The serial message-passing schedule for LDPC decoding algorithms
NASA Astrophysics Data System (ADS)
Liu, Mingshan; Liu, Shanshan; Zhou, Yuan; Jiang, Xue
2015-12-01
The conventional message-passing schedule for LDPC decoding algorithms is the so-called flooding schedule. It has the disadvantage that the updated messages cannot be used until next iteration, thus reducing the convergence speed . In this case, the Layered Decoding algorithm (LBP) based on serial message-passing schedule is proposed. In this paper the decoding principle of LBP algorithm is briefly introduced, and then proposed its two improved algorithms, the grouped serial decoding algorithm (Grouped LBP) and the semi-serial decoding algorithm .They can improve LBP algorithm's decoding speed while maintaining a good decoding performance.
Enhanced round robin CPU scheduling with burst time based time quantum
NASA Astrophysics Data System (ADS)
Indusree, J. R.; Prabadevi, B.
2017-11-01
Process scheduling is a very important functionality of Operating system. The main-known process-scheduling algorithms are First Come First Serve (FCFS) algorithm, Round Robin (RR) algorithm, Priority scheduling algorithm and Shortest Job First (SJF) algorithm. Compared to its peers, Round Robin (RR) algorithm has the advantage that it gives fair share of CPU to the processes which are already in the ready-queue. The effectiveness of the RR algorithm greatly depends on chosen time quantum value. Through this research paper, we are proposing an enhanced algorithm called Enhanced Round Robin with Burst-time based Time Quantum (ERRBTQ) process scheduling algorithm which calculates time quantum as per the burst-time of processes already in ready queue. The experimental results and analysis of ERRBTQ algorithm clearly indicates the improved performance when compared with conventional RR and its variants.
A Note on Improving Process Efficiency in Panel Surveys with Paradata
ERIC Educational Resources Information Center
Kreuter, Frauke; Müller, Gerrit
2015-01-01
Call scheduling is a challenge for surveys around the world. Unlike cross-sectional surveys, panel surveys can use information from prior waves to enhance call-scheduling algorithms. Past observational studies showed the benefit of calling panel cases at times that had been successful in the past. This article is the first to experimentally assign…
OGUPSA sensor scheduling architecture and algorithm
NASA Astrophysics Data System (ADS)
Zhang, Zhixiong; Hintz, Kenneth J.
1996-06-01
This paper introduces a new architecture for a sensor measurement scheduler as well as a dynamic sensor scheduling algorithm called the on-line, greedy, urgency-driven, preemptive scheduling algorithm (OGUPSA). OGUPSA incorporates a preemptive mechanism which uses three policies, (1) most-urgent-first (MUF), (2) earliest- completed-first (ECF), and (3) least-versatile-first (LVF). The three policies are used successively to dynamically allocate and schedule and distribute a set of arriving tasks among a set of sensors. OGUPSA also can detect the failure of a task to meet a deadline as well as generate an optimal schedule in the sense of minimum makespan for a group of tasks with the same priorities. A side benefit is OGUPSA's ability to improve dynamic load balance among all sensors while being a polynomial time algorithm. Results of a simulation are presented for a simple sensor system.
NASA Astrophysics Data System (ADS)
Hanada, Masaki; Nakazato, Hidenori; Watanabe, Hitoshi
Multimedia applications such as music or video streaming, video teleconferencing and IP telephony are flourishing in packet-switched networks. Applications that generate such real-time data can have very diverse quality-of-service (QoS) requirements. In order to guarantee diverse QoS requirements, the combined use of a packet scheduling algorithm based on Generalized Processor Sharing (GPS) and leaky bucket traffic regulator is the most successful QoS mechanism. GPS can provide a minimum guaranteed service rate for each session and tight delay bounds for leaky bucket constrained sessions. However, the delay bounds for leaky bucket constrained sessions under GPS are unnecessarily large because each session is served according to its associated constant weight until the session buffer is empty. In order to solve this problem, a scheduling policy called Output Rate-Controlled Generalized Processor Sharing (ORC-GPS) was proposed in [17]. ORC-GPS is a rate-based scheduling like GPS, and controls the service rate in order to lower the delay bounds for leaky bucket constrained sessions. In this paper, we propose a call admission control (CAC) algorithm for ORC-GPS, for leaky-bucket constrained sessions with deterministic delay requirements. This CAC algorithm for ORC-GPS determines the optimal values of parameters of ORC-GPS from the deterministic delay requirements of the sessions. In numerical experiments, we compare the CAC algorithm for ORC-GPS with one for GPS in terms of schedulable region and computational complexity.
A meta-heuristic method for solving scheduling problem: crow search algorithm
NASA Astrophysics Data System (ADS)
Adhi, Antono; Santosa, Budi; Siswanto, Nurhadi
2018-04-01
Scheduling is one of the most important processes in an industry both in manufacturingand services. The scheduling process is the process of selecting resources to perform an operation on tasks. Resources can be machines, peoples, tasks, jobs or operations.. The selection of optimum sequence of jobs from a permutation is an essential issue in every research in scheduling problem. Optimum sequence becomes optimum solution to resolve scheduling problem. Scheduling problem becomes NP-hard problem since the number of job in the sequence is more than normal number can be processed by exact algorithm. In order to obtain optimum results, it needs a method with capability to solve complex scheduling problems in an acceptable time. Meta-heuristic is a method usually used to solve scheduling problem. The recently published method called Crow Search Algorithm (CSA) is adopted in this research to solve scheduling problem. CSA is an evolutionary meta-heuristic method which is based on the behavior in flocks of crow. The calculation result of CSA for solving scheduling problem is compared with other algorithms. From the comparison, it is found that CSA has better performance in term of optimum solution and time calculation than other algorithms.
A high performance load balance strategy for real-time multicore systems.
Cho, Keng-Mao; Tsai, Chun-Wei; Chiu, Yi-Shiuan; Yang, Chu-Sing
2014-01-01
Finding ways to distribute workloads to each processor core and efficiently reduce power consumption is of vital importance, especially for real-time systems. In this paper, a novel scheduling algorithm is proposed for real-time multicore systems to balance the computation loads and save power. The developed algorithm simultaneously considers multiple criteria, a novel factor, and task deadline, and is called power and deadline-aware multicore scheduling (PDAMS). Experiment results show that the proposed algorithm can greatly reduce energy consumption by up to 54.2% and the deadline times missed, as compared to the other scheduling algorithms outlined in this paper.
A High Performance Load Balance Strategy for Real-Time Multicore Systems
Cho, Keng-Mao; Tsai, Chun-Wei; Chiu, Yi-Shiuan; Yang, Chu-Sing
2014-01-01
Finding ways to distribute workloads to each processor core and efficiently reduce power consumption is of vital importance, especially for real-time systems. In this paper, a novel scheduling algorithm is proposed for real-time multicore systems to balance the computation loads and save power. The developed algorithm simultaneously considers multiple criteria, a novel factor, and task deadline, and is called power and deadline-aware multicore scheduling (PDAMS). Experiment results show that the proposed algorithm can greatly reduce energy consumption by up to 54.2% and the deadline times missed, as compared to the other scheduling algorithms outlined in this paper. PMID:24955382
Scheduling Dependent Real-Time Activities
1990-08-01
dependency relationships in a way that is suitable for all real - time systems . This thesis provides an algorithm, called DASA, that is effective for...scheduling the class of real - time systems known as supervisory control systems. Simulation experiments that account for the time required to make scheduling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Faming; Cheng, Yichen; Lin, Guang
2014-06-13
Simulated annealing has been widely used in the solution of optimization problems. As known by many researchers, the global optima cannot be guaranteed to be located by simulated annealing unless a logarithmic cooling schedule is used. However, the logarithmic cooling schedule is so slow that no one can afford to have such a long CPU time. This paper proposes a new stochastic optimization algorithm, the so-called simulated stochastic approximation annealing algorithm, which is a combination of simulated annealing and the stochastic approximation Monte Carlo algorithm. Under the framework of stochastic approximation Markov chain Monte Carlo, it is shown that themore » new algorithm can work with a cooling schedule in which the temperature can decrease much faster than in the logarithmic cooling schedule, e.g., a square-root cooling schedule, while guaranteeing the global optima to be reached when the temperature tends to zero. The new algorithm has been tested on a few benchmark optimization problems, including feed-forward neural network training and protein-folding. The numerical results indicate that the new algorithm can significantly outperform simulated annealing and other competitors.« less
Real-time scheduling using minimum search
NASA Technical Reports Server (NTRS)
Tadepalli, Prasad; Joshi, Varad
1992-01-01
In this paper we consider a simple model of real-time scheduling. We present a real-time scheduling system called RTS which is based on Korf's Minimin algorithm. Experimental results show that the schedule quality initially improves with the amount of look-ahead search and tapers off quickly. So it sppears that reasonably good schedules can be produced with a relatively shallow search.
A sustainable genetic algorithm for satellite resource allocation
NASA Technical Reports Server (NTRS)
Abbott, R. J.; Campbell, M. L.; Krenz, W. C.
1995-01-01
A hybrid genetic algorithm is used to schedule tasks for 8 satellites, which can be modelled as a robot whose task is to retrieve objects from a two dimensional field. The objective is to find a schedule that maximizes the value of objects retrieved. Typical of the real-world tasks to which this corresponds is the scheduling of ground contacts for a communications satellite. An important feature of our application is that the amount of time available for running the scheduler is not necessarily known in advance. This requires that the scheduler produce reasonably good results after a short period but that it also continue to improve its results if allowed to run for a longer period. We satisfy this requirement by developing what we call a sustainable genetic algorithm.
Sort-Mid tasks scheduling algorithm in grid computing.
Reda, Naglaa M; Tawfik, A; Marzok, Mohamed A; Khamis, Soheir M
2015-11-01
Scheduling tasks on heterogeneous resources distributed over a grid computing system is an NP-complete problem. The main aim for several researchers is to develop variant scheduling algorithms for achieving optimality, and they have shown a good performance for tasks scheduling regarding resources selection. However, using of the full power of resources is still a challenge. In this paper, a new heuristic algorithm called Sort-Mid is proposed. It aims to maximizing the utilization and minimizing the makespan. The new strategy of Sort-Mid algorithm is to find appropriate resources. The base step is to get the average value via sorting list of completion time of each task. Then, the maximum average is obtained. Finally, the task has the maximum average is allocated to the machine that has the minimum completion time. The allocated task is deleted and then, these steps are repeated until all tasks are allocated. Experimental tests show that the proposed algorithm outperforms almost other algorithms in terms of resources utilization and makespan.
Sort-Mid tasks scheduling algorithm in grid computing
Reda, Naglaa M.; Tawfik, A.; Marzok, Mohamed A.; Khamis, Soheir M.
2014-01-01
Scheduling tasks on heterogeneous resources distributed over a grid computing system is an NP-complete problem. The main aim for several researchers is to develop variant scheduling algorithms for achieving optimality, and they have shown a good performance for tasks scheduling regarding resources selection. However, using of the full power of resources is still a challenge. In this paper, a new heuristic algorithm called Sort-Mid is proposed. It aims to maximizing the utilization and minimizing the makespan. The new strategy of Sort-Mid algorithm is to find appropriate resources. The base step is to get the average value via sorting list of completion time of each task. Then, the maximum average is obtained. Finally, the task has the maximum average is allocated to the machine that has the minimum completion time. The allocated task is deleted and then, these steps are repeated until all tasks are allocated. Experimental tests show that the proposed algorithm outperforms almost other algorithms in terms of resources utilization and makespan. PMID:26644937
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vydyanathan, Naga; Krishnamoorthy, Sriram; Sabin, Gerald M.
2009-08-01
Complex parallel applications can often be modeled as directed acyclic graphs of coarse-grained application-tasks with dependences. These applications exhibit both task- and data-parallelism, and combining these two (also called mixedparallelism), has been shown to be an effective model for their execution. In this paper, we present an algorithm to compute the appropriate mix of task- and data-parallelism required to minimize the parallel completion time (makespan) of these applications. In other words, our algorithm determines the set of tasks that should be run concurrently and the number of processors to be allocated to each task. The processor allocation and scheduling decisionsmore » are made in an integrated manner and are based on several factors such as the structure of the taskgraph, the runtime estimates and scalability characteristics of the tasks and the inter-task data communication volumes. A locality conscious scheduling strategy is used to improve inter-task data reuse. Evaluation through simulations and actual executions of task graphs derived from real applications as well as synthetic graphs shows that our algorithm consistently generates schedules with lower makespan as compared to CPR and CPA, two previously proposed scheduling algorithms. Our algorithm also produces schedules that have lower makespan than pure taskand data-parallel schedules. For task graphs with known optimal schedules or lower bounds on the makespan, our algorithm generates schedules that are closer to the optima than other scheduling approaches.« less
Modeling heterogeneous processor scheduling for real time systems
NASA Technical Reports Server (NTRS)
Leathrum, J. F.; Mielke, R. R.; Stoughton, J. W.
1994-01-01
A new model is presented to describe dataflow algorithms implemented in a multiprocessing system. Called the resource/data flow graph (RDFG), the model explicitly represents cyclo-static processor schedules as circuits of processor arcs which reflect the order that processors execute graph nodes. The model also allows the guarantee of meeting hard real-time deadlines. When unfolded, the model identifies statically the processor schedule. The model therefore is useful for determining the throughput and latency of systems with heterogeneous processors. The applicability of the model is demonstrated using a space surveillance algorithm.
New Scheduling Algorithms for Agile All-Photonic Networks
NASA Astrophysics Data System (ADS)
Mehri, Mohammad Saleh; Ghaffarpour Rahbar, Akbar
2017-12-01
An optical overlaid star network is a class of agile all-photonic networks that consists of one or more core node(s) at the center of the star network and a number of edge nodes around the core node. In this architecture, a core node may use a scheduling algorithm for transmission of traffic through the network. A core node is responsible for scheduling optical packets that arrive from edge nodes and switching them toward their destinations. Nowadays, most edge nodes use virtual output queue (VOQ) architecture for buffering client packets to achieve high throughput. This paper presents two efficient scheduling algorithms called discretionary iterative matching (DIM) and adaptive DIM. These schedulers find maximum matching in a small number of iterations and provide high throughput and incur low delay. The number of arbiters in these schedulers and the number of messages exchanged between inputs and outputs of a core node are reduced. We show that DIM and adaptive DIM can provide better performance in comparison with iterative round-robin matching with SLIP (iSLIP). SLIP means the act of sliding for a short distance to select one of the requested connections based on the scheduling algorithm.
A Comparison of Techniques for Scheduling Earth-Observing Satellites
NASA Technical Reports Server (NTRS)
Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna
2004-01-01
Scheduling observations by coordinated fleets of Earth Observing Satellites (EOS) involves large search spaces, complex constraints and poorly understood bottlenecks, conditions where evolutionary and related algorithms are often effective. However, there are many such algorithms and the best one to use is not clear. Here we compare multiple variants of the genetic algorithm: stochastic hill climbing, simulated annealing, squeaky wheel optimization and iterated sampling on ten realistically-sized EOS scheduling problems. Schedules are represented by a permutation (non-temperal ordering) of the observation requests. A simple deterministic scheduler assigns times and resources to each observation request in the order indicated by the permutation, discarding those that violate the constraints created by previously scheduled observations. Simulated annealing performs best. Random mutation outperform a more 'intelligent' mutator. Furthermore, the best mutator, by a small margin, was a novel approach we call temperature dependent random sampling that makes large changes in the early stages of evolution and smaller changes towards the end of search.
PWFQ: a priority-based weighted fair queueing algorithm for the downstream transmission of EPON
NASA Astrophysics Data System (ADS)
Xu, Sunjuan; Ye, Jiajun; Zou, Junni
2005-11-01
In the downstream direction of EPON, all ethernet frames share one downlink channel from the OLT to destination ONUs. To guarantee differentiated services, a scheduling algorithm is needed to solve the link-sharing issue. In this paper, we first review the classical WFQ algorithm and point out the shortcomings existing in the fair queueing principle of WFQ algorithm for EPON. Then we propose a novel scheduling algorithm called Priority-based WFQ (PWFQ) algorithm which distributes bandwidth based on priority. PWFQ algorithm can guarantee the quality of real-time services whether under light load or under heavy load. Simulation results also show that PWFQ algorithm not only can improve delay performance of real-time services, but can also meet the worst-case delay bound requirements.
Active Solution Space and Search on Job-shop Scheduling Problem
NASA Astrophysics Data System (ADS)
Watanabe, Masato; Ida, Kenichi; Gen, Mitsuo
In this paper we propose a new searching method of Genetic Algorithm for Job-shop scheduling problem (JSP). The coding method that represent job number in order to decide a priority to arrange a job to Gannt Chart (called the ordinal representation with a priority) in JSP, an active schedule is created by using left shift. We define an active solution at first. It is solution which can create an active schedule without using left shift, and set of its defined an active solution space. Next, we propose an algorithm named Genetic Algorithm with active solution space search (GA-asol) which can create an active solution while solution is evaluated, in order to search the active solution space effectively. We applied it for some benchmark problems to compare with other method. The experimental results show good performance.
NASA Astrophysics Data System (ADS)
Wang, Liping; Ji, Yusheng; Liu, Fuqiang
The integration of multihop relays with orthogonal frequency-division multiple access (OFDMA) cellular infrastructures can meet the growing demands for better coverage and higher throughput. Resource allocation in the OFDMA two-hop relay system is more complex than that in the conventional single-hop OFDMA system. With time division between transmissions from the base station (BS) and those from relay stations (RSs), fixed partitioning of the BS subframe and RS subframes can not adapt to various traffic demands. Moreover, single-hop scheduling algorithms can not be used directly in the two-hop system. Therefore, we propose a semi-distributed algorithm called ASP to adjust the length of every subframe adaptively, and suggest two ways to extend single-hop scheduling algorithms into multihop scenarios: link-based and end-to-end approaches. Simulation results indicate that the ASP algorithm increases system utilization and fairness. The max carrier-to-interference ratio (Max C/I) and proportional fairness (PF) scheduling algorithms extended using the end-to-end approach obtain higher throughput than those using the link-based approach, but at the expense of more overhead for information exchange between the BS and RSs. The resource allocation scheme using ASP and end-to-end PF scheduling achieves a tradeoff between system throughput maximization and fairness.
Dynamic I/O Power Management for Hard Real-Time Systems
2005-01-01
recently emerged as an attractive alternative to inflexible hardware solutions. DPM for hard real - time systems has received relatively little attention...In particular, energy-driven I/O device scheduling for real - time systems has not been considered before. We present the first online DPM algorithm...which we call Low Energy Device Scheduler (LEDES), for hard real - time systems . LEDES takes as inputs a predetermined task schedule and a device-usage
A Hybrid Cellular Genetic Algorithm for Multi-objective Crew Scheduling Problem
NASA Astrophysics Data System (ADS)
Jolai, Fariborz; Assadipour, Ghazal
Crew scheduling is one of the important problems of the airline industry. This problem aims to cover a number of flights by crew members, such that all the flights are covered. In a robust scheduling the assignment should be so that the total cost, delays, and unbalanced utilization are minimized. As the problem is NP-hard and the objectives are in conflict with each other, a multi-objective meta-heuristic called CellDE, which is a hybrid cellular genetic algorithm, is implemented as the optimization method. The proposed algorithm provides the decision maker with a set of non-dominated or Pareto-optimal solutions, and enables them to choose the best one according to their preferences. A set of problems of different sizes is generated and solved using the proposed algorithm. Evaluating the performance of the proposed algorithm, three metrics are suggested, and the diversity and the convergence of the achieved Pareto front are appraised. Finally a comparison is made between CellDE and PAES, another meta-heuristic algorithm. The results show the superiority of CellDE.
NASA Technical Reports Server (NTRS)
Sadovsky, Alexander V.; Davis, Damek; Isaacson, Douglas R.
2012-01-01
A class of problems in air traffic management asks for a scheduling algorithm that supplies the air traffic services authority not only with a schedule of arrivals and departures, but also with speed advisories. Since advisories must be finite, a scheduling algorithm must ultimately produce a finite data set, hence must either start with a purely discrete model or involve a discretization of a continuous one. The former choice, often preferred for intuitive clarity, naturally leads to mixed-integer programs, hindering proofs of correctness and computational cost bounds (crucial for real-time operations). In this paper, a hybrid control system is used to model air traffic scheduling, capturing both the discrete and continuous aspects. This framework is applied to a class of problems, called the Fully Routed Nominal Problem. We prove a number of geometric results on feasible schedules and use these results to formulate an algorithm that attempts to compute a collective speed advisory, effectively finite, and has computational cost polynomial in the number of aircraft. This work is a first step toward optimization and models refined with more realistic detail.
NASA Astrophysics Data System (ADS)
Mirabi, Mohammad; Fatemi Ghomi, S. M. T.; Jolai, F.
2014-04-01
Flow-shop scheduling problem (FSP) deals with the scheduling of a set of n jobs that visit a set of m machines in the same order. As the FSP is NP-hard, there is no efficient algorithm to reach the optimal solution of the problem. To minimize the holding, delay and setup costs of large permutation flow-shop scheduling problems with sequence-dependent setup times on each machine, this paper develops a novel hybrid genetic algorithm (HGA) with three genetic operators. Proposed HGA applies a modified approach to generate a pool of initial solutions, and also uses an improved heuristic called the iterated swap procedure to improve the initial solutions. We consider the make-to-order production approach that some sequences between jobs are assumed as tabu based on maximum allowable setup cost. In addition, the results are compared to some recently developed heuristics and computational experimental results show that the proposed HGA performs very competitively with respect to accuracy and efficiency of solution.
Missed deadline notification in best-effort schedulers
NASA Astrophysics Data System (ADS)
Banachowski, Scott A.; Wu, Joel; Brandt, Scott A.
2003-12-01
It is common to run multimedia and other periodic, soft real-time applications on general-purpose computer systems. These systems use best-effort scheduling algorithms that cannot guarantee applications will receive responsive scheduling to meet deadline or timing requirements. We present a simple mechanism called Missed Deadline Notification (MDN) that allows applications to notify the system when they do not receive their desired level of responsiveness. Consisting of a single system call with no arguments, this simple interface allows the operating system to provide better support for soft real-time applications without any a priori information about their timing or resource needs. We implemented MDN in three different schedulers: Linux, BEST, and BeRate. We describe these implementations and their performance when running real-time applications and discuss policies to prevent applications from abusing MDN to gain extra resources.
A System for Automatically Generating Scheduling Heuristics
NASA Technical Reports Server (NTRS)
Morris, Robert
1996-01-01
The goal of this research is to improve the performance of automated schedulers by designing and implementing an algorithm by automatically generating heuristics by selecting a schedule. The particular application selected by applying this method solves the problem of scheduling telescope observations, and is called the Associate Principal Astronomer. The input to the APA scheduler is a set of observation requests submitted by one or more astronomers. Each observation request specifies an observation program as well as scheduling constraints and preferences associated with the program. The scheduler employs greedy heuristic search to synthesize a schedule that satisfies all hard constraints of the domain and achieves a good score with respect to soft constraints expressed as an objective function established by an astronomer-user.
Achieving Passive Localization with Traffic Light Schedules in Urban Road Sensor Networks
Niu, Qiang; Yang, Xu; Gao, Shouwan; Chen, Pengpeng; Chan, Shibing
2016-01-01
Localization is crucial for the monitoring applications of cities, such as road monitoring, environment surveillance, vehicle tracking, etc. In urban road sensor networks, sensors are often sparely deployed due to the hardware cost. Under this sparse deployment, sensors cannot communicate with each other via ranging hardware or one-hop connectivity, rendering the existing localization solutions ineffective. To address this issue, this paper proposes a novel Traffic Lights Schedule-based localization algorithm (TLS), which is built on the fact that vehicles move through the intersection with a known traffic light schedule. We can first obtain the law by binary vehicle detection time stamps and describe the law as a matrix, called a detection matrix. At the same time, we can also use the known traffic light information to construct the matrices, which can be formed as a collection called a known matrix collection. The detection matrix is then matched in the known matrix collection for identifying where sensors are located on urban roads. We evaluate our algorithm by extensive simulation. The results show that the localization accuracy of intersection sensors can reach more than 90%. In addition, we compare it with a state-of-the-art algorithm and prove that it has a wider operational region. PMID:27735871
Suboptimal Scheduling in Switched Systems With Continuous-Time Dynamics: A Least Squares Approach.
Sardarmehni, Tohid; Heydari, Ali
2018-06-01
Two approximate solutions for optimal control of switched systems with autonomous subsystems and continuous-time dynamics are presented. The first solution formulates a policy iteration (PI) algorithm for the switched systems with recursive least squares. To reduce the computational burden imposed by the PI algorithm, a second solution, called single loop PI, is presented. Online and concurrent training algorithms are discussed for implementing each solution. At last, effectiveness of the presented algorithms is evaluated through numerical simulations.
Fog computing job scheduling optimization based on bees swarm
NASA Astrophysics Data System (ADS)
Bitam, Salim; Zeadally, Sherali; Mellouk, Abdelhamid
2018-04-01
Fog computing is a new computing architecture, composed of a set of near-user edge devices called fog nodes, which collaborate together in order to perform computational services such as running applications, storing an important amount of data, and transmitting messages. Fog computing extends cloud computing by deploying digital resources at the premise of mobile users. In this new paradigm, management and operating functions, such as job scheduling aim at providing high-performance, cost-effective services requested by mobile users and executed by fog nodes. We propose a new bio-inspired optimization approach called Bees Life Algorithm (BLA) aimed at addressing the job scheduling problem in the fog computing environment. Our proposed approach is based on the optimized distribution of a set of tasks among all the fog computing nodes. The objective is to find an optimal tradeoff between CPU execution time and allocated memory required by fog computing services established by mobile users. Our empirical performance evaluation results demonstrate that the proposal outperforms the traditional particle swarm optimization and genetic algorithm in terms of CPU execution time and allocated memory.
An incentive-based distributed mechanism for scheduling divisible loads in tree networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, T. E.; Grosu, D.
The underlying assumption of Divisible Load Scheduling (DLS) theory is that the pro-cessors composing the network are obedient, i.e., they do not “cheat” the scheduling algorithm. This assumption is unrealistic if the processors are owned by autonomous, self-interested organizations that have no a priori motivation for cooperation and they will manipulate the algorithm if it is beneficial to do so. In this paper, we address this issue by designing a distributed mechanism for scheduling divisible loads in tree net-works, called DLS-T, which provides incentives to processors for reporting their true processing capacity and executing their assigned load at full processingmore » capacity. We prove that the DLS-T mechanism computes the optimal allocation in an ex post Nash equilibrium. Finally, we simulate and study the mechanism under various network structures and processor parameters.« less
Avoiding Biased-Feeding in the Scheduling of Collaborative Multipath TCP.
Tsai, Meng-Hsun; Chou, Chien-Ming; Lan, Kun-Chan
2016-01-01
Smartphones have become the major communication and portable computing devices that access the Internet through Wi-Fi or mobile networks. Unfortunately, users without a mobile data subscription can only access the Internet at limited locations, such as hotspots. In this paper, we propose a collaborative bandwidth sharing protocol (CBSP) built on top of MultiPath TCP (MPTCP). CBSP enables users to buy bandwidth on demand from neighbors (called Helpers) and uses virtual interfaces to bind the subflows of MPTCP to avoid modifying the implementation of MPTCP. However, although MPTCP provides the required multi-homing functionality for bandwidth sharing, the current packet scheduling in collaborative MPTCP (e.g., Co-MPTCP) leads to the so-called biased-feeding problem. In this problem, the fastest link might always be selected to send packets whenever it has available cwnd, which results in other links not being fully utilized. In this work, we set out to design an algorithm, called Scheduled Window-based Transmission Control (SWTC), to improve the performance of packet scheduling in MPTCP, and we perform extensive simulations to evaluate its performance.
Avoiding Biased-Feeding in the Scheduling of Collaborative Multipath TCP
2016-01-01
Smartphones have become the major communication and portable computing devices that access the Internet through Wi-Fi or mobile networks. Unfortunately, users without a mobile data subscription can only access the Internet at limited locations, such as hotspots. In this paper, we propose a collaborative bandwidth sharing protocol (CBSP) built on top of MultiPath TCP (MPTCP). CBSP enables users to buy bandwidth on demand from neighbors (called Helpers) and uses virtual interfaces to bind the subflows of MPTCP to avoid modifying the implementation of MPTCP. However, although MPTCP provides the required multi-homing functionality for bandwidth sharing, the current packet scheduling in collaborative MPTCP (e.g., Co-MPTCP) leads to the so-called biased-feeding problem. In this problem, the fastest link might always be selected to send packets whenever it has available cwnd, which results in other links not being fully utilized. In this work, we set out to design an algorithm, called Scheduled Window-based Transmission Control (SWTC), to improve the performance of packet scheduling in MPTCP, and we perform extensive simulations to evaluate its performance. PMID:27529783
Research on schedulers for astronomical observatories
NASA Astrophysics Data System (ADS)
Colome, Josep; Colomer, Pau; Guàrdia, Josep; Ribas, Ignasi; Campreciós, Jordi; Coiffard, Thierry; Gesa, Lluis; Martínez, Francesc; Rodler, Florian
2012-09-01
The main task of a scheduler applied to astronomical observatories is the time optimization of the facility and the maximization of the scientific return. Scheduling of astronomical observations is an example of the classical task allocation problem known as the job-shop problem (JSP), where N ideal tasks are assigned to M identical resources, while minimizing the total execution time. A problem of higher complexity, called the Flexible-JSP (FJSP), arises when the tasks can be executed by different resources, i.e. by different telescopes, and it focuses on determining a routing policy (i.e., which machine to assign for each operation) other than the traditional scheduling decisions (i.e., to determine the starting time of each operation). In most cases there is no single best approach to solve the planning system and, therefore, various mathematical algorithms (Genetic Algorithms, Ant Colony Optimization algorithms, Multi-Objective Evolutionary algorithms, etc.) are usually considered to adapt the application to the system configuration and task execution constraints. The scheduling time-cycle is also an important ingredient to determine the best approach. A shortterm scheduler, for instance, has to find a good solution with the minimum computation time, providing the system with the capability to adapt the selected task to varying execution constraints (i.e., environment conditions). We present in this contribution an analysis of the task allocation problem and the solutions currently in use at different astronomical facilities. We also describe the schedulers for three different projects (CTA, CARMENES and TJO) where the conclusions of this analysis are applied to develop a suitable routine.
Swarm satellite mission scheduling & planning using Hybrid Dynamic Mutation Genetic Algorithm
NASA Astrophysics Data System (ADS)
Zheng, Zixuan; Guo, Jian; Gill, Eberhard
2017-08-01
Space missions have traditionally been controlled by operators from a mission control center. Given the increasing number of satellites for some space missions, generating a command list for multiple satellites can be time-consuming and inefficient. Developing multi-satellite, onboard mission scheduling & planning techniques is, therefore, a key research field for future space mission operations. In this paper, an improved Genetic Algorithm (GA) using a new mutation strategy is proposed as a mission scheduling algorithm. This new mutation strategy, called Hybrid Dynamic Mutation (HDM), combines the advantages of both dynamic mutation strategy and adaptive mutation strategy, overcoming weaknesses such as early convergence and long computing time, which helps standard GA to be more efficient and accurate in dealing with complex missions. HDM-GA shows excellent performance in solving both unconstrained and constrained test functions. The experiments of using HDM-GA to simulate a multi-satellite, mission scheduling problem demonstrates that both the computation time and success rate mission requirements can be met. The results of a comparative test between HDM-GA and three other mutation strategies also show that HDM has outstanding performance in terms of speed and reliability.
Scheduling Non-Preemptible Jobs to Minimize Peak Demand
Yaw, Sean; Mumey, Brendan
2017-10-28
Our paper examines an important problem in smart grid energy scheduling; peaks in power demand are proportionally more expensive to generate and provision for. The issue is exacerbated in local microgrids that do not benefit from the aggregate smoothing experienced by large grids. Demand-side scheduling can reduce these peaks by taking advantage of the fact that there is often flexibility in job start times. We then focus attention on the case where the jobs are non-preemptible, meaning once started, they run to completion. The associated optimization problem is called the peak demand minimization problem, and has been previously shown tomore » be NP-hard. These results include an optimal fixed-parameter tractable algorithm, a polynomial-time approximation algorithm, as well as an effective heuristic that can also be used in an online setting of the problem. Simulation results show that these methods can reduce peak demand by up to 50% versus on-demand scheduling for household power jobs.« less
Scheduling Non-Preemptible Jobs to Minimize Peak Demand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaw, Sean; Mumey, Brendan
Our paper examines an important problem in smart grid energy scheduling; peaks in power demand are proportionally more expensive to generate and provision for. The issue is exacerbated in local microgrids that do not benefit from the aggregate smoothing experienced by large grids. Demand-side scheduling can reduce these peaks by taking advantage of the fact that there is often flexibility in job start times. We then focus attention on the case where the jobs are non-preemptible, meaning once started, they run to completion. The associated optimization problem is called the peak demand minimization problem, and has been previously shown tomore » be NP-hard. These results include an optimal fixed-parameter tractable algorithm, a polynomial-time approximation algorithm, as well as an effective heuristic that can also be used in an online setting of the problem. Simulation results show that these methods can reduce peak demand by up to 50% versus on-demand scheduling for household power jobs.« less
Toward interactive scheduling systems for managing medical resources.
Oddi, A; Cesta, A
2000-10-01
Managers of medico-hospital facilities are facing two general problems when allocating resources to activities: (1) to find an agreement between several and contrasting requirements; (2) to manage dynamic and uncertain situations when constraints suddenly change over time due to medical needs. This paper describes the results of a research aimed at applying constraint-based scheduling techniques to the management of medical resources. A mixed-initiative problem solving approach is adopted in which a user and a decision support system interact to incrementally achieve a satisfactory solution to the problem. A running prototype is described called Interactive Scheduler which offers a set of functionalities for a mixed-initiative interaction to cope with the medical resource management. Interactive Scheduler is endowed with a representation schema used for describing the medical environment, a set of algorithms that address the specific problems of the domain, and an innovative interaction module that offers functionalities for the dialogue between the support system and its user. A particular contribution of this work is the explicit representation of constraint violations, and the definition of scheduling algorithms that aim at minimizing the amount of constraint violations in a solution.
Directed Bee Colony Optimization Algorithm to Solve the Nurse Rostering Problem.
Rajeswari, M; Amudhavel, J; Pothula, Sujatha; Dhavachelvan, P
2017-01-01
The Nurse Rostering Problem is an NP-hard combinatorial optimization, scheduling problem for assigning a set of nurses to shifts per day by considering both hard and soft constraints. A novel metaheuristic technique is required for solving Nurse Rostering Problem (NRP). This work proposes a metaheuristic technique called Directed Bee Colony Optimization Algorithm using the Modified Nelder-Mead Method for solving the NRP. To solve the NRP, the authors used a multiobjective mathematical programming model and proposed a methodology for the adaptation of a Multiobjective Directed Bee Colony Optimization (MODBCO). MODBCO is used successfully for solving the multiobjective problem of optimizing the scheduling problems. This MODBCO is an integration of deterministic local search, multiagent particle system environment, and honey bee decision-making process. The performance of the algorithm is assessed using the standard dataset INRC2010, and it reflects many real-world cases which vary in size and complexity. The experimental analysis uses statistical tools to show the uniqueness of the algorithm on assessment criteria.
TinyOS-based quality of service management in wireless sensor networks
Peterson, N.; Anusuya-Rangappa, L.; Shirazi, B.A.; Huang, R.; Song, W.-Z.; Miceli, M.; McBride, D.; Hurson, A.; LaHusen, R.
2009-01-01
Previously the cost and extremely limited capabilities of sensors prohibited Quality of Service (QoS) implementations in wireless sensor networks. With advances in technology, sensors are becoming significantly less expensive and the increases in computational and storage capabilities are opening the door for new, sophisticated algorithms to be implemented. Newer sensor network applications require higher data rates with more stringent priority requirements. We introduce a dynamic scheduling algorithm to improve bandwidth for high priority data in sensor networks, called Tiny-DWFQ. Our Tiny-Dynamic Weighted Fair Queuing scheduling algorithm allows for dynamic QoS for prioritized communications by continually adjusting the treatment of communication packages according to their priorities and the current level of network congestion. For performance evaluation, we tested Tiny-DWFQ, Tiny-WFQ (traditional WFQ algorithm implemented in TinyOS), and FIFO queues on an Imote2-based wireless sensor network and report their throughput and packet loss. Our results show that Tiny-DWFQ performs better in all test cases. ?? 2009 IEEE.
Directed Bee Colony Optimization Algorithm to Solve the Nurse Rostering Problem
Amudhavel, J.; Pothula, Sujatha; Dhavachelvan, P.
2017-01-01
The Nurse Rostering Problem is an NP-hard combinatorial optimization, scheduling problem for assigning a set of nurses to shifts per day by considering both hard and soft constraints. A novel metaheuristic technique is required for solving Nurse Rostering Problem (NRP). This work proposes a metaheuristic technique called Directed Bee Colony Optimization Algorithm using the Modified Nelder-Mead Method for solving the NRP. To solve the NRP, the authors used a multiobjective mathematical programming model and proposed a methodology for the adaptation of a Multiobjective Directed Bee Colony Optimization (MODBCO). MODBCO is used successfully for solving the multiobjective problem of optimizing the scheduling problems. This MODBCO is an integration of deterministic local search, multiagent particle system environment, and honey bee decision-making process. The performance of the algorithm is assessed using the standard dataset INRC2010, and it reflects many real-world cases which vary in size and complexity. The experimental analysis uses statistical tools to show the uniqueness of the algorithm on assessment criteria. PMID:28473849
Multi-layer service function chaining scheduling based on auxiliary graph in IP over optical network
NASA Astrophysics Data System (ADS)
Li, Yixuan; Li, Hui; Liu, Yuze; Ji, Yuefeng
2017-10-01
Software Defined Optical Network (SDON) can be considered as extension of Software Defined Network (SDN) in optical networks. SDON offers a unified control plane and makes optical network an intelligent transport network with dynamic flexibility and service adaptability. For this reason, a comprehensive optical transmission service, able to achieve service differentiation all the way down to the optical transport layer, can be provided to service function chaining (SFC). IP over optical network, as a promising networking architecture to interconnect data centers, is the most widely used scenarios of SFC. In this paper, we offer a flexible and dynamic resource allocation method for diverse SFC service requests in the IP over optical network. To do so, we firstly propose the concept of optical service function (OSF) and a multi-layer SFC model. OSF represents the comprehensive optical transmission service (e.g., multicast, low latency, quality of service, etc.), which can be achieved in multi-layer SFC model. OSF can also be considered as a special SF. Secondly, we design a resource allocation algorithm, which we call OSF-oriented optical service scheduling algorithm. It is able to address multi-layer SFC optical service scheduling and provide comprehensive optical transmission service, while meeting multiple optical transmission requirements (e.g., bandwidth, latency, availability). Moreover, the algorithm exploits the concept of Auxiliary Graph. Finally, we compare our algorithm with the Baseline algorithm in simulation. And simulation results show that our algorithm achieves superior performance than Baseline algorithm in low traffic load condition.
Periodic Heterogeneous Vehicle Routing Problem With Driver Scheduling
NASA Astrophysics Data System (ADS)
Mardiana Panggabean, Ellis; Mawengkang, Herman; Azis, Zainal; Filia Sari, Rina
2018-01-01
The paper develops a model for the optimal management of logistic delivery of a given commodity. The company has different type of vehicles with different capacity to deliver the commodity for customers. The problem is then called Periodic Heterogeneous Vehicle Routing Problem (PHVRP). The goal is to schedule the deliveries according to feasible combinations of delivery days and to determine the scheduling of fleet and driver and routing policies of the vehicles. The objective is to minimize the sum of the costs of all routes over the planning horizon. We propose a combined approach of heuristic algorithm and exact method to solve the problem.
Characterization of robotics parallel algorithms and mapping onto a reconfigurable SIMD machine
NASA Technical Reports Server (NTRS)
Lee, C. S. G.; Lin, C. T.
1989-01-01
The kinematics, dynamics, Jacobian, and their corresponding inverse computations are six essential problems in the control of robot manipulators. Efficient parallel algorithms for these computations are discussed and analyzed. Their characteristics are identified and a scheme on the mapping of these algorithms to a reconfigurable parallel architecture is presented. Based on the characteristics including type of parallelism, degree of parallelism, uniformity of the operations, fundamental operations, data dependencies, and communication requirement, it is shown that most of the algorithms for robotic computations possess highly regular properties and some common structures, especially the linear recursive structure. Moreover, they are well-suited to be implemented on a single-instruction-stream multiple-data-stream (SIMD) computer with reconfigurable interconnection network. The model of a reconfigurable dual network SIMD machine with internal direct feedback is introduced. A systematic procedure internal direct feedback is introduced. A systematic procedure to map these computations to the proposed machine is presented. A new scheduling problem for SIMD machines is investigated and a heuristic algorithm, called neighborhood scheduling, that reorders the processing sequence of subtasks to reduce the communication time is described. Mapping results of a benchmark algorithm are illustrated and discussed.
Hybrid Metaheuristics for Solving a Fuzzy Single Batch-Processing Machine Scheduling Problem
Molla-Alizadeh-Zavardehi, S.; Tavakkoli-Moghaddam, R.; Lotfi, F. Hosseinzadeh
2014-01-01
This paper deals with a problem of minimizing total weighted tardiness of jobs in a real-world single batch-processing machine (SBPM) scheduling in the presence of fuzzy due date. In this paper, first a fuzzy mixed integer linear programming model is developed. Then, due to the complexity of the problem, which is NP-hard, we design two hybrid metaheuristics called GA-VNS and VNS-SA applying the advantages of genetic algorithm (GA), variable neighborhood search (VNS), and simulated annealing (SA) frameworks. Besides, we propose three fuzzy earliest due date heuristics to solve the given problem. Through computational experiments with several random test problems, a robust calibration is applied on the parameters. Finally, computational results on different-scale test problems are presented to compare the proposed algorithms. PMID:24883359
Link Scheduling Algorithm with Interference Prediction for Multiple Mobile WBANs
Le, Thien T. T.
2017-01-01
As wireless body area networks (WBANs) become a key element in electronic healthcare (e-healthcare) systems, the coexistence of multiple mobile WBANs is becoming an issue. The network performance is negatively affected by the unpredictable movement of the human body. In such an environment, inter-WBAN interference can be caused by the overlapping transmission range of nearby WBANs. We propose a link scheduling algorithm with interference prediction (LSIP) for multiple mobile WBANs, which allows multiple mobile WBANs to transmit at the same time without causing inter-WBAN interference. In the LSIP, a superframe includes the contention access phase using carrier sense multiple access with collision avoidance (CSMA/CA) and the scheduled phase using time division multiple access (TDMA) for non-interfering nodes and interfering nodes, respectively. For interference prediction, we define a parameter called interference duration as the duration during which disparate WBANs interfere with each other. The Bayesian model is used to estimate and classify the interference using a signal to interference plus noise ratio (SINR) and the number of neighboring WBANs. The simulation results show that the proposed LSIP algorithm improves the packet delivery ratio and throughput significantly with acceptable delay. PMID:28956827
AI techniques for a space application scheduling problem
NASA Technical Reports Server (NTRS)
Thalman, N.; Sparn, T.; Jaffres, L.; Gablehouse, D.; Judd, D.; Russell, C.
1991-01-01
Scheduling is a very complex optimization problem which can be categorized as an NP-complete problem. NP-complete problems are quite diverse, as are the algorithms used in searching for an optimal solution. In most cases, the best solutions that can be derived for these combinatorial explosive problems are near-optimal solutions. Due to the complexity of the scheduling problem, artificial intelligence (AI) can aid in solving these types of problems. Some of the factors are examined which make space application scheduling problems difficult and presents a fairly new AI-based technique called tabu search as applied to a real scheduling application. the specific problem is concerned with scheduling application. The specific problem is concerned with scheduling solar and stellar observations for the SOLar-STellar Irradiance Comparison Experiment (SOLSTICE) instrument in a constrained environment which produces minimum impact on the other instruments and maximizes target observation times. The SOLSTICE instrument will gly on-board the Upper Atmosphere Research Satellite (UARS) in 1991, and a similar instrument will fly on the earth observing system (Eos).
An enhanced velocity-based algorithm for safe implementations of gain-scheduled controllers
NASA Astrophysics Data System (ADS)
Lhachemi, H.; Saussié, D.; Zhu, G.
2017-09-01
This paper presents an enhanced velocity-based algorithm to implement gain-scheduled controllers for nonlinear and parameter-dependent systems. A new scheme including pre- and post-filtering is proposed with the assumption that the time-derivative of the controller inputs is not available for feedback control. It is shown that the proposed control structure can preserve the input-output properties of the linearised closed-loop system in the neighbourhood of each equilibrium point, avoiding the emergence of the so-called hidden coupling terms. Moreover, it is guaranteed that this implementation will not introduce unobservable or uncontrollable unstable modes, and hence the internal stability will not be affected. A case study dealing with the design of a pitch-axis missile autopilot is carried out and the numerical simulation results confirm the validity of the proposed approach.
Scheduling with genetic algorithms
NASA Technical Reports Server (NTRS)
Fennel, Theron R.; Underbrink, A. J., Jr.; Williams, George P. W., Jr.
1994-01-01
In many domains, scheduling a sequence of jobs is an important function contributing to the overall efficiency of the operation. At Boeing, we develop schedules for many different domains, including assembly of military and commercial aircraft, weapons systems, and space vehicles. Boeing is under contract to develop scheduling systems for the Space Station Payload Planning System (PPS) and Payload Operations and Integration Center (POIC). These applications require that we respect certain sequencing restrictions among the jobs to be scheduled while at the same time assigning resources to the jobs. We call this general problem scheduling and resource allocation. Genetic algorithms (GA's) offer a search method that uses a population of solutions and benefits from intrinsic parallelism to search the problem space rapidly, producing near-optimal solutions. Good intermediate solutions are probabalistically recombined to produce better offspring (based upon some application specific measure of solution fitness, e.g., minimum flowtime, or schedule completeness). Also, at any point in the search, any intermediate solution can be accepted as a final solution; allowing the search to proceed longer usually produces a better solution while terminating the search at virtually any time may yield an acceptable solution. Many processes are constrained by restrictions of sequence among the individual jobs. For a specific job, other jobs must be completed beforehand. While there are obviously many other constraints on processes, it is these on which we focussed for this research: how to allocate crews to jobs while satisfying job precedence requirements and personnel, and tooling and fixture (or, more generally, resource) requirements.
Energy-Efficient BOP-Based Beacon Transmission Scheduling in Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Kim, Eui-Jik; Youm, Sungkwan; Choi, Hyo-Hyun
Many applications in wireless sensor networks (WSNs) require the energy efficiency and scalability. Although IEEE 802.15.4/Zigbee which is being considered as general technology for WSNs enables the low duty-cycling with time synchronization of all the nodes in network, it still suffer from its low scalability due to the beacon frame collision. Recently, various algorithms to resolve this problem are proposed. However, their manners to implement are somewhat ambiguous and the degradation of energy/communication efficiency is serious by the additional overhead. This paper describes an Energy-efficient BOP-based Beacon transmission Scheduling (EBBS) algorithm. EBBS is the centralized approach, in which a resource-sufficient node called as Topology Management Center (TMC) allocates the time slots to transmit a beacon frame to the nodes and manages the active/sleep schedules of them. We also propose EBBS with Adaptive BOPL (EBBS-AB), to adjust the duration to transmit beacon frames in every beacon interval, adaptively. Simulation results show that by using the proposed algorithm, the energy efficiency and the throughput of whole network can be significantly improved. EBBS-AB is also more effective for the network performance when the nodes are uniformly deployed on the sensor field rather than the case of random topologies.
A Genetic-Based Scheduling Algorithm to Minimize the Makespan of the Grid Applications
NASA Astrophysics Data System (ADS)
Entezari-Maleki, Reza; Movaghar, Ali
Task scheduling algorithms in grid environments strive to maximize the overall throughput of the grid. In order to maximize the throughput of the grid environments, the makespan of the grid tasks should be minimized. In this paper, a new task scheduling algorithm is proposed to assign tasks to the grid resources with goal of minimizing the total makespan of the tasks. The algorithm uses the genetic approach to find the suitable assignment within grid resources. The experimental results obtained from applying the proposed algorithm to schedule independent tasks within grid environments demonstrate the applicability of the algorithm in achieving schedules with comparatively lower makespan in comparison with other well-known scheduling algorithms such as, Min-min, Max-min, RASA and Sufferage algorithms.
An Enabling Technology for New Planning and Scheduling Paradigms
NASA Technical Reports Server (NTRS)
Jaap, John; Davis, Elizabeth
2004-01-01
The Night Projects Directorate at NASA's Marshall Space Flight Center is developing a new planning and scheduling environment and a new scheduling algorithm to enable a paradigm shift in planning and scheduling concepts. Over the past 33 years Marshall has developed and evolved a paradigm for generating payload timelines for Skylab, Spacelab, various other Shuttle payloads, and the International Space Station. The current paradigm starts by collecting the requirements, called ?ask models," from the scientists and technologists for the tasks that are to be scheduled. Because of shortcomings in the current modeling schema, some requirements are entered as notes. Next, a cadre with knowledge of vehicle and hardware modifies these models to encompass and be compatible with the hardware model; again, notes are added when the modeling schema does not provide a better way to represent the requirements. Finally, the models are modified to be compatible with the scheduling engine. Then the models are submitted to the scheduling engine for automatic scheduling or, when requirements are expressed in notes, the timeline is built manually. A future paradigm would provide a scheduling engine that accepts separate science models and hardware models. The modeling schema would have the capability to represent all the requirements without resorting to notes. Furthermore, the scheduling engine would not require that the models be modified to account for the capabilities (limitations) of the scheduling engine. The enabling technology under development at Marshall has three major components: (1) A new modeling schema allows expressing all the requirements of the tasks without resorting to notes or awkward contrivances. The chosen modeling schema is both maximally expressive and easy to use. It utilizes graphical methods to show hierarchies of task constraints and networks of temporal relationships. (2) A new scheduling algorithm automatically schedules the models without the intervention of a scheduling expert. The algorithm is tuned for the constraint hierarchies and the complex temporal relationships provided by the modeling schema. It has an extensive search algorithm that can exploit timing flexibilities and constraint and relationship options. (3) An innovative architecture allows multiple remote users to simultaneously model science and technology requirements and other users to model vehicle and hardware characteristics. The architecture allows the remote users to submit scheduling requests directly to the scheduling engine and immediately see the results. These three components are integrated so that science and technology experts with no knowledge of the vehicle or hardware subsystems and no knowledge of the internal workings of the scheduling engine have the ability to build and submit scheduling requests and see the results. The immediate feedback will hone the users' modeling skills and ultimately enable them to produce the desired timeline. This paper summarizes the three components of the enabling technology and describes how this technology would make a new paradigm possible.
Single-Pass Serial Scheduling Heuristic for Eglin AFB Range Services Division Schedule
2009-06-01
scheduling tool for this RCPSP. Research on a schedule improvement metaheuristic and coding of the complete algorithm is required before it can be...a schedule better by applying metaheuristic improvement algorithms to a feasible schedule after it is created. 2.5.1. Greedy Algorithm The...next available position, the algorithm will not utilize all the available range time and manpower. An improvement metaheuristic is required to
Evaluation of Recoverable-Robust Timetables on Tree Networks
NASA Astrophysics Data System (ADS)
D'Angelo, Gianlorenzo; di Stefano, Gabriele; Navarra, Alfredo
In the context of scheduling and timetabling, we study a challenging combinatorial problem which is interesting from both a practical and a theoretical point of view. The motivation behind it is to cope with scheduled activities which might be subject to unavoidable disturbances, such as delays, occurring during the operational phase. The idea is to preventively plan some extra time for the scheduled activities in order to be "prepared" if a delay occurs, and to absorb it without the necessity of re-scheduling the activities from scratch. This realizes the concept of designing so called robust timetables. During the planning phase, one has to consider recovery features that might be applied at runtime if delays occur. Such recovery capabilities are given as input along with the possible delays that must be considered. The objective is the minimization of the overall needed time. The quality of a robust timetable is measured by the price of robustness, i.e. the ratio between the cost of the robust timetable and that of a non-robust optimal timetable. The considered problem is known to be NP-hard. We propose a pseudo-polynomial time algorithm and apply it on random networks and real case scenarios provided by Italian railways. We evaluate the effect of robustness on the scheduling of the activities and provide the price of robustness with respect to different scenarios. We experimentally show the practical effectiveness and efficiency of the proposed algorithm.
Li, Desheng
2014-01-01
This paper proposes a novel variant of cooperative quantum-behaved particle swarm optimization (CQPSO) algorithm with two mechanisms to reduce the search space and avoid the stagnation, called CQPSO-DVSA-LFD. One mechanism is called Dynamic Varying Search Area (DVSA), which takes charge of limiting the ranges of particles' activity into a reduced area. On the other hand, in order to escape the local optima, Lévy flights are used to generate the stochastic disturbance in the movement of particles. To test the performance of CQPSO-DVSA-LFD, numerical experiments are conducted to compare the proposed algorithm with different variants of PSO. According to the experimental results, the proposed method performs better than other variants of PSO on both benchmark test functions and the combinatorial optimization issue, that is, the job-shop scheduling problem.
Enabling a New Planning and Scheduling Paradigm
NASA Technical Reports Server (NTRS)
Jaap, John; Davis, Elizabeth
2004-01-01
The Flight Projects Directorate at NASA's Marshall Space Flight Center is developing a new planning and scheduling environment and a new scheduling algorithm to enable a paradigm shift in planning and scheduling concepts. Over the past 33 years Marshall has developed and evolved a paradigm for generating payload timelines for Skylab, Spacelab, various other Shuttle payloads, and the International Space Station. The current paradigm starts by collecting the requirements, called "tasks models," from the scientists and technologists for the tasks that they want to be done. Because of shortcomings in the current modeling schema, some requirements are entered as notes. Next a cadre with knowledge of vehicle and hardware modifies these models to encompass and be compatible with the hardware model; again, notes are added when the modeling schema does not provide a better way to represent the requirements. Finally, another cadre further modifies the models to be compatible with the scheduling engine. This last cadre also submits the models to the scheduling engine or builds the timeline manually to accommodate requirements that are expressed in notes. A future paradigm would provide a scheduling engine that accepts separate science models and hardware models. The modeling schema would have the capability to represent all the requirements without resorting to notes. Furthermore, the scheduling engine would not require that the models be modified to account for the capabilities (limitations) of the scheduling engine. The enabling technology under development at Marshall has three major components. (1) A new modeling schema allows expressing all the requirements of the tasks without resorting to notes or awkward contrivances. The chosen modeling schema is both maximally expressive and easy to use. It utilizes graphics methods to show hierarchies of task constraints and networks of temporal relationships. (2) A new scheduling algorithm automatically schedules the models without the intervention of a scheduling expert. The algorithm is tuned for the constraint hierarchies and the complex temporal relationships provided by the modeling schema. It has an extensive search algorithm which can exploit timing flexibilities and constraint and relationship options. (3) A web-based architecture allows multiple remote users to simultaneously model science and technology requirements and other users to model vehicle and hardware characteristics. The architecture allows the users to submit scheduling requests directly to the scheduling engine and immediately see the results. These three components are integrated so that science and technology experts with no knowledge of the vehicle or hardware subsystems and no knowledge of the internal workings of the scheduling engine have the ability to build and submit scheduling requests and see the results. The immediate feedback will hone the users' modeling skills and ultimately enable them to produce the desired timeline. This paper summarizes the three components of the enabling technology and describes how this technology would make a new paradigm possible.
Production scheduling with ant colony optimization
NASA Astrophysics Data System (ADS)
Chernigovskiy, A. S.; Kapulin, D. V.; Noskova, E. E.; Yamskikh, T. N.; Tsarev, R. Yu
2017-10-01
The optimum solution of the production scheduling problem for manufacturing processes at an enterprise is crucial as it allows one to obtain the required amount of production within a specified time frame. Optimum production schedule can be found using a variety of optimization algorithms or scheduling algorithms. Ant colony optimization is one of well-known techniques to solve the global multi-objective optimization problem. In the article, the authors present a solution of the production scheduling problem by means of an ant colony optimization algorithm. A case study of the algorithm efficiency estimated against some others production scheduling algorithms is presented. Advantages of the ant colony optimization algorithm and its beneficial effect on the manufacturing process are provided.
Hwang, I-Shyan
2017-01-01
The K-coverage configuration that guarantees coverage of each location by at least K sensors is highly popular and is extensively used to monitor diversified applications in wireless sensor networks. Long network lifetime and high detection quality are the essentials of such K-covered sleep-scheduling algorithms. However, the existing sleep-scheduling algorithms either cause high cost or cannot preserve the detection quality effectively. In this paper, the Pre-Scheduling-based K-coverage Group Scheduling (PSKGS) and Self-Organized K-coverage Scheduling (SKS) algorithms are proposed to settle the problems in the existing sleep-scheduling algorithms. Simulation results show that our pre-scheduled-based KGS approach enhances the detection quality and network lifetime, whereas the self-organized-based SKS algorithm minimizes the computation and communication cost of the nodes and thereby is energy efficient. Besides, SKS outperforms PSKGS in terms of network lifetime and detection quality as it is self-organized. PMID:29257078
Genetic algorithm to solve the problems of lectures and practicums scheduling
NASA Astrophysics Data System (ADS)
Syahputra, M. F.; Apriani, R.; Sawaluddin; Abdullah, D.; Albra, W.; Heikal, M.; Abdurrahman, A.; Khaddafi, M.
2018-02-01
Generally, the scheduling process is done manually. However, this method has a low accuracy level, along with possibilities that a scheduled process collides with another scheduled process. When doing theory class and practicum timetable scheduling process, there are numerous problems, such as lecturer teaching schedule collision, schedule collision with another schedule, practicum lesson schedules that collides with theory class, and the number of classrooms available. In this research, genetic algorithm is implemented to perform theory class and practicum timetable scheduling process. The algorithm will be used to process the data containing lists of lecturers, courses, and class rooms, obtained from information technology department at University of Sumatera Utara. The result of scheduling process using genetic algorithm is the most optimal timetable that conforms to available time slots, class rooms, courses, and lecturer schedules.
Conflict-Aware Scheduling Algorithm
NASA Technical Reports Server (NTRS)
Wang, Yeou-Fang; Borden, Chester
2006-01-01
conflict-aware scheduling algorithm is being developed to help automate the allocation of NASA s Deep Space Network (DSN) antennas and equipment that are used to communicate with interplanetary scientific spacecraft. The current approach for scheduling DSN ground resources seeks to provide an equitable distribution of tracking services among the multiple scientific missions and is very labor intensive. Due to the large (and increasing) number of mission requests for DSN services, combined with technical and geometric constraints, the DSN is highly oversubscribed. To help automate the process, and reduce the DSN and spaceflight project labor effort required for initiating, maintaining, and negotiating schedules, a new scheduling algorithm is being developed. The scheduling algorithm generates a "conflict-aware" schedule, where all requests are scheduled based on a dynamic priority scheme. The conflict-aware scheduling algorithm allocates all requests for DSN tracking services while identifying and maintaining the conflicts to facilitate collaboration and negotiation between spaceflight missions. These contrast with traditional "conflict-free" scheduling algorithms that assign tracks that are not in conflict and mark the remainder as unscheduled. In the case where full schedule automation is desired (based on mission/event priorities, fairness, allocation rules, geometric constraints, and ground system capabilities/ constraints), a conflict-free schedule can easily be created from the conflict-aware schedule by removing lower priority items that are in conflict.
Zhang, Weizhe; Bai, Enci; He, Hui; Cheng, Albert M.K.
2015-01-01
Reducing energy consumption is becoming very important in order to keep battery life and lower overall operational costs for heterogeneous real-time multiprocessor systems. In this paper, we first formulate this as a combinatorial optimization problem. Then, a successful meta-heuristic, called Shuffled Frog Leaping Algorithm (SFLA) is proposed to reduce the energy consumption. Precocity remission and local optimal avoidance techniques are proposed to avoid the precocity and improve the solution quality. Convergence acceleration significantly reduces the search time. Experimental results show that the SFLA-based energy-aware meta-heuristic uses 30% less energy than the Ant Colony Optimization (ACO) algorithm, and 60% less energy than the Genetic Algorithm (GA) algorithm. Remarkably, the running time of the SFLA-based meta-heuristic is 20 and 200 times less than ACO and GA, respectively, for finding the optimal solution. PMID:26110406
Aeon: Synthesizing Scheduling Algorithms from High-Level Models
NASA Astrophysics Data System (ADS)
Monette, Jean-Noël; Deville, Yves; van Hentenryck, Pascal
This paper describes the aeon system whose aim is to synthesize scheduling algorithms from high-level models. A eon, which is entirely written in comet, receives as input a high-level model for a scheduling application which is then analyzed to generate a dedicated scheduling algorithm exploiting the structure of the model. A eon provides a variety of synthesizers for generating complete or heuristic algorithms. Moreover, synthesizers are compositional, making it possible to generate complex hybrid algorithms naturally. Preliminary experimental results indicate that this approach may be competitive with state-of-the-art search algorithms.
Li, Desheng
2014-01-01
This paper proposes a novel variant of cooperative quantum-behaved particle swarm optimization (CQPSO) algorithm with two mechanisms to reduce the search space and avoid the stagnation, called CQPSO-DVSA-LFD. One mechanism is called Dynamic Varying Search Area (DVSA), which takes charge of limiting the ranges of particles' activity into a reduced area. On the other hand, in order to escape the local optima, Lévy flights are used to generate the stochastic disturbance in the movement of particles. To test the performance of CQPSO-DVSA-LFD, numerical experiments are conducted to compare the proposed algorithm with different variants of PSO. According to the experimental results, the proposed method performs better than other variants of PSO on both benchmark test functions and the combinatorial optimization issue, that is, the job-shop scheduling problem. PMID:24851085
NASA Astrophysics Data System (ADS)
Foronda, Augusto; Ohta, Chikara; Tamaki, Hisashi
Dirty paper coding (DPC) is a strategy to achieve the region capacity of multiple input multiple output (MIMO) downlink channels and a DPC scheduler is throughput optimal if users are selected according to their queue states and current rates. However, DPC is difficult to implement in practical systems. One solution, zero-forcing beamforming (ZFBF) strategy has been proposed to achieve the same asymptotic sum rate capacity as that of DPC with an exhaustive search over the entire user set. Some suboptimal user group selection schedulers with reduced complexity based on ZFBF strategy (ZFBF-SUS) and proportional fair (PF) scheduling algorithm (PF-ZFBF) have also been proposed to enhance the throughput and fairness among the users, respectively. However, they are not throughput optimal, fairness and throughput decrease if each user queue length is different due to different users channel quality. Therefore, we propose two different scheduling algorithms: a throughput optimal scheduling algorithm (ZFBF-TO) and a reduced complexity scheduling algorithm (ZFBF-RC). Both are based on ZFBF strategy and, at every time slot, the scheduling algorithms have to select some users based on user channel quality, user queue length and orthogonality among users. Moreover, the proposed algorithms have to produce the rate allocation and power allocation for the selected users based on a modified water filling method. We analyze the schedulers complexity and numerical results show that ZFBF-RC provides throughput and fairness improvements compared to the ZFBF-SUS and PF-ZFBF scheduling algorithms.
Reconfiguration Schemes for Fault-Tolerant Processor Arrays
1992-10-15
partially notion of linear schedule are easily related to similar ordered subset of a multidimensional integer lattice models and concepts used in [11-[131...and several other (called indec set). The points of this lattice correspond works. to (i.e.. are the indices of) computations, and the partial There are...These data dependencies are represented as vectors that of all computations of the algorithm is to be minimized. connect points of the lattice . If a
Enhanced Vehicle Beddown Approximations for the Improved Theater Distribution Model
2014-03-27
processed utilizing a heuristic routing and scheduling procedure the authors called the Airlift Planning Algorithm ( APA ). The linear programming model...LINGO 13 environment. The model is then solved by LINGO 13 and solution data is passed back to the Excel environment in a readable format . All original...DSS is relatively unchanged when solutions to the ITDM are referenced for comparison testing. Readers are encouraged to see Appendix I for ITDM VBA
NASA Technical Reports Server (NTRS)
Zhu, Zhifan; Gridnev, Sergei; Windhorst, Robert D.
2015-01-01
This User Guide describes SOSS (Surface Operations Simulator and Scheduler) software build and graphic user interface. SOSS is a desktop application that simulates airport surface operations in fast time using traffic management algorithms. It moves aircraft on the airport surface based on information provided by scheduling algorithm prototypes, monitors separation violation and scheduling conformance, and produces scheduling algorithm performance data.
An approach to rescheduling activities based on determination of priority and disruptivity
NASA Technical Reports Server (NTRS)
Sponsler, Jeffrey L.; Johnston, Mark D.
1990-01-01
A constraint-based scheduling system called SPIKE is being used to create long term schedules for the Hubble Space Telescope. Feedback for the spacecraft or from other ground support systems may invalidate some scheduling decisions and those activities concerned must be reconsidered. A function rescheduling priority is defined which for a given activity performs a heuristic analysis and produces a relative numerical value which is used to rank all such entities in the order that they should be rescheduled. A function disruptivity is also defined that is used to place a relative numeric value on how much a pre-existing schedule would be changed in order to reschedule an activity. Using these functions, two algorithms (a stochastic neural network approach and an exhaustive search approach) are proposed to find the best place to reschedule an activity. Prototypes were implemented and preliminary testing reveals that the exhaustive technique produces only marginally better results at much greater computational cost.
Artificial Immune Algorithm for Subtask Industrial Robot Scheduling in Cloud Manufacturing
NASA Astrophysics Data System (ADS)
Suma, T.; Murugesan, R.
2018-04-01
The current generation of manufacturing industry requires an intelligent scheduling model to achieve an effective utilization of distributed manufacturing resources, which motivated us to work on an Artificial Immune Algorithm for subtask robot scheduling in cloud manufacturing. This scheduling model enables a collaborative work between the industrial robots in different manufacturing centers. This paper discussed two optimizing objectives which includes minimizing the cost and load balance of industrial robots through scheduling. To solve these scheduling problems, we used the algorithm based on Artificial Immune system. The parameters are simulated with MATLAB and the results compared with the existing algorithms. The result shows better performance than existing.
A method of operation scheduling based on video transcoding for cluster equipment
NASA Astrophysics Data System (ADS)
Zhou, Haojie; Yan, Chun
2018-04-01
Because of the cluster technology in real-time video transcoding device, the application of facing the massive growth in the number of video assignments and resolution and bit rate of diversity, task scheduling algorithm, and analyze the current mainstream of cluster for real-time video transcoding equipment characteristics of the cluster, combination with the characteristics of the cluster equipment task delay scheduling algorithm is proposed. This algorithm enables the cluster to get better performance in the generation of the job queue and the lower part of the job queue when receiving the operation instruction. In the end, a small real-time video transcode cluster is constructed to analyze the calculation ability, running time, resource occupation and other aspects of various algorithms in operation scheduling. The experimental results show that compared with traditional clustering task scheduling algorithm, task delay scheduling algorithm has more flexible and efficient characteristics.
Scheduling for energy and reliability management on multiprocessor real-time systems
NASA Astrophysics Data System (ADS)
Qi, Xuan
Scheduling algorithms for multiprocessor real-time systems have been studied for years with many well-recognized algorithms proposed. However, it is still an evolving research area and many problems remain open due to their intrinsic complexities. With the emergence of multicore processors, it is necessary to re-investigate the scheduling problems and design/develop efficient algorithms for better system utilization, low scheduling overhead, high energy efficiency, and better system reliability. Focusing cluster schedulings with optimal global schedulers, we study the utilization bound and scheduling overhead for a class of cluster-optimal schedulers. Then, taking energy/power consumption into consideration, we developed energy-efficient scheduling algorithms for real-time systems, especially for the proliferating embedded systems with limited energy budget. As the commonly deployed energy-saving technique (e.g. dynamic voltage frequency scaling (DVFS)) will significantly affect system reliability, we study schedulers that have intelligent mechanisms to recuperate system reliability to satisfy the quality assurance requirements. Extensive simulation is conducted to evaluate the performance of the proposed algorithms on reduction of scheduling overhead, energy saving, and reliability improvement. The simulation results show that the proposed reliability-aware power management schemes could preserve the system reliability while still achieving substantial energy saving.
End-to-End Network QoS via Scheduling of Flexible Resource Reservation Requests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, S.; Katramatos, D.; Yu, D.
2011-11-14
Modern data-intensive applications move vast amounts of data between multiple locations around the world. To enable predictable and reliable data transfer, next generation networks allow such applications to reserve network resources for exclusive use. In this paper, we solve an important problem (called SMR3) to accommodate multiple and concurrent network reservation requests between a pair of end-sites. Given the varying availability of bandwidth within the network, our goal is to accommodate as many reservation requests as possible while minimizing the total time needed to complete the data transfers. We first prove that SMR3 is an NP-hard problem. Then we solvemore » it by developing a polynomial-time heuristic, called RRA. The RRA algorithm hinges on an efficient mechanism to accommodate large number of requests by minimizing the bandwidth wastage. Finally, via numerical results, we show that RRA constructs schedules that accommodate significantly larger number of requests compared to other, seemingly efficient, heuristics.« less
NASA Technical Reports Server (NTRS)
Wang, Lui; Valenzuela-Rendon, Manuel
1993-01-01
The Space Station Freedom will require the supply of items in a regular fashion. A schedule for the delivery of these items is not easy to design due to the large span of time involved and the possibility of cancellations and changes in shuttle flights. This paper presents the basic concepts of a genetic algorithm model, and also presents the results of an effort to apply genetic algorithms to the design of propellant resupply schedules. As part of this effort, a simple simulator and an encoding by which a genetic algorithm can find near optimal schedules have been developed. Additionally, this paper proposes ways in which robust schedules, i.e., schedules that can tolerate small changes, can be found using genetic algorithms.
A new scheduling algorithm for parallel sparse LU factorization with static pivoting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigori, Laura; Li, Xiaoye S.
2002-08-20
In this paper we present a static scheduling algorithm for parallel sparse LU factorization with static pivoting. The algorithm is divided into mapping and scheduling phases, using the symmetric pruned graphs of L' and U to represent dependencies. The scheduling algorithm is designed for driving the parallel execution of the factorization on a distributed-memory architecture. Experimental results and comparisons with SuperLU{_}DIST are reported after applying this algorithm on real world application matrices on an IBM SP RS/6000 distributed memory machine.
Early stage response problem for post-disaster incidents
NASA Astrophysics Data System (ADS)
Kim, Sungwoo; Shin, Youngchul; Lee, Gyu M.; Moon, Ilkyeong
2018-07-01
Research on evacuation plans for reducing damages and casualties has been conducted to advise defenders against threats. However, despite the attention given to the research in the past, emergency response management, designed to neutralize hazards, has been undermined since planners frequently fail to apprehend the complexities and contexts of the emergency situation. Therefore, this study considers a response problem with unique characteristics for the duration of the emergency. An early stage response problem is identified to find the optimal routing and scheduling plan for responders to prevent further hazards. Due to the complexity of the proposed mathematical model, two algorithms are developed. Data from a high-rise building, called Central City in Seoul, Korea, are used to evaluate the algorithms. Results show that the proposed algorithms can procure near-optimal solutions within a reasonable time.
VAXELN Experimentation: Programming a Real-Time Periodic Task Dispatcher Using VAXELN Ada 1.1
1987-11-01
synchronization to the SQM and VAXELN semaphores. Based on real-time scheduling theory, the optimal rate-monotonic scheduling algorithm [Lui 73...schedulability test based on the rate-monotonic algorithm , namely task-lumping [Sha 871, was necessary to cal- culate the theoretically expected schedulability...8217 Guide Digital Equipment Corporation, Maynard, MA, 1986. [Lui 73] Liu, C.L., Layland, J.W. Scheduling Algorithms for Multi-programming in a Hard-Real-Time
Discrete Bat Algorithm for Optimal Problem of Permutation Flow Shop Scheduling
Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang
2014-01-01
A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem. PMID:25243220
Discrete bat algorithm for optimal problem of permutation flow shop scheduling.
Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang
2014-01-01
A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem.
Iterative Repair Planning for Spacecraft Operations Using the Aspen System
NASA Technical Reports Server (NTRS)
Rabideau, G.; Knight, R.; Chien, S.; Fukunaga, A.; Govindjee, A.
2000-01-01
This paper describes the Automated Scheduling and Planning Environment (ASPEN). ASPEN encodes complex spacecraft knowledge of operability constraints, flight rules, spacecraft hardware, science experiments and operations procedures to allow for automated generation of low level spacecraft sequences. Using a technique called iterative repair, ASPEN classifies constraint violations (i.e., conflicts) and attempts to repair each by performing a planning or scheduling operation. It must reason about which conflict to resolve first and what repair method to try for the given conflict. ASPEN is currently being utilized in the development of automated planner/scheduler systems for several spacecraft, including the UFO-1 naval communications satellite and the Citizen Explorer (CX1) satellite, as well as for planetary rover operations and antenna ground systems automation. This paper focuses on the algorithm and search strategies employed by ASPEN to resolve spacecraft operations constraints, as well as the data structures for representing these constraints.
Heuristic-based scheduling algorithm for high level synthesis
NASA Technical Reports Server (NTRS)
Mohamed, Gulam; Tan, Han-Ngee; Chng, Chew-Lye
1992-01-01
A new scheduling algorithm is proposed which uses a combination of a resource utilization chart, a heuristic algorithm to estimate the minimum number of hardware units based on operator mobilities, and a list-scheduling technique to achieve fast and near optimal schedules. The schedule time of this algorithm is almost independent of the length of mobilities of operators as can be seen from the benchmark example (fifth order digital elliptical wave filter) presented when the cycle time was increased from 17 to 18 and then to 21 cycles. It is implemented in C on a SUN3/60 workstation.
Project resource reallocation algorithm
NASA Technical Reports Server (NTRS)
Myers, J. E.
1981-01-01
A methodology for adjusting baseline cost estimates according to project schedule changes is described. An algorithm which performs a linear expansion or contraction of the baseline project resource distribution in proportion to the project schedule expansion or contraction is presented. Input to the algorithm consists of the deck of cards (PACE input data) prepared for the baseline project schedule as well as a specification of the nature of the baseline schedule change. Output of the algorithm is a new deck of cards with all work breakdown structure block and element of cost estimates redistributed for the new project schedule. This new deck can be processed through PACE to produce a detailed cost estimate for the new schedule.
Proportional fair scheduling algorithm based on traffic in satellite communication system
NASA Astrophysics Data System (ADS)
Pan, Cheng-Sheng; Sui, Shi-Long; Liu, Chun-ling; Shi, Yu-Xin
2018-02-01
In the satellite communication network system, in order to solve the problem of low system capacity and user fairness in multi-user access to satellite communication network in the downlink, combined with the characteristics of user data service, an algorithm study on throughput capacity and user fairness scheduling is proposed - Proportional Fairness Algorithm Based on Traffic(B-PF). The algorithm is improved on the basis of the proportional fairness algorithm in the wireless communication system, taking into account the user channel condition and caching traffic information. The user outgoing traffic is considered as the adjustment factor of the scheduling priority and presents the concept of traffic satisfaction. Firstly,the algorithm calculates the priority of the user according to the scheduling algorithm and dispatches the users with the highest priority. Secondly, when a scheduled user is the business satisfied user, the system dispatches the next priority user. The simulation results show that compared with the PF algorithm, B-PF can improve the system throughput, the business satisfaction and fairness.
An Improved Recovery Algorithm for Decayed AES Key Schedule Images
NASA Astrophysics Data System (ADS)
Tsow, Alex
A practical algorithm that recovers AES key schedules from decayed memory images is presented. Halderman et al. [1] established this recovery capability, dubbed the cold-boot attack, as a serious vulnerability for several widespread software-based encryption packages. Our algorithm recovers AES-128 key schedules tens of millions of times faster than the original proof-of-concept release. In practice, it enables reliable recovery of key schedules at 70% decay, well over twice the decay capacity of previous methods. The algorithm is generalized to AES-256 and is empirically shown to recover 256-bit key schedules that have suffered 65% decay. When solutions are unique, the algorithm efficiently validates this property and outputs the solution for memory images decayed up to 60%.
Non preemptive soft real time scheduler: High deadline meeting rate on overload
NASA Astrophysics Data System (ADS)
Khalib, Zahereel Ishwar Abdul; Ahmad, R. Badlishah; El-Shaikh, Mohamed
2015-05-01
While preemptive scheduling has gain more attention among researchers, current work in non preemptive scheduling had shown promising result in soft real time jobs scheduling. In this paper we present a non preemptive scheduling algorithm meant for soft real time applications, which is capable of producing better performance during overload while maintaining excellent performance during normal load. The approach taken by this algorithm has shown more promising results compared to other algorithms including its immediate predecessor. We will present the analysis made prior to inception of the algorithm as well as simulation results comparing our algorithm named gutEDF with EDF and gEDF. We are convinced that grouping jobs utilizing pure dynamic parameters would produce better performance.
A new task scheduling algorithm based on value and time for cloud platform
NASA Astrophysics Data System (ADS)
Kuang, Ling; Zhang, Lichen
2017-08-01
Tasks scheduling, a key part of increasing resource utilization and enhancing system performance, is a never outdated problem especially in cloud platforms. Based on the value density algorithm of the real-time task scheduling system and the character of the distributed system, the paper present a new task scheduling algorithm by further studying the cloud technology and the real-time system: Least Level Value Density First (LLVDF). The algorithm not only introduces some attributes of time and value for tasks, it also can describe weighting relationships between these properties mathematically. As this feature of the algorithm, it can gain some advantages to distinguish between different tasks more dynamically and more reasonably. When the scheme was used in the priority calculation of the dynamic task scheduling on cloud platform, relying on its advantage, it can schedule and distinguish tasks with large amounts and many kinds more efficiently. The paper designs some experiments, some distributed server simulation models based on M/M/C model of queuing theory and negative arrivals, to compare the algorithm against traditional algorithm to observe and show its characters and advantages.
Comparison of OPC job prioritization schemes to generate data for mask manufacturing
NASA Astrophysics Data System (ADS)
Lewis, Travis; Veeraraghavan, Vijay; Jantzen, Kenneth; Kim, Stephen; Park, Minyoung; Russell, Gordon; Simmons, Mark
2015-03-01
Delivering mask ready OPC corrected data to the mask shop on-time is critical for a foundry to meet the cycle time commitment for a new product. With current OPC compute resource sharing technology, different job scheduling algorithms are possible, such as, priority based resource allocation and fair share resource allocation. In order to maximize computer cluster efficiency, minimize the cost of the data processing and deliver data on schedule, the trade-offs of each scheduling algorithm need to be understood. Using actual production jobs, each of the scheduling algorithms will be tested in a production tape-out environment. Each scheduling algorithm will be judged on its ability to deliver data on schedule and the trade-offs associated with each method will be analyzed. It is now possible to introduce advance scheduling algorithms to the OPC data processing environment to meet the goals of on-time delivery of mask ready OPC data while maximizing efficiency and reducing cost.
Performance comparison of some evolutionary algorithms on job shop scheduling problems
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Rao, C. S. P.
2016-09-01
Job Shop Scheduling as a state space search problem belonging to NP-hard category due to its complexity and combinational explosion of states. Several naturally inspire evolutionary methods have been developed to solve Job Shop Scheduling Problems. In this paper the evolutionary methods namely Particles Swarm Optimization, Artificial Intelligence, Invasive Weed Optimization, Bacterial Foraging Optimization, Music Based Harmony Search Algorithms are applied and find tuned to model and solve Job Shop Scheduling Problems. To compare about 250 Bench Mark instances have been used to evaluate the performance of these algorithms. The capabilities of each these algorithms in solving Job Shop Scheduling Problems are outlined.
Binary Trees and Parallel Scheduling Algorithms.
1980-09-01
been pro- cessed for p. time units. If a job does not complete by its due time, it is tardy. In a nonpreemptive schedule, job i is scheduled to process...the preemptive schedule obtained by the algorithm of section 2.1.2 also minimizes 5Ti, this problem is easily solved in parallel. When lci is to e...August 1978, pp. 657-661. 14. Horn, W. A., "Some simple scheduling algorithms," Naval Res. Logist . Qur., Vol. 21, pp. 177-185, 1974. i5. Hforowitz, E
T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors.
Kim, Youngmin; Lee, Ki-Seong; Pham, Ngoc-Son; Lee, Sun-Ro; Lee, Chan-Gun
2016-07-08
Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM). Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction.
From non-preemptive to preemptive scheduling using synchronization synthesis.
Černý, Pavol; Clarke, Edmund M; Henzinger, Thomas A; Radhakrishna, Arjun; Ryzhyk, Leonid; Samanta, Roopsha; Tarrach, Thorsten
2017-01-01
We present a computer-aided programming approach to concurrency. The approach allows programmers to program assuming a friendly, non-preemptive scheduler, and our synthesis procedure inserts synchronization to ensure that the final program works even with a preemptive scheduler. The correctness specification is implicit, inferred from the non-preemptive behavior. Let us consider sequences of calls that the program makes to an external interface. The specification requires that any such sequence produced under a preemptive scheduler should be included in the set of sequences produced under a non-preemptive scheduler. We guarantee that our synthesis does not introduce deadlocks and that the synchronization inserted is optimal w.r.t. a given objective function. The solution is based on a finitary abstraction, an algorithm for bounded language inclusion modulo an independence relation, and generation of a set of global constraints over synchronization placements. Each model of the global constraints set corresponds to a correctness-ensuring synchronization placement. The placement that is optimal w.r.t. the given objective function is chosen as the synchronization solution. We apply the approach to device-driver programming, where the driver threads call the software interface of the device and the API provided by the operating system. Our experiments demonstrate that our synthesis method is precise and efficient. The implicit specification helped us find one concurrency bug previously missed when model-checking using an explicit, user-provided specification. We implemented objective functions for coarse-grained and fine-grained locking and observed that different synchronization placements are produced for our experiments, favoring a minimal number of synchronization operations or maximum concurrency, respectively.
A novel discrete PSO algorithm for solving job shop scheduling problem to minimize makespan
NASA Astrophysics Data System (ADS)
Rameshkumar, K.; Rajendran, C.
2018-02-01
In this work, a discrete version of PSO algorithm is proposed to minimize the makespan of a job-shop. A novel schedule builder has been utilized to generate active schedules. The discrete PSO is tested using well known benchmark problems available in the literature. The solution produced by the proposed algorithms is compared with best known solution published in the literature and also compared with hybrid particle swarm algorithm and variable neighborhood search PSO algorithm. The solution construction methodology adopted in this study is found to be effective in producing good quality solutions for the various benchmark job-shop scheduling problems.
Where-Fi: a dynamic energy-efficient multimedia distribution framework for MANETs
NASA Astrophysics Data System (ADS)
Mohapatra, Shivajit; Carbunar, Bogdan; Pearce, Michael; Chaudhri, Rohit; Vasudevan, Venu
2008-01-01
Next generation mobile ad-hoc applications will revolve around users' need for sharing content/presence information with co-located devices. However, keeping such information fresh requires frequent meta-data exchanges, which could result in significant energy overheads. To address this issue, we propose distributed algorithms for energy efficient dissemination of presence and content usage information between nodes in mobile ad-hoc networks. First, we introduce a content dissemination protocol (called CPMP) for effectively distributing frequent small meta-data updates between co-located devices using multicast. We then develop two distributed algorithms that use the CPMP protocol to achieve "phase locked" wake up cycles for all the participating nodes in the network. The first algorithm is designed for fully-connected networks and then extended in the second to handle hidden terminals. The "phase locked" schedules are then exploited to adaptively transition the network interface to a deep sleep state for energy savings. We have implemented a prototype system (called "Where-Fi") on several Motorola Linux-based cell phone models. Our experimental results show that for all network topologies our algorithms were able to achieve "phase locking" between nodes even in the presence of hidden terminals. Moreover, we achieved battery lifetime extensions of as much as 28% for fully connected networks and about 20% for partially connected networks.
Antenna Allocation in MIMO Radar with Widely Separated Antennas for Multi-Target Detection
Gao, Hao; Wang, Jian; Jiang, Chunxiao; Zhang, Xudong
2014-01-01
In this paper, we explore a new resource called multi-target diversity to optimize the performance of multiple input multiple output (MIMO) radar with widely separated antennas for detecting multiple targets. In particular, we allocate antennas of the MIMO radar to probe different targets simultaneously in a flexible manner based on the performance metric of relative entropy. Two antenna allocation schemes are proposed. In the first scheme, each antenna is allocated to illuminate a proper target over the entire illumination time, so that the detection performance of each target is guaranteed. The problem is formulated as a minimum makespan scheduling problem in the combinatorial optimization framework. Antenna allocation is implemented through a branch-and-bound algorithm and an enhanced factor 2 algorithm. In the second scheme, called antenna-time allocation, each antenna is allocated to illuminate different targets with different illumination time. Both antenna allocation and time allocation are optimized based on illumination probabilities. Over a large range of transmitted power, target fluctuations and target numbers, both of the proposed antenna allocation schemes outperform the scheme without antenna allocation. Moreover, the antenna-time allocation scheme achieves a more robust detection performance than branch-and-bound algorithm and the enhanced factor 2 algorithm when the target number changes. PMID:25350505
Antenna allocation in MIMO radar with widely separated antennas for multi-target detection.
Gao, Hao; Wang, Jian; Jiang, Chunxiao; Zhang, Xudong
2014-10-27
In this paper, we explore a new resource called multi-target diversity to optimize the performance of multiple input multiple output (MIMO) radar with widely separated antennas for detecting multiple targets. In particular, we allocate antennas of the MIMO radar to probe different targets simultaneously in a flexible manner based on the performance metric of relative entropy. Two antenna allocation schemes are proposed. In the first scheme, each antenna is allocated to illuminate a proper target over the entire illumination time, so that the detection performance of each target is guaranteed. The problem is formulated as a minimum makespan scheduling problem in the combinatorial optimization framework. Antenna allocation is implemented through a branch-and-bound algorithm and an enhanced factor 2 algorithm. In the second scheme, called antenna-time allocation, each antenna is allocated to illuminate different targets with different illumination time. Both antenna allocation and time allocation are optimized based on illumination probabilities. Over a large range of transmitted power, target fluctuations and target numbers, both of the proposed antenna allocation schemes outperform the scheme without antenna allocation. Moreover, the antenna-time allocation scheme achieves a more robust detection performance than branch-and-bound algorithm and the enhanced factor 2 algorithm when the target number changes.
NASA Technical Reports Server (NTRS)
Rash, James
2014-01-01
NASA's space data-communications infrastructure-the Space Network and the Ground Network-provide scheduled (as well as some limited types of unscheduled) data-communications services to user spacecraft. The Space Network operates several orbiting geostationary platforms (the Tracking and Data Relay Satellite System (TDRSS)), each with its own servicedelivery antennas onboard. The Ground Network operates service-delivery antennas at ground stations located around the world. Together, these networks enable data transfer between user spacecraft and their mission control centers on Earth. Scheduling data-communications events for spacecraft that use the NASA communications infrastructure-the relay satellites and the ground stations-can be accomplished today with software having an operational heritage dating from the 1980s or earlier. An implementation of the scheduling methods and algorithms disclosed and formally specified herein will produce globally optimized schedules with not only optimized service delivery by the space data-communications infrastructure but also optimized satisfaction of all user requirements and prescribed constraints, including radio frequency interference (RFI) constraints. Evolutionary algorithms, a class of probabilistic strategies for searching large solution spaces, is the essential technology invoked and exploited in this disclosure. Also disclosed are secondary methods and algorithms for optimizing the execution efficiency of the schedule-generation algorithms themselves. The scheduling methods and algorithms as presented are adaptable to accommodate the complexity of scheduling the civilian and/or military data-communications infrastructure within the expected range of future users and space- or ground-based service-delivery assets. Finally, the problem itself, and the methods and algorithms, are generalized and specified formally. The generalized methods and algorithms are applicable to a very broad class of combinatorial-optimization problems that encompasses, among many others, the problem of generating optimal space-data communications schedules.
NASA Technical Reports Server (NTRS)
Smith, Kelly M.
2016-01-01
NASA is scheduled to launch the Orion spacecraft atop the Space Launch System on Exploration Mission 1 in late 2018. When Orion returns from its lunar sortie, it will encounter Earth's atmosphere with speeds in excess of 11 kilometers per second, and Orion will attempt its first precision-guided skip entry. A suite of flight software algorithms collectively called the Entry Monitor has been developed in order to enhance crew situational awareness and enable high levels of onboard autonomy. The Entry Monitor determines the vehicle capability footprint in real-time, provides manual piloting cues, evaluates landing target feasibility, predicts the ballistic instantaneous impact point, and provides intelligent recommendations for alternative landing sites if the primary landing site is not achievable. The primary engineering challenges of the Entry Monitor is in the algorithmic implementation in making a highly reliable, efficient set of algorithms suitable for onboard applications.
Production scheduling and rescheduling with genetic algorithms.
Bierwirth, C; Mattfeld, D C
1999-01-01
A general model for job shop scheduling is described which applies to static, dynamic and non-deterministic production environments. Next, a Genetic Algorithm is presented which solves the job shop scheduling problem. This algorithm is tested in a dynamic environment under different workload situations. Thereby, a highly efficient decoding procedure is proposed which strongly improves the quality of schedules. Finally, this technique is tested for scheduling and rescheduling in a non-deterministic environment. It is shown by experiment that conventional methods of production control are clearly outperformed at reasonable run-time costs.
NASA Technical Reports Server (NTRS)
Rash, James L.
2010-01-01
NASA's space data-communications infrastructure, the Space Network and the Ground Network, provide scheduled (as well as some limited types of unscheduled) data-communications services to user spacecraft via orbiting relay satellites and ground stations. An implementation of the methods and algorithms disclosed herein will be a system that produces globally optimized schedules with not only optimized service delivery by the space data-communications infrastructure but also optimized satisfaction of all user requirements and prescribed constraints, including radio frequency interference (RFI) constraints. Evolutionary search, a class of probabilistic strategies for searching large solution spaces, constitutes the essential technology in this disclosure. Also disclosed are methods and algorithms for optimizing the execution efficiency of the schedule-generation algorithm itself. The scheduling methods and algorithms as presented are adaptable to accommodate the complexity of scheduling the civilian and/or military data-communications infrastructure. Finally, the problem itself, and the methods and algorithms, are generalized and specified formally, with applicability to a very broad class of combinatorial optimization problems.
A Solution Method of Job-shop Scheduling Problems by the Idle Time Shortening Type Genetic Algorithm
NASA Astrophysics Data System (ADS)
Ida, Kenichi; Osawa, Akira
In this paper, we propose a new idle time shortening method for Job-shop scheduling problems (JSPs). We insert its method into a genetic algorithm (GA). The purpose of JSP is to find a schedule with the minimum makespan. We suppose that it is effective to reduce idle time of a machine in order to improve the makespan. The left shift is a famous algorithm in existing algorithms for shortening idle time. The left shift can not arrange the work to idle time. For that reason, some idle times are not shortened by the left shift. We propose two kinds of algorithms which shorten such idle time. Next, we combine these algorithms and the reversal of a schedule. We apply GA with its algorithm to benchmark problems and we show its effectiveness.
Underwater Robot Task Planning Using Multi-Objective Meta-Heuristics
Landa-Torres, Itziar; Manjarres, Diana; Bilbao, Sonia; Del Ser, Javier
2017-01-01
Robotics deployed in the underwater medium are subject to stringent operational conditions that impose a high degree of criticality on the allocation of resources and the schedule of operations in mission planning. In this context the so-called cost of a mission must be considered as an additional criterion when designing optimal task schedules within the mission at hand. Such a cost can be conceived as the impact of the mission on the robotic resources themselves, which range from the consumption of battery to other negative effects such as mechanic erosion. This manuscript focuses on this issue by devising three heuristic solvers aimed at efficiently scheduling tasks in robotic swarms, which collaborate together to accomplish a mission, and by presenting experimental results obtained over realistic scenarios in the underwater environment. The heuristic techniques resort to a Random-Keys encoding strategy to represent the allocation of robots to tasks and the relative execution order of such tasks within the schedule of certain robots. The obtained results reveal interesting differences in terms of Pareto optimality and spread between the algorithms considered in the benchmark, which are insightful for the selection of a proper task scheduler in real underwater campaigns. PMID:28375160
Underwater Robot Task Planning Using Multi-Objective Meta-Heuristics.
Landa-Torres, Itziar; Manjarres, Diana; Bilbao, Sonia; Del Ser, Javier
2017-04-04
Robotics deployed in the underwater medium are subject to stringent operational conditions that impose a high degree of criticality on the allocation of resources and the schedule of operations in mission planning. In this context the so-called cost of a mission must be considered as an additional criterion when designing optimal task schedules within the mission at hand. Such a cost can be conceived as the impact of the mission on the robotic resources themselves, which range from the consumption of battery to other negative effects such as mechanic erosion. This manuscript focuses on this issue by devising three heuristic solvers aimed at efficiently scheduling tasks in robotic swarms, which collaborate together to accomplish a mission, and by presenting experimental results obtained over realistic scenarios in the underwater environment. The heuristic techniques resort to a Random-Keys encoding strategy to represent the allocation of robots to tasks and the relative execution order of such tasks within the schedule of certain robots. The obtained results reveal interesting differences in terms of Pareto optimality and spread between the algorithms considered in the benchmark, which are insightful for the selection of a proper task scheduler in real underwater campaigns.
NASA Technical Reports Server (NTRS)
Moore, J. E.
1975-01-01
An enumeration algorithm is presented for solving a scheduling problem similar to the single machine job shop problem with sequence dependent setup times. The scheduling problem differs from the job shop problem in two ways. First, its objective is to select an optimum subset of the available tasks to be performed during a fixed period of time. Secondly, each task scheduled is constrained to occur within its particular scheduling window. The algorithm is currently being used to develop typical observational timelines for a telescope that will be operated in earth orbit. Computational times associated with timeline development are presented.
An Algorithm for Automatically Modifying Train Crew Schedule
NASA Astrophysics Data System (ADS)
Takahashi, Satoru; Kataoka, Kenji; Kojima, Teruhito; Asami, Masayuki
Once the break-down of the train schedule occurs, the crew schedule as well as the train schedule has to be modified as quickly as possible to restore them. In this paper, we propose an algorithm for automatically modifying a crew schedule that takes all constraints into consideration, presenting a model of the combined problem of crews and trains. The proposed algorithm builds an initial solution by relaxing some of the constraint conditions, and then uses a Taboo-search method to revise this solution in order to minimize the degree of constraint violation resulting from these relaxed conditions. Then we show not only that the algorithm can generate a constraint satisfaction solution, but also that the solution will satisfy the experts. That is, we show the proposed algorithm is capable of producing a usable solution in a short time by applying to actual cases of train-schedule break-down, and that the solution is at least as good as those produced manually, by comparing the both solutions with several point of view.
T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors
Kim, Youngmin; Lee, Ki-Seong; Pham, Ngoc-Son; Lee, Sun-Ro; Lee, Chan-Gun
2016-01-01
Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM). Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction. PMID:27399722
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wayne F. Boyer; Gurdeep S. Hura
2005-09-01
The Problem of obtaining an optimal matching and scheduling of interdependent tasks in distributed heterogeneous computing (DHC) environments is well known to be an NP-hard problem. In a DHC system, task execution time is dependent on the machine to which it is assigned and task precedence constraints are represented by a directed acyclic graph. Recent research in evolutionary techniques has shown that genetic algorithms usually obtain more efficient schedules that other known algorithms. We propose a non-evolutionary random scheduling (RS) algorithm for efficient matching and scheduling of inter-dependent tasks in a DHC system. RS is a succession of randomized taskmore » orderings and a heuristic mapping from task order to schedule. Randomized task ordering is effectively a topological sort where the outcome may be any possible task order for which the task precedent constraints are maintained. A detailed comparison to existing evolutionary techniques (GA and PSGA) shows the proposed algorithm is less complex than evolutionary techniques, computes schedules in less time, requires less memory and fewer tuning parameters. Simulation results show that the average schedules produced by RS are approximately as efficient as PSGA schedules for all cases studied and clearly more efficient than PSGA for certain cases. The standard formulation for the scheduling problem addressed in this paper is Rm|prec|Cmax.,« less
A Dynamic Scheduling Method of Earth-Observing Satellites by Employing Rolling Horizon Strategy
Dishan, Qiu; Chuan, He; Jin, Liu; Manhao, Ma
2013-01-01
Focused on the dynamic scheduling problem for earth-observing satellites (EOS), an integer programming model is constructed after analyzing the main constraints. The rolling horizon (RH) strategy is proposed according to the independent arriving time and deadline of the imaging tasks. This strategy is designed with a mixed triggering mode composed of periodical triggering and event triggering, and the scheduling horizon is decomposed into a series of static scheduling intervals. By optimizing the scheduling schemes in each interval, the dynamic scheduling of EOS is realized. We also propose three dynamic scheduling algorithms by the combination of the RH strategy and various heuristic algorithms. Finally, the scheduling results of different algorithms are compared and the presented methods in this paper are demonstrated to be efficient by extensive experiments. PMID:23690742
A dynamic scheduling method of Earth-observing satellites by employing rolling horizon strategy.
Dishan, Qiu; Chuan, He; Jin, Liu; Manhao, Ma
2013-01-01
Focused on the dynamic scheduling problem for earth-observing satellites (EOS), an integer programming model is constructed after analyzing the main constraints. The rolling horizon (RH) strategy is proposed according to the independent arriving time and deadline of the imaging tasks. This strategy is designed with a mixed triggering mode composed of periodical triggering and event triggering, and the scheduling horizon is decomposed into a series of static scheduling intervals. By optimizing the scheduling schemes in each interval, the dynamic scheduling of EOS is realized. We also propose three dynamic scheduling algorithms by the combination of the RH strategy and various heuristic algorithms. Finally, the scheduling results of different algorithms are compared and the presented methods in this paper are demonstrated to be efficient by extensive experiments.
Cloud computing task scheduling strategy based on improved differential evolution algorithm
NASA Astrophysics Data System (ADS)
Ge, Junwei; He, Qian; Fang, Yiqiu
2017-04-01
In order to optimize the cloud computing task scheduling scheme, an improved differential evolution algorithm for cloud computing task scheduling is proposed. Firstly, the cloud computing task scheduling model, according to the model of the fitness function, and then used improved optimization calculation of the fitness function of the evolutionary algorithm, according to the evolution of generation of dynamic selection strategy through dynamic mutation strategy to ensure the global and local search ability. The performance test experiment was carried out in the CloudSim simulation platform, the experimental results show that the improved differential evolution algorithm can reduce the cloud computing task execution time and user cost saving, good implementation of the optimal scheduling of cloud computing tasks.
Scheduling in Sensor Grid Middleware for Telemedicine Using ABC Algorithm
Vigneswari, T.; Mohamed, M. A. Maluk
2014-01-01
Advances in microelectromechanical systems (MEMS) and nanotechnology have enabled design of low power wireless sensor nodes capable of sensing different vital signs in our body. These nodes can communicate with each other to aggregate data and transmit vital parameters to a base station (BS). The data collected in the base station can be used to monitor health in real time. The patient wearing sensors may be mobile leading to aggregation of data from different BS for processing. Processing real time data is compute-intensive and telemedicine facilities may not have appropriate hardware to process the real time data effectively. To overcome this, sensor grid has been proposed in literature wherein sensor data is integrated to the grid for processing. This work proposes a scheduling algorithm to efficiently process telemedicine data in the grid. The proposed algorithm uses the popular swarm intelligence algorithm for scheduling to overcome the NP complete problem of grid scheduling. Results compared with other heuristic scheduling algorithms show the effectiveness of the proposed algorithm. PMID:25548557
ComprehensiveBench: a Benchmark for the Extensive Evaluation of Global Scheduling Algorithms
NASA Astrophysics Data System (ADS)
Pilla, Laércio L.; Bozzetti, Tiago C.; Castro, Márcio; Navaux, Philippe O. A.; Méhaut, Jean-François
2015-10-01
Parallel applications that present tasks with imbalanced loads or complex communication behavior usually do not exploit the underlying resources of parallel platforms to their full potential. In order to mitigate this issue, global scheduling algorithms are employed. As finding the optimal task distribution is an NP-Hard problem, identifying the most suitable algorithm for a specific scenario and comparing algorithms are not trivial tasks. In this context, this paper presents ComprehensiveBench, a benchmark for global scheduling algorithms that enables the variation of a vast range of parameters that affect performance. ComprehensiveBench can be used to assist in the development and evaluation of new scheduling algorithms, to help choose a specific algorithm for an arbitrary application, to emulate other applications, and to enable statistical tests. We illustrate its use in this paper with an evaluation of Charm++ periodic load balancers that stresses their characteristics.
A dynamic scheduling algorithm for singe-arm two-cluster tools with flexible processing times
NASA Astrophysics Data System (ADS)
Li, Xin; Fung, Richard Y. K.
2018-02-01
This article presents a dynamic algorithm for job scheduling in two-cluster tools producing multi-type wafers with flexible processing times. Flexible processing times mean that the actual times for processing wafers should be within given time intervals. The objective of the work is to minimize the completion time of the newly inserted wafer. To deal with this issue, a two-cluster tool is decomposed into three reduced single-cluster tools (RCTs) in a series based on a decomposition approach proposed in this article. For each single-cluster tool, a dynamic scheduling algorithm based on temporal constraints is developed to schedule the newly inserted wafer. Three experiments have been carried out to test the dynamic scheduling algorithm proposed, comparing with the results the 'earliest starting time' heuristic (EST) adopted in previous literature. The results show that the dynamic algorithm proposed in this article is effective and practical.
Scheduling logic for Miles-In-Trail traffic management
NASA Technical Reports Server (NTRS)
Synnestvedt, Robert G.; Swenson, Harry; Erzberger, Heinz
1995-01-01
This paper presents an algorithm which can be used for scheduling arrival air traffic in an Air Route Traffic Control Center (ARTCC or Center) entering a Terminal Radar Approach Control (TRACON) Facility . The algorithm aids a Traffic Management Coordinator (TMC) in deciding how to restrict traffic while the traffic expected to arrive in the TRACON exceeds the TRACON capacity. The restrictions employed fall under the category of Miles-in-Trail, one of two principal traffic separation techniques used in scheduling arrival traffic . The algorithm calculates aircraft separations for each stream of aircraft destined to the TRACON. The calculations depend upon TRACON characteristics, TMC preferences, and other parameters adapted to the specific needs of scheduling traffic in a Center. Some preliminary results of traffic simulations scheduled by this algorithm are presented, and conclusions are drawn as to the effectiveness of using this algorithm in different traffic scenarios.
Particle swarm optimization based space debris surveillance network scheduling
NASA Astrophysics Data System (ADS)
Jiang, Hai; Liu, Jing; Cheng, Hao-Wen; Zhang, Yao
2017-02-01
The increasing number of space debris has created an orbital debris environment that poses increasing impact risks to existing space systems and human space flights. For the safety of in-orbit spacecrafts, we should optimally schedule surveillance tasks for the existing facilities to allocate resources in a manner that most significantly improves the ability to predict and detect events involving affected spacecrafts. This paper analyzes two criteria that mainly affect the performance of a scheduling scheme and introduces an artificial intelligence algorithm into the scheduling of tasks of the space debris surveillance network. A new scheduling algorithm based on the particle swarm optimization algorithm is proposed, which can be implemented in two different ways: individual optimization and joint optimization. Numerical experiments with multiple facilities and objects are conducted based on the proposed algorithm, and simulation results have demonstrated the effectiveness of the proposed algorithm.
Algorithm comparison for schedule optimization in MR fingerprinting.
Cohen, Ouri; Rosen, Matthew S
2017-09-01
In MR Fingerprinting, the flip angles and repetition times are chosen according to a pseudorandom schedule. In previous work, we have shown that maximizing the discrimination between different tissue types by optimizing the acquisition schedule allows reductions in the number of measurements required. The ideal optimization algorithm for this application remains unknown, however. In this work we examine several different optimization algorithms to determine the one best suited for optimizing MR Fingerprinting acquisition schedules. Copyright © 2017 Elsevier Inc. All rights reserved.
Scheduling nursing personnel on a microcomputer.
Liao, C J; Kao, C Y
1997-01-01
Suggests that with the shortage of nursing personnel, hospital administrators have to pay more attention to the needs of nurses to retain and recruit them. Also asserts that improving nurses' schedules is one of the most economic ways for the hospital administration to create a better working environment for nurses. Develops an algorithm for scheduling nursing personnel. Contrary to the current hospital approach, which schedules nurses on a person-by-person basis, the proposed algorithm constructs schedules on a day-by-day basis. The algorithm has inherent flexibility in handling a variety of possible constraints and goals, similar to other non-cyclical approaches. But, unlike most other non-cyclical approaches, it can also generate a quality schedule in a short time on a microcomputer. The algorithm was coded in C language and run on a microcomputer. The developed software is currently implemented at a leading hospital in Taiwan. The response to the initial implementation is quite promising.
A distributed scheduling algorithm for heterogeneous real-time systems
NASA Technical Reports Server (NTRS)
Zeineldine, Osman; El-Toweissy, Mohamed; Mukkamala, Ravi
1991-01-01
Much of the previous work on load balancing and scheduling in distributed environments was concerned with homogeneous systems and homogeneous loads. Several of the results indicated that random policies are as effective as other more complex load allocation policies. The effects of heterogeneity on scheduling algorithms for hard real time systems is examined. A distributed scheduler specifically to handle heterogeneities in both nodes and node traffic is proposed. The performance of the algorithm is measured in terms of the percentage of jobs discarded. While a random task allocation is very sensitive to heterogeneities, the algorithm is shown to be robust to such non-uniformities in system components and load.
A Scheduling Algorithm for Cloud Computing System Based on the Driver of Dynamic Essential Path.
Xie, Zhiqiang; Shao, Xia; Xin, Yu
2016-01-01
To solve the problem of task scheduling in the cloud computing system, this paper proposes a scheduling algorithm for cloud computing based on the driver of dynamic essential path (DDEP). This algorithm applies a predecessor-task layer priority strategy to solve the problem of constraint relations among task nodes. The strategy assigns different priority values to every task node based on the scheduling order of task node as affected by the constraint relations among task nodes, and the task node list is generated by the different priority value. To address the scheduling order problem in which task nodes have the same priority value, the dynamic essential long path strategy is proposed. This strategy computes the dynamic essential path of the pre-scheduling task nodes based on the actual computation cost and communication cost of task node in the scheduling process. The task node that has the longest dynamic essential path is scheduled first as the completion time of task graph is indirectly influenced by the finishing time of task nodes in the longest dynamic essential path. Finally, we demonstrate the proposed algorithm via simulation experiments using Matlab tools. The experimental results indicate that the proposed algorithm can effectively reduce the task Makespan in most cases and meet a high quality performance objective.
A Scheduling Algorithm for Cloud Computing System Based on the Driver of Dynamic Essential Path
Xie, Zhiqiang; Shao, Xia; Xin, Yu
2016-01-01
To solve the problem of task scheduling in the cloud computing system, this paper proposes a scheduling algorithm for cloud computing based on the driver of dynamic essential path (DDEP). This algorithm applies a predecessor-task layer priority strategy to solve the problem of constraint relations among task nodes. The strategy assigns different priority values to every task node based on the scheduling order of task node as affected by the constraint relations among task nodes, and the task node list is generated by the different priority value. To address the scheduling order problem in which task nodes have the same priority value, the dynamic essential long path strategy is proposed. This strategy computes the dynamic essential path of the pre-scheduling task nodes based on the actual computation cost and communication cost of task node in the scheduling process. The task node that has the longest dynamic essential path is scheduled first as the completion time of task graph is indirectly influenced by the finishing time of task nodes in the longest dynamic essential path. Finally, we demonstrate the proposed algorithm via simulation experiments using Matlab tools. The experimental results indicate that the proposed algorithm can effectively reduce the task Makespan in most cases and meet a high quality performance objective. PMID:27490901
NASA Astrophysics Data System (ADS)
Zhao, Wei-hu; Zhao, Jing; Zhao, Shang-hong; Li, Yong-jun; Wang, Xiang; Dong, Yi; Dong, Chen
2013-08-01
Optical satellite communication with the advantages of broadband, large capacity and low power consuming broke the bottleneck of the traditional microwave satellite communication. The formation of the Space-based Information System with the technology of high performance optical inter-satellite communication and the realization of global seamless coverage and mobile terminal accessing are the necessary trend of the development of optical satellite communication. Considering the resources, missions and restraints of Data Relay Satellite Optical Communication System, a model of optical communication resources scheduling is established and a scheduling algorithm based on artificial intelligent optimization is put forwarded. According to the multi-relay-satellite, multi-user-satellite, multi-optical-antenna and multi-mission with several priority weights, the resources are scheduled reasonable by the operation: "Ascertain Current Mission Scheduling Time" and "Refresh Latter Mission Time-Window". The priority weight is considered as the parameter of the fitness function and the scheduling project is optimized by the Genetic Algorithm. The simulation scenarios including 3 relay satellites with 6 optical antennas, 12 user satellites and 30 missions, the simulation result reveals that the algorithm obtain satisfactory results in both efficiency and performance and resources scheduling model and the optimization algorithm are suitable in multi-relay-satellite, multi-user-satellite, and multi-optical-antenna recourses scheduling problem.
Routing and Scheduling Algorithms for WirelessHART Networks: A Survey
Nobre, Marcelo; Silva, Ivanovitch; Guedes, Luiz Affonso
2015-01-01
Wireless communication is a trend nowadays for the industrial environment. A number of different technologies have emerged as solutions satisfying strict industrial requirements (e.g., WirelessHART, ISA100.11a, WIA-PA). As the industrial environment presents a vast range of applications, adopting an adequate solution for each case is vital to obtain good performance of the system. In this context, the routing and scheduling schemes associated with these technologies have a direct impact on important features, like latency and energy consumption. This situation has led to the development of a vast number of routing and scheduling schemes. In the present paper, we focus on the WirelessHART technology, emphasizing its most important routing and scheduling aspects in order to guide both end users and the developers of new algorithms. Furthermore, we provide a detailed literature review of the newest routing and scheduling techniques for WirelessHART, discussing each of their features. These routing algorithms have been evaluated in terms of their objectives, metrics, the usage of the WirelessHART structures and validation method. In addition, the scheduling algorithms were also evaluated by metrics, validation, objectives and, in addition, by multiple superframe support, as well as by the redundancy method used. Moreover, this paper briefly presents some insights into the main WirelessHART simulation modules available, in order to provide viable test platforms for the routing and scheduling algorithms. Finally, some open issues in WirelessHART routing and scheduling algorithms are discussed. PMID:25919371
Job shop scheduling problem with late work criterion
NASA Astrophysics Data System (ADS)
Piroozfard, Hamed; Wong, Kuan Yew
2015-05-01
Scheduling is considered as a key task in many industries, such as project based scheduling, crew scheduling, flight scheduling, machine scheduling, etc. In the machine scheduling area, the job shop scheduling problems are considered to be important and highly complex, in which they are characterized as NP-hard. The job shop scheduling problems with late work criterion and non-preemptive jobs are addressed in this paper. Late work criterion is a fairly new objective function. It is a qualitative measure and concerns with late parts of the jobs, unlike classical objective functions that are quantitative measures. In this work, simulated annealing was presented to solve the scheduling problem. In addition, operation based representation was used to encode the solution, and a neighbourhood search structure was employed to search for the new solutions. The case studies are Lawrence instances that were taken from the Operations Research Library. Computational results of this probabilistic meta-heuristic algorithm were compared with a conventional genetic algorithm, and a conclusion was made based on the algorithm and problem.
An Extended Deterministic Dendritic Cell Algorithm for Dynamic Job Shop Scheduling
NASA Astrophysics Data System (ADS)
Qiu, X. N.; Lau, H. Y. K.
The problem of job shop scheduling in a dynamic environment where random perturbation exists in the system is studied. In this paper, an extended deterministic Dendritic Cell Algorithm (dDCA) is proposed to solve such a dynamic Job Shop Scheduling Problem (JSSP) where unexpected events occurred randomly. This algorithm is designed based on dDCA and makes improvements by considering all types of signals and the magnitude of the output values. To evaluate this algorithm, ten benchmark problems are chosen and different kinds of disturbances are injected randomly. The results show that the algorithm performs competitively as it is capable of triggering the rescheduling process optimally with much less run time for deciding the rescheduling action. As such, the proposed algorithm is able to minimize the rescheduling times under the defined objective and to keep the scheduling process stable and efficient.
Gauger, Paul G; Davis, Janice W; Orr, Peter J
2002-09-01
Administration of graduate medical education programs has become more difficult as compliance with ACGME work guidelines has assumed increased importance. These guidelines have caused many changes in the resident work environment, including the emergence of complicated cross-cover arrangements. Many participating residents (each with his or her own individual scheduling requirements) usually generate these schedules. Accordingly, schedules are often not submitted in a timely fashion and they may not be in compliance with the ACGME guidelines for maximum on-call assignments and mandatory days off. Our objective was the establishment of a Web-based system that guides residents in creating on-call schedules that follow ACGME guidelines while still allowing maximum flexibility -- thus allowing each resident to maintain an internal locus of control. A versatile and scalable system with password-protected user (resident) and administrator interfaces was created. An entire academic year is included, and past months and years are automatically archived. The residents log on within the first 15 days of the preceding month and choose their positions in a schedule template. They then make adjustments while receiving immediate summary feedback on compliance with ACGME guidelines. The schedule is electronically submitted to the educational administrator for final approval. If a cross-cover system is required, the program automatically generates an optimal schedule using both of the approved participating service schedules. The residents then have an additional five-day period to make adjustments in the cross-cover schedule while still receiving compliance feedback. The administrator again provides final approval electronically. The communication interface automatically pages or e-mails the residents when schedules are updated or approved. Since the information exists in a relational database, simple reporting tools are included to extract the information necessary to generate records for institutional GME management. Implementation of this program has been met with great enthusiasm from the institutional stakeholders. Specifically, residents have embraced the ability to directly control their schedules and have gained appreciation for the regulatory matrix in which they function. Institutional administrators have praised the improvement in compliance and the ease of documentation. We anticipate that the system will also meet with approval from reviewing regulatory bodies, as it generates and stores accurate information about the resident work environment. This program is robust and versatile enough to be modified for any GME training program in the country.
Charge scheduling of an energy storage system under time-of-use pricing and a demand charge.
Yoon, Yourim; Kim, Yong-Hyuk
2014-01-01
A real-coded genetic algorithm is used to schedule the charging of an energy storage system (ESS), operated in tandem with renewable power by an electricity consumer who is subject to time-of-use pricing and a demand charge. Simulations based on load and generation profiles of typical residential customers show that an ESS scheduled by our algorithm can reduce electricity costs by approximately 17%, compared to a system without an ESS and by 8% compared to a scheduling algorithm based on net power.
Charge Scheduling of an Energy Storage System under Time-of-Use Pricing and a Demand Charge
Yoon, Yourim
2014-01-01
A real-coded genetic algorithm is used to schedule the charging of an energy storage system (ESS), operated in tandem with renewable power by an electricity consumer who is subject to time-of-use pricing and a demand charge. Simulations based on load and generation profiles of typical residential customers show that an ESS scheduled by our algorithm can reduce electricity costs by approximately 17%, compared to a system without an ESS and by 8% compared to a scheduling algorithm based on net power. PMID:25197720
Algorithm of composing the schedule of construction and installation works
NASA Astrophysics Data System (ADS)
Nehaj, Rustam; Molotkov, Georgij; Rudchenko, Ivan; Grinev, Anatolij; Sekisov, Aleksandr
2017-10-01
An algorithm for scheduling works is developed, in which the priority of the work corresponds to the total weight of the subordinate works, the vertices of the graph, and it is proved that for graphs of the tree type the algorithm is optimal. An algorithm is synthesized to reduce the search for solutions when drawing up schedules of construction and installation works, allocating a subset with the optimal solution of the problem of the minimum power, which is determined by the structure of its initial data and numerical values. An algorithm for scheduling construction and installation work is developed, taking into account the schedule for the movement of brigades, which is characterized by the possibility to efficiently calculate the values of minimizing the time of work performance by the parameters of organizational and technological reliability through the use of the branch and boundary method. The program of the computational algorithm was compiled in the MatLAB-2008 program. For the initial data of the matrix, random numbers were taken, uniformly distributed in the range from 1 to 100. It takes 0.5; 2.5; 7.5; 27 minutes to solve the problem. Thus, the proposed method for estimating the lower boundary of the solution is sufficiently accurate and allows efficient solution of the minimax task of scheduling construction and installation works.
A modified genetic algorithm with fuzzy roulette wheel selection for job-shop scheduling problems
NASA Astrophysics Data System (ADS)
Thammano, Arit; Teekeng, Wannaporn
2015-05-01
The job-shop scheduling problem is one of the most difficult production planning problems. Since it is in the NP-hard class, a recent trend in solving the job-shop scheduling problem is shifting towards the use of heuristic and metaheuristic algorithms. This paper proposes a novel metaheuristic algorithm, which is a modification of the genetic algorithm. This proposed algorithm introduces two new concepts to the standard genetic algorithm: (1) fuzzy roulette wheel selection and (2) the mutation operation with tabu list. The proposed algorithm has been evaluated and compared with several state-of-the-art algorithms in the literature. The experimental results on 53 JSSPs show that the proposed algorithm is very effective in solving the combinatorial optimization problems. It outperforms all state-of-the-art algorithms on all benchmark problems in terms of the ability to achieve the optimal solution and the computational time.
Car painting process scheduling with harmony search algorithm
NASA Astrophysics Data System (ADS)
Syahputra, M. F.; Maiyasya, A.; Purnamawati, S.; Abdullah, D.; Albra, W.; Heikal, M.; Abdurrahman, A.; Khaddafi, M.
2018-02-01
Automotive painting program in the process of painting the car body by using robot power, making efficiency in the production system. Production system will be more efficient if pay attention to scheduling of car order which will be done by considering painting body shape of car. Flow shop scheduling is a scheduling model in which the job-job to be processed entirely flows in the same product direction / path. Scheduling problems often arise if there are n jobs to be processed on the machine, which must be specified which must be done first and how to allocate jobs on the machine to obtain a scheduled production process. Harmony Search Algorithm is a metaheuristic optimization algorithm based on music. The algorithm is inspired by observations that lead to music in search of perfect harmony. This musical harmony is in line to find optimal in the optimization process. Based on the tests that have been done, obtained the optimal car sequence with minimum makespan value.
Scheduling Earth Observing Satellites with Evolutionary Algorithms
NASA Technical Reports Server (NTRS)
Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna
2003-01-01
We hypothesize that evolutionary algorithms can effectively schedule coordinated fleets of Earth observing satellites. The constraints are complex and the bottlenecks are not well understood, a condition where evolutionary algorithms are often effective. This is, in part, because evolutionary algorithms require only that one can represent solutions, modify solutions, and evaluate solution fitness. To test the hypothesis we have developed a representative set of problems, produced optimization software (in Java) to solve them, and run experiments comparing techniques. This paper presents initial results of a comparison of several evolutionary and other optimization techniques; namely the genetic algorithm, simulated annealing, squeaky wheel optimization, and stochastic hill climbing. We also compare separate satellite vs. integrated scheduling of a two satellite constellation. While the results are not definitive, tests to date suggest that simulated annealing is the best search technique and integrated scheduling is superior.
Seol, Ye-In; Kim, Young-Kuk
2014-01-01
Power-aware scheduling reduces CPU energy consumption in hard real-time systems through dynamic voltage scaling (DVS). In this paper, we deal with pinwheel task model which is known as static and predictable task model and could be applied to various embedded or ubiquitous systems. In pinwheel task model, each task's priority is static and its execution sequence could be predetermined. There have been many static approaches to power-aware scheduling in pinwheel task model. But, in this paper, we will show that the dynamic priority scheduling results in power-aware scheduling could be applied to pinwheel task model. This method is more effective than adopting the previous static priority scheduling methods in saving energy consumption and, for the system being still static, it is more tractable and applicable to small sized embedded or ubiquitous computing. Also, we introduce a novel power-aware scheduling algorithm which exploits all slacks under preemptive earliest-deadline first scheduling which is optimal in uniprocessor system. The dynamic priority method presented in this paper could be applied directly to static systems of pinwheel task model. The simulation results show that the proposed algorithm with the algorithmic complexity of O(n) reduces the energy consumption by 10-80% over the existing algorithms.
2014-01-01
Power-aware scheduling reduces CPU energy consumption in hard real-time systems through dynamic voltage scaling (DVS). In this paper, we deal with pinwheel task model which is known as static and predictable task model and could be applied to various embedded or ubiquitous systems. In pinwheel task model, each task's priority is static and its execution sequence could be predetermined. There have been many static approaches to power-aware scheduling in pinwheel task model. But, in this paper, we will show that the dynamic priority scheduling results in power-aware scheduling could be applied to pinwheel task model. This method is more effective than adopting the previous static priority scheduling methods in saving energy consumption and, for the system being still static, it is more tractable and applicable to small sized embedded or ubiquitous computing. Also, we introduce a novel power-aware scheduling algorithm which exploits all slacks under preemptive earliest-deadline first scheduling which is optimal in uniprocessor system. The dynamic priority method presented in this paper could be applied directly to static systems of pinwheel task model. The simulation results show that the proposed algorithm with the algorithmic complexity of O(n) reduces the energy consumption by 10–80% over the existing algorithms. PMID:25121126
On program restructuring, scheduling, and communication for parallel processor systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polychronopoulos, Constantine D.
1986-08-01
This dissertation discusses several software and hardware aspects of program execution on large-scale, high-performance parallel processor systems. The issues covered are program restructuring, partitioning, scheduling and interprocessor communication, synchronization, and hardware design issues of specialized units. All this work was performed focusing on a single goal: to maximize program speedup, or equivalently, to minimize parallel execution time. Parafrase, a Fortran restructuring compiler was used to transform programs in a parallel form and conduct experiments. Two new program restructuring techniques are presented, loop coalescing and subscript blocking. Compile-time and run-time scheduling schemes are covered extensively. Depending on the program construct, thesemore » algorithms generate optimal or near-optimal schedules. For the case of arbitrarily nested hybrid loops, two optimal scheduling algorithms for dynamic and static scheduling are presented. Simulation results are given for a new dynamic scheduling algorithm. The performance of this algorithm is compared to that of self-scheduling. Techniques for program partitioning and minimization of interprocessor communication for idealized program models and for real Fortran programs are also discussed. The close relationship between scheduling, interprocessor communication, and synchronization becomes apparent at several points in this work. Finally, the impact of various types of overhead on program speedup and experimental results are presented.« less
NASA Astrophysics Data System (ADS)
Li, Chen; Lu, Zhiqiang; Han, Xiaole; Zhang, Yuejun; Wang, Li
2016-03-01
The integrated scheduling of container handling systems aims to optimize the coordination and overall utilization of all handling equipment, so as to minimize the makespan of a given set of container tasks. A modified disjunctive graph is proposed and a mixed 0-1 programming model is formulated. A heuristic algorithm is presented, in which the original problem is divided into two subproblems. In the first subproblem, contiguous bay crane operations are applied to obtain a good quay crane schedule. In the second subproblem, proper internal truck and yard crane schedules are generated to match the given quay crane schedule. Furthermore, a genetic algorithm based on the heuristic algorithm is developed to search for better solutions. The computational results show that the proposed algorithm can efficiently find high-quality solutions. They also indicate the effectiveness of simultaneous loading and discharging operations compared with separate ones.
A controlled genetic algorithm by fuzzy logic and belief functions for job-shop scheduling.
Hajri, S; Liouane, N; Hammadi, S; Borne, P
2000-01-01
Most scheduling problems are highly complex combinatorial problems. However, stochastic methods such as genetic algorithm yield good solutions. In this paper, we present a controlled genetic algorithm (CGA) based on fuzzy logic and belief functions to solve job-shop scheduling problems. For better performance, we propose an efficient representational scheme, heuristic rules for creating the initial population, and a new methodology for mixing and computing genetic operator probabilities.
Optimal recombination in genetic algorithms for flowshop scheduling problems
NASA Astrophysics Data System (ADS)
Kovalenko, Julia
2016-10-01
The optimal recombination problem consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We prove NP-hardness of the optimal recombination for various variants of the flowshop scheduling problem with makespan criterion and criterion of maximum lateness. An algorithm for solving the optimal recombination problem for permutation flowshop problems is built, using enumeration of prefect matchings in a special bipartite graph. The algorithm is adopted for the classical flowshop scheduling problem and for the no-wait flowshop problem. It is shown that the optimal recombination problem for the permutation flowshop scheduling problem is solvable in polynomial time for almost all pairs of parent solutions as the number of jobs tends to infinity.
Scheduling Earth Observing Fleets Using Evolutionary Algorithms: Problem Description and Approach
NASA Technical Reports Server (NTRS)
Globus, Al; Crawford, James; Lohn, Jason; Morris, Robert; Clancy, Daniel (Technical Monitor)
2002-01-01
We describe work in progress concerning multi-instrument, multi-satellite scheduling. Most, although not all, Earth observing instruments currently in orbit are unique. In the relatively near future, however, we expect to see fleets of Earth observing spacecraft, many carrying nearly identical instruments. This presents a substantially new scheduling challenge. Inspired by successful commercial applications of evolutionary algorithms in scheduling domains, this paper presents work in progress regarding the use of evolutionary algorithms to solve a set of Earth observing related model problems. Both the model problems and the software are described. Since the larger problems will require substantial computation and evolutionary algorithms are embarrassingly parallel, we discuss our parallelization techniques using dedicated and cycle-scavenged workstations.
NASA Technical Reports Server (NTRS)
Morrell, R. A.; Odoherty, R. J.; Ramsey, H. R.; Reynolds, C. C.; Willoughby, J. K.; Working, R. D.
1975-01-01
Data and analyses related to a variety of algorithms for solving typical large-scale scheduling and resource allocation problems are presented. The capabilities and deficiencies of various alternative problem solving strategies are discussed from the viewpoint of computer system design.
A scheduling algorithm for Spacelab telescope observations
NASA Technical Reports Server (NTRS)
Grone, B.
1982-01-01
An algorithm is developed for sequencing and scheduling of observations of stellar targets by equipment on Spacelab. The method is a general one. The scheduling problem is defined and examined. The method developed for its solution is documented. Suggestions for further development and implementation of this method are made.
A De-centralized Scheduling and Load Balancing Algorithm for Heterogeneous Grid Environments
NASA Technical Reports Server (NTRS)
Arora, Manish; Das, Sajal K.; Biswas, Rupak
2002-01-01
In the past two decades, numerous scheduling and load balancing techniques have been proposed for locally distributed multiprocessor systems. However, they all suffer from significant deficiencies when extended to a Grid environment: some use a centralized approach that renders the algorithm unscalable, while others assume the overhead involved in searching for appropriate resources to be negligible. Furthermore, classical scheduling algorithms do not consider a Grid node to be N-resource rich and merely work towards maximizing the utilization of one of the resources. In this paper, we propose a new scheduling and load balancing algorithm for a generalized Grid model of N-resource nodes that not only takes into account the node and network heterogeneity, but also considers the overhead involved in coordinating among the nodes. Our algorithm is decentralized, scalable, and overlaps the node coordination time with that of the actual processing of ready jobs, thus saving valuable clock cycles needed for making decisions. The proposed algorithm is studied by conducting simulations using the Message Passing Interface (MPI) paradigm.
A De-Centralized Scheduling and Load Balancing Algorithm for Heterogeneous Grid Environments
NASA Technical Reports Server (NTRS)
Arora, Manish; Das, Sajal K.; Biswas, Rupak; Biegel, Bryan (Technical Monitor)
2002-01-01
In the past two decades, numerous scheduling and load balancing techniques have been proposed for locally distributed multiprocessor systems. However, they all suffer from significant deficiencies when extended to a Grid environment: some use a centralized approach that renders the algorithm unscalable, while others assume the overhead involved in searching for appropriate resources to be negligible. Furthermore, classical scheduling algorithms do not consider a Grid node to be N-resource rich and merely work towards maximizing the utilization of one of the resources. In this paper we propose a new scheduling and load balancing algorithm for a generalized Grid model of N-resource nodes that not only takes into account the node and network heterogeneity, but also considers the overhead involved in coordinating among the nodes. Our algorithm is de-centralized, scalable, and overlaps the node coordination time of the actual processing of ready jobs, thus saving valuable clock cycles needed for making decisions. The proposed algorithm is studied by conducting simulations using the Message Passing Interface (MPI) paradigm.
Madni, Syed Hamid Hussain; Abd Latiff, Muhammad Shafie; Abdullahi, Mohammed; Abdulhamid, Shafi'i Muhammad; Usman, Mohammed Joda
2017-01-01
Cloud computing infrastructure is suitable for meeting computational needs of large task sizes. Optimal scheduling of tasks in cloud computing environment has been proved to be an NP-complete problem, hence the need for the application of heuristic methods. Several heuristic algorithms have been developed and used in addressing this problem, but choosing the appropriate algorithm for solving task assignment problem of a particular nature is difficult since the methods are developed under different assumptions. Therefore, six rule based heuristic algorithms are implemented and used to schedule autonomous tasks in homogeneous and heterogeneous environments with the aim of comparing their performance in terms of cost, degree of imbalance, makespan and throughput. First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution Time (MET), Max-min, Min-min and Sufferage are the heuristic algorithms considered for the performance comparison and analysis of task scheduling in cloud computing.
Madni, Syed Hamid Hussain; Abd Latiff, Muhammad Shafie; Abdullahi, Mohammed; Usman, Mohammed Joda
2017-01-01
Cloud computing infrastructure is suitable for meeting computational needs of large task sizes. Optimal scheduling of tasks in cloud computing environment has been proved to be an NP-complete problem, hence the need for the application of heuristic methods. Several heuristic algorithms have been developed and used in addressing this problem, but choosing the appropriate algorithm for solving task assignment problem of a particular nature is difficult since the methods are developed under different assumptions. Therefore, six rule based heuristic algorithms are implemented and used to schedule autonomous tasks in homogeneous and heterogeneous environments with the aim of comparing their performance in terms of cost, degree of imbalance, makespan and throughput. First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution Time (MET), Max-min, Min-min and Sufferage are the heuristic algorithms considered for the performance comparison and analysis of task scheduling in cloud computing. PMID:28467505
Experiments with a Parallel Multi-Objective Evolutionary Algorithm for Scheduling
NASA Technical Reports Server (NTRS)
Brown, Matthew; Johnston, Mark D.
2013-01-01
Evolutionary multi-objective algorithms have great potential for scheduling in those situations where tradeoffs among competing objectives represent a key requirement. One challenge, however, is runtime performance, as a consequence of evolving not just a single schedule, but an entire population, while attempting to sample the Pareto frontier as accurately and uniformly as possible. The growing availability of multi-core processors in end user workstations, and even laptops, has raised the question of the extent to which such hardware can be used to speed up evolutionary algorithms. In this paper we report on early experiments in parallelizing a Generalized Differential Evolution (GDE) algorithm for scheduling long-range activities on NASA's Deep Space Network. Initial results show that significant speedups can be achieved, but that performance does not necessarily improve as more cores are utilized. We describe our preliminary results and some initial suggestions from parallelizing the GDE algorithm. Directions for future work are outlined.
Scheduling for the National Hockey League Using a Multi-objective Evolutionary Algorithm
NASA Astrophysics Data System (ADS)
Craig, Sam; While, Lyndon; Barone, Luigi
We describe a multi-objective evolutionary algorithm that derives schedules for the National Hockey League according to three objectives: minimising the teams' total travel, promoting equity in rest time between games, and minimising long streaks of home or away games. Experiments show that the system is able to derive schedules that beat the 2008-9 NHL schedule in all objectives simultaneously, and that it returns a set of schedules that offer a range of trade-offs across the objectives.
Job Scheduling with Efficient Resource Monitoring in Cloud Datacenter
Loganathan, Shyamala; Mukherjee, Saswati
2015-01-01
Cloud computing is an on-demand computing model, which uses virtualization technology to provide cloud resources to users in the form of virtual machines through internet. Being an adaptable technology, cloud computing is an excellent alternative for organizations for forming their own private cloud. Since the resources are limited in these private clouds maximizing the utilization of resources and giving the guaranteed service for the user are the ultimate goal. For that, efficient scheduling is needed. This research reports on an efficient data structure for resource management and resource scheduling technique in a private cloud environment and discusses a cloud model. The proposed scheduling algorithm considers the types of jobs and the resource availability in its scheduling decision. Finally, we conducted simulations using CloudSim and compared our algorithm with other existing methods, like V-MCT and priority scheduling algorithms. PMID:26473166
Xing, KeYi; Han, LiBin; Zhou, MengChu; Wang, Feng
2012-06-01
Deadlock-free control and scheduling are vital for optimizing the performance of automated manufacturing systems (AMSs) with shared resources and route flexibility. Based on the Petri net models of AMSs, this paper embeds the optimal deadlock avoidance policy into the genetic algorithm and develops a novel deadlock-free genetic scheduling algorithm for AMSs. A possible solution of the scheduling problem is coded as a chromosome representation that is a permutation with repetition of parts. By using the one-step look-ahead method in the optimal deadlock control policy, the feasibility of a chromosome is checked, and infeasible chromosomes are amended into feasible ones, which can be easily decoded into a feasible deadlock-free schedule. The chromosome representation and polynomial complexity of checking and amending procedures together support the cooperative aspect of genetic search for scheduling problems strongly.
Job Scheduling with Efficient Resource Monitoring in Cloud Datacenter.
Loganathan, Shyamala; Mukherjee, Saswati
2015-01-01
Cloud computing is an on-demand computing model, which uses virtualization technology to provide cloud resources to users in the form of virtual machines through internet. Being an adaptable technology, cloud computing is an excellent alternative for organizations for forming their own private cloud. Since the resources are limited in these private clouds maximizing the utilization of resources and giving the guaranteed service for the user are the ultimate goal. For that, efficient scheduling is needed. This research reports on an efficient data structure for resource management and resource scheduling technique in a private cloud environment and discusses a cloud model. The proposed scheduling algorithm considers the types of jobs and the resource availability in its scheduling decision. Finally, we conducted simulations using CloudSim and compared our algorithm with other existing methods, like V-MCT and priority scheduling algorithms.
A novel downlink scheduling strategy for traffic communication system based on TD-LTE technology.
Chen, Ting; Zhao, Xiangmo; Gao, Tao; Zhang, Licheng
2016-01-01
There are many existing classical scheduling algorithms which can obtain better system throughput and user equality, however, they are not designed for traffic transportation environment, which cannot consider whether the transmission performance of various information flows could meet comprehensive requirements of traffic safety and delay tolerance. This paper proposes a novel downlink scheduling strategy for traffic communication system based on TD-LTE technology, which can perform two classification mappings for various information flows in the eNodeB: firstly, associate every information flow packet with traffic safety importance weight according to its relevance to the traffic safety; secondly, associate every traffic information flow with service type importance weight according to its quality of service (QoS) requirements. Once the connection is established, at every scheduling moment, scheduler would decide the scheduling order of all buffers' head of line packets periodically according to the instant value of scheduling importance weight function, which calculated by the proposed algorithm. From different scenario simulations, it can be verified that the proposed algorithm can provide superior differentiated transmission service and reliable QoS guarantee to information flows with different traffic safety levels and service types, which is more suitable for traffic transportation environment compared with the existing popularity PF algorithm. With the limited wireless resource, information flow closed related to traffic safety will always obtain priority scheduling right timely, which can help the passengers' journey more safe. Moreover, the proposed algorithm cannot only obtain good flow throughput and user fairness which are almost equal to those of the PF algorithm without significant differences, but also provide better realtime transmission guarantee to realtime information flow.
CQPSO scheduling algorithm for heterogeneous multi-core DAG task model
NASA Astrophysics Data System (ADS)
Zhai, Wenzheng; Hu, Yue-Li; Ran, Feng
2017-07-01
Efficient task scheduling is critical to achieve high performance in a heterogeneous multi-core computing environment. The paper focuses on the heterogeneous multi-core directed acyclic graph (DAG) task model and proposes a novel task scheduling method based on an improved chaotic quantum-behaved particle swarm optimization (CQPSO) algorithm. A task priority scheduling list was built. A processor with minimum cumulative earliest finish time (EFT) was acted as the object of the first task assignment. The task precedence relationships were satisfied and the total execution time of all tasks was minimized. The experimental results show that the proposed algorithm has the advantage of optimization abilities, simple and feasible, fast convergence, and can be applied to the task scheduling optimization for other heterogeneous and distributed environment.
Distributed Sleep Scheduling in Wireless Sensor Networks via Fractional Domatic Partitioning
NASA Astrophysics Data System (ADS)
Schumacher, André; Haanpää, Harri
We consider setting up sleep scheduling in sensor networks. We formulate the problem as an instance of the fractional domatic partition problem and obtain a distributed approximation algorithm by applying linear programming approximation techniques. Our algorithm is an application of the Garg-Könemann (GK) scheme that requires solving an instance of the minimum weight dominating set (MWDS) problem as a subroutine. Our two main contributions are a distributed implementation of the GK scheme for the sleep-scheduling problem and a novel asynchronous distributed algorithm for approximating MWDS based on a primal-dual analysis of Chvátal's set-cover algorithm. We evaluate our algorithm with
Analysis of sequencing and scheduling methods for arrival traffic
NASA Technical Reports Server (NTRS)
Neuman, Frank; Erzberger, Heinz
1990-01-01
The air traffic control subsystem that performs scheduling is discussed. The function of the scheduling algorithms is to plan automatically the most efficient landing order and to assign optimally spaced landing times to all arrivals. Several important scheduling algorithms are described and the statistical performance of the scheduling algorithms is examined. Scheduling brings order to an arrival sequence for aircraft. First-come-first-served scheduling (FCFS) establishes a fair order, based on estimated times of arrival, and determines proper separations. Because of the randomness of the traffic, gaps will remain in the scheduled sequence of aircraft. These gaps are filled, or partially filled, by time-advancing the leading aircraft after a gap while still preserving the FCFS order. Tightly scheduled groups of aircraft remain with a mix of heavy and large aircraft. Separation requirements differ for different types of aircraft trailing each other. Advantage is taken of this fact through mild reordering of the traffic, thus shortening the groups and reducing average delays. Actual delays for different samples with the same statistical parameters vary widely, especially for heavy traffic.
33 CFR 402.7 - Service Incentive Program.
Code of Federal Regulations, 2014 CFR
2014-07-01
... number of calls scheduled for the Navigation Season. Additional calls to the system may be added during the season. (f) The carrier will advise the Manager of port rotation, outlining core ports of calls... carrier must meet 75% schedule adherence with a minimum of four (4) Great Lakes calls during the...
Multiobjective Resource-Constrained Project Scheduling with a Time-Varying Number of Tasks
Abello, Manuel Blanco
2014-01-01
In resource-constrained project scheduling (RCPS) problems, ongoing tasks are restricted to utilizing a fixed number of resources. This paper investigates a dynamic version of the RCPS problem where the number of tasks varies in time. Our previous work investigated a technique called mapping of task IDs for centroid-based approach with random immigrants (McBAR) that was used to solve the dynamic problem. However, the solution-searching ability of McBAR was investigated over only a few instances of the dynamic problem. As a consequence, only a small number of characteristics of McBAR, under the dynamics of the RCPS problem, were found. Further, only a few techniques were compared to McBAR with respect to its solution-searching ability for solving the dynamic problem. In this paper, (a) the significance of the subalgorithms of McBAR is investigated by comparing McBAR to several other techniques; and (b) the scope of investigation in the previous work is extended. In particular, McBAR is compared to a technique called, Estimation Distribution Algorithm (EDA). As with McBAR, EDA is applied to solve the dynamic problem, an application that is unique in the literature. PMID:24883398
Eroglu, Duygu Yilmaz; Ozmutlu, H Cenk
2014-01-01
We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms.
NASA Astrophysics Data System (ADS)
Sivarami Reddy, N.; Ramamurthy, D. V., Dr.; Prahlada Rao, K., Dr.
2017-08-01
This article addresses simultaneous scheduling of machines, AGVs and tools where machines are allowed to share the tools considering transfer times of jobs and tools between machines, to generate best optimal sequences that minimize makespan in a multi-machine Flexible Manufacturing System (FMS). Performance of FMS is expected to improve by effective utilization of its resources, by proper integration and synchronization of their scheduling. Symbiotic Organisms Search (SOS) algorithm is a potent tool which is a better alternative for solving optimization problems like scheduling and proven itself. The proposed SOS algorithm is tested on 22 job sets with makespan as objective for scheduling of machines and tools where machines are allowed to share tools without considering transfer times of jobs and tools and the results are compared with the results of existing methods. The results show that the SOS has outperformed. The same SOS algorithm is used for simultaneous scheduling of machines, AGVs and tools where machines are allowed to share tools considering transfer times of jobs and tools to determine the best optimal sequences that minimize makespan.
Performance and policy dimensions in internet routing
NASA Technical Reports Server (NTRS)
Mills, David L.; Boncelet, Charles G.; Elias, John G.; Schragger, Paul A.; Jackson, Alden W.; Thyagarajan, Ajit
1995-01-01
The Internet Routing Project, referred to in this report as the 'Highball Project', has been investigating architectures suitable for networks spanning large geographic areas and capable of very high data rates. The Highball network architecture is based on a high speed crossbar switch and an adaptive, distributed, TDMA scheduling algorithm. The scheduling algorithm controls the instantaneous configuration and swell time of the switch, one of which is attached to each node. In order to send a single burst or a multi-burst packet, a reservation request is sent to all nodes. The scheduling algorithm then configures the switches immediately prior to the arrival of each burst, so it can be relayed immediately without requiring local storage. Reservations and housekeeping information are sent using a special broadcast-spanning-tree schedule. Progress to date in the Highball Project includes the design and testing of a suite of scheduling algorithms, construction of software reservation/scheduling simulators, and construction of a strawman hardware and software implementation. A prototype switch controller and timestamp generator have been completed and are in test. Detailed documentation on the algorithms, protocols and experiments conducted are given in various reports and papers published. Abstracts of this literature are included in the bibliography at the end of this report, which serves as an extended executive summary.
Kocolas, Irene; Day, Kristen; King, Marta; Stevenson, Adam; Sheng, Xiaoming; Hobson, Wendy; Bruse, Jaime; Bale, James
2017-03-01
The effects of 2011 Accreditation Council on Graduate Medical Education (ACGME) duty hour standards on intern work hours, patient load, conference attendance, and sleep have not been fully determined. We prospectively compared intern work hours, patient numbers, conference attendance, sleep duration, pattern, and quality in a 2011 ACGME duty hour-compliant shift schedule with a 2003 ACGME duty hour-compliant call schedule at a single pediatric residency program. Interns were assigned to shift or call schedules during 4 alternate months in the winter of 2010-2011. Work hours, patient numbers, conference attendance, sleep duration, pattern, and quality were tracked. Interns worked significantly fewer hours per week on day (73.2 hours) or night (71.6 hours) shifts than during q4 call (79.6 hours; P < .01). During high census months, shift schedule interns cared for significantly more patients/day (8.1/day shift vs 6.2/call; P < .001) and attended significantly fewer conferences than call schedule interns. Night shift interns slept more hours per 24-hour period than call schedule interns (7.2 ± 0.5 vs 6.3 ± 0.9 hours; P < .05) and had more consistent sleep patterns. A shift schedule resulted in reduced intern work hours and improved sleep duration and pattern. Although intern didactic conference attendance declined significantly during high census months, opportunities for experiential learning remained robust with unchanged or increased intern patient numbers. Copyright © 2016 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.
Anchorage Arrival Scheduling Under Off-Nominal Weather Conditions
NASA Technical Reports Server (NTRS)
Grabbe, Shon; Chan, William N.; Mukherjee, Avijit
2012-01-01
Weather can cause flight diversions, passenger delays, additional fuel consumption and schedule disruptions at any high volume airport. The impacts are particularly acute at the Ted Stevens Anchorage International Airport in Anchorage, Alaska due to its importance as a major international portal. To minimize the impacts due to weather, a multi-stage scheduling process is employed that is iteratively executed, as updated aircraft demand and/or airport capacity data become available. The strategic scheduling algorithm assigns speed adjustments for flights that originate outside of Anchorage Center to achieve the proper demand and capacity balance. Similarly, an internal departure-scheduling algorithm assigns ground holds for pre-departure flights that originate from within Anchorage Center. Tactical flight controls in the form of airborne holding are employed to reactively account for system uncertainties. Real-world scenarios that were derived from the January 16, 2012 Anchorage visibility observations and the January 12, 2012 Anchorage arrival schedule were used to test the initial implementation of the scheduling algorithm in fast-time simulation experiments. Although over 90% of the flights in the scenarios arrived at Anchorage without requiring any delay, pre-departure scheduling was the dominant form of control for Anchorage arrivals. Additionally, tactical scheduling was used extensively in conjunction with the pre-departure scheduling to reactively compensate for uncertainties in the arrival demand. For long-haul flights, the strategic scheduling algorithm performed best when the scheduling horizon was greater than 1,000 nmi. With these long scheduling horizons, it was possible to absorb between ten and 12 minutes of delay through speed control alone. Unfortunately, the use of tactical scheduling, which resulted in airborne holding, was found to increase as the strategic scheduling horizon increased because of the additional uncertainty in the arrival times of the aircraft. Findings from these initial experiments indicate that it is possible to schedule arrivals into Anchorage with minimal delays under low-visibility conditions with less disruption to high-cost, international flights.
Yue, Lei; Guan, Zailin; Saif, Ullah; Zhang, Fei; Wang, Hao
2016-01-01
Group scheduling is significant for efficient and cost effective production system. However, there exist setup times between the groups, which require to decrease it by sequencing groups in an efficient way. Current research is focused on a sequence dependent group scheduling problem with an aim to minimize the makespan in addition to minimize the total weighted tardiness simultaneously. In most of the production scheduling problems, the processing time of jobs is assumed as fixed. However, the actual processing time of jobs may be reduced due to "learning effect". The integration of sequence dependent group scheduling problem with learning effects has been rarely considered in literature. Therefore, current research considers a single machine group scheduling problem with sequence dependent setup times and learning effects simultaneously. A novel hybrid Pareto artificial bee colony algorithm (HPABC) with some steps of genetic algorithm is proposed for current problem to get Pareto solutions. Furthermore, five different sizes of test problems (small, small medium, medium, large medium, large) are tested using proposed HPABC. Taguchi method is used to tune the effective parameters of the proposed HPABC for each problem category. The performance of HPABC is compared with three famous multi objective optimization algorithms, improved strength Pareto evolutionary algorithm (SPEA2), non-dominated sorting genetic algorithm II (NSGAII) and particle swarm optimization algorithm (PSO). Results indicate that HPABC outperforms SPEA2, NSGAII and PSO and gives better Pareto optimal solutions in terms of diversity and quality for almost all the instances of the different sizes of problems.
An Optimal Schedule for Urban Road Network Repair Based on the Greedy Algorithm
Lu, Guangquan; Xiong, Ying; Wang, Yunpeng
2016-01-01
The schedule of urban road network recovery caused by rainstorms, snow, and other bad weather conditions, traffic incidents, and other daily events is essential. However, limited studies have been conducted to investigate this problem. We fill this research gap by proposing an optimal schedule for urban road network repair with limited repair resources based on the greedy algorithm. Critical links will be given priority in repair according to the basic concept of the greedy algorithm. In this study, the link whose restoration produces the ratio of the system-wide travel time of the current network to the worst network is the minimum. We define such a link as the critical link for the current network. We will re-evaluate the importance of damaged links after each repair process is completed. That is, the critical link ranking will be changed along with the repair process because of the interaction among links. We repair the most critical link for the specific network state based on the greedy algorithm to obtain the optimal schedule. The algorithm can still quickly obtain an optimal schedule even if the scale of the road network is large because the greedy algorithm can reduce computational complexity. We prove that the problem can obtain the optimal solution using the greedy algorithm in theory. The algorithm is also demonstrated in the Sioux Falls network. The problem discussed in this paper is highly significant in dealing with urban road network restoration. PMID:27768732
NASA Astrophysics Data System (ADS)
Jia, Zhao-hong; Pei, Ming-li; Leung, Joseph Y.-T.
2017-12-01
In this paper, we investigate the batch-scheduling problem with rejection on parallel machines with non-identical job sizes and arbitrary job-rejected weights. If a job is rejected, the corresponding penalty has to be paid. Our objective is to minimise the makespan of the processed jobs and the total rejection cost of the rejected jobs. Based on the selected multi-objective optimisation approaches, two problems, P1 and P2, are considered. In P1, the two objectives are linearly combined into one single objective. In P2, the two objectives are simultaneously minimised and the Pareto non-dominated solution set is to be found. Based on the ant colony optimisation (ACO), two algorithms, called LACO and PACO, are proposed to address the two problems, respectively. Two different objective-oriented pheromone matrices and heuristic information are designed. Additionally, a local optimisation algorithm is adopted to improve the solution quality. Finally, simulated experiments are conducted, and the comparative results verify the effectiveness and efficiency of the proposed algorithms, especially on large-scale instances.
Mixed Criticality Scheduling for Industrial Wireless Sensor Networks
Jin, Xi; Xia, Changqing; Xu, Huiting; Wang, Jintao; Zeng, Peng
2016-01-01
Wireless sensor networks (WSNs) have been widely used in industrial systems. Their real-time performance and reliability are fundamental to industrial production. Many works have studied the two aspects, but only focus on single criticality WSNs. Mixed criticality requirements exist in many advanced applications in which different data flows have different levels of importance (or criticality). In this paper, first, we propose a scheduling algorithm, which guarantees the real-time performance and reliability requirements of data flows with different levels of criticality. The algorithm supports centralized optimization and adaptive adjustment. It is able to improve both the scheduling performance and flexibility. Then, we provide the schedulability test through rigorous theoretical analysis. We conduct extensive simulations, and the results demonstrate that the proposed scheduling algorithm and analysis significantly outperform existing ones. PMID:27589741
Scheduling time-critical graphics on multiple processors
NASA Technical Reports Server (NTRS)
Meyer, Tom W.; Hughes, John F.
1995-01-01
This paper describes an algorithm for the scheduling of time-critical rendering and computation tasks on single- and multiple-processor architectures, with minimal pipelining. It was developed to manage scientific visualization scenes consisting of hundreds of objects, each of which can be computed and displayed at thousands of possible resolution levels. The algorithm generates the time-critical schedule using progressive-refinement techniques; it always returns a feasible schedule and, when allowed to run to completion, produces a near-optimal schedule which takes advantage of almost the entire multiple-processor system.
NASA Astrophysics Data System (ADS)
Goudarzi, H.; Dousti, M. J.; Shafaei, A.; Pedram, M.
2014-05-01
This paper presents a physical mapping tool for quantum circuits, which generates the optimal universal logic block (ULB) that can, on average, perform any logical fault-tolerant (FT) quantum operations with the minimum latency. The operation scheduling, placement, and qubit routing problems tackled by the quantum physical mapper are highly dependent on one another. More precisely, the scheduling solution affects the quality of the achievable placement solution due to resource pressures that may be created as a result of operation scheduling, whereas the operation placement and qubit routing solutions influence the scheduling solution due to resulting distances between predecessor and current operations, which in turn determines routing latencies. The proposed flow for the quantum physical mapper captures these dependencies by applying (1) a loose scheduling step, which transforms an initial quantum data flow graph into one that explicitly captures the no-cloning theorem of the quantum computing and then performs instruction scheduling based on a modified force-directed scheduling approach to minimize the resource contention and quantum circuit latency, (2) a placement step, which uses timing-driven instruction placement to minimize the approximate routing latencies while making iterative calls to the aforesaid force-directed scheduler to correct scheduling levels of quantum operations as needed, and (3) a routing step that finds dynamic values of routing latencies for the qubits. In addition to the quantum physical mapper, an approach is presented to determine the single best ULB size for a target quantum circuit by examining the latency of different FT quantum operations mapped onto different ULB sizes and using information about the occurrence frequency of operations on critical paths of the target quantum algorithm to weigh these latencies. Experimental results show an average latency reduction of about 40 % compared to previous work.
Challenges of CAC in Heterogeneous Wireless Cognitive Networks
NASA Astrophysics Data System (ADS)
Wang, Jiazheng; Fu, Xiuhua
Call admission control (CAC) is known as an effective functionality in ensuring the QoS of wireless networks. The vision of next generation wireless networks has led to the development of new call admission control (CAC) algorithms specifically designed for heterogeneous wireless Cognitive networks. However, there will be a number of challenges created by dynamic spectrum access and scheduling techniques associated with the cognitive systems. In this paper for the first time, we recommend that the CAC policies should be distinguished between primary users and secondary users. The classification of different methods of cac policies in cognitive networks contexts is proposed. Although there have been some researches within the umbrella of Joint CAC and cross-layer optimization for wireless networks, the advent of the cognitive networks adds some additional problems. We present the conceptual models for joint CAC and cross-layer optimization respectively. Also, the benefit of Cognition can only be realized fully if application requirements and traffic flow contexts are determined or inferred in order to know what modes of operation and spectrum bands to use at each point in time. The process model of Cognition involved per-flow-based CAC is presented. Because there may be a number of parameters on different levels affecting a CAC decision and the conditions for accepting or rejecting a call must be computed quickly and frequently, simplicity and practicability are particularly important for designing a feasible CAC algorithm. In a word, a more thorough understanding of CAC in heterogeneous wireless cognitive networks may help one to design better CAC algorithms.
Energy-driven scheduling algorithm for nanosatellite energy harvesting maximization
NASA Astrophysics Data System (ADS)
Slongo, L. K.; Martínez, S. V.; Eiterer, B. V. B.; Pereira, T. G.; Bezerra, E. A.; Paiva, K. V.
2018-06-01
The number of tasks that a satellite may execute in orbit is strongly related to the amount of energy its Electrical Power System (EPS) is able to harvest and to store. The manner the stored energy is distributed within the satellite has also a great impact on the CubeSat's overall efficiency. Most CubeSat's EPS do not prioritize energy constraints in their formulation. Unlike that, this work proposes an innovative energy-driven scheduling algorithm based on energy harvesting maximization policy. The energy harvesting circuit is mathematically modeled and the solar panel I-V curves are presented for different temperature and irradiance levels. Considering the models and simulations, the scheduling algorithm is designed to keep solar panels working close to their maximum power point by triggering tasks in the appropriate form. Tasks execution affects battery voltage, which is coupled to the solar panels through a protection circuit. A software based Perturb and Observe strategy allows defining the tasks to be triggered. The scheduling algorithm is tested in FloripaSat, which is an 1U CubeSat. A test apparatus is proposed to emulate solar irradiance variation, considering the satellite movement around the Earth. Tests have been conducted to show that the scheduling algorithm improves the CubeSat energy harvesting capability by 4.48% in a three orbit experiment and up to 8.46% in a single orbit cycle in comparison with the CubeSat operating without the scheduling algorithm.
NASA Astrophysics Data System (ADS)
Hashimoto, Hiroyuki; Takaguchi, Yusuke; Nakamura, Shizuka
Instability of calculation process and increase of calculation time caused by increasing size of continuous optimization problem remain the major issues to be solved to apply the technique to practical industrial systems. This paper proposes an enhanced quadratic programming algorithm based on interior point method mainly for improvement of calculation stability. The proposed method has dynamic estimation mechanism of active constraints on variables, which fixes the variables getting closer to the upper/lower limit on them and afterwards releases the fixed ones as needed during the optimization process. It is considered as algorithm-level integration of the solution strategy of active-set method into the interior point method framework. We describe some numerical results on commonly-used bench-mark problems called “CUTEr” to show the effectiveness of the proposed method. Furthermore, the test results on large-sized ELD problem (Economic Load Dispatching problems in electric power supply scheduling) are also described as a practical industrial application.
An Improved SoC Test Scheduling Method Based on Simulated Annealing Algorithm
NASA Astrophysics Data System (ADS)
Zheng, Jingjing; Shen, Zhihang; Gao, Huaien; Chen, Bianna; Zheng, Weida; Xiong, Xiaoming
2017-02-01
In this paper, we propose an improved SoC test scheduling method based on simulated annealing algorithm (SA). It is our first to disorganize IP core assignment for each TAM to produce a new solution for SA, allocate TAM width for each TAM using greedy algorithm and calculate corresponding testing time. And accepting the core assignment according to the principle of simulated annealing algorithm and finally attain the optimum solution. Simultaneously, we run the test scheduling experiment with the international reference circuits provided by International Test Conference 2002(ITC’02) and the result shows that our algorithm is superior to the conventional integer linear programming algorithm (ILP), simulated annealing algorithm (SA) and genetic algorithm(GA). When TAM width reaches to 48,56 and 64, the testing time based on our algorithm is lesser than the classic methods and the optimization rates are 30.74%, 3.32%, 16.13% respectively. Moreover, the testing time based on our algorithm is very close to that of improved genetic algorithm (IGA), which is state-of-the-art at present.
NASA Astrophysics Data System (ADS)
Lu, Yuan-Yuan; Wang, Ji-Bo; Ji, Ping; He, Hongyu
2017-09-01
In this article, single-machine group scheduling with learning effects and convex resource allocation is studied. The goal is to find the optimal job schedule, the optimal group schedule, and resource allocations of jobs and groups. For the problem of minimizing the makespan subject to limited resource availability, it is proved that the problem can be solved in polynomial time under the condition that the setup times of groups are independent. For the general setup times of groups, a heuristic algorithm and a branch-and-bound algorithm are proposed, respectively. Computational experiments show that the performance of the heuristic algorithm is fairly accurate in obtaining near-optimal solutions.
A criterion autoscheduler for long range planning
NASA Technical Reports Server (NTRS)
Sponsler, Jeffrey L.
1994-01-01
A constraint-based scheduling system called SPIKE is used to create long-term schedules for the Hubble Space Telescope. A meta-level scheduler called the Criterion Autoscheduler for Long range planning (CASL) was created to guide SPIKE's schedule generation according to the agenda of the planning scientists. It is proposed that sufficient flexibility exists in a schedule to allow high level planning heuristics to be applied without adversely affected crucial constraints such as spacecraft efficiency. This hypothesis is supported by test data which is described.
Improved NSGA model for multi objective operation scheduling and its evaluation
NASA Astrophysics Data System (ADS)
Li, Weining; Wang, Fuyu
2017-09-01
Reasonable operation can increase the income of the hospital and improve the patient’s satisfactory level. In this paper, by using multi object operation scheduling method with improved NSGA algorithm, it shortens the operation time, reduces the operation costand lowers the operation risk, the multi-objective optimization model is established for flexible operation scheduling, through the MATLAB simulation method, the Pareto solution is obtained, the standardization of data processing. The optimal scheduling scheme is selected by using entropy weight -Topsis combination method. The results show that the algorithm is feasible to solve the multi-objective operation scheduling problem, and provide a reference for hospital operation scheduling.
NASA Astrophysics Data System (ADS)
Ramli, Razamin; Tein, Lim Huai
2016-08-01
A good work schedule can improve hospital operations by providing better coverage with appropriate staffing levels in managing nurse personnel. Hence, constructing the best nurse work schedule is the appropriate effort. In doing so, an improved selection operator in the Evolutionary Algorithm (EA) strategy for a nurse scheduling problem (NSP) is proposed. The smart and efficient scheduling procedures were considered. Computation of the performance of each potential solution or schedule was done through fitness evaluation. The best so far solution was obtained via special Maximax&Maximin (MM) parent selection operator embedded in the EA, which fulfilled all constraints considered in the NSP.
Scheduling real-time, periodic jobs using imprecise results
NASA Technical Reports Server (NTRS)
Liu, Jane W. S.; Lin, Kwei-Jay; Natarajan, Swaminathan
1987-01-01
A process is called a monotone process if the accuracy of its intermediate results is non-decreasing as more time is spent to obtain the result. The result produced by a monotone process upon its normal termination is the desired result; the error in this result is zero. External events such as timeouts or crashes may cause the process to terminate prematurely. If the intermediate result produced by the process upon its premature termination is saved and made available, the application may still find the result unusable and, hence, acceptable; such a result is said to be an imprecise one. The error in an imprecise result is nonzero. The problem of scheduling periodic jobs to meet deadlines on a system that provides the necessary programming language primitives and run-time support for processes to return imprecise results is discussed. This problem differs from the traditional scheduling problems since the scheduler may choose to terminate a task before it is completed, causing it to produce an acceptable but imprecise result. Consequently, the amounts of processor time assigned to tasks in a valid schedule can be less than the amounts of time required to complete the tasks. A meaningful formulation of this problem taking into account the quality of the overall result is discussed. Three algorithms for scheduling jobs for which the effects of errors in results produced in different periods are not cumulative are described, and their relative merits are evaluated.
NASA Technical Reports Server (NTRS)
Chang, H.
1976-01-01
A computer program using Lemke, Salkin and Spielberg's Set Covering Algorithm (SCA) to optimize a traffic model problem in the Scheduling Algorithm for Mission Planning and Logistics Evaluation (SAMPLE) was documented. SCA forms a submodule of SAMPLE and provides for input and output, subroutines, and an interactive feature for performing the optimization and arranging the results in a readily understandable form for output.
Ozmutlu, H. Cenk
2014-01-01
We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms. PMID:24977204
Time-critical multirate scheduling using contemporary real-time operating system services
NASA Technical Reports Server (NTRS)
Eckhardt, D. E., Jr.
1983-01-01
Although real-time operating systems provide many of the task control services necessary to process time-critical applications (i.e., applications with fixed, invariant deadlines), it may still be necessary to provide a scheduling algorithm at a level above the operating system in order to coordinate a set of synchronized, time-critical tasks executing at different cyclic rates. The scheduling requirements for such applications and develops scheduling algorithms using services provided by contemporary real-time operating systems.
ERIC Educational Resources Information Center
Hus, Vanessa; Lord, Catherine
2014-01-01
The recently published Autism Diagnostic Observation Schedule, 2nd edition (ADOS-2) includes revised diagnostic algorithms and standardized severity scores for modules used to assess younger children. A revised algorithm and severity scores are not yet available for Module 4, used with verbally fluent adults. The current study revises the Module 4…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, R.G.
Much controversy surrounds government regulation of routing and scheduling of Hazardous Materials Transportation (HMT). Increases in operating costs must be balanced against expected benefits from local HMT bans and curfews when promulgating or preempting HMT regulations. Algorithmic approaches for evaluating HMT routing and scheduling regulatory policy are described. A review of current US HMT regulatory policy is presented to provide a context for the analysis. Next, a multiobjective shortest path algorithm to find the set of efficient routes under conflicting objectives is presented. This algorithm generates all efficient routes under any partial ordering in a single pass through the network.more » Also, scheduling algorithms are presented to estimate the travel time delay due to HMT curfews along a route. Algorithms are presented assuming either deterministic or stochastic travel times between curfew cities and also possible rerouting to avoid such cities. These algorithms are applied to the case study of US highway transport of spent nuclear fuel from reactors to permanent repositories. Two data sets were used. One data set included the US Interstate Highway System (IHS) network with reactor locations, possible repository sites, and 150 heavily populated areas (HPAs). The other data set contained estimates of the population residing with 0.5 miles of the IHS and the Eastern US. Curfew delay is dramatically reduced by optimally scheduling departure times unless inter-HPA travel times are highly uncertain. Rerouting shipments to avoid HPAs is a less efficient approach to reducing delay.« less
Yee, Lynn M; Liu, Lilly Y; Grobman, William A
2017-01-01
Reducing cesarean deliveries is a major public health goal. The low rate of vaginal birth after cesarean has been attributed largely to a decrease in the likelihood of choosing a trial of labor after cesarean, despite evidence suggesting a majority of women with 1 prior low transverse cesarean are trial of labor after cesarean candidates. Although a number of reasons for this decrease have been explored, it remains unclear how systems issues such as physician call schedules influence delivery approach and mode in this context. The objective of the study was to investigate the relationship between obstetricians' call schedule and obstetric outcomes among women eligible for a trial of labor after cesarean. This is a retrospective cohort study of the likelihood of attempting a trial of labor after cesarean and achieving vaginal birth after cesarean among women with 1 prior low transverse cesarean delivery and a term, cephalic singleton gestation based on the delivering provider's call schedule. Attending obstetrician call schedules were classified as traditional or night float call. Night float call was defined as a schedule in which the provider had clinical responsibilities only for a day or night shift, without other clinical responsibilities before or after the period of responsibility for laboring patients. Call schedules are determined by individual provider groups. Bivariable analyses and random-effects logistic regression were used to examine the relationship between obstetricians' call schedule and the frequency of trial of labor after cesarean. Secondary outcomes including frequency of vaginal birth after cesarean and maternal and neonatal outcomes also were assessed. Of 1502 eligible patients, 556 (37%) were delivered by physicians in a night float call system. A total of 22.6% underwent a trial of labor after cesarean and 12.8% achieved vaginal birth after cesarean; the vaginal birth after cesarean rate for women attempting a trial of labor after cesarean was 56.5%. Women were more likely to undergo a trial of labor after cesarean (33.1% vs 16.5%, P < .001) and achieve vaginal birth after cesarean (18.7% vs 9.3%, P < .001) when cared for by physicians with a night float call schedule. Regression analyses demonstrated physicians with a night float call schedule remained significantly more likely to have patients undergo trial of labor after cesarean (adjusted odds ratio, 2.64, 95% confidence interval, 1.65-4.25) and experience vaginal birth after cesarean (adjusted odds ratio, 2.17, 95% confidence interval, 1.36-3.45) after adjusting for potential confounders. However, the likelihood of achieving vaginal birth after cesarean if a trial of labor after cesarean was attempted was not different based on provider call type (adjusted odds ratio, 0.96, 95% confidence interval, 0.57-1.62). Although women delivered by providers with a night float schedule were more likely to experience uterine rupture (1.8% vs 0.6%, P = .03), chorioamnionitis (4.3% vs 1.7%, P = .002), postpartum hemorrhage (7.6% vs 4.8%, P = .03), and neonates admitted to the neonatal intensive care unit (6.8% vs 3.9%, P = .01), these associations did not persist when the population was limited to women attempting trial of labor after cesarean. Although physicians working on a night float call system were significantly more likely to have patients with a prior cesarean undergo trial of labor after cesarean and achieve vaginal birth after cesarean, their patients also were more likely to experience maternal and neonatal morbidity. However, these differences did not persist when limiting analyses to women attempting a trial of labor after cesarean. Using a night float call schedule may be an effective measure to promote a trial of labor after cesarean and vaginal birth after cesarean. Copyright © 2016 Elsevier Inc. All rights reserved.
Andreae, Michael H; Nair, Singh; Gabry, Jonah S; Goodrich, Ben; Hall, Charles; Shaparin, Naum
2017-11-01
We investigated if human reminder phone calls in the patient's preferred language increase adherence with scheduled appointments in an inner-city chronic pain clinic. We hypothesized that language and cultural incongruence is the underlying mechanism to explain poor attendance at clinic appointments in underserved Hispanic populations. Pragmatic randomized controlled clinical trial SETTING: Innercity academic chronic pain clinic with a diverse, predominantly African-American and Hispanic population PATIENTS: All (n=963) adult patients with a scheduled first appointment between October 2014 and October 2015 at the Montefiore Pain Center in the Bronx, New York were enrolled. Patients were randomized to receive a human reminder call in their preferred language before their appointment, or no contact. We recorded patients' demographic characteristics and as primary outcome attendance as scheduled, failure to attend and/or cancellation calls. We fit Bayesian and classical multinomial logistic regression models to test if the intervention improved adherence with scheduled appointments. Among the 953 predominantly African American and Hispanic/Latino patients, 475 patients were randomly selected to receive a language-congruent, human reminder call, while 478 were assigned to receive no prior contact, (after we excluded 10 patients, scheduled for repeat appointments). In the experimental group, 275 patients adhered to their scheduled appointment, while 84 cancelled and 116 failed to attend. In the control group, 249 patients adhered to their scheduled appointment, 31 cancelled and 198 failed to attend. Human phone reminders in the preferred language increased adherence (RR 1.89, CI95% [1.42, 1.42], (p<0.01). The intervention seemed particularly effective in Hispanic patients, supporting our hypothesis of cultural congruence as possible underlying mechanism. Human reminder phone calls prior in the patient's preferred language increased adherence with scheduled appointments. The intervention facilitated access to much needed care in an ethnically diverse, resource poor population, presumably by overcoming language barriers. Copyright © 2017 Elsevier Inc. All rights reserved.
Duan, Litian; Wang, Zizhong John; Duan, Fu
2016-11-16
In the multiple-reader environment (MRE) of radio frequency identification (RFID) system, multiple readers are often scheduled to interrogate the randomized tags via operating at different time slots or frequency channels to decrease the signal interferences. Based on this, a Geometric Distribution-based Multiple-reader Scheduling Optimization Algorithm using Artificial Immune System (GD-MRSOA-AIS) is proposed to fairly and optimally schedule the readers operating from the viewpoint of resource allocations. GD-MRSOA-AIS is composed of two parts, where a geometric distribution function combined with the fairness consideration is first introduced to generate the feasible scheduling schemes for reader operation. After that, artificial immune system (including immune clone, immune mutation and immune suppression) quickly optimize these feasible ones as the optimal scheduling scheme to ensure that readers are fairly operating with larger effective interrogation range and lower interferences. Compared with the state-of-the-art algorithm, the simulation results indicate that GD-MRSOA-AIS could efficiently schedules the multiple readers operating with a fairer resource allocation scheme, performing in larger effective interrogation range.
Duan, Litian; Wang, Zizhong John; Duan, Fu
2016-01-01
In the multiple-reader environment (MRE) of radio frequency identification (RFID) system, multiple readers are often scheduled to interrogate the randomized tags via operating at different time slots or frequency channels to decrease the signal interferences. Based on this, a Geometric Distribution-based Multiple-reader Scheduling Optimization Algorithm using Artificial Immune System (GD-MRSOA-AIS) is proposed to fairly and optimally schedule the readers operating from the viewpoint of resource allocations. GD-MRSOA-AIS is composed of two parts, where a geometric distribution function combined with the fairness consideration is first introduced to generate the feasible scheduling schemes for reader operation. After that, artificial immune system (including immune clone, immune mutation and immune suppression) quickly optimize these feasible ones as the optimal scheduling scheme to ensure that readers are fairly operating with larger effective interrogation range and lower interferences. Compared with the state-of-the-art algorithm, the simulation results indicate that GD-MRSOA-AIS could efficiently schedules the multiple readers operating with a fairer resource allocation scheme, performing in larger effective interrogation range. PMID:27854342
A new distributed systems scheduling algorithm: a swarm intelligence approach
NASA Astrophysics Data System (ADS)
Haghi Kashani, Mostafa; Sarvizadeh, Raheleh; Jameii, Mahdi
2011-12-01
The scheduling problem in distributed systems is known as an NP-complete problem, and methods based on heuristic or metaheuristic search have been proposed to obtain optimal and suboptimal solutions. The task scheduling is a key factor for distributed systems to gain better performance. In this paper, an efficient method based on memetic algorithm is developed to solve the problem of distributed systems scheduling. With regard to load balancing efficiently, Artificial Bee Colony (ABC) has been applied as local search in the proposed memetic algorithm. The proposed method has been compared to existing memetic-Based approach in which Learning Automata method has been used as local search. The results demonstrated that the proposed method outperform the above mentioned method in terms of communication cost.
Hybrid glowworm swarm optimization for task scheduling in the cloud environment
NASA Astrophysics Data System (ADS)
Zhou, Jing; Dong, Shoubin
2018-06-01
In recent years many heuristic algorithms have been proposed to solve task scheduling problems in the cloud environment owing to their optimization capability. This article proposes a hybrid glowworm swarm optimization (HGSO) based on glowworm swarm optimization (GSO), which uses a technique of evolutionary computation, a strategy of quantum behaviour based on the principle of neighbourhood, offspring production and random walk, to achieve more efficient scheduling with reasonable scheduling costs. The proposed HGSO reduces the redundant computation and the dependence on the initialization of GSO, accelerates the convergence and more easily escapes from local optima. The conducted experiments and statistical analysis showed that in most cases the proposed HGSO algorithm outperformed previous heuristic algorithms to deal with independent tasks.
Electricity Usage Scheduling in Smart Building Environments Using Smart Devices
Lee, Eunji; Bahn, Hyokyung
2013-01-01
With the recent advances in smart grid technologies as well as the increasing dissemination of smart meters, the electricity usage of every moment can be detected in modern smart building environments. Thus, the utility company adopts different price of electricity at each time slot considering the peak time. This paper presents a new electricity usage scheduling algorithm for smart buildings that adopts real-time pricing of electricity. The proposed algorithm detects the change of electricity prices by making use of a smart device and changes the power mode of each electric device dynamically. Specifically, we formulate the electricity usage scheduling problem as a real-time task scheduling problem and show that it is a complex search problem that has an exponential time complexity. An efficient heuristic based on genetic algorithms is performed on a smart device to cut down the huge searching space and find a reasonable schedule within a feasible time budget. Experimental results with various building conditions show that the proposed algorithm reduces the electricity charge of a smart building by 25.6% on average and up to 33.4%. PMID:24453860
Electricity usage scheduling in smart building environments using smart devices.
Lee, Eunji; Bahn, Hyokyung
2013-01-01
With the recent advances in smart grid technologies as well as the increasing dissemination of smart meters, the electricity usage of every moment can be detected in modern smart building environments. Thus, the utility company adopts different price of electricity at each time slot considering the peak time. This paper presents a new electricity usage scheduling algorithm for smart buildings that adopts real-time pricing of electricity. The proposed algorithm detects the change of electricity prices by making use of a smart device and changes the power mode of each electric device dynamically. Specifically, we formulate the electricity usage scheduling problem as a real-time task scheduling problem and show that it is a complex search problem that has an exponential time complexity. An efficient heuristic based on genetic algorithms is performed on a smart device to cut down the huge searching space and find a reasonable schedule within a feasible time budget. Experimental results with various building conditions show that the proposed algorithm reduces the electricity charge of a smart building by 25.6% on average and up to 33.4%.
Solving multi-objective job shop scheduling problems using a non-dominated sorting genetic algorithm
NASA Astrophysics Data System (ADS)
Piroozfard, Hamed; Wong, Kuan Yew
2015-05-01
The efforts of finding optimal schedules for the job shop scheduling problems are highly important for many real-world industrial applications. In this paper, a multi-objective based job shop scheduling problem by simultaneously minimizing makespan and tardiness is taken into account. The problem is considered to be more complex due to the multiple business criteria that must be satisfied. To solve the problem more efficiently and to obtain a set of non-dominated solutions, a meta-heuristic based non-dominated sorting genetic algorithm is presented. In addition, task based representation is used for solution encoding, and tournament selection that is based on rank and crowding distance is applied for offspring selection. Swapping and insertion mutations are employed to increase diversity of population and to perform intensive search. To evaluate the modified non-dominated sorting genetic algorithm, a set of modified benchmarking job shop problems obtained from the OR-Library is used, and the results are considered based on the number of non-dominated solutions and quality of schedules obtained by the algorithm.
Immunisation hotline calls as five-in-one vaccine introduced.
Fisher-Jeffes, Lisa; Finlay, Fiona
2006-04-01
Announcement of the introduction of the five-in-one vaccine (DTaP/IPV/Hib) into the primary immunisation schedule was made on 9 August 2004. In this study all calls to the immunisation hotline were recorded between 9 August 2004 and 19 November 2004, noting who called and the nature of their enquiry. A total of 208 calls were received during the study period, and of these 23 (11.1%) related to the new vaccine. Calls were from parents (10/23, 43%), health visitors (9/23, 39%) and practice nurses (3/23, 13%). A variety of themes were covered in calls including local availability of the five-in-one vaccine, vaccine safety, mercury content and efficacy. Calls not connected with the new vaccine concerned mostly adolescent MMR (17.3%) as there was a local mumps epidemic. Others related to clarification of a child's immunisation status (13.5%), primary MMR immunisation (13.5%), vaccination scheduling or administration difficulties (12%), other schedule (12.5%) and non-schedule vaccines (2.4%), vaccine reactions (2.4%), travel vaccines (6%), BCG (6%), and a few miscellaneous queries (3%). Overall questions about the new five-in-one vaccine accounted for an extra 23 calls to the immunisation hotline during the study period (11.1% of calls).
Efficient genetic algorithms using discretization scheduling.
McLay, Laura A; Goldberg, David E
2005-01-01
In many applications of genetic algorithms, there is a tradeoff between speed and accuracy in fitness evaluations when evaluations use numerical methods with varying discretization. In these types of applications, the cost and accuracy vary from discretization errors when implicit or explicit quadrature is used to estimate the function evaluations. This paper examines discretization scheduling, or how to vary the discretization within the genetic algorithm in order to use the least amount of computation time for a solution of a desired quality. The effectiveness of discretization scheduling can be determined by comparing its computation time to the computation time of a GA using a constant discretization. There are three ingredients for the discretization scheduling: population sizing, estimated time for each function evaluation and predicted convergence time analysis. Idealized one- and two-dimensional experiments and an inverse groundwater application illustrate the computational savings to be achieved from using discretization scheduling.
Knowledge-Based Scheduling of Arrival Aircraft in the Terminal Area
NASA Technical Reports Server (NTRS)
Krzeczowski, K. J.; Davis, T.; Erzberger, H.; Lev-Ram, Israel; Bergh, Christopher P.
1995-01-01
A knowledge based method for scheduling arrival aircraft in the terminal area has been implemented and tested in real time simulation. The scheduling system automatically sequences, assigns landing times, and assign runways to arrival aircraft by utilizing continuous updates of aircraft radar data and controller inputs. The scheduling algorithm is driven by a knowledge base which was obtained in over two thousand hours of controller-in-the-loop real time simulation. The knowledge base contains a series of hierarchical 'rules' and decision logic that examines both performance criteria, such as delay reductions, as well as workload reduction criteria, such as conflict avoidance. The objective of the algorithm is to devise an efficient plan to land the aircraft in a manner acceptable to the air traffic controllers. This paper describes the scheduling algorithms, gives examples of their use, and presents data regarding their potential benefits to the air traffic system.
Knowledge-based scheduling of arrival aircraft
NASA Technical Reports Server (NTRS)
Krzeczowski, K.; Davis, T.; Erzberger, H.; Lev-Ram, I.; Bergh, C.
1995-01-01
A knowledge-based method for scheduling arrival aircraft in the terminal area has been implemented and tested in real-time simulation. The scheduling system automatically sequences, assigns landing times, and assigns runways to arrival aircraft by utilizing continuous updates of aircraft radar data and controller inputs. The scheduling algorithms is driven by a knowledge base which was obtained in over two thousand hours of controller-in-the-loop real-time simulation. The knowledge base contains a series of hierarchical 'rules' and decision logic that examines both performance criteria, such as delay reduction, as well as workload reduction criteria, such as conflict avoidance. The objective of the algorithms is to devise an efficient plan to land the aircraft in a manner acceptable to the air traffic controllers. This paper will describe the scheduling algorithms, give examples of their use, and present data regarding their potential benefits to the air traffic system.
Duan, Qian-Qian; Yang, Gen-Ke; Pan, Chang-Chun
2014-01-01
A hybrid optimization algorithm combining finite state method (FSM) and genetic algorithm (GA) is proposed to solve the crude oil scheduling problem. The FSM and GA are combined to take the advantage of each method and compensate deficiencies of individual methods. In the proposed algorithm, the finite state method makes up for the weakness of GA which is poor at local searching ability. The heuristic returned by the FSM can guide the GA algorithm towards good solutions. The idea behind this is that we can generate promising substructure or partial solution by using FSM. Furthermore, the FSM can guarantee that the entire solution space is uniformly covered. Therefore, the combination of the two algorithms has better global performance than the existing GA or FSM which is operated individually. Finally, a real-life crude oil scheduling problem from the literature is used for conducting simulation. The experimental results validate that the proposed method outperforms the state-of-art GA method. PMID:24772031
NASA Technical Reports Server (NTRS)
Malik, Waqar
2016-01-01
Provide an overview of algorithms used in SARDA (Spot and Runway Departure Advisor) HITL (Human-in-the-Loop) simulation for Dallas Fort-Worth International Airport and Charlotte Douglas International airport. Outline a multi-objective dynamic programming (DP) based algorithm that finds the exact solution to the single runway scheduling (SRS) problem, and discuss heuristics to restrict the search space for the DP based algorithm and provide improvements.
NASA Astrophysics Data System (ADS)
Wang, Hongfeng; Fu, Yaping; Huang, Min; Wang, Junwei
2016-03-01
The operation process design is one of the key issues in the manufacturing and service sectors. As a typical operation process, the scheduling with consideration of the deteriorating effect has been widely studied; however, the current literature only studied single function requirement and rarely considered the multiple function requirements which are critical for a real-world scheduling process. In this article, two function requirements are involved in the design of a scheduling process with consideration of the deteriorating effect and then formulated into two objectives of a mathematical programming model. A novel multiobjective evolutionary algorithm is proposed to solve this model with combination of three strategies, i.e. a multiple population scheme, a rule-based local search method and an elitist preserve strategy. To validate the proposed model and algorithm, a series of randomly-generated instances are tested and the experimental results indicate that the model is effective and the proposed algorithm can achieve the satisfactory performance which outperforms the other state-of-the-art multiobjective evolutionary algorithms, such as nondominated sorting genetic algorithm II and multiobjective evolutionary algorithm based on decomposition, on all the test instances.
Design Principles and Algorithms for Air Traffic Arrival Scheduling
NASA Technical Reports Server (NTRS)
Erzberger, Heinz; Itoh, Eri
2014-01-01
This report presents design principles and algorithms for building a real-time scheduler of arrival aircraft based on a first-come-first-served (FCFS) scheduling protocol. The algorithms provide the conceptual and computational foundation for the Traffic Management Advisor (TMA) of the Center/terminal radar approach control facilities (TRACON) automation system, which comprises a set of decision support tools for managing arrival traffic at major airports in the United States. The primary objective of the scheduler is to assign arrival aircraft to a favorable landing runway and schedule them to land at times that minimize delays. A further objective of the scheduler is to allocate delays between high-altitude airspace far away from the airport and low-altitude airspace near the airport. A method of delay allocation is described that minimizes the average operating cost in the presence of errors in controlling aircraft to a specified landing time. This report is a revision of an earlier paper first presented as part of an Advisory Group for Aerospace Research and Development (AGARD) lecture series in September 1995. The authors, during vigorous discussions over the details of this paper, felt it was important to the air-trafficmanagement (ATM) community to revise and extend the original 1995 paper, providing more detail and clarity and thereby allowing future researchers to understand this foundational work as the basis for the TMA's scheduling algorithms.
Abdulhamid, Shafi’i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid
2016-01-01
Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques. PMID:27384239
Abdulhamid, Shafi'i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid
2016-01-01
Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques.
QoS support over ultrafast TDM optical networks
NASA Astrophysics Data System (ADS)
Narvaez, Paolo; Siu, Kai-Yeung; Finn, Steven G.
1999-08-01
HLAN is a promising architecture to realize Tb/s access networks based on ultra-fast optical TDM technologies. This paper presents new research results on efficient algorithms for the support of quality of service over the HLAN network architecture. In particular, we propose a new scheduling algorithm that emulates fair queuing in a distributed manner for bandwidth allocation purpose. The proposed scheduler collects information on the queue of each host on the network and then instructs each host how much data to send. Our new scheduling algorithm ensures full bandwidth utilization, while guaranteeing fairness among all hosts.
The Traffic Management Advisor
NASA Technical Reports Server (NTRS)
Nedell, William; Erzberger, Heinz; Neuman, Frank
1990-01-01
The traffic management advisor (TMA) is comprised of algorithms, a graphical interface, and interactive tools for controlling the flow of air traffic into the terminal area. The primary algorithm incorporated in it is a real-time scheduler which generates efficient landing sequences and landing times for arrivals within about 200 n.m. from touchdown. A unique feature of the TMA is its graphical interface that allows the traffic manager to modify the computer-generated schedules for specific aircraft while allowing the automatic scheduler to continue generating schedules for all other aircraft. The graphical interface also provides convenient methods for monitoring the traffic flow and changing scheduling parameters during real-time operation.
Idris, Hajara; Junaidu, Sahalu B.; Adewumi, Aderemi O.
2017-01-01
The Grid scheduler, schedules user jobs on the best available resource in terms of resource characteristics by optimizing job execution time. Resource failure in Grid is no longer an exception but a regular occurring event as resources are increasingly being used by the scientific community to solve computationally intensive problems which typically run for days or even months. It is therefore absolutely essential that these long-running applications are able to tolerate failures and avoid re-computations from scratch after resource failure has occurred, to satisfy the user’s Quality of Service (QoS) requirement. Job Scheduling with Fault Tolerance in Grid Computing using Ant Colony Optimization is proposed to ensure that jobs are executed successfully even when resource failure has occurred. The technique employed in this paper, is the use of resource failure rate, as well as checkpoint-based roll back recovery strategy. Check-pointing aims at reducing the amount of work that is lost upon failure of the system by immediately saving the state of the system. A comparison of the proposed approach with an existing Ant Colony Optimization (ACO) algorithm is discussed. The experimental results of the implemented Fault Tolerance scheduling algorithm show that there is an improvement in the user’s QoS requirement over the existing ACO algorithm, which has no fault tolerance integrated in it. The performance evaluation of the two algorithms was measured in terms of the three main scheduling performance metrics: makespan, throughput and average turnaround time. PMID:28545075
Mousavi, Maryam; Yap, Hwa Jen; Musa, Siti Nurmaya; Tahriri, Farzad; Md Dawal, Siti Zawiah
2017-01-01
Flexible manufacturing system (FMS) enhances the firm's flexibility and responsiveness to the ever-changing customer demand by providing a fast product diversification capability. Performance of an FMS is highly dependent upon the accuracy of scheduling policy for the components of the system, such as automated guided vehicles (AGVs). An AGV as a mobile robot provides remarkable industrial capabilities for material and goods transportation within a manufacturing facility or a warehouse. Allocating AGVs to tasks, while considering the cost and time of operations, defines the AGV scheduling process. Multi-objective scheduling of AGVs, unlike single objective practices, is a complex and combinatorial process. In the main draw of the research, a mathematical model was developed and integrated with evolutionary algorithms (genetic algorithm (GA), particle swarm optimization (PSO), and hybrid GA-PSO) to optimize the task scheduling of AGVs with the objectives of minimizing makespan and number of AGVs while considering the AGVs' battery charge. Assessment of the numerical examples' scheduling before and after the optimization proved the applicability of all the three algorithms in decreasing the makespan and AGV numbers. The hybrid GA-PSO produced the optimum result and outperformed the other two algorithms, in which the mean of AGVs operation efficiency was found to be 69.4, 74, and 79.8 percent in PSO, GA, and hybrid GA-PSO, respectively. Evaluation and validation of the model was performed by simulation via Flexsim software.
Yap, Hwa Jen; Musa, Siti Nurmaya; Tahriri, Farzad; Md Dawal, Siti Zawiah
2017-01-01
Flexible manufacturing system (FMS) enhances the firm’s flexibility and responsiveness to the ever-changing customer demand by providing a fast product diversification capability. Performance of an FMS is highly dependent upon the accuracy of scheduling policy for the components of the system, such as automated guided vehicles (AGVs). An AGV as a mobile robot provides remarkable industrial capabilities for material and goods transportation within a manufacturing facility or a warehouse. Allocating AGVs to tasks, while considering the cost and time of operations, defines the AGV scheduling process. Multi-objective scheduling of AGVs, unlike single objective practices, is a complex and combinatorial process. In the main draw of the research, a mathematical model was developed and integrated with evolutionary algorithms (genetic algorithm (GA), particle swarm optimization (PSO), and hybrid GA-PSO) to optimize the task scheduling of AGVs with the objectives of minimizing makespan and number of AGVs while considering the AGVs’ battery charge. Assessment of the numerical examples’ scheduling before and after the optimization proved the applicability of all the three algorithms in decreasing the makespan and AGV numbers. The hybrid GA-PSO produced the optimum result and outperformed the other two algorithms, in which the mean of AGVs operation efficiency was found to be 69.4, 74, and 79.8 percent in PSO, GA, and hybrid GA-PSO, respectively. Evaluation and validation of the model was performed by simulation via Flexsim software. PMID:28263994
Design principles and algorithms for automated air traffic management
NASA Technical Reports Server (NTRS)
Erzberger, Heinz
1995-01-01
This paper presents design principles and algorithm for building a real time scheduler. The primary objective of the scheduler is to assign arrival aircraft to a favorable landing runway and schedule them to land at times that minimize delays. A further objective of the scheduler is to allocate delays between high altitude airspace far from the airport and low altitude airspace near the airport. A method of delay allocation is described that minimizes the average operating cost in the presence of errors in controlling aircraft to a specified landing time.
A modify ant colony optimization for the grid jobs scheduling problem with QoS requirements
NASA Astrophysics Data System (ADS)
Pu, Xun; Lu, XianLiang
2011-10-01
Job scheduling with customers' quality of service (QoS) requirement is challenging in grid environment. In this paper, we present a modify Ant colony optimization (MACO) for the Job scheduling problem in grid. Instead of using the conventional construction approach to construct feasible schedules, the proposed algorithm employs a decomposition method to satisfy the customer's deadline and cost requirements. Besides, a new mechanism of service instances state updating is embedded to improve the convergence of MACO. Experiments demonstrate the effectiveness of the proposed algorithm.
A Novel Particle Swarm Optimization Approach for Grid Job Scheduling
NASA Astrophysics Data System (ADS)
Izakian, Hesam; Tork Ladani, Behrouz; Zamanifar, Kamran; Abraham, Ajith
This paper represents a Particle Swarm Optimization (PSO) algorithm, for grid job scheduling. PSO is a population-based search algorithm based on the simulation of the social behavior of bird flocking and fish schooling. Particles fly in problem search space to find optimal or near-optimal solutions. In this paper we used a PSO approach for grid job scheduling. The scheduler aims at minimizing makespan and flowtime simultaneously. Experimental studies show that the proposed novel approach is more efficient than the PSO approach reported in the literature.
Spiking neural network simulation: memory-optimal synaptic event scheduling.
Stewart, Robert D; Gurney, Kevin N
2011-06-01
Spiking neural network simulations incorporating variable transmission delays require synaptic events to be scheduled prior to delivery. Conventional methods have memory requirements that scale with the total number of synapses in a network. We introduce novel scheduling algorithms for both discrete and continuous event delivery, where the memory requirement scales instead with the number of neurons. Superior algorithmic performance is demonstrated using large-scale, benchmarking network simulations.
Algorithms and software for nonlinear structural dynamics
NASA Technical Reports Server (NTRS)
Belytschko, Ted; Gilbertsen, Noreen D.; Neal, Mark O.
1989-01-01
The objective of this research is to develop efficient methods for explicit time integration in nonlinear structural dynamics for computers which utilize both concurrency and vectorization. As a framework for these studies, the program WHAMS, which is described in Explicit Algorithms for the Nonlinear Dynamics of Shells (T. Belytschko, J. I. Lin, and C.-S. Tsay, Computer Methods in Applied Mechanics and Engineering, Vol. 42, 1984, pp 225 to 251), is used. There are two factors which make the development of efficient concurrent explicit time integration programs a challenge in a structural dynamics program: (1) the need for a variety of element types, which complicates the scheduling-allocation problem; and (2) the need for different time steps in different parts of the mesh, which is here called mixed delta t integration, so that a few stiff elements do not reduce the time steps throughout the mesh.
Data transmission system and method
NASA Technical Reports Server (NTRS)
Bruck, Jehoshua (Inventor); Langberg, Michael (Inventor); Sprintson, Alexander (Inventor)
2010-01-01
A method of transmitting data packets, where randomness is added to the schedule. Universal broadcast schedules using encoding and randomization techniques are also discussed, together with optimal randomized schedules and an approximation algorithm for finding near-optimal schedules.
ERIC Educational Resources Information Center
de Bildt, Annelies; Sytema, Sjoerd; Meffert, Harma; Bastiaansen, Jojanneke A. C. J.
2016-01-01
This study examined the discriminative ability of the revised Autism Diagnostic Observation Schedule module 4 algorithm (Hus and Lord in "J Autism Dev Disord" 44(8):1996-2012, 2014) in 93 Dutch males with Autism Spectrum Disorder (ASD), schizophrenia, psychopathy or controls. Discriminative ability of the revised algorithm ASD cut-off…
Tool for Merging Proposals Into DSN Schedules
NASA Technical Reports Server (NTRS)
Khanampornpan, Teerapat; Kwok, John; Call, Jared
2008-01-01
A Practical Extraction and Reporting Language (Perl) script called merge7da has been developed to facilitate determination, by a project scheduler in NASA's Deep Space Network, of whether a proposal for use of the DSN could create a conflict with the current DSN schedule. Prior to the development of merge7da, there was no way to quickly identify potential schedule conflicts: it was necessary to submit a proposal and wait a day or two for a response from a DSN scheduling facility. By using merge7da to detect and eliminate potential schedule conflicts before submitting a proposal, a project scheduler saves time and gains assurance that the proposal will probably be accepted. merge7da accepts two input files, one of which contains the current DSN schedule and is in a DSN-standard format called '7da'. The other input file contains the proposal and is in another DSN-standard format called 'C1/C2'. merge7da processes the two input files to produce a merged 7da-format output file that represents the DSN schedule as it would be if the proposal were to be adopted. This 7da output file can be loaded into various DSN scheduling software tools now in use.
López-Ibáñez, Manuel; Prasad, T Devi; Paechter, Ben
2011-01-01
Reducing the energy consumption of water distribution networks has never had more significance. The greatest energy savings can be obtained by carefully scheduling the operations of pumps. Schedules can be defined either implicitly, in terms of other elements of the network such as tank levels; or explicitly, by specifying the time during which each pump is on/off. The traditional representation of explicit schedules is a string of binary values with each bit representing pump on/off status during a particular time interval. In this paper, we formally define and analyze two new explicit representations based on time-controlled triggers, where the maximum number of pump switches is established beforehand and the schedule may contain fewer than the maximum number of switches. In these representations, a pump schedule is divided into a series of integers with each integer representing the number of hours for which a pump is active/inactive. This reduces the number of potential schedules compared to the binary representation, and allows the algorithm to operate on the feasible region of the search space. We propose evolutionary operators for these two new representations. The new representations and their corresponding operations are compared with the two most-used representations in pump scheduling, namely, binary representation and level-controlled triggers. A detailed statistical analysis of the results indicates which parameters have the greatest effect on the performance of evolutionary algorithms. The empirical results show that an evolutionary algorithm using the proposed representations is an improvement over the results obtained by a recent state of the art hybrid genetic algorithm for pump scheduling using level-controlled triggers.
NASA Astrophysics Data System (ADS)
Roozegar, M.; Angeles, J.
2018-05-01
In light of the current low energy-storage capacity of electric batteries, multi-speed transmissions (MSTs) are being considered for applications in electric vehicles (EVs), since MSTs decrease the energy consumption of the EV via gear-shifting. Nonetheless, swiftness and seamlessness are the major concerns in gear-shifting. This study focuses on developing a gear-shifting control scheme for a novel MST designed for EVs. The main advantages of the proposed MST are simplicity and modularity. Firstly, the dynamics model of the transmission is formulated. Then, a two-phase algorithm is proposed for shifting between each two gear ratios, which guarantees a smooth and swift shift. In other words, a separate control set is applied for shifting between each gear pair, which includes two independent PID controllers, tuned using trial-and-error and a genetic algorithm (GA), for the two steps of the algorithm and a switch. A supervisory controller is also employed to choose the proper PID gains, called PID gain-scheduling. Simulation results for various controllers and conditions are reported and compared, indicating that the proposed scheme is highly promising for a desired gear-shifting even in the presence of an unknown external disturbance.
NASA Astrophysics Data System (ADS)
Setiawan, A.; Wangsaputra, R.; Martawirya, Y. Y.; Halim, A. H.
2016-02-01
This paper deals with Flexible Manufacturing System (FMS) production rescheduling due to unavailability of cutting tools caused either of cutting tool failure or life time limit. The FMS consists of parallel identical machines integrated with an automatic material handling system and it runs fully automatically. Each machine has a same cutting tool configuration that consists of different geometrical cutting tool types on each tool magazine. The job usually takes two stages. Each stage has sequential operations allocated to machines considering the cutting tool life. In the real situation, the cutting tool can fail before the cutting tool life is reached. The objective in this paper is to develop a dynamic scheduling algorithm when a cutting tool is broken during unmanned and a rescheduling needed. The algorithm consists of four steps. The first step is generating initial schedule, the second step is determination the cutting tool failure time, the third step is determination of system status at cutting tool failure time and the fourth step is the rescheduling for unfinished jobs. The approaches to solve the problem are complete-reactive scheduling and robust-proactive scheduling. The new schedules result differences starting time and completion time of each operations from the initial schedule.
Decentralized Control of Scheduling in Distributed Systems.
1983-03-18
the job scheduling algorithm adapts to the changing busyness of the various hosts in the system. The environment in which the job scheduling entities...resources and processes that constitute the node and a set of interfaces for accessing these processes and resources. The structure of a node could change ...parallel. Chang [CHNG82] has also described some algorithms for detecting properties of general graphs by traversing paths in a graph in parallel. One of
Automation in the Space Station module power management and distribution Breadboard
NASA Technical Reports Server (NTRS)
Walls, Bryan; Lollar, Louis F.
1990-01-01
The Space Station Module Power Management and Distribution (SSM/PMAD) Breadboard, located at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, models the power distribution within a Space Station Freedom Habitation or Laboratory module. Originally designed for 20 kHz ac power, the system is now being converted to high voltage dc power with power levels on a par with those expected for a space station module. In addition to the power distribution hardware, the system includes computer control through a hierarchy of processes. The lowest level process consists of fast, simple (from a computing standpoint) switchgear, capable of quickly safing the system. The next level consists of local load center processors called Lowest Level Processors (LLP's). These LLP's execute load scheduling, perform redundant switching, and shed loads which use more than scheduled power. The level above the LLP's contains a Communication and Algorithmic Controller (CAC) which coordinates communications with the highest level. Finally, at this highest level, three cooperating Artificial Intelligence (AI) systems manage load prioritization, load scheduling, load shedding, and fault recovery and management. The system provides an excellent venue for developing and examining advanced automation techniques. The current system and the plans for its future are examined.
Taxi Time Prediction at Charlotte Airport Using Fast-Time Simulation and Machine Learning Techniques
NASA Technical Reports Server (NTRS)
Lee, Hanbong
2016-01-01
Accurate taxi time prediction is required for enabling efficient runway scheduling that can increase runway throughput and reduce taxi times and fuel consumptions on the airport surface. Currently NASA and American Airlines are jointly developing a decision-support tool called Spot and Runway Departure Advisor (SARDA) that assists airport ramp controllers to make gate pushback decisions and improve the overall efficiency of airport surface traffic. In this presentation, we propose to use Linear Optimized Sequencing (LINOS), a discrete-event fast-time simulation tool, to predict taxi times and provide the estimates to the runway scheduler in real-time airport operations. To assess its prediction accuracy, we also introduce a data-driven analytical method using machine learning techniques. These two taxi time prediction methods are evaluated with actual taxi time data obtained from the SARDA human-in-the-loop (HITL) simulation for Charlotte Douglas International Airport (CLT) using various performance measurement metrics. Based on the taxi time prediction results, we also discuss how the prediction accuracy can be affected by the operational complexity at this airport and how we can improve the fast time simulation model before implementing it with an airport scheduling algorithm in a real-time environment.
Tang, Wenming; Liu, Guixiong; Li, Yuzhong; Tan, Daji
2017-01-01
High data transmission efficiency is a key requirement for an ultrasonic phased array with multi-group ultrasonic sensors. Here, a novel FIFOs scheduling algorithm was proposed and the data transmission efficiency with hardware technology was improved. This algorithm includes FIFOs as caches for the ultrasonic scanning data obtained from the sensors with the output data in a bandwidth-sharing way, on the basis of which an optimal length ratio of all the FIFOs is achieved, allowing the reading operations to be switched among all the FIFOs without time slot waiting. Therefore, this algorithm enhances the utilization ratio of the reading bandwidth resources so as to obtain higher efficiency than the traditional scheduling algorithms. The reliability and validity of the algorithm are substantiated after its implementation in the field programmable gate array (FPGA) technology, and the bandwidth utilization ratio and the real-time performance of the ultrasonic phased array are enhanced. PMID:29035345
NASA Technical Reports Server (NTRS)
Mccollum, Bruce; Graves, Mark
1994-01-01
The International Ultraviolet Explorer (IUE) satellite observatory has been in operation continuously since 1978. It typically carries out several thousand observations per year for over a hundred different science projects. These observations, which can occur in one of four different data-taking modes, fall under several satellite-related constraints and many other constraints which derive from the science goals of the projects being undertaken. One strategy which has made the scheduling problem tractable has been that of 'coarse-graining' the time into discrete blocks of equal size (8 hours), each of which is devoted to a single science program, and each of which is sufficiently long for several observations to be carried out. We call it 'coarse-graining' because the schedule is done at a 'coarse' level which ignores fine structure; i.e., no attempt is made to plan the sequence of observations occurring within each time block. We have incorporated the IUE's coarse-grained approach in new software which examines the science needs of the observations and produces a limited set of alternative schedules which meet all of the instrument and science-related constraints. With this algorithm, the IUE can still be scheduled by a single person using a standard workstation, as it has been. We believe that this software could could be adapted to a more complex mission while retaining the IUE's high flexibility and efficiency and scientific return of future satellite missions.
An Online Scheduling Algorithm with Advance Reservation for Large-Scale Data Transfers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balman, Mehmet; Kosar, Tevfik
Scientific applications and experimental facilities generate massive data sets that need to be transferred to remote collaborating sites for sharing, processing, and long term storage. In order to support increasingly data-intensive science, next generation research networks have been deployed to provide high-speed on-demand data access between collaborating institutions. In this paper, we present a practical model for online data scheduling in which data movement operations are scheduled in advance for end-to-end high performance transfers. In our model, data scheduler interacts with reservation managers and data transfer nodes in order to reserve available bandwidth to guarantee completion of jobs that aremore » accepted and confirmed to satisfy preferred time constraint given by the user. Our methodology improves current systems by allowing researchers and higher level meta-schedulers to use data placement as a service where theycan plan ahead and reserve the scheduler time in advance for their data movement operations. We have implemented our algorithm and examined possible techniques for incorporation into current reservation frameworks. Performance measurements confirm that the proposed algorithm is efficient and scalable.« less
Trinkoff, Alison M; Le, Rong; Geiger-Brown, Jeanne; Lipscomb, Jane; Lang, Gary
2006-11-01
Nurses are at very high risk for work-related musculoskeletal injury/disorders (MSD) with low back pain/injury being the most frequently occurring MSD. Nurses are also likely to work extended schedules (long hours, on-call, mandatory overtime, working on days off). The purpose of this study was to examine the relationship of extended work schedules in nurses to MSD. Using a longitudinal, three wave survey of 2,617 registered nurses, Wave 1 work schedule data were related to neck, shoulder, and back (MSD) cases occurring in Waves 2 or 3. Schedule characteristics increasing MSD risk included 13+ hour/days, off-shifts, weekend work, work during time off (while sick, on days off, without breaks), and overtime/on-call. These increases in risk were not explained by psychological demands, but were largely explained by physical demands. Adverse schedules are significantly related to nurse MSD. Healthier schedules, less overtime, and reducing work on days off would minimize risk and recovery time. Copyright (c) 2006 Wiley-Liss, Inc.
Yu, Yang; Wang, Sihan; Tang, Jiafu; Kaku, Ikou; Sun, Wei
2016-01-01
Productivity can be greatly improved by converting the traditional assembly line to a seru system, especially in the business environment with short product life cycles, uncertain product types and fluctuating production volumes. Line-seru conversion includes two decision processes, i.e., seru formation and seru load. For simplicity, however, previous studies focus on the seru formation with a given scheduling rule in seru load. We select ten scheduling rules usually used in seru load to investigate the influence of different scheduling rules on the performance of line-seru conversion. Moreover, we clarify the complexities of line-seru conversion for ten different scheduling rules from the theoretical perspective. In addition, multi-objective decisions are often used in line-seru conversion. To obtain Pareto-optimal solutions of multi-objective line-seru conversion, we develop two improved exact algorithms based on reducing time complexity and space complexity respectively. Compared with the enumeration based on non-dominated sorting to solve multi-objective problem, the two improved exact algorithms saves computation time greatly. Several numerical simulation experiments are performed to show the performance improvement brought by the two proposed exact algorithms.
IDMA-Based MAC Protocol for Satellite Networks with Consideration on Channel Quality
2014-01-01
In order to overcome the shortcomings of existing medium access control (MAC) protocols based on TDMA or CDMA in satellite networks, interleave division multiple access (IDMA) technique is introduced into satellite communication networks. Therefore, a novel wide-band IDMA MAC protocol based on channel quality is proposed in this paper, consisting of a dynamic power allocation algorithm, a rate adaptation algorithm, and a call admission control (CAC) scheme. Firstly, the power allocation algorithm combining the technique of IDMA SINR-evolution and channel quality prediction is developed to guarantee high power efficiency even in terrible channel conditions. Secondly, the effective rate adaptation algorithm, based on accurate channel information per timeslot and by the means of rate degradation, can be realized. What is more, based on channel quality prediction, the CAC scheme, combining the new power allocation algorithm, rate scheduling, and buffering strategies together, is proposed for the emerging IDMA systems, which can support a variety of traffic types, and offering quality of service (QoS) requirements corresponding to different priority levels. Simulation results show that the new wide-band IDMA MAC protocol can make accurate estimation of available resource considering the effect of multiuser detection (MUD) and QoS requirements of multimedia traffic, leading to low outage probability as well as high overall system throughput. PMID:25126592
Ren, Tao; Zhang, Chuan; Lin, Lin; Guo, Meiting; Xie, Xionghang
2014-01-01
We address the scheduling problem for a no-wait flow shop to optimize total completion time with release dates. With the tool of asymptotic analysis, we prove that the objective values of two SPTA-based algorithms converge to the optimal value for sufficiently large-sized problems. To further enhance the performance of the SPTA-based algorithms, an improvement scheme based on local search is provided for moderate scale problems. New lower bound is presented for evaluating the asymptotic optimality of the algorithms. Numerical simulations demonstrate the effectiveness of the proposed algorithms.
Ren, Tao; Zhang, Chuan; Lin, Lin; Guo, Meiting; Xie, Xionghang
2014-01-01
We address the scheduling problem for a no-wait flow shop to optimize total completion time with release dates. With the tool of asymptotic analysis, we prove that the objective values of two SPTA-based algorithms converge to the optimal value for sufficiently large-sized problems. To further enhance the performance of the SPTA-based algorithms, an improvement scheme based on local search is provided for moderate scale problems. New lower bound is presented for evaluating the asymptotic optimality of the algorithms. Numerical simulations demonstrate the effectiveness of the proposed algorithms. PMID:24764774
Job-shop scheduling applied to computer vision
NASA Astrophysics Data System (ADS)
Sebastian y Zuniga, Jose M.; Torres-Medina, Fernando; Aracil, Rafael; Reinoso, Oscar; Jimenez, Luis M.; Garcia, David
1997-09-01
This paper presents a method for minimizing the total elapsed time spent by n tasks running on m differents processors working in parallel. The developed algorithm not only minimizes the total elapsed time but also reduces the idle time and waiting time of in-process tasks. This condition is very important in some applications of computer vision in which the time to finish the total process is particularly critical -- quality control in industrial inspection, real- time computer vision, guided robots. The scheduling algorithm is based on the use of two matrices, obtained from the precedence relationships between tasks, and the data obtained from the two matrices. The developed scheduling algorithm has been tested in one application of quality control using computer vision. The results obtained have been satisfactory in the application of different image processing algorithms.
NASA Astrophysics Data System (ADS)
Ausaf, Muhammad Farhan; Gao, Liang; Li, Xinyu
2015-12-01
For increasing the overall performance of modern manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatching rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.
A Target Coverage Scheduling Scheme Based on Genetic Algorithms in Directional Sensor Networks
Gil, Joon-Min; Han, Youn-Hee
2011-01-01
As a promising tool for monitoring the physical world, directional sensor networks (DSNs) consisting of a large number of directional sensors are attracting increasing attention. As directional sensors in DSNs have limited battery power and restricted angles of sensing range, maximizing the network lifetime while monitoring all the targets in a given area remains a challenge. A major technique to conserve the energy of directional sensors is to use a node wake-up scheduling protocol by which some sensors remain active to provide sensing services, while the others are inactive to conserve their energy. In this paper, we first address a Maximum Set Covers for DSNs (MSCD) problem, which is known to be NP-complete, and present a greedy algorithm-based target coverage scheduling scheme that can solve this problem by heuristics. This scheme is used as a baseline for comparison. We then propose a target coverage scheduling scheme based on a genetic algorithm that can find the optimal cover sets to extend the network lifetime while monitoring all targets by the evolutionary global search technique. To verify and evaluate these schemes, we conducted simulations and showed that the schemes can contribute to extending the network lifetime. Simulation results indicated that the genetic algorithm-based scheduling scheme had better performance than the greedy algorithm-based scheme in terms of maximizing network lifetime. PMID:22319387
NASA Astrophysics Data System (ADS)
Han, Yu-Yan; Gong, Dunwei; Sun, Xiaoyan
2015-07-01
A flow-shop scheduling problem with blocking has important applications in a variety of industrial systems but is underrepresented in the research literature. In this study, a novel discrete artificial bee colony (ABC) algorithm is presented to solve the above scheduling problem with a makespan criterion by incorporating the ABC with differential evolution (DE). The proposed algorithm (DE-ABC) contains three key operators. One is related to the employed bee operator (i.e. adopting mutation and crossover operators of discrete DE to generate solutions with good quality); the second is concerned with the onlooker bee operator, which modifies the selected solutions using insert or swap operators based on the self-adaptive strategy; and the last is for the local search, that is, the insert-neighbourhood-based local search with a small probability is adopted to improve the algorithm's capability in exploitation. The performance of the proposed DE-ABC algorithm is empirically evaluated by applying it to well-known benchmark problems. The experimental results show that the proposed algorithm is superior to the compared algorithms in minimizing the makespan criterion.
A multipopulation PSO based memetic algorithm for permutation flow shop scheduling.
Liu, Ruochen; Ma, Chenlin; Ma, Wenping; Li, Yangyang
2013-01-01
The permutation flow shop scheduling problem (PFSSP) is part of production scheduling, which belongs to the hardest combinatorial optimization problem. In this paper, a multipopulation particle swarm optimization (PSO) based memetic algorithm (MPSOMA) is proposed in this paper. In the proposed algorithm, the whole particle swarm population is divided into three subpopulations in which each particle evolves itself by the standard PSO and then updates each subpopulation by using different local search schemes such as variable neighborhood search (VNS) and individual improvement scheme (IIS). Then, the best particle of each subpopulation is selected to construct a probabilistic model by using estimation of distribution algorithm (EDA) and three particles are sampled from the probabilistic model to update the worst individual in each subpopulation. The best particle in the entire particle swarm is used to update the global optimal solution. The proposed MPSOMA is compared with two recently proposed algorithms, namely, PSO based memetic algorithm (PSOMA) and hybrid particle swarm optimization with estimation of distribution algorithm (PSOEDA), on 29 well-known PFFSPs taken from OR-library, and the experimental results show that it is an effective approach for the PFFSP.
Autonomous Hybrid Priority Queueing for Scheduling Residential Energy Demands
NASA Astrophysics Data System (ADS)
Kalimullah, I. Q.; Shamroukh, M.; Sahar, N.; Shetty, S.
2017-05-01
The advent of smart grid technologies has opened up opportunities to manage the energy consumption of the users within a residential smart grid system. Demand response management is particularly being employed to reduce the overall load on an electricity network which could in turn reduce outages and electricity costs. The objective of this paper is to develop an intelligible scheduler to optimize the energy available to a micro grid through hybrid queueing algorithm centered around the consumers’ energy demands. This is achieved by shifting certain schedulable load appliances to light load hours. Various factors such as the type of demand, grid load, consumers’ energy usage patterns and preferences are considered while formulating the logical constraints required for the algorithm. The algorithm thus obtained is then implemented in MATLAB workspace to simulate its execution by an Energy Consumption Scheduler (ECS) found within smart meters, which automatically finds the optimal energy consumption schedule tailor made to fit each consumer within the micro grid network.
NASA Astrophysics Data System (ADS)
Wang, Honghuan; Xing, Fangyuan; Yin, Hongxi; Zhao, Nan; Lian, Bizhan
2016-02-01
With the explosive growth of network services, the reasonable traffic scheduling and efficient configuration of network resources have an important significance to increase the efficiency of the network. In this paper, an adaptive traffic scheduling policy based on the priority and time window is proposed and the performance of this algorithm is evaluated in terms of scheduling ratio. The routing and spectrum allocation are achieved by using the Floyd shortest path algorithm and establishing a node spectrum resource allocation model based on greedy algorithm, which is proposed by us. The fairness index is introduced to improve the capability of spectrum configuration. The results show that the designed traffic scheduling strategy can be applied to networks with multicast and broadcast functionalities, and makes them get real-time and efficient response. The scheme of node spectrum configuration improves the frequency resource utilization and gives play to the efficiency of the network.
Meta-RaPS Algorithm for the Aerial Refueling Scheduling Problem
NASA Technical Reports Server (NTRS)
Kaplan, Sezgin; Arin, Arif; Rabadi, Ghaith
2011-01-01
The Aerial Refueling Scheduling Problem (ARSP) can be defined as determining the refueling completion times for each fighter aircraft (job) on multiple tankers (machines). ARSP assumes that jobs have different release times and due dates, The total weighted tardiness is used to evaluate schedule's quality. Therefore, ARSP can be modeled as a parallel machine scheduling with release limes and due dates to minimize the total weighted tardiness. Since ARSP is NP-hard, it will be more appropriate to develop a pproimate or heuristic algorithm to obtain solutions in reasonable computation limes. In this paper, Meta-Raps-ATC algorithm is implemented to create high quality solutions. Meta-RaPS (Meta-heuristic for Randomized Priority Search) is a recent and promising meta heuristic that is applied by introducing randomness to a construction heuristic. The Apparent Tardiness Rule (ATC), which is a good rule for scheduling problems with tardiness objective, is used to construct initial solutions which are improved by an exchanging operation. Results are presented for generated instances.
Decomposition of timed automata for solving scheduling problems
NASA Astrophysics Data System (ADS)
Nishi, Tatsushi; Wakatake, Masato
2014-03-01
A decomposition algorithm for scheduling problems based on timed automata (TA) model is proposed. The problem is represented as an optimal state transition problem for TA. The model comprises of the parallel composition of submodels such as jobs and resources. The procedure of the proposed methodology can be divided into two steps. The first step is to decompose the TA model into several submodels by using decomposable condition. The second step is to combine individual solution of subproblems for the decomposed submodels by the penalty function method. A feasible solution for the entire model is derived through the iterated computation of solving the subproblem for each submodel. The proposed methodology is applied to solve flowshop and jobshop scheduling problems. Computational experiments demonstrate the effectiveness of the proposed algorithm compared with a conventional TA scheduling algorithm without decomposition.
Enhancing battery efficiency for pervasive health-monitoring systems based on electronic textiles.
Zheng, Nenggan; Wu, Zhaohui; Lin, Man; Yang, Laurence Tianruo
2010-03-01
Electronic textiles are regarded as one of the most important computation platforms for future computer-assisted health-monitoring applications. In these novel systems, multiple batteries are used in order to prolong their operational lifetime, which is a significant metric for system usability. However, due to the nonlinear features of batteries, computing systems with multiple batteries cannot achieve the same battery efficiency as those powered by a monolithic battery of equal capacity. In this paper, we propose an algorithm aiming to maximize battery efficiency globally for the computer-assisted health-care systems with multiple batteries. Based on an accurate analytical battery model, the concept of weighted battery fatigue degree is introduced and the novel battery-scheduling algorithm called predicted weighted fatigue degree least first (PWFDLF) is developed. Besides, we also discuss our attempts during search PWFDLF: a weighted round-robin (WRR) and a greedy algorithm achieving highest local battery efficiency, which reduces to the sequential discharging policy. Evaluation results show that a considerable improvement in battery efficiency can be obtained by PWFDLF under various battery configurations and current profiles compared to conventional sequential and WRR discharging policies.
Longest jobs first algorithm in solving job shop scheduling using adaptive genetic algorithm (GA)
NASA Astrophysics Data System (ADS)
Alizadeh Sahzabi, Vahid; Karimi, Iman; Alizadeh Sahzabi, Navid; Mamaani Barnaghi, Peiman
2012-01-01
In this paper, genetic algorithm was used to solve job shop scheduling problems. One example discussed in JSSP (Job Shop Scheduling Problem) and I described how we can solve such these problems by genetic algorithm. The goal in JSSP is to gain the shortest process time. Furthermore I proposed a method to obtain best performance on performing all jobs in shortest time. The method mainly, is according to Genetic algorithm (GA) and crossing over between parents always follows the rule which the longest process is at the first in the job queue. In the other word chromosomes is suggested to sorts based on the longest processes to shortest i.e. "longest job first" says firstly look which machine contains most processing time during its performing all its jobs and that is the bottleneck. Secondly, start sort those jobs which are belonging to that specific machine descending. Based on the achieved results," longest jobs first" is the optimized status in job shop scheduling problems. In our results the accuracy would grow up to 94.7% for total processing time and the method improved 4% the accuracy of performing all jobs in the presented example.
5 CFR 9901.363 - Premium pay for health care personnel.
Code of Federal Regulations, 2011 CFR
2011-01-01
... to be on-call outside his or her regular duty hours or during hours on a holiday when the employee is excused from regular duty. (3) An employee may not be scheduled to be on-call unless it is essential for... status. (6) An employee may not be charged leave during periods of regularly scheduled on-call duty; nor...
A Hyper-Heuristic Ensemble Method for Static Job-Shop Scheduling.
Hart, Emma; Sim, Kevin
2016-01-01
We describe a new hyper-heuristic method NELLI-GP for solving job-shop scheduling problems (JSSP) that evolves an ensemble of heuristics. The ensemble adopts a divide-and-conquer approach in which each heuristic solves a unique subset of the instance set considered. NELLI-GP extends an existing ensemble method called NELLI by introducing a novel heuristic generator that evolves heuristics composed of linear sequences of dispatching rules: each rule is represented using a tree structure and is itself evolved. Following a training period, the ensemble is shown to outperform both existing dispatching rules and a standard genetic programming algorithm on a large set of new test instances. In addition, it obtains superior results on a set of 210 benchmark problems from the literature when compared to two state-of-the-art hyper-heuristic approaches. Further analysis of the relationship between heuristics in the evolved ensemble and the instances each solves provides new insights into features that might describe similar instances.
NASA Astrophysics Data System (ADS)
Gen, Mitsuo; Lin, Lin
Many combinatorial optimization problems from industrial engineering and operations research in real-world are very complex in nature and quite hard to solve them by conventional techniques. Since the 1960s, there has been an increasing interest in imitating living beings to solve such kinds of hard combinatorial optimization problems. Simulating the natural evolutionary process of human beings results in stochastic optimization techniques called evolutionary algorithms (EAs), which can often outperform conventional optimization methods when applied to difficult real-world problems. In this survey paper, we provide a comprehensive survey of the current state-of-the-art in the use of EA in manufacturing and logistics systems. In order to demonstrate the EAs which are powerful and broadly applicable stochastic search and optimization techniques, we deal with the following engineering design problems: transportation planning models, layout design models and two-stage logistics models in logistics systems; job-shop scheduling, resource constrained project scheduling in manufacturing system.
Point-of-Care Test Equipment for Flexible Laboratory Automation.
You, Won Suk; Park, Jae Jun; Jin, Sung Moon; Ryew, Sung Moo; Choi, Hyouk Ryeol
2014-08-01
Blood tests are some of the core clinical laboratory tests for diagnosing patients. In hospitals, an automated process called total laboratory automation, which relies on a set of sophisticated equipment, is normally adopted for blood tests. Noting that the total laboratory automation system typically requires a large footprint and significant amount of power, slim and easy-to-move blood test equipment is necessary for specific demands such as emergency departments or small-size local clinics. In this article, we present a point-of-care test system that can provide flexibility and portability with low cost. First, the system components, including a reagent tray, dispensing module, microfluidic disk rotor, and photometry scanner, and their functions are explained. Then, a scheduler algorithm to provide a point-of-care test platform with an efficient test schedule to reduce test time is introduced. Finally, the results of diagnostic tests are presented to evaluate the system. © 2014 Society for Laboratory Automation and Screening.
Evolutionary Design of a Phased Array Antenna Element
NASA Technical Reports Server (NTRS)
Globus, Al; Linden, Derek; Lohn, Jason
2006-01-01
We present an evolved S-band phased array antenna element design that meets the requirements of NASA's TDRS-C communications satellite scheduled for launch early next decade. The original specification called for two types of elements, one for receive only and one for transmit/receive. We were able to evolve a single element design that meets both specifications thereby simplifying the antenna and reducing testing and integration costs. The highest performance antenna found using a genetic algorithm and stochastic hill-climbing has been fabricated and tested. Laboratory results are largely consistent with simulation. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years its computer speed has increased and electromagnetic simulators have improved. Many antenna types have been investigated, including wire antennas, antenna arrays and quadrifilar helical antennas. In particular, our laboratory evolved a wire antenna design for NASA's Space Technology 5 (ST5) spacecraft. This antenna has been fabricated, tested, and is scheduled for launch on the three spacecraft in 2006.
Applications of artificial intelligence to mission planning
NASA Technical Reports Server (NTRS)
Ford, Donnie R.; Rogers, John S.; Floyd, Stephen A.
1990-01-01
The scheduling problem facing NASA-Marshall mission planning is extremely difficult for several reasons. The most critical factor is the computational complexity involved in developing a schedule. The size of the search space is large along some dimensions and infinite along others. It is because of this and other difficulties that many of the conventional operation research techniques are not feasible or inadequate to solve the problems by themselves. Therefore, the purpose is to examine various artificial intelligence (AI) techniques to assist conventional techniques or to replace them. The specific tasks performed were as follows: (1) to identify mission planning applications for object oriented and rule based programming; (2) to investigate interfacing AI dedicated hardware (Lisp machines) to VAX hardware; (3) to demonstrate how Lisp may be called from within FORTRAN programs; (4) to investigate and report on programming techniques used in some commercial AI shells, such as Knowledge Engineering Environment (KEE); and (5) to study and report on algorithmic methods to reduce complexity as related to AI techniques.
NASA Technical Reports Server (NTRS)
Barker, John L.; Harnden, Joann M. K.; Montgomery, Harry; Anuta, Paul; Kvaran, Geir; Knight, ED; Bryant, Tom; Mckay, AL; Smid, Jon; Knowles, Dan, Jr.
1994-01-01
The EOS Moderate Resolution Imaging Spectrometer (MODIS) is being developed by NASA for flight on the Earth Observing System (EOS) series of satellites, the first of which (EOS-AM-1) is scheduled for launch in 1998. This document describes the algorithms and their theoretical basis for the MODIS Level 1B characterization, calibration, and geolocation algorithms which must produce radiometrically, spectrally, and spatially calibrated data with sufficient accuracy so that Global change research programs can detect minute changes in biogeophysical parameters. The document first describes the geolocation algorithm which determines geodetic latitude, longitude, and elevation of each MODIS pixel and the determination of geometric parameters for each observation (satellite zenith angle, satellite azimuth, range to the satellite, solar zenith angle, and solar azimuth). Next, the utilization of the MODIS onboard calibration sources, which consist of the Spectroradiometric Calibration Assembly (SRCA), Solar Diffuser (SD), Solar Diffuser Stability Monitor (SDSM), and the Blackbody (BB), is treated. Characterization of these sources and integration of measurements into the calibration process is described. Finally, the use of external sources, including the Moon, instrumented sites on the Earth (called vicarious calibration), and unsupervised normalization sites having invariant reflectance and emissive properties is treated. Finally, algorithms for generating utility masks needed for scene-based calibration are discussed. Eight appendices are provided, covering instrument design and additional algorithm details.
Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari
2014-01-01
A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962
Scheduling Results for the THEMIS Observation Scheduling Tool
NASA Technical Reports Server (NTRS)
Mclaren, David; Rabideau, Gregg; Chien, Steve; Knight, Russell; Anwar, Sadaat; Mehall, Greg; Christensen, Philip
2011-01-01
We describe a scheduling system intended to assist in the development of instrument data acquisitions for the THEMIS instrument, onboard the Mars Odyssey spacecraft, and compare results from multiple scheduling algorithms. This tool creates observations of both (a) targeted geographical regions of interest and (b) general mapping observations, while respecting spacecraft constraints such as data volume, observation timing, visibility, lighting, season, and science priorities. This tool therefore must address both geometric and state/timing/resource constraints. We describe a tool that maps geometric polygon overlap constraints to set covering constraints using a grid-based approach. These set covering constraints are then incorporated into a greedy optimization scheduling algorithm incorporating operations constraints to generate feasible schedules. The resultant tool generates schedules of hundreds of observations per week out of potential thousands of observations. This tool is currently under evaluation by the THEMIS observation planning team at Arizona State University.
NASA Astrophysics Data System (ADS)
Delgado, Francisco; Schumacher, German
2014-08-01
The Large Synoptic Survey Telescope (LSST) is a complex system of systems with demanding performance and operational requirements. The nature of its scientific goals requires a special Observatory Control System (OCS) and particularly a very specialized automatic Scheduler. The OCS Scheduler is an autonomous software component that drives the survey, selecting the detailed sequence of visits in real time, taking into account multiple science programs, the current external and internal conditions, and the history of observations. We have developed a SysML model for the OCS Scheduler that fits coherently in the OCS and LSST integrated model. We have also developed a prototype of the Scheduler that implements the scheduling algorithms in the simulation environment provided by the Operations Simulator, where the environment and the observatory are modeled with real weather data and detailed kinematics parameters. This paper expands on the Scheduler architecture and the proposed algorithms to achieve the survey goals.
Li, Jun-qing; Pan, Quan-ke; Mao, Kun
2014-01-01
A hybrid algorithm which combines particle swarm optimization (PSO) and iterated local search (ILS) is proposed for solving the hybrid flowshop scheduling (HFS) problem with preventive maintenance (PM) activities. In the proposed algorithm, different crossover operators and mutation operators are investigated. In addition, an efficient multiple insert mutation operator is developed for enhancing the searching ability of the algorithm. Furthermore, an ILS-based local search procedure is embedded in the algorithm to improve the exploitation ability of the proposed algorithm. The detailed experimental parameter for the canonical PSO is tuning. The proposed algorithm is tested on the variation of 77 Carlier and Néron's benchmark problems. Detailed comparisons with the present efficient algorithms, including hGA, ILS, PSO, and IG, verify the efficiency and effectiveness of the proposed algorithm. PMID:24883414
Multiple R&D projects scheduling optimization with improved particle swarm algorithm.
Liu, Mengqi; Shan, Miyuan; Wu, Juan
2014-01-01
For most enterprises, in order to win the initiative in the fierce competition of market, a key step is to improve their R&D ability to meet the various demands of customers more timely and less costly. This paper discusses the features of multiple R&D environments in large make-to-order enterprises under constrained human resource and budget, and puts forward a multi-project scheduling model during a certain period. Furthermore, we make some improvements to existed particle swarm algorithm and apply the one developed here to the resource-constrained multi-project scheduling model for a simulation experiment. Simultaneously, the feasibility of model and the validity of algorithm are proved in the experiment.
Workflow as a Service in the Cloud: Architecture and Scheduling Algorithms.
Wang, Jianwu; Korambath, Prakashan; Altintas, Ilkay; Davis, Jim; Crawl, Daniel
2014-01-01
With more and more workflow systems adopting cloud as their execution environment, it becomes increasingly challenging on how to efficiently manage various workflows, virtual machines (VMs) and workflow execution on VM instances. To make the system scalable and easy-to-extend, we design a Workflow as a Service (WFaaS) architecture with independent services. A core part of the architecture is how to efficiently respond continuous workflow requests from users and schedule their executions in the cloud. Based on different targets, we propose four heuristic workflow scheduling algorithms for the WFaaS architecture, and analyze the differences and best usages of the algorithms in terms of performance, cost and the price/performance ratio via experimental studies.
A hybrid dynamic harmony search algorithm for identical parallel machines scheduling
NASA Astrophysics Data System (ADS)
Chen, Jing; Pan, Quan-Ke; Wang, Ling; Li, Jun-Qing
2012-02-01
In this article, a dynamic harmony search (DHS) algorithm is proposed for the identical parallel machines scheduling problem with the objective to minimize makespan. First, an encoding scheme based on a list scheduling rule is developed to convert the continuous harmony vectors to discrete job assignments. Second, the whole harmony memory (HM) is divided into multiple small-sized sub-HMs, and each sub-HM performs evolution independently and exchanges information with others periodically by using a regrouping schedule. Third, a novel improvisation process is applied to generate a new harmony by making use of the information of harmony vectors in each sub-HM. Moreover, a local search strategy is presented and incorporated into the DHS algorithm to find promising solutions. Simulation results show that the hybrid DHS (DHS_LS) is very competitive in comparison to its competitors in terms of mean performance and average computational time.
NASA Technical Reports Server (NTRS)
Dupnick, E.; Wiggins, D.
1980-01-01
The scheduling algorithm for mission planning and logistics evaluation (SAMPLE) is presented. Two major subsystems are included: The mission payloads program; and the set covering program. Formats and parameter definitions for the payload data set (payload model), feasible combination file, and traffic model are documented.
ERIC Educational Resources Information Center
Li, Wenhao
2011-01-01
Distributed workflow technology has been widely used in modern education and e-business systems. Distributed web applications have shown cross-domain and cooperative characteristics to meet the need of current distributed workflow applications. In this paper, the author proposes a dynamic and adaptive scheduling algorithm PCSA (Pre-Calculated…
Algorithms for Scheduling and Network Problems
1991-09-01
time. We already know, by Lemma 2.2.1, that WOPT = O(log( mpU )), so if we could solve this integer program optimally we would be done. However, the...Folydirat, 15:177-191, 1982. [6] I.S. Belov and Ya. N. Stolin. An algorithm in a single path operations scheduling problem. In Mathematical Economics and
Phunchongharn, Phond; Hossain, Ekram; Camorlinga, Sergio
2011-11-01
We study the multiple access problem for e-Health applications (referred to as secondary users) coexisting with medical devices (referred to as primary or protected users) in a hospital environment. In particular, we focus on transmission scheduling and power control of secondary users in multiple spatial reuse time-division multiple access (STDMA) networks. The objective is to maximize the spectrum utilization of secondary users and minimize their power consumption subject to the electromagnetic interference (EMI) constraints for active and passive medical devices and minimum throughput guarantee for secondary users. The multiple access problem is formulated as a dual objective optimization problem which is shown to be NP-complete. We propose a joint scheduling and power control algorithm based on a greedy approach to solve the problem with much lower computational complexity. To this end, an enhanced greedy algorithm is proposed to improve the performance of the greedy algorithm by finding the optimal sequence of secondary users for scheduling. Using extensive simulations, the tradeoff in performance in terms of spectrum utilization, energy consumption, and computational complexity is evaluated for both the algorithms.
Variable Scheduling to Mitigate Channel Losses in Energy-Efficient Body Area Networks
Tselishchev, Yuriy; Boulis, Athanassios; Libman, Lavy
2012-01-01
We consider a typical body area network (BAN) setting in which sensor nodes send data to a common hub regularly on a TDMA basis, as defined by the emerging IEEE 802.15.6 BAN standard. To reduce transmission losses caused by the highly dynamic nature of the wireless channel around the human body, we explore variable TDMA scheduling techniques that allow the order of transmissions within each TDMA round to be decided on the fly, rather than being fixed in advance. Using a simple Markov model of the wireless links, we devise a number of scheduling algorithms that can be performed by the hub, which aim to maximize the expected number of successful transmissions in a TDMA round, and thereby significantly reduce transmission losses as compared with a static TDMA schedule. Importantly, these algorithms do not require a priori knowledge of the statistical properties of the wireless channels, and the reliability improvement is achieved entirely via shuffling the order of transmissions among devices, and does not involve any additional energy consumption (e.g., retransmissions). We evaluate these algorithms directly on an experimental set of traces obtained from devices strapped to human subjects performing regular daily activities, and confirm that the benefits of the proposed variable scheduling algorithms extend to this practical setup as well. PMID:23202183
Genetic algorithm parameters tuning for resource-constrained project scheduling problem
NASA Astrophysics Data System (ADS)
Tian, Xingke; Yuan, Shengrui
2018-04-01
Project Scheduling Problem (RCPSP) is a kind of important scheduling problem. To achieve a certain optimal goal such as the shortest duration, the smallest cost, the resource balance and so on, it is required to arrange the start and finish of all tasks under the condition of satisfying project timing constraints and resource constraints. In theory, the problem belongs to the NP-hard problem, and the model is abundant. Many combinatorial optimization problems are special cases of RCPSP, such as job shop scheduling, flow shop scheduling and so on. At present, the genetic algorithm (GA) has been used to deal with the classical RCPSP problem and achieved remarkable results. Vast scholars have also studied the improved genetic algorithm for the RCPSP problem, which makes it to solve the RCPSP problem more efficiently and accurately. However, for the selection of the main parameters of the genetic algorithm, there is no parameter optimization in these studies. Generally, we used the empirical method, but it cannot ensure to meet the optimal parameters. In this paper, the problem was carried out, which is the blind selection of parameters in the process of solving the RCPSP problem. We made sampling analysis, the establishment of proxy model and ultimately solved the optimal parameters.
Time-optimum packet scheduling for many-to-one routing in wireless sensor networks
Song, W.-Z.; Yuan, F.; LaHuser, R.
2007-01-01
This paper studies the WSN application scenario with periodical traffic from all sensors to a sink. We present a time-optimum and energy-efficient packet scheduling algorithm and its distributed implementation. We first give a general many-to-one packet scheduling algorithm for wireless networks, and then prove that it is time-optimum and costs max(2N(u1) - 1, N(u 0) -1) time slots, assuming each node reports one unit of data in each round. Here N(u0) is the total number of sensors, while N(u 1) denotes the number of sensors in a sink's largest branch subtree. With a few adjustments, we then show that our algorithm also achieves time-optimum scheduling in heterogeneous scenarios, where each sensor reports a heterogeneous amount of data in each round. Then we give a distributed implementation to let each node calculate its duty-cycle locally and maximize efficiency globally. In this packet scheduling algorithm, each node goes to sleep whenever it is not transceiving, so that the energy waste of idle listening is also eliminated. Finally, simulations are conducted to evaluate network performance using the Qualnet simulator. Among other contributions, our study also identifies the maximum reporting frequency that a deployed sensor network can handle. ??2006 IEEE.
Time-optimum packet scheduling for many-to-one routing in wireless sensor networks
Song, W.-Z.; Yuan, F.; LaHusen, R.; Shirazi, B.
2007-01-01
This paper studies the wireless sensor networks (WSN) application scenario with periodical traffic from all sensors to a sink. We present a time-optimum and energy-efficient packet scheduling algorithm and its distributed implementation. We first give a general many-to-one packet scheduling algorithm for wireless networks, and then prove that it is time-optimum and costs [image omitted], N(u0)-1) time slots, assuming each node reports one unit of data in each round. Here [image omitted] is the total number of sensors, while [image omitted] denotes the number of sensors in a sink's largest branch subtree. With a few adjustments, we then show that our algorithm also achieves time-optimum scheduling in heterogeneous scenarios, where each sensor reports a heterogeneous amount of data in each round. Then we give a distributed implementation to let each node calculate its duty-cycle locally and maximize efficiency globally. In this packet-scheduling algorithm, each node goes to sleep whenever it is not transceiving, so that the energy waste of idle listening is also mitigated. Finally, simulations are conducted to evaluate network performance using the Qualnet simulator. Among other contributions, our study also identifies the maximum reporting frequency that a deployed sensor network can handle.
Design tool for multiprocessor scheduling and evaluation of iterative dataflow algorithms
NASA Technical Reports Server (NTRS)
Jones, Robert L., III
1995-01-01
A graph-theoretic design process and software tool is defined for selecting a multiprocessing scheduling solution for a class of computational problems. The problems of interest are those that can be described with a dataflow graph and are intended to be executed repetitively on a set of identical processors. Typical applications include signal processing and control law problems. Graph-search algorithms and analysis techniques are introduced and shown to effectively determine performance bounds, scheduling constraints, and resource requirements. The software tool applies the design process to a given problem and includes performance optimization through the inclusion of additional precedence constraints among the schedulable tasks.
Measuring the effects of heterogeneity on distributed systems
NASA Technical Reports Server (NTRS)
El-Toweissy, Mohamed; Zeineldine, Osman; Mukkamala, Ravi
1991-01-01
Distributed computer systems in daily use are becoming more and more heterogeneous. Currently, much of the design and analysis studies of such systems assume homogeneity. This assumption of homogeneity has been mainly driven by the resulting simplicity in modeling and analysis. A simulation study is presented which investigated the effects of heterogeneity on scheduling algorithms for hard real time distributed systems. In contrast to previous results which indicate that random scheduling may be as good as a more complex scheduler, this algorithm is shown to be consistently better than a random scheduler. This conclusion is more prevalent at high workloads as well as at high levels of heterogeneity.
SPORT: An Algorithm for Divisible Load Scheduling with Result Collection on Heterogeneous Systems
NASA Astrophysics Data System (ADS)
Ghatpande, Abhay; Nakazato, Hidenori; Beaumont, Olivier; Watanabe, Hiroshi
Divisible Load Theory (DLT) is an established mathematical framework to study Divisible Load Scheduling (DLS). However, traditional DLT does not address the scheduling of results back to source (i. e., result collection), nor does it comprehensively deal with system heterogeneity. In this paper, the DLSRCHETS (DLS with Result Collection on HET-erogeneous Systems) problem is addressed. The few papers to date that have dealt with DLSRCHETS, proposed simplistic LIFO (Last In, First Out) and FIFO (First In, First Out) type of schedules as solutions to DLSRCHETS. In this paper, a new polynomial time heuristic algorithm, SPORT (System Parameters based Optimized Result Transfer), is proposed as a solution to the DLSRCHETS problem. With the help of simulations, it is proved that the performance of SPORT is significantly better than existing algorithms. The other major contributions of this paper include, for the first time ever, (a) the derivation of the condition to identify the presence of idle time in a FIFO schedule for two processors, (b) the identification of the limiting condition for the optimality of FIFO and LIFO schedules for two processors, and (c) the introduction of the concept of equivalent processor in DLS for heterogeneous systems with result collection.
Permutation flow-shop scheduling problem to optimize a quadratic objective function
NASA Astrophysics Data System (ADS)
Ren, Tao; Zhao, Peng; Zhang, Da; Liu, Bingqian; Yuan, Huawei; Bai, Danyu
2017-09-01
A flow-shop scheduling model enables appropriate sequencing for each job and for processing on a set of machines in compliance with identical processing orders. The objective is to achieve a feasible schedule for optimizing a given criterion. Permutation is a special setting of the model in which the processing order of the jobs on the machines is identical for each subsequent step of processing. This article addresses the permutation flow-shop scheduling problem to minimize the criterion of total weighted quadratic completion time. With a probability hypothesis, the asymptotic optimality of the weighted shortest processing time schedule under a consistency condition (WSPT-CC) is proven for sufficiently large-scale problems. However, the worst case performance ratio of the WSPT-CC schedule is the square of the number of machines in certain situations. A discrete differential evolution algorithm, where a new crossover method with multiple-point insertion is used to improve the final outcome, is presented to obtain high-quality solutions for moderate-scale problems. A sequence-independent lower bound is designed for pruning in a branch-and-bound algorithm for small-scale problems. A set of random experiments demonstrates the performance of the lower bound and the effectiveness of the proposed algorithms.
Determination of the Underlying Task Scheduling Algorithm for an Ada Runtime System
1989-12-01
was also curious as to how well I could model the test cases with Ada programs . In particular, I wanted to see whether I could model the equal arrival...parameter relationshis=s required to detect the execution of individual algorithms. These test cases were modeled using Ada programs . Then, the...results were analyzed to determine whether the Ada programs were capable of revealing the task scheduling algorithm used by the Ada run-time system. This
A statistical-based scheduling algorithm in automated data path synthesis
NASA Technical Reports Server (NTRS)
Jeon, Byung Wook; Lursinsap, Chidchanok
1992-01-01
In this paper, we propose a new heuristic scheduling algorithm based on the statistical analysis of the cumulative frequency distribution of operations among control steps. It has a tendency of escaping from local minima and therefore reaching a globally optimal solution. The presented algorithm considers the real world constraints such as chained operations, multicycle operations, and pipelined data paths. The result of the experiment shows that it gives optimal solutions, even though it is greedy in nature.
NASA Astrophysics Data System (ADS)
Swaraj Pati, Mythili N.; Korde, Pranav; Dey, Pallav
2017-11-01
The purpose of this paper is to introduce an optimised variant to the round robin scheduling algorithm. Every algorithm works in its own way and has its own merits and demerits. The proposed algorithm overcomes the shortfalls of the existing scheduling algorithms in terms of waiting time, turnaround time, throughput and number of context switches. The algorithm is pre-emptive and works based on the priority of the associated processes. The priority is decided on the basis of the remaining burst time of a particular process, that is; lower the burst time, higher the priority and higher the burst time, lower the priority. To complete the execution, a time quantum is initially specified. In case if the burst time of a particular process is less than 2X of the specified time quantum but more than 1X of the specified time quantum; the process is given high priority and is allowed to execute until it completes entirely and finishes. Such processes do not have to wait for their next burst cycle.
An Efficient Randomized Algorithm for Real-Time Process Scheduling in PicOS Operating System
NASA Astrophysics Data System (ADS)
Helmy*, Tarek; Fatai, Anifowose; Sallam, El-Sayed
PicOS is an event-driven operating environment designed for use with embedded networked sensors. More specifically, it is designed to support the concurrency in intensive operations required by networked sensors with minimal hardware requirements. Existing process scheduling algorithms of PicOS; a commercial tiny, low-footprint, real-time operating system; have their associated drawbacks. An efficient, alternative algorithm, based on a randomized selection policy, has been proposed, demonstrated, confirmed for efficiency and fairness, on the average, and has been recommended for implementation in PicOS. Simulations were carried out and performance measures such as Average Waiting Time (AWT) and Average Turn-around Time (ATT) were used to assess the efficiency of the proposed randomized version over the existing ones. The results prove that Randomized algorithm is the best and most attractive for implementation in PicOS, since it is most fair and has the least AWT and ATT on average over the other non-preemptive scheduling algorithms implemented in this paper.
An Optimal CDS Construction Algorithm with Activity Scheduling in Ad Hoc Networks
Penumalli, Chakradhar; Palanichamy, Yogesh
2015-01-01
A new energy efficient optimal Connected Dominating Set (CDS) algorithm with activity scheduling for mobile ad hoc networks (MANETs) is proposed. This algorithm achieves energy efficiency by minimizing the Broadcast Storm Problem [BSP] and at the same time considering the node's remaining energy. The Connected Dominating Set is widely used as a virtual backbone or spine in mobile ad hoc networks [MANETs] or Wireless Sensor Networks [WSN]. The CDS of a graph representing a network has a significant impact on an efficient design of routing protocol in wireless networks. Here the CDS is a distributed algorithm with activity scheduling based on unit disk graph [UDG]. The node's mobility and residual energy (RE) are considered as parameters in the construction of stable optimal energy efficient CDS. The performance is evaluated at various node densities, various transmission ranges, and mobility rates. The theoretical analysis and simulation results of this algorithm are also presented which yield better results. PMID:26221627
Effective Iterated Greedy Algorithm for Flow-Shop Scheduling Problems with Time lags
NASA Astrophysics Data System (ADS)
ZHAO, Ning; YE, Song; LI, Kaidian; CHEN, Siyu
2017-05-01
Flow shop scheduling problem with time lags is a practical scheduling problem and attracts many studies. Permutation problem(PFSP with time lags) is concentrated but non-permutation problem(non-PFSP with time lags) seems to be neglected. With the aim to minimize the makespan and satisfy time lag constraints, efficient algorithms corresponding to PFSP and non-PFSP problems are proposed, which consist of iterated greedy algorithm for permutation(IGTLP) and iterated greedy algorithm for non-permutation (IGTLNP). The proposed algorithms are verified using well-known simple and complex instances of permutation and non-permutation problems with various time lag ranges. The permutation results indicate that the proposed IGTLP can reach near optimal solution within nearly 11% computational time of traditional GA approach. The non-permutation results indicate that the proposed IG can reach nearly same solution within less than 1% computational time compared with traditional GA approach. The proposed research combines PFSP and non-PFSP together with minimal and maximal time lag consideration, which provides an interesting viewpoint for industrial implementation.
Advancing the LSST Operations Simulator
NASA Astrophysics Data System (ADS)
Saha, Abhijit; Ridgway, S. T.; Cook, K. H.; Delgado, F.; Chandrasekharan, S.; Petry, C. E.; Operations Simulator Group
2013-01-01
The Operations Simulator for the Large Synoptic Survey Telescope (LSST; http://lsst.org) allows the planning of LSST observations that obey explicit science driven observing specifications, patterns, schema, and priorities, while optimizing against the constraints placed by design-specific opto-mechanical system performance of the telescope facility, site specific conditions (including weather and seeing), as well as additional scheduled and unscheduled downtime. A simulation run records the characteristics of all observations (e.g., epoch, sky position, seeing, sky brightness) in a MySQL database, which can be queried for any desired purpose. Derivative information digests of the observing history database are made with an analysis package called Simulation Survey Tools for Analysis and Reporting (SSTAR). Merit functions and metrics have been designed to examine how suitable a specific simulation run is for several different science applications. This poster reports recent work which has focussed on an architectural restructuring of the code that will allow us to a) use "look-ahead" strategies that avoid cadence sequences that cannot be completed due to observing constraints; and b) examine alternate optimization strategies, so that the most efficient scheduling algorithm(s) can be identified and used: even few-percent efficiency gains will create substantive scientific opportunity. The enhanced simulator will be used to assess the feasibility of desired observing cadences, study the impact of changing science program priorities, and assist with performance margin investigations of the LSST system.
Does telephone scheduling assistance increase mammography screening adherence?
Payton, Colleen A; Sarfaty, Mona; Beckett, Shirley; Campos, Carmen; Hilbert, Kathleen
2015-11-01
The 2 objectives were: 1) describe the use of a patient navigation process utilized to promote adherence to mammography screening within a primary care practice, and 2) determine the result of the navigation process and estimate the time required to increase mammography screening with this approach in a commercially insured patient population enrolled in a health maintenance organization. An evaluation of a nonrandomized practice improvement intervention. Women eligible for mammography (n = 298) who did not respond to 2 reminder letters were contacted via telephone by a navigator who offered scheduling assistance for mammography screening. The patient navigator scheduled appointments, documented the number of calls, and confirmed completed mammograms in the electronic health record, as well as estimated the time for calls and chart review. Of the 188 participants reached by phone, 112 (59%) scheduled appointments using the patient navigator, 35 (19%) scheduled their own appointments independently prior to the call, and 41 (22%) declined. As a result of the telephone intervention, 78 of the 188 women reached (41%) received a mammogram; also, all 35 women who had independently scheduled a mammogram received one. Chart documentation confirmed that 113 (38%) of the cohort of 298 women completed a mammogram. The estimated time burden for the entire project was 55 hours and 33 minutes, including calling patients, scheduling appointments, and chart review. A patient navigator can increase mammography adherence in a previously nonadherent population by making the screening appointment while the patient is on the phone.
Task scheduling in dataflow computer architectures
NASA Technical Reports Server (NTRS)
Katsinis, Constantine
1994-01-01
Dataflow computers provide a platform for the solution of a large class of computational problems, which includes digital signal processing and image processing. Many typical applications are represented by a set of tasks which can be repetitively executed in parallel as specified by an associated dataflow graph. Research in this area aims to model these architectures, develop scheduling procedures, and predict the transient and steady state performance. Researchers at NASA have created a model and developed associated software tools which are capable of analyzing a dataflow graph and predicting its runtime performance under various resource and timing constraints. These models and tools were extended and used in this work. Experiments using these tools revealed certain properties of such graphs that require further study. Specifically, the transient behavior at the beginning of the execution of a graph can have a significant effect on the steady state performance. Transformation and retiming of the application algorithm and its initial conditions can produce a different transient behavior and consequently different steady state performance. The effect of such transformations on the resource requirements or under resource constraints requires extensive study. Task scheduling to obtain maximum performance (based on user-defined criteria), or to satisfy a set of resource constraints, can also be significantly affected by a transformation of the application algorithm. Since task scheduling is performed by heuristic algorithms, further research is needed to determine if new scheduling heuristics can be developed that can exploit such transformations. This work has provided the initial development for further long-term research efforts. A simulation tool was completed to provide insight into the transient and steady state execution of a dataflow graph. A set of scheduling algorithms was completed which can operate in conjunction with the modeling and performance tools previously developed. Initial studies on the performance of these algorithms were done to examine the effects of application algorithm transformations as measured by such quantities as number of processors, time between outputs, time between input and output, communication time, and memory size.
A Multipopulation PSO Based Memetic Algorithm for Permutation Flow Shop Scheduling
Liu, Ruochen; Ma, Chenlin; Ma, Wenping; Li, Yangyang
2013-01-01
The permutation flow shop scheduling problem (PFSSP) is part of production scheduling, which belongs to the hardest combinatorial optimization problem. In this paper, a multipopulation particle swarm optimization (PSO) based memetic algorithm (MPSOMA) is proposed in this paper. In the proposed algorithm, the whole particle swarm population is divided into three subpopulations in which each particle evolves itself by the standard PSO and then updates each subpopulation by using different local search schemes such as variable neighborhood search (VNS) and individual improvement scheme (IIS). Then, the best particle of each subpopulation is selected to construct a probabilistic model by using estimation of distribution algorithm (EDA) and three particles are sampled from the probabilistic model to update the worst individual in each subpopulation. The best particle in the entire particle swarm is used to update the global optimal solution. The proposed MPSOMA is compared with two recently proposed algorithms, namely, PSO based memetic algorithm (PSOMA) and hybrid particle swarm optimization with estimation of distribution algorithm (PSOEDA), on 29 well-known PFFSPs taken from OR-library, and the experimental results show that it is an effective approach for the PFFSP. PMID:24453841
A new technology for manufacturing scheduling derived from space system operations
NASA Technical Reports Server (NTRS)
Hornstein, R. S.; Willoughby, J. K.
1993-01-01
A new technology for producing finite capacity schedules has been developed in response to complex requirements for operating space systems such as the Space Shuttle, the Space Station, and the Deep Space Network for telecommunications. This technology has proven its effectiveness in manufacturing environments where popular scheduling techniques associated with Materials Resources Planning (MRPII) and with factory simulation are not adequate for shop-floor work planning and control. The technology has three components. The first is a set of data structures that accommodate an extremely general description of a factory's resources, its manufacturing activities, and the constraints imposed by the environment. The second component is a language and set of software utilities that enable a rapid synthesis of functional capabilities. The third component is an algorithmic architecture called the Five Ruleset Model which accommodates the unique needs of each factory. Using the new technology, systems can model activities that generate, consume, and/or obligate resources. This allows work-in-process (WIP) to be generated and used; it permits constraints to be imposed or intermediate as well as finished goods inventories. It is also possible to match as closely as possible both the current factory state and future conditions such as promise dates. Schedule revisions can be accommodated without impacting the entire production schedule. Applications have been successful in both discrete and process manufacturing environments. The availability of a high-quality finite capacity production planning capability enhances the data management capabilities of MRP II systems. These schedules can be integrated with shop-floor data collection systems and accounting systems. Using the new technology, semi-custom systems can be developed at costs that are comparable to products that do not have equivalent functional capabilities and/or extensibility.
Interactive computer aided shift scheduling.
Gaertner, J
2001-12-01
This paper starts with a discussion of computer aided shift scheduling. After a brief review of earlier approaches, two conceptualizations of this field are introduced: First, shift scheduling as a field that ranges from extremely stable rosters at one pole to rather market-like approaches on the other pole. Unfortunately, already small alterations of a scheduling problem (e.g., the number of groups, the number of shifts) may call for rather different approaches and tools. Second, their environment shapes scheduling problems and scheduling has to be done within idiosyncratic organizational settings. This calls for the amalgamation of scheduling with other tasks (e.g., accounting) and for reflections whether better solutions might become possible by changes in the problem definition (e.g., other service levels, organizational changes). Therefore shift scheduling should be understood as a highly connected problem. Building upon these two conceptualizations, a few examples of software that ease scheduling in some areas of this field are given and future research questions are outlined.
QoS-Oriented High Dynamic Resource Allocation in Vehicular Communication Networks
2014-01-01
Vehicular ad hoc networks (VANETs) are emerging as new research area and attracting an increasing attention from both industry and research communities. In this context, a dynamic resource allocation policy that maximizes the use of available resources and meets the quality of service (QoS) requirement of constraining applications is proposed. It is a combination of a fair packet scheduling policy and a new adaptive QoS oriented call admission control (CAC) scheme based on the vehicle density variation. This scheme decides whether the connection request is to be admitted into the system, while providing fair access and guaranteeing the desired throughput. The proposed algorithm showed good performance in testing in real world environment. PMID:24616639
Automatic reactor control system for transient operation
NASA Astrophysics Data System (ADS)
Lipinski, Walter C.; Bhattacharyya, Samit K.; Hanan, Nelson A.
Various programmatic considerations have delayed the upgrading of the TREAT reactor and the performance of the control system is not yet experimentally verified. The current schedule calls for the upgrading activities to occur last in the calendar year 1987. Detailed simulation results, coupled with earlier validation of individual components of the control strategy in TREAT, verify the performance of the algorithms. The control system operates within the safety envelope provided by a protection system designed to ensure reactor safety under conditions of spurious reactivity additions. The approach should be directly applicable to MMW systems, with appropriate accounting of temperature rate limitations of key components and of the inertia of the secondary system components.
The evaluation of the OSGLR algorithm for restructurable controls
NASA Technical Reports Server (NTRS)
Bonnice, W. F.; Wagner, E.; Hall, S. R.; Motyka, P.
1986-01-01
The detection and isolation of commercial aircraft control surface and actuator failures using the orthogonal series generalized likelihood ratio (OSGLR) test was evaluated. The OSGLR algorithm was chosen as the most promising algorithm based on a preliminary evaluation of three failure detection and isolation (FDI) algorithms (the detection filter, the generalized likelihood ratio test, and the OSGLR test) and a survey of the literature. One difficulty of analytic FDI techniques and the OSGLR algorithm in particular is their sensitivity to modeling errors. Therefore, methods of improving the robustness of the algorithm were examined with the incorporation of age-weighting into the algorithm being the most effective approach, significantly reducing the sensitivity of the algorithm to modeling errors. The steady-state implementation of the algorithm based on a single cruise linear model was evaluated using a nonlinear simulation of a C-130 aircraft. A number of off-nominal no-failure flight conditions including maneuvers, nonzero flap deflections, different turbulence levels and steady winds were tested. Based on the no-failure decision functions produced by off-nominal flight conditions, the failure detection performance at the nominal flight condition was determined. The extension of the algorithm to a wider flight envelope by scheduling the linear models used by the algorithm on dynamic pressure and flap deflection was also considered. Since simply scheduling the linear models over the entire flight envelope is unlikely to be adequate, scheduling of the steady-state implentation of the algorithm was briefly investigated.
A traveling-salesman-based approach to aircraft scheduling in the terminal area
NASA Technical Reports Server (NTRS)
Luenberger, Robert A.
1988-01-01
An efficient algorithm is presented, based on the well-known algorithm for the traveling salesman problem, for scheduling aircraft arrivals into major terminal areas. The algorithm permits, but strictly limits, reassigning an aircraft from its initial position in the landing order. This limitation is needed so that no aircraft or aircraft category is unduly penalized. Results indicate, for the mix of arrivals investigated, a potential increase in capacity in the 3 to 5 percent range. Furthermore, it is shown that the computation time for the algorithm grows only linearly with problem size.
Automated Scheduling of Personnel to Staff Operations for the Mars Science Laboratory
NASA Technical Reports Server (NTRS)
Knight, Russell; Mishkin, Andrew; Allbaugh, Alicia
2014-01-01
Leveraging previous work on scheduling personnel for space mission operations, we have adapted ASPEN (Activity Scheduling and Planning Environment) [1] to the domain of scheduling personnel for operations of the Mars Science Laboratory. Automated scheduling of personnel is not new. We compare our representations to a sampling of employee scheduling systems available with respect to desired features. We described the constraints required by MSL personnel schedulers and how each is handled by the scheduling algorithm.
A novel LTE scheduling algorithm for green technology in smart grid.
Hindia, Mohammad Nour; Reza, Ahmed Wasif; Noordin, Kamarul Ariffin; Chayon, Muhammad Hasibur Rashid
2015-01-01
Smart grid (SG) application is being used nowadays to meet the demand of increasing power consumption. SG application is considered as a perfect solution for combining renewable energy resources and electrical grid by means of creating a bidirectional communication channel between the two systems. In this paper, three SG applications applicable to renewable energy system, namely, distribution automation (DA), distributed energy system-storage (DER) and electrical vehicle (EV), are investigated in order to study their suitability in Long Term Evolution (LTE) network. To compensate the weakness in the existing scheduling algorithms, a novel bandwidth estimation and allocation technique and a new scheduling algorithm are proposed. The technique allocates available network resources based on application's priority, whereas the algorithm makes scheduling decision based on dynamic weighting factors of multi-criteria to satisfy the demands (delay, past average throughput and instantaneous transmission rate) of quality of service. Finally, the simulation results demonstrate that the proposed mechanism achieves higher throughput, lower delay and lower packet loss rate for DA and DER as well as provide a degree of service for EV. In terms of fairness, the proposed algorithm shows 3%, 7 % and 9% better performance compared to exponential rule (EXP-Rule), modified-largest weighted delay first (M-LWDF) and exponential/PF (EXP/PF), respectively.
A Novel LTE Scheduling Algorithm for Green Technology in Smart Grid
Hindia, Mohammad Nour; Reza, Ahmed Wasif; Noordin, Kamarul Ariffin; Chayon, Muhammad Hasibur Rashid
2015-01-01
Smart grid (SG) application is being used nowadays to meet the demand of increasing power consumption. SG application is considered as a perfect solution for combining renewable energy resources and electrical grid by means of creating a bidirectional communication channel between the two systems. In this paper, three SG applications applicable to renewable energy system, namely, distribution automation (DA), distributed energy system-storage (DER) and electrical vehicle (EV), are investigated in order to study their suitability in Long Term Evolution (LTE) network. To compensate the weakness in the existing scheduling algorithms, a novel bandwidth estimation and allocation technique and a new scheduling algorithm are proposed. The technique allocates available network resources based on application’s priority, whereas the algorithm makes scheduling decision based on dynamic weighting factors of multi-criteria to satisfy the demands (delay, past average throughput and instantaneous transmission rate) of quality of service. Finally, the simulation results demonstrate that the proposed mechanism achieves higher throughput, lower delay and lower packet loss rate for DA and DER as well as provide a degree of service for EV. In terms of fairness, the proposed algorithm shows 3%, 7 % and 9% better performance compared to exponential rule (EXP-Rule), modified-largest weighted delay first (M-LWDF) and exponential/PF (EXP/PF), respectively. PMID:25830703
NASA Technical Reports Server (NTRS)
Short, Nick, Jr.; Bedet, Jean-Jacques; Bodden, Lee; Boddy, Mark; White, Jim; Beane, John
1994-01-01
The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has been operational since October 1, 1993. Its mission is to support the Earth Observing System (EOS) by providing rapid access to EOS data and analysis products, and to test Earth Observing System Data and Information System (EOSDIS) design concepts. One of the challenges is to ensure quick and easy retrieval of any data archived within the DAAC's Data Archive and Distributed System (DADS). Over the 15-year life of EOS project, an estimated several Petabytes (10(exp 15)) of data will be permanently stored. Accessing that amount of information is a formidable task that will require innovative approaches. As a precursor of the full EOS system, the GSFC DAAC with a few Terabits of storage, has implemented a prototype of a constraint-based task and resource scheduler to improve the performance of the DADS. This Honeywell Task and Resource Scheduler (HTRS), developed by Honeywell Technology Center in cooperation the Information Science and Technology Branch/935, the Code X Operations Technology Program, and the GSFC DAAC, makes better use of limited resources, prevents backlog of data, provides information about resources bottlenecks and performance characteristics. The prototype which is developed concurrently with the GSFC Version 0 (V0) DADS, models DADS activities such as ingestion and distribution with priority, precedence, resource requirements (disk and network bandwidth) and temporal constraints. HTRS supports schedule updates, insertions, and retrieval of task information via an Application Program Interface (API). The prototype has demonstrated with a few examples, the substantial advantages of using HTRS over scheduling algorithms such as a First In First Out (FIFO) queue. The kernel scheduling engine for HTRS, called Kronos, has been successfully applied to several other domains such as space shuttle mission scheduling, demand flow manufacturing, and avionics communications scheduling.
Rolling scheduling of electric power system with wind power based on improved NNIA algorithm
NASA Astrophysics Data System (ADS)
Xu, Q. S.; Luo, C. J.; Yang, D. J.; Fan, Y. H.; Sang, Z. X.; Lei, H.
2017-11-01
This paper puts forth a rolling modification strategy for day-ahead scheduling of electric power system with wind power, which takes the operation cost increment of unit and curtailed wind power of power grid as double modification functions. Additionally, an improved Nondominated Neighbor Immune Algorithm (NNIA) is proposed for solution. The proposed rolling scheduling model has further improved the operation cost of system in the intra-day generation process, enhanced the system’s accommodation capacity of wind power, and modified the key transmission section power flow in a rolling manner to satisfy the security constraint of power grid. The improved NNIA algorithm has defined an antibody preference relation model based on equal incremental rate, regulation deviation constraints and maximum & minimum technical outputs of units. The model can noticeably guide the direction of antibody evolution, and significantly speed up the process of algorithm convergence to final solution, and enhance the local search capability.
Resource-constrained scheduling with hard due windows and rejection penalties
NASA Astrophysics Data System (ADS)
Garcia, Christopher
2016-09-01
This work studies a scheduling problem where each job must be either accepted and scheduled to complete within its specified due window, or rejected altogether. Each job has a certain processing time and contributes a certain profit if accepted or penalty cost if rejected. There is a set of renewable resources, and no resource limit can be exceeded at any time. Each job requires a certain amount of each resource when processed, and the objective is to maximize total profit. A mixed-integer programming formulation and three approximation algorithms are presented: a priority rule heuristic, an algorithm based on the metaheuristic for randomized priority search and an evolutionary algorithm. Computational experiments comparing these four solution methods were performed on a set of generated benchmark problems covering a wide range of problem characteristics. The evolutionary algorithm outperformed the other methods in most cases, often significantly, and never significantly underperformed any method.
Full glowworm swarm optimization algorithm for whole-set orders scheduling in single machine.
Yu, Zhang; Yang, Xiaomei
2013-01-01
By analyzing the characteristics of whole-set orders problem and combining the theory of glowworm swarm optimization, a new glowworm swarm optimization algorithm for scheduling is proposed. A new hybrid-encoding schema combining with two-dimensional encoding and random-key encoding is given. In order to enhance the capability of optimal searching and speed up the convergence rate, the dynamical changed step strategy is integrated into this algorithm. Furthermore, experimental results prove its feasibility and efficiency.
Workflow as a Service in the Cloud: Architecture and Scheduling Algorithms
Wang, Jianwu; Korambath, Prakashan; Altintas, Ilkay; Davis, Jim; Crawl, Daniel
2017-01-01
With more and more workflow systems adopting cloud as their execution environment, it becomes increasingly challenging on how to efficiently manage various workflows, virtual machines (VMs) and workflow execution on VM instances. To make the system scalable and easy-to-extend, we design a Workflow as a Service (WFaaS) architecture with independent services. A core part of the architecture is how to efficiently respond continuous workflow requests from users and schedule their executions in the cloud. Based on different targets, we propose four heuristic workflow scheduling algorithms for the WFaaS architecture, and analyze the differences and best usages of the algorithms in terms of performance, cost and the price/performance ratio via experimental studies. PMID:29399237
Frutos, M; Méndez, M; Tohmé, F; Broz, D
2013-01-01
Many of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs) for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier.
A computer method for schedule processing and quick-time updating.
NASA Technical Reports Server (NTRS)
Mccoy, W. H.
1972-01-01
A schedule analysis program is presented which can be used to process any schedule with continuous flow and with no loops. Although generally thought of as a management tool, it has applicability to such extremes as music composition and computer program efficiency analysis. Other possibilities for its use include the determination of electrical power usage during some operation such as spacecraft checkout, and the determination of impact envelopes for the purpose of scheduling payloads in launch processing. At the core of the described computer method is an algorithm which computes the position of each activity bar on the output waterfall chart. The algorithm is basically a maximal-path computation which gives to each node in the schedule network the maximal path from the initial node to the given node.
Scheduling job shop - A case study
NASA Astrophysics Data System (ADS)
Abas, M.; Abbas, A.; Khan, W. A.
2016-08-01
The scheduling in job shop is important for efficient utilization of machines in the manufacturing industry. There are number of algorithms available for scheduling of jobs which depend on machines tools, indirect consumables and jobs which are to be processed. In this paper a case study is presented for scheduling of jobs when parts are treated on available machines. Through time and motion study setup time and operation time are measured as total processing time for variety of products having different manufacturing processes. Based on due dates different level of priority are assigned to the jobs and the jobs are scheduled on the basis of priority. In view of the measured processing time, the times for processing of some new jobs are estimated and for efficient utilization of the machines available an algorithm is proposed and validated.
Operating room scheduling using hybrid clustering priority rule and genetic algorithm
NASA Astrophysics Data System (ADS)
Santoso, Linda Wahyuni; Sinawan, Aisyah Ashrinawati; Wijaya, Andi Rahadiyan; Sudiarso, Andi; Masruroh, Nur Aini; Herliansyah, Muhammad Kusumawan
2017-11-01
Operating room is a bottleneck resource in most hospitals so that operating room scheduling system will influence the whole performance of the hospitals. This research develops a mathematical model of operating room scheduling for elective patients which considers patient priority with limit number of surgeons, operating rooms, and nurse team. Clustering analysis was conducted to the data of surgery durations using hierarchical and non-hierarchical methods. The priority rule of each resulting cluster was determined using Shortest Processing Time method. Genetic Algorithm was used to generate daily operating room schedule which resulted in the lowest values of patient waiting time and nurse overtime. The computational results show that this proposed model reduced patient waiting time by approximately 32.22% and nurse overtime by approximately 32.74% when compared to actual schedule.
NASA Technical Reports Server (NTRS)
Golias, Mihalis M.
2011-01-01
Berth scheduling is a critical function at marine container terminals and determining the best berth schedule depends on several factors including the type and function of the port, size of the port, location, nearby competition, and type of contractual agreement between the terminal and the carriers. In this paper we formulate the berth scheduling problem as a bi-objective mixed-integer problem with the objective to maximize customer satisfaction and reliability of the berth schedule under the assumption that vessel handling times are stochastic parameters following a discrete and known probability distribution. A combination of an exact algorithm, a Genetic Algorithms based heuristic and a simulation post-Pareto analysis is proposed as the solution approach to the resulting problem. Based on a number of experiments it is concluded that the proposed berth scheduling policy outperforms the berth scheduling policy where reliability is not considered.
A New Engine for Schools: The Flexible Scheduling Paradigm
ERIC Educational Resources Information Center
Snyder, Yaakov; Herer, Yale T.; Moore, Michael
2012-01-01
We present a new approach for the organization of schools, which we call the flexible scheduling paradigm (FSP). FSP improves student learning by dynamically redeploying teachers and other pedagogical resources to provide students with customized learning conditions over shorter time periods called "mini-terms" instead of semesters or years. By…
NASA Technical Reports Server (NTRS)
Jaap, John; Davis, Elizabeth; Richardson, Lea
2004-01-01
Planning and scheduling systems organize tasks into a timeline or schedule. Tasks are logically grouped into containers called models. Models are a collection of related tasks, along with their dependencies and requirements, that when met will produce the desired result. One challenging domain for a planning and scheduling system is the operation of on-board experiments for the International Space Station. In these experiments, the equipment used is among the most complex hardware ever developed; the information sought is at the cutting edge of scientific endeavor; and the procedures are intricate and exacting. Scheduling is made more difficult by a scarcity of station resources. The models to be fed into the scheduler must describe both the complexity of the experiments and procedures (to ensure a valid schedule) and the flexibilities of the procedures and the equipment (to effectively utilize available resources). Clearly, scheduling International Space Station experiment operations calls for a maximally expressive modeling schema.
Approximation algorithms for scheduling unrelated parallel machines with release dates
NASA Astrophysics Data System (ADS)
Avdeenko, T. V.; Mesentsev, Y. A.; Estraykh, I. V.
2017-01-01
In this paper we propose approaches to optimal scheduling of unrelated parallel machines with release dates. One approach is based on the scheme of dynamic programming modified with adaptive narrowing of search domain ensuring its computational effectiveness. We discussed complexity of the exact schedules synthesis and compared it with approximate, close to optimal, solutions. Also we explain how the algorithm works for the example of two unrelated parallel machines and five jobs with release dates. Performance results that show the efficiency of the proposed approach have been given.
Scheduling algorithm for mission planning and logistics evaluation users' guide
NASA Technical Reports Server (NTRS)
Chang, H.; Williams, J. M.
1976-01-01
The scheduling algorithm for mission planning and logistics evaluation (SAMPLE) program is a mission planning tool composed of three subsystems; the mission payloads subsystem (MPLS), which generates a list of feasible combinations from a payload model for a given calendar year; GREEDY, which is a heuristic model used to find the best traffic model; and the operations simulation and resources scheduling subsystem (OSARS), which determines traffic model feasibility for available resources. The SAMPLE provides the user with options to allow the execution of MPLS, GREEDY, GREEDY-OSARS, or MPLS-GREEDY-OSARS.
Automatic generation of efficient orderings of events for scheduling applications
NASA Technical Reports Server (NTRS)
Morris, Robert A.
1994-01-01
In scheduling a set of tasks, it is often not known with certainty how long a given event will take. We call this duration uncertainty. Duration uncertainty is a primary obstacle to the successful completion of a schedule. If a duration of one task is longer than expected, the remaining tasks are delayed. The delay may result in the abandonment of the schedule itself, a phenomenon known as schedule breakage. One response to schedule breakage is on-line, dynamic rescheduling. A more recent alternative is called proactive rescheduling. This method uses statistical data about the durations of events in order to anticipate the locations in the schedule where breakage is likely prior to the execution of the schedule. It generates alternative schedules at such sensitive points, which can be then applied by the scheduler at execution time, without the delay incurred by dynamic rescheduling. This paper proposes a technique for making proactive error management more effective. The technique is based on applying a similarity-based method of clustering to the problem of identifying similar events in a set of events.
NASA Technical Reports Server (NTRS)
Phillips, K.
1976-01-01
A mathematical model for job scheduling in a specified context is presented. The model uses both linear programming and combinatorial methods. While designed with a view toward optimization of scheduling of facility and plant operations at the Deep Space Communications Complex, the context is sufficiently general to be widely applicable. The general scheduling problem including options for scheduling objectives is discussed and fundamental parameters identified. Mathematical algorithms for partitioning problems germane to scheduling are presented.
Diverse task scheduling for individualized requirements in cloud manufacturing
NASA Astrophysics Data System (ADS)
Zhou, Longfei; Zhang, Lin; Zhao, Chun; Laili, Yuanjun; Xu, Lida
2018-03-01
Cloud manufacturing (CMfg) has emerged as a new manufacturing paradigm that provides ubiquitous, on-demand manufacturing services to customers through network and CMfg platforms. In CMfg system, task scheduling as an important means of finding suitable services for specific manufacturing tasks plays a key role in enhancing the system performance. Customers' requirements in CMfg are highly individualized, which leads to diverse manufacturing tasks in terms of execution flows and users' preferences. We focus on diverse manufacturing tasks and aim to address their scheduling issue in CMfg. First of all, a mathematical model of task scheduling is built based on analysis of the scheduling process in CMfg. To solve this scheduling problem, we propose a scheduling method aiming for diverse tasks, which enables each service demander to obtain desired manufacturing services. The candidate service sets are generated according to subtask directed graphs. An improved genetic algorithm is applied to searching for optimal task scheduling solutions. The effectiveness of the scheduling method proposed is verified by a case study with individualized customers' requirements. The results indicate that the proposed task scheduling method is able to achieve better performance than some usual algorithms such as simulated annealing and pattern search.
NASA Technical Reports Server (NTRS)
Gipson, John
2010-01-01
In this note I give an overview of the VLBI scheduling software sked. I describe some of the algorithms used in automatic scheduling and some sked commands which have been introduced at users requests. I also give a cookbook for generating some schedules.
Future aircraft networks and schedules
NASA Astrophysics Data System (ADS)
Shu, Yan
2011-07-01
Because of the importance of air transportation scheduling, the emergence of small aircraft and the vision of future fuel-efficient aircraft, this thesis has focused on the study of aircraft scheduling and network design involving multiple types of aircraft and flight services. It develops models and solution algorithms for the schedule design problem and analyzes the computational results. First, based on the current development of small aircraft and on-demand flight services, this thesis expands a business model for integrating on-demand flight services with the traditional scheduled flight services. This thesis proposes a three-step approach to the design of aircraft schedules and networks from scratch under the model. In the first step, both a frequency assignment model for scheduled flights that incorporates a passenger path choice model and a frequency assignment model for on-demand flights that incorporates a passenger mode choice model are created. In the second step, a rough fleet assignment model that determines a set of flight legs, each of which is assigned an aircraft type and a rough departure time is constructed. In the third step, a timetable model that determines an exact departure time for each flight leg is developed. Based on the models proposed in the three steps, this thesis creates schedule design instances that involve almost all the major airports and markets in the United States. The instances of the frequency assignment model created in this thesis are large-scale non-convex mixed-integer programming problems, and this dissertation develops an overall network structure and proposes iterative algorithms for solving these instances. The instances of both the rough fleet assignment model and the timetable model created in this thesis are large-scale mixed-integer programming problems, and this dissertation develops subproblem schemes for solving these instances. Based on these solution algorithms, this dissertation also presents computational results of these large-scale instances. To validate the models and solution algorithms developed, this thesis also compares the daily flight schedules that it designs with the schedules of the existing airlines. Furthermore, it creates instances that represent different economic and fuel-prices conditions and derives schedules under these different conditions. In addition, it discusses the implication of using new aircraft in the future flight schedules. Finally, future research in three areas---model, computational method, and simulation for validation---is proposed.
Maximally Expressive Modeling of Operations Tasks
NASA Technical Reports Server (NTRS)
Jaap, John; Richardson, Lea; Davis, Elizabeth
2002-01-01
Planning and scheduling systems organize "tasks" into a timeline or schedule. The tasks are defined within the scheduling system in logical containers called models. The dictionary might define a model of this type as "a system of things and relations satisfying a set of rules that, when applied to the things and relations, produce certainty about the tasks that are being modeled." One challenging domain for a planning and scheduling system is the operation of on-board experiments for the International Space Station. In these experiments, the equipment used is among the most complex hardware ever developed, the information sought is at the cutting edge of scientific endeavor, and the procedures are intricate and exacting. Scheduling is made more difficult by a scarcity of station resources. The models to be fed into the scheduler must describe both the complexity of the experiments and procedures (to ensure a valid schedule) and the flexibilities of the procedures and the equipment (to effectively utilize available resources). Clearly, scheduling International Space Station experiment operations calls for a "maximally expressive" modeling schema.
de Bildt, Annelies; Sytema, Sjoerd; Meffert, Harma; Bastiaansen, Jojanneke A C J
2016-01-01
This study examined the discriminative ability of the revised Autism Diagnostic Observation Schedule module 4 algorithm (Hus and Lord in J Autism Dev Disord 44(8):1996-2012, 2014) in 93 Dutch males with Autism Spectrum Disorder (ASD), schizophrenia, psychopathy or controls. Discriminative ability of the revised algorithm ASD cut-off resembled the original algorithm ASD cut-off: highly specific for psychopathy and controls, lower sensitivity than Hus and Lord (2014; i.e. ASD .61, AD .53). The revised algorithm AD cut-off improved sensitivity over the original algorithm. Discriminating ASD from schizophrenia was still challenging, but the better-balanced sensitivity (.53) and specificity (.78) of the revised algorithm AD cut-off may aide clinicians' differential diagnosis. Findings support using the revised algorithm, being conceptually conform the other modules, thus improving comparability across the lifespan.
NASA Astrophysics Data System (ADS)
Li, Guoliang; Xing, Lining; Chen, Yingwu
2017-11-01
The autonomicity of self-scheduling on Earth observation satellite and the increasing scale of satellite network attract much attention from researchers in the last decades. In reality, the limited onboard computational resource presents challenge for the online scheduling algorithm. This study considered online scheduling problem for a single autonomous Earth observation satellite within satellite network environment. It especially addressed that the urgent tasks arrive stochastically during the scheduling horizon. We described the problem and proposed a hybrid online scheduling mechanism with revision and progressive techniques to solve this problem. The mechanism includes two decision policies, a when-to-schedule policy combining periodic scheduling and critical cumulative number-based event-driven rescheduling, and a how-to-schedule policy combining progressive and revision approaches to accommodate two categories of task: normal tasks and urgent tasks. Thus, we developed two heuristic (re)scheduling algorithms and compared them with other generally used techniques. Computational experiments indicated that the into-scheduling percentage of urgent tasks in the proposed mechanism is much higher than that in periodic scheduling mechanism, and the specific performance is highly dependent on some mechanism-relevant and task-relevant factors. For the online scheduling, the modified weighted shortest imaging time first and dynamic profit system benefit heuristics outperformed the others on total profit and the percentage of successfully scheduled urgent tasks.
cisTEM, user-friendly software for single-particle image processing.
Grant, Timothy; Rohou, Alexis; Grigorieff, Nikolaus
2018-03-07
We have developed new open-source software called cis TEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging. cis TEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200 k - 300 k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments. cis TEM is available for download from cistem.org. © 2018, Grant et al.
cisTEM, user-friendly software for single-particle image processing
2018-01-01
We have developed new open-source software called cisTEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging. cisTEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200 k – 300 k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments. cisTEM is available for download from cistem.org. PMID:29513216
Song, JooBong; Lee, Chaiwoo; Lee, WonJung; Bahn, Sangwoo; Jung, ChanJu; Yun, Myung Hwan
2015-01-01
For the successful implementation of job rotation, jobs should be scheduled systematically so that physical workload is evenly distributed with the use of various body parts. However, while the potential benefits are widely recognized by research and industry, there is still a need for a more effective and efficient algorithm that considers multiple work-related factors in job rotation scheduling. This study suggests a type of job rotation algorithm that aims to minimize musculoskeletal disorders with the approach of decreasing the overall workload. Multiple work characteristics are evaluated as inputs to the proposed algorithm. Important factors, such as physical workload on specific body parts, working height, involvement of heavy lifting, and worker characteristics such as physical disorders, are included in the algorithm. For evaluation of the overall workload in a given workplace, an objective function was defined to aggregate the scores from the individual factors. A case study, where the algorithm was applied at a workplace, is presented with an examination on its applicability and effectiveness. With the application of the suggested algorithm in case study, the value of the final objective function, which is the weighted sum of the workload in various body parts, decreased by 71.7% when compared to a typical sequential assignment and by 84.9% when compared to a single job assignment, which is doing one job all day. An algorithm was developed using the data from the ergonomic evaluation tool used in the plant and from the known factors related to workload. The algorithm was developed so that it can be efficiently applied with a small amount of required inputs, while covering a wide range of work-related factors. A case study showed that the algorithm was beneficial in determining a job rotation schedule aimed at minimizing workload across body parts.
Learning to Control Advanced Life Support Systems
NASA Technical Reports Server (NTRS)
Subramanian, Devika
2004-01-01
Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for advanced life support.
Scheduling multimedia services in cloud computing environment
NASA Astrophysics Data System (ADS)
Liu, Yunchang; Li, Chunlin; Luo, Youlong; Shao, Yanling; Zhang, Jing
2018-02-01
Currently, security is a critical factor for multimedia services running in the cloud computing environment. As an effective mechanism, trust can improve security level and mitigate attacks within cloud computing environments. Unfortunately, existing scheduling strategy for multimedia service in the cloud computing environment do not integrate trust mechanism when making scheduling decisions. In this paper, we propose a scheduling scheme for multimedia services in multi clouds. At first, a novel scheduling architecture is presented. Then, We build a trust model including both subjective trust and objective trust to evaluate the trust degree of multimedia service providers. By employing Bayesian theory, the subjective trust degree between multimedia service providers and users is obtained. According to the attributes of QoS, the objective trust degree of multimedia service providers is calculated. Finally, a scheduling algorithm integrating trust of entities is proposed by considering the deadline, cost and trust requirements of multimedia services. The scheduling algorithm heuristically hunts for reasonable resource allocations and satisfies the requirement of trust and meets deadlines for the multimedia services. Detailed simulated experiments demonstrate the effectiveness and feasibility of the proposed trust scheduling scheme.
Effects of an appointment reminder call on patient show rates.
Gariti, P; Alterman, A I; Holub-Beyer, E; Volpicelli, J R; Prentice, N; O'Brien, C P
1995-01-01
A pilot study (N = 80) was conducted to determine if (1) prospective substance-dependent patients randomly selected to be reminded (TC) of their scheduled intake evaluation the day before their first appointment would have a higher show rate than those not contacted (NC); and (2) if TC subjects administered a satisfaction questionnaire 1-3 days after intake would exhibit higher treatment retention rates at one week and one month posttreatment entry than NC subjects not exposed to the questionnaire. The findings suggest that reminding prospective patients of their initial scheduled appointments and following up with phone calls to those who fail to show can improve the rate at which patients will initiate treatment, provided initial appointments are scheduled in a timely manner (7 days or less). Similarly, the combination of the reminder call and the satisfaction questionnaire were associated with higher treatment retention rates for those whose initial appointments were scheduled in a timely manner.
NASA Astrophysics Data System (ADS)
Paksi, A. B. N.; Ma'ruf, A.
2016-02-01
In general, both machines and human resources are needed for processing a job on production floor. However, most classical scheduling problems have ignored the possible constraint caused by availability of workers and have considered only machines as a limited resource. In addition, along with production technology development, routing flexibility appears as a consequence of high product variety and medium demand for each product. Routing flexibility is caused by capability of machines that offers more than one machining process. This paper presents a method to address scheduling problem constrained by both machines and workers, considering routing flexibility. Scheduling in a Dual-Resource Constrained shop is categorized as NP-hard problem that needs long computational time. Meta-heuristic approach, based on Genetic Algorithm, is used due to its practical implementation in industry. Developed Genetic Algorithm uses indirect chromosome representative and procedure to transform chromosome into Gantt chart. Genetic operators, namely selection, elitism, crossover, and mutation are developed to search the best fitness value until steady state condition is achieved. A case study in a manufacturing SME is used to minimize tardiness as objective function. The algorithm has shown 25.6% reduction of tardiness, equal to 43.5 hours.
a Quadtree Organization Construction and Scheduling Method for Urban 3d Model Based on Weight
NASA Astrophysics Data System (ADS)
Yao, C.; Peng, G.; Song, Y.; Duan, M.
2017-09-01
The increasement of Urban 3D model precision and data quantity puts forward higher requirements for real-time rendering of digital city model. Improving the organization, management and scheduling of 3D model data in 3D digital city can improve the rendering effect and efficiency. This paper takes the complexity of urban models into account, proposes a Quadtree construction and scheduling rendering method for Urban 3D model based on weight. Divide Urban 3D model into different rendering weights according to certain rules, perform Quadtree construction and schedule rendering according to different rendering weights. Also proposed an algorithm for extracting bounding box extraction based on model drawing primitives to generate LOD model automatically. Using the algorithm proposed in this paper, developed a 3D urban planning&management software, the practice has showed the algorithm is efficient and feasible, the render frame rate of big scene and small scene are both stable at around 25 frames.
NASA Astrophysics Data System (ADS)
Chen, Jung-Chieh
This paper presents a low complexity algorithmic framework for finding a broadcasting schedule in a low-altitude satellite system, i. e., the satellite broadcast scheduling (SBS) problem, based on the recent modeling and computational methodology of factor graphs. Inspired by the huge success of the low density parity check (LDPC) codes in the field of error control coding, in this paper, we transform the SBS problem into an LDPC-like problem through a factor graph instead of using the conventional neural network approaches to solve the SBS problem. Based on a factor graph framework, the soft-information, describing the probability that each satellite will broadcast information to a terminal at a specific time slot, is exchanged among the local processing in the proposed framework via the sum-product algorithm to iteratively optimize the satellite broadcasting schedule. Numerical results show that the proposed approach not only can obtain optimal solution but also enjoys the low complexity suitable for integral-circuit implementation.
NASA Astrophysics Data System (ADS)
Chawla, Viveak Kumar; Chanda, Arindam Kumar; Angra, Surjit
2018-03-01
The flexible manufacturing system (FMS) constitute of several programmable production work centers, material handling systems (MHSs), assembly stations and automatic storage and retrieval systems. In FMS, the automatic guided vehicles (AGVs) play a vital role in material handling operations and enhance the performance of the FMS in its overall operations. To achieve low makespan and high throughput yield in the FMS operations, it is highly imperative to integrate the production work centers schedules with the AGVs schedules. The Production schedule for work centers is generated by application of the Giffler and Thompson algorithm under four kind of priority hybrid dispatching rules. Then the clonal selection algorithm (CSA) is applied for the simultaneous scheduling to reduce backtracking as well as distance travel of AGVs within the FMS facility. The proposed procedure is computationally tested on the benchmark FMS configuration from the literature and findings from the investigations clearly indicates that the CSA yields best results in comparison of other applied methods from the literature.
Chuan, He; Dishan, Qiu; Jin, Liu
2012-01-01
The cooperative scheduling problem on high-altitude airships for imaging observation tasks is discussed. A constraint programming model is established by analyzing the main constraints, which takes the maximum task benefit and the minimum cruising distance as two optimization objectives. The cooperative scheduling problem of high-altitude airships is converted into a main problem and a subproblem by adopting hierarchy architecture. The solution to the main problem can construct the preliminary matching between tasks and observation resource in order to reduce the search space of the original problem. Furthermore, the solution to the sub-problem can detect the key nodes that each airship needs to fly through in sequence, so as to get the cruising path. Firstly, the task set is divided by using k-core neighborhood growth cluster algorithm (K-NGCA). Then, a novel swarm intelligence algorithm named propagation algorithm (PA) is combined with the key node search algorithm (KNSA) to optimize the cruising path of each airship and determine the execution time interval of each task. Meanwhile, this paper also provides the realization approach of the above algorithm and especially makes a detailed introduction on the encoding rules, search models, and propagation mechanism of the PA. Finally, the application results and comparison analysis show the proposed models and algorithms are effective and feasible. PMID:23365522
Frutos, M.; Méndez, M.; Tohmé, F.; Broz, D.
2013-01-01
Many of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs) for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier. PMID:24489502
NASA Astrophysics Data System (ADS)
Buchner, Johannes
2011-12-01
Scheduling, the task of producing a time table for resources and tasks, is well-known to be a difficult problem the more resources are involved (a NP-hard problem). This is about to become an issue in Radio astronomy as observatories consisting of hundreds to thousands of telescopes are planned and operated. The Square Kilometre Array (SKA), which Australia and New Zealand bid to host, is aiming for scales where current approaches -- in construction, operation but also scheduling -- are insufficent. Although manual scheduling is common today, the problem is becoming complicated by the demand for (1) independent sub-arrays doing simultaneous observations, which requires the scheduler to plan parallel observations and (2) dynamic re-scheduling on changed conditions. Both of these requirements apply to the SKA, especially in the construction phase. We review the scheduling approaches taken in the astronomy literature, as well as investigate techniques from human schedulers and today's observatories. The scheduling problem is specified in general for scientific observations and in particular on radio telescope arrays. Also taken into account is the fact that the observatory may be oversubscribed, requiring the scheduling problem to be integrated with a planning process. We solve this long-term scheduling problem using a time-based encoding that works in the very general case of observation scheduling. This research then compares algorithms from various approaches, including fast heuristics from CPU scheduling, Linear Integer Programming and Genetic algorithms, Branch-and-Bound enumeration schemes. Measures include not only goodness of the solution, but also scalability and re-scheduling capabilities. In conclusion, we have identified a fast and good scheduling approach that allows (re-)scheduling difficult and changing problems by combining heuristics with a Genetic algorithm using block-wise mutation operations. We are able to explain and eradicate two problems in the literature: The inability of a GA to properly improve schedules and the generation of schedules with frequent interruptions. Finally, we demonstrate the scheduling framework for several operating telescopes: (1) Dynamic re-scheduling with the AUT Warkworth 12m telescope, (2) Scheduling for the Australian Mopra 22m telescope and scheduling for the Allen Telescope Array. Furthermore, we discuss the applicability of the presented scheduling framework to the Atacama Large Millimeter/submillimeter Array (ALMA, in construction) and the SKA. In particular, during the development phase of the SKA, this dynamic, scalable scheduling framework can accommodate changing conditions.
MCMAC-cVT: a novel on-line associative memory based CVT transmission control system.
Ang, K K; Quek, C; Wahab, A
2002-03-01
This paper describes a novel application of an associative memory called the Modified Cerebellar Articulation Controller (MCMAC) (Int. J. Artif. Intell. Engng, 10 (1996) 135) in a continuous variable transmission (CVT) control system. It allows the on-line tuning of the associative memory and produces an effective gain-schedule for the automatic selection of the CVT gear ratio. Various control algorithms are investigated to control the CVT gear ratio to maintain the engine speed within a narrow range of efficient operating speed independently of the vehicle velocity. Extensive simulation results are presented to evaluate the control performance of a direct digital PID control algorithm with auto-tuning (Trans. ASME, 64 (1942)) and anti-windup mechanism. In particular, these results are contrasted against the control performance produced using the MCMAC (Int. J. Artif. Intell. Engng, 10 (1996) 135) with momentum, neighborhood learning and Averaged Trapezoidal Output (MCMAC-ATO) as the neural control algorithm for controlling the CVT. Simulation results are presented that show the reduced control fluctuations and improved learning capability of the MCMAC-ATO without incurring greater memory requirement. In particular, MCMAC-ATO is able to learn and control the CVT simultaneously while still maintaining acceptable control performance.
Dynamic Appliances Scheduling in Collaborative MicroGrids System
Bilil, Hasnae; Aniba, Ghassane; Gharavi, Hamid
2017-01-01
In this paper a new approach which is based on a collaborative system of MicroGrids (MG’s), is proposed to enable household appliance scheduling. To achieve this, appliances are categorized into flexible and non-flexible Deferrable Loads (DL’s), according to their electrical components. We propose a dynamic scheduling algorithm where users can systematically manage the operation of their electric appliances. The main challenge is to develop a flattening function calculus (reshaping) for both flexible and non-flexible DL’s. In addition, implementation of the proposed algorithm would require dynamically analyzing two successive multi-objective optimization (MOO) problems. The first targets the activation schedule of non-flexible DL’s and the second deals with the power profiles of flexible DL’s. The MOO problems are resolved by using a fast and elitist multi-objective genetic algorithm (NSGA-II). Finally, in order to show the efficiency of the proposed approach, a case study of a collaborative system that consists of 40 MG’s registered in the load curve for the flattening program has been developed. The results verify that the load curve can indeed become very flat by applying the proposed scheduling approach. PMID:28824226
Proposed algorithm to improve job shop production scheduling using ant colony optimization method
NASA Astrophysics Data System (ADS)
Pakpahan, Eka KA; Kristina, Sonna; Setiawan, Ari
2017-12-01
This paper deals with the determination of job shop production schedule on an automatic environment. On this particular environment, machines and material handling system are integrated and controlled by a computer center where schedule were created and then used to dictate the movement of parts and the operations at each machine. This setting is usually designed to have an unmanned production process for a specified interval time. We consider here parts with various operations requirement. Each operation requires specific cutting tools. These parts are to be scheduled on machines each having identical capability, meaning that each machine is equipped with a similar set of cutting tools therefore is capable of processing any operation. The availability of a particular machine to process a particular operation is determined by the remaining life time of its cutting tools. We proposed an algorithm based on the ant colony optimization method and embedded them on matlab software to generate production schedule which minimize the total processing time of the parts (makespan). We test the algorithm on data provided by real industry and the process shows a very short computation time. This contributes a lot to the flexibility and timelines targeted on an automatic environment.
Balancing Contention and Synchronization on the Intel Paragon
NASA Technical Reports Server (NTRS)
Bokhari, Shahid H.; Nicol, David M.
1996-01-01
The Intel Paragon is a mesh-connected distributed memory parallel computer. It uses an oblivious and deterministic message routing algorithm: this permits us to develop highly optimized schedules for frequently needed communication patterns. The complete exchange is one such pattern. Several approaches are available for carrying it out on the mesh. We study an algorithm developed by Scott. This algorithm assumes that a communication link can carry one message at a time and that a node can only transmit one message at a time. It requires global synchronization to enforce a schedule of transmissions. Unfortunately global synchronization has substantial overhead on the Paragon. At the same time the powerful interconnection mechanism of this machine permits 2 or 3 messages to share a communication link with minor overhead. It can also overlap multiple message transmission from the same node to some extent. We develop a generalization of Scott's algorithm that executes complete exchange with a prescribed contention. Schedules that incur greater contention require fewer synchronization steps. This permits us to tradeoff contention against synchronization overhead. We describe the performance of this algorithm and compare it with Scott's original algorithm as well as with a naive algorithm that does not take interconnection structure into account. The Bounded contention algorithm is always better than Scott's algorithm and outperforms the naive algorithm for all but the smallest message sizes. The naive algorithm fails to work on meshes larger than 12 x 12. These results show that due consideration of processor interconnect and machine performance parameters is necessary to obtain peak performance from the Paragon and its successor mesh machines.
Scheduling quality of precise form sets which consist of tasks of circular type in GRID systems
NASA Astrophysics Data System (ADS)
Saak, A. E.; Kureichik, V. V.; Kravchenko, Y. A.
2018-05-01
Users’ demand in computer power and rise of technology favour the arrival of Grid systems. The quality of Grid systems’ performance depends on computer and time resources scheduling. Grid systems with a centralized structure of the scheduling system and user’s task are modeled by resource quadrant and re-source rectangle accordingly. A Non-Euclidean heuristic measure, which takes into consideration both the area and the form of an occupied resource region, is used to estimate scheduling quality of heuristic algorithms. The authors use sets, which are induced by the elements of square squaring, as an example of studying the adapt-ability of a level polynomial algorithm with an excess and the one with minimal deviation.
Minimization of Delay Costs in the Realization of Production Orders in Two-Machine System
NASA Astrophysics Data System (ADS)
Dylewski, Robert; Jardzioch, Andrzej; Dworak, Oliver
2018-03-01
The article presents a new algorithm that enables the allocation of the optimal scheduling of the production orders in the two-machine system based on the minimum cost of order delays. The formulated algorithm uses the method of branch and bounds and it is a particular generalisation of the algorithm enabling for the determination of the sequence of the production orders with the minimal sum of the delays. In order to illustrate the proposed algorithm in the best way, the article contains examples accompanied by the graphical trees of solutions. The research analysing the utility of the said algorithm was conducted. The achieved results proved the usefulness of the proposed algorithm when applied to scheduling of orders. The formulated algorithm was implemented in the Matlab programme. In addition, the studies for different sets of production orders were conducted.
List-Based Simulated Annealing Algorithm for Traveling Salesman Problem.
Zhan, Shi-hua; Lin, Juan; Zhang, Ze-jun; Zhong, Yi-wen
2016-01-01
Simulated annealing (SA) algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. Parameters' setting is a key factor for its performance, but it is also a tedious work. To simplify parameters setting, we present a list-based simulated annealing (LBSA) algorithm to solve traveling salesman problem (TSP). LBSA algorithm uses a novel list-based cooling schedule to control the decrease of temperature. Specifically, a list of temperatures is created first, and then the maximum temperature in list is used by Metropolis acceptance criterion to decide whether to accept a candidate solution. The temperature list is adapted iteratively according to the topology of the solution space of the problem. The effectiveness and the parameter sensitivity of the list-based cooling schedule are illustrated through benchmark TSP problems. The LBSA algorithm, whose performance is robust on a wide range of parameter values, shows competitive performance compared with some other state-of-the-art algorithms.
NASA Astrophysics Data System (ADS)
Shah, Rahul H.
Production costs account for the largest share of the overall cost of manufacturing facilities. With the U.S. industrial sector becoming more and more competitive, manufacturers are looking for more cost and resource efficient working practices. Operations management and production planning have shown their capability to dramatically reduce manufacturing costs and increase system robustness. When implementing operations related decision making and planning, two fields that have shown to be most effective are maintenance and energy. Unfortunately, the current research that integrates both is limited. Additionally, these studies fail to consider parameter domains and optimization on joint energy and maintenance driven production planning. Accordingly, production planning methodology that considers maintenance and energy is investigated. Two models are presented to achieve well-rounded operating strategy. The first is a joint energy and maintenance production scheduling model. The second is a cost per part model considering maintenance, energy, and production. The proposed methodology will involve a Time-of-Use electricity demand response program, buffer and holding capacity, station reliability, production rate, station rated power, and more. In practice, the scheduling problem can be used to determine a joint energy, maintenance, and production schedule. Meanwhile, the cost per part model can be used to: (1) test the sensitivity of the obtained optimal production schedule and its corresponding savings by varying key production system parameters; and (2) to determine optimal system parameter combinations when using the joint energy, maintenance, and production planning model. Additionally, a factor analysis on the system parameters is conducted and the corresponding performance of the production schedule under variable parameter conditions, is evaluated. Also, parameter optimization guidelines that incorporate maintenance and energy parameter decision making in the production planning framework are discussed. A modified Particle Swarm Optimization solution technique is adopted to solve the proposed scheduling problem. The algorithm is described in detail and compared to Genetic Algorithm. Case studies are presented to illustrate the benefits of using the proposed model and the effectiveness of the Particle Swarm Optimization approach. Numerical Experiments are implemented and analyzed to test the effectiveness of the proposed model. The proposed scheduling strategy can achieve savings of around 19 to 27 % in cost per part when compared to the baseline scheduling scenarios. By optimizing key production system parameters from the cost per part model, the baseline scenarios can obtain around 20 to 35 % in savings for the cost per part. These savings further increase by 42 to 55 % when system parameter optimization is integrated with the proposed scheduling problem. Using this method, the most influential parameters on the cost per part are the rated power from production, the production rate, and the initial machine reliabilities. The modified Particle Swarm Optimization algorithm adopted allows greater diversity and exploration compared to Genetic Algorithm for the proposed joint model which results in it being more computationally efficient in determining the optimal scheduling. While Genetic Algorithm could achieve a solution quality of 2,279.63 at an expense of 2,300 seconds in computational effort. In comparison, the proposed Particle Swarm Optimization algorithm achieved a solution quality of 2,167.26 in less than half the computation effort which is required by Genetic Algorithm.
Scheduling language and algorithm development study. Appendix: Study approach and activity summary
NASA Technical Reports Server (NTRS)
1974-01-01
The approach and organization of the study to develop a high level computer programming language and a program library are presented. The algorithm and problem modeling analyses are summarized. The approach used to identify and specify the capabilities required in the basic language is described. Results of the analyses used to define specifications for the scheduling module library are presented.
An Evaluation of a Flight Deck Interval Management Algorithm Including Delayed Target Trajectories
NASA Technical Reports Server (NTRS)
Swieringa, Kurt A.; Underwood, Matthew C.; Barmore, Bryan; Leonard, Robert D.
2014-01-01
NASA's first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to facilitate the transition of mature air traffic management technologies from the laboratory to operational use. The technologies selected for demonstration are the Traffic Management Advisor with Terminal Metering (TMA-TM), which provides precise timebased scheduling in the terminal airspace; Controller Managed Spacing (CMS), which provides controllers with decision support tools enabling precise schedule conformance; and Interval Management (IM), which consists of flight deck automation that enables aircraft to achieve or maintain precise in-trail spacing. During high demand operations, TMA-TM may produce a schedule and corresponding aircraft trajectories that include delay to ensure that a particular aircraft will be properly spaced from other aircraft at each schedule waypoint. These delayed trajectories are not communicated to the automation onboard the aircraft, forcing the IM aircraft to use the published speeds to estimate the target aircraft's estimated time of arrival. As a result, the aircraft performing IM operations may follow an aircraft whose TMA-TM generated trajectories have substantial speed deviations from the speeds expected by the spacing algorithm. Previous spacing algorithms were not designed to handle this magnitude of uncertainty. A simulation was conducted to examine a modified spacing algorithm with the ability to follow aircraft flying delayed trajectories. The simulation investigated the use of the new spacing algorithm with various delayed speed profiles and wind conditions, as well as several other variables designed to simulate real-life variability. The results and conclusions of this study indicate that the new spacing algorithm generally exhibits good performance; however, some types of target aircraft speed profiles can cause the spacing algorithm to command less than optimal speed control behavior.
Improving outpatient access and patient experiences in academic ambulatory care.
O'Neill, Sarah; Calderon, Sherry; Casella, Joanne; Wood, Elizabeth; Carvelli-Sheehan, Jayne; Zeidel, Mark L
2012-02-01
Effective scheduling of and ready access to doctor appointments affect ambulatory patient care quality, but these are often sacrificed by patients seeking care from physicians at academic medical centers. At one center, Beth Israel Deaconess Medical Center, the authors developed interventions to improve the scheduling of appointments and to reduce the access time between telephone call and first offered appointment. Improvements to scheduling included no redirection to voicemail, prompt telephone pickup, courteous service, complete registration, and effective scheduling. Reduced access time meant being offered an appointment with a physician in the appropriate specialty within three working days of the telephone call. Scheduling and access were assessed using monthly "mystery shopper" calls. Mystery shoppers collected data using standardized forms, rated the quality of service, and transcribed their interactions with schedulers. Monthly results were tabulated and discussed with clinical leaders; leaders and frontline staff then developed solutions to detected problems. Eighteen months after the beginning of the intervention (in June 2007), which is ongoing, schedulers had gone from using 60% of their registration skills to over 90%, customer service scores had risen from 2.6 to 4.9 (on a 5-point scale), and average access time had fallen from 12 days to 6 days. The program costs $50,000 per year and has been associated with a 35% increase in ambulatory volume across three years. The authors conclude that academic medical centers can markedly improve the scheduling process and access to care and that these improvements may result in increased ambulatory care volume.
Job Scheduling in a Heterogeneous Grid Environment
NASA Technical Reports Server (NTRS)
Shan, Hong-Zhang; Smith, Warren; Oliker, Leonid; Biswas, Rupak
2004-01-01
Computational grids have the potential for solving large-scale scientific problems using heterogeneous and geographically distributed resources. However, a number of major technical hurdles must be overcome before this potential can be realized. One problem that is critical to effective utilization of computational grids is the efficient scheduling of jobs. This work addresses this problem by describing and evaluating a grid scheduling architecture and three job migration algorithms. The architecture is scalable and does not assume control of local site resources. The job migration policies use the availability and performance of computer systems, the network bandwidth available between systems, and the volume of input and output data associated with each job. An extensive performance comparison is presented using real workloads from leading computational centers. The results, based on several key metrics, demonstrate that the performance of our distributed migration algorithms is significantly greater than that of a local scheduling framework and comparable to a non-scalable global scheduling approach.
Li, Guo; Lv, Fei; Guan, Xu
2014-01-01
This paper investigates a collaborative scheduling model in the assembly system, wherein multiple suppliers have to deliver their components to the multiple manufacturers under the operation of Supply-Hub. We first develop two different scenarios to examine the impact of Supply-Hub. One is that suppliers and manufacturers make their decisions separately, and the other is that the Supply-Hub makes joint decisions with collaborative scheduling. The results show that our scheduling model with the Supply-Hub is a NP-complete problem, therefore, we propose an auto-adapted differential evolution algorithm to solve this problem. Moreover, we illustrate that the performance of collaborative scheduling by the Supply-Hub is superior to separate decision made by each manufacturer and supplier. Furthermore, we also show that the algorithm proposed has good convergence and reliability, which can be applicable to more complicated supply chain environment.
Lv, Fei; Guan, Xu
2014-01-01
This paper investigates a collaborative scheduling model in the assembly system, wherein multiple suppliers have to deliver their components to the multiple manufacturers under the operation of Supply-Hub. We first develop two different scenarios to examine the impact of Supply-Hub. One is that suppliers and manufacturers make their decisions separately, and the other is that the Supply-Hub makes joint decisions with collaborative scheduling. The results show that our scheduling model with the Supply-Hub is a NP-complete problem, therefore, we propose an auto-adapted differential evolution algorithm to solve this problem. Moreover, we illustrate that the performance of collaborative scheduling by the Supply-Hub is superior to separate decision made by each manufacturer and supplier. Furthermore, we also show that the algorithm proposed has good convergence and reliability, which can be applicable to more complicated supply chain environment. PMID:24892104
Smart sensing to drive real-time loads scheduling algorithm in a domotic architecture
NASA Astrophysics Data System (ADS)
Santamaria, Amilcare Francesco; Raimondo, Pierfrancesco; De Rango, Floriano; Vaccaro, Andrea
2014-05-01
Nowadays the focus on power consumption represent a very important factor regarding the reduction of power consumption with correlated costs and the environmental sustainability problems. Automatic control load based on power consumption and use cycle represents the optimal solution to costs restraint. The purpose of these systems is to modulate the power request of electricity avoiding an unorganized work of the loads, using intelligent techniques to manage them based on real time scheduling algorithms. The goal is to coordinate a set of electrical loads to optimize energy costs and consumptions based on the stipulated contract terms. The proposed algorithm use two new main notions: priority driven loads and smart scheduling loads. The priority driven loads can be turned off (stand by) according to a priority policy established by the user if the consumption exceed a defined threshold, on the contrary smart scheduling loads are scheduled in a particular way to don't stop their Life Cycle (LC) safeguarding the devices functions or allowing the user to freely use the devices without the risk of exceeding the power threshold. The algorithm, using these two kind of notions and taking into account user requirements, manages loads activation and deactivation allowing the completion their operation cycle without exceeding the consumption threshold in an off-peak time range according to the electricity fare. This kind of logic is inspired by industrial lean manufacturing which focus is to minimize any kind of power waste optimizing the available resources.
Runway Scheduling for Charlotte Douglas International Airport
NASA Technical Reports Server (NTRS)
Malik, Waqar A.; Lee, Hanbong; Jung, Yoon C.
2016-01-01
This paper describes the runway scheduler that was used in the 2014 SARDA human-in-the-loop simulations for CLT. The algorithm considers multiple runways and computes optimal runway times for departures and arrivals. In this paper, we plan to run additional simulation on the standalone MRS algorithm and compare the performance of the algorithm against a FCFS heuristic where aircraft avail of runway slots based on a priority given by their positions in the FCFS sequence. Several traffic scenarios corresponding to current day traffic level and demand profile will be generated. We also plan to examine the effect of increase in traffic level (1.2x and 1.5x) and observe trends in algorithm performance.
NASA Astrophysics Data System (ADS)
Hsiao, Ming-Chih; Su, Ling-Huey
2018-02-01
This research addresses the problem of scheduling hybrid machine types, in which one type is a two-machine flowshop and another type is a single machine. A job is either processed on the two-machine flowshop or on the single machine. The objective is to determine a production schedule for all jobs so as to minimize the makespan. The problem is NP-hard since the two parallel machines problem was proved to be NP-hard. Simulated annealing algorithms are developed to solve the problem optimally. A mixed integer programming (MIP) is developed and used to evaluate the performance for two SAs. Computational experiments demonstrate the efficiency of the simulated annealing algorithms, the quality of the simulated annealing algorithms will also be reported.
Distributed intelligent scheduling of FMS
NASA Astrophysics Data System (ADS)
Wu, Zuobao; Cheng, Yaodong; Pan, Xiaohong
1995-08-01
In this paper, a distributed scheduling approach of a flexible manufacturing system (FMS) is presented. A new class of Petri nets called networked time Petri nets (NTPN) for system modeling of networking environment is proposed. The distributed intelligent scheduling is implemented by three schedulers which combine NTPN models with expert system techniques. The simulation results are shown.
An Improved Hierarchical Genetic Algorithm for Sheet Cutting Scheduling with Process Constraints
Rao, Yunqing; Qi, Dezhong; Li, Jinling
2013-01-01
For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony—hierarchical genetic algorithm) is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem. PMID:24489491
Hus, Vanessa; Lord, Catherine
2014-08-01
The recently published Autism Diagnostic Observation Schedule, 2nd edition (ADOS-2) includes revised diagnostic algorithms and standardized severity scores for modules used to assess younger children. A revised algorithm and severity scores are not yet available for Module 4, used with verbally fluent adults. The current study revises the Module 4 algorithm and calibrates raw overall and domain totals to provide metrics of autism spectrum disorder (ASD) symptom severity. Sensitivity and specificity of the revised Module 4 algorithm exceeded 80 % in the overall sample. Module 4 calibrated severity scores provide quantitative estimates of ASD symptom severity that are relatively independent of participant characteristics. These efforts increase comparability of ADOS scores across modules and should facilitate efforts to examine symptom trajectories from toddler to adulthood.
An improved hierarchical genetic algorithm for sheet cutting scheduling with process constraints.
Rao, Yunqing; Qi, Dezhong; Li, Jinling
2013-01-01
For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony--hierarchical genetic algorithm) is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem.
Developing algorithm for the critical care physician scheduling
NASA Astrophysics Data System (ADS)
Lee, Hyojun; Pah, Adam; Amaral, Luis; Northwestern Memorial Hospital Collaboration
Understanding the social network has enabled us to quantitatively study social phenomena such as behaviors in adoption and propagation of information. However, most work has been focusing on networks of large heterogeneous communities, and little attention has been paid to how work-relevant information spreads within networks of small and homogeneous groups of highly trained individuals, such as physicians. Within the professionals, the behavior patterns and the transmission of information relevant to the job are dependent not only on the social network between the employees but also on the schedules and teams that work together. In order to systematically investigate the dependence of the spread of ideas and adoption of innovations on a work-environment network, we sought to construct a model for the interaction network of critical care physicians at Northwestern Memorial Hospital (NMH) based on their work schedules. We inferred patterns and hidden rules from past work schedules such as turnover rates. Using the characteristics of the work schedules of the physicians and their turnover rates, we were able to create multi-year synthetic work schedules for a generic intensive care unit. The algorithm for creating shift schedules can be applied to other schedule dependent networks ARO1.
Enhanced Software for Scheduling Space-Shuttle Processing
NASA Technical Reports Server (NTRS)
Barretta, Joseph A.; Johnson, Earl P.; Bierman, Rocky R.; Blanco, Juan; Boaz, Kathleen; Stotz, Lisa A.; Clark, Michael; Lebovitz, George; Lotti, Kenneth J.; Moody, James M.;
2004-01-01
The Ground Processing Scheduling System (GPSS) computer program is used to develop streamlined schedules for the inspection, repair, and refurbishment of space shuttles at Kennedy Space Center. A scheduling computer program is needed because space-shuttle processing is complex and it is frequently necessary to modify schedules to accommodate unanticipated events, unavailability of specialized personnel, unexpected delays, and the need to repair newly discovered defects. GPSS implements constraint-based scheduling algorithms and provides an interactive scheduling software environment. In response to inputs, GPSS can respond with schedules that are optimized in the sense that they contain minimal violations of constraints while supporting the most effective and efficient utilization of space-shuttle ground processing resources. The present version of GPSS is a product of re-engineering of a prototype version. While the prototype version proved to be valuable and versatile as a scheduling software tool during the first five years, it was characterized by design and algorithmic deficiencies that affected schedule revisions, query capability, task movement, report capability, and overall interface complexity. In addition, the lack of documentation gave rise to difficulties in maintenance and limited both enhanceability and portability. The goal of the GPSS re-engineering project was to upgrade the prototype into a flexible system that supports multiple- flow, multiple-site scheduling and that retains the strengths of the prototype while incorporating improvements in maintainability, enhanceability, and portability.
Simplifying Facility and Event Scheduling: Saving Time and Money.
ERIC Educational Resources Information Center
Raasch, Kevin
2003-01-01
Describes a product called the Event Management System (EMS), a computer software program to manage facility and event scheduling. Provides example of the school district and university uses of EMS. Describes steps in selecting a scheduling-management system. (PKP)
NASA Astrophysics Data System (ADS)
Cepeda-Gomez, Rudy; Olgac, Nejat
2016-01-01
We consider a linear algorithm to achieve formation control in a group of agents which are driven by second-order dynamics and affected by two rationally independent delays. One of the delays is in the position and the other in the velocity information channels. These delays are taken as constant and uniform throughout the system. The communication topology is assumed to be directed and fixed. The formation is attained by adding a supplementary control term to the stabilising consensus protocol. In preparation for the formation control logic, we first study the stability of the consensus, using the recent cluster treatment of characteristic roots (CTCR) paradigm. This effort results in a unique depiction of the non-conservative stability boundaries in the domain of the delays. However, CTCR requires the knowledge of the potential stability switching loci exhaustively within this domain. The creation of these loci is done in a new surrogate coordinate system, called the 'spectral delay space (SDS)'. The relative stability is also investigated, which has to do with the speed of reaching consensus. This step leads to a paradoxical control design concept, called the 'delay scheduling', which highlights the fact that the group behaviour may be enhanced by increasing the delays. These steps lead to a control strategy to establish a desired group formation that guarantees spacing among the agents. Example case studies are presented to validate the underlying analytical derivations.
NASA Astrophysics Data System (ADS)
Suchacka, Grazyna
2005-02-01
The paper concerns a new research area that is Quality of Web Service (QoWS). The need for QoWS is motivated by a still growing number of Internet users, by a steady development and diversification of Web services, and especially by popularization of e-commerce applications. The goal of the paper is a critical analysis of the literature concerning scheduling algorithms for e-commerce Web servers. The paper characterizes factors affecting the load of the Web servers and discusses ways of improving their efficiency. Crucial QoWS requirements of the business Web server are identified: serving requests before their individual deadlines, supporting user session integrity, supporting different classes of users and minimizing a number of rejected requests. It is justified that meeting these requirements and implementing them in an admission control (AC) and scheduling algorithm for the business Web server is crucial to the functioning of e-commerce Web sites and revenue generated by them. The paper presents results of the literature analysis and discusses algorithms that implement these important QoWS requirements. The analysis showed that very few algorithms take into consideration the above mentioned factors and that there is a need for designing an algorithm implementing them.
Deng, Qianwang; Gong, Guiliang; Gong, Xuran; Zhang, Like; Liu, Wei; Ren, Qinghua
2017-01-01
Flexible job-shop scheduling problem (FJSP) is an NP-hard puzzle which inherits the job-shop scheduling problem (JSP) characteristics. This paper presents a bee evolutionary guiding nondominated sorting genetic algorithm II (BEG-NSGA-II) for multiobjective FJSP (MO-FJSP) with the objectives to minimize the maximal completion time, the workload of the most loaded machine, and the total workload of all machines. It adopts a two-stage optimization mechanism during the optimizing process. In the first stage, the NSGA-II algorithm with T iteration times is first used to obtain the initial population N , in which a bee evolutionary guiding scheme is presented to exploit the solution space extensively. In the second stage, the NSGA-II algorithm with GEN iteration times is used again to obtain the Pareto-optimal solutions. In order to enhance the searching ability and avoid the premature convergence, an updating mechanism is employed in this stage. More specifically, its population consists of three parts, and each of them changes with the iteration times. What is more, numerical simulations are carried out which are based on some published benchmark instances. Finally, the effectiveness of the proposed BEG-NSGA-II algorithm is shown by comparing the experimental results and the results of some well-known algorithms already existed.
Deng, Qianwang; Gong, Xuran; Zhang, Like; Liu, Wei; Ren, Qinghua
2017-01-01
Flexible job-shop scheduling problem (FJSP) is an NP-hard puzzle which inherits the job-shop scheduling problem (JSP) characteristics. This paper presents a bee evolutionary guiding nondominated sorting genetic algorithm II (BEG-NSGA-II) for multiobjective FJSP (MO-FJSP) with the objectives to minimize the maximal completion time, the workload of the most loaded machine, and the total workload of all machines. It adopts a two-stage optimization mechanism during the optimizing process. In the first stage, the NSGA-II algorithm with T iteration times is first used to obtain the initial population N, in which a bee evolutionary guiding scheme is presented to exploit the solution space extensively. In the second stage, the NSGA-II algorithm with GEN iteration times is used again to obtain the Pareto-optimal solutions. In order to enhance the searching ability and avoid the premature convergence, an updating mechanism is employed in this stage. More specifically, its population consists of three parts, and each of them changes with the iteration times. What is more, numerical simulations are carried out which are based on some published benchmark instances. Finally, the effectiveness of the proposed BEG-NSGA-II algorithm is shown by comparing the experimental results and the results of some well-known algorithms already existed. PMID:28458687
Artificial immune algorithm for multi-depot vehicle scheduling problems
NASA Astrophysics Data System (ADS)
Wu, Zhongyi; Wang, Donggen; Xia, Linyuan; Chen, Xiaoling
2008-10-01
In the fast-developing logistics and supply chain management fields, one of the key problems in the decision support system is that how to arrange, for a lot of customers and suppliers, the supplier-to-customer assignment and produce a detailed supply schedule under a set of constraints. Solutions to the multi-depot vehicle scheduling problems (MDVRP) help in solving this problem in case of transportation applications. The objective of the MDVSP is to minimize the total distance covered by all vehicles, which can be considered as delivery costs or time consumption. The MDVSP is one of nondeterministic polynomial-time hard (NP-hard) problem which cannot be solved to optimality within polynomial bounded computational time. Many different approaches have been developed to tackle MDVSP, such as exact algorithm (EA), one-stage approach (OSA), two-phase heuristic method (TPHM), tabu search algorithm (TSA), genetic algorithm (GA) and hierarchical multiplex structure (HIMS). Most of the methods mentioned above are time consuming and have high risk to result in local optimum. In this paper, a new search algorithm is proposed to solve MDVSP based on Artificial Immune Systems (AIS), which are inspirited by vertebrate immune systems. The proposed AIS algorithm is tested with 30 customers and 6 vehicles located in 3 depots. Experimental results show that the artificial immune system algorithm is an effective and efficient method for solving MDVSP problems.
Open shop scheduling problem to minimize total weighted completion time
NASA Astrophysics Data System (ADS)
Bai, Danyu; Zhang, Zhihai; Zhang, Qiang; Tang, Mengqian
2017-01-01
A given number of jobs in an open shop scheduling environment must each be processed for given amounts of time on each of a given set of machines in an arbitrary sequence. This study aims to achieve a schedule that minimizes total weighted completion time. Owing to the strong NP-hardness of the problem, the weighted shortest processing time block (WSPTB) heuristic is presented to obtain approximate solutions for large-scale problems. Performance analysis proves the asymptotic optimality of the WSPTB heuristic in the sense of probability limits. The largest weight block rule is provided to seek optimal schedules in polynomial time for a special case. A hybrid discrete differential evolution algorithm is designed to obtain high-quality solutions for moderate-scale problems. Simulation experiments demonstrate the effectiveness of the proposed algorithms.
Space Shuttle processing - A case study in artificial intelligence
NASA Technical Reports Server (NTRS)
Mollikarimi, Cindy; Gargan, Robert; Zweben, Monte
1991-01-01
A scheduling system incorporating AI is described and applied to the automated processing of the Space Shuttle. The unique problem of addressing the temporal, resource, and orbiter-configuration requirements of shuttle processing is described with comparisons to traditional project management for manufacturing processes. The present scheduling system is developed to handle the late inputs and complex programs that characterize shuttle processing by incorporating fixed preemptive scheduling, constraint-based simulated annealing, and the characteristics of an 'anytime' algorithm. The Space-Shuttle processing environment is modeled with 500 activities broken down into 4000 subtasks and with 1600 temporal constraints, 8000 resource constraints, and 3900 state requirements. The algorithm is shown to scale to very large problems and maintain anytime characteristics suggesting that an automated scheduling process is achievable and potentially cost-effective.
An Optimal Scheduling Algorithm with a Competitive Factor for Real-Time Systems
1991-07-29
real - time systems in which the value of a task is proportional to its computation time. The system obtains the value of a given task if the task completes by its deadline. Otherwise, the system obtains no value for the task. When such a system is underloaded (i.e. there exists a schedule for which all tasks meet their deadlines), Dertouzos [6] showed that the earliest deadline first algorithm will achieve 100% of the possible value. We consider the case of a possibly overloaded system and present an algorithm which: 1. behaves like the earliest deadline first
The GBT Dynamic Scheduling System: A New Scheduling Paradigm
NASA Astrophysics Data System (ADS)
O'Neil, K.; Balser, D.; Bignell, C.; Clark, M.; Condon, J.; McCarty, M.; Marganian, P.; Shelton, A.; Braatz, J.; Harnett, J.; Maddalena, R.; Mello, M.; Sessoms, E.
2009-09-01
The Robert C. Byrd Green Bank Telescope (GBT) is implementing a new Dynamic Scheduling System (DSS) designed to maximize the observing efficiency of the telescope while ensuring that none of the flexibility and ease of use of the GBT is harmed and that the data quality of observations is not adversely affected. To accomplish this, the GBT DSS is implementing a dynamic scheduling system which schedules observers, rather than running scripts. The DSS works by breaking each project into one or more sessions which have associated observing criteria such as RA, Dec, and frequency. Potential observers may also enter dates when members of their team will not be available for either on-site or remote observing. The scheduling algorithm uses those data, along with the predicted weather, to determine the most efficient schedule for the GBT. The DSS provides all observers at least 24 hours notice of their upcoming observing. In the uncommon (< 20%) case where the actual weather does not match the predictions, a backup project, chosen from the database, is run instead. Here we give an overview of the GBT DSS project, including the ranking and scheduling algorithms for the sessions, the scheduling probabilities generation, the web framework for the system, and an overview of the results from the beta testing which were held from June - September, 2008.
NASA Astrophysics Data System (ADS)
Buddala, Raviteja; Mahapatra, Siba Sankar
2017-11-01
Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having `g' operations is performed on `g' operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem becomes a flexible flow shop problem (FFSP). FFSP which contains all the complexities involved in a simple flow shop and parallel machine scheduling problems is a well-known NP-hard (Non-deterministic polynomial time) problem. Owing to high computational complexity involved in solving these problems, it is not always possible to obtain an optimal solution in a reasonable computation time. To obtain near-optimal solutions in a reasonable computation time, a large variety of meta-heuristics have been proposed in the past. However, tuning algorithm-specific parameters for solving FFSP is rather tricky and time consuming. To address this limitation, teaching-learning-based optimization (TLBO) and JAYA algorithm are chosen for the study because these are not only recent meta-heuristics but they do not require tuning of algorithm-specific parameters. Although these algorithms seem to be elegant, they lose solution diversity after few iterations and get trapped at the local optima. To alleviate such drawback, a new local search procedure is proposed in this paper to improve the solution quality. Further, mutation strategy (inspired from genetic algorithm) is incorporated in the basic algorithm to maintain solution diversity in the population. Computational experiments have been conducted on standard benchmark problems to calculate makespan and computational time. It is found that the rate of convergence of TLBO is superior to JAYA. From the results, it is found that TLBO and JAYA outperform many algorithms reported in the literature and can be treated as efficient methods for solving the FFSP.
Devi, D Chitra; Uthariaraj, V Rhymend
2016-01-01
Cloud computing uses the concepts of scheduling and load balancing to migrate tasks to underutilized VMs for effectively sharing the resources. The scheduling of the nonpreemptive tasks in the cloud computing environment is an irrecoverable restraint and hence it has to be assigned to the most appropriate VMs at the initial placement itself. Practically, the arrived jobs consist of multiple interdependent tasks and they may execute the independent tasks in multiple VMs or in the same VM's multiple cores. Also, the jobs arrive during the run time of the server in varying random intervals under various load conditions. The participating heterogeneous resources are managed by allocating the tasks to appropriate resources by static or dynamic scheduling to make the cloud computing more efficient and thus it improves the user satisfaction. Objective of this work is to introduce and evaluate the proposed scheduling and load balancing algorithm by considering the capabilities of each virtual machine (VM), the task length of each requested job, and the interdependency of multiple tasks. Performance of the proposed algorithm is studied by comparing with the existing methods.
Devi, D. Chitra; Uthariaraj, V. Rhymend
2016-01-01
Cloud computing uses the concepts of scheduling and load balancing to migrate tasks to underutilized VMs for effectively sharing the resources. The scheduling of the nonpreemptive tasks in the cloud computing environment is an irrecoverable restraint and hence it has to be assigned to the most appropriate VMs at the initial placement itself. Practically, the arrived jobs consist of multiple interdependent tasks and they may execute the independent tasks in multiple VMs or in the same VM's multiple cores. Also, the jobs arrive during the run time of the server in varying random intervals under various load conditions. The participating heterogeneous resources are managed by allocating the tasks to appropriate resources by static or dynamic scheduling to make the cloud computing more efficient and thus it improves the user satisfaction. Objective of this work is to introduce and evaluate the proposed scheduling and load balancing algorithm by considering the capabilities of each virtual machine (VM), the task length of each requested job, and the interdependency of multiple tasks. Performance of the proposed algorithm is studied by comparing with the existing methods. PMID:26955656
Genetic algorithms applied to the scheduling of the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Sponsler, Jeffrey L.
1989-01-01
A prototype system employing a genetic algorithm (GA) has been developed to support the scheduling of the Hubble Space Telescope. A non-standard knowledge structure is used and appropriate genetic operators have been created. Several different crossover styles (random point selection, evolving points, and smart point selection) are tested and the best GA is compared with a neural network (NN) based optimizer. The smart crossover operator produces the best results and the GA system is able to evolve complete schedules using it. The GA is not as time-efficient as the NN system and the NN solutions tend to be better.
DOT National Transportation Integrated Search
1995-05-01
Air Traffic Control Specialists (ATCS) work rotating shift schedules for most of their careers. Specifically, many work a counterclockwise rotating shift schedule, called the 2-2-1, or some variation of the schedule. The 2-2-1 involves rotating from ...
Evaluations of Some Scheduling Algorithms for Hard Real-Time Systems
1990-06-01
construct because the mechanism is a dispatching procedure. Since all nonpreemptive schedules are contained in the set of all preemptive schedules, the...optimal value of Tmax in the preemptive case is at least a lower bound on the optimal Tmax for the nonpreemptive schedules. This principle is the basis...23 b. Nonpreemptable Version .............................................. 24 4. The Minimize Maximum Tardiness with Earliest Start
Dietz, Dennis C.
2014-01-01
A cogent method is presented for computing the expected cost of an appointment schedule where customers are statistically identical, the service time distribution has known mean and variance, and customer no-shows occur with time-dependent probability. The approach is computationally efficient and can be easily implemented to evaluate candidate schedules within a schedule optimization algorithm. PMID:24605070
NASA Technical Reports Server (NTRS)
Lee, C. S. G.; Chen, C. L.
1989-01-01
Two efficient mapping algorithms for scheduling the robot inverse dynamics computation consisting of m computational modules with precedence relationship to be executed on a multiprocessor system consisting of p identical homogeneous processors with processor and communication costs to achieve minimum computation time are presented. An objective function is defined in terms of the sum of the processor finishing time and the interprocessor communication time. The minimax optimization is performed on the objective function to obtain the best mapping. This mapping problem can be formulated as a combination of the graph partitioning and the scheduling problems; both have been known to be NP-complete. Thus, to speed up the searching for a solution, two heuristic algorithms were proposed to obtain fast but suboptimal mapping solutions. The first algorithm utilizes the level and the communication intensity of the task modules to construct an ordered priority list of ready modules and the module assignment is performed by a weighted bipartite matching algorithm. For a near-optimal mapping solution, the problem can be solved by the heuristic algorithm with simulated annealing. These proposed optimization algorithms can solve various large-scale problems within a reasonable time. Computer simulations were performed to evaluate and verify the performance and the validity of the proposed mapping algorithms. Finally, experiments for computing the inverse dynamics of a six-jointed PUMA-like manipulator based on the Newton-Euler dynamic equations were implemented on an NCUBE/ten hypercube computer to verify the proposed mapping algorithms. Computer simulation and experimental results are compared and discussed.
ERIC Educational Resources Information Center
Zander, Eric; Sturm, Harald; Bölte, Sven
2015-01-01
The diagnostic validity of the new research algorithms of the Autism Diagnostic Interview-Revised and the revised algorithms of the Autism Diagnostic Observation Schedule was examined in a clinical sample of children aged 18-47 months. Validity was determined for each instrument separately and their combination against a clinical consensus…
Parallel Directionally Split Solver Based on Reformulation of Pipelined Thomas Algorithm
NASA Technical Reports Server (NTRS)
Povitsky, A.
1998-01-01
In this research an efficient parallel algorithm for 3-D directionally split problems is developed. The proposed algorithm is based on a reformulated version of the pipelined Thomas algorithm that starts the backward step computations immediately after the completion of the forward step computations for the first portion of lines This algorithm has data available for other computational tasks while processors are idle from the Thomas algorithm. The proposed 3-D directionally split solver is based on the static scheduling of processors where local and non-local, data-dependent and data-independent computations are scheduled while processors are idle. A theoretical model of parallelization efficiency is used to define optimal parameters of the algorithm, to show an asymptotic parallelization penalty and to obtain an optimal cover of a global domain with subdomains. It is shown by computational experiments and by the theoretical model that the proposed algorithm reduces the parallelization penalty about two times over the basic algorithm for the range of the number of processors (subdomains) considered and the number of grid nodes per subdomain.
A novel dynamic wavelength bandwidth allocation scheme over OFDMA PONs
NASA Astrophysics Data System (ADS)
Yan, Bo; Guo, Wei; Jin, Yaohui; Hu, Weisheng
2011-12-01
With rapid growth of Internet applications, supporting differentiated service and enlarging system capacity have been new tasks for next generation access system. In recent years, research in OFDMA Passive Optical Networks (PON) has experienced extraordinary development as for its large capacity and flexibility in scheduling. Although much work has been done to solve hardware layer obstacles for OFDMA PON, scheduling algorithm on OFDMA PON system is still under primary discussion. In order to support QoS service on OFDMA PON system, a novel dynamic wavelength bandwidth allocation (DWBA) algorithm is proposed in this paper. Per-stream QoS service is supported in this algorithm. Through simulation, we proved our bandwidth allocation algorithm performs better in bandwidth utilization and differentiate service support.
Hus, Vanessa; Lord, Catherine
2014-01-01
The Autism Diagnostic Observation Schedule, 2nd Edition includes revised diagnostic algorithms and standardized severity scores for modules used to assess children and adolescents of varying language abilities. Comparable revisions have not yet been applied to the Module 4, used with verbally fluent adults. The current study revises the Module 4 algorithm and calibrates raw overall and domain totals to provide metrics of ASD symptom severity. Sensitivity and specificity of the revised Module 4 algorithm exceeded 80% in the overall sample. Module 4 calibrated severity scores provide quantitative estimates of ASD symptom severity that are relatively independent of participant characteristics. These efforts increase comparability of ADOS scores across modules and should facilitate efforts to increase understanding of adults with ASD. PMID:24590409
NASA Astrophysics Data System (ADS)
He, Yaoyao; Yang, Shanlin; Xu, Qifa
2013-07-01
In order to solve the model of short-term cascaded hydroelectric system scheduling, a novel chaotic particle swarm optimization (CPSO) algorithm using improved logistic map is introduced, which uses the water discharge as the decision variables combined with the death penalty function. According to the principle of maximum power generation, the proposed approach makes use of the ergodicity, symmetry and stochastic property of improved logistic chaotic map for enhancing the performance of particle swarm optimization (PSO) algorithm. The new hybrid method has been examined and tested on two test functions and a practical cascaded hydroelectric system. The experimental results show that the effectiveness and robustness of the proposed CPSO algorithm in comparison with other traditional algorithms.
NASA Technical Reports Server (NTRS)
Zweben, Monte
1991-01-01
The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint-based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all the inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocation for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its application to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.
NASA Technical Reports Server (NTRS)
Zweben, Monte
1991-01-01
The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocations for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its applications to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.
NASA Technical Reports Server (NTRS)
Zweben, Monte
1993-01-01
The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint-based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all the inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocation for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its application to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.
A Search Algorithm for Generating Alternative Process Plans in Flexible Manufacturing System
NASA Astrophysics Data System (ADS)
Tehrani, Hossein; Sugimura, Nobuhiro; Tanimizu, Yoshitaka; Iwamura, Koji
Capabilities and complexity of manufacturing systems are increasing and striving for an integrated manufacturing environment. Availability of alternative process plans is a key factor for integration of design, process planning and scheduling. This paper describes an algorithm for generation of alternative process plans by extending the existing framework of the process plan networks. A class diagram is introduced for generating process plans and process plan networks from the viewpoint of the integrated process planning and scheduling systems. An incomplete search algorithm is developed for generating and searching the process plan networks. The benefit of this algorithm is that the whole process plan network does not have to be generated before the search algorithm starts. This algorithm is applicable to large and enormous process plan networks and also to search wide areas of the network based on the user requirement. The algorithm can generate alternative process plans and to select a suitable one based on the objective functions.
List-Based Simulated Annealing Algorithm for Traveling Salesman Problem
Zhan, Shi-hua; Lin, Juan; Zhang, Ze-jun
2016-01-01
Simulated annealing (SA) algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. Parameters' setting is a key factor for its performance, but it is also a tedious work. To simplify parameters setting, we present a list-based simulated annealing (LBSA) algorithm to solve traveling salesman problem (TSP). LBSA algorithm uses a novel list-based cooling schedule to control the decrease of temperature. Specifically, a list of temperatures is created first, and then the maximum temperature in list is used by Metropolis acceptance criterion to decide whether to accept a candidate solution. The temperature list is adapted iteratively according to the topology of the solution space of the problem. The effectiveness and the parameter sensitivity of the list-based cooling schedule are illustrated through benchmark TSP problems. The LBSA algorithm, whose performance is robust on a wide range of parameter values, shows competitive performance compared with some other state-of-the-art algorithms. PMID:27034650
Wang, Zhaocai; Ji, Zuwen; Wang, Xiaoming; Wu, Tunhua; Huang, Wei
2017-12-01
As a promising approach to solve the computationally intractable problem, the method based on DNA computing is an emerging research area including mathematics, computer science and molecular biology. The task scheduling problem, as a well-known NP-complete problem, arranges n jobs to m individuals and finds the minimum execution time of last finished individual. In this paper, we use a biologically inspired computational model and describe a new parallel algorithm to solve the task scheduling problem by basic DNA molecular operations. In turn, we skillfully design flexible length DNA strands to represent elements of the allocation matrix, take appropriate biological experiment operations and get solutions of the task scheduling problem in proper length range with less than O(n 2 ) time complexity. Copyright © 2017. Published by Elsevier B.V.
A Fast-Time Simulation Tool for Analysis of Airport Arrival Traffic
NASA Technical Reports Server (NTRS)
Erzberger, Heinz; Meyn, Larry A.; Neuman, Frank
2004-01-01
The basic objective of arrival sequencing in air traffic control automation is to match traffic demand and airport capacity while minimizing delays. The performance of an automated arrival scheduling system, such as the Traffic Management Advisor developed by NASA for the FAA, can be studied by a fast-time simulation that does not involve running expensive and time-consuming real-time simulations. The fast-time simulation models runway configurations, the characteristics of arrival traffic, deviations from predicted arrival times, as well as the arrival sequencing and scheduling algorithm. This report reviews the development of the fast-time simulation method used originally by NASA in the design of the sequencing and scheduling algorithm for the Traffic Management Advisor. The utility of this method of simulation is demonstrated by examining the effect on delays of altering arrival schedules at a hub airport.
Butt, Muhammad Arif; Akram, Muhammad
2016-01-01
We present a new intuitionistic fuzzy rule-based decision-making system based on intuitionistic fuzzy sets for a process scheduler of a batch operating system. Our proposed intuitionistic fuzzy scheduling algorithm, inputs the nice value and burst time of all available processes in the ready queue, intuitionistically fuzzify the input values, triggers appropriate rules of our intuitionistic fuzzy inference engine and finally calculates the dynamic priority (dp) of all the processes in the ready queue. Once the dp of every process is calculated the ready queue is sorted in decreasing order of dp of every process. The process with maximum dp value is sent to the central processing unit for execution. Finally, we show complete working of our algorithm on two different data sets and give comparisons with some standard non-preemptive process schedulers.
Secure, web-accessible call rosters for academic radiology departments.
Nguyen, A V; Tellis, W M; Avrin, D E
2000-05-01
Traditionally, radiology department call rosters have been posted via paper and bulletin boards. Frequently, changes to these lists are made by multiple people independently, but often not synchronized, resulting in confusion among the house staff and technical staff as to who is on call and when. In addition, multiple and disparate copies exist in different sections of the department, and changes made would not be propagated to all the schedules. To eliminate such difficulties, a paperless call scheduling application was developed. Our call scheduling program allowed Java-enabled web access to a database by designated personnel from each radiology section who have privileges to make the necessary changes. Once a person made a change, everyone accessing the database would see the modification. This eliminates the chaos resulting from people swapping shifts at the last minute and not having the time to record or broadcast the change. Furthermore, all changes to the database were logged. Users are given a log-in name and password and can only edit their section; however, all personnel have access to all sections' schedules. Our applet was written in Java 2 using the latest technology in database access. We access our Interbase database through the DataExpress and DB Swing (Borland, Scotts Valley, CA) components. The result is secure access to the call rosters via the web. There are many advantages to the web-enabled access, mainly the ability for people to make changes and have the changes recorded and propagated in a single virtual location and available to all who need to know.
NASA Astrophysics Data System (ADS)
Delgado, Francisco; Saha, Abhijit; Chandrasekharan, Srinivasan; Cook, Kem; Petry, Catherine; Ridgway, Stephen
2014-08-01
The Operations Simulator for the Large Synoptic Survey Telescope (LSST; http://www.lsst.org) allows the planning of LSST observations that obey explicit science driven observing specifications, patterns, schema, and priorities, while optimizing against the constraints placed by design-specific opto-mechanical system performance of the telescope facility, site specific conditions as well as additional scheduled and unscheduled downtime. It has a detailed model to simulate the external conditions with real weather history data from the site, a fully parameterized kinematic model for the internal conditions of the telescope, camera and dome, and serves as a prototype for an automatic scheduler for the real time survey operations with LSST. The Simulator is a critical tool that has been key since very early in the project, to help validate the design parameters of the observatory against the science requirements and the goals from specific science programs. A simulation run records the characteristics of all observations (e.g., epoch, sky position, seeing, sky brightness) in a MySQL database, which can be queried for any desired purpose. Derivative information digests of the observing history are made with an analysis package called Simulation Survey Tools for Analysis and Reporting (SSTAR). Merit functions and metrics have been designed to examine how suitable a specific simulation run is for several different science applications. Software to efficiently compare the efficacy of different survey strategies for a wide variety of science applications using such a growing set of metrics is under development. A recent restructuring of the code allows us to a) use "look-ahead" strategies that avoid cadence sequences that cannot be completed due to observing constraints; and b) examine alternate optimization strategies, so that the most efficient scheduling algorithm(s) can be identified and used: even few-percent efficiency gains will create substantive scientific opportunity. The enhanced simulator is being used to assess the feasibility of desired observing cadences, study the impact of changing science program priorities and assist with performance margin investigations of the LSST system.
Optimizing an F-16 Squadron Weekly Pilot Schedule for the Turkish Air Force
2010-03-01
disrupted schedules are rescheduled , minimizing the total number of changes with respect to the previous schedule’s objective function. Output...producing rosters for a nursing staff in a large general hospital (Dowsland, 1998) and afterwards Aickelin and Dowsland use an Indirect Genetic...algorithm to improve the solutions of the nurse scheduling problem which is similar to the fighter squadron pilot scheduling problem (Aickelin and
A Model and Algorithms For a Software Evolution Control System
1993-12-01
dynamic scheduling approaches can be found in [67). Task scheduling can also be characterized as preemptive and nonpreemptive . A task is preemptive ...is NP-hard for both the preemptive and nonpreemptive cases [671 [84). Scheduling nonpreemptive tasks with arbitrary ready times is NP-hard in both...the preemptive and nonpreemptive cases [671 [841. Scheduling nonpreemptive tasks with arbitrary ready times is NP-hard in both multiprocessor and
Wireless Sensor Network Metrics for Real-Time Systems
2009-05-20
to compute the probability of end-to-end packet delivery as a function of latency, the expected radio energy consumption on the nodes from relaying... schedules for WSNs. Particularly, we focus on the impact scheduling has on path diversity, using short repeating schedules and Greedy Maximal Matching...a greedy algorithm for constructing a mesh routing topology. Finally, we study the implications of using distributed scheduling schemes to generate
Wheels-Off Time Uncertainty Impact on Benefits of Early Call for Release Scheduling
NASA Technical Reports Server (NTRS)
Palopo, Kee; Chatterji, Gano B.; Almog, Noam
2017-01-01
Arrival traffic scenarios with 808 flights from 173 airports to Houston George Bush International airport are simulated to determine if Call For Release flights can receive a benefit in terms of less delay over other flights by scheduling prior to gate pushback (look-ahead in time) as opposed to at gate pushback. Call for Release flights are departures that require approval from Air Route Traffic Control Center prior to release. Realism is brought to the study by including gate departure delay and taxi-out delay uncertainties for the 77 major U. S. airports. Gate departure delay uncertainty is assumed to increase as a function of look-ahead time. Results show that Call For Release flights from an airport within the freeze horizon (a region surrounding the arrival airport) can get an advantage over other flights to a capacity constrained airport by scheduling prior to gate pushback, provided the wheels-off time uncertainty with respect to schedule is controlled to a small value, such as within a three-minute window. Another finding of the study is that system delay, measured as the sum of arrival delays, is smaller when flights are scheduled in the order of arrival compared to in the order of departure. Because flights from airports within the freeze horizon are scheduled in the order of departure, an increase in the number of internal airports with a larger freeze horizon increases system delay. Delay in the given scenario was found to increase by 126% (from 13.8 hours to 31.2 hours) as freeze horizon was increased from 30-minutes to 2-hours in the baseline scenario.
Cost-efficient scheduling of FAST observations
NASA Astrophysics Data System (ADS)
Luo, Qi; Zhao, Laiping; Yu, Ce; Xiao, Jian; Sun, Jizhou; Zhu, Ming; Zhong, Yi
2018-03-01
A cost-efficient schedule for the Five-hundred-meter Aperture Spherical radio Telescope (FAST) requires to maximize the number of observable proposals and the overall scientific priority, and minimize the overall slew-cost generated by telescope shifting, while taking into account the constraints including the astronomical objects visibility, user-defined observable times, avoiding Radio Frequency Interference (RFI). In this contribution, first we solve the problem of maximizing the number of observable proposals and scientific priority by modeling it as a Minimum Cost Maximum Flow (MCMF) problem. The optimal schedule can be found by any MCMF solution algorithm. Then, for minimizing the slew-cost of the generated schedule, we devise a maximally-matchable edges detection-based method to reduce the problem size, and propose a backtracking algorithm to find the perfect matching with minimum slew-cost. Experiments on a real dataset from NASA/IPAC Extragalactic Database (NED) show that, the proposed scheduler can increase the usage of available times with high scientific priority and reduce the slew-cost significantly in a very short time.
NASA Astrophysics Data System (ADS)
Konno, Yohko; Suzuki, Keiji
This paper describes an approach to development of a solution algorithm of a general-purpose for large scale problems using “Local Clustering Organization (LCO)” as a new solution for Job-shop scheduling problem (JSP). Using a performance effective large scale scheduling in the study of usual LCO, a solving JSP keep stability induced better solution is examined. In this study for an improvement of a performance of a solution for JSP, processes to a optimization by LCO is examined, and a scheduling solution-structure is extended to a new solution-structure based on machine-division. A solving method introduced into effective local clustering for the solution-structure is proposed as an extended LCO. An extended LCO has an algorithm which improves scheduling evaluation efficiently by clustering of parallel search which extends over plural machines. A result verified by an application of extended LCO on various scale of problems proved to conduce to minimizing make-span and improving on the stable performance.
NASA Astrophysics Data System (ADS)
Gao, Kaizhou; Wang, Ling; Luo, Jianping; Jiang, Hua; Sadollah, Ali; Pan, Quanke
2018-06-01
In this article, scheduling and rescheduling problems with increasing processing time and new job insertion are studied for reprocessing problems in the remanufacturing process. To handle the unpredictability of reprocessing time, an experience-based strategy is used. Rescheduling strategies are applied for considering the effect of increasing reprocessing time and the new subassembly insertion. To optimize the scheduling and rescheduling objective, a discrete harmony search (DHS) algorithm is proposed. To speed up the convergence rate, a local search method is designed. The DHS is applied to two real-life cases for minimizing the maximum completion time and the mean of earliness and tardiness (E/T). These two objectives are also considered together as a bi-objective problem. Computational optimization results and comparisons show that the proposed DHS is able to solve the scheduling and rescheduling problems effectively and productively. Using the proposed approach, satisfactory optimization results can be achieved for scheduling and rescheduling on a real-life shop floor.
NASA Astrophysics Data System (ADS)
Jiang, Fuhong; Zhang, Xingong; Bai, Danyu; Wu, Chin-Chia
2018-04-01
In this article, a competitive two-agent scheduling problem in a two-machine open shop is studied. The objective is to minimize the weighted sum of the makespans of two competitive agents. A complexity proof is presented for minimizing the weighted combination of the makespan of each agent if the weight α belonging to agent B is arbitrary. Furthermore, two pseudo-polynomial-time algorithms using the largest alternate processing time (LAPT) rule are presented. Finally, two approximation algorithms are presented if the weight is equal to one. Additionally, another approximation algorithm is presented if the weight is larger than one.
An Algorithm for the Weighted Earliness-Tardiness Unconstrained Project Scheduling Problem
NASA Astrophysics Data System (ADS)
Afshar Nadjafi, Behrouz; Shadrokh, Shahram
This research considers a project scheduling problem with the object of minimizing weighted earliness-tardiness penalty costs, taking into account a deadline for the project and precedence relations among the activities. An exact recursive method has been proposed for solving the basic form of this problem. We present a new depth-first branch and bound algorithm for extended form of the problem, which time value of money is taken into account by discounting the cash flows. The algorithm is extended with two bounding rules in order to reduce the size of the branch and bound tree. Finally, some test problems are solved and computational results are reported.
A software tool for dataflow graph scheduling
NASA Technical Reports Server (NTRS)
Jones, Robert L., III
1994-01-01
A graph-theoretic design process and software tool is presented for selecting a multiprocessing scheduling solution for a class of computational problems. The problems of interest are those that can be described using a dataflow graph and are intended to be executed repetitively on multiple processors. The dataflow paradigm is very useful in exposing the parallelism inherent in algorithms. It provides a graphical and mathematical model which describes a partial ordering of algorithm tasks based on data precedence.
More reliable protein NMR peak assignment via improved 2-interval scheduling.
Chen, Zhi-Zhong; Lin, Guohui; Rizzi, Romeo; Wen, Jianjun; Xu, Dong; Xu, Ying; Jiang, Tao
2005-03-01
Protein NMR peak assignment refers to the process of assigning a group of "spin systems" obtained experimentally to a protein sequence of amino acids. The automation of this process is still an unsolved and challenging problem in NMR protein structure determination. Recently, protein NMR peak assignment has been formulated as an interval scheduling problem (ISP), where a protein sequence P of amino acids is viewed as a discrete time interval I (the amino acids on P one-to-one correspond to the time units of I), each subset S of spin systems that are known to originate from consecutive amino acids from P is viewed as a "job" j(s), the preference of assigning S to a subsequence P of consecutive amino acids on P is viewed as the profit of executing job j(s) in the subinterval of I corresponding to P, and the goal is to maximize the total profit of executing the jobs (on a single machine) during I. The interval scheduling problem is max SNP-hard in general; but in the real practice of protein NMR peak assignment, each job j(s) usually requires at most 10 consecutive time units, and typically the jobs that require one or two consecutive time units are the most difficult to assign/schedule. In order to solve these most difficult assignments, we present an efficient 13/7-approximation algorithm for the special case of the interval scheduling problem where each job takes one or two consecutive time units. Combining this algorithm with a greedy filtering strategy for handling long jobs (i.e., jobs that need more than two consecutive time units), we obtain a new efficient heuristic for protein NMR peak assignment. Our experimental study shows that the new heuristic produces the best peak assignment in most of the cases, compared with the NMR peak assignment algorithms in the recent literature. The above algorithm is also the first approximation algorithm for a nontrivial case of the well-known interval scheduling problem that breaks the ratio 2 barrier.
U.S. Geological Survey Library classification system
Sasscer, R. Scott
2000-01-01
The U.S. Geological Survey Library classification system has been designed for earth science libraries. It is a tool for assigning call numbers to earth science and allied pure science materials in order to collect these materials into related subject groups on the library shelves and arrange them alphabetically by author and title. The classification can be used as a retrieval system to access materials through the subject and geographic numbers.The classification scheme has been developed over the years since 1904 to meet the ever-changing needs of increased specialization and the development of new areas of research in the earth sciences. The system contains seven schedules: Subject scheduleGeological survey schedule Earth science periodical scheduleGovernment document periodical scheduleGeneral science periodical schedule Earth science map schedule Geographic schedule Introduction provides detailed instructions on the construction of call numbers for works falling into the framework of the classification schedules.The tables following the introduction can be quickly accessed through the use of the newly expanded subject index.The purpose of this publication is to provide the earth science community with a classification and retrieval system for earth science materials, to offer sufficient explanation of its structure and use, and to enable library staff and clientele to classify or access research materials in a library collection.
Adaptive Multilevel Middleware for Object Systems
2006-12-01
the system at the system-call level or using the CORBA-standard Extensible Transport Framework ( ETF ). Transparent insertion is highly desirable from an...often as it needs to. This is remedied by using the real-time scheduling class in a stock Linux kernel. We used schedsetscheduler system call (with...real-time scheduling class (SCHEDFIFO) for all the ML-NFD programs, later experiments with CPU load indicate that a stock Linux kernel is not
Node Scheduling Strategies for Achieving Full-View Area Coverage in Camera Sensor Networks.
Wu, Peng-Fei; Xiao, Fu; Sha, Chao; Huang, Hai-Ping; Wang, Ru-Chuan; Xiong, Nai-Xue
2017-06-06
Unlike conventional scalar sensors, camera sensors at different positions can capture a variety of views of an object. Based on this intrinsic property, a novel model called full-view coverage was proposed. We study the problem that how to select the minimum number of sensors to guarantee the full-view coverage for the given region of interest (ROI). To tackle this issue, we derive the constraint condition of the sensor positions for full-view neighborhood coverage with the minimum number of nodes around the point. Next, we prove that the full-view area coverage can be approximately guaranteed, as long as the regular hexagons decided by the virtual grid are seamlessly stitched. Then we present two solutions for camera sensor networks in two different deployment strategies. By computing the theoretically optimal length of the virtual grids, we put forward the deployment pattern algorithm (DPA) in the deterministic implementation. To reduce the redundancy in random deployment, we come up with a local neighboring-optimal selection algorithm (LNSA) for achieving the full-view coverage. Finally, extensive simulation results show the feasibility of our proposed solutions.
Node Scheduling Strategies for Achieving Full-View Area Coverage in Camera Sensor Networks
Wu, Peng-Fei; Xiao, Fu; Sha, Chao; Huang, Hai-Ping; Wang, Ru-Chuan; Xiong, Nai-Xue
2017-01-01
Unlike conventional scalar sensors, camera sensors at different positions can capture a variety of views of an object. Based on this intrinsic property, a novel model called full-view coverage was proposed. We study the problem that how to select the minimum number of sensors to guarantee the full-view coverage for the given region of interest (ROI). To tackle this issue, we derive the constraint condition of the sensor positions for full-view neighborhood coverage with the minimum number of nodes around the point. Next, we prove that the full-view area coverage can be approximately guaranteed, as long as the regular hexagons decided by the virtual grid are seamlessly stitched. Then we present two solutions for camera sensor networks in two different deployment strategies. By computing the theoretically optimal length of the virtual grids, we put forward the deployment pattern algorithm (DPA) in the deterministic implementation. To reduce the redundancy in random deployment, we come up with a local neighboring-optimal selection algorithm (LNSA) for achieving the full-view coverage. Finally, extensive simulation results show the feasibility of our proposed solutions. PMID:28587304
Next-Generation WDM Network Design and Routing
NASA Astrophysics Data System (ADS)
Tsang, Danny H. K.; Bensaou, Brahim
2003-08-01
Call for Papers The Editors of JON are soliciting papers on WDM Network Design and Routing. The aim in this focus issue is to publish original research on topics including - but not limited to - the following: - WDM network architectures and protocols - GMPLS network architectures - Wavelength converter placement in WDM networks - Routing and wavelength assignment (RWA) in WDM networks - Protection and restoration strategies and algorithms in WDM networks - Traffic grooming in WDM networks - Dynamic routing strategies and algorithms - Optical Burst Switching - Support of Multicast - Protection and restoration in WDM networks - Performance analysis and optimization in WDM networks Manuscript Submission To submit to this special issue, follow the normal procedure for submission to JON, indicating "WDM Network Design" in the "Comments" field of the online submission form. For all other questions relating to this focus issue, please send an e-mail to jon@osa.org, subject line "WDM Network Design." Additional information can be found on the JON website: http://www.osa-jon.org/submission/. Schedule Paper Submission Deadline: November 1, 2003 Notification to Authors: January 15, 2004 Final Manuscripts to Publisher: February 15, 2004 Publication of Focus Issue: February/March 2004
Next-Generation WDM Network Design and Routing
NASA Astrophysics Data System (ADS)
Tsang, Danny H. K.; Bensaou, Brahim
2003-10-01
Call for Papers The Editors of JON are soliciting papers on WDM Network Design and Routing. The aim in this focus issue is to publish original research on topics including - but not limited to - the following: - WDM network architectures and protocols - GMPLS network architectures - Wavelength converter placement in WDM networks - Routing and wavelength assignment (RWA) in WDM networks - Protection and restoration strategies and algorithms in WDM networks - Traffic grooming in WDM networks - Dynamic routing strategies and algorithms - Optical burst switching - Support of multicast - Protection and restoration in WDM networks - Performance analysis and optimization in WDM networks Manuscript Submission To submit to this special issue, follow the normal procedure for submission to JON, indicating "WDM Network Design" in the "Comments" field of the online submission form. For all other questions relating to this focus issue, please send an e-mail to jon@osa.org, subject line "WDM Network Design." Additional information can be found on the JON website: http://www.osa-jon.org/submission/. Schedule - Paper Submission Deadline: November 1, 2003 - Notification to Authors: January 15, 2004 - Final Manuscripts to Publisher: February 15, 2004 - Publication of Focus Issue: February/March 2004
Next-Generation WDM Network Design and Routing
NASA Astrophysics Data System (ADS)
Tsang, Danny H. K.; Bensaou, Brahim
2003-09-01
Call for Papers The Editors of JON are soliciting papers on WDM Network Design and Routing. The aim in this focus issue is to publish original research on topics including - but not limited to - the following: - WDM network architectures and protocols - GMPLS network architectures - Wavelength converter placement in WDM networks - Routing and wavelength assignment (RWA) in WDM networks - Protection and restoration strategies and algorithms in WDM networks - Traffic grooming in WDM networks - Dynamic routing strategies and algorithms - Optical burst switching - Support of multicast - Protection and restoration in WDM networks - Performance analysis and optimization in WDM networks Manuscript Submission To submit to this special issue, follow the normal procedure for submission to JON, indicating "WDM Network Design" in the "Comments" field of the online submission form. For all other questions relating to this focus issue, please send an e-mail to jon@osa.org, subject line "WDM Network Design." Additional information can be found on the JON website: http://www.osa-jon.org/submission/. Schedule - Paper Submission Deadline: November 1, 2003 - Notification to Authors: January 15, 2004 - Final Manuscripts to Publisher: February 15, 2004 - Publication of Focus Issue: February/March 2004
Exact and Heuristic Algorithms for Runway Scheduling
NASA Technical Reports Server (NTRS)
Malik, Waqar A.; Jung, Yoon C.
2016-01-01
This paper explores the Single Runway Scheduling (SRS) problem with arrivals, departures, and crossing aircraft on the airport surface. Constraints for wake vortex separations, departure area navigation separations and departure time window restrictions are explicitly considered. The main objective of this research is to develop exact and heuristic based algorithms that can be used in real-time decision support tools for Air Traffic Control Tower (ATCT) controllers. The paper provides a multi-objective dynamic programming (DP) based algorithm that finds the exact solution to the SRS problem, but may prove unusable for application in real-time environment due to large computation times for moderate sized problems. We next propose a second algorithm that uses heuristics to restrict the search space for the DP based algorithm. A third algorithm based on a combination of insertion and local search (ILS) heuristics is then presented. Simulation conducted for the east side of Dallas/Fort Worth International Airport allows comparison of the three proposed algorithms and indicates that the ILS algorithm performs favorably in its ability to find efficient solutions and its computation times.
A Solution Method of Scheduling Problem with Worker Allocation by a Genetic Algorithm
NASA Astrophysics Data System (ADS)
Osawa, Akira; Ida, Kenichi
In a scheduling problem with worker allocation (SPWA) proposed by Iima et al, the worker's skill level to each machine is all the same. However, each worker has a different skill level for each machine in the real world. For that reason, we propose a new model of SPWA in which a worker has the different skill level to each machine. To solve the problem, we propose a new GA for SPWA consisting of the following new three procedures, shortening of idle time, modifying infeasible solution to feasible solution, and a new selection method for GA. The effectiveness of the proposed algorithm is clarified by numerical experiments using benchmark problems for job-shop scheduling.
Jin, Junchen
2016-01-01
The shunting schedule of electric multiple units depot (SSED) is one of the essential plans for high-speed train maintenance activities. This paper presents a 0-1 programming model to address the problem of determining an optimal SSED through automatic computing. The objective of the model is to minimize the number of shunting movements and the constraints include track occupation conflicts, shunting routes conflicts, time durations of maintenance processes, and shunting running time. An enhanced particle swarm optimization (EPSO) algorithm is proposed to solve the optimization problem. Finally, an empirical study from Shanghai South EMU Depot is carried out to illustrate the model and EPSO algorithm. The optimization results indicate that the proposed method is valid for the SSED problem and that the EPSO algorithm outperforms the traditional PSO algorithm on the aspect of optimality. PMID:27436998
A Heuristics Approach for Classroom Scheduling Using Genetic Algorithm Technique
NASA Astrophysics Data System (ADS)
Ahmad, Izah R.; Sufahani, Suliadi; Ali, Maselan; Razali, Siti N. A. M.
2018-04-01
Reshuffling and arranging classroom based on the capacity of the audience, complete facilities, lecturing time and many more may lead to a complexity of classroom scheduling. While trying to enhance the productivity in classroom planning, this paper proposes a heuristic approach for timetabling optimization. A new algorithm was produced to take care of the timetabling problem in a university. The proposed of heuristics approach will prompt a superior utilization of the accessible classroom space for a given time table of courses at the university. Genetic Algorithm through Java programming languages were used in this study and aims at reducing the conflicts and optimizes the fitness. The algorithm considered the quantity of students in each class, class time, class size, time accessibility in each class and lecturer who in charge of the classes.
NASA Astrophysics Data System (ADS)
Bai, Danyu
2015-08-01
This paper discusses the flow shop scheduling problem to minimise the total quadratic completion time (TQCT) with release dates in offline and online environments. For this NP-hard problem, the investigation is focused on the performance of two online algorithms based on the Shortest Processing Time among Available jobs rule. Theoretical results indicate the asymptotic optimality of the algorithms as the problem scale is sufficiently large. To further enhance the quality of the original solutions, the improvement scheme is provided for these algorithms. A new lower bound with performance guarantee is provided, and computational experiments show the effectiveness of these heuristics. Moreover, several results of the single-machine TQCT problem with release dates are also obtained for the deduction of the main theorem.
A Scheduling Algorithm for Replicated Real-Time Tasks
NASA Technical Reports Server (NTRS)
Yu, Albert C.; Lin, Kwei-Jay
1991-01-01
We present an algorithm for scheduling real-time periodic tasks on a multiprocessor system under fault-tolerant requirement. Our approach incorporates both the redundancy and masking technique and the imprecise computation model. Since the tasks in hard real-time systems have stringent timing constraints, the redundancy and masking technique are more appropriate than the rollback techniques which usually require extra time for error recovery. The imprecise computation model provides flexible functionality by trading off the quality of the result produced by a task with the amount of processing time required to produce it. It therefore permits the performance of a real-time system to degrade gracefully. We evaluate the algorithm by stochastic analysis and Monte Carlo simulations. The results show that the algorithm is resilient under hardware failures.
Improved Space Surveillance Network (SSN) Scheduling using Artificial Intelligence Techniques
NASA Astrophysics Data System (ADS)
Stottler, D.
There are close to 20,000 cataloged manmade objects in space, the large majority of which are not active, functioning satellites. These are tracked by phased array and mechanical radars and ground and space-based optical telescopes, collectively known as the Space Surveillance Network (SSN). A better SSN schedule of observations could, using exactly the same legacy sensor resources, improve space catalog accuracy through more complementary tracking, provide better responsiveness to real-time changes, better track small debris in low earth orbit (LEO) through efficient use of applicable sensors, efficiently track deep space (DS) frequent revisit objects, handle increased numbers of objects and new types of sensors, and take advantage of future improved communication and control to globally optimize the SSN schedule. We have developed a scheduling algorithm that takes as input the space catalog and the associated covariance matrices and produces a globally optimized schedule for each sensor site as to what objects to observe and when. This algorithm is able to schedule more observations with the same sensor resources and have those observations be more complementary, in terms of the precision with which each orbit metric is known, to produce a satellite observation schedule that, when executed, minimizes the covariances across the entire space object catalog. If used operationally, the results would be significantly increased accuracy of the space catalog with fewer lost objects with the same set of sensor resources. This approach inherently can also trade-off fewer high priority tasks against more lower-priority tasks, when there is benefit in doing so. Currently the project has completed a prototyping and feasibility study, using open source data on the SSN's sensors, that showed significant reduction in orbit metric covariances. The algorithm techniques and results will be discussed along with future directions for the research.
1993-09-01
goal ( Heizer , Render , and Stair, 1993:94). Integer Prgronmming. Integer programming is a general purpose approach used to optimally solve job shop...Scheduling," Operations Research Journal. 29, No 4: 646-667 (July-August 1981). Heizer , Jay, Barry Render and Ralph M. Stair, Jr. Production and Operations
Estimation of Teacher Salary Schedules. Educational Planning Occasional Papers No. 6/72.
ERIC Educational Resources Information Center
Burtnyk, W. A.
This paper describes the method used by Tracz and Burtnyk for the estimation of future salary schedules in the Ontario secondary school system. The application of the algorithm to the Ontario secondary school system predicts a possible breakdown in the fixed step salary schedule at about 1980. This situation results primarily because of the…
A Network Flow Approach to the Initial Skills Training Scheduling Problem
2007-12-01
include (but are not limited to) queuing theory, stochastic analysis and simulation. After the demand schedule has been estimated, it can be ...software package has already been purchased and is in use by AFPC, AFPC has requested that the new algorithm be programmed in this language as well ...the discussed outputs from those schedules. Required Inputs A single input file details the students to be scheduled as well as the courses
Range and mission scheduling automation using combined AI and operations research techniques
NASA Technical Reports Server (NTRS)
Arbabi, Mansur; Pfeifer, Michael
1987-01-01
Ground-based systems for Satellite Command, Control, and Communications (C3) operations require a method for planning, scheduling and assigning the range resources such as: antenna systems scattered around the world, communications systems, and personnel. The method must accommodate user priorities, last minute changes, maintenance requirements, and exceptions from nominal requirements. Described are computer programs which solve 24 hour scheduling problems, using heuristic algorithms and a real time interactive scheduling process.
Centralized Routing and Scheduling Using Multi-Channel System Single Transceiver in 802.16d
NASA Astrophysics Data System (ADS)
Al-Hemyari, A.; Noordin, N. K.; Ng, Chee Kyun; Ismail, A.; Khatun, S.
This paper proposes a cross-layer optimized strategy that reduces the effect of interferences from neighboring nodes within a mesh networks. This cross-layer design relies on the routing information in network layer and the scheduling table in medium access control (MAC) layer. A proposed routing algorithm in network layer is exploited to find the best route for all subscriber stations (SS). Also, a proposed centralized scheduling algorithm in MAC layer is exploited to assign a time slot for each possible node transmission. The cross-layer optimized strategy is using multi-channel single transceiver and single channel single transceiver systems for WiMAX mesh networks (WMNs). Each node in WMN has a transceiver that can be tuned to any available channel for eliminating the secondary interference. Among the considered parameters in the performance analysis are interference from the neighboring nodes, hop count to the base station (BS), number of children per node, slot reuse, load balancing, quality of services (QoS), and node identifier (ID). Results show that the proposed algorithms significantly improve the system performance in terms of length of scheduling, channel utilization ratio (CUR), system throughput, and average end to end transmission delay.
Kamine, Tovy Haber; Barron, Rebecca J; Lesicka, Agnieszka; Galbraith, John D; Millham, Frederick H; Larson, Janet
2013-02-01
On July 1, 2011, the Accreditation Council for Graduate Medical Education (ACGME) eliminated 30-hour call in an attempt to improve resident wakefulness. We surveyed interns on the Newton Wellesley Hospital (NWH) surgery service before and after the transition from Q4 overnight call to a night float schedule. For 15 weeks, interns completed weekly surveys including the Epworth Sleepiness Scale (ESS). The service changed to a night float schedule after 3 weeks (ie, first to 3-4 and then to 6 nights in a row). The average ESS score rose from 9.8 ± 5.2 to 14.9 ± 3.1 and 14.4 ± 4.5 (P = .042) on the 3/4 and 6/1 schedules, respectively. Interns were more likely to be abnormally tired on either night float schedule (relative risk = 2.86; 95% confidence interval, 1.17-6.97, P = .029). The new ACGME work hours increased the ESS scores among interns at NWH and caused interns to be more tired than interns on the Q4 schedule. This is likely caused by the multiple nights of poor sleep without a post-call day to make up sleep. Copyright © 2013 Elsevier Inc. All rights reserved.
Unsupervised, Robust Estimation-based Clustering for Multispectral Images
NASA Technical Reports Server (NTRS)
Netanyahu, Nathan S.
1997-01-01
To prepare for the challenge of handling the archiving and querying of terabyte-sized scientific spatial databases, the NASA Goddard Space Flight Center's Applied Information Sciences Branch (AISB, Code 935) developed a number of characterization algorithms that rely on supervised clustering techniques. The research reported upon here has been aimed at continuing the evolution of some of these supervised techniques, namely the neural network and decision tree-based classifiers, plus extending the approach to incorporating unsupervised clustering algorithms, such as those based on robust estimation (RE) techniques. The algorithms developed under this task should be suited for use by the Intelligent Information Fusion System (IIFS) metadata extraction modules, and as such these algorithms must be fast, robust, and anytime in nature. Finally, so that the planner/schedule module of the IlFS can oversee the use and execution of these algorithms, all information required by the planner/scheduler must be provided to the IIFS development team to ensure the timely integration of these algorithms into the overall system.
Better approximation guarantees for job-shop scheduling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, L.A.; Paterson, M.; Srinivasan, A.
1997-06-01
Job-shop scheduling is a classical NP-hard problem. Shmoys, Stein & Wein presented the first polynomial-time approximation algorithm for this problem that has a good (polylogarithmic) approximation guarantee. We improve the approximation guarantee of their work, and present further improvements for some important NP-hard special cases of this problem (e.g., in the preemptive case where machines can suspend work on operations and later resume). We also present NC algorithms with improved approximation guarantees for some NP-hard special cases.
Options for Parallelizing a Planning and Scheduling Algorithm
NASA Technical Reports Server (NTRS)
Clement, Bradley J.; Estlin, Tara A.; Bornstein, Benjamin D.
2011-01-01
Space missions have a growing interest in putting multi-core processors onboard spacecraft. For many missions processing power significantly slows operations. We investigate how continual planning and scheduling algorithms can exploit multi-core processing and outline different potential design decisions for a parallelized planning architecture. This organization of choices and challenges helps us with an initial design for parallelizing the CASPER planning system for a mesh multi-core processor. This work extends that presented at another workshop with some preliminary results.
Scheduling optimization of design stream line for production research and development projects
NASA Astrophysics Data System (ADS)
Liu, Qinming; Geng, Xiuli; Dong, Ming; Lv, Wenyuan; Ye, Chunming
2017-05-01
In a development project, efficient design stream line scheduling is difficult and important owing to large design imprecision and the differences in the skills and skill levels of employees. The relative skill levels of employees are denoted as fuzzy numbers. Multiple execution modes are generated by scheduling different employees for design tasks. An optimization model of a design stream line scheduling problem is proposed with the constraints of multiple executive modes, multi-skilled employees and precedence. The model considers the parallel design of multiple projects, different skills of employees, flexible multi-skilled employees and resource constraints. The objective function is to minimize the duration and tardiness of the project. Moreover, a two-dimensional particle swarm algorithm is used to find the optimal solution. To illustrate the validity of the proposed method, a case is examined in this article, and the results support the feasibility and effectiveness of the proposed model and algorithm.
Optimisation of assembly scheduling in VCIM systems using genetic algorithm
NASA Astrophysics Data System (ADS)
Dao, Son Duy; Abhary, Kazem; Marian, Romeo
2017-09-01
Assembly plays an important role in any production system as it constitutes a significant portion of the lead time and cost of a product. Virtual computer-integrated manufacturing (VCIM) system is a modern production system being conceptually developed to extend the application of traditional computer-integrated manufacturing (CIM) system to global level. Assembly scheduling in VCIM systems is quite different from one in traditional production systems because of the difference in the working principles of the two systems. In this article, the assembly scheduling problem in VCIM systems is modeled and then an integrated approach based on genetic algorithm (GA) is proposed to search for a global optimised solution to the problem. Because of dynamic nature of the scheduling problem, a novel GA with unique chromosome representation and modified genetic operations is developed herein. Robustness of the proposed approach is verified by a numerical example.
Fault-tolerant dynamic task graph scheduling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurt, Mehmet C.; Krishnamoorthy, Sriram; Agrawal, Kunal
2014-11-16
In this paper, we present an approach to fault tolerant execution of dynamic task graphs scheduled using work stealing. In particular, we focus on selective and localized recovery of tasks in the presence of soft faults. We elicit from the user the basic task graph structure in terms of successor and predecessor relationships. The work stealing-based algorithm to schedule such a task graph is augmented to enable recovery when the data and meta-data associated with a task get corrupted. We use this redundancy, and the knowledge of the task graph structure, to selectively recover from faults with low space andmore » time overheads. We show that the fault tolerant design retains the essential properties of the underlying work stealing-based task scheduling algorithm, and that the fault tolerant execution is asymptotically optimal when task re-execution is taken into account. Experimental evaluation demonstrates the low cost of recovery under various fault scenarios.« less
A genetic algorithm-based job scheduling model for big data analytics.
Lu, Qinghua; Li, Shanshan; Zhang, Weishan; Zhang, Lei
Big data analytics (BDA) applications are a new category of software applications that process large amounts of data using scalable parallel processing infrastructure to obtain hidden value. Hadoop is the most mature open-source big data analytics framework, which implements the MapReduce programming model to process big data with MapReduce jobs. Big data analytics jobs are often continuous and not mutually separated. The existing work mainly focuses on executing jobs in sequence, which are often inefficient and consume high energy. In this paper, we propose a genetic algorithm-based job scheduling model for big data analytics applications to improve the efficiency of big data analytics. To implement the job scheduling model, we leverage an estimation module to predict the performance of clusters when executing analytics jobs. We have evaluated the proposed job scheduling model in terms of feasibility and accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramamurthy, Byravamurthy
2014-05-05
In this project, developed scheduling frameworks for dynamic bandwidth demands for large-scale science applications. In particular, we developed scheduling algorithms for dynamic bandwidth demands in this project. Apart from theoretical approaches such as Integer Linear Programming, Tabu Search and Genetic Algorithm heuristics, we have utilized practical data from ESnet OSCARS project (from our DOE lab partners) to conduct realistic simulations of our approaches. We have disseminated our work through conference paper presentations and journal papers and a book chapter. In this project we addressed the problem of scheduling of lightpaths over optical wavelength division multiplexed (WDM) networks. We published severalmore » conference papers and journal papers on this topic. We also addressed the problems of joint allocation of computing, storage and networking resources in Grid/Cloud networks and proposed energy-efficient mechanisms for operatin optical WDM networks.« less
NASA Astrophysics Data System (ADS)
Wang, Ji-Bo; Wang, Ming-Zheng; Ji, Ping
2012-05-01
In this article, we consider a single machine scheduling problem with a time-dependent learning effect and deteriorating jobs. By the effects of time-dependent learning and deterioration, we mean that the job processing time is defined by a function of its starting time and total normal processing time of jobs in front of it in the sequence. The objective is to determine an optimal schedule so as to minimize the total completion time. This problem remains open for the case of -1 < a < 0, where a denotes the learning index; we show that an optimal schedule of the problem is V-shaped with respect to job normal processing times. Three heuristic algorithms utilising the V-shaped property are proposed, and computational experiments show that the last heuristic algorithm performs effectively and efficiently in obtaining near-optimal solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Woohyun; Katipamula, Srinivas; Lutes, Robert G.
Small- and medium-sized (<100,000 sf) commercial buildings (SMBs) represent over 95% of the U.S. commercial building stock and consume over 60% of total site energy consumption. Many of these buildings use rudimentary controls that are mostly manual, with limited scheduling capability, no monitoring or failure management. Therefore, many of these buildings are operated inefficiently and consume excess energy. SMBs typically utilize packaged rooftop units (RTUs) that are controlled by an individual thermostat. There is increased urgency to improve the operating efficiency of existing commercial building stock in the U.S. for many reasons, chief among them is to mitigate the climatemore » change impacts. Studies have shown that managing set points and schedules of the RTUs will result in up to 20% energy and cost savings. Another problem associated with RTUs is short-cycling, where an RTU goes through ON and OFF cycles too frequently. Excessive cycling can lead to excessive wear and lead to premature failure of the compressor or its components. The short cycling can result in a significantly decreased average efficiency (up to 10%), even if there are no physical failures in the equipment. Also, SMBs use a time-of-day scheduling is to start the RTUs before the building will be occupied and shut it off when unoccupied. Ensuring correct use of the zone set points and eliminating frequent cycling of RTUs thereby leading to persistent building operations can significantly increase the operational efficiency of the SMBs. A growing trend is to use low-cost control infrastructure that can enable scalable and cost-effective intelligent building operations. The work reported in this report describes three algorithms for detecting the zone set point temperature, RTU cycling rate and occupancy schedule detection that can be deployed on the low-cost infrastructure. These algorithms only require the zone temperature data for detection. The algorithms have been tested and validated using field data from a number of RTUs from six buildings in different climate locations. Overall, the algorithms were successful in detecting the set points and ON/OFF cycles accurately using the peak detection technique and occupancy schedule using symbolic aggregate approximation technique. The report describes the three algorithms, results from testing the algorithms using field data, how the algorithms can be used to improve SMBs efficiency, and presents related conclusions.« less
Scheduler Design Criteria: Requirements and Considerations
NASA Technical Reports Server (NTRS)
Lee, Hanbong
2016-01-01
This presentation covers fundamental requirements and considerations for developing schedulers in airport operations. We first introduce performance and functional requirements for airport surface schedulers. Among various optimization problems in airport operations, we focus on airport surface scheduling problem, including runway and taxiway operations. We then describe a basic methodology for airport surface scheduling such as node-link network model and scheduling algorithms previously developed. Next, we explain how to design a mathematical formulation in more details, which consists of objectives, decision variables, and constraints. Lastly, we review other considerations, including optimization tools, computational performance, and performance metrics for evaluation.
Fazzino, Tera L; Rabinowitz, Terry; Althoff, Robert R; Helzer, John E
2013-12-01
Recently, there has been a gradual shift from inpatient-only electroconvulsive therapy (ECT) toward outpatient administration. Potential advantages include convenience and reduced cost. But providers do not have the same opportunity to monitor treatment response and adverse effects as they do with inpatients. This can obviate some of the potential advantages of outpatient ECT, such as tailoring treatment intervals to clinical response. Scheduling is typically algorithmic rather than empirically based. Daily monitoring through an automated telephone, interactive voice response (IVR), is a potential solution to this quandary. To test feasibility of clinical monitoring via IVR, we recruited 26 patients (69% female; mean age, 51 years) receiving outpatient ECT to make daily IVR reports of affective symptoms and subjective memory for 60 days. The IVR also administered a word recognition task daily to test objective memory. Every seventh day, a longer IVR weekly interview included questions about suicidal ideation. Overall daily call compliance was high (mean, 80%). Most participants (96%) did not consider the calls to be time-consuming. Longitudinal regression analysis using generalized estimating equations revealed that participant objective memory functioning significantly improved during the study (P < 0.05). Of 123 weekly IVR interviews, 41 reports (33%) in 14 patients endorsed suicidal ideation during the previous week. Interactive voice response monitoring of outpatient ECT can provide more detailed clinical information than standard outpatient ECT assessment. Interactive voice response data offer providers a comprehensive, longitudinal picture of patient treatment response and adverse effects as a basis for treatment scheduling and ongoing clinical management.
NASA Technical Reports Server (NTRS)
Charlesworth, Arthur
1990-01-01
The nondeterministic divide partitions a vector into two non-empty slices by allowing the point of division to be chosen nondeterministically. Support for high-level divide-and-conquer programming provided by the nondeterministic divide is investigated. A diva algorithm is a recursive divide-and-conquer sequential algorithm on one or more vectors of the same range, whose division point for a new pair of recursive calls is chosen nondeterministically before any computation is performed and whose recursive calls are made immediately after the choice of division point; also, access to vector components is only permitted during activations in which the vector parameters have unit length. The notion of diva algorithm is formulated precisely as a diva call, a restricted call on a sequential procedure. Diva calls are proven to be intimately related to associativity. Numerous applications of diva calls are given and strategies are described for translating a diva call into code for a variety of parallel computers. Thus diva algorithms separate logical correctness concerns from implementation concerns.
Rabin, Elaine; Patrick, Lisa
2016-04-01
Nationwide, hospitals struggle to maintain specialist on-call coverage for emergencies. We seek to further understand the issue by examining reliability of scheduled coverage and the role of ad hoc coverage when none is scheduled. An anonymous electronic survey of all emergency department (ED) directors of a large state. Overall and for 10 specialties, respondents were asked to estimate on-call coverage extent and "reliability" (frequency of emergency response in a clinically useful time frame: 2 hours), and use and effect of ad hoc emergency coverage to fill gaps. Descriptive statistics were performed using Fisher exact and Wilcoxon sign rank tests for significance. Contact information was obtained for 125 of 167 ED directors. Sixty responded (48%), representing 36% of EDs. Forty-six percent reported full on-call coverage scheduled for all specialties. Forty-six percent reported consistent reliability. Coverage and reliability were strongly related (P<.01; 33% reported both), and larger ED volume correlated with both (P<.01). Ninety percent of hospitals that had gaps in either employed ad hoc coverage, significantly improving coverage for 8 of 10 specialties. For all but 1 specialty, more than 20% of hospitals reported that specialists are "Never", "Rarely" or "Sometimes" reliable (more than 50% for cardiovascular surgery, hand surgery and ophthalmology). Significant holes in scheduled on-call specialist coverage are compounded by frequent unreliability of on-call specialists, but partially ameliorated by ad hoc specialist coverage. Regionalization may help because a 2-tiered system may exist: larger hospitals have more complete, reliable coverage. Better understanding of specialists' willingness to treat emergencies ad hoc without taking formal call will suggest additional remedies. Copyright © 2015 Elsevier Inc. All rights reserved.
Research on a Method of Geographical Information Service Load Balancing
NASA Astrophysics Data System (ADS)
Li, Heyuan; Li, Yongxing; Xue, Zhiyong; Feng, Tao
2018-05-01
With the development of geographical information service technologies, how to achieve the intelligent scheduling and high concurrent access of geographical information service resources based on load balancing is a focal point of current study. This paper presents an algorithm of dynamic load balancing. In the algorithm, types of geographical information service are matched with the corresponding server group, then the RED algorithm is combined with the method of double threshold effectively to judge the load state of serve node, finally the service is scheduled based on weighted probabilistic in a certain period. At the last, an experiment system is built based on cluster server, which proves the effectiveness of the method presented in this paper.
NASA Technical Reports Server (NTRS)
Dupnick, E.; Wiggins, D.
1980-01-01
The functional specifications, functional design and flow, and the program logic of the GREEDY computer program are described. The GREEDY program is a submodule of the Scheduling Algorithm for Mission Planning and Logistics Evaluation (SAMPLE) program and has been designed as a continuation of the shuttle Mission Payloads (MPLS) program. The MPLS uses input payload data to form a set of feasible payload combinations; from these, GREEDY selects a subset of combinations (a traffic model) so all payloads can be included without redundancy. The program also provides the user a tutorial option so that he can choose an alternate traffic model in case a particular traffic model is unacceptable.
NASA Astrophysics Data System (ADS)
Yusriski, R.; Sukoyo; Samadhi, T. M. A. A.; Halim, A. H.
2016-02-01
In the manufacturing industry, several identical parts can be processed in batches, and setup time is needed between two consecutive batches. Since the processing times of batches are not always fixed during a scheduling period due to learning and deterioration effects, this research deals with batch scheduling problems with simultaneous learning and deterioration effects. The objective is to minimize total actual flow time, defined as a time interval between the arrival of all parts at the shop and their common due date. The decision variables are the number of batches, integer batch sizes, and the sequence of the resulting batches. This research proposes a heuristic algorithm based on the Lagrange Relaxation. The effectiveness of the proposed algorithm is determined by comparing the resulting solutions of the algorithm to the respective optimal solution obtained from the enumeration method. Numerical experience results show that the average of difference among the solutions is 0.05%.
Improvements in Space Surveillance Processing for Wide Field of View Optical Sensors
NASA Astrophysics Data System (ADS)
Sydney, P.; Wetterer, C.
2014-09-01
For more than a decade, an autonomous satellite tracking system at the Air Force Maui Optical and Supercomputing (AMOS) observatory has been generating routine astrometric measurements of Earth-orbiting Resident Space Objects (RSOs) using small commercial telescopes and sensors. Recent work has focused on developing an improved processing system, enhancing measurement performance and response while supporting other sensor systems and missions. This paper will outline improved techniques in scheduling, detection, astrometric and photometric measurements, and catalog maintenance. The processing system now integrates with Special Perturbation (SP) based astrodynamics algorithms, allowing covariance-based scheduling and more precise orbital estimates and object identification. A merit-based scheduling algorithm provides a global optimization framework to support diverse collection tasks and missions. The detection algorithms support a range of target tracking and camera acquisition rates. New comprehensive star catalogs allow for more precise astrometric and photometric calibrations including differential photometry for monitoring environmental changes. This paper will also examine measurement performance with varying tracking rates and acquisition parameters.
Distribution of a Generic Mission Planning and Scheduling Toolkit for Astronomical Spacecraft
NASA Technical Reports Server (NTRS)
Kleiner, Steven C.
1998-01-01
This 2-year report describes the progress made to date on the project to package and distribute the planning and scheduling toolkit for the SWAS astronomical spacecraft. SWAS was scheduled to be launched on a Pegasus XL vehicle in fall 1995. Three separate failures in the launch vehicle have delayed the SWAS launch. The researchers have used this time to continue developing scheduling algorithms and GUI design. SWAS is expected to be launched this year.
[Emergencies and continuous care: overload of the current on-call system and search for new models].
Enríquez-Navascués, Jose M
2008-04-01
Emergency surgical care is still provided by means of an 24 hours physical presence "on-call" model (encompassing a normal day followed by "on call"), and is obligatory for all staff. This defective organisation of work has become unsustainable with the acceptance of the European 48 hours Directive, and is gruelling due to the excessive night work and feeling of being locked in that it entails. Emergency general and digestive system surgery care cannot be provided by a single organisational model, but has to be adapted to local circumstances. It is important to separate scheduled activity from urgent, and whereas increasingly more resources are dedicated to scheduled care, sufficient resources are also required for urgent activities, that cannot be considered as simply an "on call" or a fleeting stop in scheduled activity. Core subjects in residency, creating different levels of provision and activities, the analysis of urgent activity per work period and the identification of foreseeable activity, to maintain a pro-active mentality, and the disappearance of the "overtime" concept, should help provide another care model and method of remuneration.
A Genetic Algorithm for Flow Shop Scheduling with Assembly Operations to Minimize Makespan
NASA Astrophysics Data System (ADS)
Bhongade, A. S.; Khodke, P. M.
2014-04-01
Manufacturing systems, in which, several parts are processed through machining workstations and later assembled to form final products, is common. Though scheduling of such problems are solved using heuristics, available solution approaches can provide solution for only moderate sized problems due to large computation time required. In this work, scheduling approach is developed for such flow-shop manufacturing system having machining workstations followed by assembly workstations. The initial schedule is generated using Disjunctive method and genetic algorithm (GA) is applied further for generating schedule for large sized problems. GA is found to give near optimal solution based on the deviation of makespan from lower bound. The lower bound of makespan of such problem is estimated and percent deviation of makespan from lower bounds is used as a performance measure to evaluate the schedules. Computational experiments are conducted on problems developed using fractional factorial orthogonal array, varying the number of parts per product, number of products, and number of workstations (ranging upto 1,520 number of operations). A statistical analysis indicated the significance of all the three factors considered. It is concluded that GA method can obtain optimal makespan.
On the number of different dynamics in Boolean networks with deterministic update schedules.
Aracena, J; Demongeot, J; Fanchon, E; Montalva, M
2013-04-01
Deterministic Boolean networks are a type of discrete dynamical systems widely used in the modeling of genetic networks. The dynamics of such systems is characterized by the local activation functions and the update schedule, i.e., the order in which the nodes are updated. In this paper, we address the problem of knowing the different dynamics of a Boolean network when the update schedule is changed. We begin by proving that the problem of the existence of a pair of update schedules with different dynamics is NP-complete. However, we show that certain structural properties of the interaction diagraph are sufficient for guaranteeing distinct dynamics of a network. In [1] the authors define equivalence classes which have the property that all the update schedules of a given class yield the same dynamics. In order to determine the dynamics associated to a network, we develop an algorithm to efficiently enumerate the above equivalence classes by selecting a representative update schedule for each class with a minimum number of blocks. Finally, we run this algorithm on the well known Arabidopsis thaliana network to determine the full spectrum of its different dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.
CaLRS: A Critical-Aware Shared LLC Request Scheduling Algorithm on GPGPU
Ma, Jianliang; Meng, Jinglei; Chen, Tianzhou; Wu, Minghui
2015-01-01
Ultra high thread-level parallelism in modern GPUs usually introduces numerous memory requests simultaneously. So there are always plenty of memory requests waiting at each bank of the shared LLC (L2 in this paper) and global memory. For global memory, various schedulers have already been developed to adjust the request sequence. But we find few work has ever focused on the service sequence on the shared LLC. We measured that a big number of GPU applications always queue at LLC bank for services, which provide opportunity to optimize the service order on LLC. Through adjusting the GPU memory request service order, we can improve the schedulability of SM. So we proposed a critical-aware shared LLC request scheduling algorithm (CaLRS) in this paper. The priority representative of memory request is critical for CaLRS. We use the number of memory requests that originate from the same warp but have not been serviced when they arrive at the shared LLC bank to represent the criticality of each warp. Experiments show that the proposed scheme can boost the SM schedulability effectively by promoting the scheduling priority of the memory requests with high criticality and improves the performance of GPU indirectly. PMID:25729772
The National Immunization Information Hotline.
Gust, D A; Gangarosa, P; Hibbs, B; Wilkins, C; Ford, K; Stuart, M; Brown-Bryant, R; Wallach, G; Chen, R T
2004-01-01
The National Immunization Information Hotline (NIIH) has been providing information regarding immunizations to the public and to health care professionals since March 1997. We describe the operations of the NIIH, its experience over the first two and a half years of operation and lessons learned for other immunization hotlines. From 1998-2000, the hotline answered 246,859 calls. Calls concerning immunization information requests totaled 175,367; data about the calls were collected from 35,102. Approximately a third of the 35,102 calls were from health care providers. Of the remaining calls from the public, the greatest number of calls concerned childhood immunizations. Immunization schedule queries from the public increased 323.0% from 1998 to 2000. While the major goal of the NIIH is to provide accurate and reliable information to the public and to health care providers, data from the hotline can be used to monitor changes over time in calls concerning inquiries about the immunization schedule in addition to other variables of interest.
Deng, Xingjuan; Chen, Ji; Shuai, Jie
2009-08-01
For the purpose of improving the efficiency of aphasia rehabilitation training, artificial intelligence-scheduling function is added in the aphasia rehabilitation software, and the software's performance is improved. With the characteristics of aphasia patient's voice as well as with the need of artificial intelligence-scheduling functions under consideration, the present authors have designed a set of endpoint detection algorithm. It determines the reference endpoints, then extracts every word and ensures the reasonable segmentation points between consonants and vowels, using the reference endpoints. The results of experiments show that the algorithm is able to attain the objects of detection at a higher accuracy rate. Therefore, it is applicable to the detection of endpoint on aphasia-patient's voice.
Optimization of HAART with genetic algorithms and agent-based models of HIV infection.
Castiglione, F; Pappalardo, F; Bernaschi, M; Motta, S
2007-12-15
Highly Active AntiRetroviral Therapies (HAART) can prolong life significantly to people infected by HIV since, although unable to eradicate the virus, they are quite effective in maintaining control of the infection. However, since HAART have several undesirable side effects, it is considered useful to suspend the therapy according to a suitable schedule of Structured Therapeutic Interruptions (STI). In the present article we describe an application of genetic algorithms (GA) aimed at finding the optimal schedule for a HAART simulated with an agent-based model (ABM) of the immune system that reproduces the most significant features of the response of an organism to the HIV-1 infection. The genetic algorithm helps in finding an optimal therapeutic schedule that maximizes immune restoration, minimizes the viral count and, through appropriate interruptions of the therapy, minimizes the dose of drug administered to the simulated patient. To validate the efficacy of the therapy that the genetic algorithm indicates as optimal, we ran simulations of opportunistic diseases and found that the selected therapy shows the best survival curve among the different simulated control groups. A version of the C-ImmSim simulator is available at http://www.iac.cnr.it/~filippo/c-ImmSim.html
Real-time adaptive aircraft scheduling
NASA Technical Reports Server (NTRS)
Kolitz, Stephan E.; Terrab, Mostafa
1990-01-01
One of the most important functions of any air traffic management system is the assignment of ground-holding times to flights, i.e., the determination of whether and by how much the take-off of a particular aircraft headed for a congested part of the air traffic control (ATC) system should be postponed in order to reduce the likelihood and extent of airborne delays. An analysis is presented for the fundamental case in which flights from many destinations must be scheduled for arrival at a single congested airport; the formulation is also useful in scheduling the landing of airborne flights within the extended terminal area. A set of approaches is described for addressing a deterministic and a probabilistic version of this problem. For the deterministic case, where airport capacities are known and fixed, several models were developed with associated low-order polynomial-time algorithms. For general delay cost functions, these algorithms find an optimal solution. Under a particular natural assumption regarding the delay cost function, an extremely fast (O(n ln n)) algorithm was developed. For the probabilistic case, using an estimated probability distribution of airport capacities, a model was developed with an associated low-order polynomial-time heuristic algorithm with useful properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoiber, Marcus H.; Brown, James B.
This software implements the first base caller for nanopore data that calls bases directly from raw data. The basecRAWller algorithm has two major advantages over current nanopore base calling software: (1) streaming base calling and (2) base calling from information rich raw signal. The ability to perform truly streaming base calling as signal is received from the sequencer can be very powerful as this is one of the major advantages of this technology as compared to other sequencing technologies. As such enabling as much streaming potential as possible will be incredibly important as this technology continues to become more widelymore » applied in biosciences. All other base callers currently employ the Viterbi algorithm which requires the whole sequence to employ the complete base calling procedure and thus precludes a natural streaming base calling procedure. The other major advantage of the basecRAWller algorithm is the prediction of bases from raw signal which contains much richer information than the segmented chunks that current algorithms employ. This leads to the potential for much more accurate base calls which would make this technology much more valuable to all of the growing user base for this technology.« less
Dynamic vehicle routing with time windows in theory and practice.
Yang, Zhiwei; van Osta, Jan-Paul; van Veen, Barry; van Krevelen, Rick; van Klaveren, Richard; Stam, Andries; Kok, Joost; Bäck, Thomas; Emmerich, Michael
2017-01-01
The vehicle routing problem is a classical combinatorial optimization problem. This work is about a variant of the vehicle routing problem with dynamically changing orders and time windows. In real-world applications often the demands change during operation time. New orders occur and others are canceled. In this case new schedules need to be generated on-the-fly. Online optimization algorithms for dynamical vehicle routing address this problem but so far they do not consider time windows. Moreover, to match the scenarios found in real-world problems adaptations of benchmarks are required. In this paper, a practical problem is modeled based on the procedure of daily routing of a delivery company. New orders by customers are introduced dynamically during the working day and need to be integrated into the schedule. A multiple ant colony algorithm combined with powerful local search procedures is proposed to solve the dynamic vehicle routing problem with time windows. The performance is tested on a new benchmark based on simulations of a working day. The problems are taken from Solomon's benchmarks but a certain percentage of the orders are only revealed to the algorithm during operation time. Different versions of the MACS algorithm are tested and a high performing variant is identified. Finally, the algorithm is tested in situ: In a field study, the algorithm schedules a fleet of cars for a surveillance company. We compare the performance of the algorithm to that of the procedure used by the company and we summarize insights gained from the implementation of the real-world study. The results show that the multiple ant colony algorithm can get a much better solution on the academic benchmark problem and also can be integrated in a real-world environment.
Integrated Traffic Flow Management Decision Making
NASA Technical Reports Server (NTRS)
Grabbe, Shon R.; Sridhar, Banavar; Mukherjee, Avijit
2009-01-01
A generalized approach is proposed to support integrated traffic flow management decision making studies at both the U.S. national and regional levels. It can consider tradeoffs between alternative optimization and heuristic based models, strategic versus tactical flight controls, and system versus fleet preferences. Preliminary testing was accomplished by implementing thirteen unique traffic flow management models, which included all of the key components of the system and conducting 85, six-hour fast-time simulation experiments. These experiments considered variations in the strategic planning look-ahead times, the replanning intervals, and the types of traffic flow management control strategies. Initial testing indicates that longer strategic planning look-ahead times and re-planning intervals result in steadily decreasing levels of sector congestion for a fixed delay level. This applies when accurate estimates of the air traffic demand, airport capacities and airspace capacities are available. In general, the distribution of the delays amongst the users was found to be most equitable when scheduling flights using a heuristic scheduling algorithm, such as ration-by-distance. On the other hand, equity was the worst when using scheduling algorithms that took into account the number of seats aboard each flight. Though the scheduling algorithms were effective at alleviating sector congestion, the tactical rerouting algorithm was the primary control for avoiding en route weather hazards. Finally, the modeled levels of sector congestion, the number of weather incursions, and the total system delays, were found to be in fair agreement with the values that were operationally observed on both good and bad weather days.
Team formation and breakup in multiagent systems
NASA Astrophysics Data System (ADS)
Rao, Venkatesh Guru
The goal of this dissertation is to pose and solve problems involving team formation and breakup in two specific multiagent domains: formation travel and space-based interferometric observatories. The methodology employed comprises elements drawn from control theory, scheduling theory and artificial intelligence (AI). The original contribution of the work comprises three elements. The first contribution, the partitioned state-space approach is a technique for formulating and solving co-ordinated motion problem using calculus of variations techniques. The approach is applied to obtain optimal two-agent formation travel trajectories on graphs. The second contribution is the class of MixTeam algorithms, a class of team dispatchers that extends classical dispatching by accommodating team formation and breakup and exploration/exploitation learning. The algorithms are applied to observation scheduling and constellation geometry design for interferometric space telescopes. The use of feedback control for team scheduling is also demonstrated with these algorithms. The third contribution is the analysis of the optimality properties of greedy, or myopic, decision-making for a simple class of team dispatching problems. This analysis represents a first step towards the complete analysis of complex team schedulers such as the MixTeam algorithms. The contributions represent an extension to the literature on team dynamics in control theory. The broad conclusions that emerge from this research are that greedy or myopic decision-making strategies for teams perform well when specific parameters in the domain are weakly affected by an agent's actions, and that intelligent systems require a closer integration of domain knowledge in decision-making functions.
An Elegant Sufficiency: Load-Aware Differentiated Scheduling of Data Transfers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kettimuthu, Rajkumar; Vardoyan, Gayane; Agrawal, Gagan
2015-11-15
We investigate the file transfer scheduling problem, where transfers among different endpoints must be scheduled to maximize pertinent metrics. We propose two new algorithms that exploit the fact that the aggregate bandwidth obtained over a network or at a storage system tends to increase with the number of concurrent transfers—but only up to a certain limit. The first algorithm, SEAL, uses runtime information and data-driven models to approximate system load and adapt transfer schedules and concurrency so as to maximize performance while avoiding saturation. We implement this algorithm using GridFTP as the transfer protocol and evaluate it using real transfermore » logs in a production WAN environment. Results show that SEAL can improve average slowdowns and turnaround times by up to 25% and worst-case slowdown and turnaround times by up to 50%, compared with the best-performing baseline scheme. Our second algorithm, STEAL, further leverages user-supplied categorization of transfers as either “interactive” (requiring immediate processing) or “batch” (less time-critical). Results show that STEAL reduces the average slowdown of interactive transfers by 63% compared to the best-performing baseline and by 21% compared to SEAL. For batch transfers, compared to the best-performing baseline, STEAL improves by 18% the utilization of the bandwidth unused by interactive transfers. By elegantly ensuring a sufficient, but not excessive, allocation of concurrency to the right transfers, we significantly improve overall performance despite constraints.« less
NASA Astrophysics Data System (ADS)
Jafari, Hamed; Salmasi, Nasser
2015-09-01
The nurse scheduling problem (NSP) has received a great amount of attention in recent years. In the NSP, the goal is to assign shifts to the nurses in order to satisfy the hospital's demand during the planning horizon by considering different objective functions. In this research, we focus on maximizing the nurses' preferences for working shifts and weekends off by considering several important factors such as hospital's policies, labor laws, governmental regulations, and the status of nurses at the end of the previous planning horizon in one of the largest hospitals in Iran i.e., Milad Hospital. Due to the shortage of available nurses, at first, the minimum total number of required nurses is determined. Then, a mathematical programming model is proposed to solve the problem optimally. Since the proposed research problem is NP-hard, a meta-heuristic algorithm based on simulated annealing (SA) is applied to heuristically solve the problem in a reasonable time. An initial feasible solution generator and several novel neighborhood structures are applied to enhance performance of the SA algorithm. Inspired from our observations in Milad hospital, random test problems are generated to evaluate the performance of the SA algorithm. The results of computational experiments indicate that the applied SA algorithm provides solutions with average percentage gap of 5.49 % compared to the upper bounds obtained from the mathematical model. Moreover, the applied SA algorithm provides significantly better solutions in a reasonable time than the schedules provided by the head nurses.
Advance Resource Provisioning in Bulk Data Scheduling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balman, Mehmet
2012-10-01
Today?s scientific and business applications generate mas- sive data sets that need to be transferred to remote sites for sharing, processing, and long term storage. Because of increasing data volumes and enhancement in current net- work technology that provide on-demand high-speed data access between collaborating institutions, data handling and scheduling problems have reached a new scale. In this paper, we present a new data scheduling model with ad- vance resource provisioning, in which data movement operations are defined with earliest start and latest comple- tion times. We analyze time-dependent resource assign- ment problem, and propose a new methodology to improvemore » the current systems by allowing researchers and higher-level meta-schedulers to use data-placement as-a-service, so they can plan ahead and submit transfer requests in advance. In general, scheduling with time and resource conflicts is NP-hard. We introduce an efficient algorithm to organize multiple requests on the fly, while satisfying users? time and resource constraints. We successfully tested our algorithm in a simple benchmark simulator that we have developed, and demonstrated its performance with initial test results.« less
Alvarado, Michelle; Ntaimo, Lewis
2018-03-01
Oncology clinics are often burdened with scheduling large volumes of cancer patients for chemotherapy treatments under limited resources such as the number of nurses and chairs. These cancer patients require a series of appointments over several weeks or months and the timing of these appointments is critical to the treatment's effectiveness. Additionally, the appointment duration, the acuity levels of each appointment, and the availability of clinic nurses are uncertain. The timing constraints, stochastic parameters, rising treatment costs, and increased demand of outpatient oncology clinic services motivate the need for efficient appointment schedules and clinic operations. In this paper, we develop three mean-risk stochastic integer programming (SIP) models, referred to as SIP-CHEMO, for the problem of scheduling individual chemotherapy patient appointments and resources. These mean-risk models are presented and an algorithm is devised to improve computational speed. Computational results were conducted using a simulation model and results indicate that the risk-averse SIP-CHEMO model with the expected excess mean-risk measure can decrease patient waiting times and nurse overtime when compared to deterministic scheduling algorithms by 42 % and 27 %, respectively.
Task and Participant Scheduling of Trading Platforms in Vehicular Participatory Sensing Networks
Shi, Heyuan; Song, Xiaoyu; Gu, Ming; Sun, Jiaguang
2016-01-01
The vehicular participatory sensing network (VPSN) is now becoming more and more prevalent, and additionally has shown its great potential in various applications. A general VPSN consists of many tasks from task, publishers, trading platforms and a crowd of participants. Some literature treats publishers and the trading platform as a whole, which is impractical since they are two independent economic entities with respective purposes. For a trading platform in markets, its purpose is to maximize the profit by selecting tasks and recruiting participants who satisfy the requirements of accepted tasks, rather than to improve the quality of each task. This scheduling problem for a trading platform consists of two parts: which tasks should be selected and which participants to be recruited? In this paper, we investigate the scheduling problem in vehicular participatory sensing with the predictable mobility of each vehicle. A genetic-based trading scheduling algorithm (GTSA) is proposed to solve the scheduling problem. Experiments with a realistic dataset of taxi trajectories demonstrate that GTSA algorithm is efficient for trading platforms to gain considerable profit in VPSN. PMID:27916807
Task and Participant Scheduling of Trading Platforms in Vehicular Participatory Sensing Networks.
Shi, Heyuan; Song, Xiaoyu; Gu, Ming; Sun, Jiaguang
2016-11-28
The vehicular participatory sensing network (VPSN) is now becoming more and more prevalent, and additionally has shown its great potential in various applications. A general VPSN consists of many tasks from task, publishers, trading platforms and a crowd of participants. Some literature treats publishers and the trading platform as a whole, which is impractical since they are two independent economic entities with respective purposes. For a trading platform in markets, its purpose is to maximize the profit by selecting tasks and recruiting participants who satisfy the requirements of accepted tasks, rather than to improve the quality of each task. This scheduling problem for a trading platform consists of two parts: which tasks should be selected and which participants to be recruited? In this paper, we investigate the scheduling problem in vehicular participatory sensing with the predictable mobility of each vehicle. A genetic-based trading scheduling algorithm (GTSA) is proposed to solve the scheduling problem. Experiments with a realistic dataset of taxi trajectories demonstrate that GTSA algorithm is efficient for trading platforms to gain considerable profit in VPSN.
ERIC Educational Resources Information Center
Pugliese, Cara E.; Kenworthy, Lauren; Bal, Vanessa Hus; Wallace, Gregory L.; Yerys, Benjamin E.; Maddox, Brenna B.; White, Susan W.; Popal, Haroon; Armour, Anna Chelsea; Miller, Judith; Herrington, John D.; Schultz, Robert T.; Martin, Alex; Anthony, Laura Gutermuth
2015-01-01
Recent updates have been proposed to the Autism Diagnostic Observation Schedule-2 Module 4 diagnostic algorithm. This new algorithm, however, has not yet been validated in an independent sample without intellectual disability (ID). This multi-site study compared the original and revised algorithms in individuals with ASD without ID. The revised…
Wave scheduling - Decentralized scheduling of task forces in multicomputers
NASA Technical Reports Server (NTRS)
Van Tilborg, A. M.; Wittie, L. D.
1984-01-01
Decentralized operating systems that control large multicomputers need techniques to schedule competing parallel programs called task forces. Wave scheduling is a probabilistic technique that uses a hierarchical distributed virtual machine to schedule task forces by recursively subdividing and issuing wavefront-like commands to processing elements capable of executing individual tasks. Wave scheduling is highly resistant to processing element failures because it uses many distributed schedulers that dynamically assign scheduling responsibilities among themselves. The scheduling technique is trivially extensible as more processing elements join the host multicomputer. A simple model of scheduling cost is used by every scheduler node to distribute scheduling activity and minimize wasted processing capacity by using perceived workload to vary decentralized scheduling rules. At low to moderate levels of network activity, wave scheduling is only slightly less efficient than a central scheduler in its ability to direct processing elements to accomplish useful work.
Linux Kernel Co-Scheduling For Bulk Synchronous Parallel Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Terry R
2011-01-01
This paper describes a kernel scheduling algorithm that is based on co-scheduling principles and that is intended for parallel applications running on 1000 cores or more where inter-node scalability is key. Experimental results for a Linux implementation on a Cray XT5 machine are presented.1 The results indicate that Linux is a suitable operating system for this new scheduling scheme, and that this design provides a dramatic improvement in scaling performance for synchronizing collective operations at scale.
1989-12-01
to construct because the mechanism is a dispatching procedure. Since all nonpreemptive schedules are contained in the set of all preemptive schedules...the optimal value of T’.. in the preemptive case is at least a lower bound on the optimal T., for the nonpreemptive schedules. This principle is the...adapt to changes in the enviro.nment. In hard real-time systems, tasks are also distinguished as preemptable and nonpreemptable . A task is preemptable
A real-time computer model to assess resident work-hours scenarios.
McDonald, Furman S; Ramakrishna, Gautam; Schultz, Henry J
2002-07-01
To accurately model residents' work hours and assess options to forthrightly meet Residency Review Committee-Internal Medicine (RRC-IM) requirements. The requirements limiting residents' work hours are clearly defined by the Accreditation Council for Graduate Medical Education (ACGME) and the RRC-IM: "When averaged over any four-week rotation or assignment, residents must not spend more than 80 hours per week in patient care duties."(1) The call for the profession to realistically address work-hours violations is of paramount importance.(2) Unfortunately, work hours are hard to calculate. We developed an electronic model of residents' work-hours scenarios using Microsoft Excel 97. This model allows the input of multiple parameters (i.e., call frequency, call position, days off, short-call, weeks per rotation, outpatient weeks, clinic day of the week, additional time due to clinic) and start and stop times for post-call, non-call, short-call, and weekend days. For each resident on a rotation, the model graphically demonstrates call schedules, plots clinic days, and portrays all possible and preferred days off. We tested the model for accuracy in several scenarios. For example, the model predicted average work hours of 85.1 hours per week for fourth-night-call rotations. This was compared with logs of actual work hours of 84.6 hours per week. Model accuracy for this scenario was 99.4% (95% CI 96.2%-100%). The model prospectively predicted work hours of 89.9 hours/week in the cardiac intensive care unit (CCU). Subsequent surveys found mean CCU work hours of 88, 1 hours per week. Model accuracy for this scenario was 98% (95% CI 93.2-100%). Thus validated, we then used the model to test proposed scenarios for complying with RRC-IM limits. The flexibility of the model allowed demonstration of the full range of work-hours scenarios in every rotation of our 36-month program. Demonstrations of status-quo work-hours scenarios were presented to faculty as well as real-time demonstrations of the feasibility, or unfeasibility, of their proposed solutions. The model clearly demonstrated that non-call (i.e., short-call) admissions without concomitant decreases in overnight call frequency resulted in substantial increases in total work hours. Attempts to "get the resident out" an hour or two earlier each day had negligible effects on total hours and were unrealistic paper solutions. For fourth-night-call rotations, the addition of a "golden weekend" (i.e., a fifth day off per month) was found to significantly reduce work hours. The electronic model allowed the development of creative schedules for previously third-night-call rotations that limit resident work hours without decreasing continuity of care by scheduling overnight call every sixth night alternating with sixth-night-short-call rotations. Our electronic model is sufficiently robust to accurately estimate work hours on multiple and varied rotations. This model clearly demonstrates that it is very difficult to meet the RRC-IM work-hours limitations under standard fourth-night-call schedules with only four days off per month. We are successfully using our model to test proposed alternative scenarios, to overcome faculty misconceptions about resident work-hours "solutions," and to make changes to our call schedules that both are realistic for residents to accomplish and truly diminish total resident work hours toward the requirements of the RRC-IM.
Static Schedulers for Embedded Real-Time Systems
1989-12-01
Because of the need for having efficient scheduling algorithms in large scale real time systems , software engineers put a lot of effort on developing...provide static schedulers for he Embedded Real Time Systems with single processor using Ada programming language. The independent nonpreemptable...support the Computer Aided Rapid Prototyping for Embedded Real Time Systems so that we determine whether the system, as designed, meets the required
NASA Technical Reports Server (NTRS)
Chamberlain, R. A.; Cornick, D. E.; Flater, J. F.; Odoherty, R. J.; Peterson, F. M.; Ramsey, H. R.; Willoughby, J. K.
1974-01-01
The capabilities of the specified scheduling language and the program module library are outlined. The summary is written with the potential user in mind and, therefore, provides maximum insight on how the capabilities will be helpful in writing scheduling programs. Simple examples and illustrations are provided to assist the potential user in applying the capabilities of his problem.
Uplink Packet-Data Scheduling in DS-CDMA Systems
NASA Astrophysics Data System (ADS)
Choi, Young Woo; Kim, Seong-Lyun
In this letter, we consider the uplink packet scheduling for non-real-time data users in a DS-CDMA system. As an effort to jointly optimize throughput and fairness, we formulate a time-span minimization problem incorporating the time-multiplexing of different simultaneous transmission schemes. Based on simple rules, we propose efficient scheduling algorithms and compare them with the optimal solution obtained by linear programming.
Bandwidth reduction for video-on-demand broadcasting using secondary content insertion
NASA Astrophysics Data System (ADS)
Golynski, Alexander; Lopez-Ortiz, Alejandro; Poirier, Guillaume; Quimper, Claude-Guy
2005-01-01
An optimal broadcasting scheme under the presence of secondary content (i.e. advertisements) is proposed. The proposed scheme works both for movies encoded in a Constant Bit Rate (CBR) or a Variable Bit Rate (VBR) format. It is shown experimentally that secondary content in movies can make Video-on-Demand (VoD) broadcasting systems more efficient. An efficient algorithm is given to compute the optimal broadcasting schedule with secondary content, which in particular significantly improves over the best previously known algorithm for computing the optimal broadcasting schedule without secondary content.
DSP Synthesis Algorithm for Generating Florida Scrub Jay Calls
NASA Technical Reports Server (NTRS)
Lane, John; Pittman, Tyler
2017-01-01
A prototype digital signal processing (DSP) algorithm has been developed to approximate Florida scrub jay calls. The Florida scrub jay (Aphelocoma coerulescens), believed to have been in existence for 2 million years, living only in Florida, has a complicated social system that is evident by examining the spectrograms of its calls. Audio data was acquired at the Helen and Allan Cruickshank Sanctuary, Rockledge, Florida during the 2016 mating season using three digital recorders sampling at 44.1 kHz. The synthesis algorithm is a first step at developing a robust identification and call analysis algorithm. Since the Florida scrub jay is severely threatened by loss of habitat, it is important to develop effective methods to monitor their threatened population using autonomous means.
Heuristic approach to Satellite Range Scheduling with Bounds using Lagrangian Relaxation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nathanael J. K.; Arguello, Bryan; Nozick, Linda Karen
This paper focuses on scheduling antennas to track satellites using a heuristic method. In order to validate the performance of the heuristic, bounds are developed using Lagrangian relaxation. The performance of the algorithm is established using several illustrative problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rana, Javed; Singhal, Akshat; Gadre, Bhooshan
2017-04-01
The discovery and subsequent study of optical counterparts to transient sources is crucial for their complete astrophysical understanding. Various gamma-ray burst (GRB) detectors, and more notably the ground-based gravitational wave detectors, typically have large uncertainties in the sky positions of detected sources. Searching these large sky regions spanning hundreds of square degrees is a formidable challenge for most ground-based optical telescopes, which can usually image less than tens of square degrees of the sky in a single night. We present algorithms for better scheduling of such follow-up observations in order to maximize the probability of imaging the optical counterpart, basedmore » on the all-sky probability distribution of the source position. We incorporate realistic observing constraints such as the diurnal cycle, telescope pointing limitations, available observing time, and the rising/setting of the target at the observatory’s location. We use simulations to demonstrate that our proposed algorithms outperform the default greedy observing schedule used by many observatories. Our algorithms are applicable for follow-up of other transient sources with large positional uncertainties, such as Fermi -detected GRBs, and can easily be adapted for scheduling radio or space-based X-ray follow-up.« less
Design and Analysis of Self-Adapted Task Scheduling Strategies in Wireless Sensor Networks
Guo, Wenzhong; Xiong, Naixue; Chao, Han-Chieh; Hussain, Sajid; Chen, Guolong
2011-01-01
In a wireless sensor network (WSN), the usage of resources is usually highly related to the execution of tasks which consume a certain amount of computing and communication bandwidth. Parallel processing among sensors is a promising solution to provide the demanded computation capacity in WSNs. Task allocation and scheduling is a typical problem in the area of high performance computing. Although task allocation and scheduling in wired processor networks has been well studied in the past, their counterparts for WSNs remain largely unexplored. Existing traditional high performance computing solutions cannot be directly implemented in WSNs due to the limitations of WSNs such as limited resource availability and the shared communication medium. In this paper, a self-adapted task scheduling strategy for WSNs is presented. First, a multi-agent-based architecture for WSNs is proposed and a mathematical model of dynamic alliance is constructed for the task allocation problem. Then an effective discrete particle swarm optimization (PSO) algorithm for the dynamic alliance (DPSO-DA) with a well-designed particle position code and fitness function is proposed. A mutation operator which can effectively improve the algorithm’s ability of global search and population diversity is also introduced in this algorithm. Finally, the simulation results show that the proposed solution can achieve significant better performance than other algorithms. PMID:22163971
Mautone, Susan G
2009-12-01
Sleep deprivation negatively affects resident performance, education, and safety. Concerns over these effects have prompted efforts to reduce resident hours. This article describes the design and implementation of a scheduling system with no continuous 24-hour calls. Aims included meeting Accreditation Council for Graduate Medical Education work hour requirements without increasing resident complement, maximizing continuity of learning and patient care, maintaining patient care quality, and acceptance by residents, faculty, and administration. Various coverage options were formulated and discussed. The final schedule was the product of consensus. After re-engineering the master rotation schedule, service-specific conversion of on-call schedules was initiated in July 2003 and completed in July 2004. Annual in-training and certifying examination performance, length of stay, patient mortalities, resident motor vehicle accidents/near misses, and resident satisfaction with the new scheduling system were tracked. Continuous 24-hour call has been eliminated from the program since July 2004, with the longest assigned shift being 14 hours. Residents have at least 1 free weekend per month, a 10-hour break between consecutive assigned duty hours, and a mandatory 4-hour "nap" break if assigned a night shift immediately following a day shift. Program-wide, duty hours average 66 hours per week for first-year residents, 63 hours per week for second-year residents, and 60 hours per week for third-year residents. Self-reported motor vehicle accidents and/or near misses of accidents significantly decreased (P < .001) and resident satisfaction increased (P = .42). The change was accomplished at no additional cost to the institution and with no adverse patient care or educational outcomes. Pediatric residency training with restriction to 14 consecutive duty hours is effective and well accepted by stakeholders. Five years later, the re-engineered schedule has become the new "normal" for our program.
Algorithms for constructing optimal paths and statistical analysis of passenger traffic
NASA Astrophysics Data System (ADS)
Trofimov, S. P.; Druzhinina, N. G.; Trofimova, O. G.
2018-01-01
Several existing information systems of urban passenger transport (UPT) are considered. Author’s UPT network model is presented. To a passenger a new service is offered that is the best path from one stop to another stop at a specified time. The algorithm and software implementation for finding the optimal path are presented. The algorithm uses the current UPT schedule. The article also describes the algorithm of statistical analysis of trip payments by the electronic E-cards. The algorithm allows obtaining the density of passenger traffic during the day. This density is independent of the network topology and UPT schedules. The resulting density of the traffic flow can solve a number of practical problems. In particular, the forecast for the overflow of passenger transport in the «rush» hours, the quantitative comparison of different topologies transport networks, constructing of the best UPT timetable. The efficiency of the proposed integrated approach is demonstrated by the example of the model town with arbitrary dimensions.
APGEN Scheduling: 15 Years of Experience in Planning Automation
NASA Technical Reports Server (NTRS)
Maldague, Pierre F.; Wissler, Steve; Lenda, Matthew; Finnerty, Daniel
2014-01-01
In this paper, we discuss the scheduling capability of APGEN (Activity Plan Generator), a multi-mission planning application that is part of the NASA AMMOS (Advanced Multi- Mission Operations System), and how APGEN scheduling evolved over its applications to specific Space Missions. Our analysis identifies two major reasons for the successful application of APGEN scheduling to real problems: an expressive DSL (Domain-Specific Language) for formulating scheduling algorithms, and a well-defined process for enlisting the help of auxiliary modeling tools in providing high-fidelity, system-level simulations of the combined spacecraft and ground support system.
NASA Astrophysics Data System (ADS)
Searle, Anthony; Petrachenko, Bill
2016-12-01
The VLBI Global Observing System (VGOS) has been designed to take advantage of advances in data recording speeds and storage capacity, allowing for smaller and faster antennas, wider bandwidths, and shorter observation durations. Here, schedules for a ``realistic" VGOS network, frequency sequences, and expanded source lists are presented using a new source-based scheduling algorithm. The VGOS aim for continuous observations presents new operational challenges. As the source-based strategy is independent of the observing network, there are operational advantages which allow for more flexible scheduling of continuous VLBI observations. Using VieVS, simulations of several schedules are presented and compared with previous VGOS studies.
Voltage scheduling for low power/energy
NASA Astrophysics Data System (ADS)
Manzak, Ali
2001-07-01
Power considerations have become an increasingly dominant factor in the design of both portable and desk-top systems. An effective way to reduce power consumption is to lower the supply voltage since voltage is quadratically related to power. This dissertation considers the problem of lowering the supply voltage at (i) the system level and at (ii) the behavioral level. At the system level, the voltage of the variable voltage processor is dynamically changed with the work load. Processors with limited sized buffers as well as those with very large buffers are considered. Given the task arrival times, deadline times, execution times, periods and switching activities, task scheduling algorithms that minimize energy or peak power are developed for the processors equipped with very large buffers. A relation between the operating voltages of the tasks for minimum energy/power is determined using the Lagrange multiplier method, and an iterative algorithm that utilizes this relation is developed. Experimental results show that the voltage assignment obtained by the proposed algorithm is very close (0.1% error) to that of the optimal energy assignment and the optimal peak power (1% error) assignment. Next, on-line and off-fine minimum energy task scheduling algorithms are developed for processors with limited sized buffers. These algorithms have polynomial time complexity and present optimal (off-line) and close-to-optimal (on-line) solutions. A procedure to calculate the minimum buffer size given information about the size of the task (maximum, minimum), execution time (best case, worst case) and deadlines is also presented. At the behavioral level, resources operating at multiple voltages are used to minimize power while maintaining the throughput. Such a scheme has the advantage of allowing modules on the critical paths to be assigned to the highest voltage levels (thus meeting the required timing constraints) while allowing modules on non-critical paths to be assigned to lower voltage levels (thus reducing the power consumption). A polynomial time resource and latency constrained scheduling algorithm is developed to distribute the available slack among the nodes such that power consumption is minimum. The algorithm is iterative and utilizes the slack based on the Lagrange multiplier method.
Abdullahi, Mohammed; Ngadi, Md Asri
2016-01-01
Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan.
Abdullahi, Mohammed; Ngadi, Md Asri
2016-01-01
Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan. PMID:27348127
Fast Optimization for Aircraft Descent and Approach Trajectory
NASA Technical Reports Server (NTRS)
Luchinsky, Dmitry G.; Schuet, Stefan; Brenton, J.; Timucin, Dogan; Smith, David; Kaneshige, John
2017-01-01
We address problem of on-line scheduling of the aircraft descent and approach trajectory. We formulate a general multiphase optimal control problem for optimization of the descent trajectory and review available methods of its solution. We develop a fast algorithm for solution of this problem using two key components: (i) fast inference of the dynamical and control variables of the descending trajectory from the low dimensional flight profile data and (ii) efficient local search for the resulting reduced dimensionality non-linear optimization problem. We compare the performance of the proposed algorithm with numerical solution obtained using optimal control toolbox General Pseudospectral Optimal Control Software. We present results of the solution of the scheduling problem for aircraft descent using novel fast algorithm and discuss its future applications.
Research on logistics scheduling based on PSO
NASA Astrophysics Data System (ADS)
Bao, Huifang; Zhou, Linli; Liu, Lei
2017-08-01
With the rapid development of e-commerce based on the network, the logistics distribution support of e-commerce is becoming more and more obvious. The optimization of vehicle distribution routing can improve the economic benefit and realize the scientific of logistics [1]. Therefore, the study of logistics distribution vehicle routing optimization problem is not only of great theoretical significance, but also of considerable value of value. Particle swarm optimization algorithm is a kind of evolutionary algorithm, which is based on the random solution and the optimal solution by iteration, and the quality of the solution is evaluated through fitness. In order to obtain a more ideal logistics scheduling scheme, this paper proposes a logistics model based on particle swarm optimization algorithm.
Test Scheduling for Core-Based SOCs Using Genetic Algorithm Based Heuristic Approach
NASA Astrophysics Data System (ADS)
Giri, Chandan; Sarkar, Soumojit; Chattopadhyay, Santanu
This paper presents a Genetic algorithm (GA) based solution to co-optimize test scheduling and wrapper design for core based SOCs. Core testing solutions are generated as a set of wrapper configurations, represented as rectangles with width equal to the number of TAM (Test Access Mechanism) channels and height equal to the corresponding testing time. A locally optimal best-fit heuristic based bin packing algorithm has been used to determine placement of rectangles minimizing the overall test times, whereas, GA has been utilized to generate the sequence of rectangles to be considered for placement. Experimental result on ITC'02 benchmark SOCs shows that the proposed method provides better solutions compared to the recent works reported in the literature.
A novel minimum cost maximum power algorithm for future smart home energy management.
Singaravelan, A; Kowsalya, M
2017-11-01
With the latest development of smart grid technology, the energy management system can be efficiently implemented at consumer premises. In this paper, an energy management system with wireless communication and smart meter are designed for scheduling the electric home appliances efficiently with an aim of reducing the cost and peak demand. For an efficient scheduling scheme, the appliances are classified into two types: uninterruptible and interruptible appliances. The problem formulation was constructed based on the practical constraints that make the proposed algorithm cope up with the real-time situation. The formulated problem was identified as Mixed Integer Linear Programming (MILP) problem, so this problem was solved by a step-wise approach. This paper proposes a novel Minimum Cost Maximum Power (MCMP) algorithm to solve the formulated problem. The proposed algorithm was simulated with input data available in the existing method. For validating the proposed MCMP algorithm, results were compared with the existing method. The compared results prove that the proposed algorithm efficiently reduces the consumer electricity consumption cost and peak demand to optimum level with 100% task completion without sacrificing the consumer comfort.
Vectorization of a penalty function algorithm for well scheduling
NASA Technical Reports Server (NTRS)
Absar, I.
1984-01-01
In petroleum engineering, the oil production profiles of a reservoir can be simulated by using a finite gridded model. This profile is affected by the number and choice of wells which in turn is a result of various production limits and constraints including, for example, the economic minimum well spacing, the number of drilling rigs available and the time required to drill and complete a well. After a well is available it may be shut in because of excessive water or gas productions. In order to optimize the field performance a penalty function algorithm was developed for scheduling wells. For an example with some 343 wells and 15 different constraints, the scheduling routine vectorized for the CYBER 205 averaged 560 times faster performance than the scalar version.
NASA Astrophysics Data System (ADS)
Shao, Zhongshi; Pi, Dechang; Shao, Weishi
2017-11-01
This article proposes an extended continuous estimation of distribution algorithm (ECEDA) to solve the permutation flow-shop scheduling problem (PFSP). In ECEDA, to make a continuous estimation of distribution algorithm (EDA) suitable for the PFSP, the largest order value rule is applied to convert continuous vectors to discrete job permutations. A probabilistic model based on a mixed Gaussian and Cauchy distribution is built to maintain the exploration ability of the EDA. Two effective local search methods, i.e. revolver-based variable neighbourhood search and Hénon chaotic-based local search, are designed and incorporated into the EDA to enhance the local exploitation. The parameters of the proposed ECEDA are calibrated by means of a design of experiments approach. Simulation results and comparisons based on some benchmark instances show the efficiency of the proposed algorithm for solving the PFSP.
NASA Technical Reports Server (NTRS)
Srivatsan, Raghavachari; Downing, David R.
1987-01-01
Discussed are the development and testing of a real-time takeoff performance monitoring algorithm. The algorithm is made up of two segments: a pretakeoff segment and a real-time segment. One-time imputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data for that takeoff. The real-time segment uses the scheduled performance data generated in the pretakeoff segment, runway length data, and measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane and engine performance deficiencies are detected and annunciated. An important feature of this algorithm is the one-time estimation of the runway rolling friction coefficient. The algorithm was tested using a six-degree-of-freedom airplane model in a computer simulation. Results from a series of sensitivity analyses are also included.
Scheduling for anesthesia at geographic locations remote from the operating room.
Dexter, Franklin; Wachtel, Ruth E
2014-08-01
Providing general anesthesia at locations away from the operating room, called remote locations, poses many medical and scheduling challenges. This review discusses how to schedule procedures at remote locations to maximize anesthesia productivity (see Video, Supplemental Digital Content 1). Anesthesia labour productivity can be maximized by assigning one or more 8-h or 10-h periods of allocated time every 2 weeks dedicated specifically to each remote specialty that has enough cases to fill those periods. Remote specialties can then schedule their cases themselves into their own allocated time. Periods of allocated time (called open, unblocked or first come first served time) can be used by remote locations that do not have their own allocated time. Unless cases are scheduled sequentially into allocated time, there will be substantial extra underutilized time (time during which procedures are not being performed and personnel sit idle even though staffing has been planned) and a concomitant reduction in percent productivity. Allocated time should be calculated on the basis of usage. Remote locations with sufficient hours of cases should be allocated time reserved especially for them in which to schedule their cases, with a maximum waiting time of 2 weeks, to achieve an average wait of 1 week.
Resource-Constrained Project Scheduling Under Uncertainty: Models, Algorithms and Applications
2014-11-10
Make-to-Order (MTO) Production Planning using Bayesian Updating, International Journal of Production Economics (04 2014) Norman Keith Womer, Haitao...2013) Made-to-Order Production Scheduling using Bayesian Updating, Working Paper, under second-round review in International Journal of Production Economics . VI
NASA Astrophysics Data System (ADS)
Garcia-Santiago, C. A.; Del Ser, J.; Upton, C.; Quilligan, F.; Gil-Lopez, S.; Salcedo-Sanz, S.
2015-11-01
When seeking near-optimal solutions for complex scheduling problems, meta-heuristics demonstrate good performance with affordable computational effort. This has resulted in a gravitation towards these approaches when researching industrial use-cases such as energy-efficient production planning. However, much of the previous research makes assumptions about softer constraints that affect planning strategies and about how human planners interact with the algorithm in a live production environment. This article describes a job-shop problem that focuses on minimizing energy consumption across a production facility of shared resources. The application scenario is based on real facilities made available by the Irish Center for Manufacturing Research. The formulated problem is tackled via harmony search heuristics with random keys encoding. Simulation results are compared to a genetic algorithm, a simulated annealing approach and a first-come-first-served scheduling. The superior performance obtained by the proposed scheduler paves the way towards its practical implementation over industrial production chains.
A General Cross-Layer Cloud Scheduling Framework for Multiple IoT Computer Tasks.
Wu, Guanlin; Bao, Weidong; Zhu, Xiaomin; Zhang, Xiongtao
2018-05-23
The diversity of IoT services and applications brings enormous challenges to improving the performance of multiple computer tasks' scheduling in cross-layer cloud computing systems. Unfortunately, the commonly-employed frameworks fail to adapt to the new patterns on the cross-layer cloud. To solve this issue, we design a new computer task scheduling framework for multiple IoT services in cross-layer cloud computing systems. Specifically, we first analyze the features of the cross-layer cloud and computer tasks. Then, we design the scheduling framework based on the analysis and present detailed models to illustrate the procedures of using the framework. With the proposed framework, the IoT services deployed in cross-layer cloud computing systems can dynamically select suitable algorithms and use resources more effectively to finish computer tasks with different objectives. Finally, the algorithms are given based on the framework, and extensive experiments are also given to validate its effectiveness, as well as its superiority.
Stochastic Routing and Scheduling Policies for Energy Harvesting Communication Networks
NASA Astrophysics Data System (ADS)
Calvo-Fullana, Miguel; Anton-Haro, Carles; Matamoros, Javier; Ribeiro, Alejandro
2018-07-01
In this paper, we study the joint routing-scheduling problem in energy harvesting communication networks. Our policies, which are based on stochastic subgradient methods on the dual domain, act as an energy harvesting variant of the stochastic family of backpresure algorithms. Specifically, we propose two policies: (i) the Stochastic Backpressure with Energy Harvesting (SBP-EH), in which a node's routing-scheduling decisions are determined by the difference between the Lagrange multipliers associated to their queue stability constraints and their neighbors'; and (ii) the Stochastic Soft Backpressure with Energy Harvesting (SSBP-EH), an improved algorithm where the routing-scheduling decision is of a probabilistic nature. For both policies, we show that given sustainable data and energy arrival rates, the stability of the data queues over all network nodes is guaranteed. Numerical results corroborate the stability guarantees and illustrate the minimal gap in performance that our policies offer with respect to classical ones which work with an unlimited energy supply.
A genetic algorithm-based approach to flexible flow-line scheduling with variable lot sizes.
Lee, I; Sikora, R; Shaw, M J
1997-01-01
Genetic algorithms (GAs) have been used widely for such combinatorial optimization problems as the traveling salesman problem (TSP), the quadratic assignment problem (QAP), and job shop scheduling. In all of these problems there is usually a well defined representation which GA's use to solve the problem. We present a novel approach for solving two related problems-lot sizing and sequencing-concurrently using GAs. The essence of our approach lies in the concept of using a unified representation for the information about both the lot sizes and the sequence and enabling GAs to evolve the chromosome by replacing primitive genes with good building blocks. In addition, a simulated annealing procedure is incorporated to further improve the performance. We evaluate the performance of applying the above approach to flexible flow line scheduling with variable lot sizes for an actual manufacturing facility, comparing it to such alternative approaches as pair wise exchange improvement, tabu search, and simulated annealing procedures. The results show the efficacy of this approach for flexible flow line scheduling.
Applications of colored petri net and genetic algorithms to cluster tool scheduling
NASA Astrophysics Data System (ADS)
Liu, Tung-Kuan; Kuo, Chih-Jen; Hsiao, Yung-Chin; Tsai, Jinn-Tsong; Chou, Jyh-Horng
2005-12-01
In this paper, we propose a method, which uses Coloured Petri Net (CPN) and genetic algorithm (GA) to obtain an optimal deadlock-free schedule and to solve re-entrant problem for the flexible process of the cluster tool. The process of the cluster tool for producing a wafer usually can be classified into three types: 1) sequential process, 2) parallel process, and 3) sequential parallel process. But these processes are not economical enough to produce a variety of wafers in small volume. Therefore, this paper will propose the flexible process where the operations of fabricating wafers are randomly arranged to achieve the best utilization of the cluster tool. However, the flexible process may have deadlock and re-entrant problems which can be detected by CPN. On the other hand, GAs have been applied to find the optimal schedule for many types of manufacturing processes. Therefore, we successfully integrate CPN and GAs to obtain an optimal schedule with the deadlock and re-entrant problems for the flexible process of the cluster tool.
An ontology-based nurse call management system (oNCS) with probabilistic priority assessment
2011-01-01
Background The current, place-oriented nurse call systems are very static. A patient can only make calls with a button which is fixed to a wall of a room. Moreover, the system does not take into account various factors specific to a situation. In the future, there will be an evolution to a mobile button for each patient so that they can walk around freely and still make calls. The system would become person-oriented and the available context information should be taken into account to assign the correct nurse to a call. The aim of this research is (1) the design of a software platform that supports the transition to mobile and wireless nurse call buttons in hospitals and residential care and (2) the design of a sophisticated nurse call algorithm. This algorithm dynamically adapts to the situation at hand by taking the profile information of staff members and patients into account. Additionally, the priority of a call probabilistically depends on the risk factors, assigned to a patient. Methods The ontology-based Nurse Call System (oNCS) was developed as an extension of a Context-Aware Service Platform. An ontology is used to manage the profile information. Rules implement the novel nurse call algorithm that takes all this information into account. Probabilistic reasoning algorithms are designed to determine the priority of a call based on the risk factors of the patient. Results The oNCS system is evaluated through a prototype implementation and simulations, based on a detailed dataset obtained from Ghent University Hospital. The arrival times of nurses at the location of a call, the workload distribution of calls amongst nurses and the assignment of priorities to calls are compared for the oNCS system and the current, place-oriented nurse call system. Additionally, the performance of the system is discussed. Conclusions The execution time of the nurse call algorithm is on average 50.333 ms. Moreover, the oNCS system significantly improves the assignment of nurses to calls. Calls generally have a nurse present faster and the workload-distribution amongst the nurses improves. PMID:21294860
Scheduling for Locality in Shared-Memory Multiprocessors
1993-05-01
Submitted in Partial Fulfillment of the Requirements for the Degree ’)iIC Q(JALfryT INSPECTED 5 DOCTOR OF PHILOSOPHY I Accesion For Supervised by NTIS CRAM... architecture on parallel program performance, explain the implications of this trend on popular parallel programming models, and propose system software to 0...decomoosition and scheduling algorithms. I. SUIUECT TERMS IS. NUMBER OF PAGES shared-memory multiprocessors; architecture trends; loop 110 scheduling
LIRA: Lightweight Incentivized Routing for Anonymity
2013-02-01
client performance in the public Tor network, we compare download times in a vanilla Tor experiment with measurements of Tor collected by the TorPerf...circuit scheduling algorithm ( vanilla Tor), our new Proportional Throughput Differentiation scheduler (diffserv) based on work by Dovrolis et al. [33...life, which is also the default in our vanilla experiment and in public Tor. In our diffserv experiment, we isolate the new scheduler from the LIRA
Resource Control in Large-Scale Mobile-Agents Systems
2005-07-01
wakeup node schedule , much energy can be conserved. We also designed several protocols for global clock synchronization. The most interesting one is...choice as to which remote hosts to visit and in which order. Scheduling mobile-agent migration in a way that minimizes bandwidth and other resource...use, therefore, is both feasible and attractive. Dartmouth considered several variations of the scheduling problem, and devel- oped an algorithm for
Multi-Satellite Scheduling Approach for Dynamic Areal Tasks Triggered by Emergent Disasters
NASA Astrophysics Data System (ADS)
Niu, X. N.; Zhai, X. J.; Tang, H.; Wu, L. X.
2016-06-01
The process of satellite mission scheduling, which plays a significant role in rapid response to emergent disasters, e.g. earthquake, is used to allocate the observation resources and execution time to a series of imaging tasks by maximizing one or more objectives while satisfying certain given constraints. In practice, the information obtained of disaster situation changes dynamically, which accordingly leads to the dynamic imaging requirement of users. We propose a satellite scheduling model to address dynamic imaging tasks triggered by emergent disasters. The goal of proposed model is to meet the emergency response requirements so as to make an imaging plan to acquire rapid and effective information of affected area. In the model, the reward of the schedule is maximized. To solve the model, we firstly present a dynamic segmenting algorithm to partition area targets. Then the dynamic heuristic algorithm embedding in a greedy criterion is designed to obtain the optimal solution. To evaluate the model, we conduct experimental simulations in the scene of Wenchuan Earthquake. The results show that the simulated imaging plan can schedule satellites to observe a wider scope of target area. We conclude that our satellite scheduling model can optimize the usage of satellite resources so as to obtain images in disaster response in a more timely and efficient manner.
Service-Oriented Node Scheduling Scheme for Wireless Sensor Networks Using Markov Random Field Model
Cheng, Hongju; Su, Zhihuang; Lloret, Jaime; Chen, Guolong
2014-01-01
Future wireless sensor networks are expected to provide various sensing services and energy efficiency is one of the most important criterions. The node scheduling strategy aims to increase network lifetime by selecting a set of sensor nodes to provide the required sensing services in a periodic manner. In this paper, we are concerned with the service-oriented node scheduling problem to provide multiple sensing services while maximizing the network lifetime. We firstly introduce how to model the data correlation for different services by using Markov Random Field (MRF) model. Secondly, we formulate the service-oriented node scheduling issue into three different problems, namely, the multi-service data denoising problem which aims at minimizing the noise level of sensed data, the representative node selection problem concerning with selecting a number of active nodes while determining the services they provide, and the multi-service node scheduling problem which aims at maximizing the network lifetime. Thirdly, we propose a Multi-service Data Denoising (MDD) algorithm, a novel multi-service Representative node Selection and service Determination (RSD) algorithm, and a novel MRF-based Multi-service Node Scheduling (MMNS) scheme to solve the above three problems respectively. Finally, extensive experiments demonstrate that the proposed scheme efficiently extends the network lifetime. PMID:25384005
Improved Weather Forecasting for the Dynamic Scheduling System of the Green Bank Telescope
NASA Astrophysics Data System (ADS)
Henry, Kari; Maddalena, Ronald
2018-01-01
The Robert C Byrd Green Bank Telescope (GBT) uses a software system that dynamically schedules observations based on models of vertical weather forecasts produced by the National Weather Service (NWS). The NWS provides hourly forecasted values for ~60 layers that extend into the stratosphere over the observatory. We use models, recommended by the Radiocommunication Sector of the International Telecommunications Union, to derive the absorption coefficient in each layer for each hour in the NWS forecasts and for all frequencies over which the GBT has receivers, 0.1 to 115 GHz. We apply radiative transfer models to derive the opacity and the atmospheric contributions to the system temperature, thereby deriving forecasts applicable to scheduling radio observations for up to 10 days into the future. Additionally, the algorithms embedded in the data processing pipeline use historical values of the forecasted opacity to calibrate observations. Until recently, we have concentrated on predictions for high frequency (> 15 GHz) observing, as these need to be scheduled carefully around bad weather. We have been using simple models for the contribution of rain and clouds since we only schedule low-frequency observations under these conditions. In this project, we wanted to improve the scheduling of the GBT and data calibration at low frequencies by deriving better algorithms for clouds and rain. To address the limitation at low frequency, the observatory acquired a Radiometrics Corporation MP-1500A radiometer, which operates in 27 channels between 22 and 30 GHz. By comparing 16 months of measurements from the radiometer against forecasted system temperatures, we have confirmed that forecasted system temperatures are indistinguishable from those measured under good weather conditions. Small miss-calibrations of the radiometer data dominate the comparison. By using recalibrated radiometer measurements, we looked at bad weather days to derive better models for forecasting the contribution of clouds to the opacity and system temperatures. We will show how these revised algorithms should help us improve both data calibration and the accuracy of scheduling low-frequency observations.
Scheduling Operations for Massive Heterogeneous Clusters
NASA Technical Reports Server (NTRS)
Humphrey, John; Spagnoli, Kyle
2013-01-01
High-performance computing (HPC) programming has become increasingly difficult with the advent of hybrid supercomputers consisting of multicore CPUs and accelerator boards such as the GPU. Manual tuning of software to achieve high performance on this type of machine has been performed by programmers. This is needlessly difficult and prone to being invalidated by new hardware, new software, or changes in the underlying code. A system was developed for task-based representation of programs, which when coupled with a scheduler and runtime system, allows for many benefits, including higher performance and utilization of computational resources, easier programming and porting, and adaptations of code during runtime. The system consists of a method of representing computer algorithms as a series of data-dependent tasks. The series forms a graph, which can be scheduled for execution on many nodes of a supercomputer efficiently by a computer algorithm. The schedule is executed by a dispatch component, which is tailored to understand all of the hardware types that may be available within the system. The scheduler is informed by a cluster mapping tool, which generates a topology of available resources and their strengths and communication costs. Software is decoupled from its hardware, which aids in porting to future architectures. A computer algorithm schedules all operations, which for systems of high complexity (i.e., most NASA codes), cannot be performed optimally by a human. The system aids in reducing repetitive code, such as communication code, and aids in the reduction of redundant code across projects. It adds new features to code automatically, such as recovering from a lost node or the ability to modify the code while running. In this project, the innovators at the time of this reporting intend to develop two distinct technologies that build upon each other and both of which serve as building blocks for more efficient HPC usage. First is the scheduling and dynamic execution framework, and the second is scalable linear algebra libraries that are built directly on the former.
Achieving reutilization of scheduling software through abstraction and generalization
NASA Technical Reports Server (NTRS)
Wilkinson, George J.; Monteleone, Richard A.; Weinstein, Stuart M.; Mohler, Michael G.; Zoch, David R.; Tong, G. Michael
1995-01-01
Reutilization of software is a difficult goal to achieve particularly in complex environments that require advanced software systems. The Request-Oriented Scheduling Engine (ROSE) was developed to create a reusable scheduling system for the diverse scheduling needs of the National Aeronautics and Space Administration (NASA). ROSE is a data-driven scheduler that accepts inputs such as user activities, available resources, timing contraints, and user-defined events, and then produces a conflict-free schedule. To support reutilization, ROSE is designed to be flexible, extensible, and portable. With these design features, applying ROSE to a new scheduling application does not require changing the core scheduling engine, even if the new application requires significantly larger or smaller data sets, customized scheduling algorithms, or software portability. This paper includes a ROSE scheduling system description emphasizing its general-purpose features, reutilization techniques, and tasks for which ROSE reuse provided a low-risk solution with significant cost savings and reduced software development time.
NASA Astrophysics Data System (ADS)
Chen, Naijin
2013-03-01
Level Based Partitioning (LBP) algorithm, Cluster Based Partitioning (CBP) algorithm and Enhance Static List (ESL) temporal partitioning algorithm based on adjacent matrix and adjacent table are designed and implemented in this paper. Also partitioning time and memory occupation based on three algorithms are compared. Experiment results show LBP partitioning algorithm possesses the least partitioning time and better parallel character, as far as memory occupation and partitioning time are concerned, algorithms based on adjacent table have less partitioning time and less space memory occupation.
Multi-Objective Scheduling for the Cluster II Constellation
NASA Technical Reports Server (NTRS)
Johnston, Mark D.; Giuliano, Mark
2011-01-01
This paper describes the application of the MUSE multiobjecctive scheduling framework to the Cluster II WBD scheduling domain. Cluster II is an ESA four-spacecraft constellation designed to study the plasma environment of the Earth and it's magnetosphere. One of the instruments on each of the four spacecraft is the Wide Band Data (WBD) plasma wave experiment. We have applied the MUSE evolutionary algorithm to the scheduling problem represented by this instrument, and the result has been adopted and utilized by the WBD schedulers for nearly a year. This paper describes the WBD scheduling problem, its representation in MUSE, and some of the visualization elements that provide insight into objective value tradeoffs.
Optimal Rate Schedules with Data Sharing in Energy Harvesting Communication Systems.
Wu, Weiwei; Li, Huafan; Shan, Feng; Zhao, Yingchao
2017-12-20
Despite the abundant research on energy-efficient rate scheduling polices in energy harvesting communication systems, few works have exploited data sharing among multiple applications to further enhance the energy utilization efficiency, considering that the harvested energy from environments is limited and unstable. In this paper, to overcome the energy shortage of wireless devices at transmitting data to a platform running multiple applications/requesters, we design rate scheduling policies to respond to data requests as soon as possible by encouraging data sharing among data requests and reducing the redundancy. We formulate the problem as a transmission completion time minimization problem under constraints of dynamical data requests and energy arrivals. We develop offline and online algorithms to solve this problem. For the offline setting, we discover the relationship between two problems: the completion time minimization problem and the energy consumption minimization problem with a given completion time. We first derive the optimal algorithm for the min-energy problem and then adopt it as a building block to compute the optimal solution for the min-completion-time problem. For the online setting without future information, we develop an event-driven online algorithm to complete the transmission as soon as possible. Simulation results validate the efficiency of the proposed algorithm.
Optimal Rate Schedules with Data Sharing in Energy Harvesting Communication Systems
Wu, Weiwei; Li, Huafan; Shan, Feng; Zhao, Yingchao
2017-01-01
Despite the abundant research on energy-efficient rate scheduling polices in energy harvesting communication systems, few works have exploited data sharing among multiple applications to further enhance the energy utilization efficiency, considering that the harvested energy from environments is limited and unstable. In this paper, to overcome the energy shortage of wireless devices at transmitting data to a platform running multiple applications/requesters, we design rate scheduling policies to respond to data requests as soon as possible by encouraging data sharing among data requests and reducing the redundancy. We formulate the problem as a transmission completion time minimization problem under constraints of dynamical data requests and energy arrivals. We develop offline and online algorithms to solve this problem. For the offline setting, we discover the relationship between two problems: the completion time minimization problem and the energy consumption minimization problem with a given completion time. We first derive the optimal algorithm for the min-energy problem and then adopt it as a building block to compute the optimal solution for the min-completion-time problem. For the online setting without future information, we develop an event-driven online algorithm to complete the transmission as soon as possible. Simulation results validate the efficiency of the proposed algorithm. PMID:29261135
Scheduling algorithm for flow shop with two batch-processing machines and arbitrary job sizes
NASA Astrophysics Data System (ADS)
Cheng, Bayi; Yang, Shanlin; Hu, Xiaoxuan; Li, Kai
2014-03-01
This article considers the problem of scheduling two batch-processing machines in flow shop where the jobs have arbitrary sizes and the machines have limited capacity. The jobs are processed in batches and the total size of jobs in each batch cannot exceed the machine capacity. Once a batch is being processed, no interruption is allowed until all the jobs in it are completed. The problem of minimising makespan is NP-hard in the strong sense. First, we present a mathematical model of the problem using integer programme. We show the scale of feasible solutions of the problem and provide optimality properties. Then, we propose a polynomial time algorithm with running time in O(nlogn). The jobs are first assigned in feasible batches and then scheduled on machines. For the general case, we prove that the proposed algorithm has a performance guarantee of 4. For the special case where the processing times of each job on the two machines satisfy p 1 j = ap 2 j , the performance guarantee is ? for a > 0.
NASA Astrophysics Data System (ADS)
Xu, Ye; Wang, Ling; Wang, Shengyao; Liu, Min
2014-09-01
In this article, an effective hybrid immune algorithm (HIA) is presented to solve the distributed permutation flow-shop scheduling problem (DPFSP). First, a decoding method is proposed to transfer a job permutation sequence to a feasible schedule considering both factory dispatching and job sequencing. Secondly, a local search with four search operators is presented based on the characteristics of the problem. Thirdly, a special crossover operator is designed for the DPFSP, and mutation and vaccination operators are also applied within the framework of the HIA to perform an immune search. The influence of parameter setting on the HIA is investigated based on the Taguchi method of design of experiment. Extensive numerical testing results based on 420 small-sized instances and 720 large-sized instances are provided. The effectiveness of the HIA is demonstrated by comparison with some existing heuristic algorithms and the variable neighbourhood descent methods. New best known solutions are obtained by the HIA for 17 out of 420 small-sized instances and 585 out of 720 large-sized instances.
Cost-effectiveness of strategies to enhance mammography use.
Fishman, P; Taplin, S; Meyer, D; Barlow, W
2000-01-01
To estimate the cost-effectiveness of three strategies to increase breast cancer screening with mammography (reminder postcard, reminder telephone call, and motivational telephone call). Cost accounting for each strategy followed by cost-effectiveness analysis. DATA SOURCE FOR EFFECTIVENESS: Randomized trial of three strategies conducted at Group Health Cooperative of Puget Sound (GHC). Women 50 to 79 years of age who were enrolled in GHC's breast cancer screening program who did not schedule screening mammography within 2 months after it was recommended by letter. Health plan. Marginal cost-effectiveness of each additional woman screened. Because of its high cost (about $26 per call) and intermediate effectiveness, the motivational call was the least cost-effective strategy. If it was assumed that 50% of the women who scheduled mammography after receiving the reminder postcard would have scheduled mammography within 10 months even without it, marginal cost-effectiveness for the postcard among all women was $22 per woman screened versus $92 for the reminder call. Among women with no previous mammography, the marginal cost-effectiveness for the postcard was $70 versus $100 for the reminder call. Among women with no previous mammography, the choice between the reminder postcard and the reminder call was sensitive to assumptions about the percentage of women expected to receive mammography in the absence of other promotional strategies. A simple reminder postcard is the most cost-effective way to increase mammography. Choices about how to promote mammography will ultimately depend on plan values and willingness to invest in promotional strategies that increase participation at higher unit costs.
Framework for computationally efficient optimal irrigation scheduling using ant colony optimization
USDA-ARS?s Scientific Manuscript database
A general optimization framework is introduced with the overall goal of reducing search space size and increasing the computational efficiency of evolutionary algorithm application for optimal irrigation scheduling. The framework achieves this goal by representing the problem in the form of a decisi...
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Simo, Donald L.
2007-01-01
This paper presents a preliminary demonstration of an automated health assessment tool, capable of real-time on-board operation using existing engine control hardware. The tool allows operators to discern how rapidly individual turboshaft engines are degrading. As the compressor erodes, performance is lost, and with it the ability to generate power. Thus, such a tool would provide an instant assessment of the engine s fitness to perform a mission, and would help to pinpoint any abnormal wear or performance anomalies before they became serious, thereby decreasing uncertainty and enabling improved maintenance scheduling. The research described in the paper utilized test stand data from a T700-GE-401 turboshaft engine that underwent sand-ingestion testing to scale a model-based compressor efficiency degradation estimation algorithm. This algorithm was then applied to real-time Health Usage and Monitoring System (HUMS) data from a T700-GE-701C to track compressor efficiency on-line. The approach uses an optimal estimator called a Kalman filter. The filter is designed to estimate the compressor efficiency using only data from the engine s sensors as input.
Research on Scheduling Algorithm for Multi-satellite and Point Target Task on Swinging Mode
NASA Astrophysics Data System (ADS)
Wang, M.; Dai, G.; Peng, L.; Song, Z.; Chen, G.
2012-12-01
Nowadays, using satellite in space to observe ground is an important and major method to obtain ground information. With the development of the scientific technology in the field of space, many fields such as military and economic and other areas have more and more requirement of space technology because of the benefits of the satellite's widespread, timeliness and unlimited of area and country. And at the same time, because of the wide use of all kinds of satellites, sensors, repeater satellites and ground receiving stations, ground control system are now facing great challenge. Therefore, how to make the best value of satellite resources so as to make full use of them becomes an important problem of ground control system. Satellite scheduling is to distribute the resource to all tasks without conflict to obtain the scheduling result so as to complete as many tasks as possible to meet user's requirement under considering the condition of the requirement of satellites, sensors and ground receiving stations. Considering the size of the task, we can divide tasks into point task and area task. This paper only considers point targets. In this paper, a description of satellite scheduling problem and a chief introduction of the theory of satellite scheduling are firstly made. We also analyze the restriction of resource and task in scheduling satellites. The input and output flow of scheduling process are also chiefly described in the paper. On the basis of these analyses, we put forward a scheduling model named as multi-variable optimization model for multi-satellite and point target task on swinging mode. In the multi-variable optimization model, the scheduling problem is transformed the parametric optimization problem. The parameter we wish to optimize is the swinging angle of every time-window. In the view of the efficiency and accuracy, some important problems relating the satellite scheduling such as the angle relation between satellites and ground targets, positive and negative swinging angle and the computation of time window are analyzed and discussed. And many strategies to improve the efficiency of this model are also put forward. In order to solve the model, we bring forward the conception of activity sequence map. By using the activity sequence map, the activity choice and the start time of the activity can be divided. We also bring forward three neighborhood operators to search the result space. The front movement remaining time and the back movement remaining time are used to analyze the feasibility to generate solution from neighborhood operators. Lastly, the algorithm to solve the problem and model is put forward based genetic algorithm. Population initialization, crossover operator, mutation operator, individual evaluation, collision decrease operator, select operator and collision elimination operator is designed in the paper. Finally, the scheduling result and the simulation for a practical example on 5 satellites and 100 point targets with swinging mode is given, and the scheduling performances are also analyzed while the swinging angle in 0, 5, 10, 15, 25. It can be shown by the result that the model and the algorithm are more effective than those ones without swinging mode.
An Implicit Enumeration Algorithm with Binary-Valued Constraints.
1986-03-01
problems is the National Basketball Association ( NBA -) schedul- ing problems developed by Bean (1980), as discussed in detail in the Appendix. These...fY! X F L- %n~ P ’ % -C-10 K7 K: K7 -L- -7".i - W. , W V APPENDIX The NBA Scheduling Problem §A.1 Formulation The National Basketball Association...16 2.2 4.9 40.2 15.14 §6.2.3 NBA Scheduling Problem The last set of testing problems involves the NBA scheduling problem. A detailed description of
ERIC Educational Resources Information Center
Oosterling, Iris; Roos, Sascha; de Bildt, Annelies; Rommelse, Nanda; de Jonge, Maretha; Visser, Janne; Lappenschaar, Martijn; Swinkels, Sophie; van der Gaag, Rutger Jan; Buitelaar, Jan
2010-01-01
Recently, Gotham et al. ("2007") proposed revised algorithms for the Autism Diagnostic Observation Schedule (ADOS) with improved diagnostic validity. The aim of the current study was to replicate predictive validity, factor structure, and correlations with age and verbal and nonverbal IQ of the ADOS revised algorithms for Modules 1 and 2…
A Parallel Compact Multi-Dimensional Numerical Algorithm with Aeroacoustics Applications
NASA Technical Reports Server (NTRS)
Povitsky, Alex; Morris, Philip J.
1999-01-01
In this study we propose a novel method to parallelize high-order compact numerical algorithms for the solution of three-dimensional PDEs (Partial Differential Equations) in a space-time domain. For this numerical integration most of the computer time is spent in computation of spatial derivatives at each stage of the Runge-Kutta temporal update. The most efficient direct method to compute spatial derivatives on a serial computer is a version of Gaussian elimination for narrow linear banded systems known as the Thomas algorithm. In a straightforward pipelined implementation of the Thomas algorithm processors are idle due to the forward and backward recurrences of the Thomas algorithm. To utilize processors during this time, we propose to use them for either non-local data independent computations, solving lines in the next spatial direction, or local data-dependent computations by the Runge-Kutta method. To achieve this goal, control of processor communication and computations by a static schedule is adopted. Thus, our parallel code is driven by a communication and computation schedule instead of the usual "creative, programming" approach. The obtained parallelization speed-up of the novel algorithm is about twice as much as that for the standard pipelined algorithm and close to that for the explicit DRP algorithm.
Advisory Algorithm for Scheduling Open Sectors, Operating Positions, and Workstations
NASA Technical Reports Server (NTRS)
Bloem, Michael; Drew, Michael; Lai, Chok Fung; Bilimoria, Karl D.
2012-01-01
Air traffic controller supervisors configure available sector, operating position, and work-station resources to safely and efficiently control air traffic in a region of airspace. In this paper, an algorithm for assisting supervisors with this task is described and demonstrated on two sample problem instances. The algorithm produces configuration schedule advisories that minimize a cost. The cost is a weighted sum of two competing costs: one penalizing mismatches between configurations and predicted air traffic demand and another penalizing the effort associated with changing configurations. The problem considered by the algorithm is a shortest path problem that is solved with a dynamic programming value iteration algorithm. The cost function contains numerous parameters. Default values for most of these are suggested based on descriptions of air traffic control procedures and subject-matter expert feedback. The parameter determining the relative importance of the two competing costs is tuned by comparing historical configurations with corresponding algorithm advisories. Two sample problem instances for which appropriate configuration advisories are obvious were designed to illustrate characteristics of the algorithm. Results demonstrate how the algorithm suggests advisories that appropriately utilize changes in airspace configurations and changes in the number of operating positions allocated to each open sector. The results also demonstrate how the advisories suggest appropriate times for configuration changes.
New York area and worldwide: call-in radio program on HIV.
1999-07-16
Treatment activist Jules Levin, founder of the National AIDS Treatment Advocacy Group, has begun a weekly radio program called "Living Well with HIV". Listeners can call in with questions for experts featured on the show. Programs on hepatitis and AIDS have already been scheduled. Contact information is provided.
A Mechanized Decision Support System for Academic Scheduling.
1986-03-01
an operational system called software. The first step in the development phase is Design . Designers destribute software control by factoring the Data...SUBJECT TERMS (Continue on reverse if necessary and identify by block number) ELD GROUP SUB-GROUP Scheduling, Decision Support System , Software Design ...scheduling system . It will also examine software - design techniques to identify the most appropriate method- ology for this problem. " - Chapter 3 will
2000-04-01
be an extension of Utah’s nascent Quarks system, oriented to closely coupled cluster environments. However, the grant did not actually begin until... Intel x86, implemented ten virtual machine monitors and servers, including a virtual memory manager, a checkpointer, a process manager, a file server...Fluke, we developed a novel hierarchical processor scheduling frame- work called CPU inheritance scheduling [5]. This is a framework for scheduling
Power plant maintenance scheduling using ant colony optimization: an improved formulation
NASA Astrophysics Data System (ADS)
Foong, Wai Kuan; Maier, Holger; Simpson, Angus
2008-04-01
It is common practice in the hydropower industry to either shorten the maintenance duration or to postpone maintenance tasks in a hydropower system when there is expected unserved energy based on current water storage levels and forecast storage inflows. It is therefore essential that a maintenance scheduling optimizer can incorporate the options of shortening the maintenance duration and/or deferring maintenance tasks in the search for practical maintenance schedules. In this article, an improved ant colony optimization-power plant maintenance scheduling optimization (ACO-PPMSO) formulation that considers such options in the optimization process is introduced. As a result, both the optimum commencement time and the optimum outage duration are determined for each of the maintenance tasks that need to be scheduled. In addition, a local search strategy is presented in this article to boost the robustness of the algorithm. When tested on a five-station hydropower system problem, the improved formulation is shown to be capable of allowing shortening of maintenance duration in the event of expected demand shortfalls. In addition, the new local search strategy is also shown to have significantly improved the optimization ability of the ACO-PPMSO algorithm.