of parallel jobs in a multiprocessor system. In addition to the classical objectives of increasing the system throughput and reducing the response time, we consider fairness in allocating system resources among the users, and providing the user with control over the relative performances of his jobs. We associate with every user a savings account in which he receives money at a constant rate. When a user wants to run a job, he creates an expense account for that job to which he transfers money from his savings account. The job uses the funds in its expense account to obtain the system resources it needs for execution. The share of the system resources allocated to the user is directly related to the rate at which the user receives money; the rate at which the user transfers money into a job expense account controls the job's performance. We prove that starvation is not possible in our model. Simulation results show that our scheduler improves both system and user performances in comparison with two different variable partitioning policies. It is also shown to be effective in guaranteeing fairness and providing control over the performance of jobs.
Linear parameter varying representations for nonlinear control design
NASA Astrophysics Data System (ADS)
Carter, Lance Huntington
Linear parameter varying (LPV) systems are investigated as a framework for gain-scheduled control design and optimal hybrid control. An LPV system is defined as a linear system whose dynamics depend upon an a priori unknown but measurable exogenous parameter. A gain-scheduled autopilot design is presented for a bank-to-turn (BTT) missile. The method is novel in that the gain-scheduled design does not involve linearizations about operating points. Instead, the missile dynamics are brought to LPV form via a state transformation. This idea is applied to the design of a coupled longitudinal/lateral BTT missile autopilot. The pitch and yaw/roll dynamics are separately transformed to LPV form, where the cross axis states are treated as "exogenous" parameters. These are actually endogenous variables, so such a plant is called "quasi-LPV." Once in quasi-LPV form, a family of robust controllers using mu synthesis is designed for both the pitch and yaw/roll channels, using angle-of-attack and roll rate as the scheduling variables. The closed-loop time response is simulated using the original nonlinear model and also using perturbed aerodynamic coefficients. Modeling and control of engine idle speed is investigated using LPV methods. It is shown how generalized discrete nonlinear systems may be transformed into quasi-LPV form. A discrete nonlinear engine model is developed and expressed in quasi-LPV form with engine speed as the scheduling variable. An example control design is presented using linear quadratic methods. Simulations are shown comparing the LPV based controller performance to that using PID control. LPV representations are also shown to provide a setting for hybrid systems. A hybrid system is characterized by control inputs consisting of both analog signals and discrete actions. A solution is derived for the optimal control of hybrid systems with generalized cost functions. This is shown to be computationally intensive, so a suboptimal strategy is proposed that neglects a subset of possible parameter trajectories. A computational algorithm is constructed for this suboptimal solution applied to a class of linear non-quadratic cost functions.
Sum-of-Squares-Based Region of Attraction Analysis for Gain-Scheduled Three-Loop Autopilot
NASA Astrophysics Data System (ADS)
Seo, Min-Won; Kwon, Hyuck-Hoon; Choi, Han-Lim
2018-04-01
A conventional method of designing a missile autopilot is to linearize the original nonlinear dynamics at several trim points, then to determine linear controllers for each linearized model, and finally implement gain-scheduling technique. The validation of such a controller is often based on linear system analysis for the linear closed-loop system at the trim conditions. Although this type of gain-scheduled linear autopilot works well in practice, validation based solely on linear analysis may not be sufficient to fully characterize the closed-loop system especially when the aerodynamic coefficients exhibit substantial nonlinearity with respect to the flight condition. The purpose of this paper is to present a methodology for analyzing the stability of a gain-scheduled controller in a setting close to the original nonlinear setting. The method is based on sum-of-squares (SOS) optimization that can be used to characterize the region of attraction of a polynomial system by solving convex optimization problems. The applicability of the proposed SOS-based methodology is verified on a short-period autopilot of a skid-to-turn missile.
Pryce, Joanna; Albertsen, Karen; Nielsen, Karina
2006-05-01
To evaluate the impact of an open-rota scheduling system on the health, work-life balance and job satisfaction of nurses working in a psychiatric ward in Denmark. The effects of shift rotation and scheduling are well known; however, little is known about the wider benefits of open-rota systems. Method A structured questionnaire was distributed to control and intervention groups preintervention and postintervention (20 months). Nurses within the intervention group trialed an open-rota system in which nurses designed their own work-rest schedules. Nurses in the intervention group reported that they were more satisfied with their work hours, less likely to swap their shift when working within the open-rota system and reported significant increases in work-life balance, job satisfaction, social support and community spirit when compared with nurses in the control groups. The ownership and choice over work-rest schedules has benefits for nurses, and potentially the hospital.
1983-08-01
for the level of manage- 5AR ment reviewing it ., (40) The Cost Schedule Control Systems PROD R&D Criteria are not a...evolution and development of the Cost/Schedule Control Vice President, Contracts and Pricing Systems Criteria (C/SCSC), then analyze its cost impact...don’t come and ask for what we are going to war with-not He is taking the tough position to en- funding to cover it -find out what the new system
A comparison of multiprocessor scheduling methods for iterative data flow architectures
NASA Technical Reports Server (NTRS)
Storch, Matthew
1993-01-01
A comparative study is made between the Algorithm to Architecture Mapping Model (ATAMM) and three other related multiprocessing models from the published literature. The primary focus of all four models is the non-preemptive scheduling of large-grain iterative data flow graphs as required in real-time systems, control applications, signal processing, and pipelined computations. Important characteristics of the models such as injection control, dynamic assignment, multiple node instantiations, static optimum unfolding, range-chart guided scheduling, and mathematical optimization are identified. The models from the literature are compared with the ATAMM for performance, scheduling methods, memory requirements, and complexity of scheduling and design procedures.
Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A) schedule plan
NASA Technical Reports Server (NTRS)
1994-01-01
This report describes Aerojet's methods and procedures used to control and administer contractual schedules for the EOS/AMSU-A program. Included are the following: the master, intermediate, and detail schedules; critical path analysis; and the total program logic network diagrams.
NASA Astrophysics Data System (ADS)
Delgado, Francisco; Schumacher, German
2014-08-01
The Large Synoptic Survey Telescope (LSST) is a complex system of systems with demanding performance and operational requirements. The nature of its scientific goals requires a special Observatory Control System (OCS) and particularly a very specialized automatic Scheduler. The OCS Scheduler is an autonomous software component that drives the survey, selecting the detailed sequence of visits in real time, taking into account multiple science programs, the current external and internal conditions, and the history of observations. We have developed a SysML model for the OCS Scheduler that fits coherently in the OCS and LSST integrated model. We have also developed a prototype of the Scheduler that implements the scheduling algorithms in the simulation environment provided by the Operations Simulator, where the environment and the observatory are modeled with real weather data and detailed kinematics parameters. This paper expands on the Scheduler architecture and the proposed algorithms to achieve the survey goals.
Switching State-Feedback LPV Control with Uncertain Scheduling Parameters
NASA Technical Reports Server (NTRS)
He, Tianyi; Al-Jiboory, Ali Khudhair; Swei, Sean Shan-Min; Zhu, Guoming G.
2017-01-01
This paper presents a new method to design Robust Switching State-Feedback Gain-Scheduling (RSSFGS) controllers for Linear Parameter Varying (LPV) systems with uncertain scheduling parameters. The domain of scheduling parameters are divided into several overlapped subregions to undergo hysteresis switching among a family of simultaneously designed LPV controllers over the corresponding subregion with the guaranteed H-infinity performance. The synthesis conditions are given in terms of Parameterized Linear Matrix Inequalities that guarantee both stability and performance at each subregion and associated switching surfaces. The switching stability is ensured by descent parameter-dependent Lyapunov function on switching surfaces. By solving the optimization problem, RSSFGS controller can be obtained for each subregion. A numerical example is given to illustrate the effectiveness of the proposed approach over the non-switching controllers.
NASA Astrophysics Data System (ADS)
Ikegami, Takashi; Iwafune, Yumiko; Ogimoto, Kazuhiko
The high penetration of variable renewable generation such as Photovoltaic (PV) systems will cause the issue of supply-demand imbalance in a whole power system. The activation of the residential power usage, storage and generation by sophisticated scheduling and control using the Home Energy Management System (HEMS) will be needed to balance power supply and demand in the near future. In order to evaluate the applicability of the HEMS as a distributed controller for local and system-wide supply-demand balances, we developed an optimum operation scheduling model of domestic electric appliances using the mixed integer linear programming. Applying this model to several houses with dynamic electricity prices reflecting the power balance of the total power system, it was found that the adequate changes in electricity prices bring about the shift of residential power usages to control the amount of the reverse power flow due to excess PV generation.
Automatic Scheduling and Planning (ASAP) in future ground control systems
NASA Technical Reports Server (NTRS)
Matlin, Sam
1988-01-01
This report describes two complementary approaches to the problem of space mission planning and scheduling. The first is an Expert System or Knowledge-Based System for automatically resolving most of the activity conflicts in a candidate plan. The second is an Interactive Graphics Decision Aid to assist the operator in manually resolving the residual conflicts which are beyond the scope of the Expert System. The two system designs are consistent with future ground control station activity requirements, support activity timing constraints, resource limits and activity priority guidelines.
A Systems Approach to Military Construction.
1982-11-01
Unclassi fled I150. OECL ASSI F1C ATI ON/ DOWNGRADING I SCHEDULE IS. DISYR1EUTION STATEMENT (ot this Repo"t) Approved for public release; distribution...30 Procurement Alternatives 30 Design Alternatives 33 Preconcept Control Data 34 AE Selection Procedure 36 Scheduling 40 Cost Estimating 44 4...data, scheduling , and cost estimating. The objectives of project coordination for a systems-oriented project do not differ from those of a
Visual Schedule System in Dental Care for Patients with Autism: A Pilot Study.
Mah, Janet Wt; Tsang, Phoebe
A pilot study to test whether a visual schedule system using picture communication symbols can help children with autism have successful routine dental cleaning visits. 14 boys with autism between three- to eight-years-old presented to the dental clinic for four weekly consecutive dental appointments. Patients were randomly assigned to either the control group who received the tell-show-do method (i.e., standard of care), or the test group who received the tell-show-do method plus the visual schedule system. Patients in the test group completed an average of 1.38 more steps, at 35.52 seconds per step faster, and with 18.7% lower levels of behavioral distress than those in the control group. The use of a visual schedule system, along with repeated weekly visits, showed some promise in helping children with autism successfully complete more steps, progress at a quicker rate, and exhibit lower levels of behavioral distress within a dental appointment, compared to a traditional tell-show-do approach.
A learning flight control system for the F8-DFBW aircraft. [Digital Fly-By-Wire
NASA Technical Reports Server (NTRS)
Montgomery, R. C.; Mekel, R.; Nachmias, S.
1978-01-01
This report contains a complete description of a learning control system designed for the F8-DFBW aircraft. The system is parameter-adaptive with the additional feature that it 'learns' the variation of the control system gains needed over the flight envelope. It, thus, generates and modifies its gain schedule when suitable data are available. The report emphasizes the novel learning features of the system: the forms of representation of the flight envelope and the process by which identified parameters are used to modify the gain schedule. It contains data taken during piloted real-time 6 degree-of-freedom simulations that were used to develop and evaluate the system.
NASDA knowledge-based network planning system
NASA Technical Reports Server (NTRS)
Yamaya, K.; Fujiwara, M.; Kosugi, S.; Yambe, M.; Ohmori, M.
1993-01-01
One of the SODS (space operation and data system) sub-systems, NP (network planning) was the first expert system used by NASDA (national space development agency of Japan) for tracking and control of satellite. The major responsibilities of the NP system are: first, the allocation of network and satellite control resources and, second, the generation of the network operation plan data (NOP) used in automated control of the stations and control center facilities. Up to now, the first task of network resource scheduling was done by network operators. NP system automatically generates schedules using its knowledge base, which contains information on satellite orbits, station availability, which computer is dedicated to which satellite, and how many stations must be available for a particular satellite pass or a certain time period. The NP system is introduced.
A Study on Real-Time Scheduling Methods in Holonic Manufacturing Systems
NASA Astrophysics Data System (ADS)
Iwamura, Koji; Taimizu, Yoshitaka; Sugimura, Nobuhiro
Recently, new architectures of manufacturing systems have been proposed to realize flexible control structures of the manufacturing systems, which can cope with the dynamic changes in the volume and the variety of the products and also the unforeseen disruptions, such as failures of manufacturing resources and interruptions by high priority jobs. They are so called as the autonomous distributed manufacturing system, the biological manufacturing system and the holonic manufacturing system. Rule-based scheduling methods were proposed and applied to the real-time production scheduling problems of the HMS (Holonic Manufacturing System) in the previous report. However, there are still remaining problems from the viewpoint of the optimization of the whole production schedules. New procedures are proposed, in the present paper, to select the production schedules, aimed at generating effective production schedules in real-time. The proposed methods enable the individual holons to select suitable machining operations to be carried out in the next time period. Coordination process among the holons is also proposed to carry out the coordination based on the effectiveness values of the individual holons.
Modern digital flight control system design for VTOL aircraft
NASA Technical Reports Server (NTRS)
Broussard, J. R.; Berry, P. W.; Stengel, R. F.
1979-01-01
Methods for and results from the design and evaluation of a digital flight control system (DFCS) for a CH-47B helicopter are presented. The DFCS employed proportional-integral control logic to provide rapid, precise response to automatic or manual guidance commands while following conventional or spiral-descent approach paths. It contained altitude- and velocity-command modes, and it adapted to varying flight conditions through gain scheduling. Extensive use was made of linear systems analysis techniques. The DFCS was designed, using linear-optimal estimation and control theory, and the effects of gain scheduling are assessed by examination of closed-loop eigenvalues and time responses.
NASA Astrophysics Data System (ADS)
Christian, C. A.; Olson, E. C.
1993-01-01
The proposal database and scheduling system for the Extreme Ultraviolet Explorer is described. The proposal database has been implemented to take input for approved observations selected by the EUVE Peer Review Panel and output target information suitable for the scheduling system to digest. The scheduling system is a hybrid of the SPIKE program and EUVE software which checks spacecraft constraints, produces a proposed schedule and selects spacecraft orientations with optimal configurations for acquiring star trackers, etc. This system is used to schedule the In Orbit Calibration activities that took place this summer, following the EUVE launch in early June 1992. The strategy we have implemented has implications for the selection of approved targets, which have impacted the Peer Review process. In addition, we will discuss how the proposal database, founded on Sybase, controls the processing of EUVE Guest Observer data.
Automated mixed traffic vehicle control and scheduling study
NASA Technical Reports Server (NTRS)
Peng, T. K. C.; Chon, K.
1976-01-01
The operation and the expected performance of a proposed automatic guideway transit system which uses low speed automated mixed traffic vehicles (AMTVs) were analyzed. Vehicle scheduling and headway control policies were evaluated with a transit system simulation model. The effect of mixed traffic interference on the average vehicle speed was examined with a vehicle pedestrian interface model. Control parameters regulating vehicle speed were evaluated for safe stopping and passenger comfort. Some preliminary data on the cost and operation of an experimental AMTV system are included. These data were the result of a separate task conducted at JPL, and were included as background information.
C/SCSC overview: approach, implementation, use. [Cost/Schedule Control Systems Criteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turf, Larry
1979-01-01
An overview of the Cost/Schedule Control System Criteria, known as C/SCS or C/S Squared is pesented. In the mid-1960s, several DOD service agencies embarked on a new performance measurement concept to track cost and schedule performance on major DOD programs. The performance measurement concept of C/SCS has expanded from DOD use to the Department of Energy (PMS), NASA (533 reports), and private industry such as shipbuilding, utilities, and construction. This paper describes the C/SCSC with the events leading to the C/SCS requirement, how to approach the requirement, and discusses implementing and using the system. Many government publications, directives, and instructionsmore » on the subject are listed in the publication.« less
Scheduling Policies for an Antiterrorist Surveillance System
2008-06-27
times; for example, see Reiman and Wein [17] and Olsen [15]. For real-time scheduling problems involving impatient customers, see Gaver et al. [2...heavy traffic with throughput time constraints: Asymptotically optimal dynamic controls. Queueing Systems 39, 23–54. 30 [17] Reiman , M. I. and Wein
Scheduler for monitoring objects orbiting earth using satellite-based telescopes
Olivier, Scot S; Pertica, Alexander J; Riot, Vincent J; De Vries, Willem H; Bauman, Brian J; Nikolaev, Sergei; Henderson, John R; Phillion, Donald W
2015-04-28
An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.
Decentralized Control of Scheduling in Distributed Systems.
1983-03-18
the job scheduling algorithm adapts to the changing busyness of the various hosts in the system. The environment in which the job scheduling entities...resources and processes that constitute the node and a set of interfaces for accessing these processes and resources. The structure of a node could change ...parallel. Chang [CHNG82] has also described some algorithms for detecting properties of general graphs by traversing paths in a graph in parallel. One of
Decentralized Control of Scheduling in Distributed Systems.
1983-12-15
does not perform quite as well as the 10 state system, but is less sensitive to changes in scheduling period. It performs best when scheduling is...intra-process concerns. We extend theLr concept of a process to inolude Inter -ress comunication. That is. various form of send and receive primitives...Current busyness of each site based on some responses to requests for bids. A received bid is utilization factor. adjusted by incrementing it by a
A Systems Engineering Approach for Global Fleet Station Alternatives in the Gulf of Guinea
2007-12-01
Understanding that many types of risk lie within categories such as cost, funding, management, political, production, and schedule , we may apply the... schedule , to the Gulf of Guinea beginning in October of 2007. USS FORT MCHENRY, an amphibious Landing Ship Dock (LSD), affords greater storage...Kerzner, Project Management: A Systems Approach to Planning, Scheduling , and Controlling (New Jersey: John Wiley & Sons, Inc., 2006), 724. 103 5
NASA Technical Reports Server (NTRS)
Chevalley, Eric; Parke, Bonny; Kraut, Josh M.; Bienert, Nancy; Omar, Faisal; Palmer, Everett A.
2015-01-01
In this paper, successful Time-Based Flow Management (TBFM) scheduling systems for arrivals are considered and adapted to apply to departures. We present a concept of operations that integrates Controller-Managed Spacing tools for departures (CMS-D) with existing tactical departure scheduling tools to coordinate demand at departure fixes in a metroplex environment. We tested our concept in a Human-in-the-Loop simulation and compared the effect of two scheduling conditions: 1) "Departure Scheduling" consisting of an emulation of the Integrated Departure and Arrival Capability (IDAC) where Towers and a Planner (Traffic Management Coordinator at the appropriate facility) coordinate aircraft scheduled takeoff times to departure fixes; and 2) "Arrival Sensitive Departure Scheduling" where, in addition, the Tower and Planner also consider arrival Scheduled Time of Arrivals (STAs) at the airport's dependent runway. Results indicate little difference between the two scheduling conditions, but a large difference between the No Tools and the two scheduling conditions with CMS-D tools. The scheduling/CMS-D tools conditions markedly reduced heading, speed clearances, and workload for controllers who were merging flows at the departure fixes. In the tool conditions, departure controllers conditioned departures earlier rather than later when aircraft were tied near the departure fixes. In the scheduling/CMS-D tools conditions, departures crossed the departure fixes 50 seconds earlier and with an 8% error rate (consisting of time ahead or behind desired time of arrival) compared to a 19% error rate in the No Tool condition. Two exploratory runs showed that similar beneficial effects can be obtained only with the CMS-D tools without scheduling takeoff times, but at the cost of a somewhat higher workload for controllers, indicating the benefits of pre-departure scheduling of aircraft with minimal delays. Hence, we found that CMS-D tools were very beneficial in the metroplex environment we tested but that further research is needed to clarify the benefits of the various scheduling approaches.
Autonomous Power System intelligent diagnosis and control
NASA Technical Reports Server (NTRS)
Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony
1991-01-01
The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.
Autonomous power system intelligent diagnosis and control
NASA Technical Reports Server (NTRS)
Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony
1991-01-01
The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.
Alternative Work Schedules Increase Employee Satisfaction.
ERIC Educational Resources Information Center
Turney, John R.; Cohen, Stanley L.
1983-01-01
Facets of alternative work schedules (AWS) are discussed: importance of employee control, possible negative consequences, AWS handbook, time monitoring systems, and treatment of exceptions. AWS' effect on productivity and motivation is examined. (SK)
A particle swarm model for estimating reliability and scheduling system maintenance
NASA Astrophysics Data System (ADS)
Puzis, Rami; Shirtz, Dov; Elovici, Yuval
2016-05-01
Modifying data and information system components may introduce new errors and deteriorate the reliability of the system. Reliability can be efficiently regained with reliability centred maintenance, which requires reliability estimation for maintenance scheduling. A variant of the particle swarm model is used to estimate reliability of systems implemented according to the model view controller paradigm. Simulations based on data collected from an online system of a large financial institute are used to compare three component-level maintenance policies. Results show that appropriately scheduled component-level maintenance greatly reduces the cost of upholding an acceptable level of reliability by reducing the need in system-wide maintenance.
ERIC Educational Resources Information Center
Montgomery, Thomas L.; And Others
1975-01-01
The technique of intermittent control systems for air quality control as developed and used by the Tennessee Valley Authority is investigated. Although controversial, all Tennessee Valley Authority sulfur dioxide elimination programs are scheduled to be operational this year. Existing or anticipated intermittent control systems are identified. (BT)
Design and Evaluation of the Terminal Area Precision Scheduling and Spacing System
NASA Technical Reports Server (NTRS)
Swenson, Harry N.; Thipphavong, Jane; Sadovsky, Alex; Chen, Liang; Sullivan, Chris; Martin, Lynne
2011-01-01
This paper describes the design, development and results from a high fidelity human-in-the-loop simulation of an integrated set of trajectory-based automation tools providing precision scheduling, sequencing and controller merging and spacing functions. These integrated functions are combined into a system called the Terminal Area Precision Scheduling and Spacing (TAPSS) system. It is a strategic and tactical planning tool that provides Traffic Management Coordinators, En Route and Terminal Radar Approach Control air traffic controllers the ability to efficiently optimize the arrival capacity of a demand-impacted airport while simultaneously enabling fuel-efficient descent procedures. The TAPSS system consists of four-dimensional trajectory prediction, arrival runway balancing, aircraft separation constraint-based scheduling, traffic flow visualization and trajectory-based advisories to assist controllers in efficient metering, sequencing and spacing. The TAPSS system was evaluated and compared to today's ATC operation through extensive series of human-in-the-loop simulations for arrival flows into the Los Angeles International Airport. The test conditions included the variation of aircraft demand from a baseline of today's capacity constrained periods through 5%, 10% and 20% increases. Performance data were collected for engineering and human factor analysis and compared with similar operations both with and without the TAPSS system. The engineering data indicate operations with the TAPSS show up to a 10% increase in airport throughput during capacity constrained periods while maintaining fuel-efficient aircraft descent profiles from cruise to landing.
ESSOPE: Towards S/C operations with reactive schedule planning
NASA Technical Reports Server (NTRS)
Wheadon, J.
1993-01-01
The ESSOPE is a prototype front-end tool running on a Sun workstation and interfacing to ESOC's MSSS spacecraft control system for the exchange of telecommand requests (to MSSS) and telemetry reports (from MSSS). ESSOPE combines an operations Planner-Scheduler, with a Schedule Execution Control function. Using an internal 'model' of the spacecraft, the Planner generates a schedule based on utilization requests for a variety of payload services by a community of Olympus users, and incorporating certain housekeeping operations. Conflicts based on operational constraints are automatically resolved, by employing one of several available strategies. The schedule is passed to the execution function which drives MSSS to perform it. When the schedule can no longer be met, either because the operator interferes (by delays or changes of requirements), or because ESSOPE has recognized some spacecraft anomalies, the Planner produces a modified schedule maintaining the on-going procedures as far as consistent with the new constraints or requirements.
A Model and Algorithms For a Software Evolution Control System
1993-12-01
dynamic scheduling approaches can be found in [67). Task scheduling can also be characterized as preemptive and nonpreemptive . A task is preemptive ...is NP-hard for both the preemptive and nonpreemptive cases [671 [84). Scheduling nonpreemptive tasks with arbitrary ready times is NP-hard in both...the preemptive and nonpreemptive cases [671 [841. Scheduling nonpreemptive tasks with arbitrary ready times is NP-hard in both multiprocessor and
Pitch Guidance Optimization for the Orion Abort Flight Tests
NASA Technical Reports Server (NTRS)
Stillwater, Ryan Allanque
2010-01-01
The National Aeronautics and Space Administration created the Constellation program to develop the next generation of manned space vehicles and launch vehicles. The Orion abort system is initiated in the event of an unsafe condition during launch. The system has a controller gains schedule that can be tuned to reduce the attitude errors between the simulated Orion abort trajectories and the guidance trajectory. A program was created that uses the method of steepest descent to tune the pitch gains schedule by an automated procedure. The gains schedule optimization was applied to three potential abort scenarios; each scenario tested using the optimized gains schedule resulted in reduced attitude errors when compared to the Orion production gains schedule.
The MSG Central Facility - A Mission Control System for Windows NT
NASA Astrophysics Data System (ADS)
Thompson, R.
The MSG Central Facility, being developed by Science Systems for EUMETSAT1, represents the first of a new generation of satellite mission control systems, based on the Windows NT operating system. The system makes use of a range of new technologies to provide an integrated environment for the planning, scheduling, control and monitoring of the entire Meteosat Second Generation mission. It supports packetised TM/TC and uses Science System's Space UNiT product to provide automated operations support at both Schedule (Timeline) and Procedure levels. Flexible access to historical data is provided through an operations archive based on ORACLE Enterprise Server, hosted on a large RAID array and off-line tape jukebox. Event driven real-time data distribution is based on the CORBA standard. Operations preparation and configuration control tools form a fully integrated element of the system.
Autonomous power expert system
NASA Technical Reports Server (NTRS)
Walters, Jerry L.; Petrik, Edward J.; Roth, Mary Ellen; Truong, Long Van; Quinn, Todd; Krawczonek, Walter M.
1990-01-01
The Autonomous Power Expert (APEX) system was designed to monitor and diagnose fault conditions that occur within the Space Station Freedom Electrical Power System (SSF/EPS) Testbed. APEX is designed to interface with SSF/EPS testbed power management controllers to provide enhanced autonomous operation and control capability. The APEX architecture consists of three components: (1) a rule-based expert system, (2) a testbed data acquisition interface, and (3) a power scheduler interface. Fault detection, fault isolation, justification of probable causes, recommended actions, and incipient fault analysis are the main functions of the expert system component. The data acquisition component requests and receives pertinent parametric values from the EPS testbed and asserts the values into a knowledge base. Power load profile information is obtained from a remote scheduler through the power scheduler interface component. The current APEX design and development work is discussed. Operation and use of APEX by way of the user interface screens is also covered.
Mission Operations Planning and Scheduling System (MOPSS)
NASA Technical Reports Server (NTRS)
Wood, Terri; Hempel, Paul
2011-01-01
MOPSS is a generic framework that can be configured on the fly to support a wide range of planning and scheduling applications. It is currently used to support seven missions at Goddard Space Flight Center (GSFC) in roles that include science planning, mission planning, and real-time control. Prior to MOPSS, each spacecraft project built its own planning and scheduling capability to plan satellite activities and communications and to create the commands to be uplinked to the spacecraft. This approach required creating a data repository for storing planning and scheduling information, building user interfaces to display data, generating needed scheduling algorithms, and implementing customized external interfaces. Complex scheduling problems that involved reacting to multiple variable situations were analyzed manually. Operators then used the results to add commands to the schedule. Each architecture was unique to specific satellite requirements. MOPSS is an expert system that automates mission operations and frees the flight operations team to concentrate on critical activities. It is easily reconfigured by the flight operations team as the mission evolves. The heart of the system is a custom object-oriented data layer mapped onto an Oracle relational database. The combination of these two technologies allows a user or system engineer to capture any type of scheduling or planning data in the system's generic data storage via a GUI.
NASA Technical Reports Server (NTRS)
Wong, Gregory L.; Denery, Dallas (Technical Monitor)
2000-01-01
The Dynamic Planner (DP) has been designed, implemented, and integrated into the Center-TRACON Automation System (CTAS) to assist Traffic Management Coordinators (TMCs), in real time, with the task of planning and scheduling arrival traffic approximately 35 to 200 nautical miles from the destination airport. The TMC may input to the DP a series of current and future scheduling constraints that reflect the operation and environmental conditions of the airspace. Under these constraints, the DP uses flight plans, track updates, and Estimated Time of Arrival (ETA) predictions to calculate optimal runway assignments and arrival schedules that help ensure an orderly, efficient, and conflict-free flow of traffic into the terminal area. These runway assignments and schedules can be shown directly to controllers or they can be used by other CTAS tools to generate advisories to the controllers. Additionally, the TMC and controllers may override the decisions made by the DP for tactical considerations. The DP will adapt to computations to accommodate these manual inputs.
Decision-theoretic control of EUVE telescope scheduling
NASA Technical Reports Server (NTRS)
Hansson, Othar; Mayer, Andrew
1993-01-01
This paper describes a decision theoretic scheduler (DTS) designed to employ state-of-the-art probabilistic inference technology to speed the search for efficient solutions to constraint-satisfaction problems. Our approach involves assessing the performance of heuristic control strategies that are normally hard-coded into scheduling systems and using probabilistic inference to aggregate this information in light of the features of a given problem. The Bayesian Problem-Solver (BPS) introduced a similar approach to solving single agent and adversarial graph search patterns yielding orders-of-magnitude improvement over traditional techniques. Initial efforts suggest that similar improvements will be realizable when applied to typical constraint-satisfaction scheduling problems.
Direct Digital Control of HVAC (Heating, Ventilating, and Air Conditioning).
1985-01-01
controller func- tions such as time-of-day, economizer cycles, reset, load shedding, chiller optimization , VAV fan synchronization, and optimum start/stop...control system such as that illustrated in Fig- urc 4. Data on setpoints , reset schedules, and event timing, such as that presented in Figure 6, are...program code (Figure 7). In addition to the control logic, setpoint and other data are readily available. Program logi:, setpoint and schedule data, and
Wave scheduling - Decentralized scheduling of task forces in multicomputers
NASA Technical Reports Server (NTRS)
Van Tilborg, A. M.; Wittie, L. D.
1984-01-01
Decentralized operating systems that control large multicomputers need techniques to schedule competing parallel programs called task forces. Wave scheduling is a probabilistic technique that uses a hierarchical distributed virtual machine to schedule task forces by recursively subdividing and issuing wavefront-like commands to processing elements capable of executing individual tasks. Wave scheduling is highly resistant to processing element failures because it uses many distributed schedulers that dynamically assign scheduling responsibilities among themselves. The scheduling technique is trivially extensible as more processing elements join the host multicomputer. A simple model of scheduling cost is used by every scheduler node to distribute scheduling activity and minimize wasted processing capacity by using perceived workload to vary decentralized scheduling rules. At low to moderate levels of network activity, wave scheduling is only slightly less efficient than a central scheduler in its ability to direct processing elements to accomplish useful work.
The role of the production scheduling system in rescheduling
NASA Astrophysics Data System (ADS)
Kalinowski, K.; Grabowik, C.; Kempa, W.; Paprocka, I.
2015-11-01
The paper presents the rescheduling problem in the context of cooperation between production scheduling system (PSS) and other units in an integrated manufacturing environment - decision makers and software systems. The main aim is to discuss the PSS functionality for maximizing automation of the rescheduling process, reducing the response time and improving the quality of generated solutions. PSSs operate in the meeting of tactical and operational level of planning and control, and play an important role in the production preparation and control. On the basis of information about orders, technology and production system state (e.g. resources availability) they prepare and/or update a detailed plan of production flow - a schedule. All necessary data for scheduling and rescheduling are usually collected in other systems both from organizational and technical production preparation, e.g. ERP, PLM, MES, CAPP or others, as well as they are entered directly by the decision- makers/operators. Data acquired in this way are often incomplete and inconsistent. Therefore the existing rescheduling software works according to interactive method - rather support but does not replace the human decision maker in tasks planning. When rescheduling, due to the limited amount of time to make a decision this interaction is particularly important. An additional problem arises in data acquisition, in the process of data exchanging between systems or in the identification of new data sources and their processing. Different approaches to rescheduling were characterized, including those solutions, where all these operations are carried out by an autonomous system and those in which scheduling is performed only upon request from the outside, for the newly created scheduling data representing the current state of the production system.
Toward an Autonomous Telescope Network: the TBT Scheduler
NASA Astrophysics Data System (ADS)
Racero, E.; Ibarra, A.; Ocaña, F.; de Lis, S. B.; Ponz, J. D.; Castillo, M.; Sánchez-Portal, M.
2015-09-01
Within the ESA SSA program, it is foreseen to deploy several robotic telescopes to provide surveillance and tracking services for hazardous objects. The TBT project will procure a validation platform for an autonomous optical observing system in a realistic scenario, consisting of two telescopes located in Spain and Australia, to collect representative test data for precursor SSA services. In this context, the planning and scheduling of the night consists of two software modules, the TBT Scheduler, that will allow the manual and autonomous planning of the night, and the control of the real-time response of the system, done by the RTS2 internal scheduler. The TBT Scheduler allocates tasks for both telescopes without human intervention. Every night it takes all the inputs needed and prepares the schedule following some predefined rules. The main purpose of the scheduler is the distribution of the time for follow-up of recently discovered targets and surveys. The TBT Scheduler considers the overall performance of the system, and combine follow-up with a priori survey strategies for both kind of objects. The strategy is defined according to the expected combined performance for both systems the upcoming night (weather, sky brightness, object accessibility and priority). Therefore, TBT Scheduler defines the global approach for the network and relies on the RTS2 internal scheduler for the final detailed distribution of tasks at each sensor.
Evaluation of the Terminal Precision Scheduling and Spacing System for Near-Term NAS Application
NASA Technical Reports Server (NTRS)
Thipphavong, Jane; Martin, Lynne Hazel; Swenson, Harry N.; Lin, Paul; Nguyen, Jimmy
2012-01-01
NASA has developed a capability for terminal area precision scheduling and spacing (TAPSS) to provide higher capacity and more efficiently manage arrivals during peak demand periods. This advanced technology is NASA's vision for the NextGen terminal metering capability. A set of human-in-the-loop experiments was conducted to evaluate the performance of the TAPSS system for near-term implementation. The experiments evaluated the TAPSS system under the current terminal routing infrastructure to validate operational feasibility. A second goal of the study was to measure the benefit of the Center and TRACON advisory tools to help prioritize the requirements for controller radar display enhancements. Simulation results indicate that using the TAPSS system provides benefits under current operations, supporting a 10% increase in airport throughput. Enhancements to Center decision support tools had limited impact on improving the efficiency of terminal operations, but did provide more fuel-efficient advisories to achieve scheduling conformance within 20 seconds. The TRACON controller decision support tools were found to provide the most benefit, by improving the precision in schedule conformance to within 20 seconds, reducing the number of arrivals having lateral path deviations by 50% and lowering subjective controller workload. Overall, the TAPSS system was found to successfully develop an achievable terminal arrival metering plan that was sustainable under heavy traffic demand levels and reduce the complexity of terminal operations when coupled with the use of the terminal controller advisory tools.
Contingency rescheduling of spacecraft operations
NASA Technical Reports Server (NTRS)
Britt, Daniel L.; Geoffroy, Amy L.; Gohring, John R.
1988-01-01
Spacecraft activity scheduling was a focus of attention in artificial intelligence recently. Several scheduling systems were devised which more-or-less successfully address various aspects of the activity scheduling problem, though most of these are not yet mature, with the notable expection of NASA's ESP. Few current scheduling systems, however, make any attempt to deal fully with the problem of modifying a schedule in near-real-time in the event of contingencies which may arise during schedule execution. These contingencies can include resources becoming unavailable unpredictably, a change in spacecraft conditions or environment, or the need to perform an activity not scheduled. In these cases it becomes necessary to repair an existing schedule, disrupting ongoing operations as little as possible. Normal scheduling is just a part of that which must be accomplished during contingency rescheduling. A prototype system named MAESTRO was developed for spacecraft activity scheduling. MAESTRO is briefly described with a focus on recent work in the area of real-time contingency handling. Included is a discussion of some of the complexities of the scheduling problem and how they affect contingency rescheduling, such as temporal constraints between activities, activities which may be interrupted and continued in any of several ways, and different ways to choose a resource complement which will allow continuation of an activity. Various heuristics used in MAESTRO for contingency rescheduling is discussed, as are operational concerns such as interaction of the scheduler with spacecraft subsystems controllers.
How to Choose a Media Retrieval System.
ERIC Educational Resources Information Center
Huber, Joe
1995-01-01
Provides guidelines for schools choosing a media retrieval system. Topics include broadband, baseband, coaxial cable, or fiber optic decisions; the control network; selecting scheduling software; presentation software; device control; control from the classroom; and a comparison of systems offered by five companies. (LRW)
Design Considerations for a New Terminal Area Arrival Scheduler
NASA Technical Reports Server (NTRS)
Thipphavong, Jane; Mulfinger, Daniel
2010-01-01
Design of a terminal area arrival scheduler depends on the interrelationship between throughput, delay and controller intervention. The main contribution of this paper is an analysis of the above interdependence for several stochastic behaviors of expected system performance distributions in the aircraft s time of arrival at the meter fix and runway. Results of this analysis serve to guide the scheduler design choices for key control variables. Two types of variables are analyzed, separation buffers and terminal delay margins. The choice for these decision variables was tested using sensitivity analysis. Analysis suggests that it is best to set the separation buffer at the meter fix to its minimum and adjust the runway buffer to attain the desired system performance. Delay margin was found to have the least effect. These results help characterize the variables most influential in the scheduling operations of terminal area arrivals.
Gain-scheduling multivariable LPV control of an irrigation canal system.
Bolea, Yolanda; Puig, Vicenç
2016-07-01
The purpose of this paper is to present a multivariable linear parameter varying (LPV) controller with a gain scheduling Smith Predictor (SP) scheme applicable to open-flow canal systems. This LPV controller based on SP is designed taking into account the uncertainty in the estimation of delay and the variation of plant parameters according to the operating point. This new methodology can be applied to a class of delay systems that can be represented by a set of models that can be factorized into a rational multivariable model in series with left/right diagonal (multiple) delays, such as, the case of irrigation canals. A multiple pool canal system is used to test and validate the proposed control approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
In-Space Crew-Collaborative Task Scheduling
NASA Technical Reports Server (NTRS)
Jaap, John; Meyer, Patrick; Davis, Elizabeth; Richardson, Lea
2006-01-01
As humans venture farther from Earth for longer durations, it will become essential for those on the journey to have significant control over the scheduling of their own activities as well as the activities of their companion systems and robots. However, the crew will not do all the scheduling; timelines will be the result of collaboration with ground personnel. Emerging technologies such as in-space message buses, delay-tolerant networks, and in-space internet will be the carriers on which the collaboration rides. Advances in scheduling technology, in the areas of task modeling, scheduling engines, and user interfaces will allow the crew to become virtual scheduling experts. New concepts of operations for producing the timeline will allow the crew and the ground support to collaborate while providing safeguards to ensure that the mission will be effectively accomplished without endangering the systems or personnel.
Landa, Robin; Hanley, Gregory P
2016-06-01
Using procedures similar to those of Tiger, Hanley, and Heal (2006), we compared two multiple-schedule variations (S+/S- and S+ only) to treat high-rate requests for edible items in the Picture Exchange Communication System (PECS). Two individuals with autism participated, after they showed persistent requests for edible items after PECS training. Stimulus control was achieved only with the multiple schedule that involved presentation of a discriminative stimulus during reinforcement components and its removal during extinction components (S+ only). Discriminated requests were maintained for the 1 participant who experienced schedule thinning. © 2016 Society for the Experimental Analysis of Behavior.
Resource Management in Constrained Dynamic Situations
NASA Astrophysics Data System (ADS)
Seok, Jinwoo
Resource management is considered in this dissertation for systems with limited resources, possibly combined with other system constraints, in unpredictably dynamic environments. Resources may represent fuel, power, capabilities, energy, and so on. Resource management is important for many practical systems; usually, resources are limited, and their use must be optimized. Furthermore, systems are often constrained, and constraints must be satisfied for safe operation. Simplistic resource management can result in poor use of resources and failure of the system. Furthermore, many real-world situations involve dynamic environments. Many traditional problems are formulated based on the assumptions of given probabilities or perfect knowledge of future events. However, in many cases, the future is completely unknown, and information on or probabilities about future events are not available. In other words, we operate in unpredictably dynamic situations. Thus, a method is needed to handle dynamic situations without knowledge of the future, but few formal methods have been developed to address them. Thus, the goal is to design resource management methods for constrained systems, with limited resources, in unpredictably dynamic environments. To this end, resource management is organized hierarchically into two levels: 1) planning, and 2) control. In the planning level, the set of tasks to be performed is scheduled based on limited resources to maximize resource usage in unpredictably dynamic environments. In the control level, the system controller is designed to follow the schedule by considering all the system constraints for safe and efficient operation. Consequently, this dissertation is mainly divided into two parts: 1) planning level design, based on finite state machines, and 2) control level methods, based on model predictive control. We define a recomposable restricted finite state machine to handle limited resource situations and unpredictably dynamic environments for the planning level. To obtain a policy, dynamic programing is applied, and to obtain a solution, limited breadth-first search is applied to the recomposable restricted finite state machine. A multi-function phased array radar resource management problem and an unmanned aerial vehicle patrolling problem are treated using recomposable restricted finite state machines. Then, we use model predictive control for the control level, because it allows constraint handling and setpoint tracking for the schedule. An aircraft power system management problem is treated that aims to develop an integrated control system for an aircraft gas turbine engine and electrical power system using rate-based model predictive control. Our results indicate that at the planning level, limited breadth-first search for recomposable restricted finite state machines generates good scheduling solutions in limited resource situations and unpredictably dynamic environments. The importance of cooperation in the planning level is also verified. At the control level, a rate-based model predictive controller allows good schedule tracking and safe operations. The importance of considering the system constraints and interactions between the subsystems is indicated. For the best resource management in constrained dynamic situations, the planning level and the control level need to be considered together.
A Report by the NEHA Air Pollution Committee
ERIC Educational Resources Information Center
Kirkpatrick, Lane
1972-01-01
Transportation controls to reduce air pollution are elaborated. These include: traffic control, parking restrictions, retrofit systems, testing and inspection, gaseous fuel systems, improved public transportation, and work schedule changes. (BL)
NASA Technical Reports Server (NTRS)
Jaap, John; Muery, Kim
2000-01-01
Scheduling engines are found at the core of software systems that plan and schedule activities and resources. A Request-Oriented Scheduling Engine (ROSE) is one that processes a single request (adding a task to a timeline) and then waits for another request. For the International Space Station, a robust ROSE-based system would support multiple, simultaneous users, each formulating requests (defining scheduling requirements), submitting these requests via the internet to a single scheduling engine operating on a single timeline, and immediately viewing the resulting timeline. ROSE is significantly different from the engine currently used to schedule Space Station operations. The current engine supports essentially one person at a time, with a pre-defined set of requirements from many payloads, working in either a "batch" scheduling mode or an interactive/manual scheduling mode. A planning and scheduling process that takes advantage of the features of ROSE could produce greater customer satisfaction at reduced cost and reduced flow time. This paper describes a possible ROSE-based scheduling process and identifies the additional software component required to support it. Resulting changes to the management and control of the process are also discussed.
Zou, Lei; Wang, Zidong; Gao, Huijun; Alsaadi, Fuad E
2017-03-31
This paper is concerned with the distributed H∞ consensus control problem for a discrete time-varying multiagent system with the stochastic communication protocol (SCP). A directed graph is used to characterize the communication topology of the multiagent network. The data transmission between each agent and the neighboring ones is implemented via a constrained communication channel where only one neighboring agent is allowed to transmit data at each time instant. The SCP is applied to schedule the signal transmission of the multiagent system. A sequence of random variables is utilized to capture the scheduling behavior of the SCP. By using the mapping technology combined with the Hadamard product, the closed-loop multiagent system is modeled as a time-varying system with a stochastic parameter matrix. The purpose of the addressed problem is to design a cooperative controller for each agent such that, for all probabilistic scheduling behaviors, the H∞ consensus performance is achieved over a given finite horizon for the closed-loop multiagent system. A necessary and sufficient condition is derived to ensure the H∞ consensus performance based on the completing squares approach and the stochastic analysis technique. Then, the controller parameters are obtained by solving two coupled backward recursive Riccati difference equations. Finally, a numerical example is given to illustrate the effectiveness of the proposed controller design scheme.
TEAM (Technologies Enabling Agile Manufacturing) shop floor control requirements guide: Version 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-03-28
TEAM will create a shop floor control system (SFC) to link the pre-production planning to shop floor execution. SFC must meet the requirements of a multi-facility corporation, where control must be maintained between co-located facilities down to individual workstations within each facility. SFC must also meet the requirements of a small corporation, where there may only be one small facility. A hierarchical architecture is required to meet these diverse needs. The hierarchy contains the following levels: Enterprise, Factory, Cell, Station, and Equipment. SFC is focused on the top three levels. Each level of the hierarchy is divided into three basicmore » functions: Scheduler, Dispatcher, and Monitor. The requirements of each function depend on the hierarchical level in which it is to be used. For example, the scheduler at the Enterprise level must allocate production to individual factories and assign due-dates; the scheduler at the Cell level must provide detailed start and stop times of individual operations. Finally the system shall have the following features: distributed and open-architecture. Open architecture software is required in order that the appropriate technology be used at each level of the SFC hierarchy, and even at different instances within the same hierarchical level (for example, Factory A uses discrete-event simulation scheduling software, and Factory B uses an optimization-based scheduler). A distributed implementation is required to reduce the computational burden of the overall system, and allow for localized control. A distributed, open-architecture implementation will also require standards for communication between hierarchical levels.« less
NASA Technical Reports Server (NTRS)
Larsen, D. Gail; Schwieder, Paul R.
1993-01-01
Network video conferencing is advancing rapidly throughout the nation, and the Idaho National Engineering Laboratory (INEL), a Department of Energy (DOE) facility, is at the forefront of the development. Engineers at INEL/EG&G designed and installed a very unique DOE videoconferencing system, offering many outstanding features, that include true multipoint conferencing, user-friendly design and operation with no full-time operators required, and the potential for cost effective expansion of the system. One area where INEL/EG&G engineers made a significant contribution to video conferencing was in the development of effective, user-friendly, end station driven scheduling software. A PC at each user site is used to schedule conferences via a windows package. This software interface provides information to the users concerning conference availability, scheduling, initiation, and termination. The menus are 'mouse' controlled. Once a conference is scheduled, a workstation at the hubs monitors the network to initiate all scheduled conferences. No active operator participation is required once a user schedules a conference through the local PC; the workstation automatically initiates and terminates the conference as scheduled. As each conference is scheduled, hard copy notification is also printed at each participating site. Video conferencing is the wave of the future. The use of these user-friendly systems will save millions in lost productivity and travel cost throughout the nation. The ease of operation and conference scheduling will play a key role on the extent industry uses this new technology. The INEL/EG&G has developed a prototype scheduling system for both commercial and federal government use.
NASA Astrophysics Data System (ADS)
Larsen, D. Gail; Schwieder, Paul R.
1993-02-01
Network video conferencing is advancing rapidly throughout the nation, and the Idaho National Engineering Laboratory (INEL), a Department of Energy (DOE) facility, is at the forefront of the development. Engineers at INEL/EG&G designed and installed a very unique DOE videoconferencing system, offering many outstanding features, that include true multipoint conferencing, user-friendly design and operation with no full-time operators required, and the potential for cost effective expansion of the system. One area where INEL/EG&G engineers made a significant contribution to video conferencing was in the development of effective, user-friendly, end station driven scheduling software. A PC at each user site is used to schedule conferences via a windows package. This software interface provides information to the users concerning conference availability, scheduling, initiation, and termination. The menus are 'mouse' controlled. Once a conference is scheduled, a workstation at the hubs monitors the network to initiate all scheduled conferences. No active operator participation is required once a user schedules a conference through the local PC; the workstation automatically initiates and terminates the conference as scheduled. As each conference is scheduled, hard copy notification is also printed at each participating site. Video conferencing is the wave of the future. The use of these user-friendly systems will save millions in lost productivity and travel cost throughout the nation. The ease of operation and conference scheduling will play a key role on the extent industry uses this new technology. The INEL/EG&G has developed a prototype scheduling system for both commercial and federal government use.
NASA Astrophysics Data System (ADS)
Larsen, D. G.; Schwieder, P. R.
Network video conferencing is advancing rapidly throughout the nation, and the Idaho National Engineering Laboratory (INEL), a Department of Energy (DOE) facility, is at the forefront of the development. Engineers at INEL/EG&G designed and installed a very unique DOE video conferencing system, offering many outstanding features, that include true multipoint conferencing, user-friendly design and operation with no full-time operators required, and the potential for cost effective expansion of the system. One area where INEL/EG&G engineers made a significant contribution to video conferencing was in the development of effective, user-friendly, end station driven scheduling software. A PC at each user site is used to schedule conferences via a windows package. This software interface provides information to the users concerning conference availability, scheduling, initiation, and termination. The menus are 'mouse' controlled. Once a conference is scheduled, a workstation at the hub monitors the network to initiate all scheduled conferences. No active operator participation is required once a user schedules a conference through the local PC; the workstation automatically initiates and terminates the conference as scheduled. As each conference is scheduled, hard copy notification is also printed at each participating site. Video conferencing is the wave of the future. The use of these user-friendly systems will save millions in lost productivity and travel costs throughout the nation. The ease of operation and conference scheduling will play a key role on the extent industry uses this new technology. The INEL/EG&G has developed a prototype scheduling system for both commercial and federal government use.
Logistics Management: Cases Studies,
LOGISTICS , * MANAGEMENT PLANNING AND CONTROL), DECISION MAKING, INVENTORY CONTROL, SPARE PARTS, AIR FORCE EQUIPMENT, NAVAL AIRCRAFT, MAINTENANCE, DEPLOYMENT, SCHEDULING, SYSTEMS ENGINEERING, TEXTBOOKS
Liu, Shichao; Liu, Xiaoping P; El Saddik, Abdulmotaleb
2014-03-01
In this paper, we investigate the modeling and distributed control problems for the load frequency control (LFC) in a smart grid. In contrast with existing works, we consider more practical and real scenarios, where the communication topology of the smart grid changes because of either link failures or packet losses. These topology changes are modeled as a time-varying communication topology matrix. By using this matrix, a new closed-loop power system model is proposed to integrate the communication topology changes into the dynamics of a physical power system. The globally asymptotical stability of this closed-loop power system is analyzed. A distributed gain scheduling LFC strategy is proposed to compensate for the potential degradation of dynamic performance (mean square errors of state vectors) of the power system under communication topology changes. In comparison to conventional centralized control approaches, the proposed method can improve the robustness of the smart grid to the variation of the communication network as well as to reduce computation load. Simulation results show that the proposed distributed gain scheduling approach is capable to improve the robustness of the smart grid to communication topology changes. © 2013 ISA. Published by ISA. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, NaiQi; Zhu, MengChu; Bai, LiPing; Li, ZhiWu
2016-07-01
In some refineries, storage tanks are located at two different sites, one for low-fusion-point crude oil and the other for high one. Two pipelines are used to transport different oil types. Due to the constraints resulting from the high-fusion-point oil transportation, it is challenging to schedule such a system. This work studies the scheduling problem from a control-theoretic perspective. It proposes to use a hybrid Petri net method to model the system. It then finds the schedulability conditions by analysing the dynamic behaviour of the net model. Next, it proposes an efficient scheduling method to minimize the cost of high-fusion-point oil transportation. Finally, it gives a complex industrial case study to show its application.
Gauger, Paul G; Davis, Janice W; Orr, Peter J
2002-09-01
Administration of graduate medical education programs has become more difficult as compliance with ACGME work guidelines has assumed increased importance. These guidelines have caused many changes in the resident work environment, including the emergence of complicated cross-cover arrangements. Many participating residents (each with his or her own individual scheduling requirements) usually generate these schedules. Accordingly, schedules are often not submitted in a timely fashion and they may not be in compliance with the ACGME guidelines for maximum on-call assignments and mandatory days off. Our objective was the establishment of a Web-based system that guides residents in creating on-call schedules that follow ACGME guidelines while still allowing maximum flexibility -- thus allowing each resident to maintain an internal locus of control. A versatile and scalable system with password-protected user (resident) and administrator interfaces was created. An entire academic year is included, and past months and years are automatically archived. The residents log on within the first 15 days of the preceding month and choose their positions in a schedule template. They then make adjustments while receiving immediate summary feedback on compliance with ACGME guidelines. The schedule is electronically submitted to the educational administrator for final approval. If a cross-cover system is required, the program automatically generates an optimal schedule using both of the approved participating service schedules. The residents then have an additional five-day period to make adjustments in the cross-cover schedule while still receiving compliance feedback. The administrator again provides final approval electronically. The communication interface automatically pages or e-mails the residents when schedules are updated or approved. Since the information exists in a relational database, simple reporting tools are included to extract the information necessary to generate records for institutional GME management. Implementation of this program has been met with great enthusiasm from the institutional stakeholders. Specifically, residents have embraced the ability to directly control their schedules and have gained appreciation for the regulatory matrix in which they function. Institutional administrators have praised the improvement in compliance and the ease of documentation. We anticipate that the system will also meet with approval from reviewing regulatory bodies, as it generates and stores accurate information about the resident work environment. This program is robust and versatile enough to be modified for any GME training program in the country.
Remote Collaboration on Task Scheduling for Humans at Mars
NASA Technical Reports Server (NTRS)
Jaap, John; Meyer, Patrick; Davis, Elizabeth; Richardson, Lea
2006-01-01
As humans venture farther from Earth for longer durations, it will become essential for those on the journey to have significant control over the scheduling of their own activities as well as the activities of their companion systems and robots. However, the crew will not do all the scheduling; timelines will be the result of collaboration with ground personnel. Emerging technologies such as in-space message buses, delay-tolerant networks, and in-space internet will be the carriers on which the collaboration rides. Advances in scheduling technology, in the areas of task modeling, scheduling engines, and user interfaces will allow the crew to become virtual scheduling experts. New concepts of operations for producing the timeline will allow the crew and the ground support to collaborate while providing safeguards to ensure that the mission will be effectively accomplished without endangering the systems or personnel.
In-Space Crew-Collaborative Task Scheduling
NASA Technical Reports Server (NTRS)
Jaap, John; Meyer, Patrick; Davis, Elizabeth; Richardson, Lea
2006-01-01
As humans venture farther from earth for longer durations, it will become essential for those on the journey to have significant control over the scheduling of their own activities as well as the activities of their companion systems and robots. However, there are many reasons why the crew will not do all the scheduling; timelines will be the result of collaboration with ground personnel. Emerging technologies such as in-space message buses, delay-tolerant networks, and in-space internet will be the carriers on which the collaboration rides. Advances in scheduling technology, in the areas of task modeling, scheduling engines, and user interfaces will allow the crew to become virtual scheduling experts. New concepts of operations for producing the timeline will allow the crew and the ground support to collaborate while providing safeguards to ensure that the mission will be effectively accomplished without endangering the systems or personnel.
Tug fleet and ground operations schedules and controls. Volume 2: part 1
NASA Technical Reports Server (NTRS)
1975-01-01
This Tug Fleet and Ground Operations Schedules and Controls Study addresses both ground operational data and technical requirements that span the Tug planning phase and operations phase. A similar study covering mission operations (by others) provides the complimentary flight operations details. The two studies provide the planning data requirements, resource allocation, and control milestones for supporting the requirements of the STS program. This Tug Fleet and Ground Operations Schedules and Controls Study incorporates the basic ground operations requirements and concepts provided by previous studies with the interrelationships of the planning, IUS transition, and Tug fleet operations phases. The interrelationships of these phases were studied as a system to optimize overall program benefits and minimize operational risk factors.
Simulation of time-control procedures for terminal area flow management
NASA Technical Reports Server (NTRS)
Alcabin, M.; Erzberger, H.; Tobias, L.; Obrien, P. J.
1985-01-01
Simulations of a terminal area traffic-management system incorporating automated scheduling and time-control (four-dimensional) techniques conducted at NASA Ames Research Center jointly with the Federal Aviation Administration, have shown that efficient procedures can be developed for handling a mix of 4D-equipped and conventionally equipped aircraft. A crucial role in this system is played by an ATC host computer algorithm, referred to as a speed advisory, that allows controllers to maintain accurate time schedules of the conventionally equipped aircraft in the traffic mix. Results are of the most recent simulations in which two important special cases were investigated. First, the effects of a speed advisory on touchdown time scheduling are examined, when unequipped aircraft are constrained to follow fuel-optimized profiles in the near-terminal area, and rescheduling procedures are developed to handle missed approaches of 4D-equipped aircraft. Various performance measures, including controller opinion, are used to evaluate the effectiveness of the procedures.
Epstein, R H; Dexter, F
2000-08-01
Operating room (OR) scheduling information systems can decrease perioperative labor costs. Material management information systems can decrease perioperative inventory costs. We used computer simulation to investigate whether using the OR schedule to trigger purchasing of perioperative supplies is likely to further decrease perioperative inventory costs, as compared with using sophisticated, stand-alone material management inventory control. Although we designed the simulations to favor financially linking the information systems, we found that this strategy would be expected to decrease inventory costs substantively only for items of high price ($1000 each) and volume (>1000 used each year). Because expensive items typically have different models and sizes, each of which is used by a hospital less often than this, for almost all items there will be no benefit to making daily adjustments to the order volume based on booked cases. We conclude that, in a hospital with a sophisticated material management information system, OR managers will probably achieve greater cost reductions from focusing on negotiating less expensive purchase prices for items than on trying to link the OR information system with the hospital's material management information system to achieve just-in-time inventory control. In a hospital with a sophisticated material management information system, operating room managers will probably achieve greater cost reductions from focusing on negotiating less expensive purchase prices for items than on trying to link the operating room information system with the hospital's material management information system to achieve just-in-time inventory control.
Performance and control study of a low-pressure-ratio turbojet engine for a drone aircraft
NASA Technical Reports Server (NTRS)
Seldner, K.; Geyser, L. C.; Gold, H.; Walker, D.; Burgner, G.
1972-01-01
The results of analog and digital computer studies of a low-pressure-ratio turbojet engine system for use in a drone vehicle are presented. The turbojet engine consists of a four-stage axial compressor, single-stage turbine, and a fixed area exhaust nozzle. Three simplified fuel schedules and a generalized parameter fuel control for the engine system are presented and evaluated. The evaluation is based on the performance of each schedule or control during engine acceleration from a windmill start at Mach 0.8 and 6100 meters to 100 percent corrected speed. It was found that, because of the higher acceleration margin permitted by the control, the generalized parameter control exhibited the best dynamic performance.
Tethered satellite system dynamics and control
NASA Technical Reports Server (NTRS)
Musetti, B.; Cibrario, B.; Bussolino, L.; Bodley, C. S.; Flanders, H. A.; Mowery, D. K.; Tomlin, D. D.
1990-01-01
The first tethered satellite system, scheduled for launch in May 1991, is reviewed. The system dynamics, dynamics control, and dynamics simulations are discussed. Particular attention is given to in-plane and out-of-plane librations; tether oscillation modes; orbiter and sub-satellite dynamics; deployer control system; the sub-satellite attitude measurement and control system; the Aeritalia Dynamics Model; the Martin-Marietta and NASA-MSFC Dynamics Model; and simulation results.
Magnetospheric MultiScale (MMS) System Manager
NASA Technical Reports Server (NTRS)
Schiff, Conrad; Maher, Francis Alfred; Henely, Sean Philip; Rand, David
2014-01-01
The Magnetospheric MultiScale (MMS) mission is an ambitious NASA space science mission in which 4 spacecraft are flown in tight formation about a highly elliptical orbit. Each spacecraft has multiple instruments that measure particle and field compositions in the Earths magnetosphere. By controlling the members relative motion, MMS can distinguish temporal and spatial fluctuations in a way that a single spacecraft cannot.To achieve this control, 2 sets of four maneuvers, distributed evenly across the spacecraft must be performed approximately every 14 days. Performing a single maneuver on an individual spacecraft is usually labor intensive and the complexity becomes clearly increases with four. As a result, the MMS flight dynamics team turned to the System Manager to put the routine or error-prone under machine control freeing the analysts for activities that require human judgment.The System Manager is an expert system that is capable of handling operations activities associated with performing MMS maneuvers. As an expert system, it can work off a known schedule, launching jobs based on a one-time occurrence or on a set reoccurring schedule. It is also able to detect situational changes and use event-driven programming to change schedules, adapt activities, or call for help.
Surface Movement Guidance and Control System
DOT National Transportation Integrated Search
1996-12-12
This Advisory Circular (AC) describes the standards and provides guidance in the : development of a Surface Movement Guidance and Control System (SMGCS) plan for : U.S. airports where scheduled Air Carriers are authorized to conduct operations : when...
Real-time operating system timing jitter and its impact on motor control
NASA Astrophysics Data System (ADS)
Proctor, Frederick M.; Shackleford, William P.
2001-12-01
General-purpose microprocessors are increasingly being used for control applications due to their widespread availability and software support for non-control functions like networking and operator interfaces. Two classes of real-time operating systems (RTOS) exist for these systems. The traditional RTOS serves as the sole operating system, and provides all OS services. Examples include ETS, LynxOS, QNX, Windows CE and VxWorks. RTOS extensions add real-time scheduling capabilities to non-real-time OSes, and provide minimal services needed for the time-critical portions of an application. Examples include RTAI and RTL for Linux, and HyperKernel, OnTime and RTX for Windows NT. Timing jitter is an issue in these systems, due to hardware effects such as bus locking, caches and pipelines, and software effects from mutual exclusion resource locks, non-preemtible critical sections, disabled interrupts, and multiple code paths in the scheduler. Jitter is typically on the order of a microsecond to a few tens of microseconds for hard real-time operating systems, and ranges from milliseconds to seconds in the worst case for soft real-time operating systems. The question of its significance on the performance of a controller arises. Naturally, the smaller the scheduling period required for a control task, the more significant is the impact of timing jitter. Aside from this intuitive relationship is the greater significance of timing on open-loop control, such as for stepper motors, than for closed-loop control, such as for servo motors. Techniques for measuring timing jitter are discussed, and comparisons between various platforms are presented. Techniques to reduce jitter or mitigate its effects are presented. The impact of jitter on stepper motor control is analyzed.
System and method for optimal load and source scheduling in context aware homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shetty, Pradeep; Foslien Graber, Wendy; Mangsuli, Purnaprajna R.
A controller for controlling energy consumption in a home includes a constraints engine to define variables for multiple appliances in the home corresponding to various home modes and persona of an occupant of the home. A modeling engine models multiple paths of energy utilization of the multiple appliances to place the home into a desired state from a current context. An optimal scheduler receives the multiple paths of energy utilization and generates a schedule as a function of the multiple paths and a selected persona to place the home in a desired state.
Assessment of Delivery Accuracy in an Operational-Like Environment
NASA Technical Reports Server (NTRS)
Sharma, Shivanjli; Wynnyk, Mitch
2016-01-01
In order to enable arrival management concepts and solutions in a Next Generation Air Transportation System (NextGen) environment, ground-based sequencing and scheduling functions were developed to support metering operations in the National Airspace System. These sequencing and scheduling tools are designed to assist air traffic controllers in developing an overall arrival strategy, from enroute down to the terminal area boundary. NASA developed a ground system concept and protoype capability called Terminal Sequencing and Spacing (TSAS) to extend metering operations into the terminal area to the runway. To demonstrate the use of these scheduling and spacing tools in an operational-like environment, the FAA, NASA, and MITRE conducted an Operational Integration Assessment (OIA) of a prototype TSAS system at the FAA's William J. Hughes Technical Center (WJHTC). This paper presents an analysis of the arrival management strategies utilized and delivery accuracy achieved during the OIA. The analysis demonstrates how en route preconditioning, in various forms, and schedule disruptions impact delivery accuracy. As the simulation spanned both enroute and terminal airspace, the use of Ground Interval Management - Spacing (GIM-S) enroute speed advisories was investigated. Delivery accuracy was measured as the difference between the Scheduled Time of Arrival (STA) and the Actual Time of Arrival (ATA). The delivery accuracy was computed across all runs conducted during the OIA, which included deviations from nominal operations which are known to commonly occur in real operations, such as schedule changes and missed approaches. Overall, 83% of all flights were delivered into the terminal airspace within +/- 30 seconds of their STA and 94% of flights were delivered within +/- 60 seconds. The meter fix delivery accuracy standard deviation was found to be between 36 and 55 seconds across all arrival procedures. The data also showed when schedule disruptions were excluded, the percentage of aircraft delivered within +/- 30 seconds was between 85 and 90% across the various arrival procedures at the meter fix. This paper illustrates the ability to meet new delivery accuracy requirements in an operational-like environment using operational systems and NATCA controller participants, while also including common events that might cause disruptions to the schedule and overall system.
Anchorage Arrival Scheduling Under Off-Nominal Weather Conditions
NASA Technical Reports Server (NTRS)
Grabbe, Shon; Chan, William N.; Mukherjee, Avijit
2012-01-01
Weather can cause flight diversions, passenger delays, additional fuel consumption and schedule disruptions at any high volume airport. The impacts are particularly acute at the Ted Stevens Anchorage International Airport in Anchorage, Alaska due to its importance as a major international portal. To minimize the impacts due to weather, a multi-stage scheduling process is employed that is iteratively executed, as updated aircraft demand and/or airport capacity data become available. The strategic scheduling algorithm assigns speed adjustments for flights that originate outside of Anchorage Center to achieve the proper demand and capacity balance. Similarly, an internal departure-scheduling algorithm assigns ground holds for pre-departure flights that originate from within Anchorage Center. Tactical flight controls in the form of airborne holding are employed to reactively account for system uncertainties. Real-world scenarios that were derived from the January 16, 2012 Anchorage visibility observations and the January 12, 2012 Anchorage arrival schedule were used to test the initial implementation of the scheduling algorithm in fast-time simulation experiments. Although over 90% of the flights in the scenarios arrived at Anchorage without requiring any delay, pre-departure scheduling was the dominant form of control for Anchorage arrivals. Additionally, tactical scheduling was used extensively in conjunction with the pre-departure scheduling to reactively compensate for uncertainties in the arrival demand. For long-haul flights, the strategic scheduling algorithm performed best when the scheduling horizon was greater than 1,000 nmi. With these long scheduling horizons, it was possible to absorb between ten and 12 minutes of delay through speed control alone. Unfortunately, the use of tactical scheduling, which resulted in airborne holding, was found to increase as the strategic scheduling horizon increased because of the additional uncertainty in the arrival times of the aircraft. Findings from these initial experiments indicate that it is possible to schedule arrivals into Anchorage with minimal delays under low-visibility conditions with less disruption to high-cost, international flights.
A Network Scheduling Model for Distributed Control Simulation
NASA Technical Reports Server (NTRS)
Culley, Dennis; Thomas, George; Aretskin-Hariton, Eliot
2016-01-01
Distributed engine control is a hardware technology that radically alters the architecture for aircraft engine control systems. Of its own accord, it does not change the function of control, rather it seeks to address the implementation issues for weight-constrained vehicles that can limit overall system performance and increase life-cycle cost. However, an inherent feature of this technology, digital communication networks, alters the flow of information between critical elements of the closed-loop control. Whereas control information has been available continuously in conventional centralized control architectures through virtue of analog signaling, moving forward, it will be transmitted digitally in serial fashion over the network(s) in distributed control architectures. An underlying effect is that all of the control information arrives asynchronously and may not be available every loop interval of the controller, therefore it must be scheduled. This paper proposes a methodology for modeling the nominal data flow over these networks and examines the resulting impact for an aero turbine engine system simulation.
NASA Astrophysics Data System (ADS)
Cervero, T.; Gómez, A.; López, S.; Sarmiento, R.; Dondo, J.; Rincón, F.; López, J. C.
2013-05-01
One of the limiting factors that have prevented a widely dissemination of the reconfigurable technology is the absence of an appropriate model for certain target applications capable of offering a reliable control. Moreover, the lack of flexible and easy-to-use scheduling and management systems are also relevant drawbacks to be considered. Under static scenarios, it is relatively easy to schedule and manage the reconfiguration process since all the variations corresponding to predetermined and well-known tasks. However, the difficulty increases when the adaptation needs of the overall system change semi-randomly according to the environmental fluctuations. In this context, this work proposes a change in the paradigm of dynamically reconfigurable systems, by attending to the dynamically reconfigurable control problematic as a whole, in which the scheduling and the placement issues are packed together as a hierarchical management structure, interacting together as one entity from the system point of view, but performing their tasks with certain degree of independence each other. In this sense, the top hierarchical level corresponds with a dynamic scheduler in charge of planning and adjusting all the reconfigurable modules according to the variations of the external stimulus. The lower level interacts with the physical layer of the device by means of instantiating, relocating, removing a reconfigurable module following the scheduler's instructions. In regards to how fast is the proposed solution, the total partial reconfiguration time achieved with this proposal has been measured and compared with other two approaches: 1) using traditional Xilinx's tools; 2) using an optimized version of the Xilinx's drivers. The collected numbers demonstrate that our solution reaches a gain up to 10 times faster than the other approaches.
NASA Astrophysics Data System (ADS)
Devaraj, Rajesh; Sarkar, Arnab; Biswas, Santosh
2015-11-01
In the article 'Supervisory control for fault-tolerant scheduling of real-time multiprocessor systems with aperiodic tasks', Park and Cho presented a systematic way of computing a largest fault-tolerant and schedulable language that provides information on whether the scheduler (i.e., supervisor) should accept or reject a newly arrived aperiodic task. The computation of such a language is mainly dependent on the task execution model presented in their paper. However, the task execution model is unable to capture the situation when the fault of a processor occurs even before the task has arrived. Consequently, a task execution model that does not capture this fact may possibly be assigned for execution on a faulty processor. This problem has been illustrated with an appropriate example. Then, the task execution model of Park and Cho has been modified to strengthen the requirement that none of the tasks are assigned for execution on a faulty processor.
Resource Control in Large-Scale Mobile-Agents Systems
2005-07-01
wakeup node schedule , much energy can be conserved. We also designed several protocols for global clock synchronization. The most interesting one is...choice as to which remote hosts to visit and in which order. Scheduling mobile-agent migration in a way that minimizes bandwidth and other resource...use, therefore, is both feasible and attractive. Dartmouth considered several variations of the scheduling problem, and devel- oped an algorithm for
NASA Technical Reports Server (NTRS)
Skavdahl, H.; Patterson, D. H.
1972-01-01
The initial flight test phase of the modified C-8A airplane was conducted. The primary objective of the testing was to establish the basic airworthiness of the research vehicle. This included verification of the structural design and evaluation of the aircraft's systems. Only a minimum amount of performance testing was scheduled; this has been used to provide a preliminary indication of the airplane's performance and flight characteristics for future flight planning. The testing included flutter and loads investigations up to the maximum design speed. The operational characteristics of all systems were assessed including hydraulics, environmental control system, air ducts, the vectoring conical nozzles, and the stability augmentation system (SAS). Approaches to stall were made at three primary flap settings: up, 30 deg and 65 deg, but full stalls were not scheduled. Minimum control speeds and maneuver margins were checked. All takeoffs and landings were conventional, and STOL performance was not scheduled during this phase of the evaluation.
Interactive experimenters' planning procedures and mission control
NASA Technical Reports Server (NTRS)
Desjardins, R. L.
1973-01-01
The computerized mission control and planning system routinely generates a 24-hour schedule in one hour of operator time by including time dimensions into experimental planning procedures. Planning is validated interactively as it is being generated segment by segment in the frame of specific event times. The planner simply points a light pen at the time mark of interest on the time line for entering specific event times into the schedule.
Monitoring objects orbiting earth using satellite-based telescopes
Olivier, Scot S.; Pertica, Alexander J.; Riot, Vincent J.; De Vries, Willem H.; Bauman, Brian J.; Nikolaev, Sergei; Henderson, John R.; Phillion, Donald W.
2015-06-30
An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.
Planner-Based Control of Advanced Life Support Systems
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Kortenkamp, David; Fry, Chuck; Bell, Scott
2005-01-01
The paper describes an approach to the integration of qualitative and quantitative modeling techniques for advanced life support (ALS) systems. Developing reliable control strategies that scale up to fully integrated life support systems requires augmenting quantitative models and control algorithms with the abstractions provided by qualitative, symbolic models and their associated high-level control strategies. This will allow for effective management of the combinatorics due to the integration of a large number of ALS subsystems. By focusing control actions at different levels of detail and reactivity we can use faster: simpler responses at the lowest level and predictive but complex responses at the higher levels of abstraction. In particular, methods from model-based planning and scheduling can provide effective resource management over long time periods. We describe reference implementation of an advanced control system using the IDEA control architecture developed at NASA Ames Research Center. IDEA uses planning/scheduling as the sole reasoning method for predictive and reactive closed loop control. We describe preliminary experiments in planner-based control of ALS carried out on an integrated ALS simulation developed at NASA Johnson Space Center.
A Generic and Target Architecture For Command and Control Information Systems
1991-09-01
forces, logistics, and optimum routing of forces to destination; supports development of the force, material and personnel 9 lists, schedules , and...recommendations T.5, T.6, and T.73 for Telefax. Teletex, Textfax, and Telefax are not currently scheduled to become a part of GOSIP. In the 1995-1997 time...defining application interfaces to the func- tional areas that impact resource management, for example, priority scheduling , real-time files, and
Yu, Dantong; Katramatos, Dimitrios; Sim, Alexander; Shoshani, Arie
2014-04-22
A cross-domain network resource reservation scheduler configured to schedule a path from at least one end-site includes a management plane device configured to monitor and provide information representing at least one of functionality, performance, faults, and fault recovery associated with a network resource; a control plane device configured to at least one of schedule the network resource, provision local area network quality of service, provision local area network bandwidth, and provision wide area network bandwidth; and a service plane device configured to interface with the control plane device to reserve the network resource based on a reservation request and the information from the management plane device. Corresponding methods and computer-readable medium are also disclosed.
Advanced systems engineering and network planning support
NASA Technical Reports Server (NTRS)
Walters, David H.; Barrett, Larry K.; Boyd, Ronald; Bazaj, Suresh; Mitchell, Lionel; Brosi, Fred
1990-01-01
The objective of this task was to take a fresh look at the NASA Space Network Control (SNC) element for the Advanced Tracking and Data Relay Satellite System (ATDRSS) such that it can be made more efficient and responsive to the user by introducing new concepts and technologies appropriate for the 1997 timeframe. In particular, it was desired to investigate the technologies and concepts employed in similar systems that may be applicable to the SNC. The recommendations resulting from this study include resource partitioning, on-line access to subsets of the SN schedule, fluid scheduling, increased use of demand access on the MA service, automating Inter-System Control functions using monitor by exception, increase automation for distributed data management and distributed work management, viewing SN operational control in terms of the OSI Management framework, and the introduction of automated interface management.
Advanced flight control system study
NASA Technical Reports Server (NTRS)
Mcgough, J.; Moses, K.; Klafin, J. F.
1982-01-01
The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed.
Emergency Warning Systems. Part 2. Warning Systems - Evaluation Guidelines.
1983-07-01
ELEMENT. PROJECT. TASK AREA A WORK UNIT NUMBERS PRC Voorhees Work Unit 2234G 1500 Planning Research Drive McLean, Virginia 22102 ___ 11. CONTROLLING ...different from Controlling Office) IS. SECURITY CLASS. (of this report) Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION...systems that control these warning systems are discussed. Test results of several warning systems are included along with a discussion of sound
Job Scheduling in a Heterogeneous Grid Environment
NASA Technical Reports Server (NTRS)
Shan, Hong-Zhang; Smith, Warren; Oliker, Leonid; Biswas, Rupak
2004-01-01
Computational grids have the potential for solving large-scale scientific problems using heterogeneous and geographically distributed resources. However, a number of major technical hurdles must be overcome before this potential can be realized. One problem that is critical to effective utilization of computational grids is the efficient scheduling of jobs. This work addresses this problem by describing and evaluating a grid scheduling architecture and three job migration algorithms. The architecture is scalable and does not assume control of local site resources. The job migration policies use the availability and performance of computer systems, the network bandwidth available between systems, and the volume of input and output data associated with each job. An extensive performance comparison is presented using real workloads from leading computational centers. The results, based on several key metrics, demonstrate that the performance of our distributed migration algorithms is significantly greater than that of a local scheduling framework and comparable to a non-scalable global scheduling approach.
Periodically-Scheduled Controller Analysis using Hybrid Systems Reachability and Continuization
2015-12-01
tools to verify specifications for hybrid automata do not perform well on such periodically scheduled models. This is due to a combination of the large...an additive nondeterministic input. Reachability tools for hybrid automata can better handle such systems. We further improve the analysis by...formally as a hybrid automaton. However, reachability tools to verify specifications for hybrid automata do not perform well on such periodically
Ancillary-service costs for 12 US electric utilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirby, B.; Hirst, E.
1996-03-01
Ancillary services are those functions performed by electrical generating, transmission, system-control, and distribution-system equipment and people to support the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission defined ancillary services as ``those services necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.`` FERC divided these services into three categories: ``actions taken to effect the transaction (such as scheduling and dispatching services) , services that are necessary to maintainmore » the integrity of the transmission system [and] services needed to correct for the effects associated with undertaking a transaction.`` In March 1995, FERC published a proposed rule to ensure open and comparable access to transmission networks throughout the country. The rule defined six ancillary services and developed pro forma tariffs for these services: scheduling and dispatch, load following, system protection, energy imbalance, loss compensation, and reactive power/voltage control.« less
ADP SYSTEMS ANALYSIS - COMMITTED VS. AVAILABLE MILITARY TRANSPORTATION (LMI T1).
LOGISTICS , * MANAGEMENT ENGINEERING), (*DATA PROCESSING, LOGISTICS), INFORMATION RETRIEVAL, SYSTEMS ENGINEERING, MILITARY TRANSPORTATION, CARGO VEHICLES, SCHEDULING, COMPUTER PROGRAMMING, MANAGEMENT PLANNING AND CONTROL
An Initial Study of Airport Arrival Heinz Capacity Benefits Due to Improved Scheduling Accuracy
NASA Technical Reports Server (NTRS)
Meyn, Larry; Erzberger, Heinz
2005-01-01
The long-term growth rate in air-traffic demand leads to future air-traffic densities that are unmanageable by today's air-traffic control system. I n order to accommodate such growth, new technology and operational methods will be needed in the next generation air-traffic control system. One proposal for such a system is the Automated Airspace Concept (AAC). One of the precepts of AAC is to direct aircraft using trajectories that are sent via an air-ground data link. This greatly improves the accuracy in directing aircraft to specific waypoints at specific times. Studies of the Center-TRACON Automation System (CTAS) have shown that increased scheduling accuracy enables increased arrival capacity at CTAS equipped airports.
Vaccinating my way--use of alternative vaccination schedules in New York State.
Nadeau, Jessica A; Bednarczyk, Robert A; Masawi, Munyaradzi R; Meldrum, Megan D; Santilli, Loretta; Zansky, Shelley M; Blog, Debra S; Birkhead, Guthrie S; McNutt, Louise-Anne
2015-01-01
To identify children vaccinated following an alternative vaccine schedule using immunization information system data and determine the impact of alternative schedule use on vaccine coverage. Children born in New York State, outside New York City, between January 1, 2009 and August 14, 2011 were assessed for vaccination patterns consistent with use of an alternative schedule. Children who by 9 months of age had at least 3 vaccination visits recorded in the statewide mandatory immunization information system after 41 days of age were classified as either attempting to conform to the Centers for Disease Control and Prevention published recommended vaccination schedule or an alternative schedule. The number of vaccination visits and up-to-date status at age 9 months were compared between groups. Of the 222 628 children studied, the proportion of children following an alternative schedule was 25%. These children were significantly less likely to be up-to-date at age 9 months (15%) compared with those conforming to the routine schedule (90%, P < .05). Children following an alternative schedule on average had about 2 extra vaccine visits compared with children following a routine schedule (P < .05). Almost 1 in 4 children in this study appear to be intentionally deviating from the routine schedule. Intentional deviation leads to poor vaccination coverage leaving children vulnerable to infection and increasing the potential for vaccine-preventable disease outbreaks. Copyright © 2015 Elsevier Inc. All rights reserved.
Automated control of hierarchical systems using value-driven methods
NASA Technical Reports Server (NTRS)
Pugh, George E.; Burke, Thomas E.
1990-01-01
An introduction is given to the Value-driven methodology, which has been successfully applied to solve a variety of difficult decision, control, and optimization problems. Many real-world decision processes (e.g., those encountered in scheduling, allocation, and command and control) involve a hierarchy of complex planning considerations. For such problems it is virtually impossible to define a fixed set of rules that will operate satisfactorily over the full range of probable contingencies. Decision Science Applications' value-driven methodology offers a systematic way of automating the intuitive, common-sense approach used by human planners. The inherent responsiveness of value-driven systems to user-controlled priorities makes them particularly suitable for semi-automated applications in which the user must remain in command of the systems operation. Three examples of the practical application of the approach in the automation of hierarchical decision processes are discussed: the TAC Brawler air-to-air combat simulation is a four-level computerized hierarchy; the autonomous underwater vehicle mission planning system is a three-level control system; and the Space Station Freedom electrical power control and scheduling system is designed as a two-level hierarchy. The methodology is compared with rule-based systems and with other more widely-known optimization techniques.
The GBT Dynamic Scheduling System: Powered by the Web
NASA Astrophysics Data System (ADS)
Marganian, P.; Clark, M.; McCarty, M.; Sessoms, E.; Shelton, A.
2009-09-01
The web technologies utilized for the Robert C. Byrd Green Bank Telescope's (GBT) new Dynamic Scheduling System are discussed, focusing on languages, frameworks, and tools. We use a popular Python web framework, TurboGears, to take advantage of the extensive web services the system provides. TurboGears is a model-view-controller framework, which aggregates SQLAlchemy, Genshi, and CherryPy respectively. On top of this framework, Javascript (Prototype, script.aculo.us, and JQuery) and cascading style sheets (Blueprint) are used for desktop-quality web pages.
SLURM: Simple Linux Utility for Resource Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jette, M; Dunlap, C; Garlick, J
2002-04-24
Simple Linux Utility for Resource Management (SLURM) is an open source, fault-tolerant, and highly scalable cluster management and job scheduling system for Linux clusters of thousands of nodes. Components include machine status, partition management, job management, and scheduling modules. The design also includes a scalable, general-purpose communication infrastructure. Development will take place in four phases: Phase I results in a solid infrastructure; Phase II produces a functional but limited interactive job initiation capability without use of the interconnect/switch; Phase III provides switch support and documentation; Phase IV provides job status, fault-tolerance, and job queuing and control through Livermore's Distributed Productionmore » Control System (DPCS), a meta-batch and resource management system.« less
Integration of domain and resource-based reasoning for real-time control in dynamic environments
NASA Technical Reports Server (NTRS)
Morgan, Keith; Whitebread, Kenneth R.; Kendus, Michael; Cromarty, Andrew S.
1993-01-01
A real-time software controller that successfully integrates domain-based and resource-based control reasoning to perform task execution in a dynamically changing environment is described. The design of the controller is based on the concept of partitioning the process to be controlled into a set of tasks, each of which achieves some process goal. It is assumed that, in general, there are multiple ways (tasks) to achieve a goal. The controller dynamically determines current goals and their current criticality, choosing and scheduling tasks to achieve those goals in the time available. It incorporates rule-based goal reasoning, a TMS-based criticality propagation mechanism, and a real-time scheduler. The controller has been used to build a knowledge-based situation assessment system that formed a major component of a real-time, distributed, cooperative problem solving system built under DARPA contract. It is also being employed in other applications now in progress.
Modeling and Control of a Fixed Wing Tilt-Rotor Tri-Copter
NASA Astrophysics Data System (ADS)
Summers, Alexander
The following thesis considers modeling and control of a fixed wing tilt-rotor tri-copter. An emphasis of the conceptual design is made toward payload transport. Aerodynamic panel code and CAD design provide the base aerodynamic, geometric, mass, and inertia properties. A set of non-linear dynamics are created considering gravity, aerodynamics in vertical takeoff and landing (VTOL) and forward flight, and propulsion applied to a three degree of freedom system. A transition strategy, that removes trajectory planning by means of scheduled inputs, is theorized. Three discrete controllers, utilizing separate control techniques, are applied to ensure stability in the aerodynamic regions of VTOL, transition, and forward flight. The controller techniques include linear quadratic regulation, full state integral action, gain scheduling, and proportional integral derivative (PID) flight control. Simulation of the model control system for flight from forward to backward transition is completed with mass and center of gravity variation.
NASA Astrophysics Data System (ADS)
Al-Ghobari, Hussein M.; Mohammad, Fawzi S.
2011-12-01
Intelligent irrigation technologies have been developed in recent years to apply irrigation to turf and landscape plants. These technologies are an evapotranspiration (ET)-based irrigation controller, which calculates ET for local microclimate. Then, the controller creates a program for loading and communicating automatically with drip or sprinkler system controllers. The main objective of this study was to evaluate the effectiveness of the new ET sensors in ability to irrigate agricultural crops and to conserve water use for crop in arid climatic conditions. This paper presents the case for water conservation using intelligent irrigation system (IIS) application technology. The IIS for automating irrigation scheduling was implemented and tested with sprinkle and drip irrigation systems to irrigate wheat and tomato crops. Another irrigation scheduling system was also installed and operated as another treatment, which is based on weather data that retrieved from an automatic weather station. This irrigation control system was running in parallel to the former system (IIS) to be control experiments for comparison purposes. However, this article discusses the implementation of IIS, its installation, testing and calibration of various components. The experiments conducted for one growing season 2009-2010 and the results were represented and discussed herein. Data from all plots were analyzed, which were including soil water status, water consumption, and crop yield. The initial results indicate that up to 25% water saving by intelligent irrigation compared to control method, while maintaining competing yield. Results show that the crop evapotranspiration values for control experiments were higher than that of ET-System in consistent trend during whole growth season. The analysis points out that the values of the two treatments were somewhat close to each other's only in the initial development stages. Generally, the ET-System, with some modification was precise in controlling irrigation water and has been proven to be a good mean to determine the water requirements for crops and to schedule irrigation automatically.
Smart monitoring system based on adaptive current control for superconducting cable test.
Arpaia, Pasquale; Ballarino, Amalia; Daponte, Vincenzo; Montenero, Giuseppe; Svelto, Cesare
2014-12-01
A smart monitoring system for superconducting cable test is proposed with an adaptive current control of a superconducting transformer secondary. The design, based on Fuzzy Gain Scheduling, allows the controller parameters to adapt continuously, and finely, to the working variations arising from transformer nonlinear dynamics. The control system is integrated in a fully digital control loop, with all the related benefits, i.e., high noise rejection, ease of implementation/modification, and so on. In particular, an accurate model of the system, controlled by a Fuzzy Gain Scheduler of the superconducting transformer, was achieved by an experimental campaign through the working domain at several current ramp rates. The model performance was characterized by simulation, under all the main operating conditions, in order to guide the controller design. Finally, the proposed monitoring system was experimentally validated at European Organization for Nuclear Research (CERN) in comparison to the state-of-the-art control system [P. Arpaia, L. Bottura, G. Montenero, and S. Le Naour, "Performance improvement of a measurement station for superconducting cable test," Rev. Sci. Instrum. 83, 095111 (2012)] of the Facility for the Research on Superconducting Cables, achieving a significant performance improvement: a reduction in the system overshoot by 50%, with a related attenuation of the corresponding dynamic residual error (both absolute and RMS) up to 52%.
An Efficient Downlink Scheduling Strategy Using Normal Graphs for Multiuser MIMO Wireless Systems
NASA Astrophysics Data System (ADS)
Chen, Jung-Chieh; Wu, Cheng-Hsuan; Lee, Yao-Nan; Wen, Chao-Kai
Inspired by the success of the low-density parity-check (LDPC) codes in the field of error-control coding, in this paper we propose transforming the downlink multiuser multiple-input multiple-output scheduling problem into an LDPC-like problem using the normal graph. Based on the normal graph framework, soft information, which indicates the probability that each user will be scheduled to transmit packets at the access point through a specified angle-frequency sub-channel, is exchanged among the local processors to iteratively optimize the multiuser transmission schedule. Computer simulations show that the proposed algorithm can efficiently schedule simultaneous multiuser transmission which then increases the overall channel utilization and reduces the average packet delay.
Time-based air traffic management using expert systems
NASA Technical Reports Server (NTRS)
Tobias, L.; Scoggins, J. L.
1986-01-01
A prototype expert system has been developed for the time scheduling of aircraft into the terminal area. The three functions of the air-traffic-control schedule advisor are as follows: (1) for each new arrival, it develops an admisible flight plan for that aircraft; (2) as the aircraft progresses through the terminal area, it monitors deviations from the aircraft's flight plan and provides advisories to return the aircraft to its assigned schedule; and (3) if major disruptions such as missed approaches occur, it develops a revised plan. The advisor is operational on a Symbolics 3600, and is programmed in MRS (a logic programming language), Lisp, and Fortran.
Time-based air traffic management using expert systems
NASA Technical Reports Server (NTRS)
Tobias, L.; Scoggins, J. L.
1986-01-01
A prototype expert system was developed for the time scheduling of aircraft into the terminal area. The three functions of the air traffic control schedule advisor are as follows: first, for each new arrival, it develops an admissible flight plan for that aircraft. Second, as the aircraft progresses through the terminal area, it monitors deviations from the flight plan and provides advisories to return the aircraft to its assigned schedule. Third, if major disruptions such as missed approaches occur, it develops a revised plan. The advisor is operational on a Symbolics 3600, and is programed in MRS (a logic programming language), Lisp, and FORTRAN.
75 FR 66195 - Schedules of Controlled Substances: Placement of Propofol Into Schedule IV
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-27
... published abuse liability studies of propofol in humans in which the reinforcement and reward effects have... reporting by the subject feeling ``high,'' relative to the placebo. The motivation for abuse of propofol is... Reporting System (AERS) DataMart database). In the AERS database, there are reports of propofol diversion...
An enhanced velocity-based algorithm for safe implementations of gain-scheduled controllers
NASA Astrophysics Data System (ADS)
Lhachemi, H.; Saussié, D.; Zhu, G.
2017-09-01
This paper presents an enhanced velocity-based algorithm to implement gain-scheduled controllers for nonlinear and parameter-dependent systems. A new scheme including pre- and post-filtering is proposed with the assumption that the time-derivative of the controller inputs is not available for feedback control. It is shown that the proposed control structure can preserve the input-output properties of the linearised closed-loop system in the neighbourhood of each equilibrium point, avoiding the emergence of the so-called hidden coupling terms. Moreover, it is guaranteed that this implementation will not introduce unobservable or uncontrollable unstable modes, and hence the internal stability will not be affected. A case study dealing with the design of a pitch-axis missile autopilot is carried out and the numerical simulation results confirm the validity of the proposed approach.
Users Guide to Direct Digital Control of Heating, Ventilating, and Air Conditioning Equipment,
1985-01-01
cycles, reset, load shedding, chiller optimization , VAV fan synchronization, and optimum start/stop. The prospective buyer of a DDC system should...in Fig- ure 4. Data on setpoints , reset schedules, and event timing, such as that presented in Figure 6, are often even more difficult to find. In con...control logic, setpoint and other data are readily available. Program logic, setpoint and schedule data, and other information stored in a DDC unit
Automation in the Space Station module power management and distribution Breadboard
NASA Technical Reports Server (NTRS)
Walls, Bryan; Lollar, Louis F.
1990-01-01
The Space Station Module Power Management and Distribution (SSM/PMAD) Breadboard, located at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, models the power distribution within a Space Station Freedom Habitation or Laboratory module. Originally designed for 20 kHz ac power, the system is now being converted to high voltage dc power with power levels on a par with those expected for a space station module. In addition to the power distribution hardware, the system includes computer control through a hierarchy of processes. The lowest level process consists of fast, simple (from a computing standpoint) switchgear, capable of quickly safing the system. The next level consists of local load center processors called Lowest Level Processors (LLP's). These LLP's execute load scheduling, perform redundant switching, and shed loads which use more than scheduled power. The level above the LLP's contains a Communication and Algorithmic Controller (CAC) which coordinates communications with the highest level. Finally, at this highest level, three cooperating Artificial Intelligence (AI) systems manage load prioritization, load scheduling, load shedding, and fault recovery and management. The system provides an excellent venue for developing and examining advanced automation techniques. The current system and the plans for its future are examined.
NASA Technical Reports Server (NTRS)
Engelland, Shawn A.; Capps, Alan
2011-01-01
Current aircraft departure release times are based on manual estimates of aircraft takeoff times. Uncertainty in takeoff time estimates may result in missed opportunities to merge into constrained en route streams and lead to lost throughput. However, technology exists to improve takeoff time estimates by using the aircraft surface trajectory predictions that enable air traffic control tower (ATCT) decision support tools. NASA s Precision Departure Release Capability (PDRC) is designed to use automated surface trajectory-based takeoff time estimates to improve en route tactical departure scheduling. This is accomplished by integrating an ATCT decision support tool with an en route tactical departure scheduling decision support tool. The PDRC concept and prototype software have been developed, and an initial test was completed at air traffic control facilities in Dallas/Fort Worth. This paper describes the PDRC operational concept, system design, and initial observations.
Research Perspectives for Material Requirements Planning Systems. Paper No. 434.
ERIC Educational Resources Information Center
Berry, W. L.; Whybark, D. Clay
Material requirements planning (MRP) systems are described as management tools for planning and controlling production operations. A wide variety of industries and production organizations are credited as reporting significant operating improvements in such areas as inventory control, production scheduling, delivery performance, and production…
1993-12-01
operational schedules and overall mission costs. Several team members should be qualified to operate each item of equipment so the mission can proceed...establishing verified data exchange, scheduled on-site inspections of declared facilities and operation of a perimeter to portal monitoring system; (3...listed in Schedule 1, 2A, and 2B shall be subject to international monitoring. Each State Party also has the right to request an on-site challenge
System-level power optimization for real-time distributed embedded systems
NASA Astrophysics Data System (ADS)
Luo, Jiong
Power optimization is one of the crucial design considerations for modern electronic systems. In this thesis, we present several system-level power optimization techniques for real-time distributed embedded systems, based on dynamic voltage scaling, dynamic power management, and management of peak power and variance of the power profile. Dynamic voltage scaling has been widely acknowledged as an important and powerful technique to trade off dynamic power consumption and delay. Efficient dynamic voltage scaling requires effective variable-voltage scheduling mechanisms that can adjust voltages and clock frequencies adaptively based on workloads and timing constraints. For this purpose, we propose static variable-voltage scheduling algorithms utilizing criticalpath driven timing analysis for the case when tasks are assumed to have uniform switching activities, as well as energy-gradient driven slack allocation for a more general scenario. The proposed techniques can achieve closeto-optimal power savings with very low computational complexity, without violating any real-time constraints. We also present algorithms for power-efficient joint scheduling of multi-rate periodic task graphs along with soft aperiodic tasks. The power issue is addressed through both dynamic voltage scaling and power management. Periodic task graphs are scheduled statically. Flexibility is introduced into the static schedule to allow the on-line scheduler to make local changes to PE schedules through resource reclaiming and slack stealing, without interfering with the validity of the global schedule. We provide a unified framework in which the response times of aperiodic tasks and power consumption are dynamically optimized simultaneously. Interconnection network fabrics point to a new generation of power-efficient and scalable interconnection architectures for distributed embedded systems. As the system bandwidth continues to increase, interconnection networks become power/energy limited as well. Variable-frequency links have been designed by circuit designers for both parallel and serial links, which can adaptively regulate the supply voltage of transceivers to a desired link frequency, to exploit the variations in bandwidth requirement for power savings. We propose solutions for simultaneous dynamic voltage scaling of processors and links. The proposed solution considers real-time scheduling, flow control, and packet routing jointly. It can trade off the power consumption on processors and communication links via efficient slack allocation, and lead to more power savings than dynamic voltage scaling on processors alone. For battery-operated systems, the battery lifespan is an important concern. Due to the effects of discharge rate and battery recovery, the discharge pattern of batteries has an impact on the battery lifespan. Battery models indicate that even under the same average power consumption, reducing peak power current and variance in the power profile can increase the battery efficiency and thereby prolong battery lifetime. To take advantage of these effects, we propose battery-driven scheduling techniques for embedded applications, to reduce the peak power and the variance in the power profile of the overall system under real-time constraints. The proposed scheduling algorithms are also beneficial in addressing reliability and signal integrity concerns by effectively controlling peak power and variance of the power profile.
On an LAS-integrated soft PLC system based on WorldFIP fieldbus.
Liang, Geng; Li, Zhijun; Li, Wen; Bai, Yan
2012-01-01
Communication efficiency is lowered and real-time performance is not good enough in discrete control based on traditional WorldFIP field intelligent nodes in case that the scale of control in field is large. A soft PLC system based on WorldFIP fieldbus was designed and implemented. Link Activity Scheduler (LAS) was integrated into the system and field intelligent I/O modules acted as networked basic nodes. Discrete control logic was implemented with the LAS-integrated soft PLC system. The proposed system was composed of configuration and supervisory sub-systems and running sub-systems. The configuration and supervisory sub-system was implemented with a personal computer or an industrial personal computer; running subsystems were designed and implemented based on embedded hardware and software systems. Communication and schedule in the running subsystem was implemented with an embedded sub-module; discrete control and system self-diagnosis were implemented with another embedded sub-module. Structure of the proposed system was presented. Methodology for the design of the sub-systems was expounded. Experiments were carried out to evaluate the performance of the proposed system both in discrete and process control by investigating the effect of network data transmission delay induced by the soft PLC in WorldFIP network and CPU workload on resulting control performances. The experimental observations indicated that the proposed system is practically applicable. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
An ex ante control chart for project monitoring using earned duration management observations
NASA Astrophysics Data System (ADS)
Mortaji, Seyed Taha Hossein; Noori, Siamak; Noorossana, Rassoul; Bagherpour, Morteza
2017-12-01
In the past few years, there has been an increasing interest in developing project control systems. The primary purpose of such systems is to indicate whether the actual performance is consistent with the baseline and to produce a signal in the case of non-compliance. Recently, researchers have shown an increased interest in monitoring project's performance indicators, by plotting them on the Shewhart-type control charts over time. However, these control charts are fundamentally designed for processes and ignore project-specific dynamics, which can lead to weak results and misleading interpretations. By paying close attention to the project baseline schedule and using statistical foundations, this paper proposes a new ex ante control chart which discriminates between acceptable (as-planned) and non-acceptable (not-as-planned) variations of the project's schedule performance. Such control chart enables project managers to set more realistic thresholds leading to a better decision making for taking corrective and/or preventive actions. For the sake of clarity, an illustrative example has been presented to show how the ex ante control chart is constructed in practice. Furthermore, an experimental investigation has been set up to analyze the performance of the proposed control chart. As expected, the results confirm that, when a project starts to deflect significantly from the project's baseline schedule, the ex ante control chart shows a respectable ability to detect and report right signals while avoiding false alarms.
Conflict-free trajectory planning for air traffic control automation
NASA Technical Reports Server (NTRS)
Slattery, Rhonda; Green, Steve
1994-01-01
As the traffic demand continues to grow within the National Airspace System (NAS), the need for long-range planning (30 minutes plus) of arrival traffic increases greatly. Research into air traffic control (ATC) automation at ARC has led to the development of the Center-TRACON Automation System (CTAS). CTAS determines optimum landing schedules for arrival traffic and assists controllers in meeting those schedules safely and efficiently. One crucial element in the development of CTAS is the capability to perform long-range (20 minutes) and short-range (5 minutes) conflict prediction and resolution once landing schedules are determined. The determination of conflict-free trajectories within the Center airspace is particularly difficult because of large variations in speed and altitude. The paper describes the current design and implementation of the conflict prediction and resolution tools used to generate CTAS advisories in Center airspace. Conflict criteria (separation requirements) are defined and the process of separation prediction is described. The major portion of the paper will describe the current implementation of CTAS conflict resolution algorithms in terms of the degrees of freedom for resolutions as well as resolution search techniques. The tools described in this paper have been implemented in a research system designed to rapidly develop and evaluate prototype concepts and will form the basis for an operational ATC automation system.
Automated power management and control
NASA Technical Reports Server (NTRS)
Dolce, James L.
1991-01-01
A comprehensive automation design is being developed for Space Station Freedom's electric power system. A joint effort between NASA's Office of Aeronautics and Exploration Technology and NASA's Office of Space Station Freedom, it strives to increase station productivity by applying expert systems and conventional algorithms to automate power system operation. The initial station operation will use ground-based dispatches to perform the necessary command and control tasks. These tasks constitute planning and decision-making activities that strive to eliminate unplanned outages. We perceive an opportunity to help these dispatchers make fast and consistent on-line decisions by automating three key tasks: failure detection and diagnosis, resource scheduling, and security analysis. Expert systems will be used for the diagnostics and for the security analysis; conventional algorithms will be used for the resource scheduling.
Power Management for Space Advanced Life Support
NASA Technical Reports Server (NTRS)
Jones, Harry
2001-01-01
Space power systems include the power source, storage, and management subsystems. In current crewed spacecraft, solar cells are the power source, batteries provide storage, and the crew performs any required load scheduling. For future crewed planetary surface systems using Advanced Life Support, we assume that plants will be grown to produce much of the crew's food and that nuclear power will be employed. Battery storage is much more costly than nuclear power capacity and so is not likely to be used. We investigate the scheduling of power demands by the crew or automatic control, to reduce the peak power load and the required generating capacity. The peak to average power ratio is a good measure of power use efficiency. We can easily schedule power demands to reduce the peak power from its maximum, but simple scheduling approaches may not find the lowest possible peak to average power ratio. An initial power scheduling example was simple enough for a human to solve, but a more complex example with many intermittent load demands required automatic scheduling. Excess power is a free resource and can be used even for minor benefits.
NASA Technical Reports Server (NTRS)
Wilkinson, John; Johnson, Earl
1991-01-01
The work flow assistant (WFA) is an advanced technology project under the shuttle processing data management system (SPDMS) at Kennedy Space Center (KSC). It will be utilized for short range scheduling, controlling work flow on the floor, and providing near real-time status for all major space transportation systems (STS) work centers at KSC. It will increase personnel and STS safety and improve productivity through deeper active scheduling that includes tracking and correlation of STS and ground support equipment (GSE) configuration and work. It will also provide greater accessibility to this data. WFA defines a standards concept for scheduling data which permits both commercial off-the-shelf (COTS) scheduling tools and WFA developed applications to be reused. WFA will utilize industry standard languages and workstations to achieve a scalable, adaptable, and portable architecture which may be used at other sites.
Integrated Traffic Flow Management Decision Making
NASA Technical Reports Server (NTRS)
Grabbe, Shon R.; Sridhar, Banavar; Mukherjee, Avijit
2009-01-01
A generalized approach is proposed to support integrated traffic flow management decision making studies at both the U.S. national and regional levels. It can consider tradeoffs between alternative optimization and heuristic based models, strategic versus tactical flight controls, and system versus fleet preferences. Preliminary testing was accomplished by implementing thirteen unique traffic flow management models, which included all of the key components of the system and conducting 85, six-hour fast-time simulation experiments. These experiments considered variations in the strategic planning look-ahead times, the replanning intervals, and the types of traffic flow management control strategies. Initial testing indicates that longer strategic planning look-ahead times and re-planning intervals result in steadily decreasing levels of sector congestion for a fixed delay level. This applies when accurate estimates of the air traffic demand, airport capacities and airspace capacities are available. In general, the distribution of the delays amongst the users was found to be most equitable when scheduling flights using a heuristic scheduling algorithm, such as ration-by-distance. On the other hand, equity was the worst when using scheduling algorithms that took into account the number of seats aboard each flight. Though the scheduling algorithms were effective at alleviating sector congestion, the tactical rerouting algorithm was the primary control for avoiding en route weather hazards. Finally, the modeled levels of sector congestion, the number of weather incursions, and the total system delays, were found to be in fair agreement with the values that were operationally observed on both good and bad weather days.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-12
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-770] Certain Video Game Systems and Wireless Controllers and Components Thereof; Commission Determination To Review-In-Part a Remand Initial Determination; Schedule for Filing Written Submissions on Review for Remand Initial Determination and Final...
Experiments with a decision-theoretic scheduler
NASA Technical Reports Server (NTRS)
Hansson, Othar; Holt, Gerhard; Mayer, Andrew
1992-01-01
This paper describes DTS, a decision-theoretic scheduler designed to employ state-of-the-art probabilistic inference technology to speed the search for efficient solutions to constraint-satisfaction problems. Our approach involves assessing the performance of heuristic control strategies that are normally hard-coded into scheduling systems, and using probabilistic inference to aggregate this information in light of features of a given problem. BPS, the Bayesian Problem-Solver, introduced a similar approach to solving single-agent and adversarial graph search problems, yielding orders-of-magnitude improvement over traditional techniques. Initial efforts suggest that similar improvements will be realizable when applied to typical constraint-satisfaction scheduling problems.
2004-02-26
Shorter payback periods After 19 Cost Benefit of Powerlink Rule of Thumb for Powerlink: Powerlink becomes more cost effective beyond 16 controlled...web enabled control (and management software) Increase in level of integration between building systems Increase in new features, functions, benefits ...focus on reducing run-time via Scheduling, Sensing, Switching Growing focus on payback Direct energy cost (with demand) Additional maintenance benefits
A Web-Remote/Robotic/Scheduled Astronomical Data Acquisition System
NASA Astrophysics Data System (ADS)
Denny, Robert
2011-03-01
Traditionally, remote/robotic observatory operating systems have been custom made for each observatory. While data reduction pipelines need to be tailored for each investigation, the data acquisition process (especially for stare-mode optical images) is often quite similar across investigations. Since 1999, DC-3 Dreams has focused on providing and supporting a remote/robotic observatory operating system which can be adapted to a wide variety of physical hardware and optics while achieving the highest practical observing efficiency and safe/secure web browser user controls. ACP Expert consists of three main subsystems: (1) a robotic list-driven data acquisition engine which controls all aspects of the observatory, (2) a constraint-driven dispatch scheduler with a long-term database of requests, and (3) a built-in "zero admin" web server and dynamic web pages which provide a remote capability for immediate execution and monitoring as well as entry and monitoring of dispatch-scheduled observing requests. No remote desktop login is necessary for observing, thus keeping the system safe and consistent. All routine operation is via the web browser. A wide variety of telescope mounts, CCD imagers, guiding sensors, filter selectors, focusers, instrument-package rotators, weather sensors, and dome control systems are supported via the ASCOM standardized device driver architecture. The system is most commonly employed on commercial 1-meter and smaller observatories used by universities and advanced amateurs for both science and art. One current project, the AAVSO Photometric All-Sky Survey (APASS), uses ACP Expert to acquire large volumes of data in dispatch-scheduled mode. In its first 18 months of operation (North then South), 40,307 sky images were acquired in 117 photometric nights, resulting in 12,107,135 stars detected two or more times. These stars had measures in 5 filters. The northern station covered 754 fields (6446 square degrees) at least twice, the southern station covered 951 fields (8500 square degrees) at least twice. The database of photometric calibrations is available from AAVSO. The paper will cover the ACP web interface, including the use of AJAX and JSON within a micro-content framework, as well as dispatch scheduler and acquisition engine operation.
Lessons learned in control center technologies and non-technologies
NASA Technical Reports Server (NTRS)
Hansen, Elaine R.
1991-01-01
Information is given in viewgraph form on the Solar Mesosphere Explorer (SME) Control Center and the Oculometer and Automated Space Interface System (OASIS). Topics covered include SME mission operations functions; technical and non-technical features of the SME control center; general tasks and objects within the Space Station Freedom (SSF) ground system nodes; OASIS-Real Time for the control and monitoring of of space systems and subsystems; and OASIS planning, scheduling, and PC architecture.
Cascaded Optimization for a Persistent Data Ferrying Unmanned Aircraft
NASA Astrophysics Data System (ADS)
Carfang, Anthony
This dissertation develops and assesses a cascaded method for designing optimal periodic trajectories and link schedules for an unmanned aircraft to ferry data between stationary ground nodes. This results in a fast solution method without the need to artificially constrain system dynamics. Focusing on a fundamental ferrying problem that involves one source and one destination, but includes complex vehicle and Radio-Frequency (RF) dynamics, a cascaded structure to the system dynamics is uncovered. This structure is exploited by reformulating the nonlinear optimization problem into one that reduces the independent control to the vehicle's motion, while the link scheduling control is folded into the objective function and implemented as an optimal policy that depends on candidate motion control. This formulation is proven to maintain optimality while reducing computation time in comparison to traditional ferry optimization methods. The discrete link scheduling problem takes the form of a combinatorial optimization problem that is known to be NP-Hard. A derived necessary condition for optimality guides the development of several heuristic algorithms, specifically the Most-Data-First Algorithm and the Knapsack Adaptation. These heuristics are extended to larger ferrying scenarios, and assessed analytically and through Monte Carlo simulation, showing better throughput performance in the same order of magnitude of computation time in comparison to other common link scheduling policies. The cascaded optimization method is implemented with a novel embedded software system on a small, unmanned aircraft to validate the simulation results with field experiments. To address the sensitivity of results on trajectory tracking performance, a system that combines motion and link control with waypoint-based navigation is developed and assessed through field experiments. The data ferrying algorithms are further extended by incorporating a Gaussian process to opportunistically learn the RF environment. By continuously improving RF models, the cascaded planner can continually improve the ferrying system's overall performance.
Scheduling the future NASA Space Network: Experiences with a flexible scheduling prototype
NASA Technical Reports Server (NTRS)
Happell, Nadine; Moe, Karen L.; Minnix, Jay
1993-01-01
NASA's Space Network (SN) provides telecommunications and tracking services to low earth orbiting spacecraft. One proposal for improving resource allocation and automating conflict resolution for the SN is the concept of flexible scheduling. In this concept, each Payload Operations Control Center (POCC) will possess a Space Network User POCC Interface (SNUPI) to support the development and management of flexible requests. Flexible requests express the flexibility, constraints, and repetitious nature of the user's communications requirements. Flexible scheduling is expected to improve SN resource utilization and user satisfaction, as well as reduce the effort to produce and maintain a schedule. A prototype testbed has been developed to better understand flexible scheduling as it applies to the SN. This testbed consists of a SNUPI workstation, an SN scheduler, and a flexible request language that conveys information between the two systems. All three are being evaluated by operations personnel. Benchmark testing is being conducted on the scheduler to quantify the productivity improvements achieved with flexible requests.
Spot and Runway Departure Advisor
NASA Technical Reports Server (NTRS)
Jung, Yoon Chul
2013-01-01
The Spot and Runway Departure Advisor (SARDA) is a research prototype of a decision support tool for ATC tower controllers to assist in manging and controlling traffic on the surface of an airport. SARDA employs a scheduler to generate an optimal runway schedule and gate push-back - spot release sequence and schedule that improves efficiency of surface operations. The advisories for ATC tower controllers are displayed on an Electronic Flight Strip (EFS) system. The human-in-the-loop simulation of the SARDA tool was conducted for east operations of Dallas-Ft. Worth International Airport (DFW) to evaluate performance of the SARDA tool and human factors, such as situational awareness and workload. The results indicates noticeable taxi delay reduction and fuel savings by using the SARDA tool. Reduction in controller workload were also observed throughout the scenario runs. The future plan includes modeling and simulation of the ramp operations of the Charlotte International Airport, and develop a decision support tool for the ramp controllers.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-13
...] Schedules of Controlled Substances: Temporary Placement of Five Synthetic Cannabinoids Into Schedule I... Notice of Intent announcing its intention to temporarily place five synthetic cannabinoids into Schedule... announced its intention to temporarily place five synthetic cannabinoids into schedule I of the Controlled...
Scheduling for Emergency Tasks in Industrial Wireless Sensor Networks
Xia, Changqing; Kong, Linghe; Zeng, Peng
2017-01-01
Wireless sensor networks (WSNs) are widely applied in industrial manufacturing systems. By means of centralized control, the real-time requirement and reliability can be provided by WSNs in industrial production. Furthermore, many approaches reserve resources for situations in which the controller cannot perform centralized resource allocation. The controller assigns these resources as it becomes aware of when and where accidents have occurred. However, the reserved resources are limited, and such incidents are low-probability events. In addition, resource reservation may not be effective since the controller does not know when and where accidents will actually occur. To address this issue, we improve the reliability of scheduling for emergency tasks by proposing a method based on a stealing mechanism. In our method, an emergency task is transmitted by stealing resources allocated to regular flows. The challenges addressed in our work are as follows: (1) emergencies occur only occasionally, but the industrial system must deliver the corresponding flows within their deadlines when they occur; (2) we wish to minimize the impact of emergency flows by reducing the number of stolen flows. The contributions of this work are two-fold: (1) we first define intersections and blocking as new characteristics of flows; and (2) we propose a series of distributed routing algorithms to improve the schedulability and to reduce the impact of emergency flows. We demonstrate that our scheduling algorithm and analysis approach are better than the existing ones by extensive simulations. PMID:28726738
A Model-Driven Co-Design Framework for Fusing Control and Scheduling Viewpoints.
Sundharam, Sakthivel Manikandan; Navet, Nicolas; Altmeyer, Sebastian; Havet, Lionel
2018-02-20
Model-Driven Engineering (MDE) is widely applied in the industry to develop new software functions and integrate them into the existing run-time environment of a Cyber-Physical System (CPS). The design of a software component involves designers from various viewpoints such as control theory, software engineering, safety, etc. In practice, while a designer from one discipline focuses on the core aspects of his field (for instance, a control engineer concentrates on designing a stable controller), he neglects or considers less importantly the other engineering aspects (for instance, real-time software engineering or energy efficiency). This may cause some of the functional and non-functional requirements not to be met satisfactorily. In this work, we present a co-design framework based on timing tolerance contract to address such design gaps between control and real-time software engineering. The framework consists of three steps: controller design, verified by jitter margin analysis along with co-simulation, software design verified by a novel schedulability analysis, and the run-time verification by monitoring the execution of the models on target. This framework builds on CPAL (Cyber-Physical Action Language), an MDE design environment based on model-interpretation, which enforces a timing-realistic behavior in simulation through timing and scheduling annotations. The application of our framework is exemplified in the design of an automotive cruise control system.
A Model-Driven Co-Design Framework for Fusing Control and Scheduling Viewpoints
Navet, Nicolas; Havet, Lionel
2018-01-01
Model-Driven Engineering (MDE) is widely applied in the industry to develop new software functions and integrate them into the existing run-time environment of a Cyber-Physical System (CPS). The design of a software component involves designers from various viewpoints such as control theory, software engineering, safety, etc. In practice, while a designer from one discipline focuses on the core aspects of his field (for instance, a control engineer concentrates on designing a stable controller), he neglects or considers less importantly the other engineering aspects (for instance, real-time software engineering or energy efficiency). This may cause some of the functional and non-functional requirements not to be met satisfactorily. In this work, we present a co-design framework based on timing tolerance contract to address such design gaps between control and real-time software engineering. The framework consists of three steps: controller design, verified by jitter margin analysis along with co-simulation, software design verified by a novel schedulability analysis, and the run-time verification by monitoring the execution of the models on target. This framework builds on CPAL (Cyber-Physical Action Language), an MDE design environment based on model-interpretation, which enforces a timing-realistic behavior in simulation through timing and scheduling annotations. The application of our framework is exemplified in the design of an automotive cruise control system. PMID:29461489
Robust design of a 2-DOF GMV controller: a direct self-tuning and fuzzy scheduling approach.
Silveira, Antonio S; Rodríguez, Jaime E N; Coelho, Antonio A R
2012-01-01
This paper presents a study on self-tuning control strategies with generalized minimum variance control in a fixed two degree of freedom structure-or simply GMV2DOF-within two adaptive perspectives. One, from the process model point of view, using a recursive least squares estimator algorithm for direct self-tuning design, and another, using a Mamdani fuzzy GMV2DOF parameters scheduling technique based on analytical and physical interpretations from robustness analysis of the system. Both strategies are assessed by simulation and real plants experimentation environments composed of a damped pendulum and an under development wind tunnel from the Department of Automation and Systems of the Federal University of Santa Catarina. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Irrigation Controllers Specification and Certification
WaterSense labeled irrigation controllers, which act like a thermostat for your sprinkler system telling it when to turn on and off, use local weather and landscape conditions to tailor watering schedules to actual conditions on the site.
Adaptive Control for Uncertain Nonlinear Multi-Input Multi-Output Systems
NASA Technical Reports Server (NTRS)
Cao, Chengyu (Inventor); Hovakimyan, Naira (Inventor); Xargay, Enric (Inventor)
2014-01-01
Systems and methods of adaptive control for uncertain nonlinear multi-input multi-output systems in the presence of significant unmatched uncertainty with assured performance are provided. The need for gain-scheduling is eliminated through the use of bandwidth-limited (low-pass) filtering in the control channel, which appropriately attenuates the high frequencies typically appearing in fast adaptation situations and preserves the robustness margins in the presence of fast adaptation.
Bonneville, Power Administration Timing System
NASA Technical Reports Server (NTRS)
Martin, Kenneth E.
1996-01-01
Time is an integral part of the Bonneville Power Administration's (BPA) operational systems. Generation and power transfers are planned in advance. Utilities coordinate with each other by making these adjustments on a timed schedule. Price varies with demand, so billing is based on time. Outages for maintenance are scheduled to assure they do not interrupt reliable power delivery. Disturbance records are aligned with recorded timetags for analysis and comparison with related information. Advanced applications like traveling wave fault location and real-time phase measurement require continuous timing with high precision. Most of BPA is served by a Central Time System (CTS) at the Dittmer Control Center near Portland, OR. This system keeps time locally and supplies time to both the control center systems and field locations via a microwave signal. It is kept synchronized to national standard time and coordinated with interconnected utilities. It is the official BPA time. Powwer system control and operation is described, followed by a description of BPA timing systems including CTS, the Fault Location Acquisition Reporter, time dissemination, and phasor measurements. References are provided for further reading.
Optimization and Control of Cyber-Physical Vehicle Systems
Bradley, Justin M.; Atkins, Ella M.
2015-01-01
A cyber-physical system (CPS) is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined. PMID:26378541
Optimization and Control of Cyber-Physical Vehicle Systems.
Bradley, Justin M; Atkins, Ella M
2015-09-11
A cyber-physical system (CPS) is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined.
Artificial Intelligence Controls Tape-Recording Sequence
NASA Technical Reports Server (NTRS)
Schwuttke, Ursula M.; Otamura, Roy M.; Zottarelli, Lawrence J.
1989-01-01
Developmental expert-system computer program intended to schedule recording of large amounts of data on limited amount of magnetic tape. Schedules recording using two sets of rules. First set incorporates knowledge of locations for recording of new data. Second set incorporates knowledge about issuing commands to recorder. Designed primarily for use on Voyager Spacecraft, also applicable to planning and sequencing in industry.
NASA Technical Reports Server (NTRS)
Taylor, Edith C.; Ross, Michael
1989-01-01
The Shuttle Remote Manipulator System is a mature system which has successfully completed 18 flights. Its primary functional design driver was the capability to deploy and retrieve payloads from the Orbiter cargo bay. The Space Station Freedom Mobile Servicing Center is still in the requirements definition and early design stage. Its primary function design drivers are the capabilities: to support Space Station construction and assembly tasks; to provide external transportation about the Space Station; to provide handling capabilities for the Orbiter, free flyers, and payloads; to support attached payload servicing in the extravehicular environment; and to perform scheduled and un-scheduled maintenance on the Space Station. The differences between the two systems in the area of geometric configuration, mobility, sensor capabilities, control stations, control algorithms, handling performance, end effector dexterity, and fault tolerance are discussed.
NASA Technical Reports Server (NTRS)
Turso, James A.; Litt, Jonathan S.
2004-01-01
A method for accommodating engine deterioration via a scheduled Linear Parameter Varying Quadratic Lyapunov Function (LPVQLF)-Based controller is presented. The LPVQLF design methodology provides a means for developing unconditionally stable, robust control of Linear Parameter Varying (LPV) systems. The controller is scheduled on the Engine Deterioration Index, a function of estimated parameters that relate to engine health, and is computed using a multilayer feedforward neural network. Acceptable thrust response and tight control of exhaust gas temperature (EGT) is accomplished by adjusting the performance weights on these parameters for different levels of engine degradation. Nonlinear simulations demonstrate that the controller achieves specified performance objectives while being robust to engine deterioration as well as engine-to-engine variations.
Simulation of textile manufacturing processes for planning, scheduling, and quality control purposes
NASA Astrophysics Data System (ADS)
Cropper, A. E.; Wang, Z.
1995-08-01
Simulation, as a management information tool, has been applied to engineering manufacture and assembly operations. The application of the principles to textile manufacturing (fiber to fabric) is discussed. The particular problems and solutions in applying the simulation software package to the yarn production processes are discussed with an indication of how the software achieves the production schedule. The system appears to have application in planning, scheduling, and quality assurance. The latter being a result of the traceability possibilities through a process involving mixing and splitting of material.
HEP - A semaphore-synchronized multiprocessor with central control. [Heterogeneous Element Processor
NASA Technical Reports Server (NTRS)
Gilliland, M. C.; Smith, B. J.; Calvert, W.
1976-01-01
The paper describes the design concept of the Heterogeneous Element Processor (HEP), a system tailored to the special needs of scientific simulation. In order to achieve high-speed computation required by simulation, HEP features a hierarchy of processes executing in parallel on a number of processors, with synchronization being largely accomplished by hardware. A full-empty-reserve scheme of synchronization is realized by zero-one-valued hardware semaphores. A typical system has, besides the control computer and the scheduler, an algebraic module, a memory module, a first-in first-out (FIFO) module, an integrator module, and an I/O module. The architecture of the scheduler and the algebraic module is examined in detail.
Master-slave control scheme in electric vehicle smart charging infrastructure.
Chung, Ching-Yen; Chynoweth, Joshua; Chu, Chi-Cheng; Gadh, Rajit
2014-01-01
WINSmartEV is a software based plug-in electric vehicle (PEV) monitoring, control, and management system. It not only incorporates intelligence at every level so that charge scheduling can avoid grid bottlenecks, but it also multiplies the number of PEVs that can be plugged into a single circuit. This paper proposes, designs, and executes many upgrades to WINSmartEV. These upgrades include new hardware that makes the level 1 and level 2 chargers faster, more robust, and more scalable. It includes algorithms that provide a more optimal charge scheduling for the level 2 (EVSE) and an enhanced vehicle monitoring/identification module (VMM) system that can automatically identify PEVs and authorize charging.
Master-Slave Control Scheme in Electric Vehicle Smart Charging Infrastructure
Chung, Ching-Yen; Chynoweth, Joshua; Chu, Chi-Cheng; Gadh, Rajit
2014-01-01
WINSmartEV is a software based plug-in electric vehicle (PEV) monitoring, control, and management system. It not only incorporates intelligence at every level so that charge scheduling can avoid grid bottlenecks, but it also multiplies the number of PEVs that can be plugged into a single circuit. This paper proposes, designs, and executes many upgrades to WINSmartEV. These upgrades include new hardware that makes the level 1 and level 2 chargers faster, more robust, and more scalable. It includes algorithms that provide a more optimal charge scheduling for the level 2 (EVSE) and an enhanced vehicle monitoring/identification module (VMM) system that can automatically identify PEVs and authorize charging. PMID:24982956
A time-based concept for terminal-area traffic management
NASA Technical Reports Server (NTRS)
Erzberger, H.; Tobias, L.
1986-01-01
An automated air-traffic-management concept that has the potential for significantly increasing the efficiency of traffic flows in high-density terminal areas is discussed. The concept's implementation depends on the techniques for controlling the landing time of all aircraft entering the terminal area, both those that are equipped with on-board four dimensional guidance systems as well as those aircraft types that are conventionally equipped. The two major ground-based elements of the system are a scheduler which assigns conflict-free landing times and a profile descent advisor. Landing times provided by the scheduler are uplinked to equipped aircraft and translated into the appropriate four dimensional trajectory by the on-board flight-management system. The controller issues descent advisories to unequipped aircraft to help them achieve the assigned landing times. Air traffic control simulations have established that the concept provides an efficient method for controlling various mixes of four dimensional-equipped and unequipped, as well as low-and high-performance, aircraft.
Clustering execution in a processing system to increase power savings
Bose, Pradip; Buyuktosunoglu, Alper; Jacobson, Hans M.; Vega, Augusto J.
2018-03-20
Embodiments relate to clustering execution in a processing system. An aspect includes accessing a control flow graph that defines a data dependency and an execution sequence of a plurality of tasks of an application that executes on a plurality of system components. The execution sequence of the tasks in the control flow graph is modified as a clustered control flow graph that clusters active and idle phases of a system component while maintaining the data dependency. The clustered control flow graph is sent to an operating system, where the operating system utilizes the clustered control flow graph for scheduling the tasks.
Workflow management in large distributed systems
NASA Astrophysics Data System (ADS)
Legrand, I.; Newman, H.; Voicu, R.; Dobre, C.; Grigoras, C.
2011-12-01
The MonALISA (Monitoring Agents using a Large Integrated Services Architecture) framework provides a distributed service system capable of controlling and optimizing large-scale, data-intensive applications. An essential part of managing large-scale, distributed data-processing facilities is a monitoring system for computing facilities, storage, networks, and the very large number of applications running on these systems in near realtime. All this monitoring information gathered for all the subsystems is essential for developing the required higher-level services—the components that provide decision support and some degree of automated decisions—and for maintaining and optimizing workflow in large-scale distributed systems. These management and global optimization functions are performed by higher-level agent-based services. We present several applications of MonALISA's higher-level services including optimized dynamic routing, control, data-transfer scheduling, distributed job scheduling, dynamic allocation of storage resource to running jobs and automated management of remote services among a large set of grid facilities.
Resource representation in COMPASS
NASA Technical Reports Server (NTRS)
Fox, Barry R.
1991-01-01
A set of viewgraphs on resource representation in COMPASS is given. COMPASS is an incremental, interactive, non-chronological scheduler written in Ada with an X-windows user interface. Beginning with an empty schedule, activities are added to the schedule one at a time, taking into consideration the placement of the activities already on the timeline and the resources that have been reserved for them. The order that the activities are added to the timeline and their location on the timeline are controlled by selection and placement commands invoked by the user. The order that activities are added to the timeline and their location are independent. The COMPASS code library is a cost effective platform for the development of new scheduling applications. It can be effectively used off the shelf for compatible scheduling applications or it can be used as a parts library for the development of custom scheduling systems.
Hypocretin/orexin antagonists decrease cocaine self-administration by female rhesus monkeys.
Foltin, Richard W; Evans, Suzette M
2018-07-01
The hypocretin/orexin system is involved in regulating arousal, and much recent work demonstrates that decreasing hypocretin receptor-1 (HCRTr1) activity using antagonists decreases appetitive behavior, including stimulant drug self-administration and reinstatement. The present study determined the effects of hypocretin-1 and HCRTr1 antagonists on responding reinforced by intravenous (i.v.) cocaine self-administration (0.0125 - 0.05 mg/kg/infusion) in 5 female rhesus monkeys. Responding was examined using 3 schedules of reinforcement: 1) a Fixed interval 1 min, Fixed ratio 10 Chain schedule [FI 1-min (FR10:S)], 2) a Progressive Ratio (PR) schedule, and 3) a cocaine vs. candy. Choice schedule: the HCRTr1 antagonist SB-334867 (8-24 mg/kg, i.m.) decreased cocaine taking under the Chain schedule and PR schedule in all 5 monkeys and in 4 of the 5 monkeys under the Choice schedule. d- Amphetamine (0.06 - 0.25 mg/kg, i.m.), tested as a control manipulation, decreased cocaine taking in all 5 monkeys under the Chain schedule. The peptide hypocretin-1 (0.072 mg/kg, i.v.) increased cocaine taking in the monkeys with low rates of cocaine taking under the Chain (3/4) and Choice (4/5) schedules. Reinstatement of extinguished cocaine responding following response-independent delivery of a large dose of cocaine (0.3 mg/kg) was attenuated in 3 of the 5 monkeys by the HCRTr1 antagonist SB-334867. These data expand upon work accomplished in predominantly male rodents suggesting that the hypocretin system modulates the response to appetitive stimuli. A better understanding of this system offers promise as a novel approach in medication development for appetitive disorders. Copyright © 2018 Elsevier B.V. All rights reserved.
A new technology for manufacturing scheduling derived from space system operations
NASA Technical Reports Server (NTRS)
Hornstein, R. S.; Willoughby, J. K.
1993-01-01
A new technology for producing finite capacity schedules has been developed in response to complex requirements for operating space systems such as the Space Shuttle, the Space Station, and the Deep Space Network for telecommunications. This technology has proven its effectiveness in manufacturing environments where popular scheduling techniques associated with Materials Resources Planning (MRPII) and with factory simulation are not adequate for shop-floor work planning and control. The technology has three components. The first is a set of data structures that accommodate an extremely general description of a factory's resources, its manufacturing activities, and the constraints imposed by the environment. The second component is a language and set of software utilities that enable a rapid synthesis of functional capabilities. The third component is an algorithmic architecture called the Five Ruleset Model which accommodates the unique needs of each factory. Using the new technology, systems can model activities that generate, consume, and/or obligate resources. This allows work-in-process (WIP) to be generated and used; it permits constraints to be imposed or intermediate as well as finished goods inventories. It is also possible to match as closely as possible both the current factory state and future conditions such as promise dates. Schedule revisions can be accommodated without impacting the entire production schedule. Applications have been successful in both discrete and process manufacturing environments. The availability of a high-quality finite capacity production planning capability enhances the data management capabilities of MRP II systems. These schedules can be integrated with shop-floor data collection systems and accounting systems. Using the new technology, semi-custom systems can be developed at costs that are comparable to products that do not have equivalent functional capabilities and/or extensibility.
Bake, T; Morgan, D G A; Mercer, J G
2014-04-10
Providing rats and mice with access to palatable high fat diets for a short period each day induces the consumption of substantial binge-like meals. Temporal food intake structure (assessed using the TSE PhenoMaster/LabMaster system) and metabolic outcomes (oral glucose tolerance tests [oGTTs], and dark phase glucose and insulin profiles) were examined in Sprague-Dawley rats given access to 60% high fat diet on one of 3 different feeding regimes: ad libitum access (HF), daily 2 h-scheduled access from 6 to 8 h into the dark phase (2 h-HF), and twice daily 1 h-scheduled access from both 1-2 h and 10-11 h into the dark phase (2×1 h-HF). Control diet remained available during the scheduled access period. HF rats had the highest caloric intake, body weight gain, body fat mass and plasma insulin. Both schedule-fed groups rapidly adapted their feeding behaviour to scheduled access, showing large meal/bingeing behaviour with 44% or 53% of daily calories consumed from high fat diet during the 2 h or 2×1 h scheduled feed(s), respectively. Both schedule-fed groups had an intermediate caloric intake and body fat mass compared to HF and control (CON) groups. Temporal analysis of food intake indicated that schedule-fed rats consumed large binge-type high fat meals without a habitual decrease in preceding intake on control diet, suggesting that a relative hypocaloric state was not responsible or required for driving the binge episode, and substantiating previous indications that binge eating may not be driven by hypothalamic energy balance neuropeptides. In an oGTT, both schedule-fed groups had impaired glucose tolerance with higher glucose and insulin area under the curve, similar to the response in ad libitum HF fed rats, suggesting that palatable feeding schedules represent a potential metabolic threat. Scheduled feeding on high fat diet produces similar metabolic phenotypes to mandatory (no choice) high fat feeding and may be a more realistic platform for mechanistic study of diet-induced obesity. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
77 FR 73611 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-11
...: Negative Quality Control Review Schedule. OMB Control Number: 0584-0034. Summary of Collection: The legislative basis for the operation of the quality control system is provided by section 16 of the Food and Nutrition Act of 2008. State agencies are required to perform Quality Control (QC) reviews for the...
Learning to Control Advanced Life Support Systems
NASA Technical Reports Server (NTRS)
Subramanian, Devika
2004-01-01
Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for advanced life support.
Management Information in Tertiary Institutions.
ERIC Educational Resources Information Center
Findlay, A. W.
1981-01-01
A college or university's management information system corresponds roughly to the institution's structure, with these elements in descending order in the hierarchy: policy and planning, a planning system, control and coordination, and typical operating systems (payroll, exams, scheduling, library, facilities assignments, and accounting…
An Optimization of Manufacturing Systems using a Feedback Control Scheduling Model
NASA Astrophysics Data System (ADS)
Ikome, John M.; Kanakana, Grace M.
2018-03-01
In complex production system that involves multiple process, unplanned disruption often turn to make the entire production system vulnerable to a number of problems which leads to customer’s dissatisfaction. However, this problem has been an ongoing problem that requires a research and methods to streamline the entire process or develop a model that will address it, in contrast to this, we have developed a feedback scheduling model that can minimize some of this problem and after a number of experiment, it shows that some of this problems can be eliminated if the correct remedial actions are implemented on time.
System for Controlling the Stirring Pin of a Friction Stir Welding Apparatus
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey (Inventor); Romine, Peter L. (Inventor); Oelgoetz, Peter A. (Inventor)
2002-01-01
A control is provided for a friction stir welding apparatus comprising a pin tool which includes a shoulder and a rotating pin extending outwardly from the shoulder of the pin tool and which, in use, is plunged into a workpiece formed contacting workpiece members to stir weld the members together. The control system controls the penetration of the pin tool into the workpiece members which are mounted on a support anvil. The control system includes a pin length controller for controlling pin length relative to the shoulder and for producing a corresponding pin length signal. A pin force sensor senses the force being exerted on the pin during welding and produces a corresponding actual pin force signal. A probe controller controls a probe extending outwardly from the pin, senses a parameter related to the distance between the probe and the supporting anvil and produces a corresponding probe signal. A workpiece standoff sensor senses the standoff distance between the workpiece and the standoff sensor and produces a corresponding standoff signal. A control unit receives the various signals, together with a weld schedule, and, based on these signals and the weld schedule, controls the pin length controller so as to control pin penetration into the workpiece.
Augmentation of the space station module power management and distribution breadboard
NASA Technical Reports Server (NTRS)
Walls, Bryan; Hall, David K.; Lollar, Louis F.
1991-01-01
The space station module power management and distribution (SSM/PMAD) breadboard models power distribution and management, including scheduling, load prioritization, and a fault detection, identification, and recovery (FDIR) system within a Space Station Freedom habitation or laboratory module. This 120 VDC system is capable of distributing up to 30 kW of power among more than 25 loads. In addition to the power distribution hardware, the system includes computer control through a hierarchy of processes. The lowest level consists of fast, simple (from a computing standpoint) switchgear that is capable of quickly safing the system. At the next level are local load center processors, (LLP's) which execute load scheduling, perform redundant switching, and shed loads which use more than scheduled power. Above the LLP's are three cooperating artificial intelligence (AI) systems which manage load prioritizations, load scheduling, load shedding, and fault recovery and management. Recent upgrades to hardware and modifications to software at both the LLP and AI system levels promise a drastic increase in speed, a significant increase in functionality and reliability, and potential for further examination of advanced automation techniques. The background, SSM/PMAD, interface to the Lewis Research Center test bed, the large autonomous spacecraft electrical power system, and future plans are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samaan, Nader; Milligan, Michael; Hunsaker, Matt
This paper introduces a production cost modeling approach for evaluating the benefits of intra-hour scheduling among Balancing Authorities (BAs). System operation is modeled in a three-stage sequential manner: day ahead (DA)-hour ahead (HA) real time (RT). In addition to contingency reserve, each BA will need to carry out 'up' and 'down' load following and regulation reserve capacity requirements in the DA and HA time frames. In the RT simulation, only contingency and regulation reserves are carried out as load following is deployed. To model current RT operation with hourly schedules, a new constraint was introduced to force each BA netmore » exchange schedule deviation from HA schedules to be within North American Electric Reliability Corporation (NERC) area control error (ACE) limits. Case studies that investigate the benefits of moving from hourly exchange schedules between Western Electricity Coordinating Council (WECC) BAs into 10-minute exchange schedules under two different levels of wind and solar penetration (11% and 33%) are presented.« less
NASA Astrophysics Data System (ADS)
Iwamura, Koji; Kuwahara, Shinya; Tanimizu, Yoshitaka; Sugimura, Nobuhiro
Recently, new distributed architectures of manufacturing systems are proposed, aiming at realizing more flexible control structures of the manufacturing systems. Many researches have been carried out to deal with the distributed architectures for planning and control of the manufacturing systems. However, the human operators have not yet been discussed for the autonomous components of the distributed manufacturing systems. A real-time scheduling method is proposed, in this research, to select suitable combinations of the human operators, the resources and the jobs for the manufacturing processes. The proposed scheduling method consists of following three steps. In the first step, the human operators select their favorite manufacturing processes which they will carry out in the next time period, based on their preferences. In the second step, the machine tools and the jobs select suitable combinations for the next machining processes. In the third step, the automated guided vehicles and the jobs select suitable combinations for the next transportation processes. The second and third steps are carried out by using the utility value based method and the dispatching rule-based method proposed in the previous researches. Some case studies have been carried out to verify the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Torghabeh, A. A.; Tousi, A. M.
2007-08-01
This paper presents Fuzzy Logic and Neural Networks approach to Gas Turbine Fuel schedules. Modeling of non-linear system using feed forward artificial Neural Networks using data generated by a simulated gas turbine program is introduced. Two artificial Neural Networks are used , depicting the non-linear relationship between gas generator speed and fuel flow, and turbine inlet temperature and fuel flow respectively . Off-line fast simulations are used for engine controller design for turbojet engine based on repeated simulation. The Mamdani and Sugeno models are used to expression the Fuzzy system . The linguistic Fuzzy rules and membership functions are presents and a Fuzzy controller will be proposed to provide an Open-Loop control for the gas turbine engine during acceleration and deceleration . MATLAB Simulink was used to apply the Fuzzy Logic and Neural Networks analysis. Both systems were able to approximate functions characterizing the acceleration and deceleration schedules . Surge and Flame-out avoidance during acceleration and deceleration phases are then checked . Turbine Inlet Temperature also checked and controls by Neural Networks controller. This Fuzzy Logic and Neural Network Controllers output results are validated and evaluated by GSP software . The validation results are used to evaluate the generalization ability of these artificial Neural Networks and Fuzzy Logic controllers.
Refurbishment and Automation of Thermal Vacuum Facilities at NASA/GSFC
NASA Technical Reports Server (NTRS)
Dunn, Jamie; Gomez, Carlos; Donohue, John; Johnson, Chris; Palmer, John; Sushon, Janet
1999-01-01
The thermal vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the eleven facilities, currently ten of the systems are scheduled for refurbishment or replacement as part of a five-year implementation. Expected return on investment includes the reduction in test schedules, improvements in safety of facility operations, and reduction in the personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering, and for the automation of thermal vacuum facilities and tests. Automation of the thermal vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs), the use of Supervisory Control and Data Acquisition (SCADA) systems, and the development of a centralized Test Data Management System. These components allow the computer control and automation of mechanical components such as valves and pumps. The project of refurbishment and automation began in 1996 and has resulted in complete computer control of one facility (Facility 281), and the integration of electronically controlled devices and PLCs in multiple others.
Refurbishment and Automation of Thermal Vacuum Facilities at NASA/GSFC
NASA Technical Reports Server (NTRS)
Dunn, Jamie; Gomez, Carlos; Donohue, John; Johnson, Chris; Palmer, John; Sushon, Janet
1998-01-01
The thermal vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the eleven facilities, currently ten of the systems are scheduled for refurbishment or replacement as part of a five-year implementation. Expected return on investment includes the reduction in test schedules, improvements in safety of facility operations, and reduction in the personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering, and for the automation of thermal vacuum facilities and tests. Automation of the thermal vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs), the use of Supervisory Control and Data Acquisition (SCADA) systems, and the development of a centralized Test Data Management System. These components allow the computer control and automation of mechanical components such as valves and pumps. The project of refurbishment and automation began in 1996 and has resulted in complete computer control of one facility (Facility 281), and the integration of electronically controlled devices and PLCs in multiple others.
Design of a convective cooling system for a Mach 6 hypersonic transport airframe
NASA Technical Reports Server (NTRS)
Helenbrook, R. G.; Anthony, F. M.
1971-01-01
Results of analytical and design studies are presented for a water-glycol convective cooling system for the airframe structure of a hypersonic transport. System configurations and weights are compared. The influences of system pressure drop and flow control schedules on system weight are defined.
NASA Technical Reports Server (NTRS)
Burgin, G. H.; Eggleston, D. M.
1976-01-01
A flight control system for use in air-to-air combat simulation was designed. The input to the flight control system are commanded bank angle and angle of attack, the output are commands to the control surface actuators such that the commanded values will be achieved in near minimum time and sideslip is controlled to remain small. For the longitudinal direction, a conventional linear control system with gains scheduled as a function of dynamic pressure is employed. For the lateral direction, a novel control system, consisting of a linear portion for small bank angle errors and a bang-bang control system for large errors and error rates is employed.
1992-09-01
finding an inverse plant such as was done by Bertrand [BD91] and by Levin, Gewirtzman and Inbar in a binary type inverse controller [LGI91], to self tuning...gain robust control. 2) Self oscillating adaptive controller. 3) Gain scheduling. 4) Self tuning. 5) Model-reference adaptive systems. Although the...of multidimensional systems (CS881 as well as aircraft [HG90]. The self oscillating method is also a feedback based mechanism, utilizing a relay in the
NASA Technical Reports Server (NTRS)
Taube, L. J.
1972-01-01
This volume contains cost, schedule, and technical information on the following B-70 aircraft subsystems: air induction system, flight control, personnel accommodation and escape, alighting and arresting, mission and traffic control, flight indication, test instrumentation, and installation, checkout, and pre-flight.
NASA Technical Reports Server (NTRS)
Lala, J. H.; Smith, T. B., III
1983-01-01
The software developed for the Fault-Tolerant Multiprocessor (FTMP) is described. The FTMP executive is a timer-interrupt driven dispatcher that schedules iterative tasks which run at 3.125, 12.5, and 25 Hz. Major tasks which run under the executive include system configuration control, flight control, and display. The flight control task includes autopilot and autoland functions for a jet transport aircraft. System Displays include status displays of all hardware elements (processors, memories, I/O ports, buses), failure log displays showing transient and hard faults, and an autopilot display. All software is in a higher order language (AED, an ALGOL derivative). The executive is a fully distributed general purpose executive which automatically balances the load among available processor triads. Provisions for graceful performance degradation under processing overload are an integral part of the scheduling algorithms.
NASA Technical Reports Server (NTRS)
Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon
2011-01-01
In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced or heritage systems and the system environment identifies unanticipated issues that result in cost overruns or schedule impacts. The Discovery & New Frontiers (D&NF) Program Office recently studied cost overruns and schedule delays resulting from advanced technology or heritage assumptions for 6 D&NF missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that the cost and schedule growth did not result from technical hurdles requiring significant technology development. Instead, systems engineering processes did not identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of experience with the heritage system; or an inadequate scoping of the system-wide impacts necessary to implement the heritage or advanced technology. This presentation summarizes the study s findings and offers suggestions for improving the project s ability to identify and manage the risks inherent in the technology and heritage design solution.
TFTR diagnostic control and data acquisition system
NASA Astrophysics Data System (ADS)
Sauthoff, N. R.; Daniels, R. E.
1985-05-01
General computerized control and data-handling support for TFTR diagnostics is presented within the context of the Central Instrumentation, Control and Data Acquisition (CICADA) System. Procedures, hardware, the interactive man-machine interface, event-driven task scheduling, system-wide arming and data acquisition, and a hierarchical data base of raw data and results are described. Similarities in data structures involved in control, monitoring, and data acquisition afford a simplification of the system functions, based on ``groups'' of devices. Emphases and optimizations appropriate for fusion diagnostic system designs are provided. An off-line data reduction computer system is under development.
TFTR diagnostic control and data acquisition system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sauthoff, N.R.; Daniels, R.E.; PPL Computer Division
1985-05-01
General computerized control and data-handling support for TFTR diagnostics is presented within the context of the Central Instrumentation, Control and Data Acquisition (CICADA) System. Procedures, hardware, the interactive man--machine interface, event-driven task scheduling, system-wide arming and data acquisition, and a hierarchical data base of raw data and results are described. Similarities in data structures involved in control, monitoring, and data acquisition afford a simplification of the system functions, based on ''groups'' of devices. Emphases and optimizations appropriate for fusion diagnostic system designs are provided. An off-line data reduction computer system is under development.
Hybrid robust predictive optimization method of power system dispatch
Chandra, Ramu Sharat [Niskayuna, NY; Liu, Yan [Ballston Lake, NY; Bose, Sumit [Niskayuna, NY; de Bedout, Juan Manuel [West Glenville, NY
2011-08-02
A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.
Design Principles and Algorithms for Air Traffic Arrival Scheduling
NASA Technical Reports Server (NTRS)
Erzberger, Heinz; Itoh, Eri
2014-01-01
This report presents design principles and algorithms for building a real-time scheduler of arrival aircraft based on a first-come-first-served (FCFS) scheduling protocol. The algorithms provide the conceptual and computational foundation for the Traffic Management Advisor (TMA) of the Center/terminal radar approach control facilities (TRACON) automation system, which comprises a set of decision support tools for managing arrival traffic at major airports in the United States. The primary objective of the scheduler is to assign arrival aircraft to a favorable landing runway and schedule them to land at times that minimize delays. A further objective of the scheduler is to allocate delays between high-altitude airspace far away from the airport and low-altitude airspace near the airport. A method of delay allocation is described that minimizes the average operating cost in the presence of errors in controlling aircraft to a specified landing time. This report is a revision of an earlier paper first presented as part of an Advisory Group for Aerospace Research and Development (AGARD) lecture series in September 1995. The authors, during vigorous discussions over the details of this paper, felt it was important to the air-trafficmanagement (ATM) community to revise and extend the original 1995 paper, providing more detail and clarity and thereby allowing future researchers to understand this foundational work as the basis for the TMA's scheduling algorithms.
Morgantown People Mover Collision Avoidance System Design Summary
DOT National Transportation Integrated Search
1980-09-01
The Morgantown People Mover (MPM) is an automated two-mode (schedule and demand) transit system that consists of a fleet of electrically powered, rubber-tired, passenger-carrying vehicles operating on a dedicated guideway under computer control. The ...
NASA Technical Reports Server (NTRS)
Ingels, Frank; Owens, John; Daniel, Steven
1989-01-01
The protocol definition and terminal hardware for the modified free access protocol, a communications protocol similar to Ethernet, are developed. A MFA protocol simulator and a CSMA/CD math model are also developed. The protocol is tailored to communication systems where the total traffic may be divided into scheduled traffic and Poisson traffic. The scheduled traffic should occur on a periodic basis but may occur after a given event such as a request for data from a large number of stations. The Poisson traffic will include alarms and other random traffic. The purpose of the protocol is to guarantee that scheduled packets will be delivered without collision. This is required in many control and data collection systems. The protocol uses standard Ethernet hardware and software requiring minimum modifications to an existing system. The modification to the protocol only affects the Ethernet transmission privileges and does not effect the Ethernet receiver.
2007-02-16
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers from the Japan Aerospace Exploration Agency watch from a control area as the Remote Manipulator System, or robotic arm, is attached to a hoisting device to prepare it for installation to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
Control systems for heating, ventilating, and air conditioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haines, R.W.
1977-01-01
Hundreds of ideas for designing and controlling sophisticated heating, ventilating and air conditioning (HVAC) systems are presented. Information is included on enthalpy control, energy conservation in HVAC systems, on solar heating, cooling and refrigeration systems, and on a self-draining water collector and heater. Computerized control systems and the economics of supervisory systems are discussed. Information is presented on computer system components, software, relevant terminology, and computerized security and fire reporting systems. Benefits of computer systems are explained, along with optimization techniques, data management, maintenance schedules, and energy consumption. A bibliography, glossaries of HVAC terminology, abbreviations, symbols, and a subject indexmore » are provided. (LCL)« less
1982-06-01
start/stop chiller optimization , and demand limiting were added. The system monitors a 7,000 ton chiller plant and controls 74 air handlers. The EMCS does...Modify analog limits. g. Adjust setpoints of selected controllers. h. Select manual or automatic control modes. i. Enable and disable individual points...or event schedules and controller setpoints ; make nonscheduled starts and stops of equipment or disable field panels when required for routine
ERIC Educational Resources Information Center
International Business Machines Corp., Gaithersburg, MD. Data Processing Div.
The Ohio State University Libraries On-line Remote Catalog Access and Circulation Control System (LCS) began on-line operations with the conversion of one department library in November 1970. By December all 26 libraries had been converted to the automated system and LCS was fully operational one month ahead of schedule. LCS is designed as a…
Clustering execution in a processing system to increase power savings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, Pradip; Buyuktosunoglu, Alper; Jacobson, Hans M.
Embodiments relate to clustering execution in a processing system. An aspect includes accessing a control flow graph that defines a data dependency and an execution sequence of a plurality of tasks of an application that executes on a plurality of system components. The execution sequence of the tasks in the control flow graph is modified as a clustered control flow graph that clusters active and idle phases of a system component while maintaining the data dependency. The clustered control flow graph is sent to an operating system, where the operating system utilizes the clustered control flow graph for scheduling themore » tasks.« less
Teddy, S D; Quek, C; Lai, E M-K; Cinar, A
2010-03-01
Therapeutically, the closed-loop blood glucose-insulin regulation paradigm via a controllable insulin pump offers a potential solution to the management of diabetes. However, the development of such a closed-loop regulatory system to date has been hampered by two main issues: 1) the limited knowledge on the complex human physiological process of glucose-insulin metabolism that prevents a precise modeling of the biological blood glucose control loop; and 2) the vast metabolic biodiversity of the diabetic population due to varying exogneous and endogenous disturbances such as food intake, exercise, stress, and hormonal factors, etc. In addition, current attempts of closed-loop glucose regulatory techniques generally require some form of prior meal announcement and this constitutes a severe limitation to the applicability of such systems. In this paper, we present a novel intelligent insulin schedule based on the pseudo self-evolving cerebellar model articulation controller (PSECMAC) associative learning memory model that emulates the healthy human insulin response to food ingestion. The proposed PSECMAC intelligent insulin schedule requires no prior meal announcement and delivers the necessary insulin dosage based only on the observed blood glucose fluctuations. Using a simulated healthy subject, the proposed PSECMAC insulin schedule is demonstrated to be able to accurately capture the complex human glucose-insulin dynamics and robustly addresses the intraperson metabolic variability. Subsequently, the PSECMAC intelligent insulin schedule is employed on a group of type-1 diabetic patients to regulate their impaired blood glucose levels. Preliminary simulation results are highly encouraging. The work reported in this paper represents a major paradigm shift in the management of diabetes where patient compliance is poor and the need for prior meal announcement under current treatment regimes poses a significant challenge to an active lifestyle.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-12
...] Schedules of Controlled Substances: Temporary Placement of Three Synthetic Cannabinoids Into Schedule I... temporarily schedule three synthetic cannabinoids into the Controlled Substances Act (CSA) pursuant to the...). This action is based on a finding by the Deputy Administrator that the placement of these synthetic...
Almost output regulation of LFT systems via gain-scheduling control
NASA Astrophysics Data System (ADS)
Yuan, Chengzhi; Duan, Chang; Wu, Fen
2018-05-01
Output regulation of general uncertain systems is a meaningful yet challenging problem. In spite of the rich literature in the field, the problem has not yet been addressed adequately due to the lack of an effective design mechanism. In this paper, we propose a new design framework for almost output regulation of uncertain systems described in the general form of linear fractional transformation (LFT) with time-varying parametric uncertainties and unknown external perturbations. A novel semi-LFT gain-scheduling output regulator structure is proposed, such that the associated control synthesis conditions guaranteeing both output regulation and ? disturbance attenuation performance are formulated as a set of linear matrix inequalities (LMIs) plus parameter-dependent linear matrix equations, which can be solved separately. A numerical example has been used to demonstrate the effectiveness of the proposed approach.
Supervision strategies for improved reliability of bus routes. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-09-01
The synthesis will be of interest to transit agency managers and supervisors, as well as to operating and planning personnel who are concerned with the reliability and scheduling of buses. Information is provided on service monitoring, service supervision and control, and supervision strategies. Reliability of transit service is critical to bus transit ridership. The extent of service supervision has an important bearing on reliability. The report describes the various procedures that are used by transit agencies to monitor and maintain bus service reliability. Most transit systems conduct checks of the number of riders at maximum load points and monitor schedulemore » adherence at these locations. Other supervisory actions include service restoration techniques, and strategies such as schedule control, headway control, load control, extraboard management, and personnel selection and training. More sophisticated technologies, such as automatic passenger counting (APC) systems and automatic vehicle location and control (AVLC), have been employed by some transit agencies and are described in the synthesis.« less
A prototype water quality monitoring system is described which offers almost continuous in situ monitoring. The two-man portable system features: (1) a microprocessor controlled central processing unit which allows preprogrammed sampling schedules and reprogramming in situ; (2) a...
Scheduling based on a dynamic resource connection
NASA Astrophysics Data System (ADS)
Nagiyev, A. E.; Botygin, I. A.; Shersntneva, A. I.; Konyaev, P. A.
2017-02-01
The practical using of distributed computing systems associated with many problems, including troubles with the organization of an effective interaction between the agents located at the nodes of the system, with the specific configuration of each node of the system to perform a certain task, with the effective distribution of the available information and computational resources of the system, with the control of multithreading which implements the logic of solving research problems and so on. The article describes the method of computing load balancing in distributed automatic systems, focused on the multi-agency and multi-threaded data processing. The scheme of the control of processing requests from the terminal devices, providing the effective dynamic scaling of computing power under peak load is offered. The results of the model experiments research of the developed load scheduling algorithm are set out. These results show the effectiveness of the algorithm even with a significant expansion in the number of connected nodes and zoom in the architecture distributed computing system.
Centralized Routing and Scheduling Using Multi-Channel System Single Transceiver in 802.16d
NASA Astrophysics Data System (ADS)
Al-Hemyari, A.; Noordin, N. K.; Ng, Chee Kyun; Ismail, A.; Khatun, S.
This paper proposes a cross-layer optimized strategy that reduces the effect of interferences from neighboring nodes within a mesh networks. This cross-layer design relies on the routing information in network layer and the scheduling table in medium access control (MAC) layer. A proposed routing algorithm in network layer is exploited to find the best route for all subscriber stations (SS). Also, a proposed centralized scheduling algorithm in MAC layer is exploited to assign a time slot for each possible node transmission. The cross-layer optimized strategy is using multi-channel single transceiver and single channel single transceiver systems for WiMAX mesh networks (WMNs). Each node in WMN has a transceiver that can be tuned to any available channel for eliminating the secondary interference. Among the considered parameters in the performance analysis are interference from the neighboring nodes, hop count to the base station (BS), number of children per node, slot reuse, load balancing, quality of services (QoS), and node identifier (ID). Results show that the proposed algorithms significantly improve the system performance in terms of length of scheduling, channel utilization ratio (CUR), system throughput, and average end to end transmission delay.
Schedule-controlled learning and memory in a regulatory context
Control of behavior by the manipulation of contingencies provides powerful techniques for assessing the hazard of chemical toxicants on the nervous system. When applied to evaluate the consequences of developmental exposure, these techniques are well suited for characterizing per...
WaterSense Labeled Weather-Based Irrigation Controller Fact Sheet
WaterSense labeled irrigation controllers, which act like a thermostat for your sprinkler system by telling it when to turn on and off, use local weather and landscape conditions to tailor watering schedules to actual conditions on the site.
Space station systems technology study (add-on task). Volume 3: Technology advancement program plan
NASA Technical Reports Server (NTRS)
1985-01-01
Program plans are given for an integrating controller for space station autonomy as well as for controls and displays. The technical approach, facility requirements and candidate facilities, development schedules, and resource requirements estimates are given.
Rethinking the Clockwork of Work: Why Schedule Control May Pay Off at Work and at Home.
Kelly, Erin L; Moen, Phyllis
2007-11-01
Many employees face work-life conflicts and time deficits that negatively affect their health, well-being, effectiveness on the job, and organizational commitment. Many organizations have adopted flexible work arrangements but not all of them increase schedule control, that is, employees' control over when, where, and how much they work. This article describes some limitations of flexible work policies, proposes a conceptual model of how schedule control impacts work-life conflicts, and describes specific ways to increase employees' schedule control, including best practices for implementing common flexible work policies and Best Buy's innovative approach to creating a culture of schedule control.
DBMS as a Tool for Project Management
NASA Technical Reports Server (NTRS)
Linder, H.
1984-01-01
Scientific objectives of crustal dynamics are listed as well as the contents of the centralized data information system for the crustal dynamics project. The system provides for project observation schedules, gives project configuration control information and project site information.
Air Traffic Control: Status of FAA's Standard Terminal Automation Replacement System Project
DOT National Transportation Integrated Search
1997-03-01
Since the early 1980s, FAA's modernization efforts have experienced lengthy : schedule delays and substantial cost overruns. Because of such problems, in : 1994, FAA restructured its acquisition of the Terminal Advanced Automation : System into more ...
Terminal-area STOL operating systems experiments program
NASA Technical Reports Server (NTRS)
Smith, D. W.; Watson, D.; Christensen, J. V.
1972-01-01
A system study to determine the application of short takeoff aircraft for a high speed, short haul air transportation service was conducted. The study focused on developing information which will aid in choosing system concepts, design criteria, operating procedures, landing guidance systems, air traffic control systems, and airborne avionics and flight control systems. A terminal area STOL operating system experiments program was developed. The objectives, program approach, program schedule, typical experiments, research facilities to be used, and program status are discussed.
Modeling and Control for Microgrids
NASA Astrophysics Data System (ADS)
Steenis, Joel
Traditional approaches to modeling microgrids include the behavior of each inverter operating in a particular network configuration and at a particular operating point. Such models quickly become computationally intensive for large systems. Similarly, traditional approaches to control do not use advanced methodologies and suffer from poor performance and limited operating range. In this document a linear model is derived for an inverter connected to the Thevenin equivalent of a microgrid. This model is then compared to a nonlinear simulation model and analyzed using the open and closed loop systems in both the time and frequency domains. The modeling error is quantified with emphasis on its use for controller design purposes. Control design examples are given using a Glover McFarlane controller, gain scheduled Glover McFarlane controller, and bumpless transfer controller which are compared to the standard droop control approach. These examples serve as a guide to illustrate the use of multi-variable modeling techniques in the context of robust controller design and show that gain scheduled MIMO control techniques can extend the operating range of a microgrid. A hardware implementation is used to compare constant gain droop controllers with Glover McFarlane controllers and shows a clear advantage of the Glover McFarlane approach.
Íbias, Javier; Miguéns, Miguel; Pellón, Ricardo
2016-09-01
The spontaneously hypertensive rat (SHR) has been proposed as an animal model for attention deficit hyperactivity disorder (ADHD), and typically develops excessive patterns of response under most behavioural protocols. Schedule-induced polydipsia (SIP) is the excessive water consumption that occurs as a schedule effect when food is intermittently delivered and animals are partially food- but not water-deprived. SIP has been used as a model of excessive behaviour, and considerable evidence has involved the dopaminergic system in its development and maintenance. The aim of this study was to evaluate the effects of the most common psychostimulants used in ADHD treatment on SIP, comparing their effects in SHRs with rats from control populations. SHR, Wistar Kyoto (WKY) and Wistar rats were submitted to a multiple fixed time (FT) food schedule with two components: 30 s and 90 s. The acute effects of different dopaminergic compounds were evaluated after 40 sessions of SIP acquisition. All animals showed higher adjunctive drinking under FT 30 s than FT 90 s, and SHRs displayed higher asymptotic SIP levels in FT 90 s compared to WKY and Wistar rats. SHRs were less sensitive to dopaminergic agents than control rats in terms of affecting rates of adjunctive drinking. These differences point to an altered dopaminergic system in the SHR and provide new insights into the neurobiological basis of ADHD pharmacological treatments. © The Author(s) 2016.
Team formation and breakup in multiagent systems
NASA Astrophysics Data System (ADS)
Rao, Venkatesh Guru
The goal of this dissertation is to pose and solve problems involving team formation and breakup in two specific multiagent domains: formation travel and space-based interferometric observatories. The methodology employed comprises elements drawn from control theory, scheduling theory and artificial intelligence (AI). The original contribution of the work comprises three elements. The first contribution, the partitioned state-space approach is a technique for formulating and solving co-ordinated motion problem using calculus of variations techniques. The approach is applied to obtain optimal two-agent formation travel trajectories on graphs. The second contribution is the class of MixTeam algorithms, a class of team dispatchers that extends classical dispatching by accommodating team formation and breakup and exploration/exploitation learning. The algorithms are applied to observation scheduling and constellation geometry design for interferometric space telescopes. The use of feedback control for team scheduling is also demonstrated with these algorithms. The third contribution is the analysis of the optimality properties of greedy, or myopic, decision-making for a simple class of team dispatching problems. This analysis represents a first step towards the complete analysis of complex team schedulers such as the MixTeam algorithms. The contributions represent an extension to the literature on team dynamics in control theory. The broad conclusions that emerge from this research are that greedy or myopic decision-making strategies for teams perform well when specific parameters in the domain are weakly affected by an agent's actions, and that intelligent systems require a closer integration of domain knowledge in decision-making functions.
Mission Data System Java Edition Version 7
NASA Technical Reports Server (NTRS)
Reinholtz, William K.; Wagner, David A.
2013-01-01
The Mission Data System framework defines closed-loop control system abstractions from State Analysis including interfaces for state variables, goals, estimators, and controllers that can be adapted to implement a goal-oriented control system. The framework further provides an execution environment that includes a goal scheduler, execution engine, and fault monitor that support the expression of goal network activity plans. Using these frameworks, adapters can build a goal-oriented control system where activity coordination is verified before execution begins (plan time), and continually during execution. Plan failures including violations of safety constraints expressed in the plan can be handled through automatic re-planning. This version optimizes a number of key interfaces and features to minimize dependencies, performance overhead, and improve reliability. Fault diagnosis and real-time projection capabilities are incorporated. This version enhances earlier versions primarily through optimizations and quality improvements that raise the technology readiness level. Goals explicitly constrain system states over explicit time intervals to eliminate ambiguity about intent, as compared to command-oriented control that only implies persistent intent until another command is sent. A goal network scheduling and verification process ensures that all goals in the plan are achievable before starting execution. Goal failures at runtime can be detected (including predicted failures) and handled by adapted response logic. Responses can include plan repairs (try an alternate tactic to achieve the same goal), goal shedding, ignoring the fault, cancelling the plan, or safing the system.
Gain Scheduling for the Orion Launch Abort Vehicle Controller
NASA Technical Reports Server (NTRS)
McNamara, Sara J.; Restrepo, Carolina I.; Madsen, Jennifer M.; Medina, Edgar A.; Proud, Ryan W.; Whitley, Ryan J.
2011-01-01
One of NASAs challenges for the Orion vehicle is the control system design for the Launch Abort Vehicle (LAV), which is required to abort safely at any time during the atmospheric ascent portion of ight. The focus of this paper is the gain design and scheduling process for a controller that covers the wide range of vehicle configurations and flight conditions experienced during the full envelope of potential abort trajectories from the pad to exo-atmospheric flight. Several factors are taken into account in the automation process for tuning the gains including the abort effectors, the environmental changes and the autopilot modes. Gain scheduling is accomplished using a linear quadratic regulator (LQR) approach for the decoupled, simplified linear model throughout the operational envelope in time, altitude and Mach number. The derived gains are then implemented into the full linear model for controller requirement validation. Finally, the gains are tested and evaluated in a non-linear simulation using the vehicles ight software to ensure performance requirements are met. An overview of the LAV controller design and a description of the linear plant models are presented. Examples of the most significant challenges with the automation of the gain tuning process are then discussed. In conclusion, the paper will consider the lessons learned through out the process, especially in regards to automation, and examine the usefulness of the gain scheduling tool and process developed as applicable to non-Orion vehicles.
Bioinspired Concepts: Unified Theory for Complex Biological and Engineering Systems
2006-01-01
i.e., data flows of finite size arrive at the system randomly. For such a system , we propose a modified dual scheduling algorithm that stabilizes ...demon. We compute the efficiency of the controller over finite and infinite time intervals, and since the controller is optimal, this yields hard limits...and highly optimized tolerance. PNAS, 102, 2005. 51. G. N. Nair and R. J. Evans. Stabilizability of stochastic linear systems with finite feedback
NASA Technical Reports Server (NTRS)
Liebowitz, Jay; Krishnamurthy, Vijaya; Rodens, Ira; Houston, Chapman; Liebowitz, Alisa; Baek, Seung; Radko, Joe; Zeide, Janet
1996-01-01
Scheduling has become an increasingly important element in today's society and workplace. Within the NASA environment, scheduling is one of the most frequently performed and challenging functions. Towards meeting NASA's scheduling needs, a research version of a generic expert scheduling system architecture and toolkit has been developed. This final report describes the development and testing of GUESS (Generically Used Expert Scheduling System).
A scheduling and diagnostic system for scientific satellite GEOTAIL using expert system
NASA Technical Reports Server (NTRS)
Nakatani, I; Hashimoto, M.; Mukai, T.; Obara, T.; Nishigori, N.
1994-01-01
The Intelligent Satellite Control Software (ISACS) for the geoMagnetic tail observation satellite named GEOTAIL (launched in July 1992) has been successfully developed. ISACS has made it possible by applying Artificial Intelligence (AI) technology including an expert system to autonomously generate a tracking schedule, which originally used to be conducted manually. Using ISACS, a satellite operator can generate a maximum four day period of stored command stream autonomously and can easily confirm its safety. The ISACS system has another function -- to diagnose satellite troubles and to suggest necessary remedies. The workload of satellite operators has drastically been reduced since ISACS has been introduced into the operations of GEOTAIL.
Model Checking the Remote Agent Planner
NASA Technical Reports Server (NTRS)
Khatib, Lina; Muscettola, Nicola; Havelund, Klaus; Norvig, Peter (Technical Monitor)
2001-01-01
This work tackles the problem of using Model Checking for the purpose of verifying the HSTS (Scheduling Testbed System) planning system. HSTS is the planner and scheduler of the remote agent autonomous control system deployed in Deep Space One (DS1). Model Checking allows for the verification of domain models as well as planning entries. We have chosen the real-time model checker UPPAAL for this work. We start by motivating our work in the introduction. Then we give a brief description of HSTS and UPPAAL. After that, we give a sketch for the mapping of HSTS models into UPPAAL and we present samples of plan model properties one may want to verify.
Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy
Rosewater, David; Ferreira, Summer; Schoenwald, David; ...
2018-01-25
Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational datamore » is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.« less
Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosewater, David; Ferreira, Summer; Schoenwald, David
Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational datamore » is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.« less
19 CFR 162.45a - Summary forfeiture of Schedule I and Schedule II controlled substances.
Code of Federal Regulations, 2010 CFR
2010-04-01
... OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) INSPECTION, SEARCH, AND SEIZURE....S.C. 965. Accordingly, in the case of a seizure of Schedule I or Schedule II controlled substances...
Planning and Resource Management in an Intelligent Automated Power Management System
NASA Technical Reports Server (NTRS)
Morris, Robert A.
1991-01-01
Power system management is a process of guiding a power system towards the objective of continuous supply of electrical power to a set of loads. Spacecraft power system management requires planning and scheduling, since electrical power is a scarce resource in space. The automation of power system management for future spacecraft has been recognized as an important R&D goal. Several automation technologies have emerged including the use of expert systems for automating human problem solving capabilities such as rule based expert system for fault diagnosis and load scheduling. It is questionable whether current generation expert system technology is applicable for power system management in space. The objective of the ADEPTS (ADvanced Electrical Power management Techniques for Space systems) is to study new techniques for power management automation. These techniques involve integrating current expert system technology with that of parallel and distributed computing, as well as a distributed, object-oriented approach to software design. The focus of the current study is the integration of new procedures for automatically planning and scheduling loads with procedures for performing fault diagnosis and control. The objective is the concurrent execution of both sets of tasks on separate transputer processors, thus adding parallelism to the overall management process.
Wheels-Off Time Uncertainty Impact on Benefits of Early Call for Release Scheduling
NASA Technical Reports Server (NTRS)
Palopo, Kee; Chatterji, Gano B.; Almog, Noam
2017-01-01
Arrival traffic scenarios with 808 flights from 173 airports to Houston George Bush International airport are simulated to determine if Call For Release flights can receive a benefit in terms of less delay over other flights by scheduling prior to gate pushback (look-ahead in time) as opposed to at gate pushback. Call for Release flights are departures that require approval from Air Route Traffic Control Center prior to release. Realism is brought to the study by including gate departure delay and taxi-out delay uncertainties for the 77 major U. S. airports. Gate departure delay uncertainty is assumed to increase as a function of look-ahead time. Results show that Call For Release flights from an airport within the freeze horizon (a region surrounding the arrival airport) can get an advantage over other flights to a capacity constrained airport by scheduling prior to gate pushback, provided the wheels-off time uncertainty with respect to schedule is controlled to a small value, such as within a three-minute window. Another finding of the study is that system delay, measured as the sum of arrival delays, is smaller when flights are scheduled in the order of arrival compared to in the order of departure. Because flights from airports within the freeze horizon are scheduled in the order of departure, an increase in the number of internal airports with a larger freeze horizon increases system delay. Delay in the given scenario was found to increase by 126% (from 13.8 hours to 31.2 hours) as freeze horizon was increased from 30-minutes to 2-hours in the baseline scenario.
An application of artificial intelligence to automatic telescopes
NASA Technical Reports Server (NTRS)
Swanson, Keith; Drummond, Mark; Bresina, John
1992-01-01
Automatic Photoelectric Telescopes (APT's) allow an astronomer to be removed form the telescope site in both time and space. APT's 'execute' an observation program (a set of observation requests) expressed in an ASCII-based language (ATIS) and collect observation results expressed in this same language. The observation program is currently constructed by a Principal Astronomer from the requests of multiple users; the execution is currently controlled by a simple heuristic dispatch scheduler. Research aimed at improving the use of APT's is being carried out by the Entropy Reduction Engine (ERE) project at NASA Ames. The overall goal of the ERE project is the study and construction of systems that integrate planning, scheduling, and control. This paper discusses the application of some ERE technical results to the improvement of both the scheduling and the operation of APT's.
A time-based concept for terminal-area traffic management
NASA Technical Reports Server (NTRS)
Erzberger, Heinz; Tobias, Leonard
1986-01-01
An automated air-traffic-management concept that has the potential for significantly increasing the efficiency of traffic flows in high-density terminal areas is discussed. The concept's implementation depends on techniques for controlling the landing time of all aircraft entering the terminal area, both those that are equipped with on-board four-dimensional (4D) guidance systems as well as those aircraft types that are conventionally equipped. The two major ground-based elements of the system are a scheduler which assigns conflict-free landing times and a profile descent advisor. Landing time provided by the scheduler is uplinked to equipped aircraft and translated into the appropriate 4D trajectory by the-board flight-management system. The controller issues descent advisories to unequipped aircraft to help them achieve the assigned landing times. Air traffic control simulations have established that the concept provides an efficient method for controlling various mixes of 4D-equipped and unequipped, as well as low- and high-performance, aircraft. Piloted simulations of profiles flown with the aid of advisories have verified the ability to meet specified descent times with prescribed accuracy.
System cost/performance analysis (study 2.3). Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Kazangey, T.
1973-01-01
The relationships between performance, safety, cost, and schedule parameters were identified and quantified in support of an overall effort to generate program models and methodology that provide insight into a total space vehicle program. A specific space vehicle system, the attitude control system (ACS), was used, and a modeling methodology was selected that develops a consistent set of quantitative relationships among performance, safety, cost, and schedule, based on the characteristics of the components utilized in candidate mechanisms. These descriptive equations were developed for a three-axis, earth-pointing, mass expulsion ACS. A data base describing typical candidate ACS components was implemented, along with a computer program to perform sample calculations. This approach, implemented on a computer, is capable of determining the effect of a change in functional requirements to the ACS mechanization and the resulting cost and schedule. By a simple extension of this modeling methodology to the other systems in a space vehicle, a complete space vehicle model can be developed. Study results and recommendations are presented.
ROBUS-2: A Fault-Tolerant Broadcast Communication System
NASA Technical Reports Server (NTRS)
Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; Miner, Paul S.
2005-01-01
The Reliable Optical Bus (ROBUS) is the core communication system of the Scalable Processor-Independent Design for Enhanced Reliability (SPIDER), a general-purpose fault-tolerant integrated modular architecture currently under development at NASA Langley Research Center. The ROBUS is a time-division multiple access (TDMA) broadcast communication system with medium access control by means of time-indexed communication schedule. ROBUS-2 is a developmental version of the ROBUS providing guaranteed fault-tolerant services to the attached processing elements (PEs), in the presence of a bounded number of faults. These services include message broadcast (Byzantine Agreement), dynamic communication schedule update, clock synchronization, and distributed diagnosis (group membership). The ROBUS also features fault-tolerant startup and restart capabilities. ROBUS-2 is tolerant to internal as well as PE faults, and incorporates a dynamic self-reconfiguration capability driven by the internal diagnostic system. This version of the ROBUS is intended for laboratory experimentation and demonstrations of the capability to reintegrate failed nodes, dynamically update the communication schedule, and tolerate and recover from correlated transient faults.
CARMENES instrument control system and operational scheduler
NASA Astrophysics Data System (ADS)
Garcia-Piquer, Alvaro; Guàrdia, Josep; Colomé, Josep; Ribas, Ignasi; Gesa, Lluis; Morales, Juan Carlos; Pérez-Calpena, Ana; Seifert, Walter; Quirrenbach, Andreas; Amado, Pedro J.; Caballero, José A.; Reiners, Ansgar
2014-07-01
The main goal of the CARMENES instrument is to perform high-accuracy measurements of stellar radial velocities (1m/s) with long-term stability. CARMENES will be installed in 2015 at the 3.5 m telescope in the Calar Alto Observatory (Spain) and it will be equipped with two spectrographs covering from the visible to the near-infrared. It will make use of its near-IR capabilities to observe late-type stars, whose peak of the spectral energy distribution falls in the relevant wavelength interval. The technology needed to develop this instrument represents a challenge at all levels. We present two software packages that play a key role in the control layer for an efficient operation of the instrument: the Instrument Control System (ICS) and the Operational Scheduler. The coordination and management of CARMENES is handled by the ICS, which is responsible for carrying out the operations of the different subsystems providing a tool to operate the instrument in an integrated manner from low to high user interaction level. The ICS interacts with the following subsystems: the near-IR and visible channels, composed by the detectors and exposure meters; the calibration units; the environment sensors; the front-end electronics; the acquisition and guiding module; the interfaces with telescope and dome; and, finally, the software subsystems for operational scheduling of tasks, data processing, and data archiving. We describe the ICS software design, which implements the CARMENES operational design and is planned to be integrated in the instrument by the end of 2014. The CARMENES operational scheduler is the second key element in the control layer described in this contribution. It is the main actor in the translation of the survey strategy into a detailed schedule for the achievement of the optimization goals. The scheduler is based on Artificial Intelligence techniques and computes the survey planning by combining the static constraints that are known a priori (i.e., target visibility, sky background, required time sampling coverage) and the dynamic change of the system conditions (i.e., weather, system conditions). Off-line and on-line strategies are integrated into a single tool for a suitable transfer of the target prioritization made by the science team to the real-time schedule that will be used by the instrument operators. A suitable solution will be expected to increase the efficiency of telescope operations, which will represent an important benefit in terms of scientific return and operational costs. We present the operational scheduling tool designed for CARMENES, which is based on two algorithms combining a global and a local search: Genetic Algorithms and Hill Climbing astronomy-based heuristics, respectively. The algorithm explores a large amount of potential solutions from the vast search space and is able to identify the most efficient ones. A planning solution is considered efficient when it optimizes the objectives defined, which, in our case, are related to the reduction of the time that the telescope is not in use and the maximization of the scientific return, measured in terms of the time coverage of each target in the survey. We present the results obtained using different test cases.
Rethinking the Clockwork of Work: Why Schedule Control May Pay Off at Work and at Home
Kelly, Erin L.; Moen, Phyllis
2014-01-01
The problem and the solution Many employees face work–life conflicts and time deficits that negatively affect their health, well-being, effectiveness on the job, and organizational commitment. Many organizations have adopted flexible work arrangements but not all of them increase schedule control, that is, employees’ control over when, where, and how much they work. This article describes some limitations of flexible work policies, proposes a conceptual model of how schedule control impacts work–life conflicts, and describes specific ways to increase employees’ schedule control, including best practices for implementing common flexible work policies and Best Buy’s innovative approach to creating a culture of schedule control. PMID:25598711
Shared-Ride Taxi Computer Control System Requirements Study
DOT National Transportation Integrated Search
1977-08-01
The technical problem of scheduling and routing shared-ride taxi service is so great that only computers can handle it efficiently. This study is concerned with defining the requirements of such a computer system. The major objective of this study is...
48 CFR 34.202 - Integrated Baseline Reviews.
Code of Federal Regulations, 2011 CFR
2011-10-01
... inherent risks in offerors'/contractors' performance plans and the underlying management control systems...) The degree to which the management process provides effective and integrated technical/schedule/cost... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Integrated Baseline...
Power flow control using quadrature boosters
NASA Astrophysics Data System (ADS)
Sadanandan, Sandeep N.
A power system that can be controlled within security constraints would be an advantage to power planners and real-time operators. Controlling flows can lessen reliability issues such as thermal limit violations, power stability problems, and/or voltage stability conditions. Control of flows can also mitigate market issues by reducing congestion on some lines and rerouting power to less loaded lines or onto preferable paths. In the traditional control of power flows, phase shifters are often used. More advanced methods include using Flexible AC Transmission System (FACTS) Controllers. Some examples include Thyristor Controlled Series Capacitors, Synchronous Series Static Compensators, and Unified Power Flow Controllers. Quadrature Boosters (QBs) have similar structures to phase-shifters, but allow for higher voltage magnitude during real power flow control. In comparison with other FACTS controllers QBs are not as complex and not as expensive. The present study proposes to use QBs to control power flows on a power system. With the inclusion of QBs, real power flows can be controlled to desired scheduled values. In this thesis, the linearized power flow equations used for power flow analysis were modified for the control problem. This included modifying the Jacobian matrix, the power error vector, and calculating the voltage injected by the quadrature booster for the scheduled real power flow. Two scenarios were examined using the proposed power flow control method. First, the power flow in a line in a 5-bus system was modified with a QB using the method developed in this thesis. Simulation was carried out using Matlab. Second, the method was applied to a 30-bus system and then to a 118-bus system using several QBs. In all the cases, the calculated values of the QB voltages led to desired power flows in the designated line.
2009-01-01
controllers (currently using the Robostix+Gumstix pair ). The interface between the plant simulator and the controller is ‘hard real-time’, and the xPC box... simulation ) on aerobatic maneuver design for the STARMAC quadrotor helicopter testbed. In related work, we have developed a new optimization scheme...for scheduling hybrid systems, and have demonstrated the results on an autonomous car simulation testbed. We are focusing efforts this summer for
Carter, Michael J; Smith, Victoria; Carlsen, Anthony N; Ste-Marie, Diane M
2018-05-01
A distinct learning advantage has been shown when participants control their knowledge of results (KR) scheduling during practice compared to when the same KR schedule is imposed on the learner without choice (i.e., yoked schedules). Although the learning advantages of self-controlled KR schedules are well-documented, the brain regions contributing to these advantages remain unknown. Identifying key brain regions would not only advance our theoretical understanding of the mechanisms underlying self-controlled learning advantages, but would also highlight regions that could be targeted in more applied settings to boost the already beneficial effects of self-controlled KR schedules. Here, we investigated whether applying anodal transcranial direct current stimulation (tDCS) to the primary motor cortex (M1) would enhance the typically found benefits of learning a novel motor skill with a self-controlled KR schedule. Participants practiced a spatiotemporal task in one of four groups using a factorial combination of KR schedule (self-controlled vs. yoked) and tDCS (anodal vs. sham). Testing occurred on two consecutive days with spatial and temporal accuracy measured on both days and learning was assessed using 24-h retention and transfer tests without KR. All groups improved their performance in practice and a significant effect for practicing with a self-controlled KR schedule compared to a yoked schedule was found for temporal accuracy in transfer, but a similar advantage was not evident in retention. There were no significant differences as a function of KR schedule or tDCS for spatial accuracy in retention or transfer. The lack of a significant tDCS effect suggests that M1 may not strongly contribute to self-controlled KR learning advantages; however, caution is advised with this interpretation as typical self-controlled learning benefits were not strongly replicated in the present experiment.
Planning for the semiconductor manufacturer of the future
NASA Technical Reports Server (NTRS)
Fargher, Hugh E.; Smith, Richard A.
1992-01-01
Texas Instruments (TI) is currently contracted by the Air Force Wright Laboratory and the Defense Advanced Research Projects Agency (DARPA) to develop the next generation flexible semiconductor wafer fabrication system called Microelectronics Manufacturing Science & Technology (MMST). Several revolutionary concepts are being pioneered on MMST, including the following: new single-wafer rapid thermal processes, in-situ sensors, cluster equipment, and advanced Computer Integrated Manufacturing (CIM) software. The objective of the project is to develop a manufacturing system capable of achieving an order of magnitude improvement in almost all aspects of wafer fabrication. TI was awarded the contract in Oct., 1988, and will complete development with a fabrication facility demonstration in April, 1993. An important part of MMST is development of the CIM environment responsible for coordinating all parts of the system. The CIM architecture being developed is based on a distributed object oriented framework made of several cooperating subsystems. The software subsystems include the following: process control for dynamic control of factory processes; modular processing system for controlling the processing equipment; generic equipment model which provides an interface between processing equipment and the rest of the factory; specification system which maintains factory documents and product specifications; simulator for modelling the factory for analysis purposes; scheduler for scheduling work on the factory floor; and the planner for planning and monitoring of orders within the factory. This paper first outlines the division of responsibility between the planner, scheduler, and simulator subsystems. It then describes the approach to incremental planning and the way in which uncertainty is modelled within the plan representation. Finally, current status and initial results are described.
28 CFR 16.85 - Exemption of U.S. Parole Commission-limited access.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Scheduling and Control System (JUSTICE/PRC-001). (2) Inmate and Supervision Files System (JUSTICE/PRC-003). (3) Labor and Pension Case, Legal File, and General Correspondence System (JUSTICE/PRC-004). (4... OF MATERIAL OR INFORMATION Exemption of Records Systems Under the Privacy Act § 16.85 Exemption of U...
28 CFR 16.85 - Exemption of U.S. Parole Commission-limited access.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Scheduling and Control System (JUSTICE/PRC-001). (2) Inmate and Supervision Files System (JUSTICE/PRC-003). (3) Labor and Pension Case, Legal File, and General Correspondence System (JUSTICE/PRC-004). (4... OF MATERIAL OR INFORMATION Exemption of Records Systems Under the Privacy Act § 16.85 Exemption of U...
28 CFR 16.85 - Exemption of U.S. Parole Commission-limited access.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Scheduling and Control System (JUSTICE/PRC-001). (2) Inmate and Supervision Files System (JUSTICE/PRC-003). (3) Labor and Pension Case, Legal File, and General Correspondence System (JUSTICE/PRC-004). (4... OF MATERIAL OR INFORMATION Exemption of Records Systems Under the Privacy Act § 16.85 Exemption of U...
28 CFR 16.85 - Exemption of U.S. Parole Commission-limited access.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Scheduling and Control System (JUSTICE/PRC-001). (2) Inmate and Supervision Files System (JUSTICE/PRC-003). (3) Labor and Pension Case, Legal File, and General Correspondence System (JUSTICE/PRC-004). (4... OF MATERIAL OR INFORMATION Exemption of Records Systems Under the Privacy Act § 16.85 Exemption of U...
An Intelligent Crop Planning Tool for Controlled Ecological Life Support Systems
NASA Technical Reports Server (NTRS)
Whitaker, Laura O.; Leon, Jorge
1996-01-01
This paper describes a crop planning tool developed for the Controlled Ecological Life Support Systems (CELSS) project which is in the research phases at various NASA facilities. The Crop Planning Tool was developed to assist in the understanding of the long term applications of a CELSS environment. The tool consists of a crop schedule generator as well as a crop schedule simulator. The importance of crop planning tools such as the one developed is discussed. The simulator is outlined in detail while the schedule generator is touched upon briefly. The simulator consists of data inputs, plant and human models, and various other CELSS activity models such as food consumption and waste regeneration. The program inputs such as crew data and crop states are discussed. References are included for all nominal parameters used. Activities including harvesting, planting, plant respiration, and human respiration are discussed using mathematical models. Plans provided to the simulator by the plan generator are evaluated for their 'fitness' to the CELSS environment with an objective function based upon daily reservoir levels. Sample runs of the Crop Planning Tool and future needs for the tool are detailed.
28 CFR 16.85 - Exemption of U.S. Parole Commission-limited access.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Statistical, Educational and Developmental System (JUSTICE/PRC-006). (5) Workload Record, Decision Result, and...-limited access. 16.85 Section 16.85 Judicial Administration DEPARTMENT OF JUSTICE PRODUCTION OR DISCLOSURE... Scheduling and Control System (JUSTICE/PRC-001). (2) Inmate and Supervision Files System (JUSTICE/PRC-003...
75 FR 37301 - Exempt Chemical Mixtures Containing Gamma-Butyrolactone
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-29
... their central nervous system (CNS) depressant effect. An overdose from GBL or GHB may result in... the central nervous system that is substantially similar to or greater than the stimulant, depressant, or hallucinogenic effect on the central nervous system of a controlled substance in schedule I or II...
Automated Power-Distribution System
NASA Technical Reports Server (NTRS)
Ashworth, Barry; Riedesel, Joel; Myers, Chris; Miller, William; Jones, Ellen F.; Freeman, Kenneth; Walsh, Richard; Walls, Bryan K.; Weeks, David J.; Bechtel, Robert T.
1992-01-01
Autonomous power-distribution system includes power-control equipment and automation equipment. System automatically schedules connection of power to loads and reconfigures itself when it detects fault. Potential terrestrial applications include optimization of consumption of power in homes, power supplies for autonomous land vehicles and vessels, and power supplies for automated industrial processes.
Scheduling for energy and reliability management on multiprocessor real-time systems
NASA Astrophysics Data System (ADS)
Qi, Xuan
Scheduling algorithms for multiprocessor real-time systems have been studied for years with many well-recognized algorithms proposed. However, it is still an evolving research area and many problems remain open due to their intrinsic complexities. With the emergence of multicore processors, it is necessary to re-investigate the scheduling problems and design/develop efficient algorithms for better system utilization, low scheduling overhead, high energy efficiency, and better system reliability. Focusing cluster schedulings with optimal global schedulers, we study the utilization bound and scheduling overhead for a class of cluster-optimal schedulers. Then, taking energy/power consumption into consideration, we developed energy-efficient scheduling algorithms for real-time systems, especially for the proliferating embedded systems with limited energy budget. As the commonly deployed energy-saving technique (e.g. dynamic voltage frequency scaling (DVFS)) will significantly affect system reliability, we study schedulers that have intelligent mechanisms to recuperate system reliability to satisfy the quality assurance requirements. Extensive simulation is conducted to evaluate the performance of the proposed algorithms on reduction of scheduling overhead, energy saving, and reliability improvement. The simulation results show that the proposed reliability-aware power management schemes could preserve the system reliability while still achieving substantial energy saving.
Model development for prediction of soil water dynamics in plant production.
Hu, Zhengfeng; Jin, Huixia; Zhang, Kefeng
2015-09-01
Optimizing water use in agriculture and medicinal plants is crucially important worldwide. Soil sensor-controlled irrigation systems are increasingly becoming available. However it is questionable whether irrigation scheduling based on soil measurements in the top soil could make best use of water for deep-rooted crops. In this study a mechanistic model was employed to investigate water extraction by a deep-rooted cabbage crop from the soil profile throughout crop growth. The model accounts all key processes governing water dynamics in the soil-plant-atmosphere system. Results show that the subsoil provides a significant proportion of the seasonal transpiration, about a third of water transpired over the whole growing season. This suggests that soil water in the entire root zone should be taken into consideration in irrigation scheduling, and for sensor-controlled irrigation systems sensors in the subsoil are essential for detecting soil water status for deep-rooted crops.
McGerald, Genevieve; Dvorkin, Ronald; Levy, David; Lovell-Rose, Stephanie; Sharma, Adhi
2009-06-01
Prescriptions for controlled substances decrease when regulatory barriers are put in place. The converse has not been studied. The objective was to determine whether a less complicated prescription writing process is associated with a change in the prescribing patterns of controlled substances in the emergency department (ED). The authors conducted a retrospective nonconcurrent cohort study of all patients seen in an adult ED between April 19, 2005, and April 18, 2007, who were discharged with a prescription. Prior to April 19, 2006, a specialized prescription form stored in a locked cabinet was obtained from the nursing staff to write a prescription for benzodiazepines or Schedule II opioids. After April 19, 2006, New York State mandated that all prescriptions, regardless of schedule classification, be generated on a specialized bar-coded prescription form. The main outcome of the study was to compare the proportion of Schedule III-V opioids to Schedule II opioids and benzodiazepines prescribed in the ED before and after the introduction of a less cumbersome prescription writing process. Of the 26,638 charts reviewed, 2.1% of the total number of prescriptions generated were for a Schedule II controlled opioid before the new system was implemented compared to 13.6% after (odds ratio [OR] = 7.3, 95% confidence interval [CI] = 6.4 to 8.4). The corresponding percentages for Schedule III-V opioids were 29.9% to 18.1% (OR = 0.52, 95% CI = 0.49 to 0.55) and for benzodiazepines 1.4% to 3.9% (OR = 2.8, 95% CI = 2.4 to 3.4). Patients were more likely to receive a prescription for a Schedule II opioid or a benzodiazepine after a more streamlined computer-generated prescription writing process was introduced in this ED. (c) 2009 by the Society for Academic Emergency Medicine.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Standards Institute. Appliance lamp means any lamp that— (1) Is specifically designed to operate in a... clothes washer which has a control system which is capable of scheduling a preselected combination of... to faucets and showerheads: Have the identical flow control mechanism attached to or installed within...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Standards Institute. Appliance lamp means any lamp that— (1) Is specifically designed to operate in a... clothes washer which has a control system which is capable of scheduling a preselected combination of... control mechanism attached to or installed within the fixture fittings, or the identical water-passage...
Heritage and Advanced Technology Systems Engineering Lessons Learned from NASA Deep Space Missions
NASA Technical Reports Server (NTRS)
Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon
2010-01-01
In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for four of the five missions studied. The cost and schedule growth was not found to result from technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the system-wide impacts necessary to implement an advanced technology for space flight applications. The paper summarizes the study's lessons learned in more detail and offers suggestions for improving the project's ability to identify and manage the technology and heritage risks inherent in the design solution.
Winter Simulation Conference, Miami Beach, Fla., December 4-6, 1978, Proceedings. Volumes 1 & 2
NASA Technical Reports Server (NTRS)
Highland, H. J. (Editor); Nielsen, N. R.; Hull, L. G.
1978-01-01
The papers report on the various aspects of simulation such as random variate generation, simulation optimization, ranking and selection of alternatives, model management, documentation, data bases, and instructional methods. Simulation studies in a wide variety of fields are described, including system design and scheduling, government and social systems, agriculture, computer systems, the military, transportation, corporate planning, ecosystems, health care, manufacturing and industrial systems, computer networks, education, energy, production planning and control, financial models, behavioral models, information systems, and inventory control.
The Launch Processing System for Space Shuttle.
NASA Technical Reports Server (NTRS)
Springer, D. A.
1973-01-01
In order to reduce costs and accelerate vehicle turnaround, a single automated system will be developed to support shuttle launch site operations, replacing a multiplicity of systems used in previous programs. The Launch Processing System will provide real-time control, data analysis, and information display for the checkout, servicing, launch, landing, and refurbishment of the launch vehicles, payloads, and all ground support systems. It will also provide real-time and historical data retrieval for management and sustaining engineering (test records and procedures, logistics, configuration control, scheduling, etc.).
Reconfigurable manufacturing execution system for pipe cutting
NASA Astrophysics Data System (ADS)
Yin, Y. H.; Xie, J. Y.
2011-08-01
This article presents a reconfigurable manufacturing execution system (RMES) filling the gap between enterprise resource planning and resource layer for pipe-cutting production with mass customisation and rapid adaptation to dynamic market, which consists of planning and scheduling layer and executive control layer. Starting from customer's task and process requirements, the cutting trajectories are planned under generalised mathematical model able to reconfigure in accordance with various intersecting types' joint, and all tasks are scheduled by nesting algorithm to maximise the utilisation rate of rough material. This RMES for pipe cutting has been effectively implemented in more than 100 companies.
NASA Technical Reports Server (NTRS)
Chien, Steve A.; Tran, Daniel Q.; Rabideau, Gregg R.; Schaffer, Steven R.
2011-01-01
Software has been designed to schedule remote sensing with the Earth Observing One spacecraft. The software attempts to satisfy as many observation requests as possible considering each against spacecraft operation constraints such as data volume, thermal, pointing maneuvers, and others. More complex constraints such as temperature are approximated to enable efficient reasoning while keeping the spacecraft within safe limits. Other constraints are checked using an external software library. For example, an attitude control library is used to determine the feasibility of maneuvering between pairs of observations. This innovation can deal with a wide range of spacecraft constraints and solve large scale scheduling problems like hundreds of observations and thousands of combinations of observation sequences.
A Novel Approach to Noise-Filtering Based on a Gain-Scheduling Neural Network Architecture
NASA Technical Reports Server (NTRS)
Troudet, T.; Merrill, W.
1994-01-01
A gain-scheduling neural network architecture is proposed to enhance the noise-filtering efficiency of feedforward neural networks, in terms of both nominal performance and robustness. The synergistic benefits of the proposed architecture are demonstrated and discussed in the context of the noise-filtering of signals that are typically encountered in aerospace control systems. The synthesis of such a gain-scheduled neurofiltering provides the robustness of linear filtering, while preserving the nominal performance advantage of conventional nonlinear neurofiltering. Quantitative performance and robustness evaluations are provided for the signal processing of pitch rate responses to typical pilot command inputs for a modern fighter aircraft model.
User requirements for a patient scheduling system
NASA Technical Reports Server (NTRS)
Zimmerman, W.
1979-01-01
A rehabilitation institute's needs and wants from a scheduling system were established by (1) studying the existing scheduling system and the variables that affect patient scheduling, (2) conducting a human-factors study to establish the human interfaces that affect patients' meeting prescribed therapy schedules, and (3) developing and administering a questionnaire to the staff which pertains to the various interface problems in order to identify staff requirements to minimize scheduling problems and other factors that may limit the effectiveness of any new scheduling system.
NASA Technical Reports Server (NTRS)
Lefebvre, D. R.; Sanderson, A. C.
1994-01-01
Robot coordination and control systems for remote teleoperation applications are by necessity implemented on distributed computers. Modeling and performance analysis of these distributed robotic systems is difficult, but important for economic system design. Performance analysis methods originally developed for conventional distributed computer systems are often unsatisfactory for evaluating real-time systems. The paper introduces a formal model of distributed robotic control systems; and a performance analysis method, based on scheduling theory, which can handle concurrent hard-real-time response specifications. Use of the method is illustrated by a case of remote teleoperation which assesses the effect of communication delays and the allocation of robot control functions on control system hardware requirements.
The LSST Scheduler from design to construction
NASA Astrophysics Data System (ADS)
Delgado, Francisco; Reuter, Michael A.
2016-07-01
The Large Synoptic Survey Telescope (LSST) will be a highly robotic facility, demanding a very high efficiency during its operation. To achieve this, the LSST Scheduler has been envisioned as an autonomous software component of the Observatory Control System (OCS), that selects the sequence of targets in real time. The Scheduler will drive the survey using optimization of a dynamic cost function of more than 200 parameters. Multiple science programs produce thousands of candidate targets for each observation, and multiple telemetry measurements are received to evaluate the external and the internal conditions of the observatory. The design of the LSST Scheduler started early in the project supported by Model Based Systems Engineering, detailed prototyping and scientific validation of the survey capabilities required. In order to build such a critical component, an agile development path in incremental releases is presented, integrated to the development plan of the Operations Simulator (OpSim) to allow constant testing, integration and validation in a simulated OCS environment. The final product is a Scheduler that is also capable of running 2000 times faster than real time in simulation mode for survey studies and scientific validation during commissioning and operations.
Planning Risk-Based SQC Schedules for Bracketed Operation of Continuous Production Analyzers.
Westgard, James O; Bayat, Hassan; Westgard, Sten A
2018-02-01
To minimize patient risk, "bracketed" statistical quality control (SQC) is recommended in the new CLSI guidelines for SQC (C24-Ed4). Bracketed SQC requires that a QC event both precedes and follows (brackets) a group of patient samples. In optimizing a QC schedule, the frequency of QC or run size becomes an important planning consideration to maintain quality and also facilitate responsive reporting of results from continuous operation of high production analytic systems. Different plans for optimizing a bracketed SQC schedule were investigated on the basis of Parvin's model for patient risk and CLSI C24-Ed4's recommendations for establishing QC schedules. A Sigma-metric run size nomogram was used to evaluate different QC schedules for processes of different sigma performance. For high Sigma performance, an effective SQC approach is to employ a multistage QC procedure utilizing a "startup" design at the beginning of production and a "monitor" design periodically throughout production. Example QC schedules are illustrated for applications with measurement procedures having 6-σ, 5-σ, and 4-σ performance. Continuous production analyzers that demonstrate high σ performance can be effectively controlled with multistage SQC designs that employ a startup QC event followed by periodic monitoring or bracketing QC events. Such designs can be optimized to minimize the risk of harm to patients. © 2017 American Association for Clinical Chemistry.
V/STOL tilt rotor aircraft study. Volume 7: Tilt rotor flight control program feedback studies
NASA Technical Reports Server (NTRS)
Alexander, H. R.; Eason, W.; Gillmore, K.; Morris, J.; Spittle, R.
1973-01-01
An exploratory study has been made of the use of feedback control in tilt rotor aircraft. This has included the use of swashplate cyclic and collective controls and direct lift control. Various sensor and feedback systems are evaluated in relation to blade loads alleviation, improvement in flying qualities, and modal suppression. Recommendations are made regarding additional analytical and wind tunnel investigations and development of feedback systems in the full scale flight vehicle. Estimated costs and schedules are given.
77 FR 63766 - Schedules of Controlled Substances: Placement of Methylone Into Schedule I
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-17
... DEPARTMENT OF JUSTICE Drug Enforcement Administration 21 CFR Part 1308 [Docket No. DEA-357] Schedules of Controlled Substances: Placement of Methylone Into Schedule I AGENCY: Drug Enforcement Administration, Department of Justice. ACTION: Notice of proposed rulemaking. SUMMARY: The Drug Enforcement...
Job Design and Ethnic Differences in Working Women’s Physical Activity
Grzywacz, Joseph G.; Crain, A. Lauren; Martinson, Brian C.; Quandt, Sara A.
2014-01-01
Objective To document the role job control and schedule control play in shaping women’s physical activity, and how it delineates educational and racial variability in associations of job and social control with physical activity. Methods Prospective data were obtained from a community-based sample of working women (N = 302). Validated instruments measured job control and schedule control. Steps per day were assessed using New Lifestyles 800 activity monitors. Results Greater job control predicted more steps per day, whereas greater schedule control predicted fewer steps. Small indirect associations between ethnicity and physical activity were observed among women with a trade school degree or less but not for women with a college degree. Conclusions Low job control created barriers to physical activity among working women with a trade school degree or less. Greater schedule control predicted less physical activity, suggesting women do not use time “created” by schedule flexibility for personal health enhancement. PMID:24034681
Job design and ethnic differences in working women's physical activity.
Grzywacz, Joseph G; Crain, A Lauren; Martinson, Brian C; Quandt, Sara A
2014-01-01
To document the role job control and schedule control play in shaping women's physical activity, and how it delineates educational and racial variability in associations of job and social control with physical activity. Prospective data were obtained from a community-based sample of working women (N = 302). Validated instruments measured job control and schedule control. Steps per day were assessed using New Lifestyles 800 activity monitors. Greater job control predicted more steps per day, whereas greater schedule control predicted fewer steps. Small indirect associations between ethnicity and physical activity were observed among women with a trade school degree or less but not for women with a college degree. Low job control created barriers to physical activity among working women with a trade school degree or less. Greater schedule control predicted less physical activity, suggesting women do not use time "created" by schedule flexibility for personal health enhancement.
An overview of the artificial intelligence and expert systems component of RICIS
NASA Technical Reports Server (NTRS)
Feagin, Terry
1987-01-01
Artificial Intelligence and Expert Systems are the important component of RICIS (Research Institute and Information Systems) research program. For space applications, a number of problem areas that should be able to make good use of the above tools include: resource allocation and management, control and monitoring, environmental control and life support, power distribution, communications scheduling, orbit and attitude maintenance, redundancy management, intelligent man-machine interfaces and fault detection, isolation and recovery.
NASA Astrophysics Data System (ADS)
Witantyo; Rindiyah, Anita
2018-03-01
According to data from maintenance planning and control, it was obtained that highest inventory value is non-routine components. Maintenance components are components which procured based on maintenance activities. The problem happens because there is no synchronization between maintenance activities and the components required. Reliability Centered Maintenance method is used to overcome the problem by reevaluating maintenance activities required components. The case chosen is roller mill system because it has the highest unscheduled downtime record. Components required for each maintenance activities will be determined by its failure distribution, so the number of components needed could be predicted. Moreover, those components will be reclassified from routine component to be non-routine component, so the procurement could be carried out regularly. Based on the conducted analysis, failure happens in almost every maintenance task are classified to become scheduled on condition task, scheduled discard task, schedule restoration task and no schedule maintenance. From 87 used components for maintenance activities are evaluated and there 19 components that experience reclassification from non-routine components to routine components. Then the reliability and need of those components were calculated for one-year operation period. Based on this invention, it is suggested to change all of the components in overhaul activity to increase the reliability of roller mill system. Besides, the inventory system should follow maintenance schedule and the number of required components in maintenance activity so the value of procurement will be decreased and the reliability system will increase.
Scheduling Aircraft Landings under Constrained Position Shifting
NASA Technical Reports Server (NTRS)
Balakrishnan, Hamsa; Chandran, Bala
2006-01-01
Optimal scheduling of airport runway operations can play an important role in improving the safety and efficiency of the National Airspace System (NAS). Methods that compute the optimal landing sequence and landing times of aircraft must accommodate practical issues that affect the implementation of the schedule. One such practical consideration, known as Constrained Position Shifting (CPS), is the restriction that each aircraft must land within a pre-specified number of positions of its place in the First-Come-First-Served (FCFS) sequence. We consider the problem of scheduling landings of aircraft in a CPS environment in order to maximize runway throughput (minimize the completion time of the landing sequence), subject to operational constraints such as FAA-specified minimum inter-arrival spacing restrictions, precedence relationships among aircraft that arise either from airline preferences or air traffic control procedures that prevent overtaking, and time windows (representing possible control actions) during which each aircraft landing can occur. We present a Dynamic Programming-based approach that scales linearly in the number of aircraft, and describe our computational experience with a prototype implementation on realistic data for Denver International Airport.
Collaborative Resource Allocation
NASA Technical Reports Server (NTRS)
Wang, Yeou-Fang; Wax, Allan; Lam, Raymond; Baldwin, John; Borden, Chester
2007-01-01
Collaborative Resource Allocation Networking Environment (CRANE) Version 0.5 is a prototype created to prove the newest concept of using a distributed environment to schedule Deep Space Network (DSN) antenna times in a collaborative fashion. This program is for all space-flight and terrestrial science project users and DSN schedulers to perform scheduling activities and conflict resolution, both synchronously and asynchronously. Project schedulers can, for the first time, participate directly in scheduling their tracking times into the official DSN schedule, and negotiate directly with other projects in an integrated scheduling system. A master schedule covers long-range, mid-range, near-real-time, and real-time scheduling time frames all in one, rather than the current method of separate functions that are supported by different processes and tools. CRANE also provides private workspaces (both dynamic and static), data sharing, scenario management, user control, rapid messaging (based on Java Message Service), data/time synchronization, workflow management, notification (including emails), conflict checking, and a linkage to a schedule generation engine. The data structure with corresponding database design combines object trees with multiple associated mortal instances and relational database to provide unprecedented traceability and simplify the existing DSN XML schedule representation. These technologies are used to provide traceability, schedule negotiation, conflict resolution, and load forecasting from real-time operations to long-range loading analysis up to 20 years in the future. CRANE includes a database, a stored procedure layer, an agent-based middle tier, a Web service wrapper, a Windows Integrated Analysis Environment (IAE), a Java application, and a Web page interface.
Pain management for joint arthroplasty: preemptive analgesia.
Mallory, Thomas H; Lombardi, Adolph V; Fada, Robert A; Dodds, Kathleen L; Adams, Joanne B
2002-06-01
Scheduled preoperative and postoperative analgesia should be offered in a multimodal management model. By a combined drug synergy effect, the central nervous system, afferent pathways, and peripheral wound site are modified collectively. In an ongoing effort to improve perioperative pain management, we retrospectively compared the results of a previously reported pain management protocol with 2 more recent groups of patients managed with modified pain protocols. In the earlier control protocol, epidural anesthesia was discontinued on arrival to the postanesthesia care unit, and regularly scheduled oral opioids and intravenous hydromorphone for breakthrough pain were initiated. The first more recent group used epidural anesthesia, and the second group used spinal anesthesia. Both protocols featured the use of cyclooxygenase-2-inhibiting anti-inflammatory medication administered for 2 weeks preoperatively and continued for 10 days postoperatively and patient-controlled analgesia for 24 hours followed by scheduled oral opioids. Copyright 2002, Elsevier Science (USA).
NASA Technical Reports Server (NTRS)
1976-01-01
The feasibility of accomplishing selected atmospheric science mission using a pallet-only mode was studied. Certain unresolved issues were identified. The first issue was that of assuring that the on-board computer facility was adequate to process scientific data, control subsystems such as instrument pointing, provide mission operational program capability, and accomplish display and control. The second issue evolved from an investigation of the availability of existing substitute instruments that could be used instead of the prime instrumentation where the development tests and schedules are incompatible with the realistic budgets and shuttle vehicle schedules. Some effort was expended on identifying candidate substitute instruments, and the performance, cost, and development schedule trade-offs found during that effort were significant enough to warrant a follow-on investigation. This addendum documents the results of that follow-on effort, as it applies to the Atmospheric Sciences Facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoginath, Srikanth B; Perumalla, Kalyan S; Henz, Brian J
2012-01-01
In prior work (Yoginath and Perumalla, 2011; Yoginath, Perumalla and Henz, 2012), the motivation, challenges and issues were articulated in favor of virtual time ordering of Virtual Machines (VMs) in network simulations hosted on multi-core machines. Two major components in the overall virtualization challenge are (1) virtual timeline establishment and scheduling of VMs, and (2) virtualization of inter-VM communication. Here, we extend prior work by presenting scaling results for the first component, with experiment results on up to 128 VMs scheduled in virtual time order on a single 12-core host. We also explore the solution space of design alternatives formore » the second component, and present performance results from a multi-threaded, multi-queue implementation of inter-VM network control for synchronized execution with VM scheduling, incorporated in our NetWarp simulation system.« less
Terminal-area STOL operating systems experiments program
NASA Technical Reports Server (NTRS)
Smith, D. W.; Watson, D.; Christensen, J. V.
1973-01-01
Information which will aid in the choice by the U.S. Government and industry of system concepts, design criteria, operating procedures for STOL aircraft and STOL ports, STOL landing guidance systems, air traffic control systems, and airborne avionics and flight control systems. Ames has developed a terminal-area STOL operating systems experiments program which is a part of the joint DOT/NASA effort is discussed. The Ames operating systems experiments program, its objectives, the program approach, the program schedule, typical experiments, the research facilities to be used, and the program status are described.
Status of Japanese Experiment Module (JEM) activities
NASA Technical Reports Server (NTRS)
1991-01-01
The current status of the JEM activities are presented in graphic form. The JEM spacecraft configuration is presented. The JEM configuration consist of the Pressurized Module, the Exposed Facility, the Experiment Logistics Module which consist of a pressurized section and an exposed section; and the Remote Manipulator System. The master schedule of the space station is given. Also the development tests of the structure and mechanism, the electrical power system, the data management system, the thermal control system, the environment control system, the experiment support system, and the remote manipulator system are listed.
NASA Technical Reports Server (NTRS)
1979-01-01
Contents: project plan summary; project and mission objectives; related studies and technology support activities; technical summary; management; procurement approach; project definition items and schedule; resources; management review; controlled items; and safety, reliability, and quality assurance.
Artificial intelligence for the CTA Observatory scheduler
NASA Astrophysics Data System (ADS)
Colomé, Josep; Colomer, Pau; Campreciós, Jordi; Coiffard, Thierry; de Oña, Emma; Pedaletti, Giovanna; Torres, Diego F.; Garcia-Piquer, Alvaro
2014-08-01
The Cherenkov Telescope Array (CTA) project will be the next generation ground-based very high energy gamma-ray instrument. The success of the precursor projects (i.e., HESS, MAGIC, VERITAS) motivated the construction of this large infrastructure that is included in the roadmap of the ESFRI projects since 2008. CTA is planned to start the construction phase in 2015 and will consist of two arrays of Cherenkov telescopes operated as a proposal-driven open observatory. Two sites are foreseen at the southern and northern hemispheres. The CTA observatory will handle several observation modes and will have to operate tens of telescopes with a highly efficient and reliable control. Thus, the CTA planning tool is a key element in the control layer for the optimization of the observatory time. The main purpose of the scheduler for CTA is the allocation of multiple tasks to one single array or to multiple sub-arrays of telescopes, while maximizing the scientific return of the facility and minimizing the operational costs. The scheduler considers long- and short-term varying conditions to optimize the prioritization of tasks. A short-term scheduler provides the system with the capability to adapt, in almost real-time, the selected task to the varying execution constraints (i.e., Targets of Opportunity, health or status of the system components, environment conditions). The scheduling procedure ensures that long-term planning decisions are correctly transferred to the short-term prioritization process for a suitable selection of the next task to execute on the array. In this contribution we present the constraints to CTA task scheduling that helped classifying it as a Flexible Job-Shop Problem case and finding its optimal solution based on Artificial Intelligence techniques. We describe the scheduler prototype that uses a Guarded Discrete Stochastic Neural Network (GDSN), for an easy representation of the possible long- and short-term planning solutions, and Constraint Propagation techniques. A simulation platform, an analysis tool and different test case scenarios for CTA were developed to test the performance of the scheduler and are also described.
A Three-Stage Enhanced Reactive Power and Voltage Optimization Method for High Penetration of Solar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ke, Xinda; Huang, Renke; Vallem, Mallikarjuna R.
This paper presents a three-stage enhanced volt/var optimization method to stabilize voltage fluctuations in transmission networks by optimizing the usage of reactive power control devices. In contrast with existing volt/var optimization algorithms, the proposed method optimizes the voltage profiles of the system, while keeping the voltage and real power output of the generators as close to the original scheduling values as possible. This allows the method to accommodate realistic power system operation and market scenarios, in which the original generation dispatch schedule will not be affected. The proposed method was tested and validated on a modified IEEE 118-bus system withmore » photovoltaic data.« less
TDRSS operations control analysis study
NASA Technical Reports Server (NTRS)
1976-01-01
The use of an operational Tracking and Data Relay Satellite System (TDRSS) and the remaining ground stations for the STDN (GSTDN) was investigated. The operational aspects of TDRSS concepts, GSTDN as a 14-site network, and GSTDN as a 7 site-network were compared and operations control concepts for the configurations developed. Man/machine interface, scheduling system, and hardware/software tradeoff analyses were among the factors considered in the analysis.
Conception of Self-Construction Production Scheduling System
NASA Astrophysics Data System (ADS)
Xue, Hai; Zhang, Xuerui; Shimizu, Yasuhiro; Fujimura, Shigeru
With the high speed innovation of information technology, many production scheduling systems have been developed. However, a lot of customization according to individual production environment is required, and then a large investment for development and maintenance is indispensable. Therefore now the direction to construct scheduling systems should be changed. The final objective of this research aims at developing a system which is built by it extracting the scheduling technique automatically through the daily production scheduling work, so that an investment will be reduced. This extraction mechanism should be applied for various production processes for the interoperability. Using the master information extracted by the system, production scheduling operators can be supported to accelerate the production scheduling work easily and accurately without any restriction of scheduling operations. By installing this extraction mechanism, it is easy to introduce scheduling system without a lot of expense for customization. In this paper, at first a model for expressing a scheduling problem is proposed. Then the guideline to extract the scheduling information and use the extracted information is shown and some applied functions are also proposed based on it.
Development of a decentralized multi-axis synchronous control approach for real-time networks.
Xu, Xiong; Gu, Guo-Ying; Xiong, Zhenhua; Sheng, Xinjun; Zhu, Xiangyang
2017-05-01
The message scheduling and the network-induced delays of real-time networks, together with the different inertias and disturbances in different axes, make the synchronous control of the real-time network-based systems quite challenging. To address this challenge, a decentralized multi-axis synchronous control approach is developed in this paper. Due to the limitations of message scheduling and network bandwidth, error of the position synchronization is firstly defined in the proposed control approach as a subset of preceding-axis pairs. Then, a motion message estimator is designed to reduce the effect of network delays. It is proven that position and synchronization errors asymptotically converge to zero in the proposed controller with the delay compensation. Finally, simulation and experimental results show that the developed control approach can achieve the good position synchronization performance for the multi-axis motion over the real-time network. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
User interface issues in supporting human-computer integrated scheduling
NASA Technical Reports Server (NTRS)
Cooper, Lynne P.; Biefeld, Eric W.
1991-01-01
Explored here is the user interface problems encountered with the Operations Missions Planner (OMP) project at the Jet Propulsion Laboratory (JPL). OMP uses a unique iterative approach to planning that places additional requirements on the user interface, particularly to support system development and maintenance. These requirements are necessary to support the concepts of heuristically controlled search, in-progress assessment, and iterative refinement of the schedule. The techniques used to address the OMP interface needs are given.
Heritage Systems Engineering Lessons from NASA Deep Space Missions
NASA Technical Reports Server (NTRS)
Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon
2010-01-01
In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for all five missions studied. The cost and schedule growth was not found to be the result of technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the systemwide impacts necessary to implement an advanced technology for space flight applications. The paper summarizes the study s lessons learned in more detail and offers suggestions for improving the project s ability to identify and manage the technology and heritage risks inherent in the design solution.
NASA Technical Reports Server (NTRS)
Koenig, John C.; Billitti, Joseph W.; Tallon, John M.
1979-01-01
Guidelines are provided to the Field Centers for organization, scheduling, project and cost control, and performance in the areas of project management and operations planning for Photovoltaics Test and Applications. These guidelines may be used in organizing a T and A Project Team for system design/test, site construction and operation, and as the basis for evaluating T and A proposals. The attributes are described for project management and operations planning to be used by the Field Centers. Specifically, all project management and operational issues affecting costs, schedules and performance of photovoltaic systems are addressed. Photovoltaic tests and applications include residential, intermediate load center, central station, and stand-alone systems. The sub-categories of system maturity considered are: Initial System Evaluation Experiments (ISEE); System Readiness Experiments (SRE); and Commercial Readiness Demonstration Projects (CRDP).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, E.R.
1983-09-01
The appendixes for the Saguaro Power Plant includes the following: receiver configuration selection report; cooperating modes and transitions; failure modes analysis; control system analysis; computer codes and simulation models; procurement package scope descriptions; responsibility matrix; solar system flow diagram component purpose list; thermal storage component and system test plans; solar steam generator tube-to-tubesheet weld analysis; pipeline listing; management control schedule; and system list and definitions.
NASA Technical Reports Server (NTRS)
1978-01-01
A collection of three quarterly reports are given covering the development of two prototype solar heating systems consisting of the following subsystems: collector, storage, control, transport, and site data acquisition. The two systems are being installed at York, Pennsylvania, and Manchester, New Hampshire.
40 CFR 60.695 - Monitoring of operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... device outlet gas stream or inlet and outlet gas stream shall be used. (i) For a carbon adsorption system... adsorption system that does not regenerate the carbon bed directly onsite in the control device (e.g., a... carbon adsorption system shall be monitored on a regular schedule, and the existing carbon shall be...
40 CFR 60.695 - Monitoring of operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... device outlet gas stream or inlet and outlet gas stream shall be used. (i) For a carbon adsorption system... adsorption system that does not regenerate the carbon bed directly onsite in the control device (e.g., a... carbon adsorption system shall be monitored on a regular schedule, and the existing carbon shall be...
Direct Digital Control of HVAC (Heating, Ventilating, and Air Conditioning Equipment (User’s Guide)
1985-01-01
reset, load shedding, chiller optimization , VAV fan synchronization, and optimum start/stop. The prospective buyer of a DDC system should investigate...current and accurate drawings for a conventional, built-up control system such as that illustrated in Fig- ure 4. Data on setpoints , reset schedules, and...are always available in the form of the computer program code (Figure 7). In addition to the control logic, setpoint and other data are readily
Energy conservation and analysis and evaluation. [specifically at Slidell Computer Complex
NASA Technical Reports Server (NTRS)
1976-01-01
The survey assembled and made recommendations directed at conserving utilities and reducing the use of energy at the Slidell Computer Complex. Specific items included were: (1) scheduling and controlling the use of gas and electricity, (2) building modifications to reduce energy, (3) replacement of old, inefficient equipment, (4) modifications to control systems, (5) evaluations of economizer cycles in HVAC systems, and (6) corrective settings for thermostats, ductstats, and other temperature and pressure control devices.
2008-11-01
support to the value of the approach. 9. Scheduling and Control of Mobile Communications Networks with Randomly Time Varying Channels by Stability ...biological systems . Many examples arise in communications and queueing, due to the finite speed of signal transmission, the nonnegligible time required...without delays, the system state takes values in a subset of some finite -dimensional Euclidean space, and the control is a functional of the current
Designing Control System Application Software for Change
NASA Technical Reports Server (NTRS)
Boulanger, Richard
2001-01-01
The Unified Modeling Language (UML) was used to design the Environmental Systems Test Stand (ESTS) control system software. The UML was chosen for its ability to facilitate a clear dialog between software designer and customer, from which requirements are discovered and documented in a manner which transposes directly to program objects. Applying the UML to control system software design has resulted in a baseline set of documents from which change and effort of that change can be accurately measured. As the Environmental Systems Test Stand evolves, accurate estimates of the time and effort required to change the control system software will be made. Accurate quantification of the cost of software change can be before implementation, improving schedule and budget accuracy.
Automatic reactor control system for transient operation
NASA Astrophysics Data System (ADS)
Lipinski, Walter C.; Bhattacharyya, Samit K.; Hanan, Nelson A.
Various programmatic considerations have delayed the upgrading of the TREAT reactor and the performance of the control system is not yet experimentally verified. The current schedule calls for the upgrading activities to occur last in the calendar year 1987. Detailed simulation results, coupled with earlier validation of individual components of the control strategy in TREAT, verify the performance of the algorithms. The control system operates within the safety envelope provided by a protection system designed to ensure reactor safety under conditions of spurious reactivity additions. The approach should be directly applicable to MMW systems, with appropriate accounting of temperature rate limitations of key components and of the inertia of the secondary system components.
Research on intelligent power consumption strategy based on time-of-use pricing
NASA Astrophysics Data System (ADS)
Fu, Wei; Gong, Li; Chen, Heli; He, Yu
2017-06-01
In this paper, through the analysis of shortcomings of the current domestic and foreign household power consumption strategy: Passive way of power consumption, ignoring the different priority of electric equipment, neglecting the actual load pressure of the grid, ignoring the interaction with the user, to decrease the peak-valley difference and improve load curve in residential area by demand response (DR technology), an intelligent power consumption scheme based on time-of-use(TOU) pricing for household appliances is proposed. The main contribution of this paper is: (1) Three types of household appliance loads are abstracted from different operating laws of various household appliances, and the control models and DR strategies corresponding to these types are established. (2) The fuzzified processing for the information of TOU price, which is based on the time intervals, is performed to get the price priority, in accordance with such DR events as the maximum restricted load of DR, the time of DR and the duration of interruptible load and so on, the DR control rule and pre-scheduling mechanism are led in. (3) The dispatching sequence of household appliances in the control and scheduling queue are switched and controlled to implement the equilibrium of peak and valley loads. The equilibrium effects and economic benefits of power system by pre-scheduling and DR dispatching are compared and analyzed by simulation example, and the results show that using the proposed household appliance control (HAC) scheme the overall cost of consumers can be reduced and the power system load can be alleviated, so the proposed household appliance control (HAC) scheme is feasible and reasonable.
Thermal-Aware Test Access Mechanism and Wrapper Design Optimization for System-on-Chips
NASA Astrophysics Data System (ADS)
Yu, Thomas Edison; Yoneda, Tomokazu; Chakrabarty, Krishnendu; Fujiwara, Hideo
Rapid advances in semiconductor manufacturing technology have led to higher chip power densities, which places greater emphasis on packaging and temperature control during testing. For system-on-chips, peak power-based scheduling algorithms have been used to optimize tests under specified power constraints. However, imposing power constraints does not always solve the problem of overheating due to the non-uniform distribution of power across the chip. This paper presents a TAM/Wrapper co-design methodology for system-on-chips that ensures thermal safety while still optimizing the test schedule. The method combines a simplified thermal-cost model with a traditional bin-packing algorithm to minimize test time while satisfying temperature constraints. Furthermore, for temperature checking, thermal simulation is done using cycle-accurate power profiles for more realistic results. Experiments show that even a minimal sacrifice in test time can yield a considerable decrease in test temperature as well as the possibility of further lowering temperatures beyond those achieved using traditional power-based test scheduling.
Research on Production Scheduling System with Bottleneck Based on Multi-agent
NASA Astrophysics Data System (ADS)
Zhenqiang, Bao; Weiye, Wang; Peng, Wang; Pan, Quanke
Aimed at the imbalance problem of resource capacity in Production Scheduling System, this paper uses Production Scheduling System based on multi-agent which has been constructed, and combines the dynamic and autonomous of Agent; the bottleneck problem in the scheduling is solved dynamically. Firstly, this paper uses Bottleneck Resource Agent to find out the bottleneck resource in the production line, analyses the inherent mechanism of bottleneck, and describes the production scheduling process based on bottleneck resource. Bottleneck Decomposition Agent harmonizes the relationship of job's arrival time and transfer time in Bottleneck Resource Agent and Non-Bottleneck Resource Agents, therefore, the dynamic scheduling problem is simplified as the single machine scheduling of each resource which takes part in the scheduling. Finally, the dynamic real-time scheduling problem is effectively solved in Production Scheduling System.
32 CFR 326.5 - Responsibilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Information Officer (CIO), NRO: (1) Ensures that NRO systems of records databases have procedures to protect... law or Executive Order which provides authority for the maintenance of information in each system of... length of time each item of information must be retained according to the NRO Records Control Schedule as...
Wireless sensor network effectively controls center pivot irrigation of sorghum
USDA-ARS?s Scientific Manuscript database
Robust automatic irrigation scheduling has been demonstrated using wired sensors and sensor network systems with subsurface drip and moving irrigation systems. However, there are limited studies that report on crop yield and water use efficiency resulting from the use of wireless networks to automat...
A Fast-Time Simulation Tool for Analysis of Airport Arrival Traffic
NASA Technical Reports Server (NTRS)
Erzberger, Heinz; Meyn, Larry A.; Neuman, Frank
2004-01-01
The basic objective of arrival sequencing in air traffic control automation is to match traffic demand and airport capacity while minimizing delays. The performance of an automated arrival scheduling system, such as the Traffic Management Advisor developed by NASA for the FAA, can be studied by a fast-time simulation that does not involve running expensive and time-consuming real-time simulations. The fast-time simulation models runway configurations, the characteristics of arrival traffic, deviations from predicted arrival times, as well as the arrival sequencing and scheduling algorithm. This report reviews the development of the fast-time simulation method used originally by NASA in the design of the sequencing and scheduling algorithm for the Traffic Management Advisor. The utility of this method of simulation is demonstrated by examining the effect on delays of altering arrival schedules at a hub airport.
Design requirements for SRB production control system. Volume 4: Implementation
NASA Technical Reports Server (NTRS)
1981-01-01
The implementation plan which is presented was developed to provide the means for the successful implementation of the automated production control system. There are three factors which the implementation plan encompasses: detailed planning; phased implementation; and user involvement. The plan is detailed to the task level in terms of necessary activities as the system is developed, refined, installed, and tested. These tasks are scheduled, on a preliminary basis, over a two-and-one-half-year time frame.
Performance of an Automated-Mixed-Traffic-Vehicle /AMTV/ System. [urban people mover
NASA Technical Reports Server (NTRS)
Peng, T. K. C.; Chon, K.
1978-01-01
This study analyzes the operation and evaluates the expected performance of a proposed automatic guideway transit system which uses low-speed Automated Mixed Traffic Vehicles (AMTV's). Vehicle scheduling and headway control policies are evaluated with a transit system simulation model. The effect of mixed-traffic interference on the average vehicle speed is examined with a vehicle-pedestrian interface model. Control parameters regulating vehicle speed are evaluated for safe stopping and passenger comfort.
Development of a Dynamic Time Sharing Scheduled Environment Final Report CRADA No. TC-824-94E
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jette, M.; Caliga, D.
Massively parallel computers, such as the Cray T3D, have historically supported resource sharing solely with space sharing. In that method, multiple problems are solved by executing them on distinct processors. This project developed a dynamic time- and space-sharing scheduler to achieve greater interactivity and throughput than could be achieved with space-sharing alone. CRI and LLNL worked together on the design, testing, and review aspects of this project. There were separate software deliverables. CFU implemented a general purpose scheduling system as per the design specifications. LLNL ported the local gang scheduler software to the LLNL Cray T3D. In this approach, processorsmore » are allocated simultaneously to aU components of a parallel program (in a “gang”). Program execution is preempted as needed to provide for interactivity. Programs are also reIocated to different processors as needed to efficiently pack the computer’s torus of processors. In phase one, CRI developed an interface specification after discussions with LLNL for systemlevel software supporting a time- and space-sharing environment on the LLNL T3D. The two parties also discussed interface specifications for external control tools (such as scheduling policy tools, system administration tools) and applications programs. CRI assumed responsibility for the writing and implementation of all the necessary system software in this phase. In phase two, CRI implemented job-rolling on the Cray T3D, a mechanism for preempting a program, saving its state to disk, and later restoring its state to memory for continued execution. LLNL ported its gang scheduler to the LLNL T3D utilizing the CRI interface implemented in phases one and two. During phase three, the functionality and effectiveness of the LLNL gang scheduler was assessed to provide input to CRI time- and space-sharing, efforts. CRI will utilize this information in the development of general schedulers suitable for other sites and future architectures.« less
Instructional versus schedule control of humans' choices in situations of diminishing returns
Hackenberg, Timothy D.; Joker, Veronica R.
1994-01-01
Four adult humans chose repeatedly between a fixed-time schedule (of points later exchangeable for money) and a progressive-time schedule that began at 0 s and increased by a fixed number of seconds with each point delivered by that schedule. Each point delivered by the fixed-time schedule reset the requirements of the progressive-time schedule to its minimum value. Subjects were provided with instructions that specified a particular sequence of choices. Under the initial conditions, the instructions accurately specified the optimal choice sequence. Thus, control by instructions and optimal control by the programmed contingencies both supported the same performance. To distinguish the effects of instructions from schedule sensitivity, the correspondence between the instructed and optimal choice patterns was gradually altered across conditions by varying the step size of the progressive-time schedule while maintaining the same instructions. Step size was manipulated, typically in 1-s units, first in an ascending and then in a descending sequence of conditions. Instructions quickly established control in all 4 subjects but, by narrowing the range of choice patterns, they reduced subsequent sensitivity to schedule changes. Instructional control was maintained across the ascending sequence of progressive-time values for each subject, but eventually diminished, giving way to more schedule-appropriate patterns. The transition from instruction-appropriate to schedule-appropriate behavior was characterized by an increase in the variability of choice patterns and local increases in point density. On the descending sequence of progressive-time values, behavior appeared to be schedule sensitive, sometimes even optimally sensitive, but it did not always change systematically with the contingencies, suggesting the involvement of other factors. PMID:16812747
NASA Technical Reports Server (NTRS)
Jung, Jaewoo; Swenson, Harry; Thipphavong, Jane; Martin, Lynne Hazel; Chen, Liang; Nguyen, Jimmy
2013-01-01
The growth of global demand for air transportation has put increasing strain on the nation's air traffic management system. To relieve this strain, the International Civil Aviation Organization has urged all nations to adopt Performance-Based Navigation (PBN), which can help to reduce air traffic congestion, decrease aviation fuel consumption, and protect the environment. NASA has developed a Terminal Area Precision Scheduling and Spacing (TAPSS) system that can support increased use of PBN during periods of high traffic, while supporting fuel-efficient, continuous descent approaches. In the original development of this system, arrival aircraft are assigned fuel-efficient Area Navigation (RNAV) Standard Terminal Arrival Routes before their initial descent from cruise, with routing defined to a specific runway. The system also determines precise schedules for these aircraft that facilitate continuous descent through the assigned routes. To meet these schedules, controllers are given a set of advisory tools to precisely control aircraft. The TAPSS system has been evaluated in a series of human-in-the-loop (HITL) air traffic simulations during 2010 and 2011. Results indicated increased airport arrival throughput up to 10 over current operations, and maintained fuel-efficient aircraft decent profiles from the initial descent to landing with reduced controller workload. This paper focuses on results from a joint NASA and FAA HITL simulation conducted in 2012. Due to the FAA rollout of the advance terminal area PBN procedures at mid-sized airports first, the TAPSS system was modified to manage arrival aircraft as they entered Terminal Radar Approach Control (TRACON). Dallas-Love Field airport (DAL) was selected by the FAA as a representative mid-sized airport within a constrained TRACON airspace due to the close proximity of a major airport, in this case Dallas-Ft Worth International Airport, one of the busiest in the world. To address this constraint, RNAV routes and Required Navigation Performance with the particular capability known as Radius-to-Fix (RNP-RF) approaches to a short final were used. The purpose of this simulation was to get feedback on how current operations could benefit with the TAPSS system and also to evaluate the efficacy of the advisory tools to support the broader use of PBN in the US National Airspace System. For this NASA-FAA joint experiment, an Air Traffic Control laboratory at NASA Ames was arranged to simulate arrivals into DAL in Instrument Meteorological Conditions utilizing parallel dependent approaches, with two feeder positions that handed off traffic to one final position. Four FAA controllers participated, alternately covering these three positions. All participants were Full-Performance Level terminal controllers and members of the National Air Traffic Controllers Association. During the simulation, PBN arrival operations were compared and contrasted in three conditions. They were the Baseline, where none of the TAPSS systems TRACON controller decision support advisories were provided, the Limited Advisories, reflecting the existing but dormant capabilities of the current terminal automation equipment with providing a subset of the TAPSS systems advisories; numerical delay, landing sequence, and runway assignment information, and the Full Advisories, with providing the following in addition to the ones in the Limited condition; trajectory slot markers, timelines of estimated times of arrivals and sched
Applications of dynamic scheduling technique to space related problems: Some case studies
NASA Astrophysics Data System (ADS)
Nakasuka, Shinichi; Ninomiya, Tetsujiro
1994-10-01
The paper discusses the applications of 'Dynamic Scheduling' technique, which has been invented for the scheduling of Flexible Manufacturing System, to two space related scheduling problems: operation scheduling of a future space transportation system, and resource allocation in a space system with limited resources such as space station or space shuttle.
Complex ambulatory settings demand scheduling systems.
Ross, K M
1998-01-01
Practice management systems are becoming more and more complex, as they are asked to integrate all aspects of patient and resource management. Although patient scheduling is a standard expectation in any ambulatory environment, facilities and equipment resource scheduling are additional functionalities of scheduling systems. Because these functions were not typically managed in manual patient scheduling, often the result was resource mismanagement, along with a potential negative impact on utilization, patient flow and provider productivity. As ambulatory organizations have become more seasoned users of practice management software, the value of resource scheduling has become apparent. Appointment scheduling within a fully integrated practice management system is recognized as an enhancement of scheduling itself and provides additional tools to manage other information needs. Scheduling, as one component of patient information management, provides additional tools in these areas.
Development of An Intelligent Flight Propulsion Control System
NASA Technical Reports Server (NTRS)
Calise, A. J.; Rysdyk, R. T.; Leonhardt, B. K.
1999-01-01
The initial design and demonstration of an Intelligent Flight Propulsion and Control System (IFPCS) is documented. The design is based on the implementation of a nonlinear adaptive flight control architecture. This initial design of the IFPCS enhances flight safety by using propulsion sources to provide redundancy in flight control. The IFPCS enhances the conventional gain scheduled approach in significant ways: (1) The IFPCS provides a back up flight control system that results in consistent responses over a wide range of unanticipated failures. (2) The IFPCS is applicable to a variety of aircraft models without redesign and,(3) significantly reduces the laborious research and design necessary in a gain scheduled approach. The control augmentation is detailed within an approximate Input-Output Linearization setting. The availability of propulsion only provides two control inputs, symmetric and differential thrust. Earlier Propulsion Control Augmentation (PCA) work performed by NASA provided for a trajectory controller with pilot command input of glidepath and heading. This work is aimed at demonstrating the flexibility of the IFPCS in providing consistency in flying qualities under a variety of failure scenarios. This report documents the initial design phase where propulsion only is used. Results confirm that the engine dynamics and associated hard nonlineaaities result in poor handling qualities at best. However, as demonstrated in simulation, the IFPCS is capable of results similar to the gain scheduled designs of the NASA PCA work. The IFPCS design uses crude estimates of aircraft behaviour. The adaptive control architecture demonstrates robust stability and provides robust performance. In this work, robust stability means that all states, errors, and adaptive parameters remain bounded under a wide class of uncertainties and input and output disturbances. Robust performance is measured in the quality of the tracking. The results demonstrate the flexibility of the IFPCS architecture and the ability to provide robust performance under a broad range of uncertainty. Robust stability is proved using Lyapunov like analysis. Future development of the IFPCS will include integration of conventional control surfaces with the use of propulsion augmentation, and utilization of available lift and drag devices, to demonstrate adaptive control capability under a greater variety of failure scenarios. Further work will specifically address the effects of actuator saturation.
Efficiency Benefits Using the Terminal Area Precision Scheduling and Spacing System
NASA Technical Reports Server (NTRS)
Thipphavong, Jane; Swenson, Harry N.; Lin, Paul; Seo, Anthony Y.; Bagasol, Leonard N.
2011-01-01
NASA has developed a capability for terminal area precision scheduling and spacing (TAPSS) to increase the use of fuel-efficient arrival procedures during periods of traffic congestion at a high-density airport. Sustained use of fuel-efficient procedures throughout the entire arrival phase of flight reduces overall fuel burn, greenhouse gas emissions and noise pollution. The TAPSS system is a 4D trajectory-based strategic planning and control tool that computes schedules and sequences for arrivals to facilitate optimal profile descents. This paper focuses on quantifying the efficiency benefits associated with using the TAPSS system, measured by reduction of level segments during aircraft descent and flight distance and time savings. The TAPSS system was tested in a series of human-in-the-loop simulations and compared to current procedures. Compared to the current use of the TMA system, simulation results indicate a reduction of total level segment distance by 50% and flight distance and time savings by 7% in the arrival portion of flight (200 nm from the airport). The TAPSS system resulted in aircraft maintaining continuous descent operations longer and with more precision, both achieved under heavy traffic demand levels.
Kergosien, Y; Tournamille, J-F; Laurence, B; Billaut, J-C
2011-09-01
Chemotherapy drugs are intended for the treatment of cancer. The production of such drugs and their administration to the patient is a delicate and expensive operation. The study deals with the acquisition and processing of data regarding the production of intravenous chemotherapy, from the production request (the medical prescription), the production itself (pharmaceutical process), to the delivery in the health care unit, for the administration of the chemotherapy. The goal of this study is to develop a system that can schedule, control and track the chemotherapy preparations and satisfy a certification process of quality management ("ISO 9001 version 2000" standard). The solution proposed in this paper was developed within the framework of a common certification process at the Biopharmaceutical Unit of the Oncology Clinic (UBCO) of the Bretonneau hospital in Tours (France). The system consists of two software programs: a software to insure traceability and a decision making software to plan the production. To simplify the data entry process, some mobile entry points with bar code reader have been deployed. These tools enable an accurate tracking of the production, a security and control for the schedule production phases, and a full traceability of each operation leading to the administration of the chemotherapy drug. The first result is a software that creates the production schedule, allows a real time control of the production process and a full traceability of each step. Computational experiments are based on real data sets, with a comparison of a time period before and after the implementation of this solution. The results show the positive impacts of this software, like the reduction of delayed deliveries, real time generation of production indicators, optimization of the production and a saving of staff time. This intuitive system guarantees a traceability in connection with a high quality system certified ISO 9001-v2000 (with a rapid data entry), an assistant to schedule the production of preparations in a better way, a permanent follow-up and analysis of operations. This project proves the benefits of implementing computer solutions for the traceability and assistance in decision making in the hospital systems. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Okayama optical polarimetry and spectroscopy system (OOPS) II. Network-transparent control software.
NASA Astrophysics Data System (ADS)
Sasaki, T.; Kurakami, T.; Shimizu, Y.; Yutani, M.
Control system of the OOPS (Okayama Optical Polarimetry and Spectroscopy system) is designed to integrate several instruments whose controllers are distributed over a network; the OOPS instrument, a CCD camera and data acquisition unit, the 91 cm telescope, an autoguider, a weather monitor, and an image display tool SAOimage. With the help of message-based communication, the control processes cooperate with related processes to perform an astronomical observation under supervising control by a scheduler process. A logger process collects status data of all the instruments to distribute them to related processes upon request. Software structure of each process is described.
Real-Time Optimization in Complex Stochastic Environment
2015-06-24
simpler ones, thus addressing scalability and the limited resources of networked wireless devices. This, however, comes at the expense of increased...Maximization of Wireless Sensor Networks with Non-ideal Batteries”, IEEE Trans. on Control of Network Systems, Vol. 1, 1, pp. 86-98, 2014. [27...C.G., “Optimal Energy-Efficient Downlink Transmission Scheduling for Real-Time Wireless Networks ”, subm. to IEEE Trans. on Control of Network Systems
Evolution of International Space Station GN&C System Across ISS Assembly Stages
NASA Technical Reports Server (NTRS)
Lee, Roscoe; Frank, K. D. (Technical Monitor)
1999-01-01
The Guidance Navigation and Control (GN&C) system for the International Space Station is initially implemented by the Functional Cargo Block (FGB) which was built by the Khrunichev Space Center under direct contract to Boeing. This element (Stage 1A/R) was launched on 20 November 1998 and is currently operating on-orbit. The components and capabilities of the FGB Motion Control System (MCS) are described. The next ISS element, which has GN&C functionality will be the Service Module (SM) built by Rocket Space Corporation-Energia. This module is scheduled for launch (Stage 1R) in early 2000. Following activation of the SM GN&C system, the FGB MCS is deactivated and no longer used. The components and capabilities of the SM GN&C system are described. When a Progress vehicle is attached to the ISS it can be used for reboost operations, based on commands provided by the Mission Control Center-Moscow. When a data connection is implemented between the SM and the Progress, the SM can command the Progress thrusters for attitude control and reboosts. On Stage 5A, the U.S. GN&C system will become activated when the U.S. Laboratory is de loyed and installed (launch schedule is currently TBD). The U.S. GN&C system provides non-propulsive control capabilities to support micro-gravity operations and minimize the use of propellant for attitude control, and an independent capability for determining the ISS state vector, attitude, attitude rate. and time.. The components and capabilities of the U.S. GN&C system are described and the interactions between the U.S. and Russian Segment GN&C systems are also described.
Collaborative Arrival Planning: Data Sharing and User Preference Tools
NASA Technical Reports Server (NTRS)
Zelenka, Richard E.; Edwards, Thomas A. (Technical Monitor)
1998-01-01
Air traffic growth and air carrier economic pressures have motivated efforts to increase the flexibility of the air traffic management process and change the relationship between the air traffic control service provider and the system user. One of the most visible of these efforts is the U.S. government/industry "free flight" initiative, in which the service provider concentrates on safety and cross-airline fairness, and the user on their business objectives and operating preferences, including selecting their own path and speed in real-time. In the terminal arrival phase of flight, severe restrictions and rigid control are currently placed on system users, typically without regard for individual user operational preferences. Airborne delays applied to arriving aircraft into capacity constrained airports are imposed on a first-come, first-serve basis, and thus do not allow the system user to plan for or prioritize late arrivals, or to economically optimize their arrival sequence. A central tenant of the free-flight operating paradigm is collaboration between service providers and users in reaching air traffic management decisions. Such collaboration would be particularly beneficial to an airline's "hub" operation, where off-schedule arrival aircraft are a consistent problem, as they cause serious air-port ramp difficulties, rippling airline scheduling effects, and result in large economic inefficiencies. Greater collaboration can also lead to increased airport capacity and decrease the severity of over-capacity rush periods. In the NASA Collaborative Arrival Planning (CAP) project, both independent exchange of real-time data between the service provider and system user and collaborative decision support tools are addressed. Data exchange of real-time arrival scheduling, airspace management, and air carrier fleet data between the FAA service provider and an air carrier is being conducted and evaluated. Collaborative arrival decision support tools to allow intra-airline arrival preferences are being developed and simulated. The CAP project is part of and leveraged from the NASA/FAA Center TRACON Automation System (CTAS), a fielded set of decision support tools that provide computer generated advisories for both enroute and terminal area controllers to manage and control arrival traffic more efficiently. In this paper, the NASA Collaborative Arrival Planning project is outlined and recent results detailed, including the real-time use of CTAS arrival scheduling data by a major air carrier and simulations of tactical and strategic user preference decision support tools.
1992-03-01
public release; distribution is unlimited. 2b. DECLASSIFICATION/DOWNGRADING SCHEDULE 4. PERFORMING ORGANIZATION REPORT NUMBER( S ) S . MONITORING...ORGANIZATION REPORT NUMBER( S ) Sa. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION Naval Postgraduate School (If appikable...PERSONAL AUTHOR( S ) Coutteau, Charles G. 13a. TYPE OF REPORT 1 3b. TIME COVE RED 14. DATE OF REPORT (year, month, day) 1S. PAGE COUNT Master’s TheisI From
Cost and Effectiveness of an Educational Program for Autistic Children Using a Systems Approach.
ERIC Educational Resources Information Center
Hung, David W.; And Others
1983-01-01
A systems approach, which features behavioral assessments, a functional curriculum, behavior management, precision teaching, systematic use of reinforcement, and a structured teaching schedule, resulted in greater learning of functional skills and increased structured teaching time per day compared to two control treaments for 12 autistic…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-05
... and engine manufacturers began planning to meet those requirements by optimizing engine designs for low emissions and adding high-efficiency aftertreatment systems. Manufacturers examined the use of... recirculation, and selective catalytic reduction (SCR). SCR systems use a nitrogen-containing reducing agent...
Performance of a wireless sensor network for crop monitoring and irrigation control
USDA-ARS?s Scientific Manuscript database
Robust automatic irrigation scheduling has been demonstrated using wired sensors and sensor network systems with subsurface drip and moving irrigation systems. However, there are limited studies that report on crop yield and water use efficiency resulting from the use of wireless networks to automat...
Chemotherapy and treatment scheduling: the Johns Hopkins Oncology Center Outpatient Department.
Majidi, F.; Enterline, J. P.; Ashley, B.; Fowler, M. E.; Ogorzalek, L. L.; Gaudette, R.; Stuart, G. J.; Fulton, M.; Ettinger, D. S.
1993-01-01
The Chemotherapy and Treatment Scheduling System provides integrated appointment and facility scheduling for very complex procedures. It is fully integrated with other scheduling systems at The Johns Hopkins Oncology Center and is supported by the Oncology Clinical Information System (OCIS). It provides a combined visual and textual environment for the scheduling of events that have multiple dimensions and dependencies on other scheduled events. It is also fully integrated with other clinical decision support and ancillary systems within OCIS. The system has resulted in better patient flow through the ambulatory care areas of the Center. Implementing the system required changes in behavior among physicians, staff, and patients. This system provides a working example of building a sophisticated rule-based scheduling system using a relatively simple paradigm. It also is an example of what can be achieved when there is total integration between the operational and clinical components of patient care automation. PMID:8130453
Simulator evaluation of the final approach spacing tool
NASA Technical Reports Server (NTRS)
Davis, Thomas J.; Erzberger, Heinz; Green, Steven M.
1990-01-01
The design and simulator evaluation of an automation tool for assisting terminal radar approach controllers in sequencing and spacing traffic onto the final approach course is described. The automation tool, referred to as the Final Approach Spacing Tool (FAST), displays speed and heading advisories for arrivals as well as sequencing information on the controller's radar display. The main functional elements of FAST are a scheduler that schedules and sequences the traffic, a 4-D trajectory synthesizer that generates the advisories, and a graphical interface that displays the information to the controller. FAST was implemented on a high performance workstation. It can be operated as a stand-alone in the Terminal Radar Approach Control (TRACON) Facility or as an element of a system integrated with automation tools in the Air Route Traffic Control Center (ARTCC). FAST was evaluated by experienced TRACON controllers in a real-time air traffic control simulation. Simulation results show that FAST significantly reduced controller workload and demonstrated a potential for an increase in landing rate.
Request-Driven Schedule Automation for the Deep Space Network
NASA Technical Reports Server (NTRS)
Johnston, Mark D.; Tran, Daniel; Arroyo, Belinda; Call, Jared; Mercado, Marisol
2010-01-01
The DSN Scheduling Engine (DSE) has been developed to increase the level of automated scheduling support available to users of NASA s Deep Space Network (DSN). We have adopted a request-driven approach to DSN scheduling, in contrast to the activity-oriented approach used up to now. Scheduling requests allow users to declaratively specify patterns and conditions on their DSN service allocations, including timing, resource requirements, gaps, overlaps, time linkages among services, repetition, priorities, and a wide range of additional factors and preferences. The DSE incorporates a model of the key constraints and preferences of the DSN scheduling domain, along with algorithms to expand scheduling requests into valid resource allocations, to resolve schedule conflicts, and to repair unsatisfied requests. We use time-bounded systematic search with constraint relaxation to return nearby solutions if exact ones cannot be found, where the relaxation options and order are under user control. To explore the usability aspects of our approach we have developed a graphical user interface incorporating some crucial features to make it easier to work with complex scheduling requests. Among these are: progressive revelation of relevant detail, immediate propagation and visual feedback from a user s decisions, and a meeting calendar metaphor for repeated patterns of requests. Even as a prototype, the DSE has been deployed and adopted as the initial step in building the operational DSN schedule, thus representing an important initial validation of our overall approach. The DSE is a core element of the DSN Service Scheduling Software (S(sup 3)), a web-based collaborative scheduling system now under development for deployment to all DSN users.
DOT National Transportation Integrated Search
1995-05-01
Air Traffic Control Specialists (ATCS) work rotating shift schedules for most of their careers. Specifically, many work a counterclockwise rotating shift schedule, called the 2-2-1, or some variation of the schedule. The 2-2-1 involves rotating from ...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-20
...] Schedules of Controlled Substances: Placement of 5-Methoxy-N,N- Dimethyltryptamine into Schedule I of the... Administration (DEA) places the substance 5- methoxy-N,N-dimethyltryptamine (5-MeO-DMT), including its salts..., actual abuse, pattern of abuse, and the relative potential for abuse of 5-methoxy-N,N-dimethyltryptamine...
NASA Technical Reports Server (NTRS)
Adair, Jerry R.
1994-01-01
This paper is a consolidated report on ten major planning and scheduling systems that have been developed by the National Aeronautics and Space Administration (NASA). A description of each system, its components, and how it could be potentially used in private industry is provided in this paper. The planning and scheduling technology represented by the systems ranges from activity based scheduling employing artificial intelligence (AI) techniques to constraint based, iterative repair scheduling. The space related application domains in which the systems have been deployed vary from Space Shuttle monitoring during launch countdown to long term Hubble Space Telescope (HST) scheduling. This paper also describes any correlation that may exist between the work done on different planning and scheduling systems. Finally, this paper documents the lessons learned from the work and research performed in planning and scheduling technology and describes the areas where future work will be conducted.
Indianapolis Area ITS Early Deployment Plan Final Report
DOT National Transportation Integrated Search
1996-07-01
PUBLIC-PRIVATE PARTNERSHIP, TRAFFIC SIGNAL CONTROL, REGIONAL MULTIMODAL TRAVEL INFORMATION, ADVANCED RURAL TRANSPORTATION SYSTEMS OR ARTS : THIS DOCUMENT LAYS OUT A 20-YEAR SCHEDULE FOR THE IMPLEMENTATION OF ITS IN THE INDIANAPOLIS AREA. THE REPOR...
SUMO: operation and maintenance management web tool for astronomical observatories
NASA Astrophysics Data System (ADS)
Mujica-Alvarez, Emma; Pérez-Calpena, Ana; García-Vargas, María. Luisa
2014-08-01
SUMO is an Operation and Maintenance Management web tool, which allows managing the operation and maintenance activities and resources required for the exploitation of a complex facility. SUMO main capabilities are: information repository, assets and stock control, tasks scheduler, executed tasks archive, configuration and anomalies control and notification and users management. The information needed to operate and maintain the system must be initially stored at the tool database. SUMO shall automatically schedule the periodical tasks and facilitates the searching and programming of the non-periodical tasks. Tasks planning can be visualized in different formats and dynamically edited to be adjusted to the available resources, anomalies, dates and other constrains that can arise during daily operation. SUMO shall provide warnings to the users notifying potential conflicts related to the required personal availability or the spare stock for the scheduled tasks. To conclude, SUMO has been designed as a tool to help during the operation management of a scientific facility, and in particular an astronomical observatory. This is done by controlling all operating parameters: personal, assets, spare and supply stocks, tasks and time constrains.
Experience with synchronous and asynchronous digital control systems
NASA Technical Reports Server (NTRS)
Regenie, V. A.; Chacon, C. V.; Lock, W. P.
1986-01-01
Flight control systems have undergone a revolution since the days of simple mechanical linkages; presently the most advanced systems are full-authority, full-time digital systems controlling unstable aircraft. With the use of advanced control systems, the aerodynamic design can incorporate features that allow greater performance and fuel savings, as can be seen on the new Airbus design and advanced tactical fighter concepts. These advanced aircraft will be and are relying on the flight control system to provide the stability and handling qualities required for safe flight and to allow the pilot to control the aircraft. Various design philosophies have been proposed and followed to investigate system architectures for these advanced flight control systems. One major area of discussion is whether a multichannel digital control system should be synchronous or asynchronous. This paper addressed the flight experience at the Dryden Flight Research Facility of NASA's Ames Research Center with both synchronous and asynchronous digital flight control systems. Four different flight control systems are evaluated against criteria such as software reliability, cost increases, and schedule delays.
NASA Technical Reports Server (NTRS)
1972-01-01
The design is reported of an advanced modular computer system designated the Automatically Reconfigurable Modular Multiprocessor System, which anticipates requirements for higher computing capacity and reliability for future spaceborne computers. Subjects discussed include: an overview of the architecture, mission analysis, synchronous and nonsynchronous scheduling control, reliability, and data transmission.
An automated system for global atmospheric sampling using B-747 airliners
NASA Technical Reports Server (NTRS)
Lew, K. Q.; Gustafsson, U. R. C.; Johnson, R. E.
1981-01-01
The global air sampling program utilizes commercial aircrafts in scheduled service to measure atmospheric constituents. A fully automated system designed for the 747 aircraft is described. Airline operational constraints and data and control subsystems are treated. The overall program management, system monitoring, and data retrieval from four aircraft in global service is described.
Scheduling from the perspective of the application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berman, F.; Wolski, R.
1996-12-31
Metacomputing is the aggregation of distributed and high-performance resources on coordinated networks. With careful scheduling, resource-intensive applications can be implemented efficiently on metacomputing systems at the sizes of interest to developers and users. In this paper we focus on the problem of scheduling applications on metacomputing systems. We introduce the concept of application-centric scheduling in which everything about the system is evaluated in terms of its impact on the application. Application-centric scheduling is used by virtually all metacomputer programmers to achieve performance on metacomputing systems. We describe two successful metacomputing applications to illustrate this approach, and describe AppLeS scheduling agentsmore » which generalize the application-centric scheduling approach. Finally, we show preliminary results which compare AppLeS-derived schedules with conventional strip and blocked schedules for a two-dimensional Jacobi code.« less
2010-12-20
With the issuance of this final rule, the Deputy Administrator of the Drug Enforcement Administration (DEA) places the substance 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), including its salts, isomers and salts of isomers whenever the existence of such salts, isomers, and salts of isomers is possible, into schedule I of the Controlled Substances Act (CSA). This action by the DEA Deputy Administrator is based on a scheduling recommendation from the Assistant Secretary for Health of the Department of Health and Human Services (DHHS) and a DEA review indicating that 5-MeO-DMT meets the criteria for placement in schedule I of the CSA. This final rule will impose the criminal sanctions and regulatory controls of schedule I substances under the CSA on the manufacture, distribution, dispensing, importation, exportation, and possession of 5-MeO-DMT.
Minimum Control Requirements for Advanced Life Support Systems
NASA Technical Reports Server (NTRS)
Boulange, Richard; Jones, Harry; Jones, Harry
2002-01-01
Advanced control technologies are not necessary for the safe, reliable and continuous operation of Advanced Life Support (ALS) systems. ALS systems can and are adequately controlled by simple, reliable, low-level methodologies and algorithms. The automation provided by advanced control technologies is claimed to decrease system mass and necessary crew time by reducing buffer size and minimizing crew involvement. In truth, these approaches increase control system complexity without clearly demonstrating an increase in reliability across the ALS system. Unless these systems are as reliable as the hardware they control, there is no savings to be had. A baseline ALS system is presented with the minimal control system required for its continuous safe reliable operation. This baseline control system uses simple algorithms and scheduling methodologies and relies on human intervention only in the event of failure of the redundant backup equipment. This ALS system architecture is designed for reliable operation, with minimal components and minimal control system complexity. The fundamental design precept followed is "If it isn't there, it can't fail".
78 FR 26701 - Schedules of Controlled Substances: Placement of Lorcaserin Into Schedule IV
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-08
... 1321. Under the CSA, controlled substances are classified in one of five schedules based upon their... is based on a recommendation from the Assistant Secretary of HHS and on an evaluation of all other... indicated support for controlling lorcaserin under the CSA based on the abuse potential of the substance...
Regulation of Split Linear Systems Over Rings: Coefficient-Assignment and Observers,
1980-02-22
we give for the first time , a method to obtain an observer for a finite -free strongly observable The K-linear map irQ is defined as system 5" ( F. G...NAME a ADORESS~if dif!ttrent from Controlling Office) IS1 SECURITY CLASS . (of this report) SIS.. DE CL ASSI ’I CATION/ODOWNGRADING SCHEDULE 16...Entered) IEEE rRANSACTIONS ON AUTOMATIC CONTROL . VOL. Ac-27 . No. 1. FEaRUAay 1982 Regutlation of Split Linear Systems Over Rings: Coefficient
Interval Analysis Approach to Prototype the Robust Control of the Laboratory Overhead Crane
NASA Astrophysics Data System (ADS)
Smoczek, J.; Szpytko, J.; Hyla, P.
2014-07-01
The paper describes the software-hardware equipment and control-measurement solutions elaborated to prototype the laboratory scaled overhead crane control system. The novelty approach to crane dynamic system modelling and fuzzy robust control scheme design is presented. The iterative procedure for designing a fuzzy scheduling control scheme is developed based on the interval analysis of discrete-time closed-loop system characteristic polynomial coefficients in the presence of rope length and mass of a payload variation to select the minimum set of operating points corresponding to the midpoints of membership functions at which the linear controllers are determined through desired poles assignment. The experimental results obtained on the laboratory stand are presented.
Scheduling algorithms for rapid imaging using agile Cubesat constellations
NASA Astrophysics Data System (ADS)
Nag, Sreeja; Li, Alan S.; Merrick, James H.
2018-02-01
Distributed Space Missions such as formation flight and constellations, are being recognized as important Earth Observation solutions to increase measurement samples over space and time. Cubesats are increasing in size (27U, ∼40 kg in development) with increasing capabilities to host imager payloads. Given the precise attitude control systems emerging in the commercial market, Cubesats now have the ability to slew and capture images within short notice. We propose a modular framework that combines orbital mechanics, attitude control and scheduling optimization to plan the time-varying, full-body orientation of agile Cubesats in a constellation such that they maximize the number of observed images and observation time, within the constraints of Cubesat hardware specifications. The attitude control strategy combines bang-bang and PD control, with constraints such as power consumption, response time, and stability factored into the optimality computations and a possible extension to PID control to account for disturbances. Schedule optimization is performed using dynamic programming with two levels of heuristics, verified and improved upon using mixed integer linear programming. The automated scheduler is expected to run on ground station resources and the resultant schedules uplinked to the satellites for execution, however it can be adapted for onboard scheduling, contingent on Cubesat hardware and software upgrades. The framework is generalizable over small steerable spacecraft, sensor specifications, imaging objectives and regions of interest, and is demonstrated using multiple 20 kg satellites in Low Earth Orbit for two case studies - rapid imaging of Landsat's land and coastal images and extended imaging of global, warm water coral reefs. The proposed algorithm captures up to 161% more Landsat images than nadir-pointing sensors with the same field of view, on a 2-satellite constellation over a 12-h simulation. Integer programming was able to verify that optimality of the dynamic programming solution for single satellites was within 10%, and find up to 5% more optimal solutions. The optimality gap for constellations was found to be 22% at worst, but the dynamic programming schedules were found at nearly four orders of magnitude better computational speed than integer programming. The algorithm can include cloud cover predictions, ground downlink windows or any other spatial, temporal or angular constraints into the orbital module and be integrated into planning tools for agile constellations.
The resource envelope as a basis for space station management system scheduling
NASA Technical Reports Server (NTRS)
Bush, Joy; Critchfield, Anna
1987-01-01
The Platform Management System (PMS) Resource Envelope Scheduling System (PRESS) expert system prototype developed for space station scheduling is described. The purpose of developing the prototype was too investigate the resource envelope concept in a practical scheduling application, using a commercially available expert system shell. PRESS is being developed on an IBM PC/AT using Teknowledge, Inc.'s M.1 expert system shell.
Schedule of controlled substances; placement of fospropofol into schedule IV. Final rule.
2009-10-06
With the issuance of this final rule, the Deputy Administrator of the Drug Enforcement Administration (DEA) places the substance fospropofol, including its salts, isomers and salts of isomers whenever the existence of such salts, isomers, and salts of isomers is possible, into schedule IV of the Controlled Substances Act (CSA). As a result of this rule, the regulatory controls and criminal sanctions of schedule IV will be applicable to the manufacture, distribution, dispensing, importation, and exportation of fospropofol and products containing fospropofol.
Real-Time Robust Adaptive Modeling and Scheduling for an Electronic Commerce Server
NASA Astrophysics Data System (ADS)
Du, Bing; Ruan, Chun
With the increasing importance and pervasiveness of Internet services, it is becoming a challenge for the proliferation of electronic commerce services to provide performance guarantees under extreme overload. This paper describes a real-time optimization modeling and scheduling approach for performance guarantee of electronic commerce servers. We show that an electronic commerce server may be simulated as a multi-tank system. A robust adaptive server model is subject to unknown additive load disturbances and uncertain model matching. Overload control techniques are based on adaptive admission control to achieve timing guarantees. We evaluate the performance of the model using a complex simulation that is subjected to varying model parameters and massive overload.
Integrating payload design, planning, and control in the Dutch Utilisation Centre
NASA Technical Reports Server (NTRS)
Grant, T. J.
1993-01-01
Spacecraft payload design, experiment planning and scheduling, and payload control are traditionally separate areas of activity. This paper describes the development of a prototype software tool--the Activity Scheduling System (ASS)--which integrates these activity areas. ASS is part of a larger project to build a Dutch Utilisation Centre (DUC), intended eventually to support all space utilization activities in The Netherlands. ASS has been tested on the High Performance Capillary Electrophoresis payload. The paper outlines the integrated preparation and operations concept embodied in ASS. It describes the ASS prototype, including a typical session. The results of testing are summarized. Possible enhancement of ASS, including integration into DUC, is sketched.
Translating PI observing proposals into ALMA observing scripts
NASA Astrophysics Data System (ADS)
Liszt, Harvey S.
2014-08-01
The ALMA telescope is a complex 66-antenna array working in the specialized domain of mm- and sub-mm aperture synthesis imaging. To make ALMA accessible to technically inexperienced but scientifically expert users, the ALMA Observing Tool (OT) has been developed. Using the OT, scientifically oriented user input is formatted as observing proposals that are packaged for peer-review and assessment of technical feasibility. If accepted, the proposal's scientifically oriented inputs are translated by the OT into scheduling blocks, which function as input to observing scripts for the telescope's online control system. Here I describe the processes and practices by which this translation from PI scientific goals to online control input and schedule block execution actually occurs.
THE EFFECTS OF FIXED VERSUS ESCALATING REINFORCEMENT SCHEDULES ON SMOKING ABSTINENCE
Romanowich, Paul; Lamb, R. J.
2015-01-01
Studies indicate that when abstinence is initiated, escalating reinforcement schedules maintain continuous abstinence longer than fixed reinforcement schedules. However, these studies were conducted for shorter durations than most clinical trials and also resulted in larger reinforcer value for escalating participants during the 1st week of the experiment. We tested whether escalating reinforcement schedules maintained abstinence longer than fixed reinforcement schedules in a 12-week clinical trial. Smokers (146) were randomized to an escalating reinforcement schedule, a fixed reinforcement schedule, or a control condition. Escalating reinforcement participants received $5.00 for their first breath carbon monoxide (CO) sample <3 ppm, with a $0.50 increase for each consecutive sample. Fixed reinforcement participants received $19.75 for each breath CO sample <3 ppm. Control participants received payments only for delivering a breath CO sample. Similar proportions of escalating and fixed reinforcement participants met the breath CO criterion at least once. Escalating reinforcement participants maintained criterion breath CO levels longer than fixed reinforcement and control participants. Similar to previous short-term studies, escalating reinforcement schedules maintained longer durations of abstinence than fixed reinforcement schedules during a clinical trial. PMID:25640764
Tracking and data relay satellite system - NASA's new spacecraft data acquisition system
NASA Technical Reports Server (NTRS)
Schneider, W. C.; Garman, A. A.
1979-01-01
This paper describes NASA's new spacecraft acquisition system provided by the Tracking and Data Relay Satellite System (TDRSS). Four satellites in geostationary orbit and a ground terminal will provide complete tracking, telemetry, and command service for all of NASA's orbital satellites below a 12,000 km altitude. Western Union will lease the system, operate the ground terminal and provide operational satellite control. NASA's network control center will be the focal point for scheduling user services and controlling the interface between TDRSS and the NASA communications network, project control centers, and data processing. TDRSS single access user spacecraft data systems will be designed for time shared data relay support, and reimbursement policy and rate structure for non-NASA users are being developed.
Working Notes from the 1992 AAAI Spring Symposium on Practical Approaches to Scheduling and Planning
NASA Technical Reports Server (NTRS)
Drummond, Mark; Fox, Mark; Tate, Austin; Zweben, Monte
1992-01-01
The symposium presented issues involved in the development of scheduling systems that can deal with resource and time limitations. To qualify, a system must be implemented and tested to some degree on non-trivial problems (ideally, on real-world problems). However, a system need not be fully deployed to qualify. Systems that schedule actions in terms of metric time constraints typically represent and reason about an external numeric clock or calendar and can be contrasted with those systems that represent time purely symbolically. The following topics are discussed: integrating planning and scheduling; integrating symbolic goals and numerical utilities; managing uncertainty; incremental rescheduling; managing limited computation time; anytime scheduling and planning algorithms, systems; dependency analysis and schedule reuse; management of schedule and plan execution; and incorporation of discrete event techniques.
NASA Technical Reports Server (NTRS)
Martelli, Andrea
1994-01-01
This paper presents the capabilities implemented in the SAX system for an efficient operations management during its in-flight mission. SAX is an Italian scientific satellite for x-ray astronomy whose major mission objectives impose quite tight constraints on the implementation of both the space and ground segment. The most relevant mission characteristics require an operative lifetime of two years, performing scientific observations both in contact and in noncontact periods, with a low equatorial orbit supported by one ground station, so that only a few minutes of communications are available each orbit. This operational scenario determines the need to have a satellite capable of performing the scheduled mission automatically and reacting autonomously to contingency situations. The implementation approach of the on-board operations management, through which the necessary automation and autonomy are achieved, follows a hierarchical structure. This has been achieved adopting a distributed avionic architecture. Nine different on-board computers, in fact, constitute the on-board data management system. Each of them performs the local control and monitors its own functions while the system level control is performed at a higher level by the data handling applications software. The SAX on-board architecture provides the ground operators with different options of intervention by three classes of telecommands. The management of the scientific operations will be scheduled by the operation control center via dedicated operating plans. The SAX satellite flight mode is presently being integrated at Alenia Spazio premises in Turin for a launch scheduled for the end of 1995. Once in orbit, the SAX satellite will be subject to intensive check-out activities in order to verify the required mission performances. An overview of the envisaged procedure and of the necessary on-ground activities is therefore depicted as well.
LPV gain-scheduled control of SCR aftertreatment systems
NASA Astrophysics Data System (ADS)
Meisami-Azad, Mona; Mohammadpour, Javad; Grigoriadis, Karolos M.; Harold, Michael P.; Franchek, Matthew A.
2012-01-01
Hydrocarbons, carbon monoxide and some of other polluting emissions produced by diesel engines are usually lower than those produced by gasoline engines. While great strides have been made in the exhaust aftertreatment of vehicular pollutants, the elimination of nitrogen oxide (NO x ) from diesel vehicles is still a challenge. The primary reason is that diesel combustion is a fuel-lean process, and hence there is significant unreacted oxygen in the exhaust. Selective catalytic reduction (SCR) is a well-developed technology for power plants and has been recently employed for reducing NO x emissions from automotive sources and in particular, heavy-duty diesel engines. In this article, we develop a linear parameter-varying (LPV) feedforward/feedback control design method for the SCR aftertreatment system to decrease NO x emissions while keeping ammonia slippage to a desired low level downstream the catalyst. The performance of the closed-loop system obtained from the interconnection of the SCR system and the output feedback LPV control strategy is then compared with other control design methods including sliding mode, and observer-based static state-feedback parameter-varying control. To reduce the computational complexity involved in the control design process, the number of LPV parameters in the developed quasi-LPV (qLPV) model is reduced by applying the principal component analysis technique. An LPV feedback/feedforward controller is then designed for the qLPV model with reduced number of scheduling parameters. The designed full-order controller is further simplified to a first-order transfer function with a parameter-varying gain and pole. Finally, simulation results using both a low-order model and a high-fidelity and high-order model of SCR reactions in GT-POWER interfaced with MATLAB/SIMULINK illustrate the high NO x conversion efficiency of the closed-loop SCR system using the proposed parameter-varying control law.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-18
... is possible, will remain in effect until April 20, 2013, or until rulemaking proceedings are... isomers is possible, into Schedule I of the Controlled Substances Act (CSA). The temporary scheduling of... to the public safety pursuant to 21 U.S.C. 811(h)(1). At the time the Final Order took effect...
Automating Mission Scheduling for Space-Based Observatories
NASA Technical Reports Server (NTRS)
Pell, Barney; Muscettola, Nicola; Hansson, Othar; Mohan, Sunil
1998-01-01
In this paper we describe the use of our planning and scheduling framework, HSTS, to reduce the complexity of science mission planning. This work is part of an overall project to enable a small team of scientists to control the operations of a spacecraft. The present process is highly labor intensive. Users (scientists and operators) rely on a non-codified understanding of the different spacecraft subsystems and of their operating constraints. They use a variety of software tools to support their decision making process. This paper considers the types of decision making that need to be supported/automated, the nature of the domain constraints and the capabilities needed to address them successfully, and the nature of external software systems with which the core planning/scheduling engine needs to interact. HSTS has been applied to science scheduling for EUVE and Cassini and is being adapted to support autonomous spacecraft operations in the New Millennium initiative.
Hogiri, Tomoharu; Tamashima, Hiroshi; Nishizawa, Akitoshi; Okamoto, Masahiro
2018-02-01
To optimize monoclonal antibody (mAb) production in Chinese hamster ovary cell cultures, culture pH should be temporally controlled with high resolution. In this study, we propose a new pH-dependent dynamic model represented by simultaneous differential equations including a minimum of six system component, depending on pH value. All kinetic parameters in the dynamic model were estimated using an evolutionary numerical optimization (real-coded genetic algorithm) method based on experimental time-course data obtained at different pH values ranging from 6.6 to 7.2. We determined an optimal pH-shift schedule theoretically. We validated this optimal pH-shift schedule experimentally and mAb production increased by approximately 40% with this schedule. Throughout this study, it was suggested that the culture pH-shift optimization strategy using a pH-dependent dynamic model is suitable to optimize any pH-shift schedule for CHO cell lines used in mAb production projects. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Craft, R.; Dunn, C.; Mccord, J.; Simeone, L.
1980-01-01
A user guide and programmer documentation is provided for a system of PRIME 400 minicomputer programs. The system was designed to support loading analyses on the Tracking Data Relay Satellite System (TDRSS). The system is a scheduler for various types of data relays (including tape recorder dumps and real time relays) from orbiting payloads to the TDRSS. Several model options are available to statistically generate data relay requirements. TDRSS time lines (representing resources available for scheduling) and payload/TDRSS acquisition and loss of sight time lines are input to the scheduler from disk. Tabulated output from the interactive system includes a summary of the scheduler activities over time intervals specified by the user and overall summary of scheduler input and output information. A history file, which records every event generated by the scheduler, is written to disk to allow further scheduling on remaining resources and to provide data for graphic displays or additional statistical analysis.
A reliable data collection/control system
NASA Technical Reports Server (NTRS)
Maughan, Thom
1988-01-01
The Cal Poly Space Project requires a data collection/control system which must be able to reliably record temperature, pressure and vibration data. It must also schedule the 16 electroplating and 2 immiscible alloy experiments so as to optimize use of the batteries, maintain a safe package temperature profile, and run the experiment during conditions of microgravity (and minimum vibration). This system must operate unattended in the harsh environment of space and consume very little power due to limited battery supply. The design of a system which meets these requirements is addressed.
Electronic workflow for imaging in clinical research.
Hedges, Rebecca A; Goodman, Danielle; Sachs, Peter B
2014-08-01
In the transition from paper to electronic workflow, the University of Colorado Health System's implementation of a new electronic health record system (EHR) forced all clinical groups to reevaluate their practices including the infrastructure surrounding clinical trials. Radiological imaging is an important piece of many clinical trials and requires a high level of consistency and standardization. With EHR implementation, paper orders were manually transcribed into the EHR, digitizing an inefficient work flow. A team of schedulers, radiologists, technologists, research personnel, and EHR analysts worked together to optimize the EHR to accommodate the needs of research imaging protocols. The transition to electronic workflow posed several problems: (1) there needed to be effective communication throughout the imaging process from scheduling to radiologist interpretation. (2) The exam ordering process needed to be automated to allow scheduling of specific research studies on specific equipment. (3) The billing process needed to be controlled to accommodate radiologists already supported by grants. (4) There needed to be functionality allowing exams to finalize automatically skipping the PACS and interpretation process. (5) There needed to be a way to alert radiologists that a specialized research interpretation was needed on a given exam. These issues were resolved through the optimization of the "visit type," allowing a high-level control of an exam at the time of scheduling. Additionally, we added columns and fields to work queues displaying grant identification numbers. The build solutions we implemented reduced the mistakes made and increased imaging quality and compliance.
Flight control electronics reliability/maintenance study
NASA Technical Reports Server (NTRS)
Dade, W. W.; Edwards, R. H.; Katt, G. T.; Mcclellan, K. L.; Shomber, H. A.
1977-01-01
Collection and analysis of data are reported that concern the reliability and maintenance experience of flight control system electronics currently in use on passenger carrying jet aircraft. Two airlines B-747 airplane fleets were analyzed to assess the component reliability, system functional reliability, and achieved availability of the CAT II configuration flight control system. Also assessed were the costs generated by this system in the categories of spare equipment, schedule irregularity, and line and shop maintenance. The results indicate that although there is a marked difference in the geographic location and route pattern between the airlines studied, there is a close similarity in the reliability and the maintenance costs associated with the flight control electronics.
Highly Automated Arrival Management and Control System Suitable for Early NextGen
NASA Technical Reports Server (NTRS)
Swenson, Harry N.; Jung, Jaewoo
2013-01-01
This is a presentation of previously published work conducted in the development of the Terminal Area Precision Scheduling and Spacing (TAPSS) system. Included are concept and technical descriptions of the TAPSS system and results from human in the loop simulations conducted at Ames Research Center. The Terminal Area Precision Scheduling and Spacing system has demonstrated through research and extensive high-fidelity simulation studies to have benefits in airport arrival throughput, supporting efficient arrival descents, and enabling mixed aircraft navigation capability operations during periods of high congestion. NASA is currently porting the TAPSS system into the FAA TBFM and STARS system prototypes to ensure its ability to operate in the FAA automation Infrastructure. NASA ATM Demonstration Project is using the the TAPSS technologies to provide the ground-based automation tools to enable airborne Interval Management (IM) capabilities. NASA and the FAA have initiated a Research Transition Team to enable potential TAPSS and IM Technology Transfer.
Contribution of Schedule Delays to Cost Growth: How to Make Peace with a Marching Army
NASA Technical Reports Server (NTRS)
Majerowicz, Walt; Bitten, Robert; Emmons, Debra; Shinn, Stephen A.
2016-01-01
Numerous research papers have shown that cost and schedule growth are interrelated for NASA space science missions. Although there has shown to be a strong correlation of cost growth with schedule growth, it is unclear what percentage of cost growth is caused by schedule growth and how schedule growth can be controlled. This paper attempts to quantify this percentage by looking at historical data and show detailed examples of how schedule growth influences cost growth. The paper also addresses a methodology to show an alternate approach for assessing and setting a robust baseline schedule and use schedule performance metrics to help assess if the project is performing to plan. Finally, recommendations are presented to help control schedule growth in order to minimize cost growth for NASA space science missions.
Is There a Downside to Schedule Control for the Work-Family Interface?
ERIC Educational Resources Information Center
Schieman, Scott; Young, Marisa
2010-01-01
Using data from a 2007 U.S. survey of workers, this article examines the implications of schedule control for work-family role blurring and work-family conflict. Four main findings indicate that (a) schedule control is associated with more frequent working at home and work-family multitasking activities; (b) the positive association between…
76 FR 30969 - Importer of Controlled Substances; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-27
... schedule II. The company plans to import Remifentanil in bulk for use in dosage- form manufacturing. Any... registration to import a basic class of any controlled substance in schedule I or II are, and will continue to... this Section to a bulk manufacturer of a controlled substance in schedule I or II, and prior to issuing...
A Convex Approach to Fault Tolerant Control
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Cox, David E.; Bauer, Frank (Technical Monitor)
2002-01-01
The design of control laws for dynamic systems with the potential for actuator failures is considered in this work. The use of Linear Matrix Inequalities allows more freedom in controller design criteria than typically available with robust control. This work proposes an extension of fault-scheduled control design techniques that can find a fixed controller with provable performance over a set of plants. Through convexity of the objective function, performance bounds on this set of plants implies performance bounds on a range of systems defined by a convex hull. This is used to incorporate performance bounds for a variety of soft and hard failures into the control design problem.
Robust decentralized power system controller design: Integrated approach
NASA Astrophysics Data System (ADS)
Veselý, Vojtech
2017-09-01
A unique approach to the design of gain scheduled controller (GSC) is presented. The proposed design procedure is based on the Bellman-Lyapunov equation, guaranteed cost and robust stability conditions using the parameter dependent quadratic stability approach. The obtained feasible design procedures for robust GSC design are in the form of BMI with guaranteed convex stability conditions. The obtained design results and their properties are illustrated in the simultaneously design of controllers for simple model (6-order) turbogenerator. The results of the obtained design procedure are a PI automatic voltage regulator (AVR) for synchronous generator, a PI governor controller and a power system stabilizer for excitation system.
The Implementation of Satellite Control System Software Using Object Oriented Design
NASA Technical Reports Server (NTRS)
Anderson, Mark O.; Reid, Mark; Drury, Derek; Hansell, William; Phillips, Tom
1998-01-01
NASA established the Small Explorer (SMEX) program in 1988 to provide frequent opportunities for highly focused and relatively inexpensive space science missions that can be launched into low earth orbit by small expendable vehicles. The development schedule for each SMEX spacecraft was three years from start to launch. The SMEX program has produced five satellites; Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX), Fast Auroral Snapshot Explorer (FAST), Submillimeter Wave Astronomy Satellite (SWAS), Transition Region and Coronal Explorer (TRACE) and Wide-Field Infrared Explorer (WIRE). SAMPEX and FAST are on-orbit, TRACE is scheduled to be launched in April of 1998, WIRE is scheduled to be launched in September of 1998, and SWAS is scheduled to be launched in January of 1999. In each of these missions, the Attitude Control System (ACS) software was written using a modular procedural design. Current program goals require complete spacecraft development within 18 months. This requirement has increased pressure to write reusable flight software. Object-Oriented Design (OOD) offers the constructs for developing an application that only needs modification for mission unique requirements. This paper describes the OOD that was used to develop the SMEX-Lite ACS software. The SMEX-Lite ACS is three-axis controlled, momentum stabilized, and is capable of performing sub-arc-minute pointing. The paper first describes the high level requirements which governed the architecture of the SMEX-Lite ACS software. Next, the context in which the software resides is explained. The paper describes the benefits of encapsulation, inheritance and polymorphism with respect to the implementation of an ACS software system. This paper will discuss the design of several software components that comprise the ACS software. Specifically, Object-Oriented designs are presented for sensor data processing, attitude control, attitude determination and failure detection. The paper addresses the benefits of the OOD versus a conventional procedural design. The final discussion in this paper will address the establishment of the ACS Foundation Class (AFC) Library. The AFC is a large software repository, requiring a minimal amount of code modifications to produce ACS software for future projects, saving production time and costs.
NASA Astrophysics Data System (ADS)
Xiong, Lu; Yu, Zhuoping; Wang, Yang; Yang, Chen; Meng, Yufeng
2012-06-01
This paper focuses on the vehicle dynamic control system for a four in-wheel motor drive electric vehicle, aiming at improving vehicle stability under critical driving conditions. The vehicle dynamics controller is composed of three modules, i.e. motion following control, control allocation and vehicle state estimation. Considering the strong nonlinearity of the tyres under critical driving conditions, the yaw motion of the vehicle is regulated by gain scheduling control based on the linear quadratic regulator theory. The feed-forward and feedback gains of the controller are updated in real-time by online estimation of the tyre cornering stiffness, so as to ensure the control robustness against environmental disturbances as well as parameter uncertainty. The control allocation module allocates the calculated generalised force requirements to each in-wheel motor based on quadratic programming theory while taking the tyre longitudinal/lateral force coupling characteristic into consideration. Simulations under a variety of driving conditions are carried out to verify the control algorithm. Simulation results indicate that the proposed vehicle stability controller can effectively stabilise the vehicle motion under critical driving conditions.
NASA Technical Reports Server (NTRS)
Prevot, Thomas; Mercer, Joey S.; Martin, Lynne Hazel; Homola, Jeffrey R.; Cabrall, Christopher D.; Brasil, Connie L.
2011-01-01
In this paper we discuss the development and evaluation of our prototype technologies and procedures for far-term air traffic control operations with automation for separation assurance, weather avoidance and schedule conformance. Controller-in-the-loop simulations in the Airspace Operations Laboratory at the NASA Ames Research Center in 2010 have shown very promising results. We found the operations to provide high airspace throughput, excellent efficiency and schedule conformance. The simulation also highlighted areas for improvements: Short-term conflict situations sometimes resulted in separation violations, particularly for transitioning aircraft in complex traffic flows. The combination of heavy metering and growing weather resulted in an increased number of aircraft penetrating convective weather cells. To address these shortcomings technologies and procedures have been improved and the operations are being re-evaluated with the same scenarios. In this paper we will first describe the concept and technologies for automating separation assurance, weather avoidance, and schedule conformance. Second, the results from the 2010 simulation will be reviewed. We report human-systems integration aspects, safety and efficiency results as well as airspace throughput, workload, and operational acceptability. Next, improvements will be discussed that were made to address identified shortcomings. We conclude that, with further refinements, air traffic control operations with ground-based automated separation assurance can routinely provide currently unachievable levels of traffic throughput in the en route airspace.
NASA Technical Reports Server (NTRS)
Davis, Randal; Thalman, Nancy
1993-01-01
The University of Colorado's Laboratory for Atmospheric and Space Physics (CU/LASP) along with the Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL) designed, implemented, tested, and demonstrated a prototype of the distributed, hierarchical planning and scheduling system comtemplated for the Earth Observing System (EOS) project. The planning and scheduling prototype made use of existing systems: CU/LASP's Operations and Science Instrument Support Planning and Scheduling (OASIS-PS) software package; GSFC's Request Oriented Scheduling Engine (ROSE); and JPL's Plan Integrated Timeliner 2 (Plan-It-2). Using these tools, four scheduling nodes were implemented and tied together using a new communications protocol for scheduling applications called the Scheduling Applications Interface Language (SAIL). An extensive and realistic scenario of EOS satellite operations was then developed and the prototype scheduling system was tested and demonstrated using the scenario. Two demonstrations of the system were given to NASA personnel and EOS core system (ECS) contractor personnel. A comprehensive volume of lessons learned was generated and a meeting was held with NASA and ECS representatives to review these lessons learned. A paper and presentation on the project's final results was given at the American Institute of Aeronautics and Astronautics Computing in Aerospace 9 conference.
The R-Shell approach - Using scheduling agents in complex distributed real-time systems
NASA Technical Reports Server (NTRS)
Natarajan, Swaminathan; Zhao, Wei; Goforth, Andre
1993-01-01
Large, complex real-time systems such as space and avionics systems are extremely demanding in their scheduling requirements. The current OS design approaches are quite limited in the capabilities they provide for task scheduling. Typically, they simply implement a particular uniprocessor scheduling strategy and do not provide any special support for network scheduling, overload handling, fault tolerance, distributed processing, etc. Our design of the R-Shell real-time environment fcilitates the implementation of a variety of sophisticated but efficient scheduling strategies, including incorporation of all these capabilities. This is accomplished by the use of scheduling agents which reside in the application run-time environment and are responsible for coordinating the scheduling of the application.
Scheduling Real-Time Mixed-Criticality Jobs
NASA Astrophysics Data System (ADS)
Baruah, Sanjoy K.; Bonifaci, Vincenzo; D'Angelo, Gianlorenzo; Li, Haohan; Marchetti-Spaccamela, Alberto; Megow, Nicole; Stougie, Leen
Many safety-critical embedded systems are subject to certification requirements; some systems may be required to meet multiple sets of certification requirements, from different certification authorities. Certification requirements in such "mixed-criticality" systems give rise to interesting scheduling problems, that cannot be satisfactorily addressed using techniques from conventional scheduling theory. In this paper, we study a formal model for representing such mixed-criticality workloads. We demonstrate first the intractability of determining whether a system specified in this model can be scheduled to meet all its certification requirements, even for systems subject to two sets of certification requirements. Then we quantify, via the metric of processor speedup factor, the effectiveness of two techniques, reservation-based scheduling and priority-based scheduling, that are widely used in scheduling such mixed-criticality systems, showing that the latter of the two is superior to the former. We also show that the speedup factors are tight for these two techniques.
Research on the ITOC based scheduling system for ship piping production
NASA Astrophysics Data System (ADS)
Li, Rui; Liu, Yu-Jun; Hamada, Kunihiro
2010-12-01
Manufacturing of ship piping systems is one of the major production activities in shipbuilding. The schedule of pipe production has an important impact on the master schedule of shipbuilding. In this research, the ITOC concept was introduced to solve the scheduling problems of a piping factory, and an intelligent scheduling system was developed. The system, in which a product model, an operation model, a factory model, and a knowledge database of piping production were integrated, automated the planning process and production scheduling. Details of the above points were discussed. Moreover, an application of the system in a piping factory, which achieved a higher level of performance as measured by tardiness, lead time, and inventory, was demonstrated.
Supply Management Analysis of the Chilean Navy Acquisition System
2014-12-01
52 LIST OF REFERENCES Armada de Chile, N. (1986). Manual de Logistica de la Armada de Chile [Manual of logistics of the Chilean Navy]. Chile... transportation • Quality control • Demand and supply planning • Receiving, materials handling, and storage 11 • Material or inventory control...Order purchasing • Production planning, scheduling, and control • Warehousing and distribution • Shipping • Outbound transportation • Customer
International Space Station (ISS)
2001-02-01
The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows the Timeline Change Officer (TCO) at a work station. The TCO maintains the daily schedule of science activities and work assignments, and works with planners at Mission Control at Johnson Space Center in Houston, Texas, to ensure payload activities are accommodated in overall ISS plans and schedules.
A multitasking finite state architecture for computer control of an electric powertrain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burba, J.C.
1984-01-01
Finite state techniques provide a common design language between the control engineer and the computer engineer for event driven computer control systems. They simplify communication and provide a highly maintainable control system understandable by both. This paper describes the development of a control system for an electric vehicle powertrain utilizing finite state concepts. The basics of finite state automata are provided as a framework to discuss a unique multitasking software architecture developed for this application. The architecture employs conventional time-sliced techniques with task scheduling controlled by a finite state machine representation of the control strategy of the powertrain. The complexitiesmore » of excitation variable sampling in this environment are also considered.« less
PUNCHED CARD SYSTEM NEEDN'T BE COMPLEX TO GIVE COMPLETE CONTROL.
ERIC Educational Resources Information Center
BEMIS, HAZEL T.
AT WORCESTER JUNIOR COLLEGE, MASSACHUSETTS, USE OF A MANUALLY OPERATED PUNCHED CARD SYSTEM HAS RESULTED IN (1) SIMPLIFIED REGISTRATION PROCEDURES, (2) QUICK ANALYSIS OF CONFLICTS AND PROBLEMS IN CLASS SCHEDULING, (3) READY ACCESS TO STATISTICAL INFORMATION, (4) DIRECTORY INFORMATION IN A WIDE RANGE OF CLASSIFICATIONS, (5) EASY VERIFICATION OF…
Controlling Distributed Planning
NASA Technical Reports Server (NTRS)
Clement, Bradley; Barrett, Anthony
2004-01-01
A system of software implements an extended version of an approach, denoted shared activity coordination (SHAC), to the interleaving of planning and the exchange of plan information among organizations devoted to different missions that normally communicate infrequently except that they need to collaborate on joint activities and/or the use of shared resources. SHAC enables the planning and scheduling systems of the organizations to coordinate by resolving conflicts while optimizing local planning solutions. The present software provides a framework for modeling and executing communication protocols for SHAC. Shared activities are represented in each interacting planning system to establish consensus on joint activities or to inform the other systems of consumption of a common resource or a change in a shared state. The representations of shared activities are extended to include information on (1) the role(s) of each participant, (2) permissions (defined as specifications of which participant controls what aspects of shared activities and scheduling thereof), and (3) constraints on the parameters of shared activities. Also defined in the software are protocols for changing roles, permissions, and constraints during the course of coordination and execution.
A COTS-Based Attitude Dependent Contact Scheduling System
NASA Technical Reports Server (NTRS)
DeGumbia, Jonathan D.; Stezelberger, Shane T.; Woodard, Mark
2006-01-01
The mission architecture of the Gamma-ray Large Area Space Telescope (GLAST) requires a sophisticated ground system component for scheduling the downlink of science data. Contacts between the ````````````````` satellite and the Tracking and Data Relay Satellite System (TDRSS) are restricted by the limited field-of-view of the science data downlink antenna. In addition, contacts must be scheduled when permitted by the satellite s complex and non-repeating attitude profile. Complicating the matter further, the long lead-time required to schedule TDRSS services, combined with the short duration of the downlink contact opportunities, mandates accurate GLAST orbit and attitude modeling. These circumstances require the development of a scheduling system that is capable of predictively and accurately modeling not only the orbital position of GLAST but also its attitude. This paper details the methods used in the design of a Commercial Off The Shelf (COTS)-based attitude-dependent. TDRSS contact Scheduling system that meets the unique scheduling requirements of the GLAST mission, and it suggests a COTS-based scheduling approach to support future missions. The scheduling system applies filtering and smoothing algorithms to telemetered GPS data to produce high-accuracy predictive GLAST orbit ephemerides. Next, bus pointing commands from the GLAST Science Support Center are used to model the complexities of the two dynamic science gathering attitude modes. Attitude-dependent view periods are then generated between GLAST and each of the supporting TDRSs. Numerous scheduling constraints are then applied to account for various mission specific resource limitations. Next, an optimization engine is used to produce an optimized TDRSS contact schedule request which is sent to TDRSS scheduling for confirmation. Lastly, the confirmed TDRSS contact schedule is rectified with an updated ephemeris and adjusted bus pointing commands to produce a final science downlink contact schedule.
Cost Estimation and Control for Flight Systems
NASA Technical Reports Server (NTRS)
Hammond, Walter E.; Vanhook, Michael E. (Technical Monitor)
2002-01-01
Good program management practices, cost analysis, cost estimation, and cost control for aerospace flight systems are interrelated and depend upon each other. The best cost control process cannot overcome poor design or poor systems trades that lead to the wrong approach. The project needs robust Technical, Schedule, Cost, Risk, and Cost Risk practices before it can incorporate adequate Cost Control. Cost analysis both precedes and follows cost estimation -- the two are closely coupled with each other and with Risk analysis. Parametric cost estimating relationships and computerized models are most often used. NASA has learned some valuable lessons in controlling cost problems, and recommends use of a summary Project Manager's checklist as shown here.
NASA Technical Reports Server (NTRS)
1976-01-01
Program plans, schedules, and costs are determined for a synchronous orbit-based power generation and relay system. Requirements for the satellite solar power station (SSPS) and the power relay satellite (PRS) are explored. Engineering analysis of large solar arrays, flight mechanics and control, transportation, assembly and maintenance, and microwave transmission are included.
Blæhr, Emely Ek; Kristensen, Thomas; Væggemose, Ulla; Søgaard, Rikke
2016-06-13
Nonattendance at scheduled appointments in public hospitals presents a challenge for efficient resource use and may ultimately affect health outcomes due to longer waiting times. Seven percent of all scheduled outpatient appointments in the United Kingdom are estimated to be nonattended. Various reminder systems have been shown to moderately reduce nonattendance, although the effect of issuing fines for nonattendance has not yet been tested in a randomized context. However, such use of financial incentives could impact access to care differently across the different socioeconomic groups. The aim of this study is to assess the effect of fines on hospital outpatient nonattendance. A 1:1 randomized controlled trial of scheduled outpatient appointments was used, with follow-ups until the date of appointment. The setting is an orthopedic clinic at a regional hospital in Denmark. Appointments for users who are scheduled for diagnostics, treatment, surgery, or follow-ups were included from May 2015 to November 2015. Appointments assigned to the intervention arm include an attachment of the appointment letter explaining that a fine will be issued in the case of nonattendance without prior notice. Appointments assigned to the control arm follow usual practice (same system but no letter attachment). The primary outcome is the proportion of nonattendance. Secondary outcomes are proportions of cancellations, sociodemographics, and health-problem characteristics. Furthermore, the intervention costs and production value of nonattended appointments will be measured. An analysis of effect and cost-effectiveness will be conducted based on a 5 % significance level. The study is initiated and funded by the Danish Regions, which have the responsibility for the Danish public healthcare sector. The results are expected to inform future decisions about the introduction of fines for nonattendance at public hospitals. Current Controlled Trials, ISRCTN61925912 . Registered on 6 July 2015.
LPV Controller Interpolation for Improved Gain-Scheduling Control Performance
NASA Technical Reports Server (NTRS)
Wu, Fen; Kim, SungWan
2002-01-01
In this paper, a new gain-scheduling control design approach is proposed by combining LPV (linear parameter-varying) control theory with interpolation techniques. The improvement of gain-scheduled controllers can be achieved from local synthesis of Lyapunov functions and continuous construction of a global Lyapunov function by interpolation. It has been shown that this combined LPV control design scheme is capable of improving closed-loop performance derived from local performance improvement. The gain of the LPV controller will also change continuously across parameter space. The advantages of the newly proposed LPV control is demonstrated through a detailed AMB controller design example.
Multi-time scale control of demand flexibility in smart distribution networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattarai, Bishnu; Myers, Kurt; Bak-Jensen, Birgitte
This study presents a multi-timescale control strategy to deploy demand flexibilities of electric vehicles (EV) for providing system balancing and local congestion management by simultaneously ensuring economic benefits to participating actors. First, the EV charging problem from consumer, aggregator, and grid operator’s perspective is investigated. A hierarchical control architecture (HCA) comprising scheduling, coordinative, and adaptive layers is then designed to realize their coordinative goal. This is realized by integrating a multi-time scale control, which works from a day-ahead scheduling up to real-time adaptive control. The performance of the developed method is investigated with high EV penetration in a typical distributionmore » network. The simulation results demonstrates that HCA exploit EV flexibility to solve grid unbalancing and congestions with simultaneous maximization of economic benefits by ensuring EV participation to day-ahead, balancing, and regulation markets. For the given network configuration and pricing structure, HCA ensures the EV owners to get paid up to 5 times the cost they were paying without control.« less
Multi-time scale control of demand flexibility in smart distribution networks
Bhattarai, Bishnu; Myers, Kurt; Bak-Jensen, Birgitte; ...
2017-01-01
This study presents a multi-timescale control strategy to deploy demand flexibilities of electric vehicles (EV) for providing system balancing and local congestion management by simultaneously ensuring economic benefits to participating actors. First, the EV charging problem from consumer, aggregator, and grid operator’s perspective is investigated. A hierarchical control architecture (HCA) comprising scheduling, coordinative, and adaptive layers is then designed to realize their coordinative goal. This is realized by integrating a multi-time scale control, which works from a day-ahead scheduling up to real-time adaptive control. The performance of the developed method is investigated with high EV penetration in a typical distributionmore » network. The simulation results demonstrates that HCA exploit EV flexibility to solve grid unbalancing and congestions with simultaneous maximization of economic benefits by ensuring EV participation to day-ahead, balancing, and regulation markets. For the given network configuration and pricing structure, HCA ensures the EV owners to get paid up to 5 times the cost they were paying without control.« less
Peters, Velibor; Houkes, Inge; de Rijk, Angelique E; Bohle, Philip L; Engels, Josephine A; Nijhuis, Frans J N
2016-06-01
Shiftwork is a major job demand for nurses and has been related to various negative consequences. Research suggests that personal and job resources moderate the impact of work schedules on stress, health and well-being. This longitudinal study examined whether the interactions of personal and job resources with work schedule demands predicted work engagement and emotional exhaustion in nursing. This longitudinal study included two waves of data collection with a one year follow-up using self-report questionnaires among 247 nurses working shifts or irregular working hours in residential care for the elderly in the Netherlands. Moderated structural equation modelling was conducted to examine the interactions between personal and job resources and work schedule demands. Two work schedule demands were assessed: type of work schedule (demanding vs. less demanding) and average weekly working hours. Two personal resources, active coping and healthy lifestyle, and two job resources, work schedule control and the work schedule fit with nurses' private life, were assessed. Results showed that the work schedule fit with nurses' private life buffered the relationship between work schedule demands and emotional exhaustion one year later. Furthermore, the work schedule fit with nurses' private life increased work engagement one year later when work schedule demands were high. Work schedule control strengthened the positive relationship between work schedule demands and emotional exhaustion one year later. The personal resources, active coping and healthy lifestyle were no moderators in this model. Nurses suffer less from decreasing work engagement and emotional exhaustion due to work schedule demands when their work schedules fit with their private lives. Work schedule control did not buffer, but strengthened the positive relationship between weekly working hours and emotional exhaustion one year later. Job resources appeared to be more important for nurses' well-being than personal resources. These findings highlight the importance of the fit of a work schedule with nurse's private life, if the work schedule is demanding. Copyright © 2016. Published by Elsevier Ltd.
2015-11-13
The Administrator of the Drug Enforcement Administration is issuing this final order extending the temporary schedule I status for three synthetic phenethylamines into the Controlled Substances Act pursuant to the temporary scheduling provisions of the Act. The substances are: 2-(4-iodo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine (25I-NBOMe; 2C-I-NBOMe; 25I; Cimbi-5), 2-(4-chloro-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine (25C-NBOMe; 2C-C-NBOMe; 25C; Cimbi-82), and 2-(4-bromo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine (25B-NBOMe; 2C-B-NBOMe; 25B; Cimbi-36) [hereinafter 25I-NBOMe, 2C-NBOMe, and 25-NBOMe, respectively]. The initial temporary scheduling was based on a finding by the Deputy Administrator that the placement of these synthetic phenethylamines and their optical, positional, and geometric isomers, salts, and salts of isomers into schedule I of the Controlled Substances Act is necessary to avoid an imminent hazard to the public safety. The current final order temporarily placing 25I-NBOMe, 25C-NBOMe, and 25B-NBOMe in schedule I is due to expire on November 14, 2015. This final order will extend the temporary scheduling of 25I-NBOMe, 25C-NBOMe, and 25B-NBOMe for one year, or until the permanent scheduling action for these three substances is completed, whichever occurs first. As a result of this order, the full effect of the Controlled Substances Act and its implementing regulations, including criminal, civil and administrative penalties, sanctions, and regulatory controls of schedule I substances will be imposed on the manufacture, distribution, possession, importation, and exportation of these synthetic phenethylamines.
Advanced construction management for lunar base construction - Surface operations planner
NASA Technical Reports Server (NTRS)
Kehoe, Robert P.
1992-01-01
The study proposes a conceptual solution and lays the framework for developing a new, sophisticated and intelligent tool for a lunar base construction crew to use. This concept integrates expert systems for critical decision making, virtual reality for training, logistics and laydown optimization, automated productivity measurements, and an advanced scheduling tool to form a unique new planning tool. The concept features extensive use of computers and expert systems software to support the actual work, while allowing the crew to control the project from the lunar surface. Consideration is given to a logistics data base, laydown area management, flexible critical progress scheduler, video simulation of assembly tasks, and assembly information and tracking documentation.
NASA Astrophysics Data System (ADS)
Shigenobu, Ryuto; Noorzad, Ahmad Samim; Muarapaz, Cirio; Yona, Atsushi; Senjyu, Tomonobu
2016-04-01
Distributed generators (DG) and renewable energy sources have been attracting special attention in distribution systems in all over the world. Renewable energies, such as photovoltaic (PV) and wind turbine generators are considered as green energy. However, a large amount of DG penetration causes voltage deviation beyond the statutory range and reverse power flow at interconnection points in the distribution system. If excessive voltage deviation occurs, consumer's electric devices might break and reverse power flow will also has a negative impact on the transmission system. Thus, mass interconnections of DGs has an adverse effect on both of the utility and the customer. Therefore, reactive power control method is proposed previous research by using inverters attached DGs for prevent voltage deviations. Moreover, battery energy storage system (BESS) is also proposed for resolve reverse power flow. In addition, it is possible to supply high quality power for managing DGs and BESSs. Therefore, this paper proposes a method to maintain voltage, active power, and reactive power flow at interconnection points by using cooperative controlled of PVs, house BESSs, EVs, large BESSs, and existing voltage control devices. This paper not only protect distribution system, but also attain distribution loss reduction and effectivity management of control devices. Therefore mentioned control objectives are formulated as an optimization problem that is solved by using the Particle Swarm Optimization (PSO) algorithm. Modified scheduling method is proposed in order to improve convergence probability of scheduling scheme. The effectiveness of the proposed method is verified by case studies results and by using numerical simulations in MATLAB®.
ERIC Educational Resources Information Center
Maniccia, Dorine
2003-01-01
Explains that by using sustainable (green) building practices, schools and universities can make their lighting systems more efficient, noting that embracing green design principles can help schools attract students. Discusses lighting-control technologies (occupancy sensing technology, daylighting technology, and scheduling based technologies),…
NASA Astrophysics Data System (ADS)
Fulton, A.; Snyder, R.; Hillyer, C.; English, M.; Sanden, B.; Munk, D.
2012-04-01
Enhancing Adoption of Irrigation Scheduling to Sustain the Viability of Fruit and Nut Crops in California Allan Fulton, Richard Snyder, Charles Hillyer, Marshall English, Blake Sanden, and Dan Munk Adoption of scientific methods to decide when to irrigate and how much water to apply to a crop has increased over the last three decades in California. In 1988, less than 4.3 percent of US farmers employed some type of science-based technique to assist in making irrigation scheduling decisions (USDA, 1995). An ongoing survey in California, representing an industry irrigating nearly 0.4 million planted almond hectares, indicates adoption rates ranging from 38 to 55 percent of either crop evapotranspiration (ETc), soil moisture monitoring, plant water status, or some combination of these irrigation scheduling techniques to assist with making irrigation management decisions (California Almond Board, 2011). High capital investment to establish fruit and nut crops, sensitivity to over and under-irrigation on crop performance and longevity, and increasing costs and competition for water have all contributed to increased adoption of scientific irrigation scheduling methods. These trends in adoption are encouraging and more opportunities exist to develop improved irrigation scheduling tools, especially computer decision-making models. In 2009 and 2010, an "On-line Irrigation Scheduling Advisory Service" (OISO, 2012), also referred to as Online Irrigation Management (IMO), was used and evaluated in commercial walnut, almond, and French prune orchards in the northern Sacramento Valley of California. This specific model has many features described as the "Next Generation of Irrigation Schedulers" (Hillyer, 2010). While conventional irrigation management involves simply irrigating as needed to avoid crop stress, this IMO is designed to control crop stress, which requires: (i) precise control of crop water availability (rather than controlling applied water); (ii) quantifying crop stress in order to manage it in heterogeneous fields; and (iii) predicting crop responses to water stress. The capacities of this IMO include: 1. Modeling of the disposition of applied water in spatially variable fields; 2. Conjunctive scheduling for multiple fields, rather than scheduling each field independently; 3. Long range forecasting of crop water requirements to better utilize limited water or limited delivery system capacity: and 4. Explicit modeling of the uncertainties of water use and crop yield. This was one of the first efforts to employ a "Next Generation" type computer irrigation scheduling advisory model or IMO in orchard crops. This paper discusses experiences with introducing this model to fruit and nut growers of various size and scale in the northern Sacramento Valley of California and the accuracy of its forecasts of irrigation needs in fruit and nut crops. Strengths and opportunities to forge ahead in the development of a "Next Generation" irrigation scheduler were identified from this on-farm evaluation.
40 CFR 1051.205 - What must I include in my application?
Code of Federal Regulations, 2014 CFR
2014-07-01
... emission control devices (AECDs) and all fuel-system components you will install on any production or test... specifications and other basic parameters of the vehicle's design and emission controls. List the fuel type on... scheduled maintenance you did. (g) List the specifications of the test fuel to show that it falls within the...
40 CFR 1051.205 - What must I include in my application?
Code of Federal Regulations, 2012 CFR
2012-07-01
... emission control devices (AECDs) and all fuel-system components you will install on any production or test... specifications and other basic parameters of the vehicle's design and emission controls. List the fuel type on... scheduled maintenance you did. (g) List the specifications of the test fuel to show that it falls within the...
40 CFR 1051.205 - What must I include in my application?
Code of Federal Regulations, 2013 CFR
2013-07-01
... emission control devices (AECDs) and all fuel-system components you will install on any production or test... specifications and other basic parameters of the vehicle's design and emission controls. List the fuel type on... scheduled maintenance you did. (g) List the specifications of the test fuel to show that it falls within the...
40 CFR 1051.205 - What must I include in my application?
Code of Federal Regulations, 2011 CFR
2011-07-01
... emission control devices (AECDs) and all fuel-system components you will install on any production or test... specifications and other basic parameters of the vehicle's design and emission controls. List the fuel type on... scheduled maintenance you did. (g) List the specifications of the test fuel to show that it falls within the...
NASA Technical Reports Server (NTRS)
1993-01-01
C Language Integration Production System (CLIPS), a NASA-developed expert systems program, has enabled a security systems manufacturer to design a new generation of hardware. C.CURESystem 1 Plus, manufactured by Software House, is a software based system that is used with a variety of access control hardware at installations around the world. Users can manage large amounts of information, solve unique security problems and control entry and time scheduling. CLIPS acts as an information management tool when accessed by C.CURESystem 1 Plus. It asks questions about the hardware and when given the answer, recommends possible quick solutions by non-expert persons.
Achieving reutilization of scheduling software through abstraction and generalization
NASA Technical Reports Server (NTRS)
Wilkinson, George J.; Monteleone, Richard A.; Weinstein, Stuart M.; Mohler, Michael G.; Zoch, David R.; Tong, G. Michael
1995-01-01
Reutilization of software is a difficult goal to achieve particularly in complex environments that require advanced software systems. The Request-Oriented Scheduling Engine (ROSE) was developed to create a reusable scheduling system for the diverse scheduling needs of the National Aeronautics and Space Administration (NASA). ROSE is a data-driven scheduler that accepts inputs such as user activities, available resources, timing contraints, and user-defined events, and then produces a conflict-free schedule. To support reutilization, ROSE is designed to be flexible, extensible, and portable. With these design features, applying ROSE to a new scheduling application does not require changing the core scheduling engine, even if the new application requires significantly larger or smaller data sets, customized scheduling algorithms, or software portability. This paper includes a ROSE scheduling system description emphasizing its general-purpose features, reutilization techniques, and tasks for which ROSE reuse provided a low-risk solution with significant cost savings and reduced software development time.
Generically Used Expert Scheduling System (GUESS): User's Guide Version 1.0
NASA Technical Reports Server (NTRS)
Liebowitz, Jay; Krishnamurthy, Vijaya; Rodens, Ira
1996-01-01
This user's guide contains instructions explaining how to best operate the program GUESS, a generic expert scheduling system. GUESS incorporates several important features for a generic scheduler, including automatic scheduling routines to generate a 'first' schedule for the user, a user interface that includes Gantt charts and enables the human scheduler to manipulate schedules manually, diagnostic report generators, and a variety of scheduling techniques. The current version of GUESS runs on an IBM PC or compatible in the Windows 3.1 or Windows '95 environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mammoli, Andrea A.; Lavrova, Olga; Arellano, Brian
The present invention is an apparatus and method for delivering energy using a renewable resource. The method includes providing a photovoltaic energy source and applying energy storage to the photovoltaic energy source via a battery storage unit. The energy output from the photovoltaic energy source and the battery system is controlled using a battery control system. The battery control system predicts peak load, develops a schedule that includes when to begin discharging power and when to stop discharging power, shifts power to the battery storage unit when excess power is available, and prioritizes the functionality of the battery storage unitmore » and the photovoltaic energy source.« less
Airspace Technology Demonstration 2 (ATD-2) Technology Description Document (TDD)
NASA Technical Reports Server (NTRS)
Ging, Andrew; Engelland, Shawn; Capps, Al; Eshow, Michelle; Jung, Yoon; Sharma, Shivanjli; Talebi, Ehsan; Downs, Michael; Freedman, Cynthia; Ngo, Tyler;
2018-01-01
This Technology Description Document (TDD) provides an overview of the technology for the Phase 1 Baseline Integrated Arrival, Departure, and Surface (IADS) prototype system of the National Aeronautics and Space Administration's (NASA) Airspace Technology Demonstration 2 (ATD-2) project, to be demonstrated beginning in 2017 at Charlotte Douglas International Airport (CLT). Development, integration, and field demonstration of relevant technologies of the IADS system directly address recommendations made by the Next Generation Air Transportation System (NextGen) Integration Working Group (NIWG) on Surface and Data Sharing and the Surface Collaborative Decision Making (Surface CDM) concept of operations developed jointly by the Federal Aviation Administration (FAA) and aviation industry partners. NASA is developing the IADS traffic management system under the ATD-2 project in coordination with the FAA, flight operators, CLT airport, and the National Air Traffic Controllers Association (NATCA). The primary goal of ATD-2 is to improve the predictability and operational efficiency of the air traffic system in metroplex environments, through the enhancement, development, and integration of the nation's most advanced and sophisticated arrival, departure, and surface prediction, scheduling, and management systems. The ATD-2 project is a 5-year research activity beginning in 2015 and extending through 2020. The Phase 1 Baseline IADS capability resulting from the ATD-2 research will be demonstrated at the CLT airport beginning in 2017. Phase 1 will provide the initial demonstration of the integrated system with strategic and tactical scheduling, tactical departure scheduling to an en route meter point, and an early implementation prototype of a Terminal Flight Data Manager (TFDM) Electronic Flight Data (EFD) system. The strategic surface scheduling element of the capability is consistent with the Surface CDM Concept of Operations published in 2014 by the FAA Surface Operations Directorate.
Full-Authority Fault-Tolerant Electronic Engine Control Systems for Variable Cycle Engines.
1981-12-01
Geometry or Fuel Flow Scheduled as a Function of Engine State, i.e. FIGV = f( N1 C2 ) Closed Loop - Geometry or Fuel Flow Modulated To Maintain an Engine...Low Pressure Turbine Inlet Area (A41) Closed Loop (Integral) N2, T22 Core Stream Exhaust Nozzle Area (AJE) Closed Loop (Integral) N1 , T2 Duct Stream...to remain at the breakpoint value while low rotor speed reference ( N1 reference) is scheduled to decrease as a function of power lever angle (PLA), to
NASA management of the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Peters, F.
1975-01-01
The management system and management technology described have been developed to meet stringent cost and schedule constraints of the Space Shuttle Program. Management of resources available to this program requires control and motivation of a large number of efficient creative personnel trained in various technical specialties. This must be done while keeping track of numerous parallel, yet interdependent activities involving different functions, organizations, and products all moving together in accordance with intricate plans for budgets, schedules, performance, and interaction. Some techniques developed to identify problems at an early stage and seek immediate solutions are examined.
Mass Uncertainty and Application For Space Systems
NASA Technical Reports Server (NTRS)
Beech, Geoffrey
2013-01-01
Expected development maturity under contract (spec) should correlate with Project/Program Approved MGA Depletion Schedule in Mass Properties Control Plan. If specification NTE, MGA is inclusive of Actual MGA (A5 & A6). If specification is not an NTE Actual MGA (e.g. nominal), then MGA values are reduced by A5 values and A5 is representative of remaining uncertainty. Basic Mass = Engineering Estimate based on design and construction principles with NO embedded margin MGA Mass = Basic Mass * assessed % from approved MGA schedule. Predicted Mass = Basic + MGA. Aggregate MGA % = (Aggregate Predicted - Aggregate Basic) /Aggregate Basic.
NASA Lewis F100 engine testing
NASA Technical Reports Server (NTRS)
Werner, R. A.; Willoh, R. G., Jr.; Abdelwahab, M.
1984-01-01
Two builds of an F100 engine model derivative (EMD) engine were evaluated for improvements in engine components and digital electronic engine control (DEEC) logic. Two DEEC flight logics were verified throughout the flight envelope in support of flight clearance for the F100 engine model derivative program (EMPD). A nozzle instability and a faster augmentor transient capability was investigated in support of the F-15 DEEC flight program. Off schedule coupled system mode fan flutter, DEEC nose-boom pressure correlation, DEEC station six pressure comparison, and a new fan inlet variable vane (CIVV) schedule are identified.
Distributed intelligent scheduling of FMS
NASA Astrophysics Data System (ADS)
Wu, Zuobao; Cheng, Yaodong; Pan, Xiaohong
1995-08-01
In this paper, a distributed scheduling approach of a flexible manufacturing system (FMS) is presented. A new class of Petri nets called networked time Petri nets (NTPN) for system modeling of networking environment is proposed. The distributed intelligent scheduling is implemented by three schedulers which combine NTPN models with expert system techniques. The simulation results are shown.
Automated Platform Management System Scheduling
NASA Technical Reports Server (NTRS)
Hull, Larry G.
1990-01-01
The Platform Management System was established to coordinate the operation of platform systems and instruments. The management functions are split between ground and space components. Since platforms are to be out of contact with the ground more than the manned base, the on-board functions are required to be more autonomous than those of the manned base. Under this concept, automated replanning and rescheduling, including on-board real-time schedule maintenance and schedule repair, are required to effectively and efficiently meet Space Station Freedom mission goals. In a FY88 study, we developed several promising alternatives for automated platform planning and scheduling. We recommended both a specific alternative and a phased approach to automated platform resource scheduling. Our recommended alternative was based upon use of exactly the same scheduling engine in both ground and space components of the platform management system. Our phased approach recommendation was based upon evolutionary development of the platform. In the past year, we developed platform scheduler requirements and implemented a rapid prototype of a baseline platform scheduler. Presently we are rehosting this platform scheduler rapid prototype and integrating the scheduler prototype into two Goddard Space Flight Center testbeds, as the ground scheduler in the Scheduling Concepts, Architectures, and Networks Testbed and as the on-board scheduler in the Platform Management System Testbed. Using these testbeds, we will investigate rescheduling issues, evaluate operational performance and enhance the platform scheduler prototype to demonstrate our evolutionary approach to automated platform scheduling. The work described in this paper was performed prior to Space Station Freedom rephasing, transfer of platform responsibility to Code E, and other recently discussed changes. We neither speculate on these changes nor attempt to predict the impact of the final decisions. As a consequence some of our work and results may be outdated when this paper is published.
An adaptive learning control system for aircraft
NASA Technical Reports Server (NTRS)
Mekel, R.; Nachmias, S.
1978-01-01
A learning control system and its utilization as a flight control system for F-8 Digital Fly-By-Wire (DFBW) research aircraft is studied. The system has the ability to adjust a gain schedule to account for changing plant characteristics and to improve its performance and the plant's performance in the course of its own operation. Three subsystems are detailed: (1) the information acquisition subsystem which identifies the plant's parameters at a given operating condition; (2) the learning algorithm subsystem which relates the identified parameters to predetermined analytical expressions describing the behavior of the parameters over a range of operating conditions; and (3) the memory and control process subsystem which consists of the collection of updated coefficients (memory) and the derived control laws. Simulation experiments indicate that the learning control system is effective in compensating for parameter variations caused by changes in flight conditions.
Design and evaluation of an air traffic control Final Approach Spacing Tool
NASA Technical Reports Server (NTRS)
Davis, Thomas J.; Erzberger, Heinz; Green, Steven M.; Nedell, William
1991-01-01
This paper describes the design and simulator evaluation of an automation tool for assisting terminal radar approach controllers in sequencing and spacing traffic onto the final approach course. The automation tool, referred to as the Final Approach Spacing Tool (FAST), displays speed and heading advisories for arriving aircraft as well as sequencing information on the controller's radar display. The main functional elements of FAST are a scheduler that schedules and sequences the traffic, a four-dimensional trajectory synthesizer that generates the advisories, and a graphical interface that displays the information to the controller. FAST has been implemented on a high-performance workstation. It can be operated as a stand-alone in the terminal radar approach control facility or as an element of a system integrated with automation tools in the air route traffic control center. FAST was evaluated by experienced air traffic controllers in a real-time air traffic control simulation. simulation results summarized in the paper show that the automation tools significantly reduced controller work load and demonstrated a potential for an increase in landing rate.
Continuous Improvement in Battery Testing at the NASA/JSC Energy System Test Area
NASA Technical Reports Server (NTRS)
Boyd, William; Cook, Joseph
2003-01-01
The Energy Systems Test Area (ESTA) at the Lyndon B. Johnson Space Center in Houston, Texas conducts development and qualification tests to fulfill Energy System Division responsibilities relevant to ASA programs and projects. EST A has historically called upon a variety of fluid, mechanical, electrical, environmental, and data system capabilities spread amongst five full-service facilities to test human and human supported spacecraft in the areas of propulsion systems, fluid systems, pyrotechnics, power generation, and power distribution and control systems. Improvements at ESTA are being made in full earnest of offering NASA project offices an option to choose a thorough test regime that is balanced with cost and schedule constraints. In order to continue testing of enabling power-related technologies utilized by the Energy System Division, an especially proactive effort has been made to increase the cost effectiveness and schedule responsiveness for battery testing. This paper describes the continuous improvement in battery testing at the Energy Systems Test Area being made through consolidation, streamlining, and standardization.
Vehicle yaw stability control via H∞ gain scheduling
NASA Astrophysics Data System (ADS)
Zhang, Jinhua; Sun, Weichao; Feng, Zhiguang
2018-06-01
Yaw stability control (YSC) is rather significant in a vehicle lateral motion, since it can considerably reduce casualties caused by vehicle instability. Nevertheless with the vehicle running, the parameters, such as vehicle mass and moment of inertial, can be perturbed because of variation of capacity, loadage and consumption of fuel, hence some of nominal controllers cannot always work satisfactorily. To overcome the aforementioned deficiency, a gain scheduled H∞ YSC controller is developed in this paper, taking the vehicle mass and moment of inertial as the scheduled variables, now that the gain scheduled H∞ controller can guarantee both the robustness against parameter perturbation and the adjustability of tracking accuracy. Then the constructed controller is verified via numerical simulation and MATLAB-CarSim coalition simulation. The simulation results indicate that the designed controller can indeed improve the vehicle handing performance under circumstance of lateral stability.
Liu, Changxin; Gao, Jian; Li, Huiping; Xu, Demin
2018-05-01
The event-triggered control is a promising solution to cyber-physical systems, such as networked control systems, multiagent systems, and large-scale intelligent systems. In this paper, we propose an event-triggered model predictive control (MPC) scheme for constrained continuous-time nonlinear systems with bounded disturbances. First, a time-varying tightened state constraint is computed to achieve robust constraint satisfaction, and an event-triggered scheduling strategy is designed in the framework of dual-mode MPC. Second, the sufficient conditions for ensuring feasibility and closed-loop robust stability are developed, respectively. We show that robust stability can be ensured and communication load can be reduced with the proposed MPC algorithm. Finally, numerical simulations and comparison studies are performed to verify the theoretical results.
A hybrid job-shop scheduling system
NASA Technical Reports Server (NTRS)
Hellingrath, Bernd; Robbach, Peter; Bayat-Sarmadi, Fahid; Marx, Andreas
1992-01-01
The intention of the scheduling system developed at the Fraunhofer-Institute for Material Flow and Logistics is the support of a scheduler working in a job-shop. Due to the existing requirements for a job-shop scheduling system the usage of flexible knowledge representation and processing techniques is necessary. Within this system the attempt was made to combine the advantages of symbolic AI-techniques with those of neural networks.
Designing a fuzzy scheduler for hard real-time systems
NASA Technical Reports Server (NTRS)
Yen, John; Lee, Jonathan; Pfluger, Nathan; Natarajan, Swami
1992-01-01
In hard real-time systems, tasks have to be performed not only correctly, but also in a timely fashion. If timing constraints are not met, there might be severe consequences. Task scheduling is the most important problem in designing a hard real-time system, because the scheduling algorithm ensures that tasks meet their deadlines. However, the inherent nature of uncertainty in dynamic hard real-time systems increases the problems inherent in scheduling. In an effort to alleviate these problems, we have developed a fuzzy scheduler to facilitate searching for a feasible schedule. A set of fuzzy rules are proposed to guide the search. The situation we are trying to address is the performance of the system when no feasible solution can be found, and therefore, certain tasks will not be executed. We wish to limit the number of important tasks that are not scheduled.
NASA Technical Reports Server (NTRS)
Sadovsky, Alexander V.; Davis, Damek; Isaacson, Douglas R.
2012-01-01
A class of problems in air traffic management asks for a scheduling algorithm that supplies the air traffic services authority not only with a schedule of arrivals and departures, but also with speed advisories. Since advisories must be finite, a scheduling algorithm must ultimately produce a finite data set, hence must either start with a purely discrete model or involve a discretization of a continuous one. The former choice, often preferred for intuitive clarity, naturally leads to mixed-integer programs, hindering proofs of correctness and computational cost bounds (crucial for real-time operations). In this paper, a hybrid control system is used to model air traffic scheduling, capturing both the discrete and continuous aspects. This framework is applied to a class of problems, called the Fully Routed Nominal Problem. We prove a number of geometric results on feasible schedules and use these results to formulate an algorithm that attempts to compute a collective speed advisory, effectively finite, and has computational cost polynomial in the number of aircraft. This work is a first step toward optimization and models refined with more realistic detail.
Machine intelligence and autonomy for aerospace systems
NASA Technical Reports Server (NTRS)
Heer, Ewald (Editor); Lum, Henry (Editor)
1988-01-01
The present volume discusses progress toward intelligent robot systems in aerospace applications, NASA Space Program automation and robotics efforts, the supervisory control of telerobotics in space, machine intelligence and crew/vehicle interfaces, expert-system terms and building tools, and knowledge-acquisition for autonomous systems. Also discussed are methods for validation of knowledge-based systems, a design methodology for knowledge-based management systems, knowledge-based simulation for aerospace systems, knowledge-based diagnosis, planning and scheduling methods in AI, the treatment of uncertainty in AI, vision-sensing techniques in aerospace applications, image-understanding techniques, tactile sensing for robots, distributed sensor integration, and the control of articulated and deformable space structures.
Command in Air War: Centralized vs. Decentralized Control of Combat Airpower
2005-05-19
centralized control of these missions, requiring a full day for scheduling a target, was ineffective at supporting the D-day invasion and even proved...dangerous to friendly troops. Americans developed a method of scheduling a steady stream of...controller took over this function. Thus, although the aircraft were still scheduled and routed by a centralized �Combined Operations Center,� they
Applications of Payload Directed Flight
NASA Technical Reports Server (NTRS)
Ippolito, Corey; Fladeland, Matthew M.; Yeh, Yoo Hsiu
2009-01-01
Next generation aviation flight control concepts require autonomous and intelligent control system architectures that close control loops directly around payload sensors in manner more integrated and cohesive that in traditional autopilot designs. Research into payload directed flight control at NASA Ames Research Center is investigating new and novel architectures that can satisfy the requirements for next generation control and automation concepts for aviation. Tighter integration between sensor and machine requires definition of specific sensor-directed control modes to tie the sensor data directly into a vehicle control structures throughout the entire control architecture, from low-level stability- and control loops, to higher level mission planning and scheduling reasoning systems. Payload directed flight systems can thus provide guidance, navigation, and control for vehicle platforms hosting a suite of onboard payload sensors. This paper outlines related research into the field of payload directed flight; and outlines requirements and operating concepts for payload directed flight systems based on identified needs from the scientific literature.'
Experience with synchronous and asynchronous digital control systems. [for flight
NASA Technical Reports Server (NTRS)
Regenie, Victoria A.; Chacon, Claude V.; Lock, Wilton P.
1986-01-01
Flight control systems have undergone a revolution since the days of simple mechanical linkages; presently the most advanced systems are full-authority, full-time digital systems controlling unstable aircraft. With the use of advanced control systems, the aerodynamic design can incorporate features that allow greater performance and fuel savings, as can be seen on the new Airbus design and advanced tactical fighter concepts. These advanced aircraft will be and are relying on the flight control system to provide the stability and handling qualities required for safe flight and to allow the pilot to control the aircraft. Various design philosophies have been proposed and followed to investigate system architectures for these advanced flight control systems. One major area of discussion is whether a multichannel digital control system should be synchronous or asynchronous. This paper addressed the flight experience at the Dryden Flight Research Facility of NASA's Ames Research Center with both synchronous and asynchronous digital flight control systems. Four different flight control systems are evaluated against criteria such as software reliability, cost increases, and schedule delays.
Systems Analysis of Rapid Transit Underground Construction : Volume 2. Sections 6-9 and Appendixes.
DOT National Transportation Integrated Search
1974-12-01
Three San Francisco Bay Area Rapid Transit (BART) projects and two Washington Metropolitan Area Transit Authority (WMATA) projects are analyzed with respect to time schedules, costs, and sensitivity to physical and institutional controls. These data ...
Aviation Safety: Opportunities Exist for FAA to Refine the Controller Staffing Process
DOT National Transportation Integrated Search
1997-04-09
The Federal Aviation Administration (FAA) is responsible for managing the : nation's air transportation system so more than 18,000 aircraft can annually : carry 500 million passengers safely and on schedule. Because of significant : hiring in the ear...
Knowledge-Based Runway Assignment for Arrival Aircraft in the Terminal Area
DOT National Transportation Integrated Search
1997-01-01
A knowledge-based system for scheduling arrival traffic in the terminal area, : referred to as the Final Approach Spacing Tool (FAST), has been implemented and : operationally tested at the Dallas/Fort Worth Terminal Radar Approach Control : (TRACON)...
48 CFR 245.606 - Inventory schedules.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Inventory schedules. 245.606 Section 245.606 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM... Contractor Inventory 245.606 Inventory schedules. ...
A New Distributed Optimization for Community Microgrids Scheduling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starke, Michael R; Tomsovic, Kevin
This paper proposes a distributed optimization model for community microgrids considering the building thermal dynamics and customer comfort preference. The microgrid central controller (MCC) minimizes the total cost of operating the community microgrid, including fuel cost, purchasing cost, battery degradation cost and voluntary load shedding cost based on the customers' consumption, while the building energy management systems (BEMS) minimize their electricity bills as well as the cost associated with customer discomfort due to room temperature deviation from the set point. The BEMSs and the MCC exchange information on energy consumption and prices. When the optimization converges, the distributed generation scheduling,more » energy storage charging/discharging and customers' consumption as well as the energy prices are determined. In particular, we integrate the detailed thermal dynamic characteristics of buildings into the proposed model. The heating, ventilation and air-conditioning (HVAC) systems can be scheduled intelligently to reduce the electricity cost while maintaining the indoor temperature in the comfort range set by customers. Numerical simulation results show the effectiveness of proposed model.« less
Application of the Software as a Service Model to the Control of Complex Building Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stadler, Michael; Donadee, Jonathan; Marnay, Chris
2011-03-17
In an effort to create broad access to its optimization software, Lawrence Berkeley National Laboratory (LBNL), in collaboration with the University of California at Davis (UC Davis) and OSISoft, has recently developed a Software as a Service (SaaS) Model for reducing energy costs, cutting peak power demand, and reducing carbon emissions for multipurpose buildings. UC Davis currently collects and stores energy usage data from buildings on its campus. Researchers at LBNL sought to demonstrate that a SaaS application architecture could be built on top of this data system to optimize the scheduling of electricity and heat delivery in the building.more » The SaaS interface, known as WebOpt, consists of two major parts: a) the investment& planning and b) the operations module, which builds on the investment& planning module. The operational scheduling and load shifting optimization models within the operations module use data from load prediction and electrical grid emissions models to create an optimal operating schedule for the next week, reducing peak electricity consumption while maintaining quality of energy services. LBNL's application also provides facility managers with suggested energy infrastructure investments for achieving their energy cost and emission goals based on historical data collected with OSISoft's system. This paper describes these models as well as the SaaS architecture employed by LBNL researchers to provide asset scheduling services to UC Davis. The peak demand, emissions, and cost implications of the asset operation schedule and investments suggested by this optimization model are analysed.« less
Application of the Software as a Service Model to the Control of Complex Building Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stadler, Michael; Donadee, Jon; Marnay, Chris
2011-03-18
In an effort to create broad access to its optimization software, Lawrence Berkeley National Laboratory (LBNL), in collaboration with the University of California at Davis (UC Davis) and OSISoft, has recently developed a Software as a Service (SaaS) Model for reducing energy costs, cutting peak power demand, and reducing carbon emissions for multipurpose buildings. UC Davis currently collects and stores energy usage data from buildings on its campus. Researchers at LBNL sought to demonstrate that a SaaS application architecture could be built on top of this data system to optimize the scheduling of electricity and heat delivery in the building.more » The SaaS interface, known as WebOpt, consists of two major parts: a) the investment& planning and b) the operations module, which builds on the investment& planning module. The operational scheduling and load shifting optimization models within the operations module use data from load prediction and electrical grid emissions models to create an optimal operating schedule for the next week, reducing peak electricity consumption while maintaining quality of energy services. LBNL's application also provides facility managers with suggested energy infrastructure investments for achieving their energy cost and emission goals based on historical data collected with OSISoft's system. This paper describes these models as well as the SaaS architecture employed by LBNL researchers to provide asset scheduling services to UC Davis. The peak demand, emissions, and cost implications of the asset operation schedule and investments suggested by this optimization model are analyzed.« less
Multi-core processing and scheduling performance in CMS
NASA Astrophysics Data System (ADS)
Hernández, J. M.; Evans, D.; Foulkes, S.
2012-12-01
Commodity hardware is going many-core. We might soon not be able to satisfy the job memory needs per core in the current single-core processing model in High Energy Physics. In addition, an ever increasing number of independent and incoherent jobs running on the same physical hardware not sharing resources might significantly affect processing performance. It will be essential to effectively utilize the multi-core architecture. CMS has incorporated support for multi-core processing in the event processing framework and the workload management system. Multi-core processing jobs share common data in memory, such us the code libraries, detector geometry and conditions data, resulting in a much lower memory usage than standard single-core independent jobs. Exploiting this new processing model requires a new model in computing resource allocation, departing from the standard single-core allocation for a job. The experiment job management system needs to have control over a larger quantum of resource since multi-core aware jobs require the scheduling of multiples cores simultaneously. CMS is exploring the approach of using whole nodes as unit in the workload management system where all cores of a node are allocated to a multi-core job. Whole-node scheduling allows for optimization of the data/workflow management (e.g. I/O caching, local merging) but efficient utilization of all scheduled cores is challenging. Dedicated whole-node queues have been setup at all Tier-1 centers for exploring multi-core processing workflows in CMS. We present the evaluation of the performance scheduling and executing multi-core workflows in whole-node queues compared to the standard single-core processing workflows.
Guiahi, Maryam; Teal, Stephanie B; Swartz, Maryke; Huynh, Sandy; Schiller, Georgia; Sheeder, Jeanelle
2017-12-01
Catholic Church directives restrict family planning service provision at Catholic health care institutions. It is unclear whether obstetrics and gynecology clinics that are owned by or have business affiliations with Catholic hospitals offer family planning appointments. Mystery callers phoned 144 clinics nationwide that were found on Catholic hospital websites between December 2014 and February 2016, and requested appointments for birth control generally, copper IUD services specifically, tubal ligation and abortion. Chi-square and Fisher's exact tests assessed potential correlates of appointment availability, and multivariable logistic regressions were computed if bivariate testing suggested multiple correlates. Although 95% of clinics would schedule birth control appointments, smaller proportions would schedule appointments for copper IUDs (68%) or tubal ligation (58%); only 2% would schedule an abortion. Smaller proportions of Catholic-owned than of Catholic-affiliated clinics would schedule appointments for birth control (84% vs. 100%), copper IUDs (4% vs. 97%) and tubal ligation (29% vs. 72%); for birth control and copper IUD services, no other clinic characteristics were related to appointment availability. Multivariable analysis confirmed that tubal ligation appointments were less likely to be offered at Catholic-owned than at Catholic-affiliated clinics (odds ratio. 0.1); location and association with one of the top 10 Catholic health care systems also were significant. Adherence to church directives is inconsistent at Catholic-associated clinics. Women visiting such clinics who want highly effective methods may need to rely on less effective methods or delay method uptake while seeking services elsewhere. Copyright © 2017 by the Guttmacher Institute.
Integrated flexible manufacturing program for manufacturing automation and rapid prototyping
NASA Technical Reports Server (NTRS)
Brooks, S. L.; Brown, C. W.; King, M. S.; Simons, W. R.; Zimmerman, J. J.
1993-01-01
The Kansas City Division of Allied Signal Inc., as part of the Integrated Flexible Manufacturing Program (IFMP), is developing an integrated manufacturing environment. Several systems are being developed to produce standards and automation tools for specific activities within the manufacturing environment. The Advanced Manufacturing Development System (AMDS) is concentrating on information standards (STEP) and product data transfer; the Expert Cut Planner system (XCUT) is concentrating on machining operation process planning standards and automation capabilities; the Advanced Numerical Control system (ANC) is concentrating on NC data preparation standards and NC data generation tools; the Inspection Planning and Programming Expert system (IPPEX) is concentrating on inspection process planning, coordinate measuring machine (CMM) inspection standards and CMM part program generation tools; and the Intelligent Scheduling and Planning System (ISAPS) is concentrating on planning and scheduling tools for a flexible manufacturing system environment. All of these projects are working together to address information exchange, standardization, and information sharing to support rapid prototyping in a Flexible Manufacturing System (FMS) environment.
Scheduling Accessory Assists Patients with Cognitive Disorders
NASA Technical Reports Server (NTRS)
2007-01-01
Recom Technologies Inc. received initial funding from NASA to research the commercial potential of an artificially intelligent planning reaction model to serve as a tool to help individuals suffering from various forms and levels of brain impairment. In 1993, the chief of the Artificial Intelligence Research Branch at Ames Research Center suggested collaborative research with Santa Clara Valley Medical Center. This partnership led to further development of the technology and funding to support clinical research from the U.S. Department of Education's National Institute on Disability and Rehabilitation Research. In 1996, Attention Control Systems Inc. was founded to market the finished device, called the Planning and Execution Assistant and Trainer (PEAT). PEAT is a pocket-sized PDA-like device with a graphical display, touchscreen controls, an electronic calendar, an address book, and a built-in phone, that cues users to start or stop scheduled activities, monitors their progress, and adjusts schedules as necessary in response to delays or calendar changes. It uses an automatic planning model developed for NASA to adjust daily plans when a situation changes. PEAT is sold as a complete system that includes software, hardware, documentation, and technical support. In addition to the flagship Pocket PEAT device, there is PEAT Phone, PC PEAT, and PEAT Link. Clinical studies of PEAT continue at Santa Clara Valley Medical Center
Reinventing The Design Process: Teams and Models
NASA Technical Reports Server (NTRS)
Wall, Stephen D.
1999-01-01
The future of space mission designing will be dramatically different from the past. Formerly, performance-driven paradigms emphasized data return with cost and schedule being secondary issues. Now and in the future, costs are capped and schedules fixed-these two variables must be treated as independent in the design process. Accordingly, JPL has redesigned its design process. At the conceptual level, design times have been reduced by properly defining the required design depth, improving the linkages between tools, and managing team dynamics. In implementation-phase design, system requirements will be held in crosscutting models, linked to subsystem design tools through a central database that captures the design and supplies needed configuration management and control. Mission goals will then be captured in timelining software that drives the models, testing their capability to execute the goals. Metrics are used to measure and control both processes and to ensure that design parameters converge through the design process within schedule constraints. This methodology manages margins controlled by acceptable risk levels. Thus, teams can evolve risk tolerance (and cost) as they would any engineering parameter. This new approach allows more design freedom for a longer time, which tends to encourage revolutionary and unexpected improvements in design.
NASA Astrophysics Data System (ADS)
Katchasuwanmanee, Kanet; Cheng, Kai; Bateman, Richard
2016-09-01
As energy efficiency is one of the key essentials towards sustainability, the development of an energy-resource efficient manufacturing system is among the great challenges facing the current industry. Meanwhile, the availability of advanced technological innovation has created more complex manufacturing systems that involve a large variety of processes and machines serving different functions. To extend the limited knowledge on energy-efficient scheduling, the research presented in this paper attempts to model the production schedule at an operation process by considering the balance of energy consumption reduction in production, production work flow (productivity) and quality. An innovative systematic approach to manufacturing energy-resource efficiency is proposed with the virtual simulation as a predictive modelling enabler, which provides real-time manufacturing monitoring, virtual displays and decision-makings and consequentially an analytical and multidimensional correlation analysis on interdependent relationships among energy consumption, work flow and quality errors. The regression analysis results demonstrate positive relationships between the work flow and quality errors and the work flow and energy consumption. When production scheduling is controlled through optimization of work flow, quality errors and overall energy consumption, the energy-resource efficiency can be achieved in the production. Together, this proposed multidimensional modelling and analysis approach provides optimal conditions for the production scheduling at the manufacturing system by taking account of production quality, energy consumption and resource efficiency, which can lead to the key competitive advantages and sustainability of the system operations in the industry.
Software techniques for a distributed real-time processing system. [for spacecraft
NASA Technical Reports Server (NTRS)
Lesh, F.; Lecoq, P.
1976-01-01
The paper describes software techniques developed for the Unified Data System (UDS), a distributed processor network for control and data handling onboard a planetary spacecraft. These techniques include a structured language for specifying the programs contained in each module, and a small executive program in each module which performs scheduling and implements the module task.
The MGS Avionics System Architecture: Exploring the Limits of Inheritance
NASA Technical Reports Server (NTRS)
Bunker, R.
1994-01-01
Mars Global Surveyor (MGS) avionics system architecture comprises much of the electronics on board the spacecraft: electrical power, attitude and articulation control, command and data handling, telecommunications, and flight software. Schedule and cost constraints dictated a mix of new and inherited designs, especially hardware upgrades based on findings of the Mars Observer failure review boards.
ERIC Educational Resources Information Center
Weber, Everard
2005-01-01
This article analyses the Integrated Quality Management System (IQMS), an agreement reached in 2003 between the South African Education Department and the major teacher organisations in the country by using discourse analysis. The IQMS was scheduled to be implemented in public schools in 2004. Three discursive tensions are identified and…
A self-organizing neural network for job scheduling in distributed systems
NASA Astrophysics Data System (ADS)
Newman, Harvey B.; Legrand, Iosif C.
2001-08-01
The aim of this work is to describe a possible approach for the optimization of the job scheduling in large distributed systems, based on a self-organizing Neural Network. This dynamic scheduling system should be seen as adaptive middle layer software, aware of current available resources and making the scheduling decisions using the "past experience." It aims to optimize job specific parameters as well as the resource utilization. The scheduling system is able to dynamically learn and cluster information in a large dimensional parameter space and at the same time to explore new regions in the parameters space. This self-organizing scheduling system may offer a possible solution to provide an effective use of resources for the off-line data processing jobs for future HEP experiments.
Manned spacecraft automation and robotics
NASA Technical Reports Server (NTRS)
Erickson, Jon D.
1987-01-01
The Space Station holds promise of being a showcase user and driver of advanced automation and robotics technology. The author addresses the advances in automation and robotics from the Space Shuttle - with its high-reliability redundancy management and fault tolerance design and its remote manipulator system - to the projected knowledge-based systems for monitoring, control, fault diagnosis, planning, and scheduling, and the telerobotic systems of the future Space Station.
Seol, Ye-In; Kim, Young-Kuk
2014-01-01
Power-aware scheduling reduces CPU energy consumption in hard real-time systems through dynamic voltage scaling (DVS). In this paper, we deal with pinwheel task model which is known as static and predictable task model and could be applied to various embedded or ubiquitous systems. In pinwheel task model, each task's priority is static and its execution sequence could be predetermined. There have been many static approaches to power-aware scheduling in pinwheel task model. But, in this paper, we will show that the dynamic priority scheduling results in power-aware scheduling could be applied to pinwheel task model. This method is more effective than adopting the previous static priority scheduling methods in saving energy consumption and, for the system being still static, it is more tractable and applicable to small sized embedded or ubiquitous computing. Also, we introduce a novel power-aware scheduling algorithm which exploits all slacks under preemptive earliest-deadline first scheduling which is optimal in uniprocessor system. The dynamic priority method presented in this paper could be applied directly to static systems of pinwheel task model. The simulation results show that the proposed algorithm with the algorithmic complexity of O(n) reduces the energy consumption by 10-80% over the existing algorithms.
2014-01-01
Power-aware scheduling reduces CPU energy consumption in hard real-time systems through dynamic voltage scaling (DVS). In this paper, we deal with pinwheel task model which is known as static and predictable task model and could be applied to various embedded or ubiquitous systems. In pinwheel task model, each task's priority is static and its execution sequence could be predetermined. There have been many static approaches to power-aware scheduling in pinwheel task model. But, in this paper, we will show that the dynamic priority scheduling results in power-aware scheduling could be applied to pinwheel task model. This method is more effective than adopting the previous static priority scheduling methods in saving energy consumption and, for the system being still static, it is more tractable and applicable to small sized embedded or ubiquitous computing. Also, we introduce a novel power-aware scheduling algorithm which exploits all slacks under preemptive earliest-deadline first scheduling which is optimal in uniprocessor system. The dynamic priority method presented in this paper could be applied directly to static systems of pinwheel task model. The simulation results show that the proposed algorithm with the algorithmic complexity of O(n) reduces the energy consumption by 10–80% over the existing algorithms. PMID:25121126
Schellack, Christine J.; Asire, Barbara; Prust, Margaret L.; Prescott, Marta R.; Mirembe, Esther; Lukabwe, Ivan; Mirembe, Betty; Musinguzi, Joshua; Moberley, Sarah A.
2018-01-01
Background In 2013, Uganda adopted a test-and-treat policy for HIV patients 15 years or younger. Low retention rates among paediatric and adolescent antiretroviral therapy (ART) initiates could severely limit the impact of this new policy. This evaluation tested the impact of a differentiated care model called Family Clinic Day (FCD), a family-centered appointment scheduling and health education intervention on patient retention and adherence to monthly appointment scheduling. Methods We conducted a cluster randomized controlled trial, from October 2014 to March 2015. Forty-six facilities were stratified by implementing partner and facility type and randomly assigned to the control or intervention arm. Primary outcomes included the proportion of patients retained in care at 6 months and the proportion adherent to their appointment schedule at last study period scheduled visit. Data collection occurred retrospectively in May 2015. Six patient focus group discussions and 17 health workers interviews were conducted to understand perspectives on FCD successes and challenges. Results A total of 4,715 paediatric and adolescent patient records were collected, of which 2,679 (n = 1,319 from 23 control facilities and 1,360 from 23 intervention facilities) were eligible for inclusion. The FCD did not improve retention (aOR 1.11; 90% CI 0.63–1.97, p = 0.75), but was associated with improved adherence to last appointment schedule (aOR 1.64; 90% CI 1.27–2.11, p<0.001). Qualitative findings suggested that FCD patients benefited from health education and increased psychosocial support. Conclusion FCD scale-up in Uganda may be an effective differentiated care model to ensure patient adherence to ART clinic appointment schedules, a key aspect necessary for viral load suppression. Patient health outcomes may also benefit following an increase in knowledge based on health education, and peer support. Broad challenges facing ART clinics, such as under-staffing and poor filing systems, should be addressed in order to improve patient care. PMID:29522530
CHIMERA II - A real-time multiprocessing environment for sensor-based robot control
NASA Technical Reports Server (NTRS)
Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.
1989-01-01
A multiprocessing environment for a wide variety of sensor-based robot system, providing the flexibility, performance, and UNIX-compatible interface needed for fast development of real-time code is addressed. The requirements imposed on the design of a programming environment for sensor-based robotic control is outlined. The details of the current hardware configuration are presented, along with the details of the CHIMERA II software. Emphasis is placed on the kernel, low-level interboard communication, user interface, extended file system, user-definable and dynamically selectable real-time schedulers, remote process synchronization, and generalized interprocess communication. A possible implementation of a hierarchical control model, the NASA/NBS standard reference model for telerobot control system is demonstrated.
[The Japanese Health Care System: An Analysis of the Funding and Reimbursement System].
Rump, Alexis; Schöffski, Oliver
2017-08-10
Objective The modern Japanese health care system was established during the Meiji period (1868-1912) using the example of Germany. In this paper, the funding and remuneration of health services and products in Japan are described. The focus lies on the mechanisms used to implement health policy goals and to control costs. Method Selective literature search. Results All permanent residents in Japan are enrolled in one of more than 3,000 compulsory health funds. Employees and public servants are covered through company or government-related health insurance schemes. Independent workers, the unemployed and the pensioners are usually assigned to health insurance plans managed by local city governments. The elderly over 75 years are insured through special health funds managed at the prefectural level. To correct the fiscal disparities among the health insurance programs, a risk adjustment is realized by compensatory financial transfers between the funds and substantial subsidies from the central and local governments. The statutory benefits package that is identical for all insurance plans is regulated in a single comprehensive schedule. All the covered health services and products are listed with the fees and compensations, and the conditions for the service providers to be remunerated are also stated. This fee and compensation schedule is regularly revised every 2 years under the leadership of the Ministry of Health, Labor and Welfare. The revisions are intended to contain health expenditures and to set incentives for the achievement of health policy goals. Conclusion The funding of the Japanese health care system and the risk adjustment mechanisms among health funds are well established and show a rather static character. The short- and mid-term development of the system is mainly controlled on the side of the expenditures through the unique and comprehensive fee and compensation schedule. The regular revisions of this schedule permit to react at relatively short notice to evolving situations, and through a policy of small improvements, target an optimization of the system as a whole. © Georg Thieme Verlag KG Stuttgart · New York.
A Comparison of Escalating versus Fixed Reinforcement Schedules on Undergraduate Quiz Taking
ERIC Educational Resources Information Center
Mahoney, Amanda
2017-01-01
Drug abstinence studies indicate that escalating reinforcement schedules maintain abstinence for longer periods than fixed reinforcement schedules. The current study evaluated whether escalating reinforcement schedules would maintain more quiz taking than fixed reinforcement schedules. During baseline and for the control group, bonus points were…
Intelligent scheduling of execution for customized physical fitness and healthcare system.
Huang, Chung-Chi; Liu, Hsiao-Man; Huang, Chung-Lin
2015-01-01
Physical fitness and health of white collar business person is getting worse and worse in recent years. Therefore, it is necessary to develop a system which can enhance physical fitness and health for people. Although the exercise prescription can be generated after diagnosing for customized physical fitness and healthcare. It is hard to meet individual execution needs for general scheduling of physical fitness and healthcare system. So the main purpose of this research is to develop an intelligent scheduling of execution for customized physical fitness and healthcare system. The results of diagnosis and prescription for customized physical fitness and healthcare system will be generated by fuzzy logic Inference. Then the results of diagnosis and prescription for customized physical fitness and healthcare system will be scheduled and executed by intelligent computing. The scheduling of execution is generated by using genetic algorithm method. It will improve traditional scheduling of exercise prescription for physical fitness and healthcare. Finally, we will demonstrate the advantages of the intelligent scheduling of execution for customized physical fitness and healthcare system.
Active Control of Wind-Tunnel Model Aeroelastic Response Using Neural Networks
NASA Technical Reports Server (NTRS)
Scott, Robert C.
2000-01-01
NASA Langley Research Center, Hampton, VA 23681 Under a joint research and development effort conducted by the National Aeronautics and Space Administration and The Boeing Company (formerly McDonnell Douglas) three neural-network based control systems were developed and tested. The control systems were experimentally evaluated using a transonic wind-tunnel model in the Langley Transonic Dynamics Tunnel. One system used a neural network to schedule flutter suppression control laws, another employed a neural network in a predictive control scheme, and the third employed a neural network in an inverse model control scheme. All three of these control schemes successfully suppressed flutter to or near the limits of the testing apparatus, and represent the first experimental applications of neural networks to flutter suppression. This paper will summarize the findings of this project.
48 CFR 208.405 - Ordering procedures for Federal Supply Schedules.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Federal Supply Schedules. 208.405 Section 208.405 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE ACQUISITION PLANNING REQUIRED SOURCES OF SUPPLIES AND SERVICES Federal Supply Schedules 208.405 Ordering procedures for Federal Supply Schedules. In all orders...
77 FR 38086 - Manufacturer of Controlled Substances; Notice of Application; Chemica
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-26
... bulk manufacturer of Methamphetamine (1105), a basic class of controlled substance listed in schedule... schedule III non-narcotic controlled substance. The methamphetamine will not be sold as a commercial...
Arnold, L. E.; Hodgkins, P.; McKay, M.; Beckett-Thurman, L.; Greenbaum, M.; Bukstein, O.; Patel, A.; Bozzolo, D. R.
2013-01-01
Objective To evaluate symptom control and tolerability after abrupt conversion from oral extended-release methylphenidate (ER-MPH) to methylphenidate transdermal system (MTS) via a dose-transition schedule in children with attention-deficit/hyperactivity disorder (ADHD). Methods In a 4-week, prospective, multisite, open-label study, 171 children (164 intent-to-treat) with diagnosed ADHD aged 6–12 years abruptly switched from a stable dose of oral ER-MPH to MTS in nominal dosages of 10, 15, 20, and 30 mg using a predefined dose-transition schedule. After the first week on the scheduled dose, the dose was titrated to optimal effect. The primary effectiveness outcome was the change from baseline (while taking ER-MPH) to week 4 in ADHD-Rating Scale-IV (ADHD-RS-IV) total scores. Adverse events (AEs) were assessed throughout the study. Results Most subjects (58%) remained on the initial MTS dose defined by the dose-transition schedule; 38% increased and 4% decreased their MTS dose for optimization. MTS dose optimization resulted in significantly better ADHD-RS-IV total (mean ± SD) scores at week 4 than at baseline (9.9±7.47 vs 14.1±7.48; p<0.0001). The most commonly reported AEs included headache, decreased appetite, insomnia, and upper abdominal pain. Four subjects (2.3%) discontinued because of application site reactions and 3 discontinued because of other AEs. Conclusions Abrupt conversion from a stable dose of oral ER-MPH to MTS was accomplished using a predefined dose-transition schedule without loss of symptom control; however, careful titration to optimal dose is recommended. Most AEs were mild to moderate and, with the exception of application site reactions, were similar to AEs typically observed with oral MPH. Limitations of this study included its open-label sequential design without placebo, which could result in spurious attribution of improvement to the study treatment and precluded superiority determinations of MTS over baseline ER-MPH treatment. The apparent superiority of MTS was likely due to more careful titration and clinical monitoring rather than the product itself. NCT NCT00151983 PMID:19916704
The MICRO-BOSS scheduling system: Current status and future efforts
NASA Technical Reports Server (NTRS)
Sadeh, Norman M.
1992-01-01
In this paper, a micro-opportunistic approach to factory scheduling was described that closely monitors the evolution of bottlenecks during the construction of the schedule and continuously redirects search towards the bottleneck that appears to be most critical. This approach differs from earlier opportunistic approaches, as it does not require scheduling large resource subproblems or large job subproblems before revising the current scheduling strategy. This micro-opportunistic approach was implemented in the context of the MICRO-BOSS factory scheduling system. A study comparing MICRO-BOSS against a macro-opportunistic scheduler suggests that the additional flexibility of the micro-opportunistic approach to scheduling generally yields important reductions in both tardiness and inventory. Current research efforts include: adaptation of MICRO-BOSS to deal with sequence-dependent setups and development of micro-opportunistic reactive scheduling techniques that will enable the system to patch the schedule in the presence of contingencies such as machine breakdowns, raw materials arriving late, job cancellations, etc.
2017-04-10
The Administrator of the Drug Enforcement Administration is issuing this temporary scheduling order to schedule six synthetic cannabinoids: methyl 2-(1-(5-fluoropentyl)-1H-indazole-3-carboxamido)-3,3-dimethylbutanoate [5F-ADB; 5F-MDMB-PINACA]; methyl 2-(1-(5-fluoropentyl)-1H-indazole-3-carboxamido)-3-methylbutanoate [5F-AMB]; N-(adamantan-1-yl)-1-(5-fluoropentyl)-1H-indazole-3-carboxamide [5F-APINACA, 5F-AKB48]; N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indazole-3-carboxamide [ADB-FUBINACA]; methyl 2-(1-(cyclohexylmethyl)-1H-indole-3-carboxamido)-3,3-dimethylbutanoate [MDMB-CHMICA, MMB-CHMINACA] and methyl 2-(1-(4-fluorobenzyl)-1H-indazole-3-carboxamido)-3,3-dimethylbutanoate [MDMB-FUBINACA], and their optical, positional, and geometric isomers, salts, and salts of isomers into schedule I pursuant to the temporary scheduling provisions of the Controlled Substances Act. This action is based on a finding by the Administrator that the placement of these synthetic cannabinoids into schedule I of the Controlled Substances Act is necessary to avoid an imminent hazard to the public safety. As a result of this order, the regulatory controls and administrative, civil, and criminal sanctions applicable to schedule I controlled substances will be imposed on persons who handle (manufacture, distribute, reverse distribute, import, export, engage in research, conduct instructional activities or chemical analysis, or possess), or propose to handle, 5F-ADB, 5F-AMB, 5F-APINACA, ADB-FUBINACA, MDMB-CHMICA or MDMB-FUBINACA.
Ares I-X Roll Control System Development
NASA Technical Reports Server (NTRS)
Unger, Ronald J.; Massey, Edmund C.
2009-01-01
Project Managers often face challenging technical, schedule and budget issues. This presentation will explore how the Ares I-X Roll Control System Integrated Product Team (IPT) mitigated challenges such as concurrent engineering requirements and environments and evolving program processes, while successfully managing an aggressive project schedule and tight budget. IPT challenges also included communications and negotiations among inter- and intra-government agencies, including the US Air Force, NASA/MSFC Propulsion Engineering, LaRC, GRC, KSC, WSTF, and the Constellation Program. In order to successfully meet these challenges it was essential that the IPT define those items that most affected the schedule critical path, define early mitigation strategies to reduce technical, schedule, and budget risks, and maintain the end-product focus of an "unmanned test flight" context for the flight hardware. The makeup of the IPT and how it would function were also important considerations. The IPT consisted of NASA/MSFC (project management, engineering, and safety/quality) and contractors (Teledyne Brown Engineering and Pratt and Whitney Rocketdyne, who supplied heritage hardware experience). The early decision to have a small focused IPT working "badgelessly" across functional lines to eliminate functional stove-piping allowed for many more tasks to be done by fewer people. It also enhanced a sense of ownership of the products, while still being able to revert back to traditional roles in order to provide the required technical independence in design reviews and verification closures. This presentation will highlight several prominent issues and discuss how they were mitigated and the resulting Lessons Learned that might benefit other projects.
Schedule-Aware Workflow Management Systems
NASA Astrophysics Data System (ADS)
Mans, Ronny S.; Russell, Nick C.; van der Aalst, Wil M. P.; Moleman, Arnold J.; Bakker, Piet J. M.
Contemporary workflow management systems offer work-items to users through specific work-lists. Users select the work-items they will perform without having a specific schedule in mind. However, in many environments work needs to be scheduled and performed at particular times. For example, in hospitals many work-items are linked to appointments, e.g., a doctor cannot perform surgery without reserving an operating theater and making sure that the patient is present. One of the problems when applying workflow technology in such domains is the lack of calendar-based scheduling support. In this paper, we present an approach that supports the seamless integration of unscheduled (flow) and scheduled (schedule) tasks. Using CPN Tools we have developed a specification and simulation model for schedule-aware workflow management systems. Based on this a system has been realized that uses YAWL, Microsoft Exchange Server 2007, Outlook, and a dedicated scheduling service. The approach is illustrated using a real-life case study at the AMC hospital in the Netherlands. In addition, we elaborate on the experiences obtained when developing and implementing a system of this scale using formal techniques.
A neural based intelligent flight control system for the NASA F-15 flight research aircraft
NASA Technical Reports Server (NTRS)
Urnes, James M.; Hoy, Stephen E.; Ladage, Robert N.; Stewart, James
1993-01-01
A flight control concept that can identify aircraft stability properties and continually optimize the aircraft flying qualities has been developed by McDonnell Aircraft Company under a contract with the NASA-Dryden Flight Research Facility. This flight concept, termed the Intelligent Flight Control System, utilizes Neural Network technology to identify the host aircraft stability and control properties during flight, and use this information to design on-line the control system feedback gains to provide continuous optimum flight response. This self-repairing capability can provide high performance flight maneuvering response throughout large flight envelopes, such as needed for the National Aerospace Plane. Moreover, achieving this response early in the vehicle's development schedule will save cost.
Integrated planning and scheduling for Earth science data processing
NASA Technical Reports Server (NTRS)
Boddy, Mark; White, Jim; Goldman, Robert; Short, Nick, Jr.
1995-01-01
Several current NASA programs such as the EOSDIS Core System (ECS) have data processing and data management requirements that call for an integrated planning and scheduling capability. In this paper, we describe the experience of applying advanced scheduling technology operationally, in terms of what was accomplished, lessons learned, and what remains to be done in order to achieve similar successes in ECS and other programs. We discuss the importance and benefits of advanced scheduling tools, and our progress toward realizing them, through examples and illustrations based on ECS requirements. The first part of the paper focuses on the Data Archive and Distribution (DADS) V0 Scheduler. We then discuss system integration issues ranging from communication with the scheduler to the monitoring of system events and re-scheduling in response to them. The challenge of adapting the scheduler to domain-specific features and scheduling policies is also considered. Extrapolation to the ECS domain raises issues of integrating scheduling with a product-generation planner (such as PlaSTiC), and implementing conditional planning in an operational system. We conclude by briefly noting ongoing technology development and deployment projects being undertaken by HTC and the ISTB.
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Smith, Steven S.
1996-01-01
This final report summarizes research performed under NASA contract NCC 2-531 toward generalization of constraint-based scheduling theories and techniques for application to space telescope observation scheduling problems. Our work into theories and techniques for solution of this class of problems has led to the development of the Heuristic Scheduling Testbed System (HSTS), a software system for integrated planning and scheduling. Within HSTS, planning and scheduling are treated as two complementary aspects of the more general process of constructing a feasible set of behaviors of a target system. We have validated the HSTS approach by applying it to the generation of observation schedules for the Hubble Space Telescope. This report summarizes the HSTS framework and its application to the Hubble Space Telescope domain. First, the HSTS software architecture is described, indicating (1) how the structure and dynamics of a system is modeled in HSTS, (2) how schedules are represented at multiple levels of abstraction, and (3) the problem solving machinery that is provided. Next, the specific scheduler developed within this software architecture for detailed management of Hubble Space Telescope operations is presented. Finally, experimental performance results are given that confirm the utility and practicality of the approach.
Multiresource allocation and scheduling for periodic soft real-time applications
NASA Astrophysics Data System (ADS)
Gopalan, Kartik; Chiueh, Tzi-cker
2001-12-01
Real-time applications that utilize multiple system resources, such as CPU, disks, and network links, require coordinated scheduling of these resources in order to meet their end-to-end performance requirements. Most state-of-the-art operating systems support independent resource allocation and deadline-driven scheduling but lack coordination among multiple heterogeneous resources. This paper describes the design and implementation of an Integrated Real-time Resource Scheduler (IRS) that performs coordinated allocation and scheduling of multiple heterogeneous resources on the same machine for periodic soft real-time application. The principal feature of IRS is a heuristic multi-resource allocation algorithm that reserves multiple resources for real-time applications in a manner that can maximize the number of applications admitted into the system in the long run. At run-time, a global scheduler dispatches the tasks of the soft real-time application to individual resource schedulers according to the precedence constraints between tasks. The individual resource schedulers, which could be any deadline based schedulers, can make scheduling decisions locally and yet collectively satisfy a real-time application's performance requirements. The tightness of overall timing guarantees is ultimately determined by the properties of individual resource schedulers. However, IRS maximizes overall system resource utilization efficiency by coordinating deadline assignment across multiple tasks in a soft real-time application.
Completable scheduling: An integrated approach to planning and scheduling
NASA Technical Reports Server (NTRS)
Gervasio, Melinda T.; Dejong, Gerald F.
1992-01-01
The planning problem has traditionally been treated separately from the scheduling problem. However, as more realistic domains are tackled, it becomes evident that the problem of deciding on an ordered set of tasks to achieve a set of goals cannot be treated independently of the problem of actually allocating resources to the tasks. Doing so would result in losing the robustness and flexibility needed to deal with imperfectly modeled domains. Completable scheduling is an approach which integrates the two problems by allowing an a priori planning module to defer particular planning decisions, and consequently the associated scheduling decisions, until execution time. This allows a completable scheduling system to maximize plan flexibility by allowing runtime information to be taken into consideration when making planning and scheduling decision. Furthermore, through the criteria of achievability placed on deferred decision, a completable scheduling system is able to retain much of the goal-directedness and guarantees of achievement afforded by a priori planning. The completable scheduling approach is further enhanced by the use of contingent explanation-based learning, which enables a completable scheduling system to learn general completable plans from example and improve its performance through experience. Initial experimental results show that completable scheduling outperforms classical scheduling as well as pure reactive scheduling in a simple scheduling domain.
Precision Departure Release Capability (PDRC) Final Report
NASA Technical Reports Server (NTRS)
Engelland, Shawn A.; Capps, Richard; Day, Kevin Brian; Kistler, Matthew Stephen; Gaither, Frank; Juro, Greg
2013-01-01
After takeoff, aircraft must merge into en route (Center) airspace traffic flows that may be subject to constraints that create localized demand/capacity imbalances. When demand exceeds capacity, Traffic Management Coordinators (TMCs) and Frontline Managers (FLMs) often use tactical departure scheduling to manage the flow of departures into the constrained Center traffic flow. Tactical departure scheduling usually involves a Call for Release (CFR) procedure wherein the Tower must call the Center to coordinate a release time prior to allowing the flight to depart. In present-day operations release times are computed by the Center Traffic Management Advisor (TMA) decision support tool, based upon manual estimates of aircraft ready time verbally communicated from the Tower to the Center. The TMA-computed release time is verbally communicated from the Center back to the Tower where it is relayed to the Local controller as a release window that is typically three minutes wide. The Local controller will manage the departure to meet the coordinated release time window. Manual ready time prediction and verbal release time coordination are labor intensive and prone to inaccuracy. Also, use of release time windows adds uncertainty to the tactical departure process. Analysis of more than one million flights from January 2011 indicates that a significant number of tactically scheduled aircraft missed their en route slot due to ready time prediction uncertainty. Uncertainty in ready time estimates may result in missed opportunities to merge into constrained en route flows and lead to lost throughput. Next Generation Air Transportation System plans call for development of Tower automation systems capable of computing surface trajectory-based ready time estimates. NASA has developed the Precision Departure Release Capability (PDRC) concept that improves tactical departure scheduling by automatically communicating surface trajectory-based ready time predictions and departure runway assignments to the Center scheduling tool. The PDRC concept also incorporates earlier NASA and FAA research into automation-assisted CFR coordination. The PDRC concept reduces uncertainty by automatically communicating coordinated release times with seconds-level precision enabling TMCs and FLMs to work with target times rather than windows. NASA has developed a PDRC prototype system that integrates the Center's TMA system with a research prototype Tower decision support tool. A two-phase field evaluation was conducted at NASA's North Texas Research Station in Dallas/Fort Worth. The field evaluation validated the PDRC concept and demonstrated reduced release time uncertainty while being used for tactical departure scheduling of more than 230 operational flights over 29 weeks of operations. This paper presents research results from the PDRC research activity. Companion papers present the Concept of Operations and a Technology Description.
Precision Departure Release Capability (PDRC) Technology Description
NASA Technical Reports Server (NTRS)
Engelland, Shawn A.; Capps, Richard; Day, Kevin; Robinson, Corissia; Null, Jody R.
2013-01-01
After takeoff, aircraft must merge into en route (Center) airspace traffic flows which may be subject to constraints that create localized demand-capacity imbalances. When demand exceeds capacity, Traffic Management Coordinators (TMCs) often use tactical departure scheduling to manage the flow of departures into the constrained Center traffic flow. Tactical departure scheduling usually involves use of a Call for Release (CFR) procedure wherein the Tower must call the Center TMC to coordinate a release time prior to allowing the flight to depart. In present-day operations release times are computed by the Center Traffic Management Advisor (TMA) decision support tool based upon manual estimates of aircraft ready time verbally communicated from the Tower to the Center. The TMA-computed release is verbally communicated from the Center back to the Tower where it is relayed to the Local controller as a release window that is typically three minutes wide. The Local controller will manage the departure to meet the coordinated release time window. Manual ready time prediction and verbal release time coordination are labor intensive and prone to inaccuracy. Also, use of release time windows adds uncertainty to the tactical departure process. Analysis of more than one million flights from January 2011 indicates that a significant number of tactically scheduled aircraft missed their en route slot due to ready time prediction uncertainty. Uncertainty in ready time estimates may result in missed opportunities to merge into constrained en route flows and lead to lost throughput. Next Generation Air Transportation System (NextGen) plans call for development of Tower automation systems capable of computing surface trajectory-based ready time estimates. NASA has developed the Precision Departure Release Capability (PDRC) concept that uses this technology to improve tactical departure scheduling by automatically communicating surface trajectory-based ready time predictions to the Center scheduling tool. The PDRC concept also incorporates earlier NASA and FAA research into automation-assisted CFR coordination. The PDRC concept helps reduce uncertainty by automatically communicating coordinated release times with seconds-level precision enabling TMCs to work with target times rather than windows. NASA has developed a PDRC prototype system that integrates the Center's TMA system with a research prototype Tower decision support tool. A two-phase field evaluation was conducted at NASA's North Texas Research Station (NTX) in Dallas-Fort Worth. The field evaluation validated the PDRC concept and demonstrated reduced release time uncertainty while being used for tactical departure scheduling of more than 230 operational flights over 29 weeks of operations. This paper presents the Technology Description. Companion papers include the Final Report and a Concept of Operations.
Precision Departure Release Capability (PDRC): NASA to FAA Research Transition
NASA Technical Reports Server (NTRS)
Engelland, Shawn; Davis, Thomas J.
2013-01-01
After takeoff, aircraft must merge into en route (Center) airspace traffic flows which may be subject to constraints that create localized demand-capacity imbalances. When demand exceeds capacity, Traffic Management Coordinators (TMCs) and Frontline Managers (FLMs) often use tactical departure scheduling to manage the flow of departures into the constrained Center traffic flow. Tactical departure scheduling usually involves use of a Call for Release (CFR) procedure wherein the Tower must call the Center to coordinate a release time prior to allowing the flight to depart. In present-day operations release times are computed by the Center Traffic Management Advisor (TMA) decision support tool based upon manual estimates of aircraft ready time verbally communicated from the Tower to the Center. The TMA-computed release time is verbally communicated from the Center back to the Tower where it is relayed to the Local controller as a release window that is typically three minutes wide. The Local controller will manage the departure to meet the coordinated release time window. Manual ready time prediction and verbal release time coordination are labor intensive and prone to inaccuracy. Also, use of release time windows adds uncertainty to the tactical departure process. Analysis of more than one million flights from January 2011 indicates that a significant number of tactically scheduled aircraft missed their en route slot due to ready time prediction uncertainty. Uncertainty in ready time estimates may result in missed opportunities to merge into constrained en route flows and lead to lost throughput. Next Generation Air Transportation System plans call for development of Tower automation systems capable of computing surface trajectory-based ready time estimates. NASA has developed the Precision Departure Release Capability (PDRC) concept that improves tactical departure scheduling by automatically communicating surface trajectory-based ready time predictions and departure runway assignments to the Center scheduling tool. The PDRC concept also incorporates earlier NASA and FAA research into automation-assisted CFR coordination. The PDRC concept reduces uncertainty by automatically communicating coordinated release times with seconds-level precision enabling TMCs and FLMs to work with target times rather than windows. NASA has developed a PDRC prototype system that integrates the Center's TMA system with a research prototype Tower decision support tool. A two-phase field evaluation was conducted at NASA's North Texas Research Station in Dallas-Fort Worth. The field evaluation validated the PDRC concept and demonstrated reduced release time uncertainty while being used for tactical departure scheduling of more than 230 operational flights over 29 weeks of operations.
Precision Departure Release Capability (PDRC) Concept of Operations
NASA Technical Reports Server (NTRS)
Engelland, Shawn; Capps, Richard A.; Day, Kevin Brian
2013-01-01
After takeoff, aircraft must merge into en route (Center) airspace traffic flows which may be subject to constraints that create localized demandcapacity imbalances. When demand exceeds capacity Traffic Management Coordinators (TMCs) often use tactical departure scheduling to manage the flow of departures into the constrained Center traffic flow. Tactical departure scheduling usually involves use of a Call for Release (CFR) procedure wherein the Tower must call the Center TMC to coordinate a release time prior to allowing the flight to depart. In present-day operations release times are computed by the Center Traffic Management Advisor (TMA) decision support tool based upon manual estimates of aircraft ready time verbally communicated from the Tower to the Center. The TMA-computed release is verbally communicated from the Center back to the Tower where it is relayed to the Local controller as a release window that is typically three minutes wide. The Local controller will manage the departure to meet the coordinated release time window. Manual ready time prediction and verbal release time coordination are labor intensive and prone to inaccuracy. Also, use of release time windows adds uncertainty to the tactical departure process. Analysis of more than one million flights from January 2011 indicates that a significant number of tactically scheduled aircraft missed their en route slot due to ready time prediction uncertainty. Uncertainty in ready time estimates may result in missed opportunities to merge into constrained en route flows and lead to lost throughput. Next Generation Air Transportation System (NextGen) plans call for development of Tower automation systems capable of computing surface trajectory-based ready time estimates. NASA has developed the Precision Departure Release Capability (PDRC) concept that uses this technology to improve tactical departure scheduling by automatically communicating surface trajectory-based ready time predictions to the Center scheduling tool. The PDRC concept also incorporates earlier NASA and FAA research into automation-assisted CFR coordination. The PDRC concept helps reduce uncertainty by automatically communicating coordinated release times with seconds-level precision enabling TMCs to work with target times rather than windows. NASA has developed a PDRC prototype system that integrates the Center's TMA system with a research prototype Tower decision support tool. A two-phase field evaluation was conducted at NASA's North Texas Research Station (NTX) in DallasFort Worth. The field evaluation validated the PDRC concept and demonstrated reduced release time uncertainty while being used for tactical departure scheduling of more than 230 operational flights over 29 weeks of operations. This paper presents the Concept of Operations. Companion papers include the Final Report and a Technology Description. ? SUBJECT:
2012-05-25
station design . These issues include: poor ergonomics ; varying data input methods; multiple inputs required to implement a single command; lack of...facing the UAS/RPA discipline. Major discussion topics included: UAS operator selection, training, control station design , manpower and scheduling...Break 1400 – 1430: Naval UAS Training LCDR Brent Olde 1430 – 1500: Control Station Design Issues Melissa Walwanis 1500 – 1600: Tour of NAMRU-D
Cost efficient command management
NASA Technical Reports Server (NTRS)
Brandt, Theresa; Murphy, C. W.; Kuntz, Jon; Barlett, Tom
1996-01-01
The design and implementation of a command management system (CMS) for a NASA control center, is described. The technology innovations implemented in the CMS provide the infrastructure required for operations cost reduction and future development cost reduction through increased operational efficiency and reuse in future missions. The command management design facilitates error-free operations which enables the automation of the routine control center functions and allows for the distribution of scheduling responsibility to the instrument teams. The reusable system was developed using object oriented methodologies.
29 CFR 1952.351 - Developmental schedule.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... the plan: (a) Development of a complete management information and control system by July 1, 1976. (b... State Health Department and the Arizona Corporation Commission by March 1, 1975. (c) Promulgation of...
75 FR 14188 - Importer of Controlled Substances; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-24
... this Section to a bulk manufacturer of a controlled substance in schedule I or II, and prior to issuing... Manufacturing LLC., 3500 Dekalb Street, St. Louis, Missouri 63118, made application by renewal to the Drug... listed in schedules I and II: Drug Schedule Cathinone (1235) I Methcathinone (1237) I Aminorex (1585) I...
DOT National Transportation Integrated Search
1995-12-01
A 10-hour, 4-day rotating shift schedule worked by some Air Traffic Control Specialists (ATCSs) was compared to the more traditional 8-hour, 2-2-1 rapidly rotating schedule. Measures of performance and alertness were obtained from a group of 52 ATCSs...
Pellon, R; Blackman, D E
1991-02-01
Food pellets were programmed to be delivered to rats every 60 sec (Fixed Time 60-sec schedule), and the development of schedule-induced drinking was measured in terms of the amount of water consumed and the number of licks per inter-pellet interval. For some rats (masters) 10-sec delays in food delivery were dependent on licks. Yoked-control rats received food at the same time as their masters and independently of their own behaviour. In Experiment 1, in which the delays were signalled by a blackout, the master rats began to drink, but this schedule-induced behaviour then decreased to levels lower than those shown by the yoked controls. When the signalled delays were discontinued, the drinking of the master rats recovered. In Experiment 2, in which the delays were not signalled, the master rats did not develop as much schedule-induced drinking as the yoked controls, and discontinuing the delays led to only small increases in drinking. These results support the view that schedule-induced drinking is subject to control by its consequences.
Flores, P; Pellón, R
1998-03-01
Food deprived Wistar rats were exposed to a fixed time 60 s food schedule until they developed schedule-induced polydipsia. Rats were matched in pairs according to their licking rate, being designated experimental or yoked control at random. Every fifth lick by experimental rats was then followed by an electric shock (0.05, 0.1, or 0.2 mA) while the food schedule continued in operation. Yoked-control rats received the same shocks as experimental rats, but independently of their own licking. Drugs were then tested on the suppressed rates of licking. Diazepam (0.5-2.0 mg/kg) increased punished schedule-induced polydipsia, a result not observed in yoked controls. No increases in the licks per minute of experimental or control animals were found after d-amphetamine (0.25-4.0 mg/kg) or buspirone (0.5-8.0 mg/kg). In comparison with previous results it is concluded that the antipunishment effects of drugs on schedule-induced behaviour depend on the type of punishment contingency.
SLS-PLAN-IT: A knowledge-based blackboard scheduling system for Spacelab life sciences missions
NASA Technical Reports Server (NTRS)
Kao, Cheng-Yan; Lee, Seok-Hua
1992-01-01
The primary scheduling tool in use during the Spacelab Life Science (SLS-1) planning phase was the operations research (OR) based, tabular form Experiment Scheduling System (ESS) developed by NASA Marshall. PLAN-IT is an artificial intelligence based interactive graphic timeline editor for ESS developed by JPL. The PLAN-IT software was enhanced for use in the scheduling of Spacelab experiments to support the SLS missions. The enhanced software SLS-PLAN-IT System was used to support the real-time reactive scheduling task during the SLS-1 mission. SLS-PLAN-IT is a frame-based blackboard scheduling shell which, from scheduling input, creates resource-requiring event duration objects and resource-usage duration objects. The blackboard structure is to keep track of the effects of event duration objects on the resource usage objects. Various scheduling heuristics are coded in procedural form and can be invoked any time at the user's request. The system architecture is described along with what has been learned with the SLS-PLAN-IT project.
Maximally Expressive Modeling of Operations Tasks
NASA Technical Reports Server (NTRS)
Jaap, John; Richardson, Lea; Davis, Elizabeth
2002-01-01
Planning and scheduling systems organize "tasks" into a timeline or schedule. The tasks are defined within the scheduling system in logical containers called models. The dictionary might define a model of this type as "a system of things and relations satisfying a set of rules that, when applied to the things and relations, produce certainty about the tasks that are being modeled." One challenging domain for a planning and scheduling system is the operation of on-board experiments for the International Space Station. In these experiments, the equipment used is among the most complex hardware ever developed, the information sought is at the cutting edge of scientific endeavor, and the procedures are intricate and exacting. Scheduling is made more difficult by a scarcity of station resources. The models to be fed into the scheduler must describe both the complexity of the experiments and procedures (to ensure a valid schedule) and the flexibilities of the procedures and the equipment (to effectively utilize available resources). Clearly, scheduling International Space Station experiment operations calls for a "maximally expressive" modeling schema.
Space station payload operations scheduling with ESP2
NASA Technical Reports Server (NTRS)
Stacy, Kenneth L.; Jaap, John P.
1988-01-01
The Mission Analysis Division of the Systems Analysis and Integration Laboratory at the Marshall Space Flight Center is developing a system of programs to handle all aspects of scheduling payload operations for Space Station. The Expert Scheduling Program (ESP2) is the heart of this system. The task of payload operations scheduling can be simply stated as positioning the payload activities in a mission so that they collect their desired data without interfering with other activities or violating mission constraints. ESP2 is an advanced version of the Experiment Scheduling Program (ESP) which was developed by the Mission Integration Branch beginning in 1979 to schedule Spacelab payload activities. The automatic scheduler in ESP2 is an expert system that embodies the rules that expert planners would use to schedule payload operations by hand. This scheduler uses depth-first searching, backtracking, and forward chaining techniques to place an activity so that constraints (such as crew, resources, and orbit opportunities) are not violated. It has an explanation facility to show why an activity was or was not scheduled at a certain time. The ESP2 user can also place the activities in the schedule manually. The program offers graphical assistance to the user and will advise when constraints are being violated. ESP2 also has an option to identify conflict introduced into an existing schedule by changes to payload requirements, mission constraints, and orbit opportunities.
Liang, Geng
2015-01-01
In this paper, improving control performance of a networked control system by reducing DTD in a different perspective was investigated. Two different network architectures for system implementation were presented. Analysis and improvement dealing with DTD for the experimental control system were expounded. Effects of control scheme configuration on DTD in the form of FB were investigated and corresponding improvements by reallocation of FB and re-arrangement of schedule table are proposed. Issues of DTD in hybrid network were investigated and corresponding approaches to improve performance including (1) reducing DTD in PLC or PAC by way of IEC61499 and (2) cascade Smith predictive control with BPNN-based identification were proposed and investigated. Control effects under the proposed methodologies were also given. Experimental and field practices validated these methodologies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Controls, health assessment, and conditional monitoring for large, reusable, liquid rocket engines
NASA Technical Reports Server (NTRS)
Cikanek, H. A., III
1986-01-01
Past and future progress in the performance of control systems for large, liquid rocket engines typified such as current state-of-the-art, the Shuttle Main Engine (SSME), is discussed. Details of the first decade of efforts, which culminates in the F-1 and J-2 Saturn engines control systems, are traced, noting problem modes and improvements which were implemented to realize the SSME. Future control system designs, to accommodate the requirements of operation of engines for a heavy lift launch vehicle, an orbital transfer vehicle and the aerospace plane, are summarized. Generic design upgrades needed include an expanded range of fault detection, maintenance as-needed instead of as-scheduled, reduced human involvement in engine operations, and increased control of internal engine states. Current NASA technology development programs aimed at meeting the future control system requirements are described.
An adaptive load-following control system for a space nuclear power system
NASA Astrophysics Data System (ADS)
Metzger, John D.; El-Genk, Mohamed S.
An adaptive load-following control system is proposed for a space nuclear power system. The conceptual design of the SP-100 space nuclear power system proposes operating the nuclear reactor at a base thermal power and accommodating changes in the electrical power demand with a shunt regulator. It is necessary to increase the reactor thermal power if the payload electrical demand exceeds the peak system electrical output for the associated reactor power. When it is necessary to change the nuclear reactor power to meet a change in the power demand, the power ascension or descension must be accomplished in a predetermined manner to avoid thermal stresses in the system and to achieve the desired reactor period. The load-following control system described has the ability to adapt to changes in the system and to changes in the satellite environment. The application is proposed of the model reference adaptive control (MRAC). The adaptive control system has the ability to control the dynamic response of nonlinear systems. Three basic subsets of adaptive control are: (1) gain scheduling, (2) self-tuning regulators, and (3) model reference adaptive control.
Priority scheme planning for the robust SSM/PMAD testbed
NASA Technical Reports Server (NTRS)
Elges, Michael R.; Ashworth, Barry R.
1991-01-01
Whenever mixing priorities of manually controlled resources with those of autonomously controlled resources, the space station module power management and distribution (SSM/PMAD) environment requires cooperating expert system interaction between the planning function and the priority manager. The elements and interactions of the SSM/PMAD planning and priority management functions are presented. Their adherence to cooperating for common achievement are described. In the SSM/PMAD testbed these actions are guided by having a system planning function, KANT, which has insight to the executing system and its automated database. First, the user must be given access to all information which may have an effect on the desired outcome. Second, the fault manager element, FRAMES, must be informed as to the change so that correct diagnoses and operations take place if and when faults occur. Third, some element must engage as mediator for selection of resources and actions to be added or removed at the user's request. This is performed by the priority manager, LPLMS. Lastly, the scheduling mechanism, MAESTRO, must provide future schedules adhering to the user modified resource base.
NASA Astrophysics Data System (ADS)
Chen, Jung-Chieh
This paper presents a low complexity algorithmic framework for finding a broadcasting schedule in a low-altitude satellite system, i. e., the satellite broadcast scheduling (SBS) problem, based on the recent modeling and computational methodology of factor graphs. Inspired by the huge success of the low density parity check (LDPC) codes in the field of error control coding, in this paper, we transform the SBS problem into an LDPC-like problem through a factor graph instead of using the conventional neural network approaches to solve the SBS problem. Based on a factor graph framework, the soft-information, describing the probability that each satellite will broadcast information to a terminal at a specific time slot, is exchanged among the local processing in the proposed framework via the sum-product algorithm to iteratively optimize the satellite broadcasting schedule. Numerical results show that the proposed approach not only can obtain optimal solution but also enjoys the low complexity suitable for integral-circuit implementation.
Users manual for flight control design programs
NASA Technical Reports Server (NTRS)
Nalbandian, J. Y.
1975-01-01
Computer programs for the design of analog and digital flight control systems are documented. The program DIGADAPT uses linear-quadratic-gaussian synthesis algorithms in the design of command response controllers and state estimators, and it applies covariance propagation analysis to the selection of sampling intervals for digital systems. Program SCHED executes correlation and regression analyses for the development of gain and trim schedules to be used in open-loop explicit-adaptive control laws. A linear-time-varying simulation of aircraft motions is provided by the program TVHIS, which includes guidance and control logic, as well as models for control actuator dynamics. The programs are coded in FORTRAN and are compiled and executed on both IBM and CDC computers.
Discrimination of Variable Schedules Is Controlled by Interresponse Times Proximal to Reinforcement
ERIC Educational Resources Information Center
Tanno, Takayuki; Silberberg, Alan; Sakagami, Takayuki
2012-01-01
In Experiment 1, food-deprived rats responded to one of two schedules that were, with equal probability, associated with a sample lever. One schedule was always variable ratio, while the other schedule, depending on the trial within a session, was: (a) a variable-interval schedule; (b) a tandem variable-interval,…
12 CFR 229.12 - Availability schedule.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Availability schedule. 229.12 Section 229.12 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM... Availability Policies § 229.12 Availability schedule. (a) Effective date. The availability schedule contained...
5 CFR 532.513 - Flexible and compressed work schedules.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Flexible and compressed work schedules... REGULATIONS PREVAILING RATE SYSTEMS Premium Pay and Differentials § 532.513 Flexible and compressed work schedules. Federal Wage System employees who are authorized to work flexible and compressed work schedules...
On-the-fly scheduling as a manifestation of partial-order planning and dynamic task values.
Hannah, Samuel D; Neal, Andrew
2014-09-01
The aim of this study was to develop a computational account of the spontaneous task ordering that occurs within jobs as work unfolds ("on-the-fly task scheduling"). Air traffic control is an example of work in which operators have to schedule their tasks as a partially predictable work flow emerges. To date, little attention has been paid to such on-the-fly scheduling situations. We present a series of discrete-event models fit to conflict resolution decision data collected from experienced controllers operating in a high-fidelity simulation. Our simulations reveal air traffic controllers' scheduling decisions as examples of the partial-order planning approach of Hayes-Roth and Hayes-Roth. The most successful model uses opportunistic first-come-first-served scheduling to select tasks from a queue. Tasks with short deadlines are executed immediately. Tasks with long deadlines are evaluated to assess whether they need to be executed immediately or deferred. On-the-fly task scheduling is computationally tractable despite its surface complexity and understandable as an example of both the partial-order planning strategy and the dynamic-value approach to prioritization.