Sample records for school science sequence

  1. Communicating the Benefits of a Full Sequence of High School Science Courses

    ERIC Educational Resources Information Center

    Nicholas, Catherine Marie

    2014-01-01

    High school students are generally uninformed about the benefits of enrolling in a full sequence of science courses, therefore only about a third of our nation's high school graduates have completed the science sequence of Biology, Chemistry and Physics. The lack of students completing a full sequence of science courses contributes to the deficit…

  2. Chemistry, the Central Science? The History of the High School Science Sequence

    ERIC Educational Resources Information Center

    Sheppard, Keith; Robbins, Dennis M.

    2005-01-01

    Chemistry became the ''central science'' not by design but by accident in the US high schools. The three important factors, which had their influence on the high school science, are sequenced and their impact on the development of US science education, are mentioned.

  3. Putting Physics First: Three Case Studies of High School Science Department and Course Sequence Reorganization

    ERIC Educational Resources Information Center

    Larkin, Douglas B.

    2016-01-01

    This article examines the process of shifting to a "Physics First" sequence in science course offerings in three school districts in the United States. This curricular sequence reverses the more common U.S. high school sequence of biology/chemistry/physics, and has gained substantial support in the physics education community over the…

  4. Evaluation of a Secondary School Science Program Inversion: Moving from a Traditional to a Modifified-PCB Sequence

    ERIC Educational Resources Information Center

    Gaubatz, Julie

    2013-01-01

    Studies of high-school science course sequences have been limited primarily to a small number of site-specific investigations comparing traditional science sequences (e.g., Biology-Chemistry-Physics: BCP) to various Physics First-influenced sequences (Physics-Chemistry-Biology: PCB). The present study summarizes a five-year program evaluation…

  5. An investigation of the impact of science course sequencing on student performance in high school science and math

    NASA Astrophysics Data System (ADS)

    Mary, Michael Todd

    High school students in the United States for the past century have typically taken science courses in a sequence of biology followed by chemistry and concluding with physics. An alternative sequence, typically referred to as "physics first" inverts the traditional sequence by having students begin with physics and end with biology. Proponents of physics first cite advances in biological sciences that have dramatically changed the nature of high school biology and the potential benefit to student learning in math that would accompany taking an algebra-based physics course in the early years of high school to support changing the sequence. Using a quasi-experimental, quantitative research design, the purpose of this study was to investigate the impact of science course sequencing on student achievement in math and science at a school district that offered both course sequences. The Texas state end-of-course exams in biology, chemistry, physics, algebra I and geometry were used as the instruments measuring student achievement in math and science at the end of each academic year. Various statistical models were used to analyze these achievement data. The conclusion was, for students in this study, the sequence in which students took biology, chemistry, and physics had little or no impact on performance on the end-of-course assessments in each of these courses. Additionally there was only a minimal effect found with respect to math performance, leading to the conclusion that neither the traditional or "physics first" science course sequence presented an advantage for student achievement in math or science.

  6. Communicating the Benefits of a Full Sequence of High School Science Courses

    NASA Astrophysics Data System (ADS)

    Nicholas, Catherine Marie

    High school students are generally uninformed about the benefits of enrolling in a full sequence of science courses, therefore only about a third of our nation's high school graduates have completed the science sequence of Biology, Chemistry and Physics. The lack of students completing a full sequence of science courses contributes to the deficit in the STEM degree production rate needed to fill the demand of the current job market and remain competitive as a nation. The purpose of the study was to make a difference in the number of students who have access to information about the benefits of completing a full sequence of science courses. This dissertation study employed qualitative research methodology to gain a broad perspective of staff through a questionnaire and document review and then a deeper understanding through semi-structured interview protocol. The data revealed that a universal sequence of science courses in the high school district did not exist. It also showed that not all students had access to all science courses; students were sorted and tracked according to prerequisites that did not necessarily match the skill set needed for the courses. In addition, the study showed a desire for more support and direction from the district office. It was also apparent that there was a disconnect that existed between who staff members believed should enroll in a full sequence of science courses and who actually enrolled. Finally, communication about science was shown to occur mainly through counseling and peers. A common science sequence, detracking of science courses, increased communication about the postsecondary and academic benefits of a science education, increased district direction and realistic mathematics alignment were all discussed as solutions to the problem.

  7. Preparing Historically Underserved Students for STEM Careers: The Role of an Inquiry-based High School Science Sequence Beginning with Physics

    NASA Astrophysics Data System (ADS)

    Bridges, Jon P.

    Improving the STEM readiness of students from historically underserved groups is a moral and economic imperative requiring greater attention and effort than has been shown to date. The current literature suggests a high school science sequence beginning with physics and centered on developing conceptual understanding, using inquiry labs and modeling to allow students to explore new ideas, and addressing and correcting student misconceptions can increase student interest in and preparation for STEM careers. The purpose of this study was to determine if the science college readiness of historically underserved students can be improved by implementing an inquiry-based high school science sequence comprised of coursework in physics, chemistry, and biology for every student. The study used a retrospective cohort observational design to address the primary research question: are there differences between historically underserved students completing a Physics First science sequence and their peers completing a traditional science sequence in 1) science college-readiness test scores, 2) rates of science college-and career-readiness, and 3) interest in STEM? Small positive effects were found for all three outcomes for historically underserved students in the Physics First sequence.

  8. The effect of curriculum changes and instructional techniques on science-reasoning skills among high school students

    NASA Astrophysics Data System (ADS)

    Newman, Joan T.

    Any change, particularly on a large scale like a sequence change in a district with 75,000 students, is difficult. However, with the advent of the new TAKS science test and the new requirements for high school graduation in the state of Texas, educators and students alike are engaged in innovative educational approaches to meet these requirements. This study investigated a different, non-traditional science sequence to investigate relationships among secondary core-science course sequencing, student science-reasoning performance, and classroom pedagogy. The methodology adopted in the study led to a deeper understanding of the successes and challenges faced by teachers in teaching conceptual physics and chemistry to 8 th and 9th grade students. The qualitative analysis suggested a difference in pedagogy employed by middle and high school science teachers and a need for secondary science teachers to enhance their content knowledge and pedagogical skills, as well as change their underlying attitudes and beliefs about the abilities of students. The study examined scores of 495 randomly chosen students following three different matriculation patterns within one large independent school district. The study indicated that students who follow a sequence with 9th grade IPC generally increase their science-reasoning skills as demonstrated on the 10th grade TAKS science test when these scores are compared with those of students who do not have 9th grade IPC in the science sequence.

  9. Three-Year High School Science Core Curriculum: A Framework.

    ERIC Educational Resources Information Center

    Bardeen, Marjorie; Freeman, Wade; Lederman, Leon; Marshall, Stephanie; Thompson, Bruce; Young, M. Jean

    It is time to start a complete re-structuring of the high school science sequence: new content, new instructional materials, new laboratories, new assessment tools, and new teacher preparation. This white paper initiates re-structuring by proposing organization, pedagogy, and content for a new sequence of science courses. The proposal respects the…

  10. Physics First: Impact of course sequencing on the attitudes of female students toward science

    NASA Astrophysics Data System (ADS)

    O'Connor, Linda Miller

    This study was causal-comparative research to determine if there is any relationship between course sequencing and female students' attitudes toward science and their intent to participate in advanced level science courses or pursue science related careers. Physics First promotes the reversal of the traditional sequencing of high school science courses (biology, chemistry and physics) to physics, chemistry and biology or a two or three year integrated European science approach. Physics as a first year high school course of study necessitates changing the course approach to a more conceptual approach and less mathematical and theoretical. Eleventh grade students from two suburban Chicago high schools comprised the sample. The two schools were judged to be extremely similar in their demographic make-up as reported in the 2002 Illinois School Report Card. The notable difference between the schools being the science course sequence recommended for average and above average students. The sample responded to a scanable questionnaire consisting of demographic data and the Test of Science Related Attitudes (TOSRA). TOSRA is a seventy item Likert Scale instrument that addresses attitudes in seven domains; social implications of science, normality of scientists, attitude toward inquiry, adoption of scientific attitudes, enjoyment of science lessons, leisure interest in science, and career interest in science. Values from 1-50 are obtained for each domain with no overall attitude value assigned. The research found that girls in general had significantly more positive attitudes toward science in all seven of the measured domains and the females from the traditional approach were more positive than the females from the Physics First approach. Girls from the traditional approach also reported intent to take high-level (AP) science courses in their senior year at a significantly higher rate than did the girls in Physics First. Neither science approach showed any significance in the reported intention to pursue a science-related career.

  11. Genome Science: A Video Tour of the Washington University Genome Sequencing Center for High School and Undergraduate Students

    PubMed Central

    2005-01-01

    Sequencing of the human genome has ushered in a new era of biology. The technologies developed to facilitate the sequencing of the human genome are now being applied to the sequencing of other genomes. In 2004, a partnership was formed between Washington University School of Medicine Genome Sequencing Center's Outreach Program and Washington University Department of Biology Science Outreach to create a video tour depicting the processes involved in large-scale sequencing. “Sequencing a Genome: Inside the Washington University Genome Sequencing Center” is a tour of the laboratory that follows the steps in the sequencing pipeline, interspersed with animated explanations of the scientific procedures used at the facility. Accompanying interviews with the staff illustrate different entry levels for a career in genome science. This video project serves as an example of how research and academic institutions can provide teachers and students with access and exposure to innovative technologies at the forefront of biomedical research. Initial feedback on the video from undergraduate students, high school teachers, and high school students provides suggestions for use of this video in a classroom setting to supplement present curricula. PMID:16341256

  12. The Importance of Agriculture Science Course Sequencing in High Schools: A View from Collegiate Agriculture Students

    ERIC Educational Resources Information Center

    Wheelus, Robin P.

    2009-01-01

    The objective of this study was to investigate the importance of Agriculture Science course sequencing in high schools, as a preparatory factor for students enrolled in collegiate agriculture classes. With the variety of courses listed in the Texas Essential Knowledge and Skills (TEKS) for Agriculture Science, it has been possible for counselors,…

  13. ELEMENTARY SCIENCE OUTLINE, A GUIDE TO SUGGESTED CURRICULUM PRACTICES IN ELEMENTARY SCHOOL SCIENCE.

    ERIC Educational Resources Information Center

    KARTSOTIS, A. THOMAS; MESSERSCHMIDT, RALPH M.

    THE COMMITTEE ON ELEMENTARY SCHOOL SCIENCE OF THE LEHIGH VALLEY SCHOOL STUDY COUNCIL REPORTS THEIR WORK ON SUGGESTED CURRICULUM FOR GRADES 1-6. THE BELIEF IS THAT SCIENCE IS A MAJOR STUDY AREA IN ELEMENTARY SCHOOL, AND SHOULD BE TAUGHT TO ALL PUPILS IN A PLANNED LEARNING SEQUENCE, WITH DUE CONSIDERATION BEING GIVEN TO THE MATURITY OF THE CHILD.…

  14. Middle Level SS&C Energy Series.

    ERIC Educational Resources Information Center

    Crow, Linda W.; Aldridge, Bill G.

    The project on Scope Sequence and Coordination of Secondary School Science (SS&C) was initiated by the National Science Teachers Association (NSTA) and recommends that all students study science every year and advocates carefully sequenced, well-coordinated instruction in biology, chemistry, earth/space science, and physics. This document…

  15. What Difference Does Art Make in Science? A Comparative Study of Meaning-Making at Elementary School

    ERIC Educational Resources Information Center

    Jakobson, Britt; Wickman, Per-Olof

    2015-01-01

    Here we examine the role art activities play in aesthetic experience and learning of science. We compare recordings of two sequential occurrences in an elementary school class. The purpose of the first sequence was scientific and involved the children in observing leaves with magnifiers. The second sequence had an artistic purpose, where the…

  16. Genome Science: A Video Tour of the Washington University Genome Sequencing Center for High School and Undergraduate Students

    ERIC Educational Resources Information Center

    Flowers, Susan K.; Easter, Carla; Holmes, Andrea; Cohen, Brian; Bednarski, April E.; Mardis, Elaine R.; Wilson, Richard K.; Elgin, Sarah C. R.

    2005-01-01

    Sequencing of the human genome has ushered in a new era of biology. The technologies developed to facilitate the sequencing of the human genome are now being applied to the sequencing of other genomes. In 2004, a partnership was formed between Washington University School of Medicine Genome Sequencing Center's Outreach Program and Washington…

  17. Decision Making Associated with Selecting an Integrated or a Discipline Model for Middle School Science Instruction

    ERIC Educational Resources Information Center

    Brockbank, Brennan R.

    2017-01-01

    Purpose: This study sought to identify, understand, and describe the decision-making processes used by school districts to determine the middle school science course sequence as part of the adoption of the Next Generation Science Standards. Additionally, this study explored and described the expressed comments, feelings, and beliefs of…

  18. Development and Assessment of a Horizontally Integrated Biological Sciences Course Sequence for Pharmacy Education

    PubMed Central

    Wright, Nicholas J.D.; Alston, Gregory L.

    2015-01-01

    Objective. To design and assess a horizontally integrated biological sciences course sequence and to determine its effectiveness in imparting the foundational science knowledge necessary to successfully progress through the pharmacy school curriculum and produce competent pharmacy school graduates. Design. A 2-semester course sequence integrated principles from several basic science disciplines: biochemistry, molecular biology, cellular biology, anatomy, physiology, and pathophysiology. Each is a 5-credit course taught 5 days per week, with 50-minute class periods. Assessment. Achievement of outcomes was determined with course examinations, student lecture, and an annual skills mastery assessment. The North American Pharmacist Licensure Examination (NAPLEX) results were used as an indicator of competency to practice pharmacy. Conclusion. Students achieved course objectives and program level outcomes. The biological sciences integrated course sequence was successful in providing students with foundational basic science knowledge required to progress through the pharmacy program and to pass the NAPLEX. The percentage of the school’s students who passed the NAPLEX was not statistically different from the national percentage. PMID:26430276

  19. A quantitative study of a physics-first pilot program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasero, Spencer Lee; /Northern Illinois U.

    Hundreds of high schools around the United States have inverted the traditional core sequence of high school science courses, putting physics first, followed by chemistry, and then biology. A quarter-century of theory, opinion, and anecdote are available, but the literature lacks empirical evidence of the effects of the program. The current study was designed to investigate the effects of the program on science achievement gain, growth in attitude toward science, and growth in understanding of the nature of scientific knowledge. One hundred eighty-five honor students participated in this quasi-experiment, self-selecting into either the traditional or inverted sequence. Students took themore » Explore test as freshmen, and the Plan test as sophomores. Gain scores were calculated for the composite scores and for the science and mathematics subscale scores. A two-factor analysis of variance (ANOVA) on course sequence and cohort showed significantly greater composite score gains by students taking the inverted sequence. Participants were administered surveys measuring attitude toward science and understanding of the nature of scientific knowledge twice per year. A multilevel growth model, compared across program groups, did not show any significant effect of the inverted sequence on either attitude or understanding of the nature of scientific knowledge. The sole significant parameter showed a decline in student attitude independent of course sequence toward science over the first two years of high school. The results of this study support the theory that moving physics to the front of the science sequence can improve achievement. The importance of the composite gain score on tests vertically aligned with the high-stakes ACT is discussed, and several ideas for extensions of the current study are offered.« less

  20. Science Guide for Secondary Schools.

    ERIC Educational Resources Information Center

    Georgia State Dept. of Education, Atlanta. Office of Instructional Services.

    This six-chapter guide is designed to help Georgia teachers adopt or adapt various options into the local school's science curriculum. Major areas addressed in the chapters are: (1) secondary school curriculum development (focusing on performance objectives, sequencing the curriculum, evaluation, and scientific literacy); (2) teaching methods…

  1. Targeted Courses in Inquiry Science for Future Elementary School Teachers

    ERIC Educational Resources Information Center

    Steinberg, Richard; Wyner, Yael; Borman, Greg; Salame, Issa I.

    2015-01-01

    This study reports on targeted science courses for undergraduate childhood education majors. We describe an inquiry-oriented, three-course sequence spanning physical, life, and environmental science. All three courses are hands-on and are designed to reflect the content and pedagogy most important to future elementary school teachers.

  2. Laboratory Experiences for Disadvantaged Youth in the Middle School.

    ERIC Educational Resources Information Center

    Baillie, John H.

    This guide contains experiments in the fields of Physical Science, Earth Science, and Biological Science designed to be used with any series of texts in a sequence for disadvantaged youth in the middle school. Any standard classroom can be used, with minor modifications and inexpensive equipment and materials. All students could participate,…

  3. Physics First: An Informational Guide for Teachers, School Administrators, Parents, Scientists, and the Public

    ERIC Educational Resources Information Center

    American Association of Physics Teachers (NJ1), 2009

    2009-01-01

    Physics First represents an organizational alternative to the traditional high school science sequence. It calls for a re-sequencing of high school courses so that students study physics before chemistry and biology. The purpose of this pamphlet is to provide: (1) Basic information and rationale for the Physics First curriculum; (2) Strategies for…

  4. Promoting Students' Interest and Motivation towards Science Learning: The Role of Personal Needs and Motivation Orientations

    ERIC Educational Resources Information Center

    Loukomies, Anni; Pnevmatikos, Dimitris; Lavonen, Jari; Spyrtou, Anna; Byman, Reijo; Kariotoglou, Petros; Juuti, Kalle

    2013-01-01

    This study aimed to design a teaching sequence for science education that enabled lower secondary school students to enhance their motivation towards science. Further, it looked to examine the way the designed teaching sequence affected students with different motivational profiles. Industry site visits, with embodied theory-based motivational…

  5. Designing Science Learning in the First Years of Schooling. An Intervention Study with Sequenced Learning Material on the Topic of "Floating and Sinking"

    ERIC Educational Resources Information Center

    Leuchter, Miriam; Saalbach, Henrik; Hardy, Ilonca

    2014-01-01

    Research on learning and instruction of science has shown that learning environments applied in preschool and primary school rarely makes use of structured learning materials in problem-based environments although these are decisive quality features for promoting conceptual change and scientific reasoning within early science learning. We thus…

  6. Doing the lesson or doing science: Argument in high school genetics

    NASA Astrophysics Data System (ADS)

    Jiménez-Aleixandre, M. Pilar; Bugallo Rodríguez, Anxela; Duschl, Richard A.

    2000-11-01

    This article focuses on the capacity of students to develop and assess arguments during a high school genetics instructional sequence. The research focused on the locating distinction in argumentation discourse between doing science vs. doing school or doing the lesson (Bloome, Puro, & Theodorou, 1989). Participants in this classroom case study were high school (9th grade) students in Galicia (Spain). Students were observed, videotaped, and audiotaped while working in groups over six class sessions. Toulmin's argument pattern was used as a tool for the analysis of students' conversation and other frames were used for analyzing other dimensions of students' dialogue; (e.g., epistemic operations, use of analogies, appeal to consistency, and causal relations). Instances of doing science and instances of doing the lesson are identified and discussed as moments when the classroom discourse is dominated either by talking science or displaying the roles of students. The different arguments constructed and co-constructed by students, the elements of the arguments, and the sequence are also discussed, showing a dominance of claims and a lesser frequence of justifications or warrants. Implications for developing effective contexts to promote argumentation and science dialogue in the classroom are discussed.

  7. Social Class and the STEM Career Pipeline an Ethnographic Investigation of Opportunity Structures in a High-Poverty versus Affluent High School

    ERIC Educational Resources Information Center

    Nikischer, Andrea B.

    2013-01-01

    This research investigates science, technology, engineering and mathematics (STEM) high school opportunity structures, including student experiences with math and science course sequences and progress, college guidance and counseling, and STEM extracurricular activities (Weis and Eisenhart, 2009), specifically related to STEM fields and career and…

  8. A Teaching-Learning Sequence for the Special Relativity Theory at High School Level Historically and Epistemologically Contextualized

    ERIC Educational Resources Information Center

    Arriassecq, Irene; Greca, Ileana Maria

    2012-01-01

    This paper discusses some topics that stem from recent contributions made by the History, the Philosophy, and the Didactics of Science. We consider these topics relevant to the introduction of the Special Relativity Theory (SRT) in high school within a contextualized approach. We offer an outline of a teaching-learning sequence dealing with the…

  9. Pacific Elementary Science: A Case Study of Educational Planning for Small Developing Nations.

    ERIC Educational Resources Information Center

    Taylor, Neil; Vlaardingerbroek, Barand

    2000-01-01

    Evaluates Science Education in Pacific Schools (SEPS), a project addressing science-education deficiencies in 12 small Pacific Island countries. The assessment revealed inadequate, outdated, and unattractive science teaching resources in some countries; badly sequenced and duplicative curriculum projects across the region; and lack of teacher…

  10. Principles of Gestalt Psychology and Their Application to Teaching Junior High School Science

    ERIC Educational Resources Information Center

    Blosser, Patricia E.

    1973-01-01

    Discusses insightful learning, trace system,'' and laws of perception and Pragnanz in connection with problem solving and critical thinking in science teaching. Suggests 19 guidelines for sequencing curriculum and identifying activities for use in science classes. (CC)

  11. A pedagogical example of second-order arithmetic sequences applied to the construction of computer passwords by upper elementary grade students

    NASA Astrophysics Data System (ADS)

    Coggins, Porter E.

    2015-04-01

    The purpose of this paper is (1) to present how general education elementary school age students constructed computer passwords using digital root sums and second-order arithmetic sequences, (2) argue that computer password construction can be used as an engaging introduction to generate interest in elementary school students to study mathematics related to computer science, and (3) share additional mathematical ideas accessible to elementary school students that can be used to create computer passwords. This paper serves to fill a current gap in the literature regarding the integration of mathematical content accessible to upper elementary school students and aspects of computer science in general, and computer password construction in particular. In addition, the protocols presented here can serve as a hook to generate further interest in mathematics and computer science. Students learned to create a random-looking computer password by using biometric measurements of their shoe size, height, and age in months and to create a second-order arithmetic sequence, then converted the resulting numbers into characters that become their computer passwords. This password protocol can be used to introduce students to good computer password habits that can serve a foundation for a life-long awareness of data security. A refinement of the password protocol is also presented.

  12. Small Schools Student Learning Objectives, K-8: Reading, Language Arts, Mathematics. K-3; Science, Social Studies.

    ERIC Educational Resources Information Center

    Hartl, David, Ed.; And Others

    Developed by 40 primary teachers and 10 elementary principals from small school districts in Washington, this handbook contains sequenced student learning objectives for grades K-3 in science and social studies and for grades K-8 in reading, language arts, and mathematics. The handbook is designed to assist teachers with the improvement of…

  13. Symposium: The Role of Biological Sciences in the Optometric Curriculum.

    ERIC Educational Resources Information Center

    And Others; Rapp, Jerry

    1980-01-01

    Papers from a symposium probing some of the curricular elements of the program in biological sciences at a school or college of optometry are provided. The overall program sequence in the biological sciences, microbiology, pharmacology, and the curriculum in the biological sciences from a clinical perspective are discussed. (Author/MLW)

  14. UW Team Reaches Out to Grade- and High-School Students.

    ERIC Educational Resources Information Center

    Hood, Leroy

    1994-01-01

    Describes an outreach program designed to expose high school students to cutting-edge science. High school students are provided with hands-on experience in molecular biology (polymerase chain reaction, restriction mapping, chromatography, gel electrophoresis, human DNA sequencing, etc.) and may have an opportunity to participate in the Human…

  15. Marine Science Exploration. Practical Arts. Instructor's Manual. Competency-Based Education.

    ERIC Educational Resources Information Center

    Keeton, Martha; McKinley, Douglas

    This manual provides curriculum materials for implementing a career exploration class in marine science occupations within a Practical Arts Education program for middle/junior high school students. Introductory materials include the program master sequence, a list of marine science occupations, and an overview of the competency-based instructional…

  16. Integration of Research Into Science-outreach (IRIS): A Video and Web-based Approach

    NASA Astrophysics Data System (ADS)

    Clay, P. L.; O'Driscoll, B.

    2013-12-01

    The development of the IRIS (Integration of Research Into Science-outreach) initiative is aimed at using field- and laboratory- based videos and blog entries to enable a sustained outreach relationship between university researchers and local classrooms. IRIS seeks to communicate complex, cutting-edge scientific research in the Earth and Planetary sciences to school-aged children in a simple and interesting manner, in the hope of ameliorating the overall decline of children entering into science and engineering fields in future generations. The primary method of delivery IRIS utilizes is the media of film, ';webinars' and blog entries. Filmed sequences of laboratory work, field work, science demos and mini webinars on current and relevant material in the Earth and Planetary sciences are ';subscribed' to by local schools. Selected sequences are delivered in 20-30 minute film segments with accompanying written material. The level at which the subject matter is currently geared is towards secondary level school-aged children, with the purpose of inspiring and encouraging curiosity, learning and development in scientific research. The video broadcasts are supplemented by a hands-on visit 1-2 times per year by a group of scientists participating in the filmed sequences to the subscribing class, with the objective of engaging and establishing a natural rapport between the class and the scientists that they see in the broadcasts. This transgresses boundaries that traditional 'one off' outreach platforms often aren't able to achieve. The initial results of the IRIS outreach initiative including successes, problems encountered and classroom feedback will be reported.

  17. Small Bodies, Big Concepts: Bringing Visual Analysis into the Middle School Classroom

    NASA Astrophysics Data System (ADS)

    Cobb, W. H.; Lebofsky, L. A.; Ristvey, J. D.; Buxner, S.; Weeks, S.; Zolensky, M. E.

    2012-03-01

    Multi-disciplinary PD model digs into high-end planetary science backed by a pedagogical framework, Designing Effective Science Instruction. NASA activities are sequenced to promote visual analysis of emerging data from Discovery Program missions.

  18. Graded Course of Study, Science (K-12).

    ERIC Educational Resources Information Center

    Euclid City Schools, OH.

    This course of study specifies the science skills and concepts that are to be taught in the various grades of the Euclid (Ohio) City Schools. Included are instructional objectives for the life, physical, and earth sciences for grades K to 6, suggested field trips and planetarium schedules (by elementary grade levels), and scope and sequence charts…

  19. A Teaching Sequence for Learning the Concept of Chemical Equilibrium in Secondary School Education

    ERIC Educational Resources Information Center

    Ghirardi, Marco; Marchetti, Fabio; Pettinari, Claudio; Regis, Alberto; Roletto, Ezio

    2014-01-01

    A novel didactic sequence is proposed for the teaching of chemical equilibrium. This teaching sequence takes into account the historical and epistemological evolution of the concept, the alternative conceptions and learning difficulties highlighted by teaching science and research in education, and the need to focus on both the students'…

  20. Promoting Students' Interest and Motivation Towards Science Learning: the Role of Personal Needs and Motivation Orientations

    NASA Astrophysics Data System (ADS)

    Loukomies, Anni; Pnevmatikos, Dimitris; Lavonen, Jari; Spyrtou, Anna; Byman, Reijo; Kariotoglou, Petros; Juuti, Kalle

    2013-12-01

    This study aimed to design a teaching sequence for science education that enabled lower secondary school students to enhance their motivation towards science. Further, it looked to examine the way the designed teaching sequence affected students with different motivational profiles. Industry site visits, with embodied theory-based motivational features were included as part of the designed teaching sequence. The sequence was implemented in Finland and Greece with 54 participants, 27 from each country. Quantitative data was collected using the Evaluation of Science Inquiry Activities Questionnaire, based on the Intrinsic Motivation Inventory but did not map the expected outcomes. Interviews, however, showed that students with different motivational profiles found aspects within the module that met their psychological needs as explained by Self-Determination Theory. The results offer a perspective to adolescents' psychological needs along with some insights into how students mediate the way they value an activity in the context of science education.

  1. A Concise History of School-Based Smoking Prevention Research: A Pendulum Effect Case Study

    ERIC Educational Resources Information Center

    Sussman, Steve; Black, David S.; Rohrbach, Louise A.

    2010-01-01

    School-based cigarette smoking prevention was initiated shortly after the first Surgeon General's Report in 1964. This article highlights a sequence of events by which school-based tobacco use prevention research developed as a science, and illustrates a pendulum effect, with confidence in tobacco use prevention increasing and decreasing at…

  2. Enhancing Teacher Preparation and Improving Faculty Teaching Skills: Lessons Learned from Implementing ``Science That Matters'' a Standards Based Interdisciplinary Science Course Sequence

    NASA Astrophysics Data System (ADS)

    Potter, Robert; Meisels, Gerry

    2005-06-01

    In a highly collaborative process we developed an introductory science course sequence to improve science literacy especially among future elementary and middle school education majors. The materials and course features were designed using the results of research on teaching and learning to provide a rigorous, relevant and engaging, standard based science experience. More than ten years of combined planning, development, implementation and assessment of this college science course sequence for nonmajors/future teachers has provided significant insights and success in achieving our goal. This paper describes the history and iterative nature of our ongoing improvements, changes in faculty instructional practice, strategies used to overcome student resistance, significant student learning outcomes, support structures for faculty, and the essential and informative role of assessment in improving the outcomes. Our experience with diverse institutions, students and faculty provides the basis for the lessons we have learned and should be of help to others involved in advancing science education.

  3. Energy--Structure--Life, A Learning System for Understanding Science.

    ERIC Educational Resources Information Center

    Bixby, Louis W.; And Others

    Material for the first year of Energy/Structure/Life, a two-year high school program in integrated science, is contained in this learning guide. The program, a sequence of physics, chemistry, and biology, presents the physical science phase during the first year with these 13 chapters: (1) distance/time/velocity; (2) velocity/change/acceleration;…

  4. Elementary Science Curriculum, Grade 5.

    ERIC Educational Resources Information Center

    Stoneham Public Schools, MA.

    This is one of a set of curriculum guides for the Stoneham Elementary School Science Program (see SE 012 153 - SE 012 158). Each guide contains a chart illustrating the scope and sequence of the physical, life, and earth sciences introduced at each grade level. For each of the topics introduced at this grade level an overview of the topic, a list…

  5. Elementary Science Curriculum, Grade 6.

    ERIC Educational Resources Information Center

    Stoneham Public Schools, MA.

    This is one of a set of curriculum guides for the Stoneham Elementary School Science Program (see SE 012 153 - SE 012 158). Each guide contains a chart illustrating the scope and sequence of the physical, life, and earth sciences introduced at each grade level. For each of the topics introduced at this grade level an overview of the topic, a list…

  6. Learning Achievement and Motivation in an Out-of-School Setting--Visiting Amphibians and Reptiles in a Zoo Is More Effective than a Lesson at School

    ERIC Educational Resources Information Center

    Wünschmann, Stephanie; Wüst-Ackermann, Peter; Randler, Christoph; Vollmer, Christian; Itzek-Greulich, Heike

    2017-01-01

    Interventions in out-of-school settings have been shown in previous studies to effectively increase students' science knowledge and motivation, with mixed results on whether they are more effective than teaching at school. In this study, we compared an out-of-school setting in a reptile and amphibian zoo (Landau, Germany) with a sequence of…

  7. Health Science Education in Elementary Schools.

    ERIC Educational Resources Information Center

    Stier, William F., Jr.

    Concern surrounding the status of health education in elementary schools centers around (1) a lack of agreement concerning content, scope, and sequence, (2) its interdisciplinary character, (3) poor teacher preparation, and (4) reliance on incidental teaching and learning situations. Improvement depends upon: (1) defining the areas of concern for…

  8. Elementary Science 1-6.

    ERIC Educational Resources Information Center

    Adams, Yvonne H.; And Others

    In this guide for teaching science in the Duval County Public Schools, Jacksonville, Florida, the following items are included for each grade level from one to six: (1) county-adopted resources; (2) supplementary resources; (3) scope and sequence; (4) primary ideas, secondary ideas, and performance objectives; and (5) correlation with…

  9. Co-op students' access to shared knowledge in science-rich workplaces

    NASA Astrophysics Data System (ADS)

    Munby, Hugh; Taylor, Jennifer; Chin, Peter; Hutchinson, Nancy L.

    2007-01-01

    Wenger's (1998) concepts community of practice, brokering, and transfer explain the challenges co-operative (co-op) education students face in relating the knowledge learned in school with what they learn while participating as members of a workplace. The research for this paper is set within the contexts of the knowledge economy and increased collaboration in the workplace. The paper draws on several qualitative studies of work-based education to examine the similarities and differences between learning in the workplace and learning in school, with a focus on science education and science-rich workplaces. Barriers to connecting school knowledge and workplace knowledge include the nature of science (its purpose, accountability, and substance), the structure of knowledge in each setting, the form content knowledge takes, the sequence that the curriculum is presented in, and the gatekeeping that occurs when knowledge is accessed. The paper addresses implications for interventions in school and the workplace, with attention to the transition from school to work, and concludes by pointing to profound obstacles to connecting school knowledge with workplace knowledge.

  10. Twenty-first Century Space Science in The Urban High School Setting: The NASA/John Dewey High School Educational Outreach Partnership

    NASA Astrophysics Data System (ADS)

    Fried, B.; Levy, M.; Reyes, C.; Austin, S.

    2003-05-01

    A unique and innovative partnership has recently developed between NASA and John Dewey High School, infusing Space Science into the curriculum. This partnership builds on an existing relationship with MUSPIN/NASA and their regional center at the City University of New York based at Medgar Evers College. As an outgrowth of the success and popularity of our Remote Sensing Research Program, sponsored by the New York State Committee for the Advancement of Technology Education (NYSCATE), and the National Science Foundation and stimulated by MUSPIN-based faculty development workshops, our science department has branched out in a new direction - the establishment of a Space Science Academy. John Dewey High School, located in Brooklyn, New York, is an innovative inner city public school with students of a diverse multi-ethnic population and a variety of economic backgrounds. Students were recruited from this broad spectrum, which covers the range of learning styles and academic achievement. This collaboration includes students of high, average, and below average academic levels, emphasizing participation of students with learning disabilities. In this classroom without walls, students apply the strategies and methodologies of problem-based learning in solving complicated tasks. The cooperative learning approach simulates the NASA method of problem solving, as students work in teams, share research and results. Students learn to recognize the complexity of certain tasks as they apply Earth Science, Mathematics, Physics, Technology and Engineering to design solutions. Their path very much follows the NASA model as they design and build various devices. Our Space Science curriculum presently consists of a one-year sequence of elective classes taken in conjunction with Regents-level science classes. This sequence consists of Remote Sensing, Planetology, Mission to Mars (NASA sponsored research program), and Microbiology, where future projects will be astronomy related. This program has been well received by both students and parents and has motivated some students to consider careers in the field of space science and related areas. [This program is partially supported by NASA MU-SPIN NCC5-330 and NASA Space Science/Minority Initiative NAG5-10142

  11. The Effects of Research-Based Curriculum Materials and Curriculum-Based Professional Development on High School Science Achievement: Results of a Cluster-Randomized Trial

    ERIC Educational Resources Information Center

    Taylor, Joseph; Kowalski, Susan; Getty, Stephen; Wilson, Christopher; Carlson, Janet

    2013-01-01

    Effective instructional materials can be valuable interventions to improve student interest and achievement in science (National Research Council [NRC], 2007); yet, analyses indicate that many science instructional materials and curricula are fragmented, lack coherence, and are not carefully articulated through a sequence of grade levels (AAAS,…

  12. Math + Science: A Solution. Introductory Investigations. Book 1.

    ERIC Educational Resources Information Center

    Wiebe, Arthur, Ed.; And Others

    Developed for use primarily with middle school age students, this introductory booklet provides a sample of innovative activities that integrate mathematics skills with science processes. The investigations employ a wide variety of readily available and easily understood materials. The 25 activities are sequenced from simple to complex according…

  13. Students' Progression of Understanding the Matter Concept from Elementary to High School

    ERIC Educational Resources Information Center

    Liu, Xiufeng; Lesniak, Kathleen M.

    2005-01-01

    Using the US national sample from the Third International Mathematics and Science Study (TIMSS) and the Rasch modeling method, this study identified the conceptual progression sequence of various matter concept aspects, and compared students' latent abilities against the sequence. We found that the four matter aspects, i.e. conservation, physical…

  14. Th unnatural order of things: A history of the high school science sequence

    NASA Astrophysics Data System (ADS)

    Robbins, Dennis M.

    Historical studies of US high school science education are rare. This study examines the historical origins of a unique characteristic of the secondary science curriculum, the Biology-Chemistry-Physics (B-C-P) order of courses. Statements from scientists, educators and the media claim that B-C-P has been the traditional curriculum sequence for over a century and can be traced back to the influential educational commission known as the Committee of Ten (CoT) of 1893. This study examines the history of the ordering of high school science subjects over the last 150 years. The reports and primary documents of important national educational commissions, such as the CoT, were searched for their recommendations on secondary science, particularly on course ordering. These recommendations were then compared to national, state and local statistical data on subject offerings and student enrollments to measure the effect of these national commissions on school policy. This study concludes that the Committee of Ten did not create B-P-C. The CoT made six recommendations, five placed Chemistry before Physics (P-C). One recommendation for C-P met with strong disagreement because it was thought an illogical order. Biology as a "uniform" course did not exist at this time and so the CoT made no recommendations for its grade placement. Statistical data shows that B-C-P evolved over many decades. From 1860 up to 1920 most schools used a P-C curriculum believing Physics was a foundational prerequisite of Chemistry. Biology was introduced in the early 1900s and it assumed a position before the physical sciences. Through the 1920s Chemistry and Physics were placed equally likely in 11th or 12 th grades and Biology was in the 10th grade. After World War II, B-C-P became the dominant pattern, exhibited in over 90% of schools. But up to this point in time no educational body or national commission had recommended B-C-P. The Biology-Chemistry-Physics order of courses is a product of many historical accidents and not the result of educational planning for the US high school curriculum.

  15. Biology First: A History of the Grade Placement of High School Biology

    ERIC Educational Resources Information Center

    Sheppard, Keith; Robbins, Dennis M.

    2006-01-01

    This article outlines the history of the high school "general biology" course and details how biology came to be placed first in the traditional order of science subjects (biology-chemistry-physics). The article briefly discusses the implications of the development of this sequence for the present day biology course.

  16. Social Studies Program Guide, 9-12: The Senior High School.

    ERIC Educational Resources Information Center

    Spokane School District 81, WA.

    This is the last of four guides which identify the scope, sequence, goals, and resources for the social studies program of the Spokane public schools. It suggests materials, resources, and activities related to social studies knowledge and skill development for grades 9 through 12. Lessons on all social science disciplines are outlined with…

  17. Education and Labor Force Skills in Postwar Japan. Final Report.

    ERIC Educational Resources Information Center

    Taira, Koji; Levine, Solomon B.

    As early as elementary school, a Japanese child faces a sequence of narrowing choices for an occupational future. Through decisions on further schooling, curriculum, and job entry, earlier choices severely restrict later ones. Usually, men go to four-year universities to study engineering or social sciences. Women generally attend two-year…

  18. Small Schools Student Learning Objectives, K-3: Reading, Language Arts, Mathematics, Science, Social Studies.

    ERIC Educational Resources Information Center

    Hartl, David, Ed.; And Others

    Developed by primary teachers and elementary principals from small districts in Snohomish and Island counties in Washington, this handbook contains sequenced student learning objectives for grades K-3 in the curriculum areas of reading, language arts, mathematics, science, and social studies. Each student learning objective is correlated to the…

  19. A Study of Physics First Curricula in Pennsylvania

    ERIC Educational Resources Information Center

    Dreon, Oliver, Jr.

    2005-01-01

    Physics First has gained momentum across the country. Providing a radically different paradigm to teaching science at the high school level, the Physics First movement inverts the traditional science sequence by teaching physics to ninth grade students. One of the benefits of this change, supporters claim, is that it provides a foundation to teach…

  20. College Bound in Middle School & High School? How Math Course Sequences Matter

    ERIC Educational Resources Information Center

    Finkelstein, Neal; Fong, Anthony; Tiffany-Morales, Juliet; Shields, Patrick; Huang, Min

    2012-01-01

    As California competes for jobs in an increasingly competitive global economy, the state faces a looming shortage of highly educated workers (PPIC, 2012). For a variety of reasons, the need for individuals with degrees in science, technology, engineering, and mathematics (STEM) is of particular concern. Nowhere is this more true than in the…

  1. Accelerated Integrated Science Sequence (AISS): An Introductory Biology, Chemistry, and Physics Course

    ERIC Educational Resources Information Center

    Purvis-Roberts, Kathleen L.; Edwalds-Gilbert, Gretchen; Landsberg, Adam S.; Copp, Newton; Ulsh, Lisa; Drew, David E.

    2009-01-01

    A new interdisciplinary, introductory science course was offered for the first time during the 2007-2008 school year. The purpose of the course is to introduce students to the idea of working at the intersections of biology, chemistry, and physics and to recognize interconnections between the disciplines. Interdisciplinary laboratories are a key…

  2. Mendel Meets CSI: Forensic Genotyping as a Method to Teach Genetics & DNA Science

    ERIC Educational Resources Information Center

    Kurowski, Scotia; Reiss, Rebecca

    2007-01-01

    This article describes a forensic DNA science laboratory exercise for advanced high school and introductory college level biology courses. Students use a commercial genotyping kit and genetic analyzer or gene sequencer to analyze DNA recovered from a fictitious crime scene. DNA profiling and STR genotyping are outlined. DNA extraction, PCR, and…

  3. Implementing and Evaluating a Sequence of Instruction on Gaseous Pressure with Pre-Service Primary School Student Teachers.

    ERIC Educational Resources Information Center

    Taylor, Neil; Lucas, Keith B.

    2000-01-01

    Describes a teaching sequence on gaseous pressure implemented in a group of pre-service primary teachers in Fiji that provides subjects with a strong visual model of particle behavior which they then applied to a series of collaborative science activities for which they attempted to construct explanations. Suggests that this teaching sequence…

  4. Small Schools Mathematics Curriculum, 4-6: Reading, Language Arts, Mathematics, Science, Social Studies. Scope, Objectives, Activities, Resources, Monitoring Procedures.

    ERIC Educational Resources Information Center

    Hartl, David, Ed.; And Others

    The Washington grade 4-6 mathematics curriculum is organized according to the Small Schools Materials format which lists the sequence of learning objectives related to a specific curriculum area, recommends a teaching and mastery grade placement, and identifies activities, monitoring procedures and possible resources used in teaching to the…

  5. Mice and Men Environmental Balance, Parts Three and Four of an Integrated Science Sequence, Student Guide, 1970 Edition.

    ERIC Educational Resources Information Center

    Portland Project Committee, OR.

    This student guide is divided into two sections: "Mice and Men" and "Environmental Balance," and constitutes parts three and four of the first year of the Portland Project, a three-year, integrated high school science curriculum. Part One of the guide deals with topics such as cell, reproduction, embryology, genetics, genetic…

  6. The Role of Cognitive Organizers in the Facilitation of Concept Learning in Elementary School Science.

    ERIC Educational Resources Information Center

    Schulz, Richard William

    Studied was the effect of advance organizers, as defined by Ausubel, on the learning of concepts in science. Sixth grade classes studied two sequences of major concept-centered learning tasks developed by the investigator. The first had 12 lessons about energy forms and transformations; the second had five about photosynthesis and respiration as…

  7. Energy--Structure--Life. A Learning System for Understanding Science, Book Two.

    ERIC Educational Resources Information Center

    Bixby, Louis W.; And Others

    This learning guide contains materials for the second year of Energy/Structure/ Life, a two year high school program in integrated science. The guide is programed to permit the student to proceed on his own at a self-determined pace. The two year course is a sequence of physics, chemistry, and biology with the chemical (continued from the first…

  8. Two-year colleges, Physics, and Teacher Preparation

    NASA Astrophysics Data System (ADS)

    Clay, Keith

    2002-05-01

    In the midst of a teacher shortage no field suffers more than physics. Half of our secondary physics teachers have less than a minor in physics. Meanwhile half of our future teachers start out at two-year colleges with physicists on staff. The opportunity for community colleges to have an impact on K-12 teaching is tremendous. Project TEACH has been honored as an outstanding teacher preparation program. It is a collaboration of colleges and K-12 schools dedicated to the improvement of teacher preparation, especially in science and math. Based at Green River Community College, Project TEACH unites certification institutions, community colleges, and K-12 school districts in the pre-service and in-service training of teachers. Activities of Project TEACH include recruitment and advising of future teachers, field experience for education students, creation of pre-teaching and para-educator degrees, tutoring from elementary school through college, in-service courses for current teachers, and special math and science courses aimed at future teachers. The yearlong interdisciplinary science sequence blends chemistry, physics, geology, and biology in a hands-on inquiry-based environment. The yearlong math sequence covers arithmetic, algebra, geometry, and probability with inquiry-based pedagogy. The programs developed by Project TEACH are being disseminated to colleges across Washington State and beyond.

  9. ITEMS Project: An online sequence for teaching mathematics and astronomy

    NASA Astrophysics Data System (ADS)

    Martínez, Bernat; Pérez, Josep

    2010-10-01

    This work describes an elearning sequence for teaching geometry and astronomy in lower secondary school created inside the ITEMS (Improving Teacher Education in Mathematics and Science) project. It is based on results from the astronomy education research about studentsŠ difficulties in understanding elementary astronomical observations and models. The sequence consists of a set of computer animations embedded in an elearning environment aimed at supporting students in learning about astronomy ideas that require the use of geometrical concepts and visual-spatial reasoning.

  10. The Use of Organising Purposes in Science Instruction as a Scaffolding Mechanism to Support Progressions: A Study of Talk in Two Primary Science Classrooms

    ERIC Educational Resources Information Center

    Johansson, Annie-Maj; Wickman, Per-Olof

    2018-01-01

    Purpose: This study examines how different purposes can support teachers in their work with progressions as a part of a teaching sequences in science in primary school. Design/Method: The study was carried out in two classes working with inquiry and the events that took place in the classroom were filmed. In the study, we have chosen to use the…

  11. Establishing collaborative structures and relationships: Teacher leaders' experiences

    NASA Astrophysics Data System (ADS)

    Canizo, Thea Lynne

    2002-04-01

    The purpose of this study was to explore teacher leaders' experiences as they attempted to establish collaborative structures and relationships resulting in improved science instruction at their schools. Teacher leaders were middle school science facilitators, full-time classroom teachers who acted as liaisons between the science teachers at their schools and a change initiative funded by the National Science Foundation. This was a qualitative study, using interviews to create a case study. The researcher used a three-part interview design developed by Seidman (1991). Six research questions served as a framework for the data analysis. Participants identified the following as factors which contributed to their success: support from the principal, other science teachers, central staff personnel, and the district-wide group of science facilitators; professional development; and the successful completion of a scope and sequence for science instruction. Factors identified as hindering their success were: lack of support or conflict with the principal; resistance to change; time constraints; a district policy which limited meeting time; teacher and administrator turnover; tension between the middle school and junior high school models; and personal doubts. From descriptions of their understanding and exercising of leadership, the researcher concluded that teacher leaders had become empowered. The school culture was seen to have a great effect on teacher leaders. The contrasts between a school with a positive culture and another school in disarray were presented. Structures such as summer institutes and release time during the school day were identified as critical for giving teachers the time needed to establish more collaborative working relationships. Once greater trust and understanding were present, teachers were better able to examine their teaching practices more critically. Participants identified mentoring of new members, a continuing role for science facilitators, and central support as necessary for ensuring the sustainability of the changes made during the years of the grant initiative. The researcher concluded that teacher leaders can be a powerful force for bringing about change in schools when provided with training and time during the school day to work with colleagues.

  12. Chemistry of Living Matter, Energy Capture & Growth, Parts Three & Four of an Integrated Science Sequence, Student Guide, 1971 Edition.

    ERIC Educational Resources Information Center

    Portland Project Committee, OR.

    This student guide is divided into two sections, "Chemistry of Living Matter" and "Energy Capture and Growth," constituting parts three and four of the third year of the Portland Project, a three-year high school integrated science curriculum. The underlying intention of the third year is to study energy and its importance to…

  13. Motion and Energy Chemical Reactions, Parts One & Two of an Integrated Science Sequence, Student Guide, 1971 Edition.

    ERIC Educational Resources Information Center

    Portland Project Committee, OR.

    This student guide is for the second year of the Portland Project, a three-year integrated secondary school science curriculum. "Motion and Energy," the first of the two parts in this volume, begins with the study of motion, going from the quantitative description of motion to a consideration of what causes motion and a discussion of…

  14. Using Ancient Chinese and Greek Astronomical Data: A Training Sequence in Elementary Astronomy for Pre-Service Primary School Teachers

    ERIC Educational Resources Information Center

    de Hosson, Cécile; Décamp, Nicolas

    2014-01-01

    A great amount of research has been carried out world-wide to promote history of science as a powerful science teaching tool. Because the ways of choosing and using historical elements depend on teachers' or researchers' educational purpose, any attempt to support a single model-to-use seems difficult and probably irrelevant. However,…

  15. The Challenges Faced by New Science Teachers in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Alsharari, Salman

    Growing demand for science teachers in the Kingdom of Saudi Arabia, fed by increasing numbers of public school students, is forcing the Saudi government to attract, recruit and retain well-qualified science teachers. Beginning science teachers enter the educational profession with a massive fullfilment and satisfaction in their roles and positions as teachers to educating children in a science classroom. Nevertheless, teachers, over their early years of practice, encounter numerous challenges to provide the most effective science instruction. Therefore, the current study was aimed to identify academic and behavioral classroom challenges faced by science teachers in their first three years of teaching in the Kingdom of Saudi Arabia. In addition, new science teacher gender, school level and years of teaching experience differences in perceptions of the challenges that they encountered at work were analyzed. The present study also investigated various types of support that new science teachers may need to overcome academic and behavioral classroom challenges. In order to gain insights about ways to adequately support novice science teachers, it was important to examine new science teachers' beliefs, ideas and perceptions about effective science teaching. Three survey questionnaires were developed and distributed to teachers of both sexes who have been teaching science subjects, for less than three years, to elementary, middle and high school students in Al Jouf public schools. A total of 49 novice science teachers responded to the survey and 9 of them agreed to participate voluntarily in a face-to-face interview. Different statistical procedures and multiple qualitative methodologies were used to analyze the collected data. Findings suggested that the top three academic challenges faced by new science teachers were: poor quality of teacher preparation programs, absence of appropriate school equipment and facilities and lack of classroom materials and instructional supplies. Moreover, excessive student absenteeism, student readiness to learn science and student lack of interest in science were the three most behavioral challenges encountered by beginning science teachers in the Kingdom of Saudi Arabia. Results also indicated that the perceptions of academic and behavioral classroom challenges may vary according to new science teacher gender, school level and years of teaching experience. More importantly, to become more effective science teachers, novice science teachers are expecting to receive more and better support from their schools. School principals and administrators should provide opportunities for beginning science teachers to attend effective new teacher orientation programs, use complete and well-developed curriculum materials with detailed sequence of teaching procedures, help in dealing with classroom management, and opportunities to participate in successful mentoring programs, coherent in-service training programs and regular professional development programs. Implications for Saudi Arabia government and policy makers, school principals and administrators, students and their parents were discussed and recommendations were made.

  16. Complex Microbial Communities: We’re not in Kansas Anymore

    ScienceCinema

    Fraser-Liggett, Claire M.

    2018-05-08

    Claire Fraser-Liggett, Director of the Institute for Genome Sciences and professor at the University of Maryland School of Medicine, gives the June 2, 2010 keynote at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.

  17. Waves and Particles--The Orbital Atom, Parts One & Two of an Integrated Science Sequence, Student Guide, 1971 Edition.

    ERIC Educational Resources Information Center

    Portland Project Committee, OR.

    The third year of the Portland Project, a three-year secondary school curriculum in integrated science, consists of four parts, the first two of which are covered in this student guide. The reading assignments for part one, "Waves and Particles," are listed in the student guide and are to be read in the Harvard Project Physics textbook.…

  18. The Contribution of Ethnobiology to the Construction of a Dialogue Between Ways of Knowing: A Case Study in a Brazilian Public High School

    NASA Astrophysics Data System (ADS)

    Baptista, Geilsa Costa Santos; El-Hani, Charbel Niño

    2009-04-01

    This paper reports results obtained in pedagogical interventions in a Brazilian public high school which aimed at promoting a dialogue between scientific and traditional knowledge in the context of biology teaching. The interventions were based on the use of a didactic material and teaching sequence elaborated on the grounds of school knowledge about botany, as presented in biology textbooks, and interviews with students who were also farmers, so as to gather data about their ethnobiological knowledge. Our goal was to develop and test resources that can offer support for teachers who wish to build a dialogue between different ways of knowing in multicultural settings. Our results indicate that the use of the didactic material and teaching sequence indeed created possibilities for a dialogue between the students’ ethnobiological knowledge and biology school knowledge. We observed some shortcomings in classroom practice, partly reflecting our very choice of subject matter to develop the teaching sequence. But the interventions also revealed important limitations that we regard as representative of problems that may generally make multicultural science teaching a hard goal to achieve. It was clear that important shortcomings were related to teachers’ difficulties to conduct a dialogue between ways of knowing in a science classroom, and, thus, called attention to the importance of introducing a multicultural dimension into teacher education. We also observed that the fact that students did not show much sensitivity towards dealing with cultural diversity was a factor constraining the success of the interventions. These results highlight the importance of proposing and testing teacher education initiatives aiming at preparing them to teach science in a culturally sensitive manner, and also managing classroom tensions and conflicts so as to make it possible an effective dialogue between different ways of knowing in a multicultural setting.

  19. Teaching and Learning with a NASA-Sponsored GEMS Space Science Curriculum: Using Research and Evaluation Results to Inform and Guide EPO Professionals, an Interactive Panel Session

    NASA Astrophysics Data System (ADS)

    Schultz, G.; Granger, E.; Catz, K. N.; Wierman, T.

    2010-08-01

    The newly-developed Space Science Sequence (SSS) is the product of a collaboration between NASA forums/missions and the Lawrence Hall of Science (LHS) Great Explorations in Math and Science (GEMS) program, based at UC Berkeley. At the ASP 2007 conference, keynote speaker George (Pinky) Nelson made special mention of partners involved and the curriculum produced. From the proceedings: "I want to recognize Jacqueline Barber, Isabel Hawkins, Greg Schultz and their colleagues. . . for setting an example of effective partnershipldots We would do well to become familiar with [the SSS] and promote them to teachers and schoolsldots At the same time, we can learn from teachers and students using [the SSS]\\. . . " (2008; p. 3). It is specifically such professional learning, from practicing teachers and grade school students, which motivated this panel session focusing on research and evaluation studies on teacher and student gains using the Space Science Sequence for Grades 3-5.

  20. Teaching science in museums: The pedagogy and goals of museum educators

    NASA Astrophysics Data System (ADS)

    Tran, Lynn Uyen

    2007-03-01

    Museum educators have a longstanding presence in museums and play a significant role in the institutions' educational agenda. However, research on field trips to science museums has predominantly explored teachers' and students' perspectives with little acknowledgment of the museum educators who develop and implement the educational programs the students experience. This study sought to describe instruction undertaken in, and goals driving, science museums' lessons through observations of museum educators followed by conversations with them immediately afterwards. Findings showed the ways in which educators adapted their preplanned lessons to the students' interests, needs, and understanding by manipulating the sequence and timing. The data revealed that, contrary to depictions in the research literature of teaching in museums as didactic and lecture oriented, there was creativity, complexity, and skills involved in teaching science in museums. Finally, the educators' teaching actions were predominantly influenced by their affective goals to nurture interests in science and learning. Although their lessons were ephemeral experiences, these educators operated from a perspective, which regarded a school field trip to the science museum, not as a one-time event, but as part of a continuum of visiting such institutions well beyond school and childhood. These findings have implications for the pedagogical practices employed by museum educators, and the relationship between teachers and educators during school field trips, which are discussed.

  1. Ecological literacy through critical/place-based pedagogy in the environmental studies program at a small liberal arts college

    NASA Astrophysics Data System (ADS)

    Beeman-Cadwallader, Nicole

    In 2007 Pioneer High School, a public school in Whittier, California changed the sequence of its science courses from the Traditional Biology-Chemistry-Physics (B-C-P) to Biology-Physics-Chemistry (B-P-C), or "Physics Second." The California Standards Tests (CSTs) scores in Physics and Chemistry from 2004-2012 were used to determine if there were any effects of the Physics Second sequencing on student achievement in those courses. The data was also used to determine whether the Physics Second sequence had an effect on performance in Physics and Chemistry based on gender. Independent t tests and chi-square analysis of the data determined an improvement in student performance in Chemistry but not Physics. The 2x2 Factorial ANOVA analysis revealed that in Physics male students performed better on the CSTs than their female peers. In Chemistry, it was noted that male and female students performed equally well. Neither finding was a result ofthe change to the "Physics Second" sequencing.

  2. Reading Strategy Guides to Assist Middle School Educators of Students with Dyslexia

    NASA Astrophysics Data System (ADS)

    Nichols-Yehling, M.; Strohl, C.

    2014-07-01

    According to the 2010 International Dyslexia Association publication, “Knowledge and Practice Standards for Teachers of Reading,” effective instruction is the key to addressing students' reading difficulties associated with dyslexia, a language-based disorder of learning to read and write. “Informed and effective classroom instruction. . . can prevent or at least effectively address and limit the severity of reading and writing problems.” The Interstellar Boundary Explorer (IBEX) mission Education and Public Outreach program recently funded the development of six strategy guides for teachers of middle school students with reading difficulties, especially dyslexia. These guides utilize space science-themed reading materials developed by the Great Exploration in Math and Science (GEMS), including the IBEX-funded GEMS Space Science Sequence (Grades 6-8). The aforementioned reading strategy guides are now available on the IBEX mission website.

  3. Social class and the STEM career pipeline an ethnographic investigation of opportunity structures in a high-poverty versus affluent high school

    NASA Astrophysics Data System (ADS)

    Nikischer, Andrea B.

    This research investigates science, technology, engineering and mathematics (STEM) high school opportunity structures, including student experiences with math and science course sequences and progress, college guidance and counseling, and STEM extracurricular activities (Weis and Eisenhart, 2009), specifically related to STEM fields and career and college choice, for top-performing math and science students. Differences in these structures and processes as they play out in two representative high schools that vary by social class and racial/ethnic makeup are examined. This comparative ethnography includes 36 school and classroom observations, 56 semi-structured individual interviews, and a review of relevant documents, all gathered during the focal students' junior year of high school. Three data chapters are presented, discussing three distinct, yet interconnected themes. In the first, I examine the ways in which chronic attendance problems and classroom distractions negatively impact math and science instruction time and lead to an instruction (time) deficit. In the second, I compare the math and science course and extra-curricular offerings at each school, and discuss the significant differences between sites regarding available STEM exposure and experience, also known as "STEM educational dose" (Wai, et al., 2010). In the third, I investigate available guidance counseling services and STEM and college-linking at each site. Perceived failures in the counseling services available are discussed. This dissertation is grounded in the literature on differences in academic achievement based on school setting, the nature/distribution of knowledge based on social class, and STEM opportunity structures. The concepts of "social capital" and "STEM capital" are engaged throughout. Ultimately, I argue through this dissertation that segregation by race, and most importantly social class, both between and within districts, damages the STEM pipeline for high-performing math and science students located in high-poverty, low-performing schools. I further argue that both federal and state accountability-based school reform efforts are failing to improve outcomes for students with proficiency and interest in STEM learning and STEM fields, and in fact, these reforms are harming top performing students and high school STEM opportunity structures. Recommendations for changes in policy and practice, and for further research, are provided.

  4. A Common Framework for Multiple Sources of Bacterial Annotation

    ScienceCinema

    White, Owen

    2018-05-03

    Owen White, professor of epidemiology and preventive medicine at the University of Maryland School of Medicine and a researcher at the University of Maryland Institute for Genome Sciences, gives the May 29, 2009 keynote speech at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.

  5. Physics Teacher Use of the History of Science

    ERIC Educational Resources Information Center

    Winrich, Charles

    2013-01-01

    The School of Education and the Department of Physics at Boston University offer a sequence of 10 two-credit professional development courses through the Improving the Teaching of Physics (ITOP) project. The ITOP courses combine physics content, readings from the physics education research (PER) literature, and the conceptual history of physics…

  6. Technoscientific French for Teachers.

    ERIC Educational Resources Information Center

    Muller, Brigitte D.

    A two-semester sequence of courses in French and Spanish for science and technology at Eastern Michigan University responds to alumni demands for better linguistic and cultural preparation for increasingly global business and industry. In addition, high schools teacher enrolled in the courses find they answer a need for professional upgrading of…

  7. Change in Teachers' Knowledge of Subject Matter: A 17-Year Longitudinal Study

    ERIC Educational Resources Information Center

    Arzi, Hanna J.; White, Richard T.

    2008-01-01

    This longitudinal study explored change in teachers' knowledge of subjects they teach from preservice training through 17 years of professional experience. It followed secondary school science teachers in Australia, through sequences of individual interviews in which change in content knowledge (mainly energy-related) was probed primarily via…

  8. Involving Minority High School Students in Cutting Edge Research through C-DEBI, an NSF-National Science and Technology Center

    NASA Astrophysics Data System (ADS)

    Singer, E.; Edwards, K. J.

    2012-12-01

    The Center for Dark Energy Biosphere Investigations (C-DEBI) was established as a National Science and Technology Center (NTC) funded by NSF in 2009. Its mission is to explore life beneath the seafloor and make transformative discoveries that advance science, benefit society, and inspire people of all ages and origins. Thanks to the multi-institutional character of C-DEBI, the Center has not only started a collaborative framework for experimental and exploratory research, but also targets education programs at the K-12, undergraduate, graduate and postdoctoral levels involving biogeochemists, microbiologists, geochemists and geologists. An example for this is the introduction of deep biosphere research into the K-12 classroom. In this context, C-DEBI has collaborated with teachers from the Animo Leadership High School in Inglewood, which is ranked 27th within California and has a total minority enrollment of 99%, to adapt Marine Biology classes and introduce latest Deep Biosphere Science discoveries. Three high school students participated in a pilot project over 6 months to gain hands-on experience in an ongoing study in a Marine Microbiology laboratory at University of Southern California. Graduate and postdoctoral students from the Departments of Biological and Earth Sciences supervised theory, praxis and project design, which was aimed at culturing strains of Marinobacter, one of the most ubiquitous marine microbial genera, and preparing extracted DNA for sequencing using the latest Ion Torrent Technology. Students learned about the interdisciplinary global context of the study and gained experience in laboratory procedures, including basic aseptical techniques, molecular biology methods, and cutting-edge sequencing Technology, as well as problem-solving and creative thinking in project preparation and conduction. This hands-on training included discussions about the 'Whys' and 'Hows' in today's research with respect to their specific project, but also from a broader and more interdisciplinary angle. This all-round form of education is usually not readily available in K-12 school curricula, but helps students, especially those with minority background, to envision their secondary education and embrace new career goals. Entering a large network, like C-DEBI has helped our high school students to participate in additional workshops and trainings across the United States, further fueling their enthusiasm in Science and providing new future directions. Communicating Science and Technology has become an essential part in the everyday life of today's researchers. Using infrastructure from networks like C-DEBI has proven extremely valuable and expedient to both, young research mentors and students, who may become the next generation of scientists.

  9. A comparison of students' achievement and attitude as a function of lecture/lab sequencing in a non-science majors introductory biology course

    NASA Astrophysics Data System (ADS)

    Hurst March, Robin Denise

    This investigation compared student achievement and attitudes toward science from three different sequencing approaches used in teaching biology to nonscience students. The three sequencing approaches were the lecture course only, lecture/laboratory courses taken together, and laboratory with previously taken lecture approach. The purposes of this study were to determine if (1) a relationship exists between the Attitude Towards Science in School Assessment (ATSSA) scores (Germann, 1988) and biology achievement, (2) a difference exists among the ATSSA scores and sequencing, (3) a difference exists among the biology achievement scores and sequencing, and (4) the ATSSA is a reliable instrument of science attitude assessment for the undergraduate students in an introductory biology nonmajors laboratory and lecture courses at a research I institution during the fall semester 1996. Fifty-four students comprised the lecture only group, 90 students comprised the lecture and laboratory taken together approach, and 23 students comprised the laboratory only approach. Research questions addressed were (1) What are the differences in student biology achievement as a function of the three different methods of instruction? (2) What are the differences in student attitude towards science as a function of the three different methods of instruction? (3) What is the relationship between post-attitude (ATSSA) and biology achievement for each of the three methods of instruction? An analysis of variance utilized the mean posttest scores on the ATSSA and mean achievement scores as the dependent variables. The independent variables were the three different sequences of enrollment in introductory biology. At the.05 level of significance, it was found that no significant difference existed between the ATTS and laboratory/lecture sequence. At the.05 level of significance, it was found that no significant difference existed between achievement and laboratory/lecture sequence. A Pearson product moment correlation was used to see if a relationship existed between posttest ATSSA scores and achievement totals in each sequence. A significant relationship was noted between the ATSSA and achievement in each sequence that involved a laboratory component.

  10. Guiding students towards sensemaking: teacher questions focused on integrating scientific practices with science content

    NASA Astrophysics Data System (ADS)

    Benedict-Chambers, Amanda; Kademian, Sylvie M.; Davis, Elizabeth A.; Palincsar, Annemarie Sullivan

    2017-10-01

    Science education reforms articulate a vision of ambitious science teaching where teachers engage students in sensemaking discussions and emphasise the integration of scientific practices with science content. Learning to teach in this way is complex, and there are few examples of sensemaking discussions in schools where textbook lessons and teacher-directed discussions are the norm. The purpose of this study was to characterise the questioning practices of an experienced teacher who taught a curricular unit enhanced with educative features that emphasised students' engagement in scientific practices integrated with science content. Analyses indicated the teacher asked four types of questions: explication questions, explanation questions, science concept questions, and scientific practice questions, and she used three questioning patterns including: (1) focusing students on scientific practices, which involved a sequence of questions to turn students back to the scientific practice; (2) supporting students in naming observed phenomena, which involved a sequence of questions to help students use scientific language; and (3) guiding students in sensemaking, which involved a sequence of questions to help students learn about scientific practices, describe evidence, and develop explanations. Although many of the discussions in this study were not yet student-centred, they provide an image of a teacher asking specific questions that move students towards reform-oriented instruction. Implications for classroom practice are discussed and recommendations for future research are provided.

  11. Systemic Reform of Astronomy Curriculum in the Montgomery County Public Schools

    NASA Astrophysics Data System (ADS)

    Szesze, M.; Kahl, S.; Janney, D.

    2002-09-01

    In the Montgomery County Public Schools (MCPS), the science curriculum is undergoing a comprehensive systemic review in an effort to revise the system's curriculum and the entire instructional program. As a part of this overall effort, MCPS has developed a framework for the astronomy curriculum that includes a rationale, essential indicators, and blueprints. The school system is partnering with the NASA Goddard Space Flight Center to involve professional astronomers/space scientists as content advisors to ensure science content accuracy and currency. Through this partnership, many NASA developed educational materials have been made available to the school system to assist with the instructional sequences. This new policy has resulted in the development of a clear and coherent astronomy curriculum for grades K-8. The blueprint is written in the form of a set of indicators which identify the exact skills and knowledge that need to be taught at each grade level so that students will meet and exceed state, national, and international standards. Each blueprint also includes the enduring understandings and essential questions that students should focus on for that specific unit of study, a proposed instructional sequence, and assessment and differentiation ideas. Using these blueprints, teachers will create curriculum guides that include model lessons, model assignments, concept maps, resources, assessment samples, and strategies for differentiating the curriculum to meet the needs of a wide range of learners. In addition, a 45 hour certification training course is being developed to train in service teachers in a wide range of space science disciplines from seasons to cosmology. The course is being developed and will be taught by a team composed of space scientists and master educational trainers. Pilot testing of the curriculum and the training course will begin in Fall 2002.

  12. Distance education through the Internet: the GNA-VSNS biocomputing course.

    PubMed

    de la Vega, F M; Giegerich, R; Fuellen, G

    1996-01-01

    A prototype course on biocomputing was delivered via international computer networks in early summer 1995. The course lasted 11 weeks, and was offered free of charge. It was organized by the BioComputing Division of the Virtual School of Natural Sciences, which is a member school of the Globewide Network Academy. It brought together 34 students and 7 instructors from all over the world, and covered the basics of sequence analysis. Five authors from Germany and USA prepared a hypertext book which was discussed in weekly study sessions that took place in a virtual classroom at the BioMOO electronic conferencing system. The course aimed at students with backgrounds in molecular biology, biomedicine or computer science, complementing and extending their skills with an interdisciplinary curriculum. Special emphasis was placed on the use of Internet resources, and the development of new teaching tools. The hypertext book includes direct links to sequence analysis and databank search services on the Internet. A tool for the interactive visualization of unit-cost pairwise sequence alignment was developed for the course. All course material will stay accessible at the World Wide Web address (Uniform Resource Locator) http://+www.techfak.uni-bielefeld.de/bcd/welcome .html. This paper describes the aims and organization of the course, and gives a preliminary account of this novel experience in distance education.

  13. Correlation between MCAT biology content specifications and topic scope and sequence of general education college biology textbooks.

    PubMed

    Rissing, Steven W

    2013-01-01

    Most American colleges and universities offer gateway biology courses to meet the needs of three undergraduate audiences: biology and related science majors, many of whom will become biomedical researchers; premedical students meeting medical school requirements and preparing for the Medical College Admissions Test (MCAT); and students completing general education (GE) graduation requirements. Biology textbooks for these three audiences present a topic scope and sequence that correlates with the topic scope and importance ratings of the biology content specifications for the MCAT regardless of the intended audience. Texts for "nonmajors," GE courses appear derived directly from their publisher's majors text. Topic scope and sequence of GE texts reflect those of "their" majors text and, indirectly, the MCAT. MCAT term density of GE texts equals or exceeds that of their corresponding majors text. Most American universities require a GE curriculum to promote a core level of academic understanding among their graduates. This includes civic scientific literacy, recognized as an essential competence for the development of public policies in an increasingly scientific and technological world. Deriving GE biology and related science texts from majors texts designed to meet very different learning objectives may defeat the scientific literacy goals of most schools' GE curricula.

  14. Newton in the Big Apple: Issues of equity in physics access and enrollment in New York City public high schools

    NASA Astrophysics Data System (ADS)

    Kelly, Angela Marian

    High school physics is a gateway course for post-secondary study in science, medicine, and engineering, as well as an essential component in the formation of students' scientific literacy. However, physics is widely considered appropriate only for an academic elite. The existence of policies that restrict science opportunities for secondary students results in diminished outcomes in terms of scientific proficiency. Although the national trend in physics enrollment has shown an increase in recent years, the rate of participation is much lower for students in urban schools. This study examines the availability of physics in New York City, and whether access is related to organizational and school-level variables. The statistical distribution of physics students throughout the city is compiled and analyzed. High schools that successfully offer physics are compared with those that do not. Other factors are explored to determine their relationship to physics access, such as the presence of science magnet schools, the availability of Advanced Placement Physics and Non-Regents Physics, the science curricular sequence, and teacher certification. The results show that physics is not widely available to students in New York City, with 55% of high schools simply not offering the subject. Only 27% of schools with fewer than 600 students offer physics. The science magnet schools enroll a significant proportion of physics students when compared with larger, economically depressed neighborhood schools. The causes of these disparities are complex, and the implications serious for those students who do not have equal access to physics. The implications of these findings are important. By highlighting descriptive variables, as well as statistical evidence of systemic discrimination and inequities, urban districts may formulate effective models for the promotion of physics study. School policies and structures need to target better rates of physics participation among all students, regardless of socioeconomic status or race. The evidence presented here is a starting point for identifying the extent of inequities in order to develop long-term reform efforts to improve physics access for all.

  15. Sequencing Language and Activities in Teaching High School Chemistry. A Report to the National Science Foundation.

    ERIC Educational Resources Information Center

    Abraham, Michael R.; Renner, John W.

    A learning cycle consists of three phases: exploration; conceptual invention; and expansion of an idea. These phases parallel Piaget's functioning model of assimilation, disequilibrium and accomodation, and organization respectively. The learning cycle perceives students as actors rather than reactors to the environment. Inherent in that…

  16. Investigating the Effectiveness of Computer Simulations for Chemistry Learning

    ERIC Educational Resources Information Center

    Plass, Jan L.; Milne, Catherine; Homer, Bruce D.; Schwartz, Ruth N.; Hayward, Elizabeth O.; Jordan, Trace; Verkuilen, Jay; Ng, Florrie; Wang, Yan; Barrientos, Juan

    2012-01-01

    Are well-designed computer simulations an effective tool to support student understanding of complex concepts in chemistry when integrated into high school science classrooms? We investigated scaling up the use of a sequence of simulations of kinetic molecular theory and associated topics of diffusion, gas laws, and phase change, which we designed…

  17. Designing Science Learning in the First Years of Schooling. An intervention study with sequenced learning material on the topic of `floating and sinking'

    NASA Astrophysics Data System (ADS)

    Leuchter, Miriam; Saalbach, Henrik; Hardy, Ilonca

    2014-07-01

    Research on learning and instruction of science has shown that learning environments applied in preschool and primary school rarely makes use of structured learning materials in problem-based environments although these are decisive quality features for promoting conceptual change and scientific reasoning within early science learning. We thus developed and implemented a science learning environment for children in the first years of schooling which contains structured learning materials with the goal of supporting conceptual change concerning the understanding of the floating and sinking of objects and fostering students' scientific reasoning skills. In the present implementation study, we aim to provide a best-practice example of early science learning. The study was conducted with a sample of 15 classes of the first years of schooling and a total of 244 children. Tests were constructed to measure children's conceptual understanding before and after the implementation. Our results reveal a decrease in children's misconceptions from pretest to posttest. After the curriculum, the children were able to produce significantly more correct predictions about the sinking or floating of objects than before the curriculum and also relative to a control group. Moreover, due to the intervention, the explanations given for their predictions implied a more elaborated concept of material kinds. All in all, a well-structured curriculum promoting comparison and scientific reasoning by means of inquiry learning was shown to support children's conceptual change.

  18. Food Sauces to Understand Volcanoes: a Learning Sequence in Middle School

    NASA Astrophysics Data System (ADS)

    Pieraccioni, Fabio; Bonaccorsi, Elena; Gioncada, Anna

    2017-04-01

    Some volcanic processes occur at pressures and temperatures very different from daily experience. Such extreme conditions, unreproducible in the classroom, can lead children to build concepts about volcanic phenomena very different from the reality (Greca & Moreira, 2000; Dove, 1998). The didactic goals of this learning sequence concern the relationships between the viscosity of magmas and types of erupted materials and their consequences on volcano shapes, to favour pupils' comprehension of what a volcano is. Viscosity and its temperature dependence can be easily experimented in class with analogue materials at room temperature (Baker et al., 2004). Our research aims are to observe the development of the thought of pupils of middle schools on volcanic phenomena; this allowed to put in evidence the benefits of this approach and to give suggestions to avoid possible critical points. We have experimented a hands-on learning sequence about volcanoes in four third classes of Tuscan middle schools, for an amount of 95 pupils, 48 females and 47 males. Sharing the principles of constructivism, we think useful that pupils start from their own direct experience for understanding natural phenomena not directly observable. Therefore, we start from the experiences and knowledge of children to build a inquiry-based itinerary (Minner et al., 2010; Pieraccioni et al., 2016). The learning sequence begins with a practical activity in which we employ common and well-known materials to introduce the concept of viscosity in order to relate various kinds of magma to the shape of volcanoes. One of the benefits of this approach is to overcome the problems of introducing complex concepts such as acidity of magmas or silica content, far from the pupils' experience and knowledge. These concepts are often used in Italian middle school textbooks to describe and classify volcanoes. The result is a list of names to learn by heart. On the contrary, by using oil, ketchup, peanut butter or honey, pupils become familiar with concepts such as viscosity, behavior of fluids, magma, lava, slope of flanks and they can begin to comprehend why volcanoes have got differently named forms. REFERENCES Baker D.R., Dalpè C. & Porier G. (2004) - The Viscosities of Food as Analogs for Silicate Melts. Journal of Geoscience Education, 52, 363-367. Dove J. (1998) - Students alternative conceptions in Earth science: a review of research and implications for teaching and learning. Research Papers in Education, 13(2), 183-201. Greca I.M. & Moreira M.A. (2000) - Mental models, conceptual models, and modelling. International Journal of Science Education, 22(1), 1-11. Minner D. D., Levy A. J., & Century J. (2010) - Inquiry-based science instruction—what it is and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47(4), 474-496. Pieraccioni F., Finato B., Bonaccorsi E. & Gioncada A. (2016) - The soil in the classroom: a middle school case study. Educational Journal of the University of Patras UNESCO, 3(2), 149 -157.

  19. Improving Early Career Science Teachers' Ability to Teach Space Science

    NASA Astrophysics Data System (ADS)

    Schultz, G. R.; Slater, T. F.; Wierman, T.; Erickson, J. G.; Mendez, B. J.

    2012-12-01

    The GEMS Space Science Sequence is a high quality, hands-on curriculum for elementary and middle schools, created by a national team of astronomers and science educators with NASA funding and support. The standards-aligned curriculum includes 24 class sessions for upper elementary grades targeting the scale and nature of Earth's, shape, motion and gravity, and 36 class sessions for middle school grades focusing on the interactions between our Sun and Earth and the nature of the solar system and beyond. These materials feature extensive teacher support materials which results in pre-test to post-test content gains for students averaging 22%. Despite the materials being highly successful, there has been a less than desired uptake by teachers in using these materials, largely due to a lack of professional development training. Responding to the need to improve the quantity and quality of space science education, a collaborative of space scientists and science educators - from the University of California, Berkeley's Lawrence Hall of Science (LHS) and Center for Science Education at the Space Sciences Laboratory (CSE@SSL), the Astronomical Society of the Pacific (ASP), the University of Wyoming, and the CAPER Center for Astronomy & Physics Education - experimented with a unique professional development model focused on helping master teachers work closely with pre-service teachers during their student teaching internship field experience. Research on the exodus of young teachers from the teaching profession clearly demonstrates that early career teachers often leave teaching because of a lack of mentoring support and classroom ready curriculum materials. The Advancing Mentor and Novice Teachers in Space Science (AMANTISS) team first identified master teachers who supervise novice, student teachers in middle school, and trained these master teachers to use the GEMS Space Science Sequence for Grades 6-8. Then, these master teachers were mentored in how to coach their assigned interning student teachers in using the GEMS Space Science Sequence. As such, the project targeted the high leverage point of early career teachers who may well go on to use the GEMS materials for the next 30 years of their teaching careers, impacting potentially many hundreds of students. External evaluation showed that the novice teachers mentored by the master teachers felt knowledgeable about the topics covered in the four units after teaching the Space Science units. However, they seemed relatively less confident about the solar system, and objects beyond the solar system, which are covered in Units 3 and 4, respectively. This may be due to the fact that not all of them taught these units. Overall, mentees felt strongly on the post-survey taken at the end of the year that they have acquired good strategies for teaching the various topics, suggesting that the support they received while teaching and working with a mentor was of real benefit to them. The main challenges reported by the novice teachers were not having time to meet or talk with their mentors, and having different approaches to teaching from their mentors. In general, however, the novice teachers had very positive experiences with their mentor teachers and the curriculum materials provided.

  20. The Classification And Functional Characterization Of RYR1 Sequence Variants Associated With Malignant Hyperthermia Susceptibility Identified Through Exome Sequencing

    DTIC Science & Technology

    2014-09-15

    2014 I IJr:’;J’. UNIFORMED SERVICES UNIVERSITY i,:1T--:npi 6f tl.w Hmlth Sci<!m1rs 𔃻~ Daniel K. Inouye GSN PhD Program in Nursing Science...made to the satisfaction of the Dissertation Committee and at that time the oral defense will be rescheduled : __ FAIL: Neither the oral performance...Apj;;~~isapprove / ~raduate School of Nursing :~ ~/z;;:._·d~   iii ACKNOWLEDGMENTS The completion of this doctoral dissertation would

  1. Correlation between MCAT Biology Content Specifications and Topic Scope and Sequence of General Education College Biology Textbooks

    ERIC Educational Resources Information Center

    Rissing, Steven W.

    2013-01-01

    Most American colleges and universities offer gateway biology courses to meet the needs of three undergraduate audiences: biology and related science majors, many of whom will become biomedical researchers; premedical students meeting medical school requirements and preparing for the Medical College Admissions Test (MCAT); and students completing…

  2. Explaining Newton's Laws of Motion: Using Student Reasoning through Representations to Develop Conceptual Understanding

    ERIC Educational Resources Information Center

    Waldrip, Bruce; Prain, Vaughan; Sellings, Peter

    2013-01-01

    The development of students' reasoning and argumentation skills in school science is currently attracting strong research interest. In this paper we report on a study where we aimed to investigate student learning on the topic of motion when students, guided by their teacher, responded to a sequence of representational challenges in which their…

  3. Clowne Science Scheme--A Method Based Course for the Early Years in Secondary Schools

    ERIC Educational Resources Information Center

    Burden, I. J.; And Others

    1975-01-01

    Describes a two-year course sequence that is team taught and theme centered. Themes include the earth, the senses, time, and rate of change. The teaching method is the discovery approach and the role of the teacher is outlined. Explains student assessment and outlines problems and observations related to the program. (GS)

  4. Physics First: Impact on SAT Math Scores

    NASA Astrophysics Data System (ADS)

    Bouma, Craig E.

    Improving science, technology, engineering, and mathematics (STEM) education has become a national priority and the call to modernize secondary science has been heard. A Physics First (PF) program with the curriculum sequence of physics, chemistry, and biology (PCB) driven by inquiry- and project-based learning offers a viable alternative to the traditional curricular sequence (BCP) and methods of teaching, but requires more empirical evidence. This study determined impact of a PF program (PF-PCB) on math achievement (SAT math scores) after the first two cohorts of students completed the PF-PCB program at Matteo Ricci High School (MRHS) and provided more quantitative data to inform the PF debate and advance secondary science education. Statistical analysis (ANCOVA) determined the influence of covariates and revealed that PF-PCB program had a significant (p < .05) impact on SAT math scores in the second cohort at MRHS. Statistically adjusted, the SAT math means for PF students were 21.4 points higher than their non-PF counterparts when controlling for prior math achievement (HSTP math), socioeconomic status (SES), and ethnicity/race.

  5. Representations as Mediation between Purposes as Junior Secondary Science Students Learn about the Human Body

    ERIC Educational Resources Information Center

    Olander, Clas; Wickman, Per-Olof; Tytler, Russell; Ingerman, Åke

    2018-01-01

    The aim of this article is to investigate students' meaning-making processes of multiple representations during a teaching sequence about the human body in lower secondary school. Two main influences are brought together to accomplish the analysis: on the one hand, theories on signs and representations as scaffoldings for learning and, on the…

  6. Using History and Philosophy of Science to Promote Students' Argumentation

    ERIC Educational Resources Information Center

    Archila, Pablo Antonio

    2015-01-01

    This article describes the effect of a teaching-learning sequence (TLS) based on the discovery of oxygen in promoting students' argumentation. It examines the written and oral arguments produced by 63 high school students (24 females and 39 males, 16-17 years old) in France during a complete TLS supervised by the same teacher. The data used in…

  7. The effects of a technology-enhanced, flexible choice science program on achievement, self-efficacy and the scale learner progression mechanism in science

    NASA Astrophysics Data System (ADS)

    Grace, Lori

    A mixed methods comparative case study of two DRG I urban high schools was used to determine the effectiveness of the Flexible Choice Science Program (FCSP) at producing equitable learning outcomes in students. FCSP recognized both 'among and within learner' differences, while allowing the teacher the semblance of a single lesson. Program sequencing, a differentiated technology platform and allowances for student control and creativity, allowed learners to progress from novice to master at their own pace. Results showed that holistic participation in FCSP by School A students led to significant positive learning effects, particularly for low ability learners. Results of this study challenge current educational grouping techniques that have resulted in inequity, by demonstrating that when students group themselves, their success increases by more than 100%. Results of this research also challenge common notion that cognition most defines student potential by demonstrating that student affect most influences learning.

  8. Exploring the role of curriculum materials to support teachers in science education reform

    NASA Astrophysics Data System (ADS)

    Schneider, Rebecca M.

    2001-07-01

    For curriculum materials to succeed in promoting large-scale science education reform, teacher learning must be supported. Materials were designed to reflect desired reforms and to be educative by including detailed lesson descriptions that addressed necessary content, pedagogy, and pedagogical content knowledge for teachers. The goal of this research was to describe how such materials contributed to classroom practices. As part of an urban systemic reform effort, four middle school teachers' initial enactment of an inquiry-based science unit on force and motion were videotaped. Enactments focused on five lesson sequences containing experiences with phenomena, investigation, technology use, or artifact development. Each sequence spanned three to five days across the 10-week unit. For each lesson sequence, intended and actual enactment were compared using ratings of (1) accuracy and completeness of science ideas presented, (2) amount student learning opportunities, similarity of learning opportunities with those intended, and quality of adaptations , and (3) amount of instructional supports offered, appropriateness of instructional supports and source of ideas for instructional supports. Ratings indicated two teachers' enactments were consistent with intentions and two teachers' enactments were not. The first two were in school contexts supportive of the reform. They purposefully used the materials to guide enactment, which tended to be consistent with standards-based reform. They provided students opportunities to use technology tools, design investigations, and discuss ideas. However, enactment ratings were less reflective of curriculum intent when challenges were greatest, such as when teachers attempted to present challenging science ideas, respond to students' ideas, structure investigations, guide small-group discussions, or make adaptations. Moreover, enactment ratings were less consistent in parts of lessons where materials did not include lesson specific educative supports for teachers. Overall, findings indicate curriculum materials that include detailed descriptions of lessons accompanied by educative features can help teachers with enactment. Therefore, design principles to improve materials to support teachers in reform are suggested. However, results also demonstrate materials alone are not sufficient to create intended enactments; reform efforts must include professional development in content and pedagogy and efforts to create systemic change in context and policy to support teacher learning and classroom enactment.

  9. Upper School Maths: Lesson Plans and Activities for Ages 9-11 Years. Series of Caribbean Volunteer Publications, No. 9.

    ERIC Educational Resources Information Center

    Voluntary Services Overseas, Castries (St. Lucia).

    This collection of lesson plans and activities for students aged 9-11 years is based on a science curriculum developed by a group of Caribbean nations. The activities pertain to topics such as place value, prime and composite numbers, the sieve of Eratosthenes, square numbers, factors and multiples, sequences, averages, geometry, symmetry,…

  10. ``But you're just a physics booster!'' -- Why political advocacy for high school physics is crucial

    NASA Astrophysics Data System (ADS)

    Cottle, Paul

    2010-10-01

    There is no shortage of research-based arguments supporting the importance of high school physics. A study from the University of South Florida demonstrates the importance of high school physics for the preparation of future STEM professionals [1]. A white paper from the National Academy of Education [2] states that the usual biology-chemistry-physics sequence in high school is ``out of order'' and points out that students in 9th grade biology classes are taught concepts that make no sense to them because they ``know little about atoms and next to nothing about the chemistry and physics that can help them make sense of these structures and their functions.'' Nevertheless, in Florida the high school physics-taking rate has been declining for several years and a large fraction of the International Baccalaureate programs do not even offer IB Physics. I will argue that physicists must collectively advocate in the political arena for the expansion and improvement of high school physics. I will also provide a few examples of collective actions by scientists that may have influenced the formulation of the new high school graduation requirements in Florida. Finally, I will argue that we must lobby our colleagues in the Colleges of Education to devote their scarce resources to recruiting and training teachers in the physical sciences. [4pt] [1] W. Tyson, R. Lee, K.M. Borman, and M.A. Hanson, {Journal of Education for Students Placed at Risk} 12, 243 (2007). [0pt] [2] National Academy of Education White Paper ``Science and Mathematics Education,'' (http://www.naeducation.org/Science/and/Mathematics/Education/White/Paper.pdf).

  11. Assessing Climate Misconceptions of Middle School Learners and Teachers

    NASA Astrophysics Data System (ADS)

    Sahagian, D. L.; Anastasio, D. J.; Bodzin, A.; Cirucci, L.; Bressler, D.; Dempsey, C.; Peffer, T.

    2012-12-01

    Middle School students and their teachers are among the many populations in the U.S. with misconceptions regarding the science or even reality of climate change. Teaching climate change science in schools is of paramount importance since all school-age children will eventually assume responsibility for the management and policy-making decisions of our planet. The recently published Framework for K-12 Science Education (National Research Council, 2012) emphasizes the importance of students understanding global climate change and its impacts on society. A preliminary assessment of over a thousand urban middles school students found the following from pretests prior to a climate literacy curriculum: - Do not understand that climate occurs on a time scale of decades (most think it is weeks or months) -Do not know the main atmospheric contributors to global warming -Do not understand the role of greenhouse gases as major contributors to increasing Earth's surface temperature -Do not understand the role of water vapor to trap heat and add to the greenhouse effect -Cannot identify some of the human activities that increase the amount of CO2 -Cannot identify sources of carbon emissions produced by US citizens -Cannot describe human activities that are causing the long-term increase of carbon -dioxide levels over the last 100 years -Cannot describe carbon reduction strategies that are feasible for lowering the levels of carbon dioxide in the atmosphere To address the lack of a well-designed middle school science climate change curriculum that can be used to help teachers promote the teaching and learning of important climate change concepts, we developed a 20-day Environmental Literacy and Inquiry (ELI): Climate Change curriculum in partnership with a local school district. Comprehension increased significantly from pre- to post-test after enactment of the ELI curriculum in the classrooms. This work is part of an ongoing systemic curriculum reform initiative to promote (1) environmental literacy and inquiry and (2) foster the development of geospatial thinking and reasoning using geospatial technologies as an essential component of the middle school science curriculum. The curriculum is designed to align instructional materials and assessments with learning goals. The following frameworks were used to provide guidelines for the climate change science content in addition to the science inquiry upon which schools must focus: Climate Literacy: The Essential Principles of Climate Sciences (U.S. Global Change Research Program, 2009) and the AAAS Project 2061 Communicating and Learning About Global Climate Change (AAAS, 2007). The curriculum is a coherent sequence of learning activities that include climate change investigations with Google Earth, Web-based interactivities that include an online carbon emissions calculator and a Web-based geologic time-line, and inquiry-based ("hands-on") laboratories. The climate change science topics include the atmosphere, Earth system energy balance, weather, greenhouse gases, paleoclimatology, and "humans and climate". It is hoped that with a solid foundation of climate science in the classroom, middle school learners will be in a position to evaluate new scientific discoveries, emerging data sets, and reasonably assess information and misinformation by which they are surrounded on a daily basis.

  12. OEI, GTTP and Adventurers of the Universe: training teachers and disseminating science in the South of Brazil

    NASA Astrophysics Data System (ADS)

    Pavani, D. B.; Saraiva, M. F. O.; Dottori, H.

    2014-10-01

    Itinerant Educative Observatory (OEI) is a permanent program of our Department of Astronomy since 1999. It aims to lecture Astronomy to teachers of fundamental and middle levels, using attractive resources such as telescopic observations, audiovisuals, and multimedia. The training courses are requested by different cities of Rio Grande do Sul and nearby states and are organized by a local committee of the requesting city. In 2014, with federal funds, we are uniting efforts with other extension project: the Galileo Teacher Training Program (GTTP). This is an international program developed to train teachers in the effective use of astronomy education tools and resources in their science classes. The program, that is a legacy of IYA2009, aims to create a worldwide network of Galileo Ambassadors the promoters of the training workshops and Galileo Teachers the teachers who bring the learned methodologies into classroom. To supplement these activities, we initiated a new program in 2012 called Adventurers of the Universe. University professors, undergraduates students and teachers of high-school and elementary school of social vulnerable communities develop transdiciplinary didactic sequences where Astronomy is the central focus to motivate different processes of teaching and learning, considering different learning levels, designed for direct use in the classroom. The objective of the program is to contribute to the didactic transposition through the discussion about how to relate astronomy with other science and non-science disciplines. In 2012 we collaborated with 20 teachers of one school, and 900 students. In 2013, the collaborations were expanded to include teachers and students of 3 other schools.

  13. Using the Tower of Hanoi puzzle to infuse your mathematics classroom with computer science concepts

    NASA Astrophysics Data System (ADS)

    Marzocchi, Alison S.

    2016-07-01

    This article suggests that logic puzzles, such as the well-known Tower of Hanoi puzzle, can be used to introduce computer science concepts to mathematics students of all ages. Mathematics teachers introduce their students to computer science concepts that are enacted spontaneously and subconsciously throughout the solution to the Tower of Hanoi puzzle. These concepts include, but are not limited to, conditionals, iteration, and recursion. Lessons, such as the one proposed in this article, are easily implementable in mathematics classrooms and extracurricular programmes as they are good candidates for 'drop in' lessons that do not need to fit into any particular place in the typical curriculum sequence. As an example for readers, the author describes how she used the puzzle in her own Number Sense and Logic course during the federally funded Upward Bound Math/Science summer programme for college-intending low-income high school students. The article explains each computer science term with real-life and mathematical examples, applies each term to the Tower of Hanoi puzzle solution, and describes how students connected the terms to their own solutions of the puzzle. It is timely and important to expose mathematics students to computer science concepts. Given the rate at which technology is currently advancing, and our increased dependence on technology in our daily lives, it has become more important than ever for children to be exposed to computer science. Yet, despite the importance of exposing today's children to computer science, many children are not given adequate opportunity to learn computer science in schools. In the United States, for example, most students finish high school without ever taking a computing course. Mathematics lessons, such as the one described in this article, can help to make computer science more accessible to students who may have otherwise had little opportunity to be introduced to these increasingly important concepts.

  14. Science sequence design

    NASA Technical Reports Server (NTRS)

    Koskela, P. E.; Bollman, W. E.; Freeman, J. E.; Helton, M. R.; Reichert, R. J.; Travers, E. S.; Zawacki, S. J.

    1973-01-01

    The activities of the following members of the Navigation Team are recorded: the Science Sequence Design Group, responsible for preparing the final science sequence designs; the Advanced Sequence Planning Group, responsible for sequence planning; and the Science Recommendation Team (SRT) representatives, responsible for conducting the necessary sequence design interfaces with the teams during the mission. The interface task included science support in both advance planning and daily operations. Science sequences designed during the mission are also discussed.

  15. Integrating the New Generation Science Standards (NGSS) into K- 6 teacher training and curricula

    NASA Astrophysics Data System (ADS)

    Pinter, S.; Carlson, S. J.

    2017-12-01

    The Next Generation Science Standards is an initiative, adopted by 26 states, to set national education standards that are "rich in content and practice, arranged in a coherent manner across disciplines and grades to provide all students an internationally benchmarked science education." Educators now must integrate these standards into existing curricula. Many grade-school (K-6) teachers face a particularly daunting task, as they were traditionally not required to teach science or only at a rudimentary level. The majority of K-6 teachers enter teaching from non-science disciplines, making this transition even more difficult. Since the NGSS emphasizes integrated and coherent progression of knowledge from grade to grade, prospective K-6 teachers must be able to deliver science with confidence and enthusiasm to their students. CalTeach/MAST (Mathematics and Science Teaching Program) at the University of California Davis, has created a two-quarter sequence of integrated science courses for undergraduate students majoring in non-STEM disciplines and intending to pursue multiple-subject K-6 credentials. The UCD integrated science course provides future primary school teachers with a basic, but comprehensive background in the physical and earth/space sciences. Key tools are taught for improving teaching methods, investigating complex science ideas, and solving problems relevant to students' life experiences that require scientific or technological knowledge. This approach allows prospective K-6 teachers to explore more effectively the connections between the disciplinary core ideas, crosscutting concepts, and scientific and engineering practices, as outlined in the NGSS. In addition, they develop a core set of science teaching skills based on inquiry activities and guided lab discussions. With this course, we deliver a solid science background to prospective K-6 teachers and facilitate their ability to teach science following the standards as articulated in the NGSS.

  16. Writing Stories to Enhance Scientific Literacy

    NASA Astrophysics Data System (ADS)

    Ritchie, Stephen M.; Tomas, Louisa; Tones, Megan

    2011-03-01

    In response to international concerns about scientific literacy and students' waning interest in school science, this study investigated the effects of a science-writing project about the socioscientific issue (SSI) of biosecurity on the development of students' scientific literacy. Students generated two BioStories each that merged scientific information with the narrative storylines in the project. The study was conducted in two phases. In the exploratory phase, a qualitative case study of a sixth-grade class involving classroom observations and interviews informed the design of the second, confirmatory phase of the study, which was conducted at a different school. This phase involved a mixed methods approach featuring a quasi-experimental design with two classes of Australian middle school students (i.e., sixth grade, 11 years of age, n = 55). The results support the argument that writing the sequence of stories helped the students become more familiar with biosecurity issues, develop a deeper understanding of related biological concepts, and improve their interest in science. On the basis of these findings, teachers should be encouraged to engage their students in the practice of writing about SSI in a way that integrates scientific information into narrative storylines. Extending the practice to older students and exploring additional issues related to writing about SSI are recommended for further research.

  17. Attractor States in Teaching and Learning Processes: A Study of Out-of-School Science Education.

    PubMed

    Geveke, Carla H; Steenbeek, Henderien W; Doornenbal, Jeannette M; Van Geert, Paul L C

    2017-01-01

    In order for out-of-school science activities that take place during school hours but outside the school context to be successful, instructors must have sufficient pedagogical content knowledge (PCK) to guarantee high-quality teaching and learning. We argue that PCK is a quality of the instructor-pupil system that is constructed in real-time interaction. When PCK is evident in real-time interaction, we define it as Expressed Pedagogical Content Knowledge (EPCK). The aim of this study is to empirically explore whether EPCK shows a systematic pattern of variation, and if so whether the pattern occurs in recurrent and temporary stable attractor states as predicted in the complex dynamic systems theory. This study concerned nine out-of-school activities in which pupils of upper primary school classes participated. A multivariate coding scheme was used to capture EPCK in real time. A principal component analysis of the time series of all the variables reduced the number of components. A cluster revealed general descriptions of the components across all cases. Cluster analyses of individual cases divided the time series into sequences, revealing High-, Low-, and Non-EPCK states. High-EPCK attractor states emerged at particular moments during activities, rather than being present all the time. Such High-EPCK attractor states were only found in a few cases, namely those where the pupils were prepared for the visit and the instructors were trained.

  18. A New Curriculum For a Lab-Based Course in Introductory Earth Science: the Combined Effort of a Regional University and Local Community Colleges in the North Cascades Olympic Science Partnership.

    NASA Astrophysics Data System (ADS)

    Debari, S. M.; Bachmann, J.; Dougan, B.; Fackler-Adams, B.; Grupp, S.; Linneman, S.; Plake, T.; Smith, B.

    2005-12-01

    The North Cascades Olympic Science Partnership (NCOSP) is a partnership between Western Washington University, three local community colleges, the Northwest Indian College, and 29 K-12 school districts in western Washington State. One of the partnership goals is to improve the teaching and learning of science at the post-secondary level with specific emphasis on the training of future teachers. To this end, Western Washington University (WWU) joined with grass-roots efforts by local 2-year colleges to develop a yearlong science sequence that would directly impact pre-service elementary school teachers and other non-science majors. Students from these 2-year colleges who identify themselves as pre-service teachers go on to a teacher preparation program at WWU. The multi-year process of collaborative work among ~20 faculty from these institutions has produced three quarters of new curriculum in the sciences (including one quarter of Earth Science) that uses the pedagogical approach of Physics for Elementary Teachers (PET) (cpucips.sdsu/web/pet). Each of the science quarters utilizes the theme of the transfer of matter and energy. The Earth Science curriculum (transfer of matter and energy in Earth systems) is a quarter-long, lab-based course that emphasizes a metacognitive approach. The curriculum utilizes questioning, small group work, and small and large class discussions. Whiteboarding, or the process of sharing small-group ideas to a larger group, occupies a central theme in the curriculum. Students learn concepts by doing the lab activities, but the group discussions that promote discourse and questioning among students is a crucial tool in the sense-making and solidification of those concepts. The curriculum stands alone and does not require lectures by the instructors. The instructor's role is as a facilitator and questioner. The Earth Science curriculum is focused on only a few "Big Ideas" that the faculty developers identified in the planning stages. These Big Ideas are incorporated into cycles, or units, that build upon one other. Introductory cycles include the building of the concepts of heat and density and how these relate to Earth topography and the rock cycle. From this the course develops the themes of matter and energy transfer in the Earth (plate tectonics) and in the atmosphere (weather and climate), and the crucial concept of geologic time. The course has pre- and post-assessments built in, as well as cycle exams and homework assignments. We expect that the majority of future elementary teachers that go through local 2-year colleges and through WWU will take this yearlong sequence. They will then be required to take a fourth quarter of investigative science (a more open ended science process class), as well as a traditional science methods class and a science teaching practicum at WWU. Our goal is to graduate elementary school teachers who are science literate and who are well trained enough to bring the process of science into their future classrooms.

  19. Evaluating and redesigning teaching learning sequences at the introductory physics level

    NASA Astrophysics Data System (ADS)

    Guisasola, Jenaro; Zuza, Kristina; Ametller, Jaume; Gutierrez-Berraondo, José

    2017-12-01

    In this paper we put forward a proposal for the design and evaluation of teaching and learning sequences in upper secondary school and university. We will connect our proposal with relevant contributions on the design of teaching sequences, ground it on the design-based research methodology, and discuss how teaching and learning sequences designed according to our proposal relate to learning progressions. An iterative methodology for evaluating and redesigning the teaching and learning sequence (TLS) is presented. The proposed assessment strategy focuses on three aspects: (a) evaluation of the activities of the TLS, (b) evaluation of learning achieved by students in relation to the intended objectives, and (c) a document for gathering the difficulties found when implementing the TLS to serve as a guide to teachers. Discussion of this guide with external teachers provides feedback used for the TLS redesign. The context of our implementation and evaluation is an innovative calculus-based physics course for first-year engineering and science degree students at the University of the Basque Country.

  20. Results and Implications of a 12-Year Longitudinal Study of Science Concept Learning

    NASA Astrophysics Data System (ADS)

    Novak, Joseph D.

    2005-03-01

    This paper describes the methods and outcomes of a 12-year longitudinal study into the effects of an early intervention program, while reflecting back on changes that have occurred in approaches to research, learning and instruction since the preliminary inception stages of the study in the mid 1960s. We began the study to challenge the prevailing consensus at the time that primary school children were either preoperational or concrete operational in their cognitive development and they could not learn abstract concepts. Our early research, based on Ausubelian theory, suggested otherwise. The paper describes the development and implementation of a Grade 1-2 audio tutorial science instructional sequence, and the subsequent tracing over 12 years, of the children's conceptual understandings in science compared to a matched control group. During the study the concept map was developed as a new tool to trace children's conceptual development. We found that students in the instruction group far outperformed their non-instructed counterparts, and this difference increased as they progressed through middle and high school. The data clearly support the earlier introduction of science instruction on basic science concepts, such as the particulate nature of matter, energy and energy transformations. The data suggest that national curriculum standards for science grossly underestimate the learning capabilities of primary-grade children. The study has helped to lay a foundation for guided instruction using computers and concept mapping that may help both teachers and students become more proficient in understanding science.

  1. The congruence of perceptions and behaviors exhibited by twelve successful middle school teachers in implementingScience/Technology/Society/Constructivist practices in Iowa Scope, Sequence, and Coordination schools

    NASA Astrophysics Data System (ADS)

    Yutakom, Naruemon

    1997-11-01

    The purposes of this study were (1) to investigate teacher perceptions about teaching and the strategies they use in teaching for successful middle school teachers purporting to use Science/Technology/Society and Constructivist practices in Iowa Scope, Sequence, and Coordination (SS&C) schools and (2) to note the congruence between these perceptions and the actual behaviors exhibited by these teachers. Multiple methods of data collection used to discern the actual behaviors included observation by means of classroom videotapes, a teacher perception survey, teacher interviews, instructional documents, teacher stories, demographic information concerning teachers from the Iowa-SS&C database, and a student survey. Findings include: (1) Successful SS&C teachers report that they use STS/Constructivist teaching practices; further, interviews indicated that they also have knowledge and understanding of the science content and pedagogy which are consistent with the STS/Constructivist philosophy. These perceptions and this knowledge influence their stated goals, rationale for teaching, understanding of the teaching and learning processes, and ideas about needed professional development. (2) Successful SS&C teachers exhibit a wide range of STS/Constructivist teaching behaviors. The five most common of these are: (a) acceptance of a variety of student responses, (b) students apply their knowledge in meeting everyday challenges, (c) student-student verbal interactions encouraged, (d) students encouraged to use higher order thinking skills, (e) a variety of assessment tools were used. Over 31% of the questions the teachers ask are higher order level questions; the average wait-time for the teachers is 3.4 seconds following each question. (3) Students report that SS&C teachers provide learning environments that are relevant and meaningful to them and that student-student interaction is encouraged. They do not report involvement with planning, conducting lessons, and assessing their own learning. (4) Teacher beliefs and knowledge about STS/Constructivist philosophy influence their teaching behaviors. The practices of seven of the teachers match their perceptions. One teacher exhibited fewer STS/Constructivist strategies than he reported to be the situation while four practiced more STS/Constructivist strategies than they reported.

  2. Conceptual Change and Science Achievement Related to a Lesson Sequence on Acids and Bases among African American Alternative High School Students: A Teacher's Practical Arguments and the Voice of the "Other"

    ERIC Educational Resources Information Center

    Wood, Lynda Charese

    2012-01-01

    The study of teaching and learning during the period of translating ideals of reform into classroom practice enables us to understand student-teacher-researcher symbiotic learning. In line with this assumption, the purpose of this study is threefold:(1) observe effects of the "Common Knowledge Construction Model" (CKCM), a conceptual…

  3. Leaving School — learning at SEA: Regular high school education alongside polar research

    NASA Astrophysics Data System (ADS)

    Gatti, Susanne

    2010-05-01

    Against the background of unsatisfactory results from the international OECD study PISA (Program for International Student Assessment), Germany is facing a period of intense school reforms. Looking back at a tradition of school culture with too few changes during the last century, quick and radical renewal of the school system is rather unlikely. Furthermore students are increasingly turning away from natural sciences [1]. The AWI aims at providing impulses for major changes in the schooling system and is offering solid science education not only for university students but also for a larger audience. All efforts towards this goal are interconnected within the project SEA (Science & Education @ the AWI). With the school-term of 2002/03 the Alfred-Wegener-Institute for Polar and Marine Research started HIGHSEA (High school of SEA). The program is the most important component of SEA. Each year 22 high school students (grade 10 or 11) are admitted to HIGHSEA spending their last three years of school not at school but at the institute. Four subjects (biology as a major, chemistry, math and English as accessory subjects) are combined and taught fully integrated. Students leave their school for two days each week to study, work and explore all necessary topics at the AWI. All of the curricular necessities of the four subjects have been rearranged in their temporal sequencing thus enabling a conceptual formulation of four major questions to be dealt with in the course of the three-year program [2]. Students are taught by teachers of the cooperation schools as well as by scientists of the AWI. Close links and intense cooperation between both groups are the basis of fundamental changes in teaching and learning climate. We are organizing expeditions for every group of HIGHSEA-students (e. g. to the Arctic or to mid-Atlantic seamounts). For each student expedition we devise a "real" research question. Usually a single working group at the AWI has a special interest in the data but no opportunity to collect them. Thus the data data gathered by the students during "their" expedition contribute to ongoing research projects of different departments of the AWI. Meanwhile five groups of students have finished their final exams — with outstanding results. We are providing excellent starting conditions for students with a strong interest in natural sciences who whish to take up university courses. Currently some students of the first groups of HIGHSEA are working on their bachelor or master theses at the AWI. HIGHSEA has gone through an external evaluation process by the University Duisburg Essen. By exploring and establishing new ways of teaching and learning we are contributing to the ongoing discussion about the renewal of the German school system. [1] Q Schiermeier (2002): Lessons in research aim to win pupils over to science, Nature (418), p 714 [2] S Goodman (2002): Put your lab in a different class, Nature (420), p 12-14

  4. Physics teachers' perspectives on factors that affect urban physics participation and accessibility

    NASA Astrophysics Data System (ADS)

    Kelly, Angela M.

    2013-06-01

    The accessibility of secondary physics in U.S. urban school districts is a complex issue. Many schools do not offer a physics option, and for those that do, access is often restricted by various school policies and priorities that do not promote physics participation for all. To analyze this problem in greater depth, I adopted a qualitative phenomenological methodology to explore urban physics teachers’ views on school- and district-based conditions that may marginalize traditionally underrepresented students. Teachers from three large urban districts shared concerns and suggestions regarding administrative commitment, student preparedness for physics, reform initiatives and testing mandates, promoting physics enrollments, and implementing high quality instruction. Data from interviews and focus groups provided contextual insights into ways in which physics study may be improved and encouraged for urban youth. Teachers believed expanding access could be facilitated with differentiated levels of physics, incorporating mathematical applications with multiple representations, educating students and counselors on the ramifications of choosing or not choosing elective sciences, well-designed grant-funded initiatives, and flexibility with prerequisites and science course sequencing. Teachers experienced frustration with standardized testing, lack of curricular autonomy, shifting administrative directives, and top-down reforms that did not incorporate their feedback in the decision-making processes. Data from this study revealed that physics teacher networks, often housed at local universities, have been a key resource for establishing supportive professional communities to share best practices that may influence school-based reforms that promote physics participation in urban schools.

  5. Attractor States in Teaching and Learning Processes: A Study of Out-of-School Science Education

    PubMed Central

    Geveke, Carla H.; Steenbeek, Henderien W.; Doornenbal, Jeannette M.; Van Geert, Paul L. C.

    2017-01-01

    In order for out-of-school science activities that take place during school hours but outside the school context to be successful, instructors must have sufficient pedagogical content knowledge (PCK) to guarantee high-quality teaching and learning. We argue that PCK is a quality of the instructor-pupil system that is constructed in real-time interaction. When PCK is evident in real-time interaction, we define it as Expressed Pedagogical Content Knowledge (EPCK). The aim of this study is to empirically explore whether EPCK shows a systematic pattern of variation, and if so whether the pattern occurs in recurrent and temporary stable attractor states as predicted in the complex dynamic systems theory. This study concerned nine out-of-school activities in which pupils of upper primary school classes participated. A multivariate coding scheme was used to capture EPCK in real time. A principal component analysis of the time series of all the variables reduced the number of components. A cluster revealed general descriptions of the components across all cases. Cluster analyses of individual cases divided the time series into sequences, revealing High-, Low-, and Non-EPCK states. High-EPCK attractor states emerged at particular moments during activities, rather than being present all the time. Such High-EPCK attractor states were only found in a few cases, namely those where the pupils were prepared for the visit and the instructors were trained. PMID:28316578

  6. Young Children's Development of Scientific Knowledge Through the Combination of Teacher-Guided Play and Child-Guided Play

    NASA Astrophysics Data System (ADS)

    Sliogeris, Marija; Almeida, Sylvia Christine

    2017-09-01

    Play-based approaches to science learning allow children to meaningfully draw on their everyday experiences and activities as they explore science concepts in context. Acknowledging the crucial role of the teacher in facilitating science learning through play, the purpose of this qualitative study was to examine how teacher-guided play, in conjunction with child-guided play, supports children's development of science concepts. While previous research on play-based science learning has mainly focused on preschool settings, this study explores the possibilities of play-based approaches to science in primary school contexts. Using a qualitative methodology grounded in the cultural-historical theoretical perspective, children's learning was examined during a science learning sequence that combined teacher-guided and child-guided play. This study revealed that the teacher-guided play explicitly introduced science concepts which children then used and explored in subsequent child-guided play. However, intentional teaching during the child-guided play continued to be important. Play-based approaches to science allowed children to make sense of the science concepts using familiar, everyday knowledge and activities. It became evident that the expectations and values communicated through classroom practices influenced children's learning through play.

  7. A cultural historical activity theory perspective to understand preservice science teachers' reflections on and tensions during a microteaching experience

    NASA Astrophysics Data System (ADS)

    Sezen-Barrie, Asli; Tran, Minh-Dan; McDonald, Scott P.; Kelly, Gregory J.

    2014-09-01

    This study draws from cultural historical activity theory (CHAT) to analyze preservice teachers' reflections on a microteaching activity. Microteaching activities involved preservice educators teaching middle school students from local schools. The study was conducted with 23 preservice teachers enrolled in a large university's teacher education program. During this secondary science teaching methods course, every pair of preservice teachers engaged in 20 minute microteaching activity with 3-5 middle school students. The microteaching was videotaped, and the teachers subsequently provided voice-over reflections on a second audio track. Transcriptions of the microteaching events were analyzed through the formation of event maps showing the phases of activity and the organizational sequence of actions. Event maps were used to investigate the focus of preservice teachers' reflections. The results showed that while learning from their microteaching, preservice teachers focused primarily on the mediating artifacts and gave least attention to the larger teaching community surrounding these activities. Use of CHAT helped to identify challenges in different elements of the microteaching activity. The study contributes to how reflective practice can be enhanced through attention to the social and cultural dimensions of the teaching.

  8. The role of university research in primary and secondary education

    NASA Astrophysics Data System (ADS)

    Redondo, A.; Llopart, M.; Ramos, L.; Roger, T.; Rafols, R.; Redondo, J. M.

    2009-04-01

    One of the most important roles of educators at all levels(transversally and inter-generationally between adult education, university and the primary schools, specially in sciences is to estimulate the quest for new knowledge and to help to provide the basic thinking tools of the proper scientific method. An innovative plan has been set up though the Campus Universitari de la Mediterrania that integrates the UPC, the local Education authorities and the local governement in Vilanova i la Geltru, Barcelona. To coordinate university professors invited to lecture in summer courses, so their research and lecturing materials may be used as school level material (as a CD collection) and to help younger students to iniciate their own research proyects. During 2006-2008 a series of Environmental science seminars, group proyects decided by the students or proposed jointly by the CUM were started. Examples of these works, such as Cetacean comunication (with the help of the Laboratory of Bioacustic Applications of the UPC), Shapes and patterns in the environment (Cosmocaixa Science Museum), the Rainbow, Waves and Tides, Turbulence, The growth of snails and the Fibonacci sequence, etc... will be presented, showing the importance of comunicating scientific interest to the younger generations.

  9. Science Teacher Decision-Making in a Climate of Heightened Accountability: A Rhizomatic Case Study Analysis of Two Science Departments in New York City

    NASA Astrophysics Data System (ADS)

    Purohit, Kiran Dilip

    Secondary science teachers make many daily decisions in the enactment of curriculum. Although curriculum materials are widely available to address science content, practices, and skills, the consideration that goes into deciding how and whether to use such materials is complicated by teachers' beliefs about science, their understandings of school-level accountability and testing measures, and their perspectives on the adolescent students they teach. This study addresses the need to understand how teachers consider multiple forces in their enactment of science curriculum. The purpose of this study was to explore the ways that discourses around accountability, science, and science education emerge in the narratives around teachers' decision-making in secondary science classrooms. Using a case study approach, I worked at two school sites with two pairs of science teachers. We established criteria for critical incidents together, then teachers identified critical decision-making moments in their classrooms. We analyzed those incidents together using a consultancy protocol, allowing teachers to focus their thinking on reframing the incidents and imagining other possible outcomes. Using post-structuralist rhizomatics, I assembled analyses of teachers' discussions of the critical incidents in the form of dramatization--scenes and monologues. I then developed two major interpretive strands. First, I connected teachers' sense of having "no time" to blocs of affect tied to larger discourses of national security, teacher accountability, and the joy of scientific discovery. Second, I demonstrated how teachers' concern in following logical pathways and sequences in science relates to the imposition of accountability measures that echo the outcomes-driven logic of the learning sciences. Across both interpretations, I found accountability to be complex, multidirectional, and unpredictable in how it works on and through teachers as they make decisions. Research in this area has important practical implications in the fields of professional development, curriculum development, and school change. As more states (including New York) adopt standards derived from the Next Generation Science Standards (NGSS), the importance of privileging teachers' investment and critical decision-making in the process of new curriculum development is vital. I suggest that tools like video-based coaching and consultancy protocol discussions support this kind of thoughtful curricular change.

  10. The role of cultural identity as a learning factor in physics: a discussion through the role of science in Brazil

    NASA Astrophysics Data System (ADS)

    Gurgel, Ivã; Pietrocola, Mauricio; Watanabe, Graciella

    2016-06-01

    In recent decades, changes in society have deeply affected the internal organization and the main goals of schools. These changes are particularly important in science education because science is one of the major sources of change in peoples' lives. This research provided the opportunity to investigate how these changes affect the way teachers develop their classroom activities. In this work, we focus on science as part of the cultural identity of a society and how this identity affects the process of teaching and learning inside the classroom. Other works have shown that certain social characteristics such as gender, race, religion, etc., can create a cultural barrier to learning science. This results in an obstacle between those particular students and the science that is taught, hindering their learning process. We first aim to present the notion of identity in education and in other related fields such as social psychology and sociology. Our main purpose is to focus on identity in a school setting and how that identity affects the relationship students have with the science content. Next, we present and analyze an intervention in the subject of Modern and Contemporary Physics composed by a sequence of activities in a private school in the region of Sao Paulo State, Brazil. This intervention serves to illustrate how scientific topics may be explored while considering aspects of cultural differences as an obstacle. The intervention was completed in two steps: first, in the classroom with a discussion concerning scientific works and nationality of scientists, with one being a Brazilian physicist; second, taking students to visit a particle collider at the University of São Paulo. One of the results of our research was realizing that students do not perceive science as something representative of the Brazilian cultural identity. At the same time, the activity gave the students the opportunity to make the connection between doing physical sciences at an international level and the national level in Brazil. The findings of this study suggest that it is possible to reshape the cultural identity of Brazilian students.

  11. The Effect of a Zoo-Based Experiential Academic Science Program on High School Students' Math and Science Achievement and Perceptions of School Climate

    NASA Astrophysics Data System (ADS)

    Mulkerrin, Elizabeth A.

    The purpose of this study was to determine the effect of an 11th-grade and 12th-grade zoo-based academic high school experiential science program compared to a same school-district school-based academic high school experiential science program on students' pretest and posttest science, math, and reading achievement, and student perceptions of program relevance, rigor, and relationships. Science coursework delivery site served as the study's independent variable for the two naturally formed groups representing students (n = 18) who completed a zoo-based experiential academic high school science program and students (n = 18) who completed a school-based experiential academic high school science program. Students in the first group, a zoo-based experiential academic high school science program, completed real world, hands-on projects at the zoo while students in the second group, those students who completed a school-based experiential academic high school science program, completed real world, simulated projects in the classroom. These groups comprised the two research arms of the study. Both groups of students were selected from the same school district. The study's two dependent variables were achievement and school climate. Achievement was analyzed using norm-referenced 11th-grade pretest PLAN and 12th-grade posttest ACT test composite scores. Null hypotheses were rejected in the direction of improved test scores for both science program groups---students who completed the zoo-based experiential academic high school science program (p < .001) and students who completed the school-based experiential academic high school science program (p < .001). The posttest-posttest ACT test composite score comparison was not statistically different ( p = .93) indicating program equipoise for students enrolled in both science programs. No overall weighted grade point average score improvement was observed for students in either science group, however, null hypotheses were rejected in the direction of improved science grade point average scores for 11th-grade (p < .01) and 12th-grade (p = .01) students who completed the zoo-based experiential academic high school science program. Null hypotheses were not rejected for between group posttest science grade point average scores and school district criterion reference math and reading test scores. Finally, students who completed the zoo-based experiential academic high school science program had statistically improved pretest-posttest perceptions of program relationship scores (p < .05) and compared to students who completed the school-based experiential academic high school science program had statistically greater posttest perceptions of program relevance (p < .001), perceptions of program rigor (p < .001), and perceptions of program relationships (p < .001).

  12. Frontiers in Microbiology: Envisioning a Curriculum Unit for High School Biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark Bloom

    Microbiology is undergoing a quiet revolution. Techniques such as polymerase chain reaction, high throughput DNA sequencing, whole genome shotgun sequencing, DNA microarrays, and bioinformatics analyses are greatly aiding our understanding of the estimated one billion species of microbes that inhabit the Earth. Unfortunately, the rapid pace of research in microbiology stands in contrast to the much slower pace of change in educational reform. Biological Sciences Curriculum Study (BSCS) hosted a two-day planning meeting to discuss whether or not a new curriculum unit on microbiology is desirable for the high school audience. Attending the meeting were microbiologists, high school biology teachers,more » and science educators. The consensus of the participants was that an inquiry-based unit dealing with advances in microbiology should be developed for a high school biology audience. Participants established content priorities for the unit, discussed the unit's conceptual flow, brainstormed potential student activities, and discussed the role of educational technology for the unit. As a result of the planning meeting discussions, BSCS staff sought additional funding to develop, disseminate, and evaluate the Frontiers in Microbiology curriculum unit. This unit was intended to be developed as a replacement unit suitable for an introductory biology course. The unit would feature inquiry-based student activities and provide approximately four weeks of instruction. As appropriate, activities would make use of multimedia. The development and production processes would require about two years for completion. Unfortunately, BSCS staff was not able to attract sufficient funding to develop the proposed curriculum unit. Since there were some unexpended funds left over from the planning meeting, BSCS requested and received permission from DOE to use the balance of the funds to prepare background materials about advances in microbiology that would be useful to teachers. These materials were developed and placed on the BSCS Web site (http://www.bscs.org).« less

  13. Primary and Secondary School Science.

    ERIC Educational Resources Information Center

    Educational Documentation and Information, 1984

    1984-01-01

    This 344-item annotated bibliography presents overview of science teaching in following categories: science education; primary school science; integrated science teaching; teaching of biology, chemistry, physics, earth/space science; laboratory work; computer technology; out-of-school science; science and society; science education at…

  14. Multiple Influences: Latinas, Middle School Science, and School

    ERIC Educational Resources Information Center

    Parker, Carolyn

    2014-01-01

    This paper describes the multiple school and school science experiences of eight Latina students of Central American descent in a tracked, urbanized, middle school setting. Framed by a sociocultural perspective, I describe how eight seventh and eighth grade Latino girls interacted with school science. Implications for the concept "science for…

  15. Science school and culture school: improving the efficiency of high school science teaching in a system of mass science education.

    PubMed

    Charlton, Bruce G

    2006-01-01

    Educational expansion in western countries has been achieved mainly by adding years to full-time education; however, this process has probably reduced efficiency. Sooner or later, efficiency must improve, with a greater educational attainment per year. Future societies will probably wish more people to study science throughout high school (aged c. 11-19 years) and the first college degree. 'Science' may be defined as any abstract, systematic and research-based discipline: including mathematics, statistics and the natural sciences, economics, music theory, linguistics, and the conceptual or quantitative social sciences. Since formal teaching is usually necessary to learn science, science education should be regarded as the core function of high schools. One standard way to improve efficiency is the 'division of labour', with increased specialization of function. Modern schools are already specialized: teachers are specialized according to age-group taught, subject matter expertise, and administrative responsibilities. School students are stratified by age and academic aptitude. I propose a further institutional division of school function between science education, and cultural education (including education in arts, sports, ethics, social interaction and good citizenship). Existing schools might split into 'science school' and 'culture school', reflected in distinct buildings and zones, separate administrative structures, and the recruitment of differently-specialized teaching personnel. Science school would be distinguished by its focus on education in disciplines which promote abstract systematic cognition. All students would spend some part of each day (how much would depend on their aptitude and motivation) in the 'science school'; experiencing a traditional-style, didactic, disciplined and rigorous academic education. The remainder of the students' time at school would be spent in the cultural division, which would focus on broader aspects, and aim to generate a more rounded and social individual. For this to happen depends upon a recognition that science is relatively difficult to teach, requiring non-spontaneous and un-natural cognitive processes from students. Furthermore, it is much easier to learn science when young--if science is missed at school, it can be difficult or impossible to make up the ground later. Modern schools currently try to do too many things, and end-up doing none very well: the one big thing all schools should do for all students is to teach them science. For this to happen, schools need to specialize in their core function.

  16. National Science Resources Center Project for Improving Science Teaching in Elementary Schools. Appendix A. School Systems With Exemplary Elementary Science Programs. Appendix B. Elementary Science Network

    DTIC Science & Technology

    1988-12-01

    Department Campbell, Judy S., Principal Seedling Mile Elementary School Campbell, Kelly, Vice President International Services, Inc. Campbell, Larry...Agency #5 Coverdale, Miles , Principal Baxter Coveyou, Tony, Cowan, Ann, Education Specialist Hanford Science Center Cowan, Margaret, Cowan, Peggy...Science State Department of Education Ezell, James, No. 92 Elementary School Ezzell , Effie, No. 45 Elementary School 09/03/88 NSRC Elementary Science

  17. Professional Learning Communities (PLCs) as a Means for School-Based Science Curriculum Change

    NASA Astrophysics Data System (ADS)

    Browne, Christi L.

    The challenge of school-based science curriculum change and educational reform is often presented to science teachers and departments who are not necessarily prepared for the complexity of considerations that change movements require. The development of a Professional Learning Community (PLC) focused on a science department's curriculum change efforts, may provide the necessary tools to foster sustainable school-based curriculum science changes. This research presents a case study of an evolving science department PLC consisting of 10 middle school science teachers from the same middle school and their efforts of school-based science curriculum change. A transformative mixed model case study with qualitative data and deepened by quantitative analysis, was chosen to guide the investigation. Collected data worked to document the essential developmental steps, the occurrence and frequency of the five essential dimensions of successful PLCs, and the influences the science department PLC had on the middle school science department's progression through school-based science curriculum change, and the barriers, struggles and inhibiting actions of the science department PLC. Findings indicated that a science department PLC was unique in that it allowed for a focal science departmental lens of science curriculum change to be applied to the structure and function of the PLC and therefore the process, proceedings, and results were directly aligned to and driven by the science department. The science PLC, while logically difficult to set-up and maintain, became a professional science forum where the middle school science teachers were exposed to new science teaching and learning knowledge, explored new science standards, discussed effects on student science learning, designed and critically analyzed science curriculum change application. Conclusions resulted in the science department PLC as an identified tool providing the ability for science departmental actions to lead to outcomes of science curriculum change improvements with the consideration but not the dictation of the larger school community and state agendas. Thus, the study's results work to fuse previously separated research on general PLCs and curriculum change efforts into a cohesive understanding of the unexplored potential of a science PLC and school-based science curriculum change.

  18. The Effect of a Zoo-Based Experiential Academic Science Program on High School Students' Math and Science Achievement and Perceptions of School Climate

    ERIC Educational Resources Information Center

    Mulkerrin, Elizabeth A.

    2012-01-01

    The purpose of this study was to determine the effect of an 11th-grade and 12th-grade zoo-based academic high school experiential science program compared to a same school-district school-based academic high school experiential science program on students' pretest and posttest science, math, and reading achievement, and student perceptions of…

  19. Bridging the gap with a duel-credit Earth Science course

    NASA Astrophysics Data System (ADS)

    Van Norden, W.

    2011-12-01

    College-bound high school students rarely have any exposure to the Earth Sciences. Earth Science may be offered to Middle School students. What is offered in High School, however, is usually a watered-down course offered to the weakest students. Meanwhile, our best and brightest students are steered towards biology, chemistry, and physics, what most schools consider the "real sciences". As a direct result, our population is not literate in the Earth Sciences and few students choose to study the Earth Science in college. One way to counteract this trend is to offer a rigorous capstone Earth Science course to High School Juniors and Seniors. Offering a course does not guarantee enrollment, however. Top science students are too busy taking Advanced Placement courses to consider a non-AP course. For that reason, the best way to lure top students into studying Earth Science is to create a duel-credit course, for which students receive both high school and college credit. A collaboration between high school teachers and college professors can result in a quality Earth Science course that bridges the huge gap that now exists between middle school science and college Earth Science. Harvard-Westlake School has successfully offered a duel-credit course with UCLA, and has created a model that can be used by other schools.

  20. Genome sequencing of idiopathic pulmonary fibrosis in conjunction with a medical school human anatomy course.

    PubMed

    Kumar, Akash; Dougherty, Max; Findlay, Gregory M; Geisheker, Madeleine; Klein, Jason; Lazar, John; Machkovech, Heather; Resnick, Jesse; Resnick, Rebecca; Salter, Alexander I; Talebi-Liasi, Faezeh; Arakawa, Christopher; Baudin, Jacob; Bogaard, Andrew; Salesky, Rebecca; Zhou, Qian; Smith, Kelly; Clark, John I; Shendure, Jay; Horwitz, Marshall S

    2014-01-01

    Even in cases where there is no obvious family history of disease, genome sequencing may contribute to clinical diagnosis and management. Clinical application of the genome has not yet become routine, however, in part because physicians are still learning how best to utilize such information. As an educational research exercise performed in conjunction with our medical school human anatomy course, we explored the potential utility of determining the whole genome sequence of a patient who had died following a clinical diagnosis of idiopathic pulmonary fibrosis (IPF). Medical students performed dissection and whole genome sequencing of the cadaver. Gross and microscopic findings were more consistent with the fibrosing variant of nonspecific interstitial pneumonia (NSIP), as opposed to IPF per se. Variants in genes causing Mendelian disorders predisposing to IPF were not detected. However, whole genome sequencing identified several common variants associated with IPF, including a single nucleotide polymorphism (SNP), rs35705950, located in the promoter region of the gene encoding mucin glycoprotein MUC5B. The MUC5B promoter polymorphism was recently found to markedly elevate risk for IPF, though a particular association with NSIP has not been previously reported, nor has its contribution to disease risk previously been evaluated in the genome-wide context of all genetic variants. We did not identify additional predicted functional variants in a region of linkage disequilibrium (LD) adjacent to MUC5B, nor did we discover other likely risk-contributing variants elsewhere in the genome. Whole genome sequencing thus corroborates the association of rs35705950 with MUC5B dysregulation and interstitial lung disease. This novel exercise additionally served a unique mission in bridging clinical and basic science education.

  1. Fort Collins High School Wins 28th Colorado High School Science Bowl | News

    Science.gov Websites

    physics, math, biology, energy, chemistry, and earth and space sciences. Cherry Creek High School (Denver | NREL Fort Collins High School Wins 28th Colorado High School Science Bowl News Release: Fort Collins High School Wins 28th Colorado High School Science Bowl Team heading to Washington, D.C., to

  2. The Junior High School Integrated Science: The Actual Teaching Process in the Perspective of an Ethnographer

    ERIC Educational Resources Information Center

    Adu-Gyamfi, Kenneth; Ampiah, Joseph Ghartey

    2016-01-01

    Science education at the Basic School (Primary and Junior High School) serves as the foundation upon which higher levels of science education are pivoted. This ethnographic study sought to investigate the teaching of Integrated Science at the Junior High School (JHS) level in the classrooms of two science teachers in two schools of differing…

  3. School Innovation in Science: Improving Science Teaching and Learning in Australian Schools

    ERIC Educational Resources Information Center

    Tytler, Russell

    2009-01-01

    School Innovation in Science is a major Victorian Government initiative that developed and validated a model whereby schools can improve their science teaching and learning. The initiative was developed and rolled out to more than 400 schools over the period 2000-2004. A research team worked with 200+ primary and secondary schools over three…

  4. Development of a biophotonics technician-training program: directions for the 21st Century

    NASA Astrophysics Data System (ADS)

    Shackelford, James F.; Gellman, Joel; Vasan, Srini; Hall, Robert A.; Goodwin, Don E.; Molinaro, Marco; Matthews, Dennis

    2005-06-01

    Albuquerque Technical Vocational Institute (TVI) is collaborating with the National Science Foundation (NSF) funded Center for Biophotonics Science and Technology (CBST) headquartered at the University of California, Davis in order to develop a biophotonics curriculum for community colleges nationwide. TVI began the formal collaboration to bring about critically needed training and education that will ultimately create new jobs and employment opportunities in the field of biophotonics. "Biophotonics" is the science of generating and harnessing light to detect, image and manipulate biological materials. CBST chose TVI as a partner because of the Institute's current high-level photonics and biotechnology programs. In addition, TVI is a part of the "Albuquerque Model" that involves exposure to photonics education from the middle school level through graduate education at the University of New Mexico. Three middle schools feed into the West Mesa High School Photonics Academy, whose students then move on to TVI for advanced training. CBST brings together scientists, industry, educators and the community to research and develop applications for biophotonics. Roughly 100 researchers-including physical scientists, life scientists, physicians and engineers from UC Davis, Lawrence Livermore National Laboratory, UC Berkeley, UC San Francisco, Alabama A&M University, Stanford University, University of Texas at San Antonio, Fisk University and Mills College-are collaborating in this rapidly developing area of research. Applications of biophotonics range from using light to image or selectively treat tumors, to sequencing DNA and identifying single biomolecules within cells.

  5. The development of science achievement in middle and high school. Individual differences and school effects.

    PubMed

    Ma, Xin; Wilkins, Jesse L M

    2002-08-01

    Using data from the Longitudinal Study of American Youth (LSAY), hierarchical linear models (HLMs) were used to model the growth of student science achievement in three areas (biology, physical science, and environmental science) during middle and high school. Results showed significant growth in science achievement across all areas. The growth was quadratic across all areas, with rapid growth at the beginning grades of middle school but slow growth at the ending grades of high school. At the student level, socioeconomic status (SES) and age were related to the rate of growth in all areas. There were no gender differences in the rate of growth in any of the three areas. At the school level, variables associated with school context (school mean SES and school size) and variables associated with school climate (principal leadership, academic expectation, and teacher autonomy) were related to the growth in science achievement. Initial (Grade 7) status in science achievement was not associated with the rate of growth in science achievement among either students or schools in any of the three areas.

  6. Inspiring science achievement: a mixed methods examination of the practices and characteristics of successful science programs in diverse high schools

    NASA Astrophysics Data System (ADS)

    Scogin, Stephen C.; Cavlazoglu, Baki; LeBlanc, Jennifer; Stuessy, Carol L.

    2017-08-01

    While the achievement gap in science exists in the US, research associated with our investigation reveals some high school science programs serving diverse student bodies are successfully closing the gap. Using a mixed methods approach, we identified and investigated ten high schools in a large Southwestern state that fit the definition of "highly successful, highly diverse". By conducting interviews with science liaisons associated with each school and reviewing the literature, we developed a rubric identifying specific characteristics associated with successful science programs. These characteristics and practices included setting high expectations for students, providing extensive teacher support for student learning, and utilizing student-centered pedagogy. We used the rubric to assess the successful high school science programs and compare them to other high school science programs in the state (i.e., less successful and less diverse high school science programs). Highly successful, highly diverse schools were very different in their approach to science education when compared to the other programs. The findings from this study will help schools with diverse students to strengthen hiring practices, enhance teacher support mechanisms, and develop student-focused strategies in the classroom that increase science achievement.

  7. Correlation between MCAT Biology Content Specifications and Topic Scope and Sequence of General Education College Biology Textbooks

    PubMed Central

    Rissing, Steven W.

    2013-01-01

    Most American colleges and universities offer gateway biology courses to meet the needs of three undergraduate audiences: biology and related science majors, many of whom will become biomedical researchers; premedical students meeting medical school requirements and preparing for the Medical College Admissions Test (MCAT); and students completing general education (GE) graduation requirements. Biology textbooks for these three audiences present a topic scope and sequence that correlates with the topic scope and importance ratings of the biology content specifications for the MCAT regardless of the intended audience. Texts for “nonmajors,” GE courses appear derived directly from their publisher's majors text. Topic scope and sequence of GE texts reflect those of “their” majors text and, indirectly, the MCAT. MCAT term density of GE texts equals or exceeds that of their corresponding majors text. Most American universities require a GE curriculum to promote a core level of academic understanding among their graduates. This includes civic scientific literacy, recognized as an essential competence for the development of public policies in an increasingly scientific and technological world. Deriving GE biology and related science texts from majors texts designed to meet very different learning objectives may defeat the scientific literacy goals of most schools’ GE curricula. PMID:24006392

  8. Teacher beliefs in contemporary science education goals and classroom practice: The case of Souhegan High School

    NASA Astrophysics Data System (ADS)

    Mueller, Jennifer Creed

    The central research question for this study was: To what extent is a teacher's purported beliefs in contemporary science education goals embedded in his/her routine classroom practice? Two sub-research questions were necessary to investigate this central research question: (1) To what degree do Souhegan High School science teachers believe in the contemporary goals of science education? (2) What is a Souhegan High School science teacher's degree of conviction to his/her beliefs of particular goals? The goal of this study was to develop grounded hypotheses/research questions. Given the stated research questions, a case study design most appropriately met the intended purpose of this study. The study was initiated with the science teachers at Souhegan High School taking the survey of Contemporary Goals of Science Education (Zeidler & Duffy, 1994). Following analysis of the group's responses, two equal ranges of scores were established. In addition, a weighted mean provided data on a teacher's degree of conviction to his/her beliefs of particular goals. Three teachers were invited to continue with the study, each range represented. Classroom observations provided data in the next phase of inquiry. Samples of assessment tasks were also collected as data. Following classroom observations, interviews were conducted. These interviews were semi-structured, with the use of Newmann, Secada, and Wehlage (1995), Standards and Scoring Criteria for Classroom Instruction and Assessment Tasks as a vehicle for teacher reflection. Data collection and analyses occurred simultaneously as characterized by the constant comparative method in accordance with grounded theory (Glaser & Strauss, 1967). Spradley's Developmental Research Sequence (1980) provided a framework and process for implementing grounded theory which was modified to meet the goals of this study. Analysis of the data from the Survey of Contemporary Goals of Science Education showed strong preference for the contemporary goals of science education over past goals (n = 9). In addition, teachers showed a high degree of conviction in their beliefs of contemporary goals (average weighted mean for contemporary goals = 2.52) and a much lower degree of conviction in their beliefs of past goals (average weighted mean for past goals =.67). While addressing the main research question, the study's methodology was allowed to emerge from the interactions between researcher, participant, the data collection and analysis. This provided the researcher the opportunity to develop a research question from the data as outlined in grounded theory by Glaser and Strauss (1967). The study generated the grounded research question: What role do authentic science research projects play in a teacher's ability to embed his/her beliefs of science education in routine classroom practice? Authentic science research projects are investigations and lines of inquiry relating to an issue relevant to students' lives which, through research and experimentation, would demand engagement in the knowledge and processes of science (observing, hypothesizing, collecting data, inferring, etc.) and have value or meaning beyond school (Newmann, Secada, & Wehlage, 1995). By investigating science teachers' beliefs in the contemporary goals of science education and their classroom practice, this line of inquiry not only benefited the participants and the researcher in their pursuit of effective science education, but increased our knowledge base of science education reform and helped to provide a foundation for research in the future. (Abstract shortened by UMI.)

  9. I. The design, synthesis, and structure of antiparallel beta-sheet and beta-strand mimics. II. The design of a scripted chemistry outreach program to high schools

    NASA Astrophysics Data System (ADS)

    Waldman, Amy Sue

    I. Protein structure is not easily predicted from the linear sequence of amino acids. An increased ability to create protein structures would allow researchers to develop new peptide-based therapeutics and materials, and would provide insights into the mechanisms of protein folding. Toward this end, we have designed and synthesized two-stranded antiparallel beta-sheet mimics containing conformationally biased scaffolds and semicarbazide, urea, and hydrazide linker groups that attach peptide chains to the scaffold. The mimics exhibited populations of intramolecularly hydrogen-bonded beta-sheet-like conformers as determined by spectroscopic techniques such as FTIR, sp1H NMR, and ROESY studies. During our studies, we determined that a urea-hydrazide beta-strand mimic was able to tightly hydrogen bond to peptides in an antiparallel beta-sheet-like configuration. Several derivatives of the urea-hydrazide beta-strand mimic were synthesized. Preliminary data by electron microscopy indicate that the beta-strand mimics have an effect on the folding of Alzheimer's Abeta peptide. These data suggest that the urea-hydrazide beta-strand mimics and related compounds may be developed into therapeutics which effect the folding of the Abeta peptide into neurotoxic aggregates. II. In recent years, there has been concern about the low level of science literacy and science interest among Americans. A declining interest in science impacts the abilities of people to make informed decisions about technology. To increase the interest in science among secondary students, we have developed the UCI Chemistry Outreach Program to High Schools. The Program features demonstration shows and discussions about chemistry in everyday life. The development and use of show scripts has enabled large numbers of graduate and undergraduate student volunteers to demonstrate chemistry to more than 12,000 local high school students. Teachers, students, and volunteers have expressed their enjoyment of The UCI Chemistry Outreach Program to High Schools.

  10. Curriculum Process in Science Education

    NASA Astrophysics Data System (ADS)

    Adamčíková, Veronika; Tarábek, Paul

    2010-07-01

    Physics/science education in the communicative conception is defined as the continuous transfer of the knowledge and methods of physics into the minds of individuals who have not participated in creating them. This process, called the educational communication of physics/science, is performed by various educational agents—teachers, curriculum makers, textbook designers, university teachers and does not mean only a simple transfer of information, but it also involves teaching and instruction at all levels of the school system, the study, learning, and cognition of pupils, students and all other learners, the assessment and evaluation of learning outcomes, curriculum composition and design, the production of textbooks and other means of educational communication and, in addition, university education and the further training of teachers. The educational communication is carried out by the curriculum process of physics/science, which is a sequence of variant forms of curriculum mutually interconnected by curriculum transformations. The variant forms of curriculum are as follows: conceptual curriculum, intended curriculum, project (written) curriculum, operational curriculum, implemented curriculum, and attained curriculum.

  11. An Assessment of Science Teachers' Perceptions of Secondary School Environments in Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, Shwu-Yong L.

    2006-01-01

    This study investigates the psychosocial environments of secondary schools from science teachers’ perspectives, as well as associated variables. Using a sample of 900 secondary science teachers from 52 schools in Taiwan, the results attest to the validity and reliability of the instrument, the Science Teacher School Environment Questionnaire, and its ability to differentiate among schools. The descriptive results show that a majority of science teachers positively perceived their school environments. The teachers reported high collegiality, good teacher student relations, effective principal leadership, strong professional interest, and low work pressure—but also low staff freedom. Multiple regression results further indicate that policy-relevant variables like school level, school location, and teachers’ intentions to stay in teaching were associated with science teachers’ perceptions of their school environments. Qualitative data analysis based on interviews of 34 science teachers confirmed and enriched these findings.

  12. Urban school leadership for elementary science instruction: Identifying and activating resources in an undervalued school subject

    NASA Astrophysics Data System (ADS)

    Spillane, James P.; Diamond, John B.; Walker, Lisa J.; Halverson, Rich; Jita, Loyiso

    2001-10-01

    This article explores school leadership for elementary school science teaching in an urban setting. We examine how school leaders bring resources together to enhance science instruction when there appear to be relatively few resources available for it. From our study of 13 Chicago elementary (K-8) schools' efforts to lead instructional change in mathematics, language arts, and science education, we show how resources for leading instruction are unequally distributed across subject areas. We also explore how over time leaders in one school successfully identified and activated resources for leading change in science education. The result has been a steady, although not always certain, development of science as an instructional area in the school. We argue that leading change in science education involves the identification and activation of material resources, the development of teachers' and school leaders' human capital, and the development and use of social capital.

  13. CosmoQuest: Engaging Students in Authentic Research through Science Fairs

    NASA Astrophysics Data System (ADS)

    Lebofsky, Larry A.; Canizo, Thea; Buxner, Sanlyn; Schmitt, Bill; Runco, Susan; Graff, Paige; CosmoQuest Team

    2016-10-01

    CosmoQuest is embarking on a five-year effort to increase student participation in science fairs through nation-wide training of teachers, science educators, and scientists. The program focuses on helping teachers attain the needed content knowledge and skills to support creation of meaningful science fair research projects. . This includes supporting teachers' understanding of how to engage students in age-appropriate projects as young science and engineering professionals. If successful, students will create their own understanding of STEM content through research. This occurs when students are guided into learning where they become involved at a level that makes it possible for them to independently ask questions and investigate answers by seeking patterns, testing, building conceptual models, and/or designing technology.To support this kind of engagement, we are curating and creating resources to support students of all ages and abilities. Students at different age levels generally have very different developmental reasoning abilities, and engagement and learning are increased when students use age-appropriate reasoning abilities. For instance primary students are effective in observing, communicating, and comparing. As they get older they develop abilities in sequencing and finding relationships. At middle school they add inferring and finally in high school the acquired skills for applying ideas from many disciplines to create more complex understanding.Through a comprehensive program of curriculum development, educator professional development, and building strategic partnerships, we will increase the number and quality of space science related science fair projects in the United States. CosmoQuest is funded through individual donations, through NASA Cooperative Agreement NNX16AC68A, and through additional grants and contracts that are listed on the About page of our website, cosmoquest.org.

  14. The Changing Roles of Science Specialists during a Capacity Building Program for Primary School Science

    ERIC Educational Resources Information Center

    Herbert, Sandra; Xu, Lihua; Kelly, Leissa

    2017-01-01

    Science education starts at primary school. Yet, recent research shows primary school teachers lack confidence and competence in teaching science (Prinsley & Johnston, 2015). A Victorian state government science specialist initiative responded to this concern by providing professional learning programs to schools across Victoria. Drawing on…

  15. Elementary Science-Magnet School Student Attitudes toward Science as Measured by Selected National Assessment of Educational Progress Items and Achievement in Science: A Replication and Extension.

    ERIC Educational Resources Information Center

    Solomon, Alan; Rachild, Bruce

    Attitudes toward science of magnet school students were compared with those of their counterparts in two regular schools. This study attempted to replicate the findings of a 1988 study by A. Solomon and J. Wroblewski involving the same magnet school, the John Moffett Neighborhood Elementary Science Magnet School located in North Philadelphia…

  16. Museums, zoos, and gardens: how formal-informal partnerships can impact urban students' performance in science.

    PubMed

    Weinstein, Meryle; Whitesell, Emilyn Ruble; Schwartz, Amy Ellen

    2014-12-01

    Informal science education institutions (ISEIs) are critical partners in public science education, as they support the science efforts of school systems by providing authentic opportunities for scientific inquiry. This study reports findings from an evaluation of urban advantage (UA), a collaboration between the New York City Department of Education and eight ISEIs designed to improve science education in New York City (NYC) middle schools. Now in its 10th year, the program harnesses the resources and expertise of NYC's ISEIs to (a) enhance the science content knowledge of middle school science teachers, (b) develop teachers' skills at using inquiry-based approaches in their classrooms, and (c) improve the science achievement of middle school students. We examine whether the UA program has led to increased student achievement on the eighth-grade New York State standardized science exam for students in participating schools; in supplemental analyses, we examine the effects on longer term (ninth-grade) outcomes. We use a difference-in-differences framework with school fixed effects to estimate the impact of attending a UA school in eighth grade on science achievement. Our key outcome is performance on New York State's eighth-grade intermediate-level science assessment; longer term outcomes include enrollment at specialized science, technology, engineering, and math high schools as well as taking and passing the high school (Regents) science exams. We find that attending a UA school increases student performance on the eighth-grade science exam by approximately 0.05 SD, and there is some evidence of small effects on Regents taking and passing rates. © The Author(s) 2014.

  17. The Effect of School Culture on Science Education at an Ideologically Innovative Elementary Magnet School: An Ethnographic Case Study

    ERIC Educational Resources Information Center

    Meier, Lori T.

    2012-01-01

    This ethnographic case study investigated the science practices of teachers at one public elementary magnet school in light of how school culture influenced science curriculum design and instruction. The purpose of the study was to address how school culture impacted the school's overall treatment of science as a viable content area. Key informant…

  18. A rural math, science, and technology elementary school tangled up in global networks of practice

    NASA Astrophysics Data System (ADS)

    Carlone, Heidi B.; Kimmel, Sue; Tschida, Christina

    2010-06-01

    This is an ethnographic study of a newly created math, science, and technology elementary magnet school in a rural community fiercely committed to cultural preservation while facing unprecedented economic instability brought on by massive loss of manufacturing jobs. Our goal was to understand global- and community-level contexts that influenced the school's science curriculum, the ways the school promoted itself to the community, and the implicit meanings of science held by school staff, parents and community members. Main sources of data were the county's newspaper articles from 2003 to 2006, the school's, town's, and business leaders' promotional materials, and interviews with school staff, parents, and community members. A key finding was the school's dual promotion of science education and character education. We make sense of this "science with character" curriculum by unpacking the school and community's entanglements with historical (cultural preservation), political (conservative politics, concerns for youth depravity), and economic (globalization) networks. We describe the ways those entanglements enabled certain reproductive meanings of school science (as add-on, suspect, and elitist) and other novel meanings of science (empathetic, nurturing, place-based). This study highlights the school as a site of struggle, entangled in multiple networks of practice that influence in positive, negative, and unpredictable ways, the enacted science curriculum.

  19. Dawn Mission Education and Public Outreach: Science as Human Endeavor

    NASA Astrophysics Data System (ADS)

    Cobb, W. H.; Wise, J.; Schmidt, B. E.; Ristvey, J.

    2012-12-01

    Dawn Education and Public Outreach strives to reach diverse learners using multi-disciplinary approaches. In-depth professional development workshops in collaboration with NASA's Discovery Program, MESSENGER and Stardust-NExT missions focusing on STEM initiatives that integrate the arts have met the needs of diverse audiences and received excellent evaluations. Another collaboration on NASA ROSES grant, Small Bodies, Big Concepts, has helped bridge the learning sequence between the upper elementary and middle school, and the middle and high school Dawn curriculum modules. Leveraging the Small Bodies, Big Concepts model, educators experience diverse and developmentally appropriate NASA activities that tell the Dawn story, with teachers' pedagogical skills enriched by strategies drawn from NSTA's Designing Effective Science Instruction. Dawn mission members enrich workshops by offering science presentations to highlight events and emerging data. Teachers' awareness of the process of learning new content is heightened, and they use that experience to deepen their science teaching practice. Activities are sequenced to enhance conceptual understanding of big ideas in space science and Vesta and Ceres and the Dawn Mission 's place within that body of knowledge Other media add depth to Dawn's resources for reaching students. Instrument and ion engine interactives developed with the respective science team leads help audiences engage with the mission payload and the data each instrument collects. The Dawn Dictionary, an offering in both audio as well as written formats, makes key vocabulary accessible to a broader range of students and the interested public. Further, as Dawn E/PO has invited the public to learn about mission objectives as the mission explored asteroid Vesta, new inroads into public presentations such as the Dawn MissionCast tell the story of this extraordinary mission. Asteroid Mapper is the latest, exciting citizen science endeavor designed to invite the general public into the thrill of NASA science. Helping teachers develop a picture of the history and evolution of our understanding of the solar system, and honing in on the place of asteroids in helping us answer old questions and discover new ones, students and the general public sees the power and excitement underlying planetary science as human endeavor. Research indicates that science inquiry is powerful in the classroom and mission scientists are real-life models of science inquiry in action. Cross-curricular elements include examining research-based strategies for enhancing English language learners' ability to engage in higher order questions and a professional astronomy artist's insight into how visual analysis requires not just our eyes engaged, but our brains: comparing, synthesizing, questioning, evaluating, and wondering. Dawn Education and Public Outreach will share out perspectives and lessons learned, backed by extensive evaluation examining the efficacy of the mission's efforts.

  20. Technology in the curriculum: A vehicle for the development of children's understanding of science concepts through problem solving

    NASA Astrophysics Data System (ADS)

    Jane, Beverley; Smith, Leanne

    1992-12-01

    This research was carried out over a period of ten months with children in Grades 2 and 3 (aged 7 and 8) who were participating in a sequence of technology activities. Since the introduction into Victorian primary schools of The Technology Studies Framework P-10 (Crawford, 1988), more teachers are including technology studies in their classrooms and by so doing may assist children's understanding of science concepts. Children are being exposed to science phenomena related to the technology activities and Technology Studies may be a way of providing children with science experiences. ‘Technology Studies’ in this context refers to children carrying out practical problem solving tasks which can be completed without any particular scientific knowledge. Participation in the technology activities may encourage children to become actively involved, thereby facilitating an exploration of the related science concepts. The project identified the importance of challenge in relation to the children's involvement in the technology activities and the conference paper (available from the first author) discusses particular topics in terms of the balance between cognitive/metacognitive and affective influences (Baird et al., 1990)

  1. The Application of School Science by Urban High School Youth through Problem-Solving in Everyday Life

    ERIC Educational Resources Information Center

    Gitari, Wanja

    2016-01-01

    This qualitative study investigated non-guided applications of school science by high school youth in Ontario in non-school contexts. Although science education (in Ontario and elsewhere) mostly focuses on the meaningful learning of science, learning that can lead to knowledge application, non-guided application of acquired knowledge is rarely…

  2. Achievement-Related within-School Socioeconomic Gaps in Science Subjects in China: Evidence on Existence, Consistency, and Compensation

    ERIC Educational Resources Information Center

    Ma, Xin; Yuan, Jing; Luo, Xingkai

    2016-01-01

    Using data from the 2011 (Chinese) Student Academic Achievement Evaluation, we examined whether within-school socioeconomic gaps in science achievement exist across science subjects, how consistent they are, and whether there are relationships between school average science achievement and within-school socioeconomic gaps in science achievement.…

  3. Science inquiry learning environments created by National Board Certified Teachers

    NASA Astrophysics Data System (ADS)

    Saderholm, Jon

    The purpose of this study was to discern what differences exist between the science inquiry learning environments created by National Board Certified Teachers (NBCTs) and non-NBCTs. Four research questions organized the data collection and analysis: (a) How do National Board Certified science teachers' knowledge of the nature of science differ from that of their non-NBCT counterparts? (b) How do the frequencies of student science inquiry behaviors supported by in middle/secondary learning environments created by NBCTs differ from those created by their non-NBCT counterparts? (c) What is the relationship between the frequency of students' science inquiry behaviors and their science reasoning and understanding of the nature of science? (d) What is the impact of teacher perceptions factors impacting curriculum and limiting inquiry on the existence of inquiry learning environments? The setting in which this study was conducted was middle and high schools in Kentucky during the period between October 2006 and January 2007. The population sampled for the study was middle and secondary science teachers certified to teach in Kentucky. Of importance among those were the approximately 70 National Board Certified middle and high school science teachers. The teacher sample consisted of 50 teachers, of whom 19 were NBCTs and 31 were non-NBCTs. This study compared the science inquiry teaching environments created by NBCTs and non-NBCTs along with their consequent effect on the science reasoning and nature of science (NOS) understanding of their students. In addition, it examined the relationship with these science inquiry environments of other teacher characteristics along with teacher perception of factors influencing curriculum and factors limiting inquiry. This study used a multi-level mixed methodology study incorporating both quantitative and qualitative measures of both teachers and their students. It was a quasi-experimental design using non-random assignment of participants to treatment and control groups and dependent pre- and post-tests (Shadish, Cook, & Campbell, 2002). Teacher and student NOS understanding was measured using the Student Understanding of Science and Science Inquiry (SUSSI) instrument (Liang, et. al, 2006). Science inquiry environment was measured with the Elementary Science Inquiry Survey (ESIS) (Dunbar, 2002) which was given both to teachers and their students. Science inquiry environment measurements were triangulated with observations of a stratified random sub-sample of participating teachers. Observations were structured using the low-inference Collaboratives for Excellence in Teaching Practice (CETP) Classroom Observation Protocol (COP) (Lawrenz, Huffman, & Appleldoorn 2002), and the high-inference Reform Teaching Observation Protocol (RTOP) (Piburn & Sawada, 2000). NBCTs possessed more informed view of NOS than did non-NBCTs. Additionally, high school science teachers possessed more informed views regarding NOS than did middle school science teachers, with the most informed views belonging to high school science NBCTs. High school science NBCTs created learning environments in which students engaged in science inquiry behaviors significantly more frequently than did high school science non-NBCTs. Middle school science NBCTs, on the other hand, did not create learning environments that differed in significant ways from those of middle school science non-NBCTs. Students of high school science NBCTs possessed significantly higher science reasoning than did students of high school science non-NBCTs. Middle school students of science NBCTs possessed no more science reasoning ability than did middle school students of science non-NBCTs. NOS understanding displayed by students of both middle school and high school science NBCTs was not distinguished from students of non-NBCTs. Classroom science inquiry environment created by non-NBCTs were correlated with science teachers' perceptions of factors determining the curriculum, and the factors limiting inquiry. NBCT classroom science inquiry environment were not correlated with science teacher perceptions. They were, however, strongly correlated with science teacher attendance at science workshops and negatively correlated with teacher perception that experience limits inquiry. The results of this study have implications for policy, practice, and research. Having a science teacher who is an NBCT appears to benefit high school students; however, the benefit for students of middle school science NBCTs appears only when the teacher is also experienced. Additionally, science NBCTs appear to be able to create more controlled science inquiry learning environments than do science non-NBCTs. At the high school level the practice of using data to explain patterns appears to positively affect student science reasoning. Implications results of this study have for further research include examining the differences of the NBPTS certification process for middle and high school teachers; deeper investigation of the causes of the differences in science reasoning between students of NBCTs and non-NBCTs; and studies of the relationship between the NBPTS certification process and teacher efficacy and personal agency.

  4. The key factors affecting students' individual interest in school science lessons

    NASA Astrophysics Data System (ADS)

    Cheung, Derek

    2018-01-01

    Individual interest in school science lessons can be defined as a relatively stable and enduring personal emotion comprising affective and behavioural reactions to events in the regular science lessons at school. Little research has compared the importance of different factors affecting students' individual interest in school science lessons. The present study aimed to address this gap, using a mixed methods design. Qualitative interview data were collected from 60 Hong Kong junior secondary school students, who were asked to describe the nature of their interest in science lessons and the factors to which they attribute this. Teacher interviews, parent interviews, and classroom observations were conducted to triangulate student interview data. Five factors affecting students' individual interest in school science lessons were identified: situational influences in science lessons, individual interest in science, science self-concept, grade level, and gender. Quantitative data were then collected from 591 students using a questionnaire. Structural equation modelling was applied to test a hypothesised model, which provided an acceptable fit to the student data. The strongest factor affecting students' individual interest in school science lessons was science self-concept, followed by individual interest in science and situational influences in science lessons. Grade level and gender were found to be nonsignificant factors. These findings suggest that teachers should pay special attention to the association between academic self-concept and interest if they want to motivate students to learn science at school.

  5. Design of Mariner 9 Science Sequences using Interactive Graphics Software

    NASA Technical Reports Server (NTRS)

    Freeman, J. E.; Sturms, F. M, Jr.; Webb, W. A.

    1973-01-01

    This paper discusses the analyst/computer system used to design the daily science sequences required to carry out the desired Mariner 9 science plan. The Mariner 9 computer environment, the development and capabilities of the science sequence design software, and the techniques followed in the daily mission operations are discussed. Included is a discussion of the overall mission operations organization and the individual components which played an essential role in the sequence design process. A summary of actual sequences processed, a discussion of problems encountered, and recommendations for future applications are given.

  6. Home Culture, Science, School and Science Learning: Is Reconciliation Possible?

    ERIC Educational Resources Information Center

    Tan, Aik-Ling

    2011-01-01

    In response to Meyer and Crawford's article on how nature of science and authentic science inquiry strategies can be used to support the learning of science for underrepresented students, I explore the possibly of reconciliation between the cultures of school, science, school science as well as home. Such reconciliation is only possible when…

  7. Using History and Philosophy of Science to Promote Students' Argumentation

    NASA Astrophysics Data System (ADS)

    Archila, Pablo Antonio

    2015-11-01

    This article describes the effect of a teaching-learning sequence (TLS) based on the discovery of oxygen in promoting students' argumentation. It examines the written and oral arguments produced by 63 high school students (24 females and 39 males, 16-17 years old) in France during a complete TLS supervised by the same teacher. The data used in this analysis was derived from students' written responses, audio and video recordings, and written field notes. The first goal of this investigation was to provide evidence that an approach combining history and philosophy of science and argumentation could increase students' awareness of the relevance of experimentation and communication to scientific progress. The second goal was to assess the effectiveness of the TLS to engage students in argumentative classroom interactions (such as debates) relating to the discovery of oxygen at the end of the 18th century. The findings show that this historical case can be useful for promoting students' argumentation and is also appropriate for high school students. Future research should include students of other ages, other historical episodes and experiences in other parts of the world.

  8. Using SDO Data in the Classroom to Do Real Science -- A Community College Laboratory Investigation

    NASA Astrophysics Data System (ADS)

    Dave, T. A.; Hildreth, S.; Lee, S.; Scherrer, D. K.

    2013-12-01

    The incredible accessibility of extremely high spatial and temporal resolution data from the Solar Dynamics Observatory creates an opportunity for students to do almost real-time investigation in an Astronomy Lab. We are developing a short series of laboratory exercises using SDO data, targeted for Community College students in an introductory lab class, extendable to high school and university students. The labs initially lead students to explore what SDO can do, online, through existing SDO video clips taken on specific dates. Students then investigate solar events using the Heliophysics Events Knowledgebase (HEK), and make their own online movies of events, to discuss and share with classmates. Finally, students can investigate specific events and areas, selecting specific dates, locations, wavelength regions, and time cadences to create and gather their own SDO datasets for more detailed investigation. In exploring the Sun using actual data, students actually do real science. We are in the process of beta testing the sequence of labs, and are seeking interested community college, university, and high school astronomy lab teachers who might consider trying the labs themselves.

  9. Parental influences on students' self-concept, task value beliefs, and achievement in science.

    PubMed

    Senler, Burcu; Sungur, Semra

    2009-05-01

    The aim of this study was twofold: firstly, to investigate the grade level (elementary and middle school) and gender effect on students' motivation in science (perceived academic science self-concept and task value) and perceived family involvement, and secondly to examine the relationship among family environment variables (fathers' educational level, mothers' educational level, and perceived family involvement), motivation, gender and science achievement in elementary and middle schools. Multivariate Analysis of Variance (MANOVA) showed that elementary school students have more positive science self-concept and task value beliefs compared to middle school students. Moreover, elementary school students appeared to perceive more family involvement in their schooling. Path analyses also suggested that family involvement was directly linked to elementary school students' task value and achievement. Also, in elementary school level, significant relationships were found among father educational level, science self-concept, task value and science achievement. On the other hand, in middle school level, family involvement, father educational level, and mother educational level were positively related to students' task value which is directly linked to students' science achievement. Moreover, mother educational level contributed to science achievement through its effect on self-concept.

  10. Factors significantly related to science achievement of Malaysian middle school students: An analysis of TIMSS 1999 data

    NASA Astrophysics Data System (ADS)

    Mokshein, Siti Eshah

    The importance of science and technology in the global economy has led to growing emphasis on math and science achievement all over the world. In this study, I seek to identify variables at the student-level and school-level that account for the variation in science achievement of the eighth graders in Malaysia. Using the Third International Math and Science Study (TIMSS) 1999 for Malaysia, a series of HLM analysis was performed. Results indicate that (1) variation in overall science achievement is greater between schools than within schools; (2) both the selected student-level and school-level factors are Important in explaining the variation in the eight graders' achievement In science; (3) the selected student-level variables explain about 13% of the variation in students' achievement within schools, but as an aggregate, they account for a much larger proportion of the between-school variance; (4) the selected school-level variables account for about 55% of the variation between schools; (5) within schools, the effects of self-concept In science, awareness of the social implications of science, gender, and home educational resources are significantly related to achievement; (6) the effects of self-concept in science and awareness of social implications of science are significant even after controlling for the effects of SES; (7) between schools, the effects of the mean of home educational resources, mean of parents' education, mean of awareness of the social implications of science, and emphasis on conducting experiments are significantly related to achievement; (8) the effects of SES variables explain about 50% of the variation in the school means achievement; and (9) the effects of emphasis on conducting experiments on achievement are significant even after controlling for the effects of SES. Since it is hard to change the society, it is recommended that efforts to Improve science achievement be focused more at the school-level, concentrating on variables that can be changed. This includes Increasing students' awareness of the social Implications of science and improving students' self-concepts In science, strengthening evaluation systems, and finding ways to compensate for the lack of home educational resources among disadvantaged students. The study further suggests that emphasis be given to proper implementation of science experiments. Besides, the prominent effects of SES variables on the school mean achievement is something worthwhile to be further researched.

  11. Adolescents' goal orientations for science in single-gender Israeli religious schools

    NASA Astrophysics Data System (ADS)

    Fortus, David; Daphna, Limor

    2017-01-01

    Israeli students and their families can choose between state-funded secular, religious, orthodox, and other alternative schools (e.g., Waldorf, Montessori, democratic). Earlier studies showed that the motivation to engage with science differs greatly between Israeli students in secular schools and democratic schools, with these differences being attributed to differences in school culture rather than home influence (Vedder-Weiss & Fortus, 2011, 2012). In this study we extend earlier studies by looking at religious state-funded schools that serve 18% of Israel's Jewish population. These schools provide a unique research environment since from grade 6 they are gender-separated. We examined the science-related mastery, performance-approach, and performance-avoid goal orientations, perceptions of the science teachers, parents, schools, and peers' goal emphases in relation to science of the students in these schools. We compared between students in religious schools (newly collected data) and secular schools (data reported in prior studies), and found that there is a distinct difference between these two populations that is associated with differing attitudes toward gender and science at these schools. This study provides additional evidence for the influence of culture on students' motivation to engage with science, suggests mechanisms by which this influence may occur.

  12. How to implement the Science Fair Self-Help Development Program in schools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menicucci, D.

    1994-01-01

    This manual is intended to act as a working guide for setting up a Science Fair Volunteer Support Committee at your school. The Science Fair Volunteer Support Committee, or SFVSC, is the key component of the Science Fair Self-Help program, which was developed by Sandia National Laboratories and is designed to support a school`s science activities. The SFVSC is a team of parents and community volunteers who work in concert with a school`s teaching staff to assist and manage all areas of a school Science and Engineering Fair. The main advantage of creating such a committee is that it freesmore » the science teachers from the organizational aspects of the fair and lets them concentrate on their job of teaching science. This manual is based on information gained through a Self-Help Development pilot program that was developed by Sandia National Laboratories during the 1991--92 school year at three Albuquerque, NM, middle schools. The manual describes the techniques that were successful in the pilot program and discusses how these techniques might be implemented in other schools. This manual also discusses problems that may be encountered, including suggestions for how they might be resolved.« less

  13. Girls' Attitudes Towards Science in Kenya

    NASA Astrophysics Data System (ADS)

    Chetcuti, Deborah A.; Kioko, Beriter

    2012-07-01

    This study investigated girls' attitudes towards science in Kenya. It was carried out with 120 girls from four secondary schools in the Eastern province of Kenya. These were an urban single-sex (SS) and co-educational (Co-Ed) school and a rural SS and Co-Ed school. Different schools were chosen in order to explore whether there are any differences in attitudes in SS and Co-Ed schools and in schools in rural and urban areas. The methodology included the use of both questionnaires and focus group interviews. The main aim was to gain insight into the extent and depth of students' attitudes towards science. The findings of the study showed that the majority of Kenyan girls who participated in the study have a favourable attitude towards science. Girls in SS schools were found to have a more favourable attitude than those in Co-Ed schools, while girls in rural area schools were found to find science more relevant than those in urban schools. It emerged from this study that the attitudes of Kenyan girls are influenced by their perceptions of the relevance of science, enjoyment of studying science, perceptions of the suitability of science for a career, and their perceptions of subject difficulty.

  14. High School Students' Perceptions of School Science and Science Careers: A Critical Look at a Critical Issue

    ERIC Educational Resources Information Center

    Quinn, Frances; Lyons, Terry

    2011-01-01

    Disproportionate representation of males and females in science courses and careers continues to be of concern. This article explores gender differences in Australian high school students' perceptions of school science and their intentions to study university science courses. Nearly 3800 15-year-old students responded to a range of 5-point Likert…

  15. Towards a More Authentic Science Curriculum: The contribution of out-of-school learning

    NASA Astrophysics Data System (ADS)

    Braund, Martin; Reiss, Michael

    2006-10-01

    In many developed countries of the world, pupil attitudes to school science decline progressively across the age range of secondary schooling while fewer students are choosing to study science at higher levels and as a career. Responses to these developments have included proposals to reform the curriculum, pedagogy, and the nature of pupil discussion in science lessons. We support such changes but argue that far greater use needs to be made of out-of-school sites in the teaching of science. Such usage will result in a school science education that is more valid and more motivating. We present an “evolutionary model” of science teaching that looks at where learning and teaching take place, and draws together thinking about the history of science and developments in the nature of learning over the past 100 years or so. Our contention is that laboratory-based school science teaching needs to be complemented by out-of-school science learning that draws on the actual world (e.g., through fieldtrips), the presented world (e.g., in science centres, botanic gardens, zoos and science museums), and the virtual worlds that are increasingly available through information technologies.

  16. Associations between school-level environment and science classroom environment in secondary schools

    NASA Astrophysics Data System (ADS)

    Dorman, Jeffrey P.; Fraser, Barry J.; McRobbie, Campbell J.

    1995-09-01

    This article describes a study of links between school environment and science classroom environment. Instruments to assess seven dimensions of school environment (viz., Empowerment, Student Support, Affiliation, Professional Interest, Mission Consensus, Resource Adequacy and Work Pressure) and seven dimensions of classroom environment (viz., Student Affiliation, Interactions, Cooperation, Task Orientation, Order & Organisation, Individualisati n and Teacher Control) in secondary school science classrooms were developed and validated. The study involved a sample of 1,318 students in 64 year 9 and year 12 science classes and 128 teachers of science in Australian secondary schools. Using the class mean as the unit of analysis for student data, associations between school and classroom environment were investigated using simple, multiple and canonical correlational analyses. In general, results indicated weak relationships between school and classroom environments and they reinforced the view that characteristics of the school environment are not transmitted automatically into science classrooms.

  17. Attitudes and achievement of Bruneian science students

    NASA Astrophysics Data System (ADS)

    Dhindsa, Harkirat S.; Chung, Gilbert

    2003-08-01

    The aim of this study was to evaluate attitudes towards and achievement in science of Form 3 students studying in single-sex and coeducational schools in Brunei. The results demonstrated significant differences in attitudes towards and achievement in science of male and female students in single-sex schools and students in coeducational schools. These differences were at moderate level. In single-sex schools, the girls achieved moderately better in science than the boys despite their attitudes were only marginally better than the boys. However, there were no gender differences in attitudes towards and achievement in science of students in coeducational schools. The attitudes towards and achievement in science of girls in single-sex schools were moderately better than those of girls in coeducational schools. Whereas the attitudes towards and achievement in science of boys in single-sex schools were only marginally better than the boys in coeducational schools. However, further research to investigate (a) if these differences are repeated at other levels as well as in other subjects, and (b) the extent to which school type contributed towards these differences is recommended.

  18. The Science Curriculum. The Report of the National Forum for School Science (Crystal City, Virginia, November 14-15, 1986). This Year in School Science 1986.

    ERIC Educational Resources Information Center

    Champagne, Audrey B., Ed.; Hornig, Leslie E., Ed.

    The outgrowth of a conference on how science education can best meet the needs and expectations of society, this volume is designed to provide a source of information and ideas about the future of the school science curriculum. It contains 15 papers, including: "Critical Questions and Tentative Answers for the School Science Curriculum" (Audrey B.…

  19. Interactions between Classroom Discourse, Teacher Questioning, and Student Cognitive Engagement in Middle School Science

    ERIC Educational Resources Information Center

    Smart, Julie B.; Marshall, Jeff C.

    2013-01-01

    Classroom discourse can affect various aspects of student learning in science. The present study examines interactions between classroom discourse, specifically teacher questioning, and related student cognitive engagement in middle school science. Observations were conducted throughout the school year in 10 middle school science classrooms using…

  20. Science in an Indigenous School: Insight into Teacher Beliefs about Science Inquiry and Their Development as Science Teachers

    ERIC Educational Resources Information Center

    Rofe, Craig; Moeed, Azra; Anderson, Dayle; Bartholomew, Rex

    2016-01-01

    School science aspires for students to develop conceptual, procedural and nature of science understandings as well as developing scientific literacy. Issues and complexities surrounding the development of science curriculum for Indigenous schools in New Zealand is a concern as little is known about these aspects of science learning in…

  1. Hidden student voice: A curriculum of a middle school science class heard through currere

    NASA Astrophysics Data System (ADS)

    Crooks, Kathleen Schwartz

    Students have their own lenses through which they view school science and the students' views are often left out of educational conversations which directly affect the students themselves. Pinar's (2004) definition of curriculum as a 'complicated conversation' implies that the class' voice is important, as important as the teacher's voice, to the classroom conversation. If the class' voice is vital to classroom conversations, then the class, consisting of all its students, must be allowed to both speak and be heard. Through a qualitative case study, whereby the case is defined as a particular middle school science class, this research attempts to hear the 'complicated conversation' of this middle school science class, using currere as a framework. Currere suggests that one's personal relationship to the world, including one's memories, hopes, and dreams, should be the crux of education, rather than education being primarily the study of facts, concepts, and needs determined by an 'other'. Focus group interviews were used to access the class' currere: the class' lived experiences of science, future dreams of science, and present experiences of science, which was synthesized into a new understanding of the present which offered the class the opportunity to be fully educated. The interview data was enriched through long-term observation in this middle school science classroom. Analysis of the data collected suggests that a middle school science class has rich science stories which may provide insights into ways to engage more students in science. Also, listening to the voice of a science class may provide insight into discussions about science education and understandings into the decline in student interest in science during secondary school. Implications from this research suggest that school science may be more engaging for this middle school class if it offers inquiry-based activities and allows opportunities for student-led research. In addition, specialized academic and career advice in early middle school may be able to capitalize on this class' positive perspective toward science. Further research may include using currere to hear the voices of middle school science classes with more diverse demographic qualities.

  2. Motivating Students with Authentic Science Experiences: Changes in Motivation for School Science

    ERIC Educational Resources Information Center

    Hellgren, Jenny M.; Lindberg, Stina

    2017-01-01

    Background: Students' motivation for science declines over the early teenage years, and students often find school science difficult and irrelevant to their everyday lives. This paper asks whether creating opportunities to connect school science to authentic science can have positive effects on student motivation. Purpose: To understand how…

  3. Astronomy in the College Curriculum for Preservice Elementary Teachers

    NASA Astrophysics Data System (ADS)

    French, L. M.; MacCormack, A.; Winokur, J.

    1997-05-01

    Astronomy, astrophysics, and space science play a major role in courses being developed at Wheelock College. The majority of the students are preparing for careers as elementary and early childhood teachers; they will thus be among the first teachers of science a child meets. Wheelock's introductory course in astronomy is based around key topics in the new national science frameworks such as size and scale, our place in the Universe, and light and color. Astrophysics, an intermediate level course, provides a more quantitative survey for those with a background in physical science. An interdisciplinary sequence of two courses, "The Physical Universe" and "The Living World", introduces students to key concepts such as motion and energy. Applications are studied from all of the sciences, including crater formation and the conversion of light to chemical energy in photosynthesis. The interdisciplinary courses have been developed and taught by an astrophysicist, an ecologist, and an early childhood educator. This work has been done under the auspices of TEAMS-BC (Teacher Education Addressing Math and Science in Boston and Cambridge), a Collaborative for Excellence in Teacher Preparation involving Harvard University, MIT, the University of Massachusetts-Boston, Wheelock College, and the Boston and Cambridge Public School Systems.

  4. Student experience of school science

    NASA Astrophysics Data System (ADS)

    Shirazi, Shaista

    2017-09-01

    This paper presents the findings of a two-phase mixed methods research study that explores the link between experiences of school science of post-16 students and their decisions to take up science for their higher studies. In the first phase, students aged 16-17 (n = 569) reflected on the past five years of their school science experience in a quasi-longitudinal approach to determine a typology of experiences. The second phase entailed data collection through interviews of a sample of these students (n = 55) to help triangulate and extend findings from the first phase. Students taking up science post-16 reported significantly more positive experiences of school science than students who had decided not to take science further. Of school-related factors influencing experiences of school science curriculum content was the most important followed by being interested and motivated in the subject. There is evidence that interest and motivation in science depend on teacher practice and the perception of science as a difficult subject.

  5. Understanding the Language Demands on Science Students from an Integrated Science and Language Perspective

    NASA Astrophysics Data System (ADS)

    Seah, Lay Hoon; Clarke, David John; Hart, Christina Eugene

    2014-04-01

    This case study of a science lesson, on the topic thermal expansion, examines the language demands on students from an integrated science and language perspective. The data were generated during a sequence of 9 lessons on the topic of 'States of Matter' in a Grade 7 classroom (12-13 years old students). We identify the language demands by comparing students' writings with the scientific account of expansion that the teacher intended the students to learn. The comparison involved both content analysis and lexicogrammatical (LG) analysis. The framework of Systemic Functional Linguistics was adopted for the LG analysis. Our analysis reveals differences in the meaning and the way LG resources were employed between the students' writings and the scientific account. From these differences, we found the notion of condition-of-use for LG resources to be a significant aspect of the language that students need to appropriate in order to employ the language of school science appropriately. This notion potentially provides a means by which teachers could concurrently address the conceptual and representational demands of science learning. Finally, we reflect on how the complementary use of content analysis and LG analysis provides a way for integrating the science and language perspectives in order to understand the demands of learning science through language.

  6. A Foray into Fungal Ecology: Understanding Fungi and Their Functions Across Ecosystems

    NASA Astrophysics Data System (ADS)

    Francis, N.; Dunkirk, N. C.; Peay, K.

    2015-12-01

    Despite their incredible diversity and importance to terrestrial ecosystems, fungi are not included in a standard high school science curriculum. This past summer, however, my work for the Stanford EARTH High School Internship program introduced me to fungal ecology through experiments involving culturing, genomics and root dissections. The two fungal experiments I worked on had very different foci, both searching for answers to broad ecological questions of fungal function and physiology. The first, a symbiosis experiment, sought to determine if the partners of the nutrient exchange between pine trees and their fungal symbionts could choose one another. The second experiment, a dung fungal succession project, compared the genetic sequencing results of fungal extractions from dung versus fungal cultures from dung. My part in the symbiosis experiment involved dissection, weighing and encapsulation of root tissue samples characterized based on the root thickness and presence of ectomycorrhizal fungi. The dung fungi succession project required that I not only learn how to culture various genera of dung fungi but also learn how to extract DNA and RNA for sequencing from the fungal tissue. Although I primarily worked with dung fungi cultures and thereby learned about their unique physiologies, I also learned about the different types of genetic sequencing since the project compared sequences of cultured fungi versus Next Generation sequencing of all fungi present within a dung pellet. Through working on distinct fungal projects that reassess how information about fungi is known within the field of fungal ecology, I learned not only about the two experiments I worked on but also many past related experiments and inquiries through reading scientific papers. Thanks to my foray into fungal research, I now know not only the broader significance of fungi in ecological research but also how to design and conduct ecological experiments.

  7. Religious beliefs in science classrooms

    NASA Astrophysics Data System (ADS)

    Fysh, Robert; Lucas, Keith B.

    1998-12-01

    The question of the relationship between science and religion assumes importance for many secondary school students of science, especially but not exclusively for those in Christian schools. Science as presented in many school classrooms is not as objective and value free as it might seem on first examination, nor does it represent adequately the range of beliefs about science held by students and teachers. This paper reports part of a larger research study into beliefs about science and religion held by students, teachers and clergy in a Lutheran secondary school. Results indicate that participants in the study was the relationship between science and religious belief in ways unforeseen and unappreciated by traditional school science programs. The stories of selected participants are told and they frame a discussion of implications of the study for science teaching.

  8. Impact of Texas High School Science Teacher Credentials on Student Performance in High School Science

    ERIC Educational Resources Information Center

    George, Anna Ray Bayless

    2012-01-01

    A study was conducted to determine the relationship between the credentials held by science teachers who taught at a school that administered the Science Texas Assessment on Knowledge and Skills (Science TAKS), the state standardized exam in science, at grade 11 and student performance on a state standardized exam in science administered in grade…

  9. Examining Differences in Middle School Student Achievement on a Criterion-Referenced Competency Test (CRCT) in Science

    ERIC Educational Resources Information Center

    Rich, Jamie; Duncan, Dennis W.; Navarro, Maria; Ricketts, John C.

    2009-01-01

    Many authors have posited that agricultural education curriculum in middle schools may enhance student performance in science. To determine the effect that agricultural education curriculum has upon Georgia middle schools' student performance in science, this descriptive study compared science knowledge among middle school students in Georgia who…

  10. The Key Factors Affecting Students' Individual Interest in School Science Lessons

    ERIC Educational Resources Information Center

    Cheung, Derek

    2018-01-01

    Individual interest in school science lessons can be defined as a relatively stable and enduring personal emotion comprising affective and behavioural reactions to events in the regular science lessons at school. Little research has compared the importance of different factors affecting students' individual interest in school science lessons. The…

  11. Transformative Multicultural Science curriculum: A case study of middle school robotics

    NASA Astrophysics Data System (ADS)

    Grimes, Mary Katheryn

    Multicultural Science has been a topic of research and discourse over the past several years. However, most of the literature concerning this topic (or paradigm) has centered on programs in tribal or Indigenous schools. Under the framework of instructional congruence, this case study explored how elementary and middle school students in a culturally diverse charter school responded to a Multicultural Science program. Furthermore, this research sought to better understand the dynamics of teaching and learning strategies used within the paradigm of Multicultural Science. The school's Robotics class, a class typically stereotyped as fitting within the misconceptions associated with the Western Modern Science paradigm, was the center of this case study. A triangulation of data consisted of class observations throughout two semesters; pre and post student science attitude surveys; and interviews with individual students, Robotic student teams, the Robotics class instructor, and school administration. Three themes emerged from the data that conceptualized the influence of a Multicultural Science curriculum with ethnically diverse students in a charter school's Robotics class. Results included the students' perceptions of a connection between science (i.e., Robotics) and their personal lives, a positive growth in the students' attitude toward science (and engineering), and a sense of personal empowerment toward being successful in science. However, also evident in the findings were the students' stereotypical attitudes toward science (and scientists) and their lack of understanding of the Nature of Science. Implications from this study include suggestions toward the development of Multicultural Science curricula in public schools. Modifications in university science methods courses to include the Multicultural Science paradigm are also suggested.

  12. Factors Affecting the Retention of First-career and Second-career Science Teachers in Urban High Schools

    NASA Astrophysics Data System (ADS)

    Rak, Rosemary C.

    The turnover of high school science teachers is an especially troubling problem in urban schools with economically disadvantaged students. Because high teacher turnover rates impede effective instruction, the persistence of teacher attrition is a serious concern. Using an online survey and interviews in a sequential mixed-methods approach, this study investigates the perceptions of high school science teachers regarding factors that contribute to their employment decisions. The study also compares first-career and second-career science teachers' perceptions of retention and attrition factors and identifies conditions that urban school leaders can establish to support the retention of their science teachers. A purposeful sample of 138 science teachers from urban area New England public high schools with 50% or more Free and Reduced Price Lunch-eligible students participated in the survey. Twelve survey respondents were subsequently interviewed. In accord with extant research, this study's results suggest that school leadership is essential to fostering teacher retention. The findings also reveal the importance of autonomy, professional community, and adequate resources to support science instruction. Although mentoring and induction programs receive low importance ratings in this study, career-changers view these programs as more important to their retention than do first-career science teachers. Second-career interviewees, in particular, voice the importance of being treated as professionals by school leaders. Future research may examine the characteristics of mentoring and induction programs that make them most responsive to the needs of first-career and second-career science teachers. Future studies may also investigate the aspects of school leadership and professional autonomy that are most effective in promoting science teacher retention. Keywords: career-changers; school leaders; science teachers; second-career teachers; teacher retention; teacher turnover; urban high school

  13. A multimedia educational program that increases science achievement among inner-city non-Asian minority middle-school students.

    PubMed

    Murray, Nancy G; Opuni, Kwame A; Reininger, Belinda; Sessions, Nathalie; Mowry, Melanie M; Hobbs, Mary

    2009-06-01

    To test the effectiveness of a middle school, multimedia health sciences educational program called HEADS UP in non-Asian-minority (Hispanic and African American), inner-city students. The program designers hope to increase the number of these students entering the health sciences pipeline. The program includes video role-model stories featuring minority scientists and students, hands-on activities, and teacher resources. Collaborators from The University of Texas Health Science Center at Houston, Spring Branch Independent School District, and the Health Museum developed the modules. From 2004 to 2007, the authors used a quasi-experimental, two-group pretest/posttest design to assess program effects on students' performance and interest in science, their science self-efficacy, their fear of science, and their science-related careers self-efficacy. An independent third party matched the intervention school to a comparison school by test scores, school demographics, and student demographics and then matched pairs of sixth-grade students (N = 428) by fifth-grade science scores, gender, ethnicity, and participation in the free or reduced lunch program. The authors collected data on these students for three years. At eighth grade (2007), the intervention school students scored significantly higher (F = 12.38, P < .001) on the Stanford Achievement Test 10 in science and reported higher interest in science (F = 11.08, P < .001) than their matched, comparison-school pairs. Students in neither group reported an increase in their confidence to choose a science-related career, but students in one high-implementing teacher's class reported decreased fear of science. HEADS UP shows potential for improving inner-city, non-Asian-minority middle school students' performance and interest in science.

  14. Differentiating Science Instruction: Success Stories of High School Science Teachers

    ERIC Educational Resources Information Center

    Maeng, Jennifer Lynn Cunningham

    2011-01-01

    This study investigated the characteristics and practices of high school science teachers who differentiate instruction. Specifically teachers' beliefs about science teaching and student learning and how they planned for and implemented differentiated instruction in their classrooms were explored. Understanding how high school science teachers…

  15. The Effect of a State Department of Education Teacher Mentor Initiative on Science Achievement

    NASA Astrophysics Data System (ADS)

    Pruitt, Stephen L.; Wallace, Carolyn S.

    2012-06-01

    This study investigated the effectiveness of a southern state's department of education program to improve science achievement through embedded professional development of science teachers in the lowest performing schools. The Science Mentor Program provided content and inquiry-based coaching by teacher leaders to science teachers in their own classrooms. The study analyzed the mean scale scores for the science portion of the state's high school graduation test for the years 2004 through 2007 to determine whether schools receiving the intervention scored significantly higher than comparison schools receiving no intervention. The results showed that all schools achieved significant improvement of scale scores between 2004 and 2007, but there were no significant performance differences between intervention and comparison schools, nor were there any significant differences between various subgroups in intervention and comparison schools. However, one subgroup, economically disadvantaged (ED) students, from high-level intervention schools closed the achievement gap with ED students from no-intervention schools across the period of the study. The study provides important information to guide future research on and design of large-scale professional development programs to foster inquiry-based science.

  16. Academic achievement and career choice in science: Perceptions of African American urban high school students

    NASA Astrophysics Data System (ADS)

    Jones, Sheila Kay

    2007-12-01

    Low test scores in science and fewer career choices in science among African American high school students than their White counterparts has resulted in lower interest during high school and an underrepresentation of African Americans in science and engineering fields. Reasons for this underachievement are not known. This qualitative study used a grounded theory methodology to examine what influence parental involvement, ethnic identity, and early mentoring had on the academic achievement in science and career choice in science of African American urban high school 10th grade students. Using semi-structured open-ended questions in individual interviews and focus groups, twenty participants responded to questions about African American urban high school student achievement in science and their career choice in science. The median age of participants was 15 years; 85% had passed either high school biology or physical science. The findings of the study revealed influences and interactions of selected factors on African American urban high school achievement in science. Sensing potential emerged as the overarching theme with six subthemes; A Taste of Knowledge, Sounds I Hear, Aromatic Barriers, What Others See, The Touch of Others, and The Sixth Sense. These themes correlate to the natural senses of the human body. A disconnect between what science is, their own individual learning and success, and what their participation in science could mean for them and the future of the larger society. Insight into appropriate intervention strategies to improve African American urban high school achievement in science was gained.

  17. Inquiry Learning in the Singaporean Context: Factors affecting student interest in school science

    NASA Astrophysics Data System (ADS)

    Jocz, Jennifer Ann; Zhai, Junqing; Tan, Aik Ling

    2014-10-01

    Recent research reveals that students' interest in school science begins to decline at an early age. As this lack of interest could result in fewer individuals qualified for scientific careers and a population unprepared to engage with scientific societal issues, it is imperative to investigate ways in which interest in school science can be increased. Studies have suggested that inquiry learning is one way to increase interest in science. Inquiry learning forms the core of the primary syllabus in Singapore; as such, we examine how inquiry practices may shape students' perceptions of science and school science. This study investigates how classroom inquiry activities relate to students' interest in school science. Data were collected from 425 grade 4 students who responded to a questionnaire and 27 students who participated in follow-up focus group interviews conducted in 14 classrooms in Singapore. Results indicate that students have a high interest in science class. Additionally, self-efficacy and leisure-time science activities, but not gender, were significantly associated with an increased interest in school science. Interestingly, while hands-on activities are viewed as fun and interesting, connecting learning to real-life and discussing ideas with their peers had a greater relation to student interest in school science. These findings suggest that inquiry learning can increase Singaporean students' interest in school science; however, simply engaging students in hands-on activities is insufficient. Instead, student interest may be increased by ensuring that classroom activities emphasize the everyday applications of science and allow for peer discussion.

  18. Who Aspires to a Science Career? A comparison of survey responses from primary and secondary school students

    NASA Astrophysics Data System (ADS)

    DeWitt, Jennifer; Archer, Louise

    2015-09-01

    There is broad international agreement about the importance of increasing participation in science once it is no longer compulsory in school, particularly among groups who have been historically underrepresented in science. Previous research reflects that despite broadly positive attitudes to science in and outside of school, there is limited translation of these attitudes into later aspirations and participation in science. The ASPIRES project, a five-year longitudinal study, has sought to understand students' science and career aspirations between the ages of 10 and 14 and to identify factors that contribute to, or hinder, the development of aspirations in science. Utilising data from two cross-sectional surveys conducted with students in their last year of primary school (9300 students) and in their third year of secondary school (4,600 students), we explore who is most likely to hold science aspirations and what factors seem to be connected to those aspirations at both time points. Descriptive, multivariate and multilevel modelling analyses of the data reflect consistency in who holds science aspirations, as well as highlighting that the factors connected to these aspirations-attitudes to school science and parental attitudes-are similar at both times. However, for many students, positive attitudes to school science and positive parental attitudes to science are not translating into children wanting a career in science. We suggest that differences in 'science capital' may help explain this persistent gap.

  19. Determination of in-service needs of Turkish high school science teachers in Istanbul

    NASA Astrophysics Data System (ADS)

    Ogan, Feral

    The purposes of this study were to identify the in-service needs of high school science teachers in Istanbul, Turkey according to the subgroups such as school type and gender and determine the priority obstacles preventing these science teachers from attendance at in-service programs. Moreover, this study aimed to find the other greatest needs of high school science teachers that are not mentioned in the survey instrument. The data for this research was gathered by conducting a survey in Istanbul, Turkey in Fall 2001 and Spring 2002 Semesters. Turkish translation of the modified version of a science teacher's needs inventory, Science Teacher Inventory of Need (STIN), entitled STIN-2 was used as the survey instrument. The subjects consisted of 75 high school science teachers who were selected from 369 high schools by using stratified random sampling in grades nine through eleven. By personally administering the survey, 422 science teachers from 75 high schools completed the survey and a 97% response rate was achieved. The results obtained in this study show that Turkish high school science teachers in Istanbul have a number of shared needs. One other indication is that they also have a number of needs, which are specific to subgroups of those science teachers.

  20. High school science fair and research integrity

    PubMed Central

    Dalley, Simon; Shepherd, Karen; Reisch, Joan

    2017-01-01

    Research misconduct has become an important matter of concern in the scientific community. The extent to which such behavior occurs early in science education has received little attention. In the current study, using the web-based data collection program REDCap, we obtained responses to an anonymous and voluntary survey about science fair from 65 high school students who recently competed in the Dallas Regional Science and Engineering Fair and from 237 STEM-track, post-high school students (undergraduates, 1st year medical students, and 1st year biomedical graduate students) doing research at UT Southwestern Medical Center. Of the post-high school students, 24% had competed in science fair during their high school education. Science fair experience was similar overall for the local cohort of Dallas regional students and the more diverse state/national cohort of post-high school students. Only one student out of 122 reported research misconduct, in his case making up the data. Unexpectedly, post-high school students who did not participate in science fair anticipated that carrying out science fair would be much more difficult than actually was the case, and 22% of the post-high school students anticipated that science fair participants would resort to research misconduct to overcome obstacles. No gender-based differences between students’ science fair experiences or expectations were evident. PMID:28328976

  1. High school science fair and research integrity.

    PubMed

    Grinnell, Frederick; Dalley, Simon; Shepherd, Karen; Reisch, Joan

    2017-01-01

    Research misconduct has become an important matter of concern in the scientific community. The extent to which such behavior occurs early in science education has received little attention. In the current study, using the web-based data collection program REDCap, we obtained responses to an anonymous and voluntary survey about science fair from 65 high school students who recently competed in the Dallas Regional Science and Engineering Fair and from 237 STEM-track, post-high school students (undergraduates, 1st year medical students, and 1st year biomedical graduate students) doing research at UT Southwestern Medical Center. Of the post-high school students, 24% had competed in science fair during their high school education. Science fair experience was similar overall for the local cohort of Dallas regional students and the more diverse state/national cohort of post-high school students. Only one student out of 122 reported research misconduct, in his case making up the data. Unexpectedly, post-high school students who did not participate in science fair anticipated that carrying out science fair would be much more difficult than actually was the case, and 22% of the post-high school students anticipated that science fair participants would resort to research misconduct to overcome obstacles. No gender-based differences between students' science fair experiences or expectations were evident.

  2. Moving toward equitable, systemic science education reform: The synergy among science education and school-level reforms in an urban middle school

    NASA Astrophysics Data System (ADS)

    Kelly, Mary Kathryn

    The purpose of this study was to develop an understanding of the relationships among school-level and science education reform efforts and how, collectively, they contribute to the progress of equitable, systemic science education reform. A case study research design was employed to gather both qualitative and quantitative data between 1995 and 1999. The site of this study is a non-selective, urban middle school in a large district that participated in several reform efforts. These reforms include both efforts focused on school-level change and efforts focused on change in science teaching and learning. Its program incorporates aspects of several school-level reforms---from the underlying Paideia philosophy, to structural characteristics of middle schools, to site-based decision-making, to its status as a magnet school, to its participation as a professional development school. Further, the participation of all science teachers in the intensive, standards-based professional development offered by Ohio's systemic reform of mathematics and science created a critical mass of reform-oriented teachers who supported one another as they incorporated reform-based practices into their teaching. The interplay of the reform efforts has manifested in a high level of science achievement in comparison to the school's district. Addressing the third component of O'Day and Smith's model for systemic reform, the need for school-level change to enable implementation of curriculum frameworks and aligned policies, this study illustrates two important points. First, the high-quality teacher professional development increased teachers' capacity to change their practices by enhancing their knowledge of and skills in implementing standards-based teaching practices. Second, because of the synchrony among the school-level reforms and between the school-level and science education reforms, the context of Webster provided a supportive environment in which lasting changes in science teaching and learning were implemented. Science education reform efforts were mediated by the school's context to create an environment in which the reform practices could be implemented and sustained. Using Kahle's (1998) Equity Metric, this study demonstrates that the synergy of the policies and practices of school-level and science education reforms can contribute to the progress of equitable, systemic science education reform.

  3. Teaching Science Out-of-School with Special Reference to Biology.

    ERIC Educational Resources Information Center

    Meyer, G. Rex, Ed.; Rao, A. N., Ed.

    This book contains a selection of previously unpublished papers from an international Asian symposium on out-of-school science activities. These papers include: "Educational and Social Values of Out-of-School Science" (Peter Kelly); "School Versus Out-of-School: An Artificial Dichotomy" (William Mayer); "Biology of…

  4. Anatomy integration blueprint: A fourth-year musculoskeletal anatomy elective model.

    PubMed

    Lazarus, Michelle D; Kauffman, Gordon L; Kothari, Milind J; Mosher, Timothy J; Silvis, Matthew L; Wawrzyniak, John R; Anderson, Daniel T; Black, Kevin P

    2014-01-01

    Current undergraduate medical school curricular trends focus on both vertical integration of clinical knowledge into the traditionally basic science-dedicated curricula and increasing basic science education in the clinical years. This latter type of integration is more difficult and less reported on than the former. Here, we present an outline of a course wherein the primary learning and teaching objective is to integrate basic science anatomy knowledge with clinical education. The course was developed through collaboration by a multi-specialist course development team (composed of both basic scientists and physicians) and was founded in current adult learning theories. The course was designed to be widely applicable to multiple future specialties, using current published reports regarding the topics and clinical care areas relying heavily on anatomical knowledge regardless of specialist focus. To this end, the course focuses on the role of anatomy in the diagnosis and treatment of frequently encountered musculoskeletal conditions. Our iterative implementation and action research approach to this course development has yielded a curricular template for anatomy integration into clinical years. Key components for successful implementation of these types of courses, including content topic sequence, the faculty development team, learning approaches, and hidden curricula, were developed. We also report preliminary feedback from course stakeholders and lessons learned through the process. The purpose of this report is to enhance the current literature regarding basic science integration in the clinical years of medical school. © 2014 American Association of Anatomists.

  5. Impact of Texas high school science teacher credentials on student performance in high school science

    NASA Astrophysics Data System (ADS)

    George, Anna Ray Bayless

    A study was conducted to determine the relationship between the credentials held by science teachers who taught at a school that administered the Science Texas Assessment on Knowledge and Skills (Science TAKS), the state standardized exam in science, at grade 11 and student performance on a state standardized exam in science administered in grade 11. Years of teaching experience, teacher certification type(s), highest degree level held, teacher and school demographic information, and the percentage of students who met the passing standard on the Science TAKS were obtained through a public records request to the Texas Education Agency (TEA) and the State Board for Educator Certification (SBEC). Analysis was performed through the use of canonical correlation analysis and multiple linear regression analysis. The results of the multiple linear regression analysis indicate that a larger percentage of students met the passing standard on the Science TAKS state attended schools in which a large portion of the high school science teachers held post baccalaureate degrees, elementary and physical science certifications, and had 11-20 years of teaching experience.

  6. Science and Technology Teachers' Views of Primary School Science and Technology Curriculum

    ERIC Educational Resources Information Center

    Yildiz-Duban, Nil

    2013-01-01

    This phenomenographic study attempts to explicit science and technology teachers' views of primary school science and technology curriculum. Participants of the study were selected through opportunistic sampling and consisted of 30 science and technology teachers teaching in primary schools in Afyonkarahisar, Turkey. Data were collected through an…

  7. Ideas for Integrating the Microcomputer with High School Science.

    ERIC Educational Resources Information Center

    Podany, Zita

    This report discusses how computers are being used in high school science classrooms. For this report, four high school science teachers were interviewed. The approach to science instruction described in these four interviews deals with the areas of scientific and technological literacy, making science learning fun and attractive, and stimulating…

  8. Authentic Science Research in Elementary School After-School Science Clubs

    ERIC Educational Resources Information Center

    Feldman, Allan; Pirog, Kelly

    2011-01-01

    In this paper we report on teachers' and students' participation in authentic science research in out of school time science clubs at elementary schools. In the program four to five teachers worked alongside practicing scientists as part of their research groups. Each teacher facilitated a club with 10-15 students who, by extension, were members…

  9. The Effects of an After-School Science Program on Middle School Female Students' Attitudes towards Science, Mathematics and Engineering.

    ERIC Educational Resources Information Center

    Ferreira, Maria M.

    This study examined the impact of an after-school science program that incorporated cooperative learning, hands-on activities, mentoring, and role models on a group of minority female students' attitudes toward science, engineering, and mathematics. Eighteen African American middle school students participated in the study. Seven female engineers…

  10. School Innovation in Science: A Model for Supporting School and Teacher Development

    ERIC Educational Resources Information Center

    Tytler, Russell

    2007-01-01

    "School Innovation in Science" represents a model, developed through working with more than 200 Victorian schools, to improve science teaching and learning. SIS works at the level of the science team and the teacher, providing resources to challenge and support the change process. Its emphasis is on strategic planning supported by a…

  11. Teaching Science in the Primary School: Surveying Teacher Wellbeing and Planning for Survival

    ERIC Educational Resources Information Center

    Morgan, Anne-Marie

    2012-01-01

    A teacher-researcher in a primary school setting surveyed the middle years' teachers of her school and those in the local science hub group, to determine their confidence and satisfaction levels in relation to teaching science. Her results confirm feelings of inadequacy and reluctance to teach Science, but also indicate ways that schools can…

  12. Making Sense of Integrated Science: A Guide for High Schools.

    ERIC Educational Resources Information Center

    Biological Sciences Curriculum Study, Colorado Springs.

    This guide outlines the initial work and includes recommendations for schools and districts on how to implement an integrated science program. Chapters include: (1) "What Is Integrated Science and What Does It Look Like at the High School Level?"; (2) "Coherence in High School Science" (F. James Rutherford); (3) "Thinking about Change: What Will…

  13. Astrobiology: A pathway to adult science literacy?

    NASA Astrophysics Data System (ADS)

    Oliver, C. A.; Fergusson, J.

    2007-10-01

    Adult science illiteracy is widespread. This is concerning for astrobiology, or indeed any other area of science in the communication of science to public audiences. Where and how does this scientific illiteracy arise in the journey to adulthood? Two astrobiology education projects have hinted that science illiteracy may begin in high school. This relationship between high school science education and the public understanding of science is poorly understood. Do adults forget their science education, or did they never grasp it in the first place? A 2003 science education project raised these questions when 24 16-year-olds from 10 Sydney high schools were brought into contact with real science. The unexpected results suggested that even good high school science students have a poor understanding of how science is really undertaken in the field and in the laboratory. This concept is being further tested in a new high school science education project, aimed at the same age group, using authentic astrobiology cutting-edge data, NASA Learning Technologies tools, a purpose-built research Information and Communication Technology-aided learning facility and a collaboration that spans three continents. In addition, a first year university class will be tested for evidence of science illiteracy immediately after high school among non-science oriented but well-educated students.

  14. Reaching Beyond the Geoscience Stigma: Strategies for Success

    NASA Astrophysics Data System (ADS)

    Messina, P.; Metzger, E. P.

    2004-12-01

    The geosciences have traditionally been viewed with less "academic prestige" than other science curricula. Among the effects of this perception are depressed K-16 enrollments; state standards' relegation of Earth and space science concepts to earlier grades; Earth Science assignments to lower-performing students, and sometimes even to under-qualified teachers: all of which simply confirm the misconceptions. Restructuring pre-college science curricula so that Earth Science is placed as a capstone course is one way to enhance student understanding of the geosciences. Research demonstrates that reversing the traditional science course sequence (by offering Physics in the ninth grade) improves student success in subsequent science courses. The "Physics First" movement continues to gain momentum offering a possible niche for the Earth and space sciences beyond middle school. It is also critical to bridge the information gap for those with little or no prior exposure to the Earth sciences, particularly K-12 educators. An Earth systems course developed at San José State University is aligned to our state's standards; it is approved to satisfy geoscience subject matter competency by the California Commission on Teacher Credentialing, making it a popular offering for pre- and in-service teachers. Expanding our audience beyond the Bay Area, the Earth Systems Science Education Alliance courses infuse real-world and hands-on learning in a cohesive online curriculum. Through these courses teachers gain knowledge, share effective pedagogies, and build geography-independent communities.

  15. The Effect of School Culture on Science Education at an Ideologically Innovative Elementary Magnet School: An Ethnographic Case Study

    NASA Astrophysics Data System (ADS)

    Meier, Lori T.

    2012-11-01

    This ethnographic case study investigated the science practices of teachers at one public elementary magnet school in light of how school culture influenced science curriculum design and instruction. The purpose of the study was to address how school culture impacted the school's overall treatment of science as a viable content area. Key informant teachers were interviewed to explore their personal beliefs and values, teaching, access to materials, and views of the adopted integrated thematic curriculum model and magnet structure. The resulting data, triangulated with informal observation and artifact collection, were analyzed using a theoretical framework that emphasized five interdependent school culture indicators (values, beliefs, practices, materials, and problems). Findings suggest that the school's culture adversely influenced the treatment of science.

  16. Multimedia Educational Program Increases Science Achievement Among Inner-City Non-Asian Minority Middle-School Students

    PubMed Central

    Murray, Nancy G.; Opuni, Kwame A.; Reininger, Belinda; Sessions, Nathalie; Mowry, Melanie M.; Hobbs, Mary

    2011-01-01

    This study tested the effectiveness of a middle-school, multi-media health-sciences educational program called HEADS UP in non-Asian–minority (Hispanic and African American), inner-city students. The program was designed to increase the number of non-Asian minority students entering the academic health-sciences pipeline. Students of Asian ethnicity were excluded because they are not underrepresented in science professions. The curriculum modules include video role-model stories featuring minority scientists and students, hands-on classroom activities, and teacher resources. The modules (evaluated from 2004-2007) were developed through collaboration among The University of Texas Health Sciences Center, the Spring Branch Independent School District, and the Health Museum, Houston. A quasi-experimental, two-group pre-test/post-test design was used to assess program effects on students' performance, interest, and confidence in their ability to perform well in science; fear of science; and confidence in their ability to pursue science-related careers. An intervention school was matched to a comparison school by test scores, school demographics, and student demographics. Then, pairs of sixth-grade students (428 students) were matched by fifth-grade scores in science and by gender, ethnicity, and poverty status (free or reduced lunch) and followed up for three years. At eighth grade, students from the intervention school scored significantly higher (F=12.38, p<0.001) on the Stanford 10 Achievement Test in science and reported higher interest in science (F=11.08, p<0.001) than their matched pairs from the comparison school. HEADS UP shows potential for improving inner-city minority middle school students' performance and interest in science and is an innovative example of translating health-sciences research to the community. PMID:19474564

  17. Re-Presenting the Social Construction of Science in Light of the Propositions of Bruno Latour: For a Renewal of the School Conception of Science in Secondary Schools

    ERIC Educational Resources Information Center

    Richard, Vincent; Bader, Barbara

    2010-01-01

    Current opinion holds that school science has not been producing the expected outcomes. Highlighted by a considerable body of research, one of the concerns is that young people still mobilize a naive conception of science. Consequently, we must pursue the reflection process concerning ways of renewing the school conception of science so as to…

  18. The effects of Roundhouse diagram construction and use on meaningful science learning in the middle school classroom

    NASA Astrophysics Data System (ADS)

    Ward, Robin Eichel

    This research explored the effects of Roundhouse diagram construction and use on meaningful learning of science concepts in a 6th-grade science classroom. This investigation examined the transformation of students' science concepts as they became more proficient in constructing Roundhouse diagrams, what problems students encountered while constructing Roundhouse diagrams, and how choices of iconic images affected their progress in meaningfully learning science concepts as they constructed a series of Roundhouse diagrams. The process of constructing a Roundhouse diagram involved recognizing the learner's relevant existing concepts, evaluating the central concepts for a science lesson and breaking them down into their component parts, reconstructing the learner's conceptual framework by reducing the amount of detail efficiently, reviewing the reconstruction process, and linking each key concept to an iconic image. The researcher collected and analyzed qualitative and quantitative data to determine the effectiveness of the Roundhouse diagram. Data included field notes, observations, students' responses to Roundhouse diagram worksheets, students' perceptions from evaluation sheets, students' mastery of technique sheets, tapes and transcripts of students' interviews, student-constructed Roundhouse diagrams, and documentation of science grades both pre- and post-Roundhouse diagramming. This multiple case study focused on six students although the whole class was used for statistical purposes. Stratified purposeful sampling was used to facilitate comparisons as well as week-by-week comparisons of students' science grades and Roundhouse diagram scores to gain additional insight into the effectiveness of the Roundhouse diagramming method. Through participation in constructing a series of Roundhouse diagrams, middle school students gained a greater understanding of science concepts. Roundhouse diagram scores improved over time during the 10-week Roundhouse diagramming session. Students' science scores improved as they became more proficient in constructing the Roundhouse diagrams. The major problems associated with constructing Roundhouse diagrams were extracting the main ideas from the textbook, understanding science concepts in terms of whole/part relationships, paraphrasing sentences effectively, and sequencing events in an accurate order. A positive relationship existed for the case study group based on students' choices and drawings of iconic images and the meaningful learning of science concepts.

  19. Can participation in a school science fair improve middle school students' attitudes toward science and interest in science careers?

    NASA Astrophysics Data System (ADS)

    Finnerty, Valerie

    The purpose of this study was to investigate whether participation in a school-based science fair affects middle school students' attitudes toward science and interest in science and engineering careers. A quasi-experimental design was used to compare students' pre- and posttest attitudes toward and interest in science. Forty-eight of the 258 participants completed a school-based science fair during the study. In addition, twelve middle school science teachers completed an online survey. Both the Survey of Science Attitudes and Interest I and II (SSAI-I and II) measured students' attitudes toward and interest in science and science and mathematics self-efficacy, asked about classroom inquiry experiences and gathered demographic information. An online survey gathered qualitative data about science teachers' perceptions of school science fairs. The results showed no significant interactions among completion of a science fair project and attitudes toward and interest in science, science and mathematics self-efficacy or gender. There were significant differences at both pre- and posttest in attitudes between the students who did and did not complete a science fair project. All participating teachers believed that participation in science fairs could have a positive effect on students' attitudes and interest, but cited lack of time as a major impediment. There was significant interaction between level of classroom inquiry and attitudes and interest in science; students who reported more experiences had higher scores on these measures. Classroom inquiry also interacted with the effects of a science fair and participants' pre- and posttest attitude scores. Finally, the amount and source of assistance on a science fair project had a significant impact on students' posttest measures. Major limitations which affect the generalization of these findings include the timing of the administration of the pretest, the number of participants in the experimental group and differences in the science fair procedures at the participating schools. Embedded in a curriculum that includes the teaching of inquiry practices, science fairs may play a role in the inspiration of future scientists, but more research needs to be done on the quality of students' experiences, including amount and type of classroom instruction before and during the science fair process.

  20. Collaboration Among Educators: An Essential Step in Unifying STEM Teaching Resources.

    NASA Astrophysics Data System (ADS)

    McIver, H.; Ellins, K. K.; Bohls-Graham, C. E.; O'dell, D.; Sergent, C.; Jacobs, B. E.; Stocks, E.; Serpa, L. F.; Riggs, E. M.

    2015-12-01

    Increased requirement for Science, Engineering, Technology, and Math (STEM) literacy among US secondary school students has enhanced the need for high-quality teaching resources in the modern STEM classroom. Many relevant resources exist online that could be used to address this issue, but too often these resources are spread throughout the Internet, and have not necessarily been audited for content, alignment with state and national science standards, or current functionality. Because STEM subjects are increasingly difficult to teach, we set out to design a localized platform of year-long teaching 'blueprints' comprising units that cover a range of Earth science topics, researched and compiled by education professionals. The Diversity and Innovation for Geosciences (DIG) Texas Instructional Blueprint project has united teachers from diverse science backgrounds who act as Education Interns and work alongside geoscientists and curriculum experts at the University of Texas Jackson School of Geosciences, Texas A&M University and the University of Texas El Paso. Our DIG collective has employed a cross-disciplinary approach to vetting resources while compiling them in useful, logical sequences for classroom instruction. The DIG team has aligned each blueprint with the Texas Essential Skills and Knowledge (TEKS) standards for Earth and Space Science, the Earth Science Literacy Principles, and the Next Generation Science Standards. Emphasis for the summer 2015 project group was placed upon (1) alignment of the units with these three sets of science standards to allow for use within disparate classroom settings, (2) creating teacher aides including scaffolding notes for practical unit application, and potential real and virtual field trips for unit illustration, and (3) final vetting ensuring units follow a narrative that carries learners from basic principles to a full concept understanding. Here, we present our progress and the essential workflow that has contributed to significant advancement in our goal of providing a unified STEM teaching resource.

  1. From the Field to the Classroom: Developing Scientifically Literate Citizens Using the Understanding Global Change Framework in Education and Citizen Science

    NASA Astrophysics Data System (ADS)

    Toupin, C.; Bean, J. R.; Gavenus, K.; Johnson, H.; Toupin, S.

    2017-12-01

    With the copious amount of science and pseudoscience reported on by non-experts in the media, it is critical for educators to help students develop into scientifically literate citizens. One of the most direct ways to help students develop deep scientific understanding and the skills to critically question the information they encounter is to bring science into their daily experiences and to contextualize scientific inquiry within the classroom. Our work aims to use a systems-based models approach to engage students in science, in both formal and informal contexts. Using the Understanding Global Change (UGC) and the Understanding Science models developed at the Museum of Paleontology at UC Berkeley, high school students from Arizona were tasked with developing a viable citizen science program for use at the Center for Alaskan Coastal Studies in Homer, Alaska. Experts used the UGC model to help students define why they were doing the work, and give context to the importance of citizen science. Empowered with an understanding of the scientific process, excited by the purpose of their work and how it could contribute to the scientific community, students whole-heartedly worked together to develop intertidal monitoring protocols for two locations while staying at Peterson Bay Field Station, Homer. Students, instructors, and scientists used system models to communicate and discuss their understanding of the biological, physical, and chemical processes in Kachemak Bay. This systems-based models approach is also being used in an integrative high school physics, chemistry, and biology curriculum in a truly unprecedented manner. Using the Understanding Global Change framework to organize curriculum scope and sequence, the course addresses how the earth systems work, how interdisciplinary science knowledge is necessary to understand those systems, and how scientists and students can measure changes within those systems.

  2. High School Marine Science and Scientific Literacy: The Promise of an Integrated Science Course

    ERIC Educational Resources Information Center

    Lambert, Julie

    2006-01-01

    This descriptive study provides a comparison of existing high school marine science curricula and instructional practices used by nine teachers across seven schools districts in Florida and their students' level of scientific literacy, as defined by the national science standards and benchmarks. To measure understandings of science concepts and…

  3. Inquiry-Based Science Education: A Scenario on Zambia's High School Science Curriculum

    ERIC Educational Resources Information Center

    Chabalengula, Vivien M.; Mumba, Frackson

    2012-01-01

    This paper is aimed at elucidating the current state of inquiry-based science education (IBSE) in Zambia's high school science curriculum. Therefore, we investigated Zambian teachers' conceptions of inquiry; determined inquiry levels in the national high school science curriculum materials, which include syllabi, textbooks and practical exams; and…

  4. How Technicians Can Lead Science Improvements in Any School: A Small-Scale Study in England

    ERIC Educational Resources Information Center

    Jones, Beth; Quinnell, Simon

    2015-01-01

    This article describes how seven schools in England improved their science provision by focusing on the professional development of their science technicians. In September 2013, the Gatsby Charitable Foundation funded the National Science Learning Centre to lead a project connecting secondary schools with experienced senior science technicians…

  5. A National Survey of Middle and High School Science Teachers' Responses to Standardized Testing: Is Science Being Devalued in Schools?

    ERIC Educational Resources Information Center

    Aydeniz, Mehmet; Southerland, Sherry A.

    2012-01-01

    This study explored American high school and middle school science teachers' attitudes toward the use of standardized testing for accountability purposes, their justification for the attitudes they hold and the impact of standardized testing on their instructional and assessment practices. A total of 161 science teachers participated in the study.…

  6. Science as Interests but Not for Career: Understanding High School Students' Engagement in Science in Abu Dhabi

    ERIC Educational Resources Information Center

    Yang, Guang; Badri, Masood; Al-Mazroui, Karima; Al-Rashedi, Asma; Nai, Peng

    2017-01-01

    Understanding high school students' engagement in science is important for the Emirate of Abu Dhabi. Drawing on data from the ROSE Survey conducted in Abu Dhabi schools in 2013, this paper used a multi-dimensional framework to explore associations between high school students' engagement in science and a range of student psychosocial and…

  7. Creating Hybrid Spaces for Engaging School Science among Urban Middle School Girls

    ERIC Educational Resources Information Center

    Barton, Angela Calabrese; Tan, Edna; Rivet, Ann

    2008-01-01

    The middle grades are a crucial time for girls in making decisions about how or if they want to follow science trajectories. In this article, the authors report on how urban middle school girls enact meaningful strategies of engagement in science class in their efforts to merge their social worlds with the worlds of school science and on the…

  8. The Development of Science Achievement in Middle and High School: Individual Differences and School Effects.

    ERIC Educational Resources Information Center

    Ma, Xin; Wilkins, Jessie L. M.

    2002-01-01

    Used hierarchical linear models with data from the Longitudinal Study of American Youth to model the growth of student science achievement in biology, physical science, and environmental science during middle and high school. Growth was quadratic across all areas, with rapid growth at the beginning of middle school and slow growth at the ending…

  9. Teachers' professional development needs and current practices at the Alexander Science Center School

    NASA Astrophysics Data System (ADS)

    Gargus, Gerald Vincent

    This investigation represents an in-depth understanding of teacher professional development at the Alexander Science Center School, a dependent charter museum school established through a partnership between the California Science Center and Los Angeles Unified School District. Three methods of data collection were used. A survey was distributed and collected from the school's teachers, resulting in a prioritized list of teacher professional development needs, as well as a summary of teachers' opinions about the school's existing professional development program. In addition, six key stakeholders in the school's professional development program were interviewed for the study. Finally, documents related to the school's professional development program were analyzed. Data collected from the interviews and documents were used to develop an understand various components of the Alexander Science Center School's professional development program. Teachers identified seven areas that had a high-priority for future professional development including developing skills far working with below-grade-level students, improving the analytical skills of student in mathematics, working with English Language Learners, improving students' overall reading ability levels, developing teachers' content-area knowledge for science, integrating science across the curriculum, and incorporating hands-on activity-based learning strategies to teach science. Professional development needs identified by Alexander Science Center School teachers were categorized based on their focus on content knowledge, pedagogical content knowledge, or curricular knowledge. Analysis of data collected through interviews and documents revealed that the Alexander Science Center School's professional development program consisted of six venues for providing professional development for teachers including weekly "banked time" sessions taking place within the standard school day, grade-level meetings, teacher support meetings, classroom coaching/Big Lab co-teaching, summer institutes, and off-campus conferences and seminars. Results indicated that the effectiveness of the six venues was closely tied to the level of collaborative planning that took place between the Alexander Science Center School and the associated California Science Center. Examination of teachers' and stakeholders opinions reflect that after a year-and-a-half of operations, the school's professional development program is perceived as disjointed and ineffective, but that the foundation of a sound program has been established.

  10. The Impact of Agricultural Science Education on Performance in a Biology Course

    NASA Astrophysics Data System (ADS)

    Ernest, Byron L.

    The lack of student achievement in science is often cited in U.S. educational reports. At the study site, low student achievement in science has been an ongoing concern for administrators. The purpose of this mixed methods study was to investigate the impact of agricultural science education on student performance in a Biology course. Vygotsky's constructivist theory and Gardner's multiple intelligences theory provided the framework for the study. The quantitative research question examined the relationship between the completion of Fundamentals of Agriculture Science and Business course and student performance in Biology I. Teacher perceptions and experiences regarding the integration of science and agricultural curriculum and traditional science curriculum were examined qualitatively. A sequential explanatory design was employed using 3 years of data collected from 486 high school students and interviews with 10 teachers. Point-biserial correlation and chi square tests revealed statistically significant relationships between whether or not students completed Fundamentals of Agriculture Science and Business and Biology I course performance, as measured by the end of course assessment and the course grade. In the qualitative sequence, typological and inductive data analyses were applied to the interview data, and themes of student impact and teacher experience emerged. Social change implications may be possible through improved science education for students in this program. Agriculture science courses may be used to facilitate learning of complex science concepts, designing teacher collaboration and professional development for teaching science in a relevant context, and resultant improved student performance in science.

  11. Science Education at Riverside Middle School A Case Study

    NASA Astrophysics Data System (ADS)

    Smiley, Bettie Ann Pickens

    For more than thirty years the gender gap in science and related careers has been a key concern of researchers, teachers, professional organizations, and policy makers. Despite indicators of progress for women and girls on some measures of achievement, course enrollment patterns, and employment, fewer women than men pursue college degrees and careers in science, technology, engineering, and mathematics. According to the results of national assessments, the gender gap in science achievement begins to be evident in the middle school years. Gender and school science achievement involve a complex set of factors associated with schools and child/family systems that may include school leadership, institutional practices, curriculum content, teacher training programs, teacher expectations, student interests, parental involvement, and cultural values. This ethnographic case study was designed to explore the context for science education reform and the participation of middle school girls. The study analyzed and compared teaching strategies and female student engagement in sixth, seventh, and eighth grade science classrooms. The setting was a middle school situated in a district that was well-known for its achievement in reading, math, and technology. Findings from the study indicated that while classroom instruction was predominantly organized around traditional school science, the girls were more disciplined and outperformed the boys. The size of the classrooms, time to prepare for hands-on activities, and obtaining resources were identified as barriers to teaching science in ways that aligned with recent national science reform initiatives. Parents who participated in the study were very supportive of their daughters' academic progress and career goals. A few of the parents suggested that the school's science program include more hands-on activities; instruction designed for the advanced learner; and information related to future careers. Overall the teachers and students perceived their science program to be gender fair. Eighth grade participants who had career goals related to science and engineering, indicated that their science instruction did not provide the rigor they needed to improve their critical skills for advanced placement in high school. Recommendations include the need for professional development on inquiry-based science, equitable student achievement, and diverse perspectives in science education.

  12. The distinctiveness and effectiveness of science teaching in the Malaysian `Smart school'

    NASA Astrophysics Data System (ADS)

    Tek Ong, Eng; Ruthven, Kenneth

    2010-04-01

    A recent reform initiative in the Malaysian educational system has sought to develop 'Smart schools', intended to better prepare students for adult life in a developing economy and to increase the flow of young people prepared for scientific and technological careers. The study reported in this paper examined lower-secondary science teaching, comparing two Smart schools officially judged to be successfully implementing the reform, with two neighbouring mainstream schools. Through analysis of classroom observation, supported by teacher interview and student report, the distinctive features of science teaching in the Smart schools were found to be use of ICT-based resources and of student-centred approaches, often intertwined to provide extended support for learning; accompanied by a near absence of the note giving and copying prevalent in the mainstream schools. Through analysis of measures of student attitude to science, science process skills and general science attainment, science teaching in Smart schools was found to be relatively effective overall. However, while the positive attitude effect was general, both academic effects were much weaker amongst students who had been of lower attainment on entry to secondary school.

  13. Parent involvement and science achievement: A latent growth curve analysis

    NASA Astrophysics Data System (ADS)

    Johnson, Ursula Yvette

    This study examined science achievement growth across elementary and middle school and parent school involvement using the Early Childhood Longitudinal Study - Kindergarten Class of 1998--1999 (ECLS-K). The ECLS-K is a nationally representative kindergarten cohort of students from public and private schools who attended full-day or half-day kindergarten class in 1998--1999. The present study's sample (N = 8,070) was based on students that had a sampling weight available from the public-use data file. Students were assessed in science achievement at third, fifth, and eighth grades and parents of the students were surveyed at the same time points. Analyses using latent growth curve modeling with time invariant and varying covariates in an SEM framework revealed a positive relationship between science achievement and parent involvement at eighth grade. Furthermore, there were gender and racial/ethnic differences in parents' school involvement as a predictor of science achievement. Findings indicated that students with lower initial science achievement scores had a faster rate of growth across time. The achievement gap between low and high achievers in earth, space and life sciences lessened from elementary to middle school. Parents' involvement with school usually tapers off after elementary school, but due to parent school involvement being a significant predictor of eighth grade science achievement, later school involvement may need to be supported and better implemented in secondary schooling.

  14. Eliciting and utilizing rural students' funds of knowledge in the service of science learning: An action research study

    NASA Astrophysics Data System (ADS)

    Lloyd, Ellen M.

    Several researchers have pointed out the failures of current schooling to adequately prepare students in science and called for radical reform in science education to address the problem. One dominant critique of science education is that several groups of students are not well served by current school science practices and discourses. Rural students represent one of these underserved populations. Yet, there is little in the literature that speaks specifically to reforming the science education of rural students. Utilizing action research as a methodology, this study was designed to learn more about the unique knowledge and life experiences of rural students, and how these unique knowledge, skills and interests could suggest new ways to improve science education in rural schools. Informed by this ultimate goal, I created an after school science club where the participating high school students engaged in solving a local watershed problem, while explicitly bringing to bear their unique backgrounds, local knowledge and life experiences from living in a rural area of Upstate New York. Using Funds of Knowledge as the theoretical framework, this after-school club served as the context to investigate the following research questions: (1) What science-related funds of knowledge do rural high school students have? (2) How were these funds of knowledge capitalized on to support science learning in an after-school setting?

  15. (re)producing Good Science Students: Girls' Participation in High School Physics

    NASA Astrophysics Data System (ADS)

    Carlone, Heidi B.

    In this ethnographic study, the author describes the meanings of science and science student in a physics classroom in an upper-middle-class high school and the ways girls participated within these meanings. The classroom practices reproduced prototypical meanings of science (as authoritative) and science student (as "dutiful"). The results highlight girls' embrace of prototypical school science. Yet at the end of the school year, the girls did not consider themselves "science people," nor did they want to pursue physics further. The author's interpretation of these results takes seriously girls' agency in producing the meaning of the physics class (as a way to polish one's transcript) and draws attention to the promoted identities (prototypical good student identities) in the classroom. The author argues that students' agency in resisting or accepting the practices, identities, and knowledge of school science is worth understanding for the improvement of science education.

  16. Formulaic Sequences Used by Native English Speaking Teachers in a Thai Primary School

    ERIC Educational Resources Information Center

    Steyn, Sunee; Jaroongkhongdach, Woravut

    2016-01-01

    The use of formulaic sequences in English as a Foreign Language (EFL) lessons plays an integral role in language teaching and learning, but it seems still widely neglected in the Thai school context. To call attention to this issue, this study aims at identifying formulaic sequences used in a Thai primary school. The data were taken from three…

  17. Teaching controversial issues in the secondary school science classroom

    NASA Astrophysics Data System (ADS)

    van Rooy, Wilhelmina

    1993-12-01

    A sample of fourteen secondary school biology teachers chosen from twelve schools were interviewed. The purpose was to determine their views on how controversial issues in science might be handled in the secondary school science classroom and whether the issues of surrogacy and human embryo experimentation were suitable controversial issues for discussion in schools. In general, teachers indicated that controversial issues deserve a more prominent place in the science curriculum because they have the potential to foster thinking, learning, and interest in science. The issues of surrogacy and human embryo experimentation were seen as appropriate contexts for learning, provided that teachers were well informed and sensitive to both the students and to the school environment.

  18. The relevance of basic sciences in undergraduate medical education.

    PubMed

    Lynch, C; Grant, T; McLoughlin, P; Last, J

    2016-02-01

    Evolving and changing undergraduate medical curricula raise concerns that there will no longer be a place for basic sciences. National and international trends show that 5-year programmes with a pre-requisite for school chemistry are growing more prevalent. National reports in Ireland show a decline in the availability of school chemistry and physics. This observational cohort study considers if the basic sciences of physics, chemistry and biology should be a prerequisite to entering medical school, be part of the core medical curriculum or if they have a place in the practice of medicine. Comparisons of means, correlation and linear regression analysis assessed the degree of association between predictors (school and university basic sciences) and outcomes (year and degree GPA) for entrants to a 6-year Irish medical programme between 2006 and 2009 (n = 352). We found no statistically significant difference in medical programme performance between students with/without prior basic science knowledge. The Irish school exit exam and its components were mainly weak predictors of performance (-0.043 ≥ r ≤ 0.396). Success in year one of medicine, which includes a basic science curriculum, was indicative of later success (0.194 ≥ r (2) ≤ 0.534). University basic sciences were found to be more predictive than school sciences in undergraduate medical performance in our institution. The increasing emphasis of basic sciences in medical practice and the declining availability of school sciences should mandate medical schools in Ireland to consider how removing basic sciences from the curriculum might impact on future applicants.

  19. Attainment of Selected Earth Science Concepts by Texas High School Seniors.

    ERIC Educational Resources Information Center

    Rollins, Mavis M.; And Others

    1983-01-01

    Attainment of five earth science concepts by high school seniors depended on the amount of previous science coursework by the students and on the size of their school's enrollment. Seniors in Texas high schools were subjects of the study. (Author/PP)

  20. Strategies for Science Student Achievement & Productive School Management

    ERIC Educational Resources Information Center

    Johnson, William L.

    2010-01-01

    There is an increasing literature pertaining to student achievement and school productivity. This session will present school and classroom strategies used in high school science classes at Robert E. Lee High School (5A) in Tyler, Texas. This year, 84% of the students at Lee passed the science TAKS test. Lee is also ranked in the top 1500 high…

  1. Innovations in science education: infusing social emotional principles into early STEM learning

    NASA Astrophysics Data System (ADS)

    Garner, Pamela W.; Gabitova, Nuria; Gupta, Anuradha; Wood, Thomas

    2017-10-01

    We report on the development of an after-school and summer-based science, technology, engineering, and mathematics curriculum infused with the arts and social emotional learning content (STEAM SEL). Its design was motivated by theory and research that suggest that STEM education is well-suited for teaching empathy and other emotion-related skills. In this paper, we describe the activities associated with the development and design of the program and the curriculum. We provide expert-ratings of the STEAM and social emotional elements of the program and present instructor and participant feedback about the program's content and its delivery. Our results revealed that infusing the arts and social emotional learning content into science education created a holistic STEM-related curriculum that holds potential for enhancing young children's interest in and appreciation for science and its applications. The data also suggested that the program was well-developed and, generally well-executed. However, experts rated the STEAM elements of the program more positively than the SEL elements, especially with regard to sequencing of lessons and integration among the lessons and hands-on activities, indicating that program revisions are warranted.

  2. Exploring the Impact of an Out-of-School Science Program on the Science Learning of Upper Elementary School Children

    ERIC Educational Resources Information Center

    Marshall, Karen Benn

    2009-01-01

    This study sought to explore qualitatively how participation in an informal science program might affect the following aspects of upper elementary school children's scientific thinking: conceptual understanding, epistemology of science, and the formation of their identity as science learners. A purposefully selected, maximum variation sample of…

  3. Saudi Elementary School Science Teachers' Beliefs: Teaching Science in the New Millennium

    ERIC Educational Resources Information Center

    Alghamdi, Amani K. Hamdan; Al-Salouli, Misfer Saud

    2013-01-01

    This study explored Saudi elementary school science teachers' beliefs about the process of teaching and learning science. This involved the exploration of their views about the new Saudi science curriculum, which emphasizes critical thinking and problem solving. Comprehensive interviews were held in 8 schools with 4 male and 6 female--2 of whom…

  4. Science That Matters: Exploring Science Learning and Teaching in Primary Schools

    ERIC Educational Resources Information Center

    Fitzgerald, Angela; Smith, Kathy

    2016-01-01

    To help support primary school students to better understand why science matters, teachers must first be supported to teach science in ways that matter. In moving to this point, this paper identifies the dilemmas and tensions primary school teachers face in the teaching of science. The balance is then readdressed through a research-based…

  5. The School Science Attitude Survey: A New Instrument for Measuring Attitudes towards School Science

    ERIC Educational Resources Information Center

    Kennedy, JohnPaul; Quinn, Frances; Taylor, Neil

    2016-01-01

    There have been many attempts over the last five decades to measure students' attitudes towards school science. Many of these studies investigated attitudes towards limited aspects of science and utilized large numbers of items to draw snapshot summaries of the educational landscape. An understanding of attitudes towards science, and how these…

  6. Environmental Science for All? Considering Environmental Science for Inclusion in the High School Core Curriculum

    ERIC Educational Resources Information Center

    Edelson, Daniel C.

    2007-01-01

    With the dramatic growth of environmental science as an elective in high schools over the last decade, educators have the opportunity to realistically consider the possibility of incorporating environmental science into the core high school curriculum. Environmental science has several characteristics that make it a candidate for the core…

  7. Caught in the Balance: An Organizational Analysis of Science Teaching in Schools with Elementary Science Specialists

    ERIC Educational Resources Information Center

    Marco-Bujosa, Lisa M.; Levy, Abigail Jurist

    2016-01-01

    Elementary schools are under increasing pressure to teach science and teach it well; yet, research documents that classroom teachers must overcome numerous personal and school-based challenges to teach science effectively at this level, such as access to materials and inadequate instructional time. The elementary science specialist model…

  8. Who Wants to Learn More Science? The Role of Elementary School Science Experiences and Science Self-Perceptions

    ERIC Educational Resources Information Center

    Aschbacher, Pamela R.; Ing, Marsha

    2017-01-01

    Background/Context: Much science education reform has been directed at middle and high school students; however, earlier experiences in elementary school may well have an important impact on young people's future science literacy and preparation for possible STEM careers. Purpose/Objective/Research Question/Focus of Study: This study explores the…

  9. The National Ocean Sciences Bowl: Extending the Reach of a High School Academic Competition to College, Careers, and a Lifelong Commitment to Science

    ERIC Educational Resources Information Center

    Bishop, Kristina; Walters, Howard

    2007-01-01

    Researchers have begun tracking a group of high ability high school students from high school into college study. These students indicated an interest in Science, Technology, Engineering, and Mathematics (STEM) content areas, and specifically ocean sciences, through participation in a regional or national academic competition in high school--The…

  10. Gender differences in tenth-grade students' attitudes toward science: The effect of school type

    NASA Astrophysics Data System (ADS)

    Ndakwah, Ernestine Ajame

    The focus of this mixed methods study was on 10th grade students' attitudes towards science. Its purpose was to examine the effect of gender and school-type on attitudes toward science. Research on attitudes toward science has focused on gender, school level, and classroom environment. Relatively little has been done on the effect of school type. In the present study, school type refers to the following variables; private vs. public, single-sex vs. coeducational and high vs. low-achieving schools. The quantitative component of the study allowed the researcher to determine whether there are gender differences in attitudes toward science based on the school type variables being investigated. The Test of Science Related Attitudes (TOSRA) was the instrument used to provide quantitative data for this aspect of the study. TOSRA is a Likert scale consisting of seven subscales measuring different aspects of science attitudes. The qualitative component, on the other hand, explored students' perspectives on the factors, which were influential in the development of the attitudes that they hold. The events and experiences of their lives in and out-of-school, with respect to science, and the meanings that they make of these provided the data from which their attitudes toward science could be gleaned. Data for this component of the study was gathered by means of in-depth focus group interviews. The method of constant comparative analysis was used to analyze the interview transcripts. Statistical treatment of the questionnaire data involved the use of t tests and ANOVA. Findings did not reveal any gender differences on the total attitude scores although there were some differences on some of the subscales. School type did not appear to be a significant variable in students' attitudes to science. The results of both quantitative and qualitative components show that instructional strategy and teacher characteristics, both of which are components of the classroom environment are important factors shaping students' attitudes to science. These findings suggest that efforts to foster positive attitudes to science among high school students should focus on the enhancement of the high school science classroom environment.

  11. Contextualizing Nature of Science Instruction in Socioscientific Issues

    NASA Astrophysics Data System (ADS)

    Eastwood, Jennifer Lynne; Sadler, Troy D.; Zeidler, Dana L.; Lewis, Anna; Amiri, Leila; Applebaum, Scott

    2012-10-01

    The purpose of this study was to investigate the effects of two learning contexts for explicit-reflective nature of science (NOS) instruction, socioscientific issues (SSI) driven and content driven, on student NOS conceptions. Four classes of 11th and 12th grade anatomy and physiology students participated. Two classes experienced a curricular sequence organized around SSI (the SSI group), and two classes experienced a content-based sequence (the Content group). An open-ended NOS questionnaire was administered to both groups at the beginning and end of the school year and analyzed to generate student profiles. Quantitative analyses were performed to compare pre-instruction NOS conceptions between groups as well as pre to post changes within groups and between groups. Both SSI and Content groups showed significant gains in most NOS themes, but between-group gains were not significantly different. Qualitative analysis of post-instruction responses, however, revealed that students in the SSI group tended to use examples to describe their views of the social/cultural NOS. The findings support SSI contexts as effective for promoting gains in students' NOS understanding and suggest that these contexts facilitate nuanced conceptions that should be further explored.

  12. The Sequencing of Basic Chemistry Topics by Physical Science Teachers

    ERIC Educational Resources Information Center

    Sibanda, Doras; Hobden, Paul

    2016-01-01

    The purpose of this study was to find out teachers' preferred teaching sequence for basic chemistry topics in Physical Science in South Africa, to obtain their reasons underpinning their preferred sequence, and to compare these sequences with the prescribed sequences in the current curriculum. The study was located within a pragmatic paradigm and…

  13. An Ecology of Science Education.

    ERIC Educational Resources Information Center

    Aubusson, Peter

    2002-01-01

    Reports on a 15-month study of attempted innovation in school science. The teachers in an Australian secondary school were attempting to introduce a constructivist approach to their teaching of science. Uses a method of analysis in which the school science system is mapped against an ecosystem. (Author/MM)

  14. The Development of a Post-Baccalaureate Certificate Program in Molecular Diagnostics

    PubMed Central

    Williams, Gail S.; Brown, Judith D.; Keagle, Martha B.

    2000-01-01

    A post-baccalaureate certificate program in diagnostic molecular sciences was created in 1995 by the Diagnostic Genetic Sciences Program in the School of Allied Health at the University of Connecticut. The required on-campus lecture and laboratory courses include basic laboratory techniques, health care issues, cell biology, immunology, human genetics, research, management, and molecular diagnostic techniques and laboratory in molecular diagnostics. These courses precede a 6-month, full-time practicum at an affiliated full-service molecular laboratory. The practicum includes amplification and blotting methods, a research project, and a choice of specialized electives including DNA sequencing, mutagenesis, in situ hybridization methods, or molecular diagnostic applications in microbiology. Graduates of the program are immediately eligible to sit for the National Credentialing Agency examination in molecular biology to obtain the credential Clinical Laboratory Specialist in Molecular Biology (CLSp(MB). This description of the University of Connecticut program may assist other laboratory science programs in creating similar curricula. PMID:11232107

  15. Developing a yearlong Next Generation Science Standard (NGSS) learning sequence focused on climate solutions: opportunities, challenges and reflections

    NASA Astrophysics Data System (ADS)

    Cordero, E.; Centeno, D.

    2015-12-01

    Over the last four years, the Green Ninja Project (GNP) has been developing educational media (e.g., videos, games and online lessons) to help motivate student interest and engagement around climate science and solutions. Inspired by the new emphasis in NGSS on climate change, human impact and engineering design, the GNP is developing a technology focused, integrative, and yearlong science curriculum focused around solutions to climate change. Recognizing the importance of teacher training on the successful implementation of NGSS, we have also integrated teacher professional development into our curriculum. During the presentation, we will describe the design philosophy around our middle school curriculum and share data from a series of classes that are piloting the curriculum during Fall 2015. We will also share our perspectives on how data, media creation and engineering can be used to create educational experiences that model the type of 'three-dimensional learning' encouraged by NGSS.

  16. Organizational health and the achievement level of students in science at the secondary-level schools in Sri Lanka

    NASA Astrophysics Data System (ADS)

    Pakkeer-Jaufar, Pakkeer Cadermohideen

    This study sought to identify those organizational health factors that might have overriding influence on the achievement level of students in science in Sri Lankan secondary schools. This study involved 752 students, 33 science teachers, and 10 principals from two different districts, Ampara and Colombo, in Sri Lanka. Ten Tamil medium, secondary level, public schools were selected to participate in this study. Data were collected using four types of instruments: a questionnaire for pupils; interview schedules for science teachers and principals; checklists for classroom/school facilities, science laboratory facilities, and science practicals; and a science achievement test. The analysis focused on the collective perceptions of students, science teachers, and principals. Regression and path analyses were used as major analysis techniques, and the qualitative data provided by science teachers and principals were considered for a crosschecking of the quantitative inferences. The researcher found teacher affiliation, academic emphasis, and instructional leadership of the principal, in descending order, were the overriding influential factors on the achievement level of students in science in Sri Lankan secondary schools. At the same time a similar descending order was found in their mean values and qualities. The researcher concluded that increasing the quality of the organizational health factors in Sri Lankan secondary schools would result in improved better achievement in science. The findings further indicate that instructional leadership of the principal had both direct and indirect effects on students' achievement in science when academic emphasis and teacher affiliation were taken into account. In addition, the resource support of the principal did not make any difference in students' science achievement and the findings stress the availability of the resources for individual students instead of assuming the general facilities of the school are available to all students of the school.

  17. Portsmouth Atmospheric Science School (PASS) Project

    NASA Technical Reports Server (NTRS)

    Coleman, Clarence D.; Hathaway, Roger (Technical Monitor)

    2002-01-01

    The Portsmouth Atmospheric Science School Project (PASS) Project was granted a one-year no cost extension for 2001-2002. In year three of the project, objectives and strategies were modified based on the previous year-end evaluation. The recommendations were incorporated and the program was replicated within most of the remaining elementary schools in Portsmouth, Virginia and continued in the four middle schools. The Portsmouth Atmospheric Science School Project is a partnership, which includes Norfolk State University, Cooperating Hampton Roads Organizations for Minorities in Engineering (CHROME), NASA Langley Research Center, and the City of Portsmouth, Virginia Public Schools. The project seeks to strengthen the knowledge of Portsmouth Public Schools students in the field of atmospheric sciences and enhance teacher awareness of hands on activities in the atmospheric sciences. The project specifically seeks to: 1) increase the interest and participation of elementary and middle school students in science and mathematics; 2) strengthen existing science programs; and 3) facilitate greater achievement in core subjects, which are necessary for math, science, and technical careers. Emphasis was placed on providing training activities, materials and resources for elementary students (grades 3 - 5) and middle school students (grades 6 - 8), and teachers through a CHROME club structure. The first year of the project focused on introducing elementary students to concepts and activities in atmospheric science. Year two of the project built on the first year's activities and utilizes advanced topics and activities appropriate for middle school students. During the third year of the project, in addition to the approaches used in years one and two, emphasis was placed on activities that enhanced the Virginia Standards of Learning (SOL).

  18. Investigating the Transition Process when Moving from a Spiral Curriculum Alignment into a Field-Focus Science Curriculum Alignment in Middle School

    ERIC Educational Resources Information Center

    Alwardt, Randi Kay

    2011-01-01

    This investigation examined the transition from a spiral science curriculum to a field-focus science curriculum in middle school. A spiral science curriculum focuses on a small part of each field of science during each middle school year, more of a general science concept. In contrast to that, the base of a field-focus curriculum is that each…

  19. The Student-to-Student Chemistry Initiative: Training High School Students To Perform Chemistry Demonstration Programs for Elementary School Students

    NASA Astrophysics Data System (ADS)

    Voegel, Phillip D.; Quashnock, Kathryn A.; Heil, Katrina M.

    2004-05-01

    The Student-to-Student Chemistry Initiative is an outreach program started in the fall of 2001 at Midwestern State University (MSU). The oncampus program trains high school science students to perform a series of chemistry demonstrations and subsequently provides kits containing necessary supplies and reagents for the high school students to perform demonstration programs at elementary schools. The program focuses on improving student perception of science. The program's impact on high school student perception is evaluated through statistical analysis of paired preparticipation and postparticipation surveys. The surveys focus on four areas of student perception: general attitude toward science, interest in careers in science, science awareness, and interest in attending MSU for postsecondary education. Increased scores were observed in all evaluation areas including a statistically significant increase in science awareness following participation.

  20. Modeling stability of growth between mathematics and science achievement during middle and high school.

    PubMed

    Ma, Xin; Ma, Lingling

    2004-04-01

    In this study, the authors introduced a multivariate multilevel model to estimate the consistency among students and schools in the rates of growth between mathematics and science achievement during the entire middle and high school years with data from the Longitudinal Study of American Youth (LSAY). There was no evident consistency in the rates of growth between mathematics and science achievement among students, and this inconsistency was not much influenced by student characteristics and school characteristics. However, there was evident consistency in the average rates of growth between mathematics and science achievement among schools, and this consistency was influenced by student characteristics and school characteristics. Major school-level variables associated with parental involvement did not show any significant impacts on consistency among either students or schools. Results call for educational policies that promote collaboration between mathematics and science departments or teachers.

  1. Top 10 Ways to Improve Science Achievement: Actions for School Principals, Assistant Principals, Department Chairs and School Improvement Consultants.

    ERIC Educational Resources Information Center

    Southern Regional Education Board (SREB), 2007

    2007-01-01

    High Schools That Work (HSTW) Assessment data show the need to improve science education in both the middle grades and high school. Science education increases students' critical thinking and problem-solving skills. This publication is designed to help principals, other school leaders and teachers identify rigorous instruction and successfully…

  2. Locus of Control, Interest in Schooling and Science Achievement of Some Deaf and Typical Secondary School Students in Nigeria

    ERIC Educational Resources Information Center

    Olatoye, R. Ademola; Aanu, E. Mosunmola

    2010-01-01

    This study compared locus of control, interest in school and science achievement of typical and deaf secondary school students. The study also investigated influence of students' locus of control and interest in school on general science achievement. Seventy two (72) deaf and 235 typical children were purposively selected from eight secondary…

  3. The North Carolina School of Science and Mathematics.

    ERIC Educational Resources Information Center

    Eilber, Charles R.

    1987-01-01

    The North Carolina School of Science and Mathematics was established in 1980 as a resident public high school for juniors and seniors demonstrating ability and interest in science and mathematics. Outlines the admission policy, instructional program, supportive services, and the school's commitment to public service. This was the first publicly…

  4. Determinants of Middle School Students' Intention to Enroll in a High School Science Course: An Application of the Theory of Reasoned Action.

    ERIC Educational Resources Information Center

    Crawley, Frank E.; Coe, Annette S.

    1990-01-01

    Investigated were the determinants of intentions to enroll in a high school science course by middle school earth science students. The impact on intentions of students' attitudes, social pressures, and specific external variables are discussed. (KR)

  5. Differences in Middle School Science Achievement by School District Size

    ERIC Educational Resources Information Center

    Mann, Matthew James; Maxwell, Gerri M.; Holland, Glenda

    2013-01-01

    This study examined differences in Texas middle school student achievement in science by school district enrollment size. Quantitative research utilized analysis of variance to determine whether significant differences existed between student achievement on the 2010 Texas Assessment of Knowledge and Skills 8th grade science results and four school…

  6. Eye and Face Protection in School Science

    ERIC Educational Resources Information Center

    Kaufman, Jim

    2006-01-01

    Choosing what eye and face protection to provide for the high school science laboratory is often a challenge. Science teachers and school administrators may not fully understand the relevant safety regulations and standards or be able to correctly identify the various types of eye protection devices. Although some schools have received training…

  7. News Conference: Serbia hosts teachers' seminar Resources: Teachers TV website closes for business Festival: Science takes to the stage in Denmark Research: How noise affects learning in secondary schools CERN: CERN visit inspires new teaching ideas Education: PLS aims to improve perception of science for school students Conference: Scientix conference discusses challenges in science education

    NASA Astrophysics Data System (ADS)

    2011-07-01

    Conference: Serbia hosts teachers' seminar Resources: Teachers TV website closes for business Festival: Science takes to the stage in Denmark Research: How noise affects learning in secondary schools CERN: CERN visit inspires new teaching ideas Education: PLS aims to improve perception of science for school students Conference: Scientix conference discusses challenges in science education

  8. Urban High School Teachers' Beliefs Concerning Essential Science Teaching Dispositions

    ERIC Educational Resources Information Center

    Miranda, Rommel

    2012-01-01

    This qualitative study addresses the link between urban high school science teachers' beliefs about essential teaching dispositions and student learning outcomes. The findings suggest that in order to help students to do well in science in urban school settings, science teachers should possess essential teaching dispositions which include…

  9. Profiles of State-Supported Residential Math and Science Schools

    ERIC Educational Resources Information Center

    Jones, Brent M.

    2009-01-01

    Unless we sharply increase the training of homegrown math and science talents, we may suffer negative economic and technological consequences. One means of addressing this challenge has been through specialty schools devoted to science, technology, engineering, and mathematics (STEM) training. In 1980, the North Carolina School of Science and…

  10. What Does it Mean to Be a STEM School: A Comparison of Science Programs

    NASA Astrophysics Data System (ADS)

    Stanley, Rebecca Matthews

    Schools that focus on science, technology, engineering, and mathematics (STEM) have been created to address a perceived need to increase numbers of students in the United States choosing and persisting in STEM career pathways. This study compared science programs in STEM and non-STEM high schools to determine how implementing a STEM design impacts science, a cornerstone of STEM. The multiple case study examined STEM integration, science instruction, and extracurricular opportunities in four high schools, two that were designated as STEM by the state's department of instruction and two that were comparable but did not have a focus on STEM. Results from this study indicate that STEM and non-STEM science programs are not significantly different in the schools studied. The two major differences that were found, greater incorporation of engineering design and increased access to extracurricular STEM activities, did not have beneficial impact on students' attitudes or career choices. Technology and math integration were similar but STEM schools integrated engineering design whereas non-STEM schools did not. Science instruction was similar. The numbers of observed inquiry-based lessons were similar, however, STEM schools had more project-based lessons, a form of inquiry-based instruction in which students create a product. A higher number of science-based extracurricular opportunities was available to students in STEM than non- STEM schools. This study offers important insight into the implementation of STEM education within existing school contexts and constraints.

  11. Validity and Worth in the Science Curriculum: Learning School Science Outside the Laboratory

    ERIC Educational Resources Information Center

    Braund, Martin; Reiss, Michael

    2006-01-01

    It is widely acknowledged that there are problems with school science in many developed countries of the world. Such problems manifest themselves in a progressive decline in pupil enthusiasm for school science across the secondary age range and by the fact that fewer students are choosing to study the physical sciences at higher levels and as…

  12. Evaluation of the Long-Term Impact of a University High School Summer Science Program on Students' Interest and Perceived Abilities in Science

    ERIC Educational Resources Information Center

    Markowitz, Dina G.

    2004-01-01

    Many biomedical research universities have established outreach programs for precollege students and teachers and partnerships with local school districts to help meet the challenges of science education reform. Science outreach programs held in university research facilities can make science more exciting and innovative for high school students…

  13. The implementation of a discovery-oriented science education program in a rural elementary school

    NASA Astrophysics Data System (ADS)

    Liddell, Martha Sue

    2000-10-01

    This study focused on the implementation of a discovery-oriented science education program at a rural elementary school in Mississippi. The instructional leadership role of the principal was examined in the study through identification and documentation of processes undertaken by the principal to implement a discovery-oriented science education program school. The goal of the study was to develop a suggested approach for implementing a discovery-oriented science education program for principals who wish to become instructional leaders in the area of science education at their schools. Mixed methods were used to collect, analyze, and interpret data. Subjects for the study consisted of teachers, students, and parents. Data were collected through field observation; observations of science education being taught by classroom teachers; examination of the principal's log describing actions taken to implement a discovery-oriented science education program; conducting semi-structured interviews with teachers as the key informants; and examining attitudinal data collected by the Carolina Biological Supply Company for the purpose of measuring attitudes of teachers, students, and parents toward the proposed science education program and the Science and Technology for Children (STC) program piloted at the school. To develop a suggested approach for implementing a discovery-oriented science education program, data collected from field notes, classroom observations, the principal's log of activities, and key informant interviews were analyzed and group into themes pertinent to the study. In addition to descriptive measures, chi-square goodness-of-fit tests were used to determine whether the frequency distribution showed a specific pattern within the attitudinal data collected by the Carolina Biological Supply Company. The pertinent question asked in analyzing data was: Are the differences significant or are they due to chance? An alpha level of .01 was selected to determine statistical significance. Teachers, students, and parents responding to the attitudinal survey concerning science education at the school were asked to mark each of four statements in one of three ways: "Agree," "Unsure," or "Disagree." Teachers, students, and parents were also given the opportunity to make comments. The results of the 1998 attitudinal surveys administered to teachers, students, and parents at the school indicated that teachers at the school generally held negative perceptions about the science education program in place at the school. Students were also generally negative in their opinions about science education at the school and parents were somewhat neutral in their opinions. After the Science and Technology for Children program was implemented at the school site, opinions concerning science education at the school changed. The 1999 attitudinal surveys indicated that teachers, students, and parents at the school expressed more positive than negative responses concerning science education.

  14. High school science enrollment of black students

    NASA Astrophysics Data System (ADS)

    Goggins, Ellen O.; Lindbeck, Joy S.

    How can the high school science enrollment of black students be increased? School and home counseling and classroom procedures could benefit from variables identified as predictors of science enrollment. The problem in this study was to identify a set of variables which characterize science course enrollment by black secondary students. The population consisted of a subsample of 3963 black high school seniors from The High School and Beyond 1980 Base-Year Survey. Using multiple linear regression, backward regression, and correlation analyses, the US Census regions and grades mostly As and Bs in English were found to be significant predictors of the number of science courses scheduled by black seniors.

  15. Deaf pupils' reasoning about scientific phenomena: school science as a framework for understanding or as fragments of factual knowledge.

    PubMed

    Molander, B O; Pedersen, S; Norell, K

    2001-01-01

    Many studies have been conducted on hearing pupils' understanding of science. Findings from these studies have been used as grounds for planning instruction in school science. This article reports findings from an interview study of how deaf pupils in compulsory school reason about phenomena in a science context. The results reveal that there is variation in the extent to which pupils use scientific principles for reasoning about science phenomena. For some pupils, school science seems to have little to offer as a framework for reasoning. The results also generate questions about the need in school instruction of deaf and hard-of-hearing pupils to consider the specific teaching and learning situations in a deaf environment.

  16. "Keeping it Real -High School Science Curriculum"- Hurricane Katrina and BP Oil Spill inspire creative curriculum by Dave Jungblut, Oakcrest High School Science Teacher, Mays Landing, NJ

    NASA Astrophysics Data System (ADS)

    Jungblut, D.

    2011-12-01

    After Hurricane Katrina devastated Gulf Coast homes in 2005, Oakcrest High School science teacher and geologist, Dave Jungblut, traveled from Gulfport to Ocean Springs, Mississippi and conducted research to determine whether property damage was caused by wind or water. Jungblut wrote several studies, " Katrina Straight- Line Wind Field Study", "Applying Research to Practical Use for Hurricane Katrina Homeowners", and "Hurricane Katrina Wind Study" proving wind damage. Jungblut's research, done pro bono, helped thousands of homeowner's in the Mississippi area be reimbursed by insurance companies for wind damage caused by Hurricane Katrina http://www.hurricanekatrinastudy.com/ Jungblut incorporated his extensive data, in a high school curriculum that is now part of the science program he teaches each year. In January 2010, Jungblut presented "Hurricane Forensics" curriculum at the Rutgers Center for Mathematics, Science and Computer January 2009 Workshop http://www.dimacs.rutgers.edu/wst/. Through labs and creative hands-on activities, Jungblut challenged his students to analyze the photographic evidence, and data he collected, for themselves. Jungblut taught his students how to use geologic and forensic inquiry techniques to discover the difference between straight-line winds from microburst activity. The students applied the concept of the Geological Principle of Relative Dating, to determine the sequence of events that happened during Hurricane Katrina. They built model structures, which were subjected to wind and water forces to better understand the effects of these phenomena, Finally, the students evaluated local and worldwide environmental issues, such as land use risks and benefits, in the face of global warming, In the spring of 2010 when the BP Oil Spill occurred, Jungblut realized, another opportunity to bring real world issues into the classroom. After exploring scientific concepts relating to this environmental crisis, Jungblut challenged his students to devise creative solutions to stop the leak. This project was profiled on June 4th, 2010 on the CBS National News with Katie Couric, "Kids Solution to the BP Oil Spill" http://www.cbsnews.com/video/watch/?id=6549408n&tag=contentMain;contentBody Jungblut continues seeking creative ways to inspire real solutions to real world problems in his classroom as the Japan's earthquake, tsunami and nuclear disaster became a group learning activities for his students.

  17. Engaging with primary schools: Supporting the delivery of the new curriculum in evolution and inheritance.

    PubMed

    Kover, Paula X; Hogge, Emily S

    2017-10-01

    The official school regulator in England (OFSTED) recently reported that the delivery of science lessons has been significantly diminished in many primary schools. There is concern that the lack of good quality science in school can reduce the recruitment of young scientists, and the level of science literacy among the general public. We believe university scientists and undergraduate students can have a significant impact in the delivery of science in primary schools. However, a relatively small proportion of scientists engage with young children to improve curricular primary school science education. Here, we argue that long term engagement with primary schools can produce significant impact for the scientist's research, schools, and society. As an example, we describe our experience developing teaching materials for the topic of "Evolution and inheritance"; highlighting possible pitfalls and perceived benefits, in hope of encouraging and facilitating other scientists to engage with primary schools. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A study of the development of scientific literacy in students of conservative Christian schools

    NASA Astrophysics Data System (ADS)

    Johns, Christopher D.

    A collision of concepts often occurs within the science classrooms of Christian schools. Students are faced with the task of accommodating biblical teachings with science theories that are not only incompatible but often directly conflicting. Teachers in the Christian school must choose to what extent and how this conflicting information will be addressed. Students must manage the tension caused by this conflict and then determine their own belief systems. High-stakes achievement testing also plays a role in the curriculum and instruction of science in the Christian school as well as public schools. Science literacy, a lifelong pursuit of understanding of the physical world, can be a victim of instructional strategies aimed at promoting student success on a specific test covering a specific set of facts instead of a comprehensive plan developed for individual-specific growth. This study was designed to gain an understanding of science literacy development of the middle school student in the Christian school. This was accomplished by comparing the individual component scores of the science Indiana Statewide Testing for Educational Progress-Plus achievement test for a 3-year period of 5 Christian schools in Indiana to the overall state averages. Armed with this information, the study, in its second phase, included interviews of the 7th-grade science teachers of the included schools. The goal of the interviews was to provide meaning and substance to the score comparisons. The purpose of the study was to understand how the students in Christian schools compared to the overall population of students in areas of science that may conflict with their Biblical beliefs. Additionally, this study was developed to understand how the science teachers in Christian schools managed the conflict that develops between the Bible and theories of science. Findings from this study showed that students in Christian schools continue to score higher than the overall population of students in all content areas in the battery of the science test. Teachers attribute these scores to the multiple substantive discussions involving the competing views of the origin of Earth and man that occur in the classroom.

  19. Finding science in students' talk

    NASA Astrophysics Data System (ADS)

    Yeo, Jennifer

    2009-12-01

    What does it mean to understand science? This commentary extends Brown and Kloser's argument on the role of native language for science learning by exploring the meaning of understanding in school science and discusses the extent that science educators could tolerate adulterated forms of scientific knowledge. Taking the perspective of social semiotics, this commentary looks at the extent that school science can be represented with other discourse practices. It also offers an example to illustrate how everyday language can present potential hindrance to school science learning.

  20. A study of the attitudes and academic achievement in biology of females in a single-sex school vs. a coeducational school in the Philadelphia Archdiocesan secondary schools

    NASA Astrophysics Data System (ADS)

    Proach, John Ann

    2000-11-01

    There is proof that the educational system has conveyed unrealistic role expectations and has neglected to address the changing needs of girls. Children form attitudes about themselves and others based on the communications they get over time from parents, other adults, peers, and a variety of societal influences, including school. This study focused on two groups of tenth-grade high school, female, biology students in the Archdiocese of Philadelphia. The purpose was to compare attitude in science and academic achievement of females in a single-sex vs. a coeducational school. Data collection included three attitudinal surveys: Women in Science, Science Attitude Scale, and Perceptions of Science and Scientists, also the National Association of Biology Teachers/National Science Teachers High School Biology Examination Version B. administered as a pretest and posttest to measure academic achievement. These instruments were used to determine if the differences between attitudes and perceptions toward science and achievement in science were alike for females in a single-sex school and a coeducational school. The study also tested to see if females in a single-sex school would attain greater academic achievement in biology than girls in a coeducational school. The Chi-square statistic was used to analyze data in the three attitudinal surveys. The NABT/NSTA High School Biology Examination determined the students' initial and final competency levels in general biology. The mean science achievement of each of the two groups was tested for statistical significance using the t-test. In the two schools the t-test statistic showed significant difference between the pretest and a slight statistical difference on the posttest; the preferred analysis was an ANCOVA used to compare the posttest scores using the pretest as a covariate. The data implies that attitudes and perceptions are basically the same in both environments with minor differences. Results of these analyses suggest that there was no significant difference in academic achievement for girls in either environment. Further research into programs, which promote science achievement among girls and boys, should investigate the significance of the school environment in enhancing not only science achievement but also attitudes toward science.

  1. Arctic Connections, an Interactive CD-ROM Program for Middle School Science

    NASA Astrophysics Data System (ADS)

    Elias, S. A.

    2003-12-01

    In this project we developed an interactive CD-ROM program for middle school students, accompanied by an interactive web site. The project was sponsored by a grant from the NSF ESIE Instructional Materials Development program. One of the major goals of this project was to involve middle school students in inquiry-based science education, using topics that are of interest to students in Arctic communities. Native Alaskan students have traditionally done poorly in science at the secondary level, and few have gone on to major in the sciences in college or to pursue scientific careers. Part of the problem is a perceived dichotomy between science and traditional Native ways of knowing about the natural world. Hence some students reject the scientific method as being foreign to their native culture. Our goal was to help bridge this cultural barrier, and to demonstrate to native students that the scientific method is not antithetical to their traditional way of life. The program uses story modules that discuss both scientific and Native ways of understanding, through the use of action-adventure stories and brief learning modules. The aim was to show students the relevance of science to their daily lives, and to convince them that scientific methods are a vital tool in solving major problems in arctic communities. Each action-adventure story contains a series of problems that the program user must solve through interactive participation, in order for the story to progress. The interactive elements include answering quiz questions correctly, measuring pH by comparing litmus paper colors, measuring archaeological artifact dimensions, finding the location of fossil bones in a photograph, and correctly identifying photographs of whale species, arctic plants, and fish. The stories contain a mixture of live-action film sequences and voice-over sketch art story boards. The ten modules include such topics as arctic flora and fauna (including terrestrial and sea mammals), arctic solar phenomena, the archaeology and ice-age history of Alaska, water quality, sea ice, permafrost, and climatology. The topics are designed to show connections between the past, present, and future of the Arctic, highlighting problems that can be addressed by scientific inquiry. The accompanying teacher's guide contains a series of hands-on experiments and additional learning materials for each module. The scientific information contained in the modules was refereed by a team of experts who have also volunteered to respond to student questions via e-mail. During the last three years, the program has been field tested in middle schools in Barrow, Kotzebue, Fairbanks, and Anchorage, Alaska. These tests have brought many suggestions for improvements from both teachers and students. The program is in its final evaluation phase, and will be available to schools early in 2004.

  2. Not Driven by High-Stakes Tests: Exploring Science Assessment and College Readiness of Students from an Urban Portfolio Community High School

    NASA Astrophysics Data System (ADS)

    Fleshman, Robin Earle

    This case study seeks to explore three research questions: (1) What science teaching and learning processes, perspectives, and cultures exist within the science classroom of an urban portfolio community high school? (2) In what ways does the portfolio-based approach prepare high school students of color for college level science coursework, laboratory work, and assessment? (3) Are portfolio community high school students of color college ready? Is there a relationship between students' science and mathematics performance and college readiness? The overarching objectives of the study are to learn, understand, and describe an urban portfolio community high school as it relates to science assessment and college readiness; to understand how the administration, teachers, and alumni perceive the use of portfolios in science learning and assessment; and to understand how alumni view their preparation and readiness for college and college science coursework, laboratory work, and assessments. The theoretical framework of this study encompasses four theories: critical theory, contextual assessment, self-regulated learning, and ethic of care. Because the urban high school studied partnered with a community-based organization (CBO), it identifies as a community school. Therefore, I provide context regarding the concept, culture, and services of community schools. Case study is the research design I used to explore in-depth this urban portfolio community high school, which involved mixed methods for data collection and analysis. In total, six alumni/current college students, five school members (administrators and teachers), and three CBO members (administrators, including myself) participated in the study. In addition to school artefacts and student portfolios collected, classroom and portfolio panel presentation observations and 13 semi-structured interviews were conducted to understand the portfolio-based approach as it pertains to science learning and assessment and college science readiness. Data from the transcripts of two graduating classes were analyzed and the interview transcripts were coded and analyzed as well. Analysis of qualitative data revealed key findings: (1) the school's Habits of Mind, authentic scientific inquiry, self-regulated learning triggers and strategies, and teacher feedback practices driven by an ethic of care supported students' science learning and portfolio assessment; and (2) the cyclical and extensive portfolio processes of writing, revision, and submission well prepared alumni for college science laboratory work and coursework, to a certain extent, but not for the traditional assessments administered in college science courses. Analysis of quantitative data revealed that, if based solely on the City University of New York's Regents score criteria for college readiness, the majority of students from these two graduating classes studied would not have been considered college ready even though all participants, including interviewed alumni, believed the school prepared them for college. The majority of these students, however, were transitioning to college readiness based on their Regents-level science and mathematics coursework. Findings of this study have implications for science assessment, professional development in science, education policy reform, and high school partnerships with CBOs and postsecondary institutions as they pertain to college and college science readiness for students of color in urban portfolio community high schools.

  3. Urban school leadership for elementary science education: Meeting the needs of English Language Learners

    NASA Astrophysics Data System (ADS)

    Alarcon, Maricela H.

    Science education reform and state testing accountability call upon principals to become instructional leaders in science. Specifically, elementary school principals must take an active role in science instruction to effectively improve science education for all students including English Language Learners. As such, the research questioned posed in this study centered on How are elementary school principals addressing the academic needs of Latino Spanish-speaking English language learners within science education? This study employed a qualitative research design to identify the factors contributing to the exemplary performance in science, as measured by the Texas Assessment of Knowledge and Skills (TAKS), for English Language Learner students in three high poverty bilingual elementary schools based on a multiple case study. As part of the data collection process, interviews were conducted with three school principals, three science academic support teachers, and two 5th grade bilingual teachers. Additionally, observations were acquired through school principal shadowing. The findings revealed four attributes necessary for effective instructional leadership in science education. First, Positive School Culture was defined as the core that linked the other three instructional leadership attributes and thus increased their effectiveness. Second, Clear Goals and Expectations were set by making science a priority and ensuring that English language learners were transitioning from Spanish to English instruction by the fifth grade. Third, Critical Resourcing involved hiring a science academic support teacher, securing a science classroom on campus, and purchasing bilingual instructional materials. Fourth, principal led and supported Collaboration in which teachers met to discuss student performance based data in addition to curriculum and instruction. These research findings are vital because by implementing these best practices of elementary school principals, educators are positioned to lay the foundation for science needed for ELLs to continue their educational career with the tools needed to succeed in future science classes and in turn college, answering the call to effectively improve science within the educational system.

  4. Science packages

    NASA Astrophysics Data System (ADS)

    1997-01-01

    Primary science teachers in Scotland have a new updating method at their disposal with the launch of a package of CDi (Compact Discs Interactive) materials developed by the BBC and the Scottish Office. These were a response to the claim that many primary teachers felt they had been inadequately trained in science and lacked the confidence to teach it properly. Consequently they felt the need for more in-service training to equip them with the personal understanding required. The pack contains five disks and a printed user's guide divided up as follows: disk 1 Investigations; disk 2 Developing understanding; disks 3,4,5 Primary Science staff development videos. It was produced by the Scottish Interactive Technology Centre (Moray House Institute) and is available from BBC Education at £149.99 including VAT. Free Internet distribution of science education materials has also begun as part of the Global Schoolhouse (GSH) scheme. The US National Science Teachers' Association (NSTA) and Microsoft Corporation are making available field-tested comprehensive curriculum material including 'Micro-units' on more than 80 topics in biology, chemistry, earth and space science and physics. The latter are the work of the Scope, Sequence and Coordination of High School Science project, which can be found at http://www.gsh.org/NSTA_SSandC/. More information on NSTA can be obtained from its Web site at http://www.nsta.org.

  5. High school and college introductory science education experiences: A study regarding perceptions of university students persisting in science as a major area of study

    NASA Astrophysics Data System (ADS)

    Fredrick, L. Denise

    The focus of this study was to investigate college students' perception of high school and college introductory science learning experiences related to persistence in science as a major area of study in college. The study included students' perceptions of the following areas of science education: (1) teacher interpersonal relationship with students, (2) teacher personality styles, (3) teacher knowledge of the content, (4) instructional methods, and (5) science course content. A survey research design was employed in the investigative study to collect and analyze data. One hundred ninety two students participated in the research study. A survey instrument entitled Science Education Perception Survey was used to collect data. The researcher sought to reject or support three null hypotheses as related to participants' perceptions of high school and college introductory science education experiences. Using binomial regression analysis, this study analyzed differences between students persisting in science and students not persisting in science as a major. The quantitative research indicated that significant differences exist between persistence in science as a major and high school science teacher traits and college introductory science instructional methods. Although these variables were found to be significant predictors, the percent variance was low and should be considered closely before concluded these as strong predictors of persistence. Major findings of the qualitative component indicated that students perceived that: (a) interest in high school science course content and high school science teacher personality and interpersonal relationships had the greatest effect on students' choice of major area of study; (b) interest in college introductory science course content had the greatest effect on students' choice of major area of study; (c) students recalled laboratory activities and overall good teaching as most meaningful to their high school science educational experiences and (d) students recalled laboratory activities and lectures linking practical application of science knowledge as meaningful to their college introductory science education experiences.

  6. The pathways of high school science teachers and policy efforts to alter the pipeline

    NASA Astrophysics Data System (ADS)

    Sass, Tim

    2012-03-01

    There is currently much interest in improving the quality of science education in K-12 schools and encouraging more students, particularly minorities and women, to pursue careers in STEM fields. Two interrelated issues are at the forefront: the quality of science teachers and the supply of science teachers. Education research in general finds that the single most important school-based factor affecting student achievement is teacher quality. While there is little evidence that teacher credentials matter for student achievement in the lower grades, there is at least some evidence that content knowledge is an important determinant of teacher quality in middle and secondary schools. However, little is known about the pre-service preparation of high school science teachers and how the training of science teachers affects their performance in the classroom. While there are many efforts underway to increase the supply of science teachers, little is known about the supply of science teachers from different pathways and the factors that lead science teachers to leave the profession. In this presentation I discuss recent work on the supply of teachers from alternative pathways, focusing on high school science teachers. I also summarize the literature on teacher quality and attrition, emphasizing the current state of knowledge on secondary school teachers. Finally, I present current policy initiatives and discuss the likelihood of their success given current research findings.

  7. Hierarchical Effects of School-, Classroom-, and Student-Level Factors on the Science Performance of Eighth-Grade Taiwanese Students

    NASA Astrophysics Data System (ADS)

    Tsai, Liang-Ting; Yang, Chih-Chien

    2015-05-01

    This study was conducted to understand the effect of student-, classroom-, and school-level factors on the science performance of 8th-grade Taiwanese students in the Trends in International Mathematics and Science Study (TIMSS) 2011 by using multilevel analysis. A total of 5,042 students from 153 classrooms of 150 schools participated in the TIMSS 2011 study, in which they were required to complete questionnaires. A 3-level multilevel analysis was used to assess the influence of factors at 3 levels on the science performance of 8th-grade Taiwanese students. The results showed that the provision of education resources at home, teachers' level of education, and school climate were the strongest predictor of science performance at the student, classroom, and school level, respectively. It was concluded that the science performance of 8th-grade Taiwanese students is driven largely by individual factors. Classroom-level factors accounted for a smaller proportion of the total variance in science performance than did school-level factors.

  8. The effects of hands-on-science instruction on the science achievement of middle school students

    NASA Astrophysics Data System (ADS)

    Wiggins, Felita

    Student achievement in the Twenty First Century demands a new rigor in student science knowledge, since advances in science and technology require students to think and act like scientists. As a result, students must acquire proficient levels of knowledge and skills to support a knowledge base that is expanding exponentially with new scientific advances. This study examined the effects of hands-on-science instruction on the science achievement of middle school students. More specifically, this study was concerned with the influence of hands-on science instruction versus traditional science instruction on the science test scores of middle school students. The subjects in this study were one hundred and twenty sixth-grade students in six classes. Instruction involved lecture/discussion and hands-on activities carried out for a three week period. Specifically, the study ascertained the influence of the variables gender, ethnicity, and socioeconomic status on the science test scores of middle school students. Additionally, this study assessed the effect of the variables gender, ethnicity, and socioeconomic status on the attitudes of sixth grade students toward science. The two instruments used to collect data for this study were the Prentice Hall unit ecosystem test and the Scientific Work Experience Programs for Teachers Study (SWEPT) student's attitude survey. Moreover, the data for the study was treated using the One-Way Analysis of Covariance and the One-Way Analysis of Variance. The following findings were made based on the results: (1) A statistically significant difference existed in the science performance of middle school students exposed to hands-on science instruction. These students had significantly higher scores than the science performance of middle school students exposed to traditional instruction. (2) A statistically significant difference did not exist between the science scores of male and female middle school students. (3) A statistically significant difference did not exist between the science scores of African American and non-African American middle school students. (4) A statistically significant difference existed in the socioeconomic status of students who were not provided with assisted lunches. Students with unassisted lunches had significantly higher science scores than those middle school students who were provided with assisted lunches. (5) A statistically significant difference was not found in the attitude scores of middle school students who were exposed to hands-on or traditional science instruction. (6) A statistically significant difference was not found in the observed attitude scores of middle school students who were exposed to either hands-on or traditional science instruction by their socioeconomic status. (7) A statistically significant difference was not found in the observed attitude scores of male and female students. (8) A statistically significant difference was not found in the observed attitude scores of African American and non African American students.

  9. Predictors and Outcomes of Parental Involvement with High School Students in Science

    ERIC Educational Resources Information Center

    Shumow, Lee; Lyutykh, Elena; Schmidt, Jennifer A.

    2011-01-01

    Demographic and psychological predictors of parent involvement with their children's science education both at home and at school were examined during high school. Associations between both types of parent involvement and numerous academic outcomes were tested. Data were collected from 244 high school students in 12 different science classrooms…

  10. The Origin and Evolution of Life in Pakistani High School Biology

    ERIC Educational Resources Information Center

    Asghar, Anila; Wiles, Jason R.; Alters, Brian

    2010-01-01

    This study seeks to inform science education practitioners and researchers in the West about apparent attempts to reconcile science and religion in Pakistan's public school curriculum. We analysed the national high school science curriculum and biology textbooks (English) used in the Government schools in Pakistan, where Islamic faith is the…

  11. Sustainable Schools Program and Practice: Partnership Building with the Tempe Union High School District

    ERIC Educational Resources Information Center

    Koster, Auriane; Denker, Brendan

    2012-01-01

    Arizona State University's (ASU) Global Institute of Sustainability (GIOS) was awarded a five-year National Science Foundation (NSF) GK-12 grant in 2009 entitled "Sustainability Science for Sustainable Schools." The general focus of the grant is on science, technology, engineering, and math (STEM) education in K-12 schools. The…

  12. Development of School Students' Constructions of Biology and Physics. Research Report

    ERIC Educational Resources Information Center

    Spall, Katie; Stanisstreet, Martin; Dickson, Dominic; Boyes, Edward

    2004-01-01

    Studies exploring school students' views about science have not always distinguished between different branches of science. Here, the views of 1395 secondary school students aged 11-16 about physics and, as a science comparator, biology were determined using a closed-form questionnaire. Over the period of secondary schooling a decreasing…

  13. Transforming STEM Education in an Innovative Australian School: The Role of Teachers' and Academics' Professional Partnerships

    ERIC Educational Resources Information Center

    Bissaker, Kerry

    2014-01-01

    The Australian Science and Mathematics School (ASMS) is a purpose-built innovative senior secondary school situated on the grounds of Flinders University, South Australia. The school was established to address declining enrollments in senior secondary mathematics and science, students' negative attitudes, a shortage of qualified science,…

  14. The Courts, Social Science, and School Desegregation.

    ERIC Educational Resources Information Center

    Levin, Betsy, Ed.; Hawley, Willis D., Ed.

    A conference on the courts, social science, and school desegregation attempted to clarify how social science research has been used and possibly misused in school desegregation litigation. The symposium issue addressed in this book is a product of that conference. First, the judicial evolution of the law of school desegregation from Brown V. the…

  15. A Gender Study of High School Science Teachers in Rural Florida

    ERIC Educational Resources Information Center

    Butler, Susan M.

    2013-01-01

    The study compares faculty and school demographics in selected high school science classrooms to expand the research on women with careers in science. The classrooms are either situated in "high need Local Education Agencies" or the classrooms are situated in "low-performing schools," as categorized by the Florida Department of…

  16. The Language Demands of Science Reading in Middle School

    NASA Astrophysics Data System (ADS)

    Fang, Zhihui

    2006-04-01

    The language used to construct knowledge, beliefs, and worldviews in school science is distinct from the social language that students use in their everyday ordinary life. This difference is a major source of reading difficulty for many students, especially struggling readers and English-language learners. This article identifies some of the linguistic challenges involved in reading middle-school science texts and suggests several teaching strategies to help students cope with these challenges. It is argued that explicit attention to the unique language of school science should be an integral part of science literacy pedagogy.

  17. A Cross-Grade Comparison to Examine the Context Effect on the Relationships among Family Resources, School Climate, Learning Participation, Science Attitude, and Science Achievement Based on TIMSS 2003 in Taiwan

    ERIC Educational Resources Information Center

    Chen, Shin-Feng; Lin, Chien-Yu; Wang, Jing-Ru; Lin, Sheau-Wen; Kao, Huey-Lien

    2012-01-01

    This study aimed to examine whether the relationships among family resources, school climate, learning participation, science attitude, and science achievement are different between primary school students and junior high school students within one educational system. The subjects included 4,181 Grade 4 students and 5,074 Grade 8 students who…

  18. Associations of Middle School Student Science Achievement and Attitudes about Science with Student-Reported Frequency of Teacher Lecture Demonstrations and Student-Centered Learning

    ERIC Educational Resources Information Center

    Odom, Arthur Louis; Bell, Clare Valerie

    2015-01-01

    The purpose of this study was to examine the association of middle school student science achievement and attitudes about science with student-reported frequency of teacher lecture demonstrations and student-centered learning. The student sample was composed of 602 seventh- and eighth-grade students enrolled in middle school science. Multiple…

  19. Social Justice and Out-of-School Science Learning: Exploring Equity in Science Television, Science Clubs and Maker Spaces

    ERIC Educational Resources Information Center

    Dawson, Emily

    2017-01-01

    This article outlines how social justice theories, in combination with the concepts of infrastructure access, literacies and community acceptance, can be used to think about equity in out-of-school science learning. The author applies these ideas to out-of-school learning via television, science clubs, and maker spaces, looking at research as well…

  20. School and University Partnerships: The Role of Teacher Education Institutions and Primary Schools in the Development of Preservice Teachers' Science Teaching Efficacy

    ERIC Educational Resources Information Center

    Petersen, Jacinta E.; Treagust, David F.

    2014-01-01

    Science in the Australian primary school context is in a state of renewal with the recent implementation of the Australian Curriculum: Science. Despite this curriculum renewal, the results of primary students in science have remained static. Science in Australia has been identified as one of the least taught subjects in the primary school…

  1. Working with Science Teachers to Transform the Opportunity Landscape for Regional and Rural Youth: A Qualitative Evaluation of the Science in Schools Program

    ERIC Educational Resources Information Center

    Sheehan, Grania R.; Mosse, Jennifer

    2013-01-01

    This article reports on a qualitative evaluation of the Science in Schools program; a suite of science based activities delivered by staff of a regional university campus and designed to provide professional development for science teachers working in non-metropolitan schools in a socioeconomically disadvantaged region of Australia. The research…

  2. An opportunity for success: Understanding motivation and learning from urban youth participation in an after school science program

    NASA Astrophysics Data System (ADS)

    Catlin, Janell Nicole

    This dissertation is an ethnographic study that documents through student voice the untold stories of urban student motivation to learn and engage in science through the contexts of an after school science program and the students' in-school science classrooms. The purpose of this study is to add to the literature in science education on motivation of urban youth to learn and engage in science through thick and rich descriptions of student voice. This study addresses issues in educational inequity by researching students who are historically marginalized. The focus of the study is four middle school students. The methodology employed was critical ethnography and case study. The data sources included participant observations and field notes, interviews, student artifacts, Snack and Chat, autophotography, and the researcher's reflective journal. The findings of this study state that motivating factors for urban middle school students' learning and engaging in science include a flexible and engaging curriculum, that students are empowered and motivated to learn when teachers are respectful, that urban middle school science students hold positive images about scientists, themselves and knowing science, and that urban teachers of the dominant culture believe that their urban middle school science students are motivated. In using Sociotransformative Constructivism (STC) and Critical Race Theory (CRT) the researcher informs the issues of inequity and racism that emerge from historical perspectives and students' stories about their experiences inside and outside of school. The implications state that allowing for a flexible curriculum that motivates students to make choices about what and how they want to learn and engage in science are necessary science teaching goals for urban middle school students, it is necessary that teachers are conscious of their interactions with their students, diversifying the science field through educating and empowering all students through learning science is key, and to get teachers to the point of an anti-deficit view of urban education more positive stories told by and research done with White urban science teachers must be documented.

  3. The connection between students' out-of-school experiences and science learning

    NASA Astrophysics Data System (ADS)

    Tran, Natalie A.

    This study sought to understand the connection between students' out-of-school experiences and their learning in science. This study addresses the following questions: (a) What effects does contextualized information have on student achievement and engagement in science? (b) To what extent do students use their out-of-school activities to construct their knowledge and understanding about science? (c) To what extent do science teachers use students' skills and knowledge acquired in out-of-school settings to inform their instructional practices? This study integrates mixed methods using both quantitative and qualitative approaches to answer the research questions. It involves the use of survey questionnaire and science assessment and features two-level hierarchical analyses of student achievement outcomes nested within classrooms. Hierarchical Linear Model (HLM) analyses were used to account for the cluster effect of students nested within classrooms. Interviews with students and teachers were also conducted to provide information about how learning opportunities that take place in out-of-school settings can be used to facilitate student learning in science classrooms. The results of the study include the following: (a) Controlling for student and classroom factors, students' ability to transfer science learning across contexts is associated with positive learning outcomes such as achievement, interest, career in science, self-efficacy, perseverance, and effort. Second, teacher practice using students' out-of-school experiences is associated with decrease in student achievement in science. However, as teachers make more connection to students' out-of-school experiences, the relationship between student effort and perseverance in science learning and transfer gets weaker, thus closing the gaps on these outcomes between students who have more ability to establish the transfer of learning across contexts and those who have less ability to do so. Third, science teachers have limited information about students' out-of-school experiences thus rarely integrate these experiences into their instructional practices. Fourth, the lack of learning objectives for activities structured in out-of-school settings coupled with the limited opportunities to integrate students' out of school experiences into classroom instructions are factors that may prevent students from making further connection of science learning across contexts.

  4. Latina girls' identities-in-practice in 6th grade science

    NASA Astrophysics Data System (ADS)

    Tan, Edna

    Inequalities and achievement gaps in science education among students from different racial and socioeconomic backgrounds as well as between genders in the United States are due to not just access to resources, but also to the incongruence between identities of school science with identities salient to minority students. Minority girls are especially portrayed to be estranged from prototypical school science Discourse, often characterized as white, middle class, and masculine. This dissertation, based on a two-year ethnographic study in an urban middle school in New York City, describes the authoring of novel identities-in-practice of minority girls in a 6th grade science classroom. The findings indicate that minority girls draw from out-of-school identities salient to them to author novel identities-in-practice in the various figured worlds of the 6th grade science classroom. Through taking such authorial stances, minority girls exhibit agency in negotiating for wider boundaries in their school science participation and broker for hybrid spaces of school science where the school science Discourse was destabilized and challenged to be more inclusive of everyday funds of knowledge and Discourses important to the students. The findings also highlight the dialectic relationship between an individual students' learning and participation and the school science community-of-practice and the implications such a relationship has on the learning of both individual students and the collective community-of-practice. From year one findings, curricular adaptations were enacted, with teacher and student input, on lessons centering on food and nutrition. The adapted curriculum specifically solicited for nontraditional funds of knowledge and Discourse from students and were grounded strongly in relevance to students' out of school lives. The hybrid spaces collectively brokered for by the community-of-practice were transformed in three ways: physically, politically, and, pedagogically. Overall, the results from the study indicate that minority girls are not only successful in border crossing but in brokering for new worlds of science, and highlights the importance of incorporating nontraditional funds and Discourses and the important roles played by the community-of-practice as a whole to reshape the landscape of school science in genuine pursuit of the education goal "science for all".

  5. School Composition and Context Factors that Moderate and Predict 10th-Grade Science Proficiency

    ERIC Educational Resources Information Center

    Hogrebe, Mark C.; Tate, William F., IV

    2010-01-01

    Background: Performance in high school science is a critical indicator of science literacy and regional competitiveness. Factors that influence science proficiency have been studied using national databases, but these do not answer all questions about variable relationships at the state level. School context factors and opportunities to learn…

  6. Adolescents' Declining Motivation to Learn Science: Inevitable or Not?

    ERIC Educational Resources Information Center

    Vedder-Weiss, Dana; Fortus, David

    2011-01-01

    There is a growing awareness that science education should center not just on knowledge acquisition but developing the foundation for lifelong learning. However, for intentional learning of science to occur in school, out of school, and after school, there needs to be a motivation to learn science. Prior research had shown that students'…

  7. The Science Program in Small Rural Secondary Schools.

    ERIC Educational Resources Information Center

    Colton, R. W.

    Rural schools may have an advantage over urban schools in science teaching if sciences are perceived as means of exploring our surroundings, are presented as many viewpoints of one overall picture, and are taught in a form that deals with human situations. Collaboratively taught, rural science curricula can include study of agricultural ecology,…

  8. Changes in Student Science Interest from Elementary to Middle School

    ERIC Educational Resources Information Center

    Coutts, Trudi E.

    2012-01-01

    This study is a transcendental phenomenological study that described the experience of students' interest in science from elementary school through middle school grades and the identification of the factors that increase or decrease interest in science. Numerous researchers have found that interest in science changes among children and the change…

  9. Meeting the Needs of Middle Grade Science Learners through Pedagogical and Technological Intervention

    ERIC Educational Resources Information Center

    Yerrick, Randy; Johnson, Joseph

    2009-01-01

    This mixed methods study examined the effects of inserting laptops and science technology tools in middle school environments. Working together with a local university, middle school science teaching faculty members wrote and aligned curricula, explored relevant science education literature, tested lessons with summer school students, and prepared…

  10. Our OASIS

    ERIC Educational Resources Information Center

    Bircher, Lisa S.; Sansenbaugher, Bonnie

    2017-01-01

    This article describes an elementary science summer day camp at East Palatine High School in East Palestine, Ohio, for students in grades K-4, aided by high school (grades 9-12) student mentors. The school's Outdoor Area for Studies in Science (OASIS) is used for formal and informal studies in science for an elementary science camp week. The camp…

  11. The Effect of Robotics Competitions on High School Students' Attitudes toward Science

    ERIC Educational Resources Information Center

    Welch, Anita; Huffman, Douglas

    2011-01-01

    This study was designed to examine the impact of participating in an after-school robotics competition on high school students' attitudes toward science. Specifically, this study used the Test of Science-Related Attitude to measure students' social implications of science, normality of scientists, attitude toward scientific inquiry, adoption of…

  12. Bringing Science Public Outreach to Elementary Schools

    NASA Astrophysics Data System (ADS)

    Miller, Lucas; Speck, A.; Tinnin, A.

    2012-01-01

    Many science "museums” already offer fantastic programs for the general public, and even some aimed at elementary school kids. However, these venues are usually located in large cities and are only occasionally used as tools for enriching science education in public schools. Here we present preliminary work to establish exciting educational enrichment environments for public schools that do not easily have access to such facilities. This program is aimed at motivating children's interest in science beyond what they learn in the classroom setting. In this program, we use the experience and experiments/demonstrations developed at a large science museum (in this case, The St. Louis Science Center) and take them into a local elementary school. At the same time, students from the University of Missouri are getting trained on how to present these outreach materials and work with the local elementary schools. Our pilot study has started with implementation of presentations/demonstrations at Benton Elementary School within the Columbia Public School district, Missouri. The school has recently adopted a STEM (Science, Technology, Engineering, and Mathematics) centered learning system throughout all grade levels (K-5), and is therefore receptive to this effort. We have implemented a program in which we have given a series of scientific demonstrations at each grade level's lunch hour. Further enrichment ideas and plans include: addition demonstrations, hands-on experiments, and question and answer sessions. However, the application of these events would be to compliment the curriculum for the appropriate grade level at that time. The focus of this project is to develop public communications which links science museums, college students and local public schools with an emphasis on encouraging college science majors to share their knowledge and to strengthen their ability to work in a public environment.

  13. A Case Study Exploring the Identity of an In-Service Elementary Science Teacher: a Language Teacher First

    NASA Astrophysics Data System (ADS)

    Marco-Bujosa, Lisa; Levy, Abigail Jurist; McNeill, Katherine

    2018-01-01

    Teachers are central to providing high-quality science learning experiences called for in recent reform efforts, as their understanding of science impacts both what they teach and how they teach it. Yet, most elementary teachers do not enter the profession with a particular interest in science or expertise in science teaching. Research also indicates elementary schools present unique barriers that may inhibit science teaching. This case study utilizes the framework of identity to explore how one elementary classroom teacher's understandings of herself as a science specialist were shaped by the bilingual elementary school context as she planned for and provided reform-based science instruction. Utilizing Gee's (2000) sociocultural framework, identity was defined as consisting of four interrelated dimensions that served as analytic frames for examining how this teacher understood her new role through social positioning within her school. Findings describe the ways in which this teacher's identity as a science teacher was influenced by the school context. The case study reveals two important implications for teacher identity. First, collaboration for science teaching is essential for elementary teachers to change their practice. It can be challenging for teachers to form an identity as a science teacher in isolation. In addition, elementary teachers new to science teaching negotiate their emerging science practice with their prior experiences and the school context. For example, in the context of a bilingual school, this teacher adapted the reform-based science curriculum to better meet the unique linguistic needs of her students.

  14. Characteristics of High School Students' and Science Teachers' Cognitive Frame about Effective Teaching Method for High School Science Subject

    NASA Astrophysics Data System (ADS)

    Chung, Duk Ho; Park, Kyeong-Jin; Cho, Kyu Seong

    2016-04-01

    We investigated the cognitive frame of high school students and inservice high school science teachers about effective teaching method, and we also explored how they understood about the teaching methods suggested by the 2009 revised Science Curriculum. Data were collected from 275 high school science teachers and 275 high school students. We analyzed data in terms of the words and the cognitive frame using the Semantic Network Analysis. The results were as follows. First, the teachers perceived that an activity oriented class was the effective science class that helped improve students'' problem-solving abilities and their inquiry skills. The students had the cognitive frame that their teacher had to present relevant and enough teaching materials to students, and that they should also receive assistance from teachers in science class to better prepare for college entrance exam. Second, both students and teachers retained the cognitive frame about the efficient science class that was not reflected 2009 revised Science Curriculum exactly. Especially, neither groups connected the elements of ''convergence'' as well as ''integration'' embedded across science subject areas to their cognitive frame nor cognized the fact that many science learning contents were closed related to one another. Therefore, various professional development opportunities should be offered so that teachers succinctly comprehend the essential features and the intents of the 2009 revised Science Curriculum and thereby implement it in their science lessons effectively. Keywords : semantic network analysis, cognitive frame, teaching method, science lesson

  15. Valuing difference in students' culture and experience in school science lessons

    NASA Astrophysics Data System (ADS)

    Banner, Indira

    2016-12-01

    Susan Harper writes about how a cross-cultural learning community can be formed where people from different cultures are not simply assimilated into a school science community but are seen and heard. This makes learning reciprocal and meaningful for both recent refugees and the dominant population. Although maybe not refugees, students from poorer backgrounds in many countries are less likely to choose science at a post-compulsory level. This article discusses some of the potential barriers that are faced by many of these students, that prevent them from participating in school science. It suggests how people involved in school science might address these issues to allow a smoother cultural border crossing between the students' cultures and school science culture by reducing the significance of the crossing.

  16. The kids at Hamilton Elementary School: Purposes and practices for co-opting science

    NASA Astrophysics Data System (ADS)

    Ortiz, Loaiza

    The purpose of this study was to explore youth's purposes and motivations for engaging in science through the lens of science practices. The construct of science practices allowed me to see science in youths' lives in a holistic way, shaped by social, political, historical, economic and cultural forces. The framework for understanding urban youths' science practices is grounded in the intersections of critical and feminist theory, sociocultural learning theories, especially as applied in research in urban science education, and recent work in critical literacy studies. As I explored the answers to my research questions---(1) When 5th grade youth, living in predominantly Latino communities struggling with urban poverty, engage in science how and why do they co-opt science in ways that result in changes in participation in science? (2) What are the science practices that facilitate youths' coopting of science? And how are those practices framed by context (school, out-of-school), content (LiFE curriculum), and funds of knowledge? (3) In what ways are science practices expressions of youths' scientific literacy? And (4) In what ways do youth use science practices as tools for expressing identities and agency?---I engaged in feminist ethnography with embedded case studies. Data were collected in 2004 in school and in out of school settings. I recorded numerous informal conversations, interviews, and observations both during after-school and students' regular science and non-science classes. Findings describe how and why students co-opted science for purposes that make sense for their lives. These purposes included gaining and activating resources, building and maintaining social relationships, bridging home and school knowledge, positioning themselves with authority, and constructing science identities. Findings also explored what practices facilitated youth's co-opting of science. I highlighted three practices: making ideas public, storytelling and prioritizing and using evidence. Finally, I present an in-depth analysis of the science practice of storytelling. Analysis revealed that students engaged in storytelling to facilitate co-opting of science by: allowing them to change the discourse of the science classroom, to seek legitimacy, and to position themselves with authority. I end with implications for urban science education, teacher education and for future research.

  17. Diversity in the biomedical research workforce: developing talent.

    PubMed

    McGee, Richard; Saran, Suman; Krulwich, Terry A

    2012-01-01

    Much has been written about the need for and barriers to achievement of greater diversity in the biomedical workforce from the perspectives of gender, race, and ethnicity; this is not a new topic. These discussions often center around a "pipeline" metaphor that imagines students flowing through a series of experiences to eventually arrive at a science career. Here we argue that diversity will only be achieved if the primary focus is on (1) what is happening within the pipeline, not just counting individuals entering and leaving it; (2) de-emphasizing the achievement of academic milestones by typical ages; and (3) adopting approaches that most effectively develop talent. Students may develop skills at different rates based on factors such as earlier access to educational resources, exposure to science (especially research experiences), and competing demands for time and attention during high school and college. Therefore, there is wide variety among students at any point along the pipeline. Taking this view requires letting go of imagining the pipeline as a sequence of age-dependent steps in favor of milestones of skill and talent development decoupled from age or educational stage. Emphasizing talent development opens up many new approaches for science training outside of traditional degree programs. This article provides examples of such approaches, including interventions at the postbaccalaureate and PhD levels, as well as a novel coaching model that incorporates well-established social science theories and complements traditional mentoring. These approaches could significantly impact diversity by developing scientific talent, especially among currently underrepresented minorities. © 2012 Mount Sinai School of Medicine.

  18. Towards a pragmatic science in schools

    NASA Astrophysics Data System (ADS)

    Segal, Gilda

    1997-06-01

    This paper contrasts naive beliefs about the nature of science, with science as it appears from sociological and philosophical study, feminist critique and insights from multicultural education. I draw implications from these informed views to suggest how school science might be modified to project a pragmatic view of science to its students that allows students to know science and its relationships to themselves and society in multi-faceted ways. From these perspectives, pragmatic school science is situated within a values framework that questions how we know. Pragmatic school science also requires that the naive inductivist views that permeate school science inquiry methods at present be modified to recognise that observations and inquiry are guided by prior knowledge and values; that new knowledge is tentative; that some knowledge has high status, as it has been constructed consensually over a long period; but that even high status knowledge can be challenged. For implementation of these reforms, yet still to embrace the need for some students to appropriate understanding of discipline knowledge required for advanced science education, a broad set of aims is required.

  19. Students' perceptions about science: The impact of transition from primary to secondary school

    NASA Astrophysics Data System (ADS)

    Speering, Wendy; Rennie, Léonie

    1996-09-01

    As students move through school, attitudes to school in general, and science in particular, become less positive. This paper reports on a longitudinal study which mapped, from the students' point of view, the transition between primary and secondary school in Western Australia. The study focused on the subject of science, and used both quantitative and qualitative methods. During the transition, there is a considerable change in the organisation of the school, the curriculum and the teacherstudent relationship. Students in this study, especially the girls, were generally disenchanted with the teaching strategies used in their secondary science classrooms, and regretted the loss of the close teacher-student relationship of their primary school years. Their perceptions were that science in secondary school was not what they had expected, and this experience may have long term implications for their subject and career choices.

  20. Opportunities to Learn in School and at Home: How can they predict students' understanding of basic science concepts and principles?

    NASA Astrophysics Data System (ADS)

    Wang, Su; Liu, Xiufeng; Zhao, Yandong

    2012-09-01

    As the breadth and depth of economic reforms increase in China, growing attention is being paid to equalities in opportunities to learn science by students of various backgrounds. In early 2009, the Chinese Ministry of Education and Ministry of Science and Technology jointly sponsored a national survey of urban eighth-grade students' science literacy along with their family and school backgrounds. The present study focused on students' understanding of basic science concepts and principles (BSCP), a subset of science literacy. The sample analyzed included 3,031 students from 109 randomly selected classes/schools. Correlation analysis, one-way analysis of variance, and two-level linear regression were conducted. The results showed that having a refrigerator, internet, more books, parents purchasing books and magazines related to school work, higher father's education level, and parents' higher expectation of the education level of their child significantly predicted higher BSCP scores; having siblings at home, owning an apartment, and frequently contacting teachers about the child significantly predicted lower BSCP scores. At the school level, the results showed that being in the first-tier or key schools, having school libraries, science popularization galleries, computer labs, adequate equipment for teaching, special budget for teacher training, special budget for science equipment, and mutual trust between teachers and students significantly predicated higher BSCP scores; and having science and technology rooms, offering science and technology interest clubs, special budget for science curriculum development, and special budget for science social practice activities significantly predicted lower BSCP scores. The implications of the above findings are discussed.

  1. Urban schools' teachers enacting project-based science

    NASA Astrophysics Data System (ADS)

    Tal, Tali; Krajcik, Joseph S.; Blumenfeld, Phyllis C.

    2006-09-01

    What teaching practices foster inquiry and promote students to learn challenging subject matter in urban schools? Inquiry-based instruction and successful inquiry learning and teaching in project-based science (PBS) were described in previous studies (Brown & Campione, [1990]; Crawford, [1999]; Krajcik, Blumenfeld, Marx, Bass, & Fredricks, [1998]; Krajcik, Blumenfeld, Marx, & Solloway, [1994]; Minstrell & van Zee, [2000]). In this article, we describe the characteristics of inquiry teaching practices that promote student learning in urban schools. Teaching is a major factor that affects both achievement of and attitude of students toward science (Tamir, [1998]). Our involvement in reform in a large urban district includes the development of suitable learning materials and providing continuous and practiced-based professional development (Fishman & Davis, in press; van Es, Reiser, Matese, & Gomez, [2002]). Urban schools face particular challenges when enacting inquiry-based teaching practices like those espoused in PBS. In this article, we describe two case studies of urban teachers whose students achieved high gains on pre- and posttests and who demonstrated a great deal of preparedness and commitment to their students. Teachers' attempts to help their students to perform well are described and analyzed. The teachers we discuss work in a school district that strives to bring about reform in mathematics and science through systemic reform. The Center for Learning Technologies in Urban Schools (LeTUS) collaborates with the Detroit Public Schools to bring about reform in middle-school science. Through this collaboration, diverse populations of urban-school students learn science through inquiry-oriented projects and the use of various educational learning technologies. For inquiry-based science to succeed in urban schools, teachers must play an important role in enacting the curriculum while addressing the unique needs of students. The aim of this article is to describe patterns of good science teaching in urban school.

  2. Secondary Science Teachers' and Students' Involvement in a Primary School Community of Science Practice: How It Changed Their Practices and Interest in Science

    NASA Astrophysics Data System (ADS)

    Forbes, Anne; Skamp, Keith

    2016-02-01

    MyScience is a primary science education initiative in which being in a community of practice is integral to the learning process. In this initiative, stakeholder groups—primary teachers, primary students and mentors—interact around the `domain' of `investigating scientifically'. This paper builds on three earlier publications and interprets the findings of the views of four secondary science teachers and five year 9 secondary science students who were first-timer participants—as mentors—in MyScience. Perceptions of these mentors' interactions with primary students were analysed using attributes associated with both `communities of practice' and the `nature of science'. Findings reveal that participation in MyScience changed secondary science teachers' views and practices about how to approach the teaching of science in secondary school and fostered primary-secondary links. Year 9 students positively changed their views about secondary school science and confidence in science through participation as mentors. Implications for secondary science teaching and learning through participation in primary school community of science practice settings are discussed.

  3. The distinction between key ideas in teaching school physics and key ideas in the discipline of physics

    NASA Astrophysics Data System (ADS)

    Deng, Zongyi

    2001-05-01

    The distinction between key ideas in teaching a high school science and key ideas in the corresponding discipline of science has been largely ignored in scholarly discourse about what science teachers should teach and about what they should know. This article clarifies this distinction through exploring how and why key ideas in teaching high school physics differ from key ideas in the discipline of physics. Its theoretical underpinnings include Dewey's (1902/1990) distinction between the psychological and the logical and Harré's (1986) epistemology of science. It analyzes how and why the key ideas in teaching color, the speed of light, and light interference at the high school level differ from the key ideas at the disciplinary level. The thesis is that key ideas in teaching high school physics can differ from key ideas in the discipline in some significant ways, and that the differences manifest Dewey's distinction. As a result, the article challenges the assumption of equating key ideas in teaching a high school science with key ideas in the corresponding discipline of science, and the assumption that having a college degree in science is sufficient to teach high school science. Furthermore, the article expands the concept of pedagogical content knowledge by arguing that key ideas in teaching high school physics constitute an essential component.

  4. An Investigation of Turkish Middle School Science Teachers' Pedagogical Orientations Towards Direct and Inquiry Instructional Approaches

    NASA Astrophysics Data System (ADS)

    Sahingoz, Selcuk

    One of the most important goals of science education is preparing effective science teachers which includes the development of a science pedagogical orientation. Helping in-service science teachers improve their orientations toward science teaching begins with identifying their current orientations. While there are many aspects of an effective science teaching orientation, this study specifically focuses on effective pedagogy. The interest of this study is to clarify pedagogical orientations of middle school science teachers in Turkey toward the teaching of science conceptual knowledge. It focuses on what instructional preferences Turkish middle school science teachers have in theory and practice. The purpose of this study is twofold: 1) to elucidate teacher pedagogical profiles toward direct and inquiry instructional approaches. For this purpose, quantitative profile data, using a Turkish version of the Pedagogy of Science Teaching Test (POSTT-TR) assessment instrument, was collected from 533 Turkish middle school science teachers; 2) to identify teaching orientations of middle school science teachers and to identify their reasons for preferring specific instructional practices. For this purpose, descriptive qualitative, interview data was collected from 23 teachers attending a middle school science teacher workshop in addition to quantitative data using the POSTT-TR. These teachers sat for interviews structured by items from the POSTT-TR. Thus, the research design is mixed-method. The design provides a background profile on teacher orientations along with insights on reasons for pedagogical choices. The findings indicate that instructional preference distributions for the large group and smaller group are similar; however, the smaller workshop group is more in favor of inquiry instructional approaches. The findings also indicate that Turkish middle school science teachers appear to have variety of teaching orientations and they have varied reasons. Moreover, the research found that several contextual factors contributed to teachers' instructional practices including internal and external issues such as school environment, limited resources, large class sizes, standardized test pressure, and limited accessibility to professional development. The findings provide insight on the readiness of middle school teachers to implement the Turkish Curriculum Framework, specifically, teacher readiness to put science inquiry instructional approaches into actual classroom practice. Given that new Turkish policy calls for greater inquiry instruction, this study can help inform teacher development efforts directed at promoting science inquiry instruction.

  5. Re-designing an Earth Sciences outreach program for Rhode Island public elementary schools to address new curricular standards and logistical realities in the community

    NASA Astrophysics Data System (ADS)

    Richter, N.; Vachula, R. S.; Pascuzzo, A.; Prilipko Huber, O.

    2017-12-01

    In contrast to middle and high school students, elementary school students in Rhode Island (RI) have no access to dedicated science teachers, resulting in uneven quality and scope of science teaching across the state. In an attempt to improve science education in local public elementary schools, the Department of Earth, Environmental, and Planetary Sciences (DEEPS) at Brown University initiated a student-driven science-teaching program that was supported by a NSF K-12 grant from 2007 to 2014. The program led to the development of an extensive in-house lesson plan database and supported student-led outreach and teaching in several elementary and middle school classrooms. After funding was terminated, the program continued on a volunteer basis, providing year-round science teaching for several second-grade classrooms. During the 2016-2017 academic year, New Generation Science Standards (NGSS) were introduced in RI public schools, and it became apparent that our outreach efforts required adaptation to be more efficient and relevant for both elementary school students and teachers. To meet these new needs, DEEPS, in collaboration with the Providence Public School District, created an intensive summer re-design program involving both graduate and undergraduate students. Three multi-lesson units were developed in collaboration with volunteer public school teachers to specifically address NGSS goals for earth science teaching in 2nd, 3rd and 4th grades. In the 2017-2018 academic year DEEPS students will co-teach the science lessons with the public school teachers in two local elementary schools. At the end of the next academic year all lesson plans and activities will be made publically available through a newly designed DEEPS outreach website. We herein detail our efforts to create and implement new educational modules with the goals of: (1) empowering teachers to instruct science, (2) engaging students and fostering lasting STEM interest and competency, (3) optimizing volunteer resources, (4) meeting new state curricular standards, (5) developing publicly available lesson plans for other teachers and outreach programs, (6) institutionalizing the outreach program within the DEEPS community, and (7) cultivating STEM retention at the grassroots level.

  6. Mapping the acquisition of the number word sequence in the first year of school

    NASA Astrophysics Data System (ADS)

    Gould, Peter

    2017-03-01

    Learning to count and to produce the correct sequence of number words in English is not a simple process. In NSW government schools taking part in Early Action for Success, over 800 students in each of the first 3 years of school were assessed every 5 weeks over the school year to determine the highest correct oral count they could produce. Rather than displaying a steady increase in the accurate sequence of the number words produced, the kindergarten data reported here identified clear, substantial hurdles in the acquisition of the counting sequence. The large-scale, longitudinal data also provided evidence of learning to count through the teens being facilitated by the semi-regular structure of the number words in English. Instead of occurring as hurdles to starting the next counting sequence, number words corresponding to some multiples of ten (10, 20 and 100) acted as if they were rest points. These rest points appear to be artefacts of how the counting sequence is acquired.

  7. The Incorporation of the USA "Science Made Sensible" Programme in South African Primary Schools: A Cross-Cultural Approach to Science Education

    ERIC Educational Resources Information Center

    de Villiers, Rian; Plantan, Tiffany; Gaines, Michael

    2016-01-01

    The Science Made Sensible (SMS) programme began as a partnership between the University of Miami (UM), Florida, USA, and some public schools in Miami. In this programme, postgraduate students from UM work with primary school science teachers to engage learners in science through the use of inquiry-based, hands-on activities. Due to the success of…

  8. UnCommon Knowledge: Projects That Help Middle-School-Age Youth Discover the Science and Mathematics in Everyday Life. Volume One: Hands-On Science Projects.

    ERIC Educational Resources Information Center

    Carter, Carolyn S.; Keyes, Marian; Kusimo, Patricia S.; Lunsford, Crystal

    This guide contains hands-on science activities to connect middle-school students to the traditional knowledge of their grandparents and elders. Because girls often lose interest in science at the middle-school level, and because women in some communities (especially in rural areas) are seldom involved in work with an obvious science basis, the…

  9. Outside school time: an examination of science achievement and non-cognitive characteristics of 15-year olds in several countries

    NASA Astrophysics Data System (ADS)

    Suter, Larry E.

    2016-03-01

    Elementary and secondary students spend more hours outside of class than in formal school and thus have more time for interaction with everyday science. However, evidence from a large international survey, Program of International Student Assessment (PISA) (OECD 2012), found a negative relationship between number of hours attending after-school science and science assessment scores in many countries, raising questions about why. The secondary analysis of the 2006, 2009, and 2012 PISA surveys found that in most Western countries the longer students attended after-school science programs (in a typical week), the lower their PISA standardized science test score, but the higher their positive attitudes toward future science careers, interest in science, and self-confidence in science. Several potential hypotheses for this relationship are examined and rejected. Further analysis of a causal relationship between frequent attendance in after-school programs and student achievement and attitudes should clearly identify the content of the program so that the analysis could distinguish experiences closely related to regular school curricula from the informal science activities that are not. A new analysis also should include carefully designed longitudinal surveys to test the effectiveness of informal experiences on later life choices in career and study. Revision of a Paper prepared for AERA meetings in Chicago, 19 April 2015.

  10. High School Physics Students' Personal Epistemologies and School Science Practice

    ERIC Educational Resources Information Center

    Alpaslan, Muhammet Mustafa; Yalvac, Bugrahan; Loving, Cathleen

    2017-01-01

    This case study explores students' physics-related personal epistemologies in school science practices. The school science practices of nine eleventh grade students in a physics class were audio-taped over 6 weeks. The students were also interviewed to find out their ideas on the nature of scientific knowledge after each activity. Analysis of…

  11. High Hopes--Few Opportunities: The Status of Elementary Science Education in California. Summary Report & Recommendations. Strengthening Science Education in California

    ERIC Educational Resources Information Center

    Center for the Future of Teaching and Learning at WestEd, 2011

    2011-01-01

    This report summarizes research findings on science education in California's elementary schools from multiple sources of data collected during 2010-11, specifically, surveys of district administrators, elementary school principals, and elementary school teachers; case studies of elementary schools; analysis of statewide secondary data sets; and…

  12. Question Stems and Stories to Stimulate Science!

    ERIC Educational Resources Information Center

    Smith, Suzanne

    2010-01-01

    Fox Hill Primary School is part of a family of schools in Sheffield that is piloting the Specialist Schools and Academies Trust Primary Specialism for Science. In parallel to this work, Fox Hill participated in the Smarter Schools project from September 2008-2009. This project, funded by the AstraZeneca Science Teaching Trust, was set up by the…

  13. An Investigation of Science Teaching Practices in Indonesian Rural Secondary Schools

    ERIC Educational Resources Information Center

    Wahyudi; Treagust, David F.

    2004-01-01

    This study reports on teaching practices in science classrooms of Indonesian lower secondary schools in rural areas. Using six schools from three districts in the province of Kalimantan Selatan as the sample, this study found that most teaching practices in science classrooms in rural schools were teacher-centred with students copying notes.…

  14. Cooperative Learning in Science: Follow-up from primary to high school

    NASA Astrophysics Data System (ADS)

    Thurston, Allen; Topping, Keith J.; Tolmie, Andrew; Christie, Donald; Karagiannidou, Eleni; Murray, Pauline

    2010-03-01

    This paper reports a two-year longitudinal study of the effects of cooperative learning on science attainment, attitudes towards science, and social connectedness during transition from primary to high school. A previous project on cooperative learning in primary schools observed gains in science understanding and in social aspects of school life. This project followed 204 children involved in the previous project and 440 comparison children who were not as they undertook transition from 24 primary schools to 16 high schools. Cognitive, affective, and social gains observed in the original project survived transition. The implications improving the effectiveness of school transition by using cooperative learning initiatives are explored. Possibilities for future research and the implications for practice and policy are discussed.

  15. What Makes Things Happen? Study Guide. Unit B. ZIM-SCI, Zimbabwe Secondary School Science Project.

    ERIC Educational Resources Information Center

    Dube, Peter

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This ZIM-SCI study guide presents activities…

  16. Looking at Life. Study Guide. Unit A2. ZIM-SCI, Zimbabwe Secondary School Science Project.

    ERIC Educational Resources Information Center

    Hosking, Bunty

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This ZIM-SCI study guide presents activities…

  17. America's Lab Report: Investigations in High School Science

    ERIC Educational Resources Information Center

    Singer, Susan R., Ed.; Hilton, Margaret L., Ed.; Schweingruber, Heidi A., Ed.

    2005-01-01

    Laboratory experiences as a part of most U.S. high school science curricula have been taken for granted for decades, but they have rarely been carefully examined. What do they contribute to science learning? What can they contribute to science learning? What is the current status of labs in our nation s high schools as a context for learning…

  18. Middle School Science Teachers' Perceptions of Social Justice: A Study of Two Female Teachers

    ERIC Educational Resources Information Center

    Upadhyay, Bhaskar

    2010-01-01

    The focus of this qualitative study is to document two middle school science teachers' perceptions of social justice and how these teachers implement various aspects of social justice in their science instruction. The two teachers teach science in an urban school that serves students from low-income, immigrant, and ethnic minority families. The…

  19. Teaching Science Courses In and Out of Area of Specialisation in a Single-Sex/Co-Educational Schools.

    ERIC Educational Resources Information Center

    Ogunsola-Bandele, Mercy F.

    This study examined the differences and similarities experienced by secondary school science teachers when teaching science within and outside their area of specialization in single sex and co-educational schools. Interviews were conducted and audio taped for six experienced science teachers on their qualification, classes/subjects taught and…

  20. Who Aspires to a Science Career? A Comparison of Survey Responses from Primary and Secondary School Students

    ERIC Educational Resources Information Center

    DeWitt, Jennifer; Archer, Louise

    2015-01-01

    There is broad international agreement about the importance of increasing participation in science once it is no longer compulsory in school, particularly among groups who have been historically underrepresented in science. Previous research reflects that despite broadly positive attitudes to science in and outside of school, there is limited…

  1. Science Seminar: Science Capstone Research Projects as a Class in High School

    ERIC Educational Resources Information Center

    Schwebach, J. Reid

    2008-01-01

    Inquiry-based, student-lead research may be a pinnacle of high school science education, and the implementation of inquiry themes at all grades is of profound importance. At The Beacon High School in New York City, all seniors, regardless of their scientific proclivity or interest, completed original science research projects as a graduation…

  2. Student Experience of School Science

    ERIC Educational Resources Information Center

    Shirazi, Shaista

    2017-01-01

    This paper presents the findings of a two-phase mixed methods research study that explores the link between experiences of school science of post-16 students and their decisions to take up science for their higher studies. In the first phase, students aged 16-17 (n = 569) reflected on the past five years of their school science experience in a…

  3. The Way up, down under: Innovations Shape Learning at Science and Math School

    ERIC Educational Resources Information Center

    Bissaker, Kerry; Davies, Jim; Heath, Jayne

    2011-01-01

    Professor John Rice, a pioneer of the Australian Science and Mathematics School (ASMS), recognized that schools' curricula were at odds with the kind of science and mathematics driving the new economy. In addition to curriculum that lacked relevance to contemporary life, negative student attitudes and a shortage of qualified science and…

  4. An Assessment of Factors Relating to High School Students' Science Self-Efficacy

    ERIC Educational Resources Information Center

    Gibson, Jakeisha Jamice

    2017-01-01

    This mixed-methods case study examined two out-of-school (OST) Science, Technology, Engineering and Math (STEM) programs at a science-oriented high school on students' Self-Efficacy. Because STEM is a key for future innovation and economic growth, Americans have been developing a variety of approaches to increase student interest in science within…

  5. Supporting Conceptual Change in School Science: A Possible Role for Tacit Understanding

    ERIC Educational Resources Information Center

    Howe, Christine; Devine, Amy; Tavares, Joana Taylor

    2013-01-01

    When students reason during school science, they often refer to conceptions that are derived from out-of-school experiences and are poor proxies for science orthodoxy. However, for some areas of science, these conceptions represent only a proportion of students' full conceptual knowledge, for tacit understanding exists that is superior to the…

  6. Computer Science in High School Graduation Requirements. ECS Education Trends (Updated)

    ERIC Educational Resources Information Center

    Zinth, Jennifer

    2016-01-01

    Allowing high school students to fulfill a math or science high school graduation requirement via a computer science credit may encourage more student to pursue computer science coursework. This Education Trends report is an update to the original report released in April 2015 and explores state policies that allow or require districts to apply…

  7. Changing Science Education to Meet the Demands of a Changing Society

    ERIC Educational Resources Information Center

    Fensham, Peter J.

    2017-01-01

    Changes in society can, on occasion, lead to new demands on schooling, and on science education in particular. A major such demand in the 1960s led to a conceptual form of science that has dominated school science education ever since. Subsequent major societal demands have usually not been nearly as successful in redefining school science…

  8. Observing Some Life Cycles. Teacher's Guide. Unit E3. ZIM-SCI, Zimbabwe Secondary School Science Project.

    ERIC Educational Resources Information Center

    Chitepo, Thoko; And Others

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide contains instructional…

  9. Teaching Planetary Sciences in Bilingual Classrooms

    NASA Astrophysics Data System (ADS)

    Lebofsky, L. A.; Lebofsky, N. R.

    1993-05-01

    Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. It also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80% feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K--3 and 38 minutes per day in 4--6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. Therefore in order to teach earth/space science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. Tucson has another, but not unique, problem. The largest public school district, the Tucson Unified School District (TUSD), provides a neighborhood school system enhanced with magnet, bilingual and special needs schools for a school population of 57,000 students that is 4.1% Native American, 6.0% Black, and 36.0% Hispanic (1991). This makes TUSD and the other school districts in and around Tucson ideal for a program that reaches students of diverse ethnic backgrounds. However, few space sciences materials exist in Spanish; most materials could not be used effectively in the classroom. To address this issue, we have translated NASA materials into Spanish and are conducting a series of workshops for bilingual classroom teachers. We will discuss in detail our bilingual classroom workshops and how they address the needs of elementary school teachers in Arizona.

  10. A Delphi study: Practitioners' perceptions of how the science curriculum is differentiated for academically gifted students at the middle school level

    NASA Astrophysics Data System (ADS)

    Kelley, Jean Mary

    The purpose of this study was to identify, analyze, and compare the perceptions of selected district science educators and teachers of middle school science students regarding the following issues: (1) Current methods of differentiating science instruction for gifted middle school students. (2) Strengths of the current methods of differentiating science instruction for gifted middle school students. (3) Weaknesses of the current methods of differentiating science instruction for gifted middle school students. (4) The types of training/experience needed to prepare teachers to effectively differentiate science instruction for gifted middle school students. (5) The steps need to develop an effective differentiated science program at the middle school level. (6) Trends for the future development of differentiated science programs at the middle school level. The panel of educators was identified using the Delphi technique and asked to participate in the study by responding to the research questions. The responses to the first round were condensed into two lists of discrete statements, and in the second round, each group of panelists was asked to rank each statement on a Likert scale. A third round was sent to each group of panel members showing the median and interquartile ranges of the second round. Panelists could adjust their responses based on the results of the second round. The analysis of the data was computed using the computer program Statistics Package for the Social Sciences. Based on the data obtained, the following results and conclusions were determined. The coordinators and the teachers both considered training of teachers, strategies for differentiation, and future trends to be the most important considerations. The areas with the most differences were those dealing with the current methods of differentiating science instruction at the middle school level. There were several limitations identified in this study. Among them were the makeup of the sample of panelists and different definitions of the same term(s). If we are to address the needs of middle school students who are academically gifted in science, teachers and coordinators need to communicate more about expectations in the classroom and what is really happening.

  11. A quantitative analysis of factors influencing the professional longevity of high school science teachers in Florida

    NASA Astrophysics Data System (ADS)

    Ridgley, James Alexander, Jr.

    This dissertation is an exploratory quantitative analysis of various independent variables to determine their effect on the professional longevity (years of service) of high school science teachers in the state of Florida for the academic years 2011-2012 to 2013-2014. Data are collected from the Florida Department of Education, National Center for Education Statistics, and the National Assessment of Educational Progress databases. The following research hypotheses are examined: H1 - There are statistically significant differences in Level 1 (teacher variables) that influence the professional longevity of a high school science teacher in Florida. H2 - There are statistically significant differences in Level 2 (school variables) that influence the professional longevity of a high school science teacher in Florida. H3 - There are statistically significant differences in Level 3 (district variables) that influence the professional longevity of a high school science teacher in Florida. H4 - When tested in a hierarchical multiple regression, there are statistically significant differences in Level 1, Level 2, or Level 3 that influence the professional longevity of a high school science teacher in Florida. The professional longevity of a Floridian high school science teacher is the dependent variable. The independent variables are: (Level 1) a teacher's sex, age, ethnicity, earned degree, salary, number of schools taught in, migration count, and various years of service in different areas of education; (Level 2) a school's geographic location, residential population density, average class size, charter status, and SES; and (Level 3) a school district's average SES and average spending per pupil. Statistical analyses of exploratory MLRs and a HMR are used to support the research hypotheses. The final results of the HMR analysis show a teacher's age, salary, earned degree (unknown, associate, and doctorate), and ethnicity (Hispanic and Native Hawaiian/Pacific Islander); a school's charter status; and a school district's average SES are all significant predictors of a Florida high school science teacher's professional longevity. Although statistically significant in the initial exploratory MLR analyses, a teacher's ethnicity (Asian and Black), a school's geographic location (city and rural), and a school's SES are not statistically significant in the final HMR model.

  12. Elementary Science Education in Classrooms and Outdoors: Stakeholder views, gender, ethnicity, and testing

    NASA Astrophysics Data System (ADS)

    Carrier, Sarah J.; Thomson, Margareta M.; Tugurian, Linda P.; Tate Stevenson, Kathryn

    2014-09-01

    In this article, we present a mixed-methods study of 2 schools' elementary science programs including outdoor instruction specific to each school's culture. We explore fifth-grade students in measures of science knowledge, environmental attitudes, and outdoor comfort levels including gender and ethnic differences. We further examine students' science and outdoor views and activity choices along with those of adults (teachers, parents, and principals). Significant differences were found between pre- and posttest measures along with gender and ethnic differences with respect to students' science knowledge and environmental attitudes. Interview data exposed limitations of outdoor learning at both schools including standardized test pressures, teachers' views of science instruction, and desultory connections of alternative learning settings to 'school' science.

  13. Shunning the Bird's Eye View: General Science in the Schools of Ontario and Quebec

    NASA Astrophysics Data System (ADS)

    Hoffman, Michelle

    2013-04-01

    This paper considers the adoption of general science courses in two Canadian provinces, Ontario and Quebec, during the 1930s. In Ontario, a few science teachers had followed the early general science movements in the United States and Britain with interest. During the 1930s, several developments made the cross-disciplinary, applied thrust of general science particularly appealing to Ontario educationists. These developments included a new demand for vocational education, renewed reservations about pedagogical rationales based on transfer of training, and a growing professional divide between high school science teachers and university scientists. Around the same time, scientists in the Quebec's French-language universities were engaged in a concerted campaign to expand the place of science in the province's francophone secondary schools. The province's prestigious classical colleges, which were the scientists' principal target for reform, privileged an inductive view of science that had little in common with the applied, cross-disciplinary emphasis of the general science courses gaining support in English-speaking school systems. In 1934, however, a popular American general science textbook was adopted in a workers' cooperative devoted to adult education. Comparing the fate of general science within these two education systems draws attention to the fact that general science made inroads in francophone Quebec but had little influence in public and private schools. In light of the growing support general science enjoyed elsewhere, we are led to explore why general science met with little overt interest by Quebec scientists pushing for school science reform during the 1930s.

  14. Becoming a science teacher: moving toward creolized science and an ethic of cosmopolitanism

    NASA Astrophysics Data System (ADS)

    Seiler, Gale

    2011-03-01

    Although communities and schools in North America are increasingly diverse and positioned in a global web, schools continue to adhere to Western norms and the teacher workforce remains largely White, continuing an ideology of collective sameness and conformity. Hybridization of teacher identity and of science teaching are suggested as ways to advance an ethic of solidarity through difference (cosmopolitanism) with science teaching as its vehicle. In this paper, I explore identity hybridization among non-dominant science teachers as they merge identity narratives, or who they are around science and science teaching, with who they are out-of-school. Our attention is focused on their experiences of dis-identification with science in terms of diaspora, or the sense of being taken away from what one knows and values. By generating a creolized approach to science teaching, teachers create possibilities for greater student identification with science in school, which in turn has potential for changing the face of who does science and of science itself.

  15. Leaving School — learning at SEA: Regular high school education alongside polar research, not only during IPY

    NASA Astrophysics Data System (ADS)

    Gatti, S.

    2006-12-01

    Against the background of unsatisfactory results from the international OECD study PISA (Program for International Student Assessment), Germany is facing a period of intense school reforms. Looking back at a tradition of school culture with too few changes during the last century, quick and radical renewal of the school system is rather unlikely. Furthermore students are increasingly turning away from natural sciences. The AWI aims at providing impulses for major changes in the schooling system and is offering solid science education not only for university students but also for a much younger audience. All efforts towards this goal are interconnected within the project SEA (Science & Education @ the AWI). Fife years ago the AWI started HIGHSEA (High school of SEA). Each year 22 high school students (grade 11) are admitted to HIGHSEA spending their last three years of school not at school but at the institute. Four subjects (biology as a major, chemistry, math and English as accessory subjects) are combined and taught fully integrated. Students leave their schools for two days each week to study, work and explore all necessary topics at the AWI. All of the curricular necessities of the four subjects are being met. After rearrangement of the temporal sequencing conceptual formulation of four major questions around AWI-topics was possible. Students are taught by teachers of the cooperating schools as well as by scientists of the AWI. Close links and intense cooperation between all three groups are the basis of fundamental changes in teaching and learning climate. For each group of students we organize a short research expedition: in August 2005 we worked in the high Arctic, in January and February 2006 we performed measurements at two eastern Atlantic seamounts. Even if the amount of data coming from these expeditions is comparatively small they still contribute to ongoing research projects of the oceanographic department. The first two groups of students finished their final exams — with outstanding results. External evaluation of HIGHSEA performed by the University Duisburg-Essen presents spectacular results of HIGHSEA students when compared with a control group. By exploring and establishing new ways of teaching and learning we are contributing to the ongoing discussion about the renewal of the German school system. Drawing on our rich experience in cooperation with local schools we are offering an international role-play game focusing around the sustainable use of Polar regions in times of global climate change. After regional, national and international runs of the game the activities will culminate during an international "World Youth Polar Conference" (WYPC) late in 2007. We offer the unique opportunity for researchers in the field of polar research to actively contribute to a major outreach activity during IPY and participate in our role-play as national ambassadors.

  16. Nuclear science outreach program for high school girls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, D.E.; Stone, C.A.

    1996-12-31

    The authors have developed a 2-week summer school on nuclear science for high school girls. This summer school is an outgrowth of a recent American Nuclear Society high school teachers workshop held at San Jose State University. Young scientists are introduced to concepts in nuclear science through a combination of lectures, laboratory experiments, literature research, and visits to local national laboratories and nuclear facilities. Lectures cover a range of topics, including radioactivity and radioactive decay, statistics, fission and fusion, nuclear medicine, and food irradiation. A variety of applications of nuclear science concepts are also presented.

  17. One Step Closer to Mars with Aquaponics: Cultivating Citizen Science in K12 Schools

    NASA Technical Reports Server (NTRS)

    Kolattukudy, Maria; Puranik, Niyati; Sane, Nishant; Bisht, Kritika; Saffat, Nabeeha; Gupta, Anika; McHugh, Anne; Detweiler, Angela; Bebout, Brad; Everroad, R. Craig

    2017-01-01

    The Microbial Ecology and Biogeochemistry Research Laboratory at NASA Ames Research Center focuses primarily on the nutrient cycling and diversity of complex microbial communities. NASA is interested in the composition and functioning of microbial mat communities as these processes fundamentally shape the form and function of these analogs for the earliest forms of life on Earth (3.6 billion years ago), and likely will on other planets as well. Aquaponics systems are supported by microbial communities who perform many complex ecosystem services, including cycling nitrogen. Microbes are integral to the stability and productivity of aquaponics systems, which are analogous to microbial communities in food production systems that are essential for building efficient life support systems for long-distance space travel. Students at Meadow Park Middle School created 10 parallel aquaponics systems and took temporal microbial samples to characterize whether any macro-ecology variables impacted or changed the microbial diversity of these systems. Students additionally created a website so that other classrooms can pursue similar projects in their own schools (https://go.nasa.gov/2uJhxmF). Our lab at NASA Ames has sequenced water samples from each of the 10 tanks at 3 timepoints using a MinION sequencer. MPMS students will be involved in the analysis of the bioinformatics data generated through this collaboration. Our ongoing collaboration aims to collect and analyze data in the classroom setting that has utility for research scientists, while involving students as collaborators in the research process.

  18. Middle school girls: Experiences in a place-based education science classroom

    NASA Astrophysics Data System (ADS)

    Shea, Charlene K.

    The middle school years are a crucial time when girls' science interest and participation decrease (Barton, Tan, O'Neill, Bautista-Guerra, & Brecklin, 2013). The purpose of this study was to examine the experiences of middle school girls and their teacher in an eighth grade place-based education (PBE) science classroom. PBE strives to increase student recognition of the importance of educational concepts by reducing the disconnection between education and community (Gruenewald, 2008; Smith, 2007; Sobel, 2004). The current study provides two unique voices---the teacher and her students. I describe how this teacher and her students perceived PBE science instruction impacting the girls' participation in science and their willingness to pursue advanced science classes and science careers. The data were collected during the last three months of the girls' last year of middle school by utilizing observations, interviews and artifacts of the teacher and her female students in their eighth grade PBE science class. The findings reveal how PBE strategies, including the co-creation of science curriculum, can encourage girls' willingness to participate in advanced science education and pursue science careers. The implications of these findings support the use of PBE curricular strategies to encourage middle school girls to participate in advance science courses and science careers.

  19. The Iowa K-12 Climate Science Education Initiative: a comprehensive approach to meeting in-service teachers' stated needs for teaching climate literacy with NGSS

    NASA Astrophysics Data System (ADS)

    Stanier, C. O.; Spak, S.; Neal, T. A.; Herder, S.; Malek, A.; Miller, Z.

    2017-12-01

    The Iowa Board of Education voted unanimously in 2015 to adopt NGSS performance standards. The CGRER - College of Education Iowa K-12 Climate Science Education Initiative was established in 2016 to work directly with Iowa inservice teachers to provide what teachers need most to teach climate literacy and climate science content through investigational learning aligned with NGSS. Here we present teachers' requests for teaching climate with NGSS, and an approach to provide resources for place-based authentic inquiry on climate, developed, tested, and refined in partnership with inservice and preservice teachers. A survey of inservice middle school and high school science teachers was conducted at the 2016 Iowa Council of Teachers of Mathematics/Iowa Academy of Sciences - Iowa Science Teaching Section Fall Conference and online in fall 2016. Participants (n=383) were asked about their prior experience and education, the resources they use and need, their level of comfort in teaching climate science, perceived barriers, and how they address potential controversy. Teachers indicated preference for professional development on climate content and complete curricula packaged with lessons and interactive models aligned to Iowa standards, as well as training on instructional strategies to enhance students' ability to interpret scientific evidence. We identify trends in responses by teaching experience, climate content knowledge and its source, grade level, and urban and rural districts. Less than 20% of respondents reported controversy or negativity in teaching climate to date, and a majority were comfortable teaching climate science and climate change, with equal confidence in teaching climate and other STEM content through investigational activities. We present an approach and materials to meet these stated needs, created and tested in collaboration with Iowa teachers. We combine professional development and modular curricula with bundled standards, concepts, models, data, field activities, and sequences of individual and group investigational and student-driven inquiry prompts on climate science, climate change, and climate impacts. We identify key resource availability needed to teach place-based climate literacy aligned with NGSS as a standalone curriculum and through local impacts.

  20. Development of a Multidisciplinary Middle School Mathematics Infusion Model

    ERIC Educational Resources Information Center

    Russo, Maria; Hecht, Deborah; Burghardt, M. David; Hacker, Michael; Saxman, Laura

    2011-01-01

    The National Science Foundation (NSF) funded project "Mathematics, Science, and Technology Partnership" (MSTP) developed a multidisciplinary instructional model for connecting mathematics to science, technology and engineering content areas at the middle school level. Specifically, the model infused mathematics into middle school curriculum…

  1. Droning on about the Weather: Meteorological Science on a School-Friendly Scale

    ERIC Educational Resources Information Center

    Murphy, Phil; O'Neill, Ashley; Brown, Abby

    2016-01-01

    Meteorology is an important branch of science that offers exciting career opportunities and yet is not usually included in school curricula. The availability of multi-rotor model aircraft (drones) offers an exciting opportunity to bring meteorology into school science.

  2. Recontextualization of Science from Lab to School: Implications for Science Literacy

    ERIC Educational Resources Information Center

    Sharma, Ajay; Anderson, Charles W.

    2009-01-01

    Scientists' science differs remarkably from school science. In order to be taught to students, science is recontextualized from scientific research communities to science classrooms. This paper examines scientific discourse in scientific research communities, and discusses its transformation from an internally-persuasive and authoritative…

  3. School Libraries and Science Achievement: A View from Michigan's Middle Schools

    ERIC Educational Resources Information Center

    Mardis, Marcia

    2007-01-01

    If strong school library media centers (SLMCs) positively impact middle school student reading achievement, as measured on standardized tests, are they also beneficial for middle school science achievement? To answer this question, the researcher built upon the statistical analyses used in previous school library impact studies with qualitative…

  4. Evaluation of the Effects of the Medium of Instruction on Science Learning of Hong Kong Secondary Students: Students' Self-Concept in Science

    ERIC Educational Resources Information Center

    Yip, Din Yan; Tsang, Wing Kwong

    2007-01-01

    A longitudinal study has been conducted to explore the impact of a new language policy for Hong Kong secondary schools on science learning. According to this policy, only schools that recruit the best 25% of students can teach science in English, the students' second language, while the other schools have to teach science in Chinese, the students'…

  5. Girls and science education in Mauritius: a study of science class practices and their effects on girls

    NASA Astrophysics Data System (ADS)

    Naugah, Jayantee; Watts, Mike

    2013-11-01

    Background: The population of Mauritius consists of 52% females and scientific literacy is seen to be of vital importance for all young people if they are to be sufficiently equipped to meet the challenges of a fast changing world. Previous research shows, however, that science is not popular among girls. This paper explores one of many reasons why few girls opt for science subjects after compulsory schooling. Purpose: This study investigated the approaches to teaching in four science classrooms in Mauritius, with particular emphases on the preferences of girls as they learn science. Sample: A total of 20 student interviews and 16 teacher interviews were conducted in four schools in Mauritius. The four mixed-faith schools comprised two all-girl schools (one state, one fee-paying), and two mixed-sex schools (one state, one fee-paying), within urban, suburban and rural situations. Design and method: 80 non-participant lessons were observed, of which 60 were science lessons while the remaining 20 non-science lessons were in economics, accounts and commerce. Group interviews with five pupils in each of the four schools were conducted and 16 individual interviews with teachers in the four schools gave an insight into the pedagogic approaches used for the teaching and learning of science. Results: Transmissive approaches to teaching, giving little opportunity for collaborative or activity-based learning, were found to be the most important factors in alienating the girls from science. Conclusions: There need to be radical changes in approaches to teaching to retain young girls' interest in the sciences.

  6. Identity and science learning in African American students in informal science education contexts

    NASA Astrophysics Data System (ADS)

    James, Sylvia M.

    2007-12-01

    Science education researchers are recognizing the need to consider identity and other sociocultural factors when examining causes of the science achievement gap for African American students. Non-school settings may hold greater promise than formal schooling to promote identities that are conductive to science learning in African Americans. This mixed-methods study explored the relationship between participation in out-of-school-time (OST) science enrichment programs and African American middle and high school students' racial and ethnic identity (RED, social identity as science learners, and achievement. Pre-post questionnaires used a previously validated model of REI combined with an original subscale that was developed to measure social identity as science learners. Case studies of two programs allowed for an analysis of the informal learning setting. The treatment group (N = 36) consisted of African American middle and high school students in five OST science programs, while the control group (N = 54) students were enrolled in science classes in public schools in the mid-Atlantic region. Results of a t-test of independent means indicated that there was no significant difference between the treatment and control group on measures of REI or science identity. However, the treatment group earned significantly higher science grades compared to the control group, and an ANOVA revealed a significant relationship between science identity and the intention to pursue post-secondary science studies. Although not significant, MANOVA results indicated that students who participated in OST programs exhibited gradual increases in RD and science identity over time according to grade level and gender. Follow-up analysis revealed significant relationships between awareness of racism, gender, and length of time in OST programs. The case studies illustrated that a unique community of practice exists within the OST programs. Access to authentic science learning experiences, youth development, social interactions, and relationships with staff emerged as key elements of successful science enrichment programs, Collectively, the results suggest that informal learning settings are supportive environments for science learning. Further study is needed to examine the pattern of increasing REI and science identity over time, the impact of youth development and agency, and potential implications for science in school and informal learning contexts.

  7. News Conference: Take a hold of Hands-on Science Meeting: Prize-winning physics-education talks are a highlight of the DPG spring meeting in Jena Event: Abstracts flow in for ICPE-EPEC 2013 Schools: A new Schools Physics Partnership in Oxfordshire Conference: 18th MPTL is forum for multimedia in education Meeting: Pursuing playful science with Science on Stage Forthcoming events

    NASA Astrophysics Data System (ADS)

    2013-03-01

    Conference: Take a hold of Hands-on Science Meeting: Prize-winning physics-education talks are a highlight of the DPG spring meeting in Jena Event: Abstracts flow in for ICPE-EPEC 2013 Schools: A new Schools Physics Partnership in Oxfordshire Conference: 18th MPTL is forum for multimedia in education Meeting: Pursuing playful science with Science on Stage Forthcoming events

  8. The Future of Citizen Science

    ERIC Educational Resources Information Center

    Mueller, Michael P.; Tippins, Deborah; Bryan, Lynn A.

    2012-01-01

    There is an emerging trend of democratizing science and schooling within science education that can be characterized as citizen science. We explore the roots of this movement and some current projects to underscore the meaning of citizen science in science and schooling. We show that citizen science, as it is currently conceptualized, does not go…

  9. Cultivation of Science Identity through Authentic Science in an Urban High School Classroom

    ERIC Educational Resources Information Center

    Chapman, Angela; Feldman, Allan

    2017-01-01

    This study examined how a contextually based authentic science experience affected the science identities of urban high school students who have been marginalized during their K-12 science education. We examined students' perceptions of the intervention as an authentic science experience, how the experience influenced their science identity, as…

  10. Restoration Science in New York Harbor: It takes a (large, diverse and engaged) village

    NASA Astrophysics Data System (ADS)

    Newton, R.; Birney, L.; Janis, S.; Groome, M.; Palmer, M.; Bone, E.; O'Neil, J. M.; Hill, J.; Dennison, W.; Malinowski, P.; Kohne, L.; Molina, M.; Moore, G.; Woods, N.

    2015-12-01

    The Curriculum + Community Enterprise for Restoration Science (CCE-RS) facilitates partnerships between scientists and middle school educators on ecological restoration and environmental monitoring projects. The educational model is designed to wrap around the student, including classroom instruction, field science, after-school programs and engagement with the student's community. Its pillars include: a teacher training fellowship at Pace University, student curriculum, a digital platform, afterschool and summer mentoring, and community exhibits. The digital platform includes a tablet app tailored to the project's field protocols and linked to a database shared across schools and partnering institutions. Through the digital platform, data is integrated into a single citizen-science monitoring project, teachers share curriculum and best practices, and students link directly to their peers at other schools. Curriculum development has been collaborative between scientists, science education specialists, and secondary school teachers. The CCE-RS is rooted in project-based learning: the New York Harbor School has engaged high school students in environmental monitoring and oyster restoration in the Harbor for about the last decade. The science partners (U. of Maryland and Columbia) have been working with students and other citizen scientists in outdoor science over about the last decade. Local partners in outside-the-classroom education include the New York Academy of Sciences, The River Project, which will provide field education services, and Good Shepherd Services, which provides after-school programming in schools serving primarily poor families. Scientists on the project engage directly with teachers and informal educators in curriculum development and citizen-science outreach. We present the lessons learned from our first cohort of Fellows, the pedagogical model, and the digital platform, which is extensible to other ecological restoration settings.

  11. The influence of extracurricular activities on middle school students' science learning in China

    NASA Astrophysics Data System (ADS)

    Zhang, Danhui; Tang, Xing

    2017-07-01

    Informal science learning has been found to have effects on students' science learning. Through the use of secondary data from a national assessment of 7410 middle school students in China, this study explores the relationship among five types of extracurricular science activities, learning interests, academic self-concept, and science achievement. Structural equation modelling was used to investigate the influence of students' self-chosen and school-organised extracurricular activities on science achievement through mediating interests and the academic self-concept. Chi-square tests were used to determine whether there was an opportunity gap in the student's engagement in extracurricular activities. The students' volunteer and school-organised participation in extracurricular science activities had a positive and indirect influence on their science achievement through the mediating variables of their learning interests and academic self-concept. However, there were opportunity gaps between different groups of students in terms of school location, family background, and especially the mother's education level. Students from urban areas with better-educated mothers or higher socioeconomic status are more likely to access diverse science-related extracurricular activities.

  12. The relationship between science classroom facility conditions and ninth grade students' attitudes toward science

    NASA Astrophysics Data System (ADS)

    Ford, Angela Y.

    Over half of the school facilities in America are in poor condition. Unsatisfactory school facilities have a negative impact on teaching and learning. The purpose of this correlational study was to identify the relationship between high school science teachers' perceptions of the school science environment (instructional equipment, demonstration equipment, and physical facilities) and ninth grade students' attitudes about science through their expressed enjoyment of science, importance of time spent on science, and boredom with science. A sample of 11,523 cases was extracted, after a process of data mining, from a databank of over 24,000 nationally representative ninth graders located throughout the United States. The instrument used to survey these students was part of the High School Longitudinal Study of 2009 (HSLS:2009). The research design was multiple linear regression. The results showed a significant relationship between the science classroom conditions and students' attitudes. Demonstration equipment and physical facilities were the best predictors of effects on students' attitudes. Conclusions based on this study and recommendations for future research are made.

  13. A quantitative study of the summer slide in science of elementary school students

    NASA Astrophysics Data System (ADS)

    Donovan, Giovanna Guadagno

    Concerned parents and educators agree children learn best when the rhythm of instruction is continuous with practice and application of skills. Long summer breaks may interrupt the flow of formal school learning leading some students to forget previous instruction. A review of the previous school work is generally required in the fall upon return from the summer vacation. Investigating summer vacation and equity issues, Jamar (1994) noted that more affluent students may "return to school in the fall with a considerable educational advantage over their less advantaged peers as a result of either additional school-related learning, or lower levels of forgetting, over the summer months (p. 1)". The population of 402 fifth grade students from a suburban New England school district participated in this study. The district administered the science subtest of the TerraNova 2 (TN2) assessment in late May 2007 (pre-test data) and in September 2007 (post-test data). These archived data, including gender and student socioeconomic status (SES) levels (as referenced by free or reduced lunch status), were analyzed for an ex-post facto causal comparison study to identify the phenomenon of summer slide in science of fifth graders enrolled in six elementary schools. The ANOVA statistical model was used calculating the repeated measures factor of time (pre/post summer vacation) on the science content area. Subsequent two-way ANOVAS, with one repeated-measures factor (time of testing) explored the existence of similar/different patterns by gender and by SES levels. Two questions guided this study. First, does the summer slide phenomenon exist in science education? Second, if the summer slide in science phenomenon exists in science education, then does SES impact it? Does the summer slide in science phenomenon differ between genders? Findings suggest that the summer slide phenomenon exists in science; SES and gender does not affect the overall science test scores. However, SES impacts the summer slide phenomenon in science but gender does not impact summer slide in science. Furthermore, the school does not statistically impact the summer slide phenomenon in science and the impact of school does not differ across SES and genders.

  14. Science and Mathematics Teaching Efficacy Beliefs of Pre-School Teachers

    ERIC Educational Resources Information Center

    Aydogdu, Bülent; Peker, Murat

    2016-01-01

    The aim of this research was to examine science and mathematics teaching efficacy beliefs of pre-school teachers in terms of some variables. The sample of the study was comprised of 191 pre-school teachers working in a city in Aegean Region of Turkey. Since it attempted to define self-efficacy beliefs of pre-school teachers toward science and…

  15. An Analysis of the Supports and Constraints for Scientific Discussion in High School Project-Based Science

    ERIC Educational Resources Information Center

    Alozie, Nonye M.; Moje, Elizabeth Birr; Krajcik, Joseph S.

    2010-01-01

    One goal of project-based science is to promote the development of scientific discourse communities in classrooms. Holding rich high school scientific discussions is challenging, especially when the demands of content and norms of high school science pose challenges to their enactment. There is little research on how high school teachers enact…

  16. Becoming (Less) Scientific: A Longitudinal Study of Students' Identity Work from Elementary to Middle School Science

    ERIC Educational Resources Information Center

    Carlone, Heidi B.; Scott, Catherine M.; Lowder, Cassi

    2014-01-01

    Students' declining science interest in middle school is often attributed to psychological factors like shifts of motivational values, decrease in self-efficacy, or doubts about the utility of schooling in general. This paper adds to accounts of the middle school science problem through an ethnographic, longitudinal case study of three…

  17. Secondary School Science Teachers' Arguments for the Particulate Nature of Matter

    ERIC Educational Resources Information Center

    Gunnarsson, Robert; Hellquist, Björn; Strömdahl, Helge; Zelic, Dusan

    2018-01-01

    How do secondary school science teachers justify the model of a particulate nature of matter, and how do the arguments they use relate to historical arguments? To find out, we individually interviewed 11 in-service secondary school science teachers (certified to teach chemistry and/or physics in secondary school, and with 2 to 30 years of teaching…

  18. The Structural Relationship between Out-of-School Time Enrichment and Black Student Participation in Advanced Science

    ERIC Educational Resources Information Center

    Young, Jamaal; Young, Jemimah

    2018-01-01

    The researchers tested a model of the structural relationship between Black student engagement in out-of-school time (OST) science enrichment and participation in advanced science courses in high school. The participants in the sample were Black students (N = 3,173) who participated in the High School Longitudinal Study of 2009/2012. The student…

  19. The Relationships among High School STEM Learning Experiences, Expectations, and Mathematics and Science Efficacy and the Likelihood of Majoring in STEM in College

    ERIC Educational Resources Information Center

    Sahin, Alpaslan; Ekmekci, Adem; Waxman, Hersh C.

    2017-01-01

    This study examines college students' science, technology, engineering, and mathematics (STEM) choices as they relate to high school experiences, parent, teacher, and self-expectations, and mathematics and science efficacy. Participants were 2246 graduates of a STEM-focused public Harmony Public Schools in Texas, Harmony Public Schools (HPS).…

  20. A Multilevel Study on Trends in Malaysian Secondary School Students' Science Achievement and Associated School and Student Predictors

    ERIC Educational Resources Information Center

    Mohammadpour, Ebrahim

    2012-01-01

    This article aims to investigate variations in science achievement for secondary school students across the Trends in International Mathematics and Science Study (TIMSS) assessments and to examine the relations of several student- and school-level factors with achievement. The data were obtained from 5,577, 5,314, and 4,466 Malaysian eighth…

  1. Secondary School Science Teachers' Knowledge and Implementation of Effective Teaching Strategies in High-Performing Schools in Swaziland

    ERIC Educational Resources Information Center

    Mamba, Dudu; Putsoa, Bongile

    2018-01-01

    This paper investigates the teaching strategies used by secondary school science teachers in Swazi schools that perform well in national examinations. The performance of learners in science in these examinations is generally low, as indicated by the public examination results published by the Examinations Council of Swaziland. However, a few…

  2. The Use of CASE to Bridge the Transition between Primary and Secondary School Science in Ireland

    ERIC Educational Resources Information Center

    McCormack, Lorraine

    2016-01-01

    This article describes how the Cognitive Acceleration through Science Education (CASE) programme was implemented in the final year of primary school and the first year of secondary school in a number of schools in Ireland. The original CASE programme, pioneered in the 1980s, proved successful in its aim to develop the science-reasoning abilities…

  3. Equity in Science at South African Schools: A pious platitude or an achievable goal?

    NASA Astrophysics Data System (ADS)

    Dewnarain Ramnarain, Umesh

    2011-07-01

    The apartheid policies in South Africa had a marked influence on the accessibility and quality of school science experienced by the different race groups. African learners in particular were seriously disadvantaged in this regard. The issues of equity and redress were foremost in transformation of the education system, and the accompanying curriculum reform. This paper reports on equity in terms of equality of outputs and equality of inputs in South African school science, with a particular focus on the implementation of practical science investigations. This was a qualitative case study of two teachers on their implementation of science investigations at two schools, one a township school, previously designated for black children, and the other a former Model C school, previously reserved for white children. My study was guided by the curriculum implementation framework by Rogan and Grayson in trying to understand the practice of these teachers at schools located in contextually diverse communities. The framework helped profile the implementation of science investigations and also enabled me to explore the factors which are able to support or hinder this implementation.

  4. High school computer science education paves the way for higher education: the Israeli case

    NASA Astrophysics Data System (ADS)

    Armoni, Michal; Gal-Ezer, Judith

    2014-07-01

    The gap between enrollments in higher education computing programs and the high-tech industry's demands is widely reported, and is especially prominent for women. Increasing the availability of computer science education in high school is one of the strategies suggested in order to address this gap. We look at the connection between exposure to computer science in high school and pursuing computing in higher education. We also examine the gender gap, in the context of high school computer science education. We show that in Israel, students who took the high-level computer science matriculation exam were more likely to pursue computing in higher education. Regarding the issue of gender, we will show that, in general, in Israel the difference between males and females who take computer science in high school is relatively small, and a larger, though still not very large difference exists only for the highest exam level. In addition, exposing females to high-level computer science in high school has more relative impact on pursuing higher education in computing.

  5. The efficacy beliefs of preservice science teachers in professional development school and traditional school settings

    NASA Astrophysics Data System (ADS)

    Newsome, Demetria Lynn

    Teachers' efficacy beliefs have been shown to correlate positively with to the successful implementation of science reform measures (National Research Council, 1996) and are context specific (Koul & Rubba, 1999). Studies on teacher efficacy in specific contexts have been conducted including the availability of resources and parent support (Tschannen-Moran & Hoy, 2002), classroom management (Emmer & Hickman, 1990; Raudenbush, Rowen, & Cheong, 1992); and institutional climate and behavior of the principal (Hoy & Woolfolk, 1993). The purpose of this study was to compare the science teaching efficacy beliefs of teacher interns prepared in professional development schools with those of student teachers prepared in traditional school settings. Other variables examined included academic level, academic major, and area of science concentration. Preservice science teacher efficacy beliefs were measured using the Science Teaching Efficacy Beliefs Instrument for Preservice Science Teachers, STEBI Form B (Enoch & Riggs, 1990) with demographic information being collected by an accompanying questionnaire. Analyses included scoring the surveys on two scales, Personal Science Teaching Efficacy Beliefs Scale and the Outcome Expectancy Scale, calculating descriptive statistics, as well as performing MANOVAS and correlations. Results indicate that preservice science teachers working in professional development schools exhibit higher personal science teaching efficacy beliefs. This finding corroborates previous studies on the efficacy beliefs of preservice teachers working in PDS schools (Long, 1996; Sandholtz & Dadlez, 2000). Results also show a strong correlation between the personal science teaching efficacy beliefs and the setting where student teaching takes place. In addition, significant differences were found in the personal science teaching efficacy beliefs between elementary education majors and science majors, science education majors, and secondary education majors. Findings of the study have implications for the design of preservice science teacher clinical experiences including providing longer, organized clinical experiences and preferential selection of preservice science teachers for PDS practicum assignments.

  6. The Relationships among Scientific Epistemic Beliefs, Conceptions of Learning Science, and Motivation of Learning Science: A Study of Taiwan High School Students

    ERIC Educational Resources Information Center

    Ho, Hsin-Ning Jessie; Liang, Jyh-Chong

    2015-01-01

    This study explores the relationships among Taiwanese high school students' scientific epistemic beliefs (SEBs), conceptions of learning science (COLS), and motivation of learning science. The questionnaire responses from 470 high school students in Taiwan were gathered for analysis to explain these relationships. The structural equation modeling…

  7. What Makes Things Happen? Teacher's Guide. Unit B. ZIM-SCI, Zimbabwe Secondary School Science Project.

    ERIC Educational Resources Information Center

    Dube, Peter

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  8. Sense from Senses. Study Guide. Unit J. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 2.

    ERIC Educational Resources Information Center

    Simango, Sam

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This ZIM-SCI study guide presents activities…

  9. Life, Beginning and Growing. Study Guide. Unit E1. ZIM-SCI, Zimbabwe Secondary School Science Project.

    ERIC Educational Resources Information Center

    Hosking, Bunty

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This ZIM-SCI study guide is a three-part unit…

  10. Atoms and Molecules. Study Guide. Unit 2. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 3.

    ERIC Educational Resources Information Center

    Mandizha, George

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the third year of secondary school without the aid of qualified teachers and conventional laboratories. This ZIM-SCI study guide is a four-part unit…

  11. Atoms and Molecules. 'O' Level. Teacher's Guide. Unit 2. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 3.

    ERIC Educational Resources Information Center

    Mandizha, George

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the third year of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be used in…

  12. Forces in Living Things. Study Guide. Unit H2. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 2.

    ERIC Educational Resources Information Center

    Hosking, Bunty; Zesaguli, Josie

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This ZIM-SCI study guide presents activities…

  13. Forces. 'O' Level Teacher's Guide. Unit 1. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 3.

    ERIC Educational Resources Information Center

    Udwin, Martin

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the third year of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  14. Forces. 'O' Level Study Guide. Unit 1. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 3.

    ERIC Educational Resources Information Center

    Udwin, Martin

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the third year of secondary school without the aid of qualified teachers and conventional laboratories. This ZIM-SCI study guide is a five-part unit…

  15. The Chemicals of the Earth. Study Guide. Unit F2. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 2.

    ERIC Educational Resources Information Center

    Stocklmayer, Sue

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This ZIM-SCI study guide presents activities…

  16. Sense from Senses. Teacher's Guide. Unit J. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 2.

    ERIC Educational Resources Information Center

    Simango, Sam

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  17. In-Depth Science Research Experiences for Teens: The AMNH-ITEST High School Science Research Program. Summative Evaluation Report

    ERIC Educational Resources Information Center

    Smith, Anita

    2008-01-01

    In January 2005, the American Museum of Natural History (AMNH) was awarded a three-year ITEST grant (Innovative Technology Experiences for Students and Teachers) through the National Science Foundation (award #04-23417). This "AMNH-ITEST High School Science Research Program" aimed to target 120 urban high school youth, grades 10-12, from…

  18. The Relationship between Student's Quantitative Skills, Application of Math, Science Courses, and Science Marks at Single-Sex Independent High Schools

    ERIC Educational Resources Information Center

    Cambridge, David

    2012-01-01

    For independent secondary schools who offer rigorous curriculum to attract students, integration of quantitative skills in the science courses has become an important definition of rigor. However, there is little research examining students' quantitative skills in relation to high school science performance within the single-sex independent school…

  19. Energy for Living. Study Guide. Unit G1. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 2.

    ERIC Educational Resources Information Center

    Hosking, Bunty

    The Zimbabe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This ZIM-SCI study guide includes activities and…

  20. Living Things and Their Food. Study Guide. Unit G2. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 2.

    ERIC Educational Resources Information Center

    Hosking, Bunty

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This ZIM-SCI study guide presents activities…

  1. Energy for Living. Teacher's Guide. Unit G1. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 2.

    ERIC Educational Resources Information Center

    Hosking, Bunty

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  2. Project-Based Learning versus Textbook/Lecture Learning in Middle School Science

    ERIC Educational Resources Information Center

    Main, Sindy

    2015-01-01

    As schools continue to become more diverse, it is important to look at science teaching methods that will meet the needs of all students. In this study, 172 students in a middle school in Northwestern Illinois were taught using two methods of teaching science. Half of the students were taught using project-based science (PBS) and the other half of…

  3. Reproducing by Flowers and Seeds. Study Guide. Unit E2. ZIM-SCI, Zimbabwe Secondary School Science Project.

    ERIC Educational Resources Information Center

    Zesaguli, Josie

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and environmental laboratories. This ZIM-SCI study guide consists of…

  4. Reproducing by Flowers and Seeds. Teacher's Guide. Unit E2. ZIM-SCI, Zimbabwe Secondary School Science Project.

    ERIC Educational Resources Information Center

    Zesaguli, Josie

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  5. Our Planet Earth. Study Guide. Unit F1. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 2.

    ERIC Educational Resources Information Center

    Stocklmayer, Sue

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  6. Our Planet Earth. Teacher's Guide. Unit F1. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 2.

    ERIC Educational Resources Information Center

    Stocklmayer, Sue

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This ZIM-SCI study guide presents activities,…

  7. Linkages between Youth Diversity and Organizational and Program Characteristics of Out-of-School-Time Science Programs: A Mixed-Methods Study

    ERIC Educational Resources Information Center

    Thiry, Heather; Archie, Timothy; Arreola-Pena, Melissa; Laursen, Sandra

    2017-01-01

    Science opportunities in out-of-school time (OST) programs hold potential for expanding access to science, engineering, and technology (SET) pathways for populations that have not participated in these fields at equitable rates (Coalition for Science After School, 2014). This mixed-methods study examines the relationship between the diversity of…

  8. Mapping Our City: Learning To Use Spatial Data in the Middle School Science Classroom.

    ERIC Educational Resources Information Center

    McWilliams, Harold; Rooney, Paul

    Mapping Our City is a two-year project in which middle school teachers and students in Boston explore the uses of Geographic Information Systems (GIS) in project-based science, environmental education, and geography. The project is funded by the National Science Foundation and is being field tested in three Boston middle school science classrooms.…

  9. Physical Science Activities for Elementary and Middle School. CESI Sourcebook V. An Occasional Sourcebook of the Council for Elementary Science International.

    ERIC Educational Resources Information Center

    Malone, Mark R., Comp.

    Mounting research evidence has shown that an activity centered approach to elementary and middle school science education can be quite effective. This sourcebook, developed for teachers by teachers, presents many activity oriented science lessons that could be done in any elementary or middle school classroom with minimal additional experience.…

  10. Using Electricity. Study Guide. Unit I2. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 2.

    ERIC Educational Resources Information Center

    Chidume, Kwashira

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This ZIM-SCI study guide presents activities…

  11. Using Electricity. Teacher's Guide. Unit I2. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 2.

    ERIC Educational Resources Information Center

    Chidume, Kwashira

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be used in…

  12. Understanding Electricity. Study Guide. Unit I1. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 2.

    ERIC Educational Resources Information Center

    Chidume, Kwashira

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This ZIM-SCI study guide presents activities…

  13. Understanding Electricity. Teacher's Guide. Unit I1. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 2.

    ERIC Educational Resources Information Center

    Chidume, Kwashira

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  14. Considerations and Recommendations for Implementing a Dual-Enrollment Program: Bridging the Gap between High School and College Level Science

    ERIC Educational Resources Information Center

    Lukes, Laura A.

    2014-01-01

    Dual-enrollment (DE) science courses offer a way to strengthen the science, technology, engineering, and mathematics pipeline between high school and college. These courses offer high school students the opportunity to experience college science in a more supported environment, allowing them to adjust to the different academic and social demands…

  15. A Study on the Evaluation of Science Projects of Primary School Students Based on Scientific Criteria

    ERIC Educational Resources Information Center

    Gungor, Sema Nur; Ozer, Dilek Zeren; Ozkan, Muhlis

    2013-01-01

    This study re-evaluated 454 science projects that were prepared by primary school students between 2007 and 2011 within the scope of Science Projects Event for Primary School Students. Also, submitted to TUBITAK BIDEB Bursa regional science board by MNE regional work groups in accordance with scientific research methods and techniques, including…

  16. Looking at Life. Teacher's Guide. Unit A2. ZIM-SCI, Zimbabwe Secondary School Science Project.

    ERIC Educational Resources Information Center

    Hosking, Bunty

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  17. Particles in Action. Study Guide. Unit C2. ZIM-SCI, Zimbabwe Secondary School Science Project.

    ERIC Educational Resources Information Center

    Stocklmayer, Sue

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This ZIM-SCI study guide is a four-part unit…

  18. Particles in Action. Teacher's Guide. Unit C2. ZIM-SCI, Zimbabwe Secondary School Science Project.

    ERIC Educational Resources Information Center

    Stocklmayer, Sue

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  19. Investigating Your School's Science Teaching and Learning Culture

    ERIC Educational Resources Information Center

    Sato, Mistilina; Bartiromo, Margo; Elko, Susan

    2016-01-01

    The authors report on their work with the Academy for Leadership in Science Instruction, a program targeted to help science teachers promote a science teaching and learning culture in their own schools.

  20. Multiple Teaching Approaches, Teaching Sequence and Concept Retention in High School Physics Education

    ERIC Educational Resources Information Center

    Fogarty, Ian; Geelan, David

    2013-01-01

    Students in 4 Canadian high school physics classes completed instructional sequences in two key physics topics related to motion--Straight Line Motion and Newton's First Law. Different sequences of laboratory investigation, teacher explanation (lecture) and the use of computer-based scientific visualizations (animations and simulations) were…

  1. Young "Science Ambassadors" Raise the Profile of Science

    ERIC Educational Resources Information Center

    Ridley, Katie

    2014-01-01

    Katie Ridley, science coordinator at St. Gregory's Catholic Primary School, Liverpool, UK, states that the inspiration for "science ambassadors" came after embarking on the Primary Science Quality Mark programme at their school. Ridley realized that science was just not recognised as such by the children, they talked about scientific…

  2. Demographic Factors Affecting Internet Using Purposes of High School Students

    ERIC Educational Resources Information Center

    Kilic, Abdullah Faruk; Güzeller, Cem Oktay

    2017-01-01

    This study aimed at determining the impact of demographic factors on the Internet usage purposes of high school students. The population of the study consisted of students between 9th and 12th grades from the Anatolian high schools, science high schools, social sciences high schools, sports high schools and fine arts high schools in Turkey. The…

  3. Promoting Original Scientific Research and Teacher Training Through a High School Science Research Program: A Five Year Retrospective and Analysis of the Impact on Mentored 8th Grade Geoscience Students and the Mentors Themselves

    NASA Astrophysics Data System (ADS)

    Danch, J. M.

    2015-12-01

    In 2010 a group of 8th grade geoscience students participated in an extracurricular activity allowing them to conduct original scientific research while being mentored by students enrolled in a 3 - year high school Science Research program. Upon entering high school the mentored students themselves enrolled in the Science Research program and continued for 4 years, culminating with their participation in Science Research 4. This allowed them to continue conducting original scientific research, act as mentors to 8th grade geoscience students and to provide teacher training for both middle and high school teachers conducting inquiry-based science lessons. Of the 7 Science Research 4 students participating since 2010, 100% plan on majoring or minoring in a STEM - related field in college and their individual research projects have been been granted over 70 different awards and honors in science fair and symposia including a 3rd and 4th place category awards at two different international science fairs - the International Sustainable Energy Engineering and Environment Project (iSWEEP) and the International Science and Engineering Fair (ISEF). Science Research 4 students developed and conducted a Society for Science and the Public affiliated science fair for middle school students enrolled in an 8th grade honors geoscience program allowing over 100 students from 5 middle schools to present their research and be judged by STEM professionals. Students with research judged in the top 10% were nominated for participation in the National Broadcom MASTERS program which they successfully entered upon further mentoring from the Science Research 4 students. 8th grade enrollment in the Science Research program for 2015 increased by almost 50% with feedback from students, parents and teachers indicating that the mentorship and participation in the 8th grade science fair were factors in increasing interest in continuing authentic scientific research in high school.

  4. Student Motivation in Science Subjects in Tanzania, Including Students' Voices

    NASA Astrophysics Data System (ADS)

    Mkimbili, Selina Thomas; Ødegaard, Marianne

    2017-12-01

    Fostering and maintaining students' interest in science is an important aspect of improving science learning. The focus of this paper is to listen to and reflect on students' voices regarding the sources of motivation for science subjects among students in community secondary schools with contextual challenges in Tanzania. We conducted a group-interview study of 46 Form 3 and Form 4 Tanzanian secondary school students. The study findings reveal that the major contextual challenges to student motivation for science in the studied schools are limited resources and students' insufficient competence in the language of instruction. Our results also reveal ways to enhance student motivation for science in schools with contextual challenges; these techniques include the use of questioning techniques and discourse, students' investigations and practical work using locally available materials, study tours, more integration of classroom science into students' daily lives and the use of real-life examples in science teaching. Also we noted that students' contemporary life, culture and familiar language can be utilised as a useful resource in facilitating meaningful learning in science in the school. Students suggested that, to make science interesting to a majority of students in a Tanzanian context, science education needs to be inclusive of students' experiences, culture and contemporary daily lives. Also, science teaching and learning in the classroom need to involve learners' voices.

  5. The effect of science-technology-society issue instruction on the attitudes of female middle school students toward science

    NASA Astrophysics Data System (ADS)

    Mullinnix, Debra Lynn

    An assessment of the science education programs of the last thirty years reveals traditional science courses are producing student who have negative attitudes toward science, do not compete successfully in international science and mathematics competitions, are not scientifically literate, and are not interested in pursuing higher-level science courses. When the number of intellectually-capable females that fall into this group is considered, the picture is very disturbing. Berryman (1983) and Kahle (1985) have suggested the importance of attitude both, in terms of achievement in science and intention to pursue high-level science courses. Studies of attitudes toward science reveal that the decline in attitudes during grades four through eight was much more dramatic for females than for males. There exists a need, therefore, to explore alternative methods of teaching science, particularly in the middle school, that would increase scientific literacy, improve attitudes toward science, and encourage participation in higher-level science courses of female students. Yager (1996) has suggested that science-technology-society (STS) issue instruction does make significant changes in students' attitudes toward science, stimulates growth in science process skills, and increases concept mastery. The purpose of this study was to examine the effect STS issue instruction had on the attitudes of female middle school students toward science in comparison to female middle school students who experience traditional science instruction. Another purpose was to examine the effect science-technology-society issue instruction had on the attitudes of female middle school students in comparison to male middle school students. The pretests and the posttests were analyzed to examine differences in ten domains: enjoyment of science class; usefulness of information learned in science class; usefulness of science skills; feelings about science class in general; attitudes about what took place in the science classroom; overall response to science class; perception of encouragement to enroll in science electives; future plans to enroll in science electives; reasons for not enrolling in science electives; and perception of restraints in achieving future goals.

  6. Examining school effectiveness at the fourth grade: A hierarchical analysis of the Third International Mathematics and Science Study (TIMSS)

    NASA Astrophysics Data System (ADS)

    Stemler, Steven Edward

    This study explored school effectiveness in mathematics and science at the fourth grade using data from IEA's Third International Mathematics and Science Study (TIMSS). Fourteen of the 26 countries participating in TIMSS at the fourth grade possessed sufficient between-school variability in mathematics achievement to justify the creation of explanatory models of school effectiveness while 13 countries possessed sufficient between-school variability in science achievement. Exploratory models were developed using variables drawn from student, teacher, and school questionnaires. The variables were chosen to represent the domains of student involvement, instructional methods, classroom organization, school climate, and school structure. Six explanatory models for each subject were analyzed using two-level hierarchical linear modeling (HLM) and were compared to models using only school mean SES as an explanatory variable. The amount of variability in student achievement in mathematics attributable to differences between schools ranged from 16% in Cyprus to 56% in Latvia, while the amount of between-school variance in science achievement ranged from 12% in Korea to 59% in Latvia. In general, about one-quarter of the variability in mathematics and science achievement was found to lie between schools. The research findings revealed that after adjusting for differences in student backgrounds across schools, the most effective schools in mathematics and science had students who reported seeing a positive relationship between hard work, belief in their own abilities, and achievement. In addition, more effective schools had students who reported less frequent use of computers and calculators in the classroom. These relationships were found to be stable across explanatory models, cultural contexts, and subject areas. This study has contributed a unique element to the literature by examining school effectiveness at the fourth grade across two subject areas and across 14 different countries. The results indicate that further exploration of the relationship between school effectiveness and student locus of control warrants serious consideration. Future research on school effectiveness is recommended, perhaps using trend data and looking at different grade levels.

  7. The Impact of a Multi-Year, Multi-School District K-6 Professional Development Programme Designed to Integrate Science Inquiry and Language Arts on Students' High-Stakes Test Scores

    NASA Astrophysics Data System (ADS)

    Shymansky, James A.; Wang, Tzu-Ling; Annetta, Leonard A.; Yore, Larry D.; Everett, Susan A.

    2013-04-01

    This paper is a report of a quasi-experimental study on the impact of a systemic 5-year, K-6 professional development (PD) project on the 'high stakes' achievement test scores of different student groups in rural mid-west school districts in the USA. The PD programme utilized regional summer workshops, district-based leadership teams and distance delivery technologies to help teachers learn science concepts and inquiry teaching strategies associated with a selection of popular science inquiry kits and how to adapt inquiry science lessons in the kits to teach and reinforce skills in the language arts-i.e. to teach more than science when doing inquiry science. Analyses of the school district-level pre-post high-stakes achievement scores of 33 school districts participating in the adaptation of inquiry PD and a comparative group of 23 school districts revealed that both the Grade 3 and Grade 6 student-cohorts in the school districts utilizing adapted science inquiry lessons significantly outscored their student-cohort counterparts in the comparative school districts. The positive school district-level high-stakes test results, which serve as the basis for state and local decision making, suggest that an inquiry adaptation strategy and a combination of regional live workshop and distance delivery technologies with ongoing local leadership and support can serve as a viable PD option for K-6 science.

  8. Summative Evaluation Findings from the Interstellar Boundary Explorer (IBEX) Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Bartolone, L.; Nichols-Yehling, M.; Davis, H. B.; Davey, B.

    2014-07-01

    The Interstellar Boundary Explorer mission includes a comprehensive Education and Public Outreach (EPO) program in heliophysics that is overseen and implemented by the Adler Planetarium and evaluated by Technology for Learning Consortium, Inc. Several components of the IBEX EPO program were developed during the prime phase of the mission that were specifically designed for use in informal institutions, especially museums and planetaria. The program included a widely distributed planetarium show with accompanying informal education activities, printed posters, lithographs and other resources, funding for the development of the GEMS Space Science Sequence for Grades 6-8 curriculum materials, development of the IBEX mission website, development of materials for people with special needs, participation in the Heliophysics Educator Ambassador program, and support for the Space Explorers Afterschool Science Club for Chicago Public Schools. In this paper, we present an overview of the IBEX EPO program summative evaluation techniques and results for 2008 through 2012.

  9. The New Curriculum Standards for Astronomy in the United States

    NASA Astrophysics Data System (ADS)

    Schleigh, Sharon P.; Slater, Stephanie J.; Slater, Timothy F.; Stork, Debra J.

    2015-12-01

    There is widespread interest in constraining the wide range and vast domain of the possible topics one might teach about astronomy into a manageable framework. Although there is no mandated national curriculum in the United States, an analysis of the three recent national efforts to create an age-appropriate sequence of astronomy concepts to be taught in primary and secondary schools reveals a considerable lack of consensus of which concepts are most age-appropriate and which topics should be covered. The most recent standardization framework for US science education, the Next Generation Science Standards, suggests that most astronomy concepts should be taught only in the last years of one’s education; however, the framework has been met with considerable criticism. A comparison of astronomy learning frameworks in the United States, and a brief discussion of their criticisms, might provide international astronomy educators with comparison data in formulating recommendations in their own regions.

  10. Science Facilities for Mississippi Schools, Grades 1-12.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Div. of Instruction.

    Prepared to assist those planning the construction of new science facilities on the elementary, intermediate, or secondary school level. Standards are outlined and specifications detailed. A statement of fifteen general pricniples for planning science facilities in secondary schools precedes a discussion of--(1) special facilities for different…

  11. How Do Turkish Middle School Science Coursebooks Present the Science Process Skills?

    ERIC Educational Resources Information Center

    Aslan, Oktay

    2015-01-01

    An important objective in science education is the acquisition of science process skills (SPS) by the students. Therefore, science coursebooks, among the main resources of elementary science curricula, are to convey accurate SPS. This study is a qualitative study based on the content analysis of the science coursebooks used at middle schools. In…

  12. The Effectiveness of Traditional and 21st Century Teaching Tools on Students' Science Learning

    ERIC Educational Resources Information Center

    Bellflower, Julie V.

    2012-01-01

    Any student seeking a high school diploma from the public school system in one U.S. state must pass the state's high school graduation test. In 2009, only 88% of students at one high school in the state met the basic proficiency requirements on the science portion of the test. Because improved science education has been identified as an explicit…

  13. Final Report of the Impacts of the National Math + Science Initiative's (NMSI's) College Readiness Program on High School Students' Outcomes

    ERIC Educational Resources Information Center

    Sherman, Dan; Li, Yibing; Darwin, Marlene; Taylor, Suzanne; Song, Mengli

    2017-01-01

    The National Math + Science Initiative's (NMSI's) College Readiness Program (CRP) is an established program whose goal is to promote science, technology, engineering, and mathematics education in high schools to improve students' readiness for college. It provides teacher, student, and school supports to promote high school students' success in…

  14. Integration of Live Video and WWW Delivery Systems To Teach University Level Science, Technology, and Society in High Schools.

    ERIC Educational Resources Information Center

    Urven, Lance E.; Yin, L. Roger; Bak, John D.

    In fall 1997, the University of Wisconsin-Whitewater (UWW) provided Science and Technology in Society, a university general studies science literacy course, to advanced placement high school students at three local high schools, using a combination of live video presentations and World Wide Web (WWW) courseware. A total of 26 high school students…

  15. An Examination of Science High School Students' Motivation towards Learning Biology and Their Attitude towards Biology Lessons

    ERIC Educational Resources Information Center

    Kisoglu, Mustafa

    2018-01-01

    The purpose of this study is to examine motivation of science high school students towards learning biology and their attitude towards biology lessons. The sample of the study consists of 564 high school students (308 females, 256 males) studying at two science high schools in Aksaray, Turkey. In the study, the relational scanning method, which is…

  16. Single-gender mathematics and science classes and the effects on urban middle school boys and girls

    NASA Astrophysics Data System (ADS)

    Sudler, Dawn M.

    This study compared the differences in the Criterion-Referenced Competency Test (CRCT) mathematics and science achievement scores of boys and girls in Grade 7 at two urban middle schools. The data allowed the researcher to determine to what degree boys and girls in Grade 7 differ in their mathematics and science achievements within a single-gender environment versus a coeducational learning environment. The study compared any differences between boys and girls in Grade 7 within a single-gender environment in the subjects of mathematics and science, as measured by the CRCT assessments. The study also compared differences between boys and girls in Grade 7 within a coeducational environment in the subjects of mathematics and science, as measured by the CRCT assessments. Two middle schools were used within the study. One middle school was identified as a single-gender school (Middle School A); the other was identified as a coeducational school (Middle School B). This quantitative study applied the use of a descriptive research design. In addition, CRCT scores for the subjects of mathematics and science were taken during the spring of 2008 from both middle schools. Data were measured using descriptive statistics and independent t test calculations. The frequency statistics proceeded to compare each sample performance levels. The data were described in means, standard deviations, standard error means, frequency, and percentages. This method provided an excellent description of a sample scored on the spring 2008 CRCT mathematics and science assessments.

  17. Beyond the City Lights: A Multiple-Case Study of Successful, Experienced Secondary Science Teachers in Rural Schools

    NASA Astrophysics Data System (ADS)

    DeVore-Wedding, Beverly R.

    Recruitment and retention concerns for teachers, particularly in rural school districts and in science, fill the daily news and research literature. The shortage of STEM workers is also another concern as well. Then why do nationally recognized secondary science teachers remain in rural schools with lower salaries, increased responsibilities beyond teaching content, and multi-preparations, stay in those schools? How do they overcome challenges in their schools? This multiple case study focuses on Presidential Award for Excellence in Mathematics and Science Teaching (PAEMST) awardees who have taught secondary science in rural school districts 10 years or more. Eight rural PAEMST high school science teachers were identified in Nebraska and the six contiguous states; four consented to participate in this study. Interviews of these teachers and a colleague, principal, and or students were conducted to answer the research questions. Using a lens of resiliency, similarities were identified that show how these teachers overcome adversity and thrived in their rural school and communities. Resilient themes that emerged from this study are adaptability, autonomy, collaborative, competency, connectedness, problem-solvers, and resourcefulness. Common themes of success for teaching in rural schools for the four teachers were autonomy and relationships. Common themes of challenges for teaching in rural schools were diversity, funding, professional isolation, and teaching assignments. These characteristics and strategies may help schools with their recruitment and retention of teachers as well as teachers themselves benefiting from hearing other teachers' stories of success and longevity.

  18. A High School Research-Oriented Academy

    NASA Astrophysics Data System (ADS)

    Adkins, J.

    2011-12-01

    For the past several years Deer Valley High School (Antioch, CA) has hosted a science research academy (DVSRA). This academy has promoted original student primary research in engineering, behavior science, astronomy and physics topics and initiated the school's first entries into science fair and directed a number of students into science careers. During the previous school year the Antioch Unified School District has supported the expansion of the academy into a general research academy encompassing all areas of science and humanities, a move into a new building, purchase of a new planetarium and the development of a collegiate academy model making it easier to integrate the academy into the larger school's academic program. The presentation will discuss the design of the academy and the involvement of students in projects connected to the Teachers in Space Suborbital Flight Opportunity program, NASA's WISE, Mars Global Surveyor, Spitzer, and other missions.

  19. Novartis School Lab: bringing young people closer to the world of research and discovering the excitement of science.

    PubMed

    Michel, Christiane Röckl; Standke, Gesche; Naef, Reto

    2012-01-01

    The Novartis School Lab (http://www.novartis.ch/schullabor) is an institution with an old tradition. The School Lab reaches about 5000 students through internal courses and an additional 5000 children at public science events where they can enjoy hands-on science in disciplines of biomedical research. The subjects range from chemistry, physics, molecular biology and genetics to toxicology and medical topics. The Novartis School Lab offers a variety of activities for youngsters aged 10-20 ranging from lab courses for school classes, continuing education for teachers and development of teaching kits, support for individual research projects to outreach for public science events. Innovation and adaptation to changes of current needs are essential aspects for the Novartis School Lab. Ongoing activities to shape the Novartis Biomedical Learning Lab include design of new teaching experiments, exploration into additional disciplines of biomedical science and the creation of a fascinating School Lab of the future.

  20. Prerequisites in behavioral science and business: opportunities for dental education.

    PubMed

    Dunning, David G; Lange, Brian M; Madden, Robert D; Tacha, Koko K

    2011-01-01

    There is increasing pressure on recent dental school graduates to understand and successfully utilize patient management and business management strategies to run a productive dental office. Dental schools are faced with the dilemma to either add more credit hours in their already crowded curriculum or adjust predental school requirements. All fifty-nine U.S. dental schools were assessed online to determine admission requirements in the areas of behavioral science and business education. Results show that only 11.9 percent of the schools require prerequisite course work in behavioral science and no school requires prerequisite course work in business. However, 64.4 percent and 30.5 percent of schools encouraged or recommended prerequisite course work in behavioral science and business, respectively. We suggest that the dental education community involve key stakeholders to discuss the incorporation of prerequisite course work in behavioral science and business. Additional courses in these disciplines would provide dental students better backgrounds from which the dental curriculum could build a more advanced and applied perspective to better prepare students for practice.

  1. Science FEST: Preservice Teachers link Math and Science in Astronomy Lessons

    NASA Astrophysics Data System (ADS)

    DeMuth, N. H.; Kasabian, J.; Hacking, P. B.

    2005-12-01

    Funded by the National Science Foundation and corporate sponsored by Northrop Grumman, Science FEST (Science for Future Elementary School Teachers) aims to develop the science content and pedagogy for project participants by connecting their college coursework to the science they will eventually teach. Working individually and in pairs, future elementary and secondary school teachers design a comprehensive module in astronomy that is inquiry-based and reflects national and state science standards. Project participants then teach their module in local elementary or middle school classrooms. Science FEST project participants report gaining a deep understanding of the science they are teaching, learning to engage all students to explore science concepts, and reflecting on their teaching and how it can be improved. The project's website can be found at www.science-fest.org.

  2. Preparing prospective physics teachers to teach integrated science in junior high school

    NASA Astrophysics Data System (ADS)

    Wiyanto; Hartono; Nugroho, S. E.

    2018-03-01

    The physics education study program especially prepares its students to teach physics in senior high school, however in reality many its graduates have become science teachers in junior high school. Therefore introducing integrated science to prospective physics teachers is important, because based on the curriculum, science in the junior high school should be taught integratedly. This study analyzed integrated science teaching materials that developed by prospective physics teachers. Results from this study showed that majority of the integration materials that developed by the prospective physics teachers focused on topic with an overlapping concept or theme as connecting between two or three subjects.

  3. An elective course to engage student pharmacists in elementary school science education.

    PubMed

    Woodard, Lisa J; Wilson, Judith S; Blankenship, James; Quock, Raymond M; Lindsey, Marti; Kinsler, Janni J

    2011-12-15

    To develop and assess the impact of an elective course (HealthWISE) on student pharmacists' skills in communication and health promotion and elementary school students' knowledge of and attitudes toward science. Three colleges and schools of pharmacy collaborated to develop a 1-credit elective course that used online and classroom teaching and learning techniques to prepare student pharmacists to teach science in elementary school classrooms. Student pharmacists delivered 6 science lessons to elementary students over the course of 2 months. In weekly journal reflections and a final paper, student pharmacists reported improved communication and health promotion skills. Elementary teachers reported they were satisfied with student pharmacists' performance in the classroom. On pretest and posttest evaluations, elementary students demonstrated increased science knowledge and enhanced enthusiasm for science following the lessons taught by student pharmacists. The HealthWISE elective course provided positive benefit for student pharmacists, elementary school teachers, and elementary students.

  4. Not Driven by High-Stakes Tests: Exploring Science Assessment and College Readiness of Students from an Urban Portfolio Community High School

    ERIC Educational Resources Information Center

    Fleshman, Robin Earle

    2017-01-01

    This case study seeks to explore three research questions: (1) What science teaching and learning processes, perspectives, and cultures exist within the science classroom of an urban portfolio community high school? (2) In what ways does the portfolio-based approach prepare high school students of color for college level science coursework,…

  5. The Status of Secondary School Science Laboratory Activities for Quality Education in Case of Wolaita Zone, Southern Ethiopia

    ERIC Educational Resources Information Center

    Zengele, Ashebir Gogile; Alemayehu, Bereket

    2016-01-01

    A high quality science education in primary and secondary schools contributes to developing scientific literacy and would be expected to predispose students to study the enabling sciences at university. The major purpose of this study was to assess the practice and problems in science laboratory activities in the secondary school of Wolaita Zone,…

  6. The Future Curriculum for School Science: What Can Be Learnt from the Past?

    ERIC Educational Resources Information Center

    Fensham, Peter J.

    2016-01-01

    In the 1960s, major reforms of the curriculum for school science education occurred that set a future for school science education that has been astonishingly robust at seeing off alternatives. This is not to say that there are not a number of good reasons for such alternative futures. The sciences, their relation to the socio-scientific context,…

  7. The Chemicals of the Earth. Teacher's Guide. Unit F2. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 2.

    ERIC Educational Resources Information Center

    Stocklmayer, Sue

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  8. Living Things and Their Food. Teacher's Guide. Unit G2. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 2.

    ERIC Educational Resources Information Center

    Hosking, Bunty

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  9. Comparative Study on Romanian School Science Curricula and the Curriculum of TIMSS 2007 Testing

    ERIC Educational Resources Information Center

    Ciascai, Liliana

    2009-01-01

    The results of Romanian school students in Science PISA and TIMSS testings have been and continue to be systematically slack. In the present paper we intend to do a comparative analysis of Science curriculum TIMSS 2007 and Romanian Science school curricula of 4th and 8th grades. This analysis, based on Bloom's taxonomy of cognitive domain,…

  10. The effects of school policies and practices on eighth-grade science achievement: A multilevel analysis of TIMSS

    NASA Astrophysics Data System (ADS)

    Smyth, Carol Ann Mary

    Identifying the relative importance of both alterable school policies and fairly stable contextual factors as they relate to middle level science achievement, a domain of identified national concern, requires simultaneous investigation of multilevel predictors (i.e., student level and school level) specific to the grade level and academic subject area. The school level factors are predictors associated with both the school (e.g., average socioeconomic status, tracking, and instructional time) and the classroom (e.g., average academic press of peers, teacher collaboration, and instructional strategies). The current study assessed the effects of school policies, practices, and contextual factors on the science achievement of eighth grade students. These influences were considered to be both additive (i.e., influencing the mean achievement in a school after controlling for student characteristics) and interactive (i.e., affecting the relationships between student background characteristics and individual achievement). To account for the nested structure of predictors and cross level interactions among predictors, a multilevel model for middle level science achievement was estimated using hierarchical linear modeling (HLM) with data collected from eighth grade students, science teachers, and administrators in 1995 as part of the Third International Mathematics and Science Study (TIMSS). The major findings of this research suggest that although average eighth grade science achievement in a school was primarily associated with the contextual characteristics of the classroom and the school (e.g., average socioeconomic status and average academic press), both the academic differentiating influence of prior achievement and the social differentiating influence of parental education on the science achievement of eighth grade students were related not only to contextual characteristics of the classroom and the school, but also to the instructional policies of the classroom. Using these results, policy makers can identify factors that can be modified to advance academic excellence in eighth grade science while promoting an equitable distribution of that achievement across students of varying backgrounds.

  11. A study of the latent effects of family learning courses in science

    NASA Astrophysics Data System (ADS)

    Gennaro, Eugene D.; Hereid, Nancy; Ostlund, Karen

    It is well documented that students' exposure to science in the middle school is critical for their later selection of science courses, yet instruction time and course offerings in science during the middle school years are often limited. Out-of-School Science Experiences with funds from the National Science Foundation (DISE No. 07872) produced five short science courses intended for children in middle school grades (6, 7, and 8) and their parents that supplement normal science instruction based on topics that are integral to traditional science teaching. The courses were offered through Community Education programs and through informal science learning centers (e.g., zoos, museums, and planetariums). An added strength of the program is that it employs the family as a motivator and reinforcer in a cooperative learning venture. The study reported here is an attempt to determine participant reaction two to three years after having taken the courses, to the course experience, the influence that the courses had on subsequent learning behavior, and the relationship between parents and children.

  12. Professionality of Junior High School (SMP) Science Teacher in Preparing Instructional Design of Earth and Space Sciences (IPBA)

    NASA Astrophysics Data System (ADS)

    Marlina, L.; Liliasari; Tjasyono, B.; Hendayana, S.

    2017-02-01

    The teacher is one important factor in the provision of education in schools. Therefore, improving the quality of education means we need to enhance the quality and the professionalism of teachers. We offer a solution through education and training of junior high school science teachers in developing the instructional design of Earth and Space Sciences (IPBA). IPBA is part of the science subjects which is given to students from elementary school to college. This research is a preliminary study of junior high school science teacher professionalism in creating instructional design IPBA. Mixed method design is used to design the research. Preliminary studies conducted on junior high school science teacher in one MGMPs in South Sumatera, and the respondent are 18 teachers from 13 schools. The educational background of science teachers who teach IPBA not only from physical education but also biology and agriculture. The result of preliminary study showed that the ratio of teachers who teach IPBA are 56% from physic education, 39% from biology, and 5% from agriculture. The subjects of IPBA that considered difficult by teachers are the distribution of sun, moon, and satellite motion; specific processes in lithosphere and atmosphere; and the correlation between lithosphere and atmosphere with the environment. The teachers also face difficulty in preparing media, choosing the right methods in teaching IPBA.

  13. Can medical schools teach high school students to be scientists?

    PubMed

    Rosenbaum, James T; Martin, Tammy M; Farris, Kendra H; Rosenbaum, Richard B; Neuwelt, Edward A

    2007-07-01

    The preeminence of science in the United States is endangered for multiple reasons, including mediocre achievement in science education by secondary school students. A group of scientists at Oregon Health and Science University has established a class to teach the process of scientific inquiry to local high school students. Prominent aspects of the class include pairing of the student with a mentor; use of a journal club format; preparation of a referenced, hypothesis driven research proposal; and a "hands-on" laboratory experience. A survey of our graduates found that 73% were planning careers in health or science. In comparison to conventional science classes, including chemistry, biology, and algebra, our students were 7 times more likely to rank the scientific inquiry class as influencing career or life choices. Medical schools should make research opportunities widely available to teenagers because this experience dramatically affects one's attitude toward science and the likelihood that a student will pursue a career in science or medicine. A federal initiative could facilitate student opportunities to pursue research.

  14. Reforming High School Science for Low-Performing Students Using Inquiry Methods and Communities of Practice

    NASA Astrophysics Data System (ADS)

    Bolden, Marsha Gail

    Some schools fall short of the high demand to increase science scores on state exams because low-performing students enter high school unprepared for high school science. Low-performing students are not successful in high school for many reasons. However, using inquiry methods have improved students' understanding of science concepts. The purpose of this qualitative research study was to investigate the teachers' lived experiences with using inquiry methods to motivate low-performing high school science students in an inquiry-based program called Xtreem Science. Fifteen teachers were selected from the Xtreem Science program, a program designed to assist teachers in motivating struggling science students. The research questions involved understanding (a) teachers' experiences in using inquiry methods, (b) challenges teachers face in using inquiry methods, and (c) how teachers describe student's response to inquiry methods. Strategy of data collection and analysis included capturing and understanding the teachers' feelings, perceptions, and attitudes in their lived experience of teaching using inquiry method and their experience in motivating struggling students. Analysis of interview responses revealed teachers had some good experiences with inquiry and expressed that inquiry impacted their teaching style and approach to topics, and students felt that using inquiry methods impacted student learning for the better. Inquiry gave low-performing students opportunities to catch up and learn information that moved them to the next level of science courses. Implications for positive social change include providing teachers and school district leaders with information to help improve performance of the low performing science students.

  15. Back to the basic sciences: an innovative approach to teaching senior medical students how best to integrate basic science and clinical medicine.

    PubMed

    Spencer, Abby L; Brosenitsch, Teresa; Levine, Arthur S; Kanter, Steven L

    2008-07-01

    Abraham Flexner persuaded the medical establishment of his time that teaching the sciences, from basic to clinical, should be a critical component of the medical student curriculum, thus giving rise to the "preclinical curriculum." However, students' retention of basic science material after the preclinical years is generally poor. The authors believe that revisiting the basic sciences in the fourth year can enhance understanding of clinical medicine and further students' understanding of how the two fields integrate. With this in mind, a return to the basic sciences during the fourth year of medical school may be highly beneficial. The purpose of this article is to (1) discuss efforts to integrate basic science into the clinical years of medical student education throughout the United States and Canada, and (2) describe the highly developed fourth-year basic science integration program at the University of Pittsburgh School of Medicine. In their critical review of medical school curricula of 126 U.S. and 17 Canadian medical schools, the authors found that only 19% of U.S. medical schools and 24% of Canadian medical schools require basic science courses or experiences during the clinical years, a minor increase compared with 1985. Curricular methods ranged from simple lectures to integrated case studies with hands-on laboratory experience. The authors hope to advance the national discussion about the need to more fully integrate basic science teaching throughout all four years of the medical student curriculum by placing a curricular innovation in the context of similar efforts by other U.S. and Canadian medical schools.

  16. Scope and Sequence. Life Sciences, Physical Sciences, Earth and Space Sciences. A Summer Curriculum Development Project.

    ERIC Educational Resources Information Center

    Cortland-Madison Board of Cooperative Educational Services, Cortland, NY.

    Presented is a booklet containing scope and sequence charts for kindergarten and grades 1 to 6 science units. Overviews and lists of major concepts for units in the life, physical, and earth/space sciences are provided in tables for each grade level. Also presented are seven complete units, one for each grade level. Following a table of contents,…

  17. The perspectives of Caribbean high school students' experiences in American science classrooms

    NASA Astrophysics Data System (ADS)

    Ferguson, Renae Luenell

    The purpose of this study was to describe the perspectives of Caribbean high school students' experiences in American science classrooms. Research suggests that psychological, cultural, and socioeconomic perspectives influence the science experiences of African Americans or Blacks; the result of which is under-representation (Lewis et al., 2000). Nonetheless, what is uncertain is if these and other perspectives are similar to the science experiences of Caribbeans who also are majority black by race and rank as the 3 rd largest immigrant population in America's schools (Suarez-Orozco, 2000). Questions guiding this study were: (1) What are the perspectives of Caribbean high school students' experiences in American science classrooms? (2) What can we learn from the perspectives of Caribbean high school students' science experiences that may address issues of participation and interest; consequently, influencing the overall performance of ethnic minorities in school science? Sociocultural theory provides the framework for the analysis of the study. Four Caribbean born students in an American high school participated in this naturalistic qualitative research. A constant comparative method was used to categorize and analyze the data and uncover meaningful patterns that emerged from the four interviews and written documents. Although there were similarities between African Americans' science experiences as documented in the literature and that of Caribbeans in this study, the Caribbean participants relied on prior native experiences to dictate their perspectives of their science experiences in America. According to Caribbean students, American science high schools classrooms utilize an objective style of assessments; are characterized by a lack of teacher support; allow behavioral problems in the classroom; and function through different communication styles than the native Caribbean science classroom environment. This study implies science educators should be sensitive to the sociocultural nuances of Caribbeans, as well as to all other students. Educators should also understand and value students' individual backgrounds, cultural patterns, and specific influences which impinge students in science and may result in underachievement. In addition, educators should not only discuss issues of under-representation in science but also they should begin to initiate the implementation of strategies addressed in this study in order to bring awareness and resolution to these pressing issues.

  18. Hong Kong secondary school students' attitudes towards science: a study of structural models and gender differences

    NASA Astrophysics Data System (ADS)

    Wan, Zhi Hong; Lee, John Chi Kin

    2017-03-01

    This study explored two under-researched areas on students' attitudes towards science, that is, the structural models representing these attitudes and the role played by school bands in moderating the gender differences in such attitudes. The participants were 360 ninth graders in Hong Kong from 3 school bands. The structural equation modelling method was adopted to compare four hypothetical models for students' attitudes towards science. Results reflect that (i) the data supported the three-factor structure of the behavioural domain of students' attitudes towards science; (ii) the four lower level dimensions of the attitudes towards science (i.e. value of science to society, self-concept in science, anxiety towards science and enjoyment of science) could be further integrated into broader categories; (iii) male students demonstrated significantly more positive attitudes towards science in five dimensions (i.e. self-concept in science, enjoyment in science, learning science in and outside the classroom and future participation) and (iv) school bands played a prominent moderating role in gender differences in students' attitudes towards science. Implications for studying and developing students' attitudes towards science are discussed in the paper.

  19. Ghanaian Junior High School Science Teachers' Knowledge of Contextualised Science Instruction

    ERIC Educational Resources Information Center

    Ngman-Wara, Ernest I. D.

    2015-01-01

    The purpose of the study was to investigate Junior High School science teachers' knowledge about contextualised science instruction. The study employed descriptive survey design to collect data. A test, Test of Science Teacher Knowledge of Contextualised Science Instruction was developed and administered to collect data on teachers' knowledge of…

  20. The role of outside-school factors in science education: a two-stage theoretical model linking Bourdieu and Sen, with a case study

    NASA Astrophysics Data System (ADS)

    Gokpinar, Tuba; Reiss, Michael

    2016-05-01

    The literature in science education highlights the potentially significant role of outside-school factors such as parents, cultural contexts and role models in students' formation of science attitudes and aspirations, and their attainment in science classes. In this paper, building on and linking Bourdieu's key concepts of habitus, cultural and social capital, and field with Sen's capability approach, we develop a model of students' science-related capability development. Our model proposes that the role of outside-school factors is twofold, first, in providing an initial set of science-related resources (i.e. habitus, cultural and social capital), and then in conversion of these resources to science-related capabilities. The model also highlights the distinction between science-related functionings (outcomes achieved by individuals) and science-related capabilities (ability to achieve desired functionings), and argues that it is necessary to consider science-related capability development in evaluating the effectiveness of science education. We then test our theoretical model with an account of three Turkish immigrant students' science-related capabilities and the role of outside-school factors in forming and extending these capabilities. We use student and parent interviews, student questionnaires and in-class observations to provide an analysis of how outside-school factors influence these students' attitudes, aspirations and attainment in science.

  1. National Science Resources Center Project to Improve Science Teaching in Elementary Schools with Special Emphasis on Department of Defense Dependents Schools and Other Schools Serving Children of Military Personnel

    DTIC Science & Technology

    1992-10-01

    science and mathematics education: • DOD Apprenticeship Programs * DOD Teacher Internship Programs * DOD Partnership Programs * DOD Dependents Schools ...corporate sponsors. curriculum and instruction in school mathematics For further information about the project or for were developed in a comprehensive... students develop critical thinking skills and to enhance their ability to solve problems through hands-on activities. The staff and participants were most

  2. The Relationship of Mentoring on Middle School Girls' Science-Related Attitudes

    ERIC Educational Resources Information Center

    Clark, Lynette M.

    2013-01-01

    This quantitative study examined the science-related attitudes of middle school girls who attended a science-focused mentoring program and those of middle school girls who attended a traditional mentoring program. Theories related to this study include social cognitive theory, cognitive development theory, and possible selves' theory. These…

  3. A Review of Research on Technology-Assisted School Science Laboratories

    ERIC Educational Resources Information Center

    Wang, Chia-Yu; Wu, Hsin-Ka; Lee, Silvia Wen-Yu; Hwang, Fu-Kwun; Chang, Hsin-Yi; Wu, Ying-Tien; Chiou, Guo-Li; Chen, Sufen; Liang, Jyh-Chong; Lin, Jing-Wen; Lo, Hao-Chang; Tsai, Chin-Chung

    2014-01-01

    Studies that incorporate technologies into school science laboratories have proliferated in the recent two decades. A total of 42 studies published from 1990 to 2011 that incorporated technologies to support school science laboratories are reviewed here. Simulations, microcomputer-based laboratories (MBLs), and virtual laboratories are commonly…

  4. Elementary Science Curriculum Implementation: As It Was and As It Should Be.

    ERIC Educational Resources Information Center

    Horn, Jerry G.; Marsh, Marilyn A.

    School districts were identified that were involved in implementation of recent National Science Foundation (NSF) elementary school science curricula and in corresponding in-service work. Questionnaires sent to 6 school districts, selected somewhat randomly from across the 50 states and the District of Columbia, compiled information regarding…

  5. Attitudes and Achievement of Bruneian Science Students.

    ERIC Educational Resources Information Center

    Dhindsa, Harkirat S.; Chung, Gilbert

    2003-01-01

    Evaluates attitudes towards and achievement in science of Form 3 students studying in single-sex and coeducational schools in Brunei. Results demonstrated significant differences in attitudes towards and achievement in science of male and female students in single-sex schools and students in coeducational schools. (Contains 46 references.)…

  6. Organizing High School Biology Experiences around Contemporary Bioethical Issues: An STS Approach.

    ERIC Educational Resources Information Center

    Dass, Pradeep Maxwell

    1997-01-01

    The need for a citizenry capable of comprehending and tackling contemporary issues related to science and technology demands science education experiences that are fundamentally different from traditional experiences in school science. Argues that high school biology experiences organized around contemporary bioethical issues can meet this need.…

  7. Supporting Struggling Readers in Secondary School Science Classes

    ERIC Educational Resources Information Center

    Roberts, Kelly D.; Takahashi, Kiriko; Park, Hye-Jin; Stodden, Robert A.

    2012-01-01

    Many secondary school students struggle to read complex expository text such as science textbooks. This article provides step-by-step guidance on how to foster expository reading for struggling readers in secondary school science classes. Two strategies are introduced: Text-to-Speech (TTS) Software as a reading compensatory strategy and the…

  8. Improving Science Education in Rural Elementary Schools: A New Approach.

    ERIC Educational Resources Information Center

    Dacus, Judy M.; Hutto, Nora

    Rural elementary school teachers interested in improving science instruction are frequently hampered by inadequate training in science, lack of information on local natural history resources, and time and curriculum constraints. On the other hand, rural schools are usually located near meadows, forests, or undeveloped land, and rural students…

  9. Improving Diagrammatic Reasoning in Middle School Science Using Conventions of Diagrams Instruction

    ERIC Educational Resources Information Center

    Miller, B. W.; Cromley, J. G.; Newcombe, N. S.

    2016-01-01

    Visual representations are essential for science understanding, but many students have poor diagrammatic reasoning skills. Previous research showed that teaching high school and college students about the conventions of diagrams (COD) can improve diagrammatic reasoning. In this study, middle school science students received COD instruction…

  10. 2007 Youth Policy Summit Summary

    ERIC Educational Resources Information Center

    Reid, Ellen; Fussell, Annemarie; Templin, Elizabeth

    2007-01-01

    The NCSSSMST (National Consortium for Specialized Secondary Schools of Mathematics, Science and Technology) and Keystone Science School co-sponsored two Youth Policy Summits during the summer of 2007. Forty students represented 10 high schools from across the country at each Summit, meeting for a week in June and August at Keystone Science School…

  11. Goddard Space Flight Center: 1994 Maryland/GSFC Earth and Environmental Science Teacher Ambassador Program

    NASA Technical Reports Server (NTRS)

    Latham, James

    1995-01-01

    The Maryland/Goddard Space Flight Center (GSFC) Earth and Environmental Science Teacher Ambassador Program was designed to enhance classroom instruction in the Earth and environmental science programs in the secondary schools of the state of Maryland. In October 1992, more than 100 school system administrators from the 24 local Maryland school systems, the Maryland State Department of Education, and the University of Maryland met with NASA GSFC scientists and education officers to propose a cooperative state-wide secondary school science teaching enhancement initiative.

  12. Finding science is fun in a 'Magic Show of Light' from Optical Demonstrations on an Overhead Projector for elementary school students

    NASA Astrophysics Data System (ADS)

    Lones, Joe J.; Maltseva, Nadezhda K.; Peterson, Kurt N.

    2007-09-01

    We seek methods of stimulating young school children to develop an interest in science and engineering through a natural curiosity for the reaction of light. Science learning now begins fully at middle school. Reading skills develop with activity at home and progress through the elementary school curriculum, and in a like manner, a curious interest in science also should begin at that stage of life. Within the ranks of educators, knowledge of optical science needs to be presented to elementary school students in an entertaining manner. One such program used by the authors is Doug Goodman's Optics Demonstrations With the Overhead Projector, co-published by and available from OSA (Optical Society of America) and SPIE-The International Society of Optical Engineering. These demonstrations have been presented in middle and high schools; however, as a special approach, the authors have developed selected Goodman demonstrations as a "Magic Show of Light" for elementary schools. Teachers in the U.S. are overloaded with classroom instruction specifically targeted at improving reading and math scores on the Standard Achievement Test (SAT); therefore, science is getting "short changed" in the education system. For the sake of our future, industry volunteers must come forward to promote interest in science beginning with K-6.

  13. Teacher and student supports for implementation of the NGSS

    NASA Astrophysics Data System (ADS)

    Severance, Samuel

    Through three articles, this dissertation examines the use of supports for implementing the Next Generation Science Standards (NGSS) within a large urban school district. Article one, titled Organizing for Teacher Agency in Curricular Co-design, examines the need for coherent curriculum materials that teachers' had a meaningful role in shaping and how the use of a co-design approach and specific tools and routines can help to address this need. Article two, titled Relevant Learning and Student Agency within a Citizen Science Design Challenge, examines the need for curriculum materials that provide students with learning experiences they find relevant and that expands their sense of agency and how a curriculum centered around a community-based citizen science design challenge can help achieve such an aim. Article three, titled Implementation of a Novel Professional Development Program to Support Teachers' Understanding of Modeling, examines the need for professional development that builds teachers' understanding of and skill in engaging their students in the practice of developing and using models and how a novel professional development program, the Next Generation Science Exemplar, can aid teachers in this regard by providing them with carefully sequenced professional development activities and specific modeling tools for use in the classroom.

  14. Students' motivational beliefs in science learning, school motivational contexts, and science achievement in Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-Lung; Liou, Pey-Yan

    2017-05-01

    Taiwanese students are featured as having high academic achievement but low motivational beliefs according to the serial results of the Trends in Mathematics and Science Study (TIMSS). Moreover, given that the role of context has become more important in the development of academic motivation theory, this study aimed to examine the relationship between motivational beliefs and science achievement at both the student and school levels. Based on the Expectancy-Value Theory, the three motivational beliefs, namely self-concept, intrinsic value, and utility value, were the focuses of this study. The two-level hierarchical linear model was used to analyse the Taiwanese TIMSS 2011 eighth-grade student data. The results indicated that each motivational belief had a positive predictive effect on science achievement. Additionally, a positive school contextual effect of self-concept on science achievement was identified. Furthermore, school-mean utility value had a negative moderating effect on the relationship between utility value and science achievement. In conclusion, this study sheds light on the functioning of motivational beliefs in science learning among Taiwanese adolescents with consideration of the school motivational contexts.

  15. How static media is understood and used by high school science teachers

    NASA Astrophysics Data System (ADS)

    Hirata, Miguel

    The purpose of the present study is to explore the role of static media in textbooks, as defined by Mayer (2001) in the form of printed images and text, and how these media are viewed and used by high school science teachers. Textbooks appeared in the United States in the late 1800s, and since then pictorial aids have been used extensively in them to support the teacher's work in the classroom (Giordano, 2003). According to Woodward, Elliott, and Nagel (1988/2013) the research on textbooks prior to the 1970s doesn't present relevant work related to the curricular role and the quality and instructional design of textbooks. Since then there has been abundant research, specially on the use of visual images in textbooks that has been approached from: (a) the text/image ratio (Evans, Watson, & Willows, 1987; Levin & Mayer, 1993; Mayer, 1993; Woodward, 1993), and (b) the instructional effectiveness of images (Woodward, 1993). The theoretical framework for this study comes from multimedia learning (Mayer, 2001), information design (Pettersson, 2002), and visual literacy (Moore & Dwyer, 1994). Data was collected through in-depth interviews of three high school science teachers and the graphic analyses of three textbooks used by the interviewed teachers. The interview data were compared through an analytic model developed from the literature, and the graphic analyses were performed using Mayer's multimedia learning principles (Mayer, 2001) and the Graphic Analysis Protocol (GAP) (Slough & McTigue, 2013). The conclusions of this study are: (1) pictures are specially useful for teaching science because science is a difficult subject to teach, (2) due this difficulty, pictures are very important to make the class dynamic and avoid students distraction, (3) static and dynamic media when used together can be more effective, (4) some specific type of graphics were found in the science textbooks used by the participants, in this case they were naturalistic drawings, stylized drawings, scale diagram, flow chart - cycle, flow chart - sequence, and hybrids, no photographs were found, (5) graphics can be related not only to the general text but specifically to the captions, (6) the textbooks analyzed had a balanced proportion of text and graphics, and (7) to facilitate the text-graphics relationship the spatial contiguity of both elements is key to their semantic integration.

  16. Bridging Communities: Culturing a Professional Learning Community that Supports Novice Teachers and Transfers Authentic Science and Mathematics to the Classroom

    NASA Astrophysics Data System (ADS)

    Herbert, B. E.; Miller, H. R.; Loving, C. L.; Pedersen, S.

    2006-12-01

    Professional Learning Community Model for Alternative Pathways (PLC-MAP) is a partnership of North Harris Montgomery Community Colleges, Texas A&M University, and 11 urban, suburban, and rural school districts in the Greater Houston area focused on developing a professional learning community that increases the retention and quality of middle and high school mathematics and science teachers who are being certified through the NHMCCD Alternative Certification Program. Improved quality in teaching refers to increased use of effective inquiry teaching strategies, including information technology where appropriate, that engage students to ask worthy scientific questions and to reason, judge, explain, defend, argue, reflect, revise, and/or disseminate findings. Novice teachers learning to adapt or designing authentic inquiry in their classrooms face two enormous problems. First, there are important issues surrounding the required knowledgebase, habit of mind, and pedagogical content knowledge of the teachers that impact the quality of their lesson plans and instructional sequences. Second, many ACP intern teachers teach under challenging conditions with limited resources, which impacts their ability to implement authentic inquiry in the classroom. Members of our professional learning community, including scientists, mathematicians and master teachers, supports novice teachers as they design lesson plans that engage their students in authentic inquiry. The purpose of this research was to determine factors that contribute to success or barriers that prevent ACP secondary science intern and induction year teachers from gaining knowledge and engaging in classroom inquiry as a result of an innovative professional development experience. A multi-case study design was used for this research. We adopted a two-tail design where cases from both extremes (good and poor gains) were deliberately chosen. Six science teachers were selected from a total of 40+ mathematics and science teachers. These six, on average, demonstrated either the highest gain in knowledge and/or engagement in inquiry-based teaching or the lowest gain among all the novice science teachers through the year of participation in the PLC-MAP program. Certain patterns emerged across all six cases, even when the other variables are acknowledged. The principal external factors were school climate—its culture, its mandates, its degree of teacher autonomy. The internal factors were teacher beliefs about learning through inquiry, about their own need for additional knowledge, and about managing inquiry--all tied to degrees of self-efficacy.

  17. The Science and Issues of Human DNA Polymorphisms: A Training Workshop for High School Biology Teachers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micklos, David A.

    2006-10-30

    This project achieved its goal of implementing a nationwide training program to introduce high school biology teachers to the key uses and societal implications of human DNA polymorphisms. The 2.5-day workshop introduced high school biology faculty to a laboratory-based unit on human DNA polymorphisms â which provides a uniquely personal perspective on the science and Ethical, Legal and Social Implications (ELSI) of the Human Genome Project. As proposed, 12 workshops were conducted at venues across the United States. The workshops were attended by 256 high school faculty, exceeding proposed attendance of 240 by 7%. Each workshop mixed theoretical, laboratory, andmore » computer work with practical and ethical implications. Program participants learned simplified lab techniques for amplifying three types of chromosomal polymorphisms: an Alu insertion (PV92), a VNTR (pMCT118/D1S80), and single nucleotide polymorphisms (SNPs) in the mitochondrial control region. These polymorphisms illustrate the use of DNA variations in disease diagnosis, forensic biology, and identity testing - and provide a starting point for discussing the uses and potential abuses of genetic technology. Participants also learned how to use their Alu and mitochondrial data as an entrée to human population genetics and evolution. Our work to simplify lab techniques for amplifying human DNA polymorphisms in educational settings culminated with the release in 1998 of three Advanced Technology (AT) PCR kits by Carolina Biological Supply Company, the nationâÂÂs oldest educational science supplier. The kits use a simple 30-minute method to isolate template DNA from hair sheaths or buccal cells and streamlined PCR chemistry based on Pharmacia Ready-To-Go Beads, which incorporate Taq polymerase, deoxynucleotide triphosphates, and buffer in a freeze-dried pellet. These kits have greatly simplified teacher implementation of human PCR labs, and their use is growing at a rapid pace. Sales of human polymorphism kits by Carolina Biological rose from 700 units in 1999 to 1,132 in 2000 â a 62% increase. Competing kits using the Alu system, and based substantially on our earlier work, are also marketed by Biorad and Edvotek. In parallel with the lab experiments, we developed a suite of database/statistical applications and easy-to-use interfaces that allow students to use their own DNA data to explore human population genetics and to test theories of human evolution. Database searches and statistical analyses are launched from a centralized workspace. Workshop participants were introduced to these and other resources available at the DNALC WWW site (http://vector.cshl.org/bioserver/): 1) Allele Server tests Hardy-Weinberg equilibrium and statistically compares PV92 data from world populations. 2) Sequence Server uses DNA sequence data to search Genbank using BLASTN, compare sequences using CLUSTALW, and create phylogenetic trees using PHYLIP. 3) Simulation Server uses a Monte Carlo generator to model the long-term effects of drift, selection, and population bottlenecks. By targeting motivated and innovative biology faculty, we believe that this project offered a cost-effective means to bring high school biology education up-to-the-minute with genomic biology. The workshop reached a target audience of highly professional faculty who have already implemented hands-on labs in molecular genetics and many of whom offer laboratory electives in biotechnology. Many attend professional meetings, develop curriculum, collaborate with scientists, teach faculty workshops, and manage equipment-sharing programs. These individuals are life-long learners, anxious for deeper insight and additional training to further extend their leadership. This contention was supported by data from a mail survey, conducted in February-March 2000 and 2001, of 256 faculty who participated in workshops conducted during the current term of DOE support. Seventy percent of participants responded, providing direct reports on how their teaching behavior had changed since taking the DOE workshop. About nine of ten respondents said they had provided new classroom materials and first-hand accounts of DNA typing, sequencing, or PCR. Three-fourths had introduced new units on human molecular genetics. Most strikingly, half had students use PCR to amplify their own insertion polymorphisms (PV92), and better than one-fourth amplified a VNTR polymorphism and the mitochondrial control region. One in five had mitochondrial DNA sequenced by the DNALC Sequencing Service. A majority (58%) used online materials at the DNALC WWW site, and 28% analyzed student polymorphism data with Bioservers at the DNALC site. A majority (58%) assisted other faculty with student labs on polymorphisms, reaching an additional 786 teachers.« less

  18. The Science and Issues of Human DNA Polymoprhisms: A Training Workshop for High School Biology Teachers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David. A Micklos

    2006-10-30

    This project achieved its goal of implementing a nationwide training program to introduce high school biology teachers to the key uses and societal implications of human DNA polymorphisms. The 2.5-day workshop introduced high school biology faculty to a laboratory-based unit on human DNA polymorphisms – which provides a uniquely personal perspective on the science and Ethical, Legal and Social Implications (ELSI) of the Human Genome Project. As proposed, 12 workshops were conducted at venues across the United States. The workshops were attended by 256 high school faculty, exceeding proposed attendance of 240 by 7%. Each workshop mixed theoretical, laboratory, andmore » computer work with practical and ethical implications. Program participants learned simplified lab techniques for amplifying three types of chromosomal polymorphisms: an Alu insertion (PV92), a VNTR (pMCT118/D1S80), and single nucleotide polymorphisms (SNPs) in the mitochondrial control region. These polymorphisms illustrate the use of DNA variations in disease diagnosis, forensic biology, and identity testing - and provide a starting point for discussing the uses and potential abuses of genetic technology. Participants also learned how to use their Alu and mitochondrial data as an entrée to human population genetics and evolution. Our work to simplify lab techniques for amplifying human DNA polymorphisms in educational settings culminated with the release in 1998 of three Advanced Technology (AT) PCR kits by Carolina Biological Supply Company, the nation’s oldest educational science supplier. The kits use a simple 30-minute method to isolate template DNA from hair sheaths or buccal cells and streamlined PCR chemistry based on Pharmacia Ready-To-Go Beads, which incorporate Taq polymerase, deoxynucleotide triphosphates, and buffer in a freeze-dried pellet. These kits have greatly simplified teacher implementation of human PCR labs, and their use is growing at a rapid pace. Sales of human polymorphism kits by Carolina Biological rose from 700 units in 1999 to 1,132 in 2000 – a 62% increase. Competing kits using the Alu system, and based substantially on our earlier work, are also marketed by Biorad and Edvotek. In parallel with the lab experiments, we developed a suite of database/statistical applications and easy-to-use interfaces that allow students to use their own DNA data to explore human population genetics and to test theories of human evolution. Database searches and statistical analyses are launched from a centralized workspace. Workshop participants were introduced to these and other resources available at the DNALC WWW site (http://vector.cshl.org/bioserver/): 1) Allele Server tests Hardy-Weinberg equilibrium and statistically compares PV92 data from world populations. 2) Sequence Server uses DNA sequence data to search Genbank using BLASTN, compare sequences using CLUSTALW, and create phylogenetic trees using PHYLIP. 3) Simulation Server uses a Monte Carlo generator to model the long-term effects of drift, selection, and population bottlenecks. By targeting motivated and innovative biology faculty, we believe that this project offered a cost-effective means to bring high school biology education up-to-the-minute with genomic biology. The workshop reached a target audience of highly professional faculty who have already implemented hands-on labs in molecular genetics and many of whom offer laboratory electives in biotechnology. Many attend professional meetings, develop curriculum, collaborate with scientists, teach faculty workshops, and manage equipment-sharing programs. These individuals are life-long learners, anxious for deeper insight and additional training to further extend their leadership. This contention was supported by data from a mail survey, conducted in February-March 2000 and 2001, of 256 faculty who participated in workshops conducted during the current term of DOE support. Seventy percent of participants responded, providing direct reports on how their teaching behavior had changed since taking the DOE workshop. About nine of ten respondents said they had provided new classroom materials and first-hand accounts of DNA typing, sequencing, or PCR. Three-fourths had introduced new units on human molecular genetics. Most strikingly, half had students use PCR to amplify their own insertion polymorphisms (PV92), and better than one-fourth amplified a VNTR polymorphism and the mitochondrial control region. One in five had mitochondrial DNA sequenced by the DNALC Sequencing Service. A majority (58%) used online materials at the DNALC WWW site, and 28% analyzed student polymorphism data with Bioservers at the DNALC site. A majority (58%) assisted other faculty with student labs on polymorphisms, reaching an additional 786 teachers.« less

  19. Using Next-Generation Sequencing to Explore Genetics and Race in the High School Classroom

    ERIC Educational Resources Information Center

    Yang, Xinmiao; Hartman, Mark R.; Harrington, Kristin T.; Etson, Candice M.; Fierman, Matthew B.; Slonim, Donna K.; Walt, David R.

    2017-01-01

    With the development of new sequencing and bioinformatics technologies, concepts relating to personal genomics play an increasingly important role in our society. To promote interest and understanding of sequencing and bioinformatics in the high school classroom, we developed and implemented a laboratory-based teaching module called "The…

  20. EarthLabs Modules: Engaging Students In Extended, Rigorous Investigations Of The Ocean, Climate and Weather

    NASA Astrophysics Data System (ADS)

    Manley, J.; Chegwidden, D.; Mote, A. S.; Ledley, T. S.; Lynds, S. E.; Haddad, N.; Ellins, K.

    2016-02-01

    EarthLabs, envisioned as a national model for high school Earth or Environmental Science lab courses, is adaptable for both undergraduate middle school students. The collection includes ten online modules that combine to feature a global view of our planet as a dynamic, interconnected system, by engaging learners in extended investigations. EarthLabs support state and national guidelines, including the NGSS, for science content. Four modules directly guide students to discover vital aspects of the oceans while five other modules incorporate ocean sciences in order to complete an understanding of Earth's climate system. Students gain a broad perspective on the key role oceans play in fishing industry, droughts, coral reefs, hurricanes, the carbon cycle, as well as life on land and in the seas to drive our changing climate by interacting with scientific research data, manipulating satellite imagery, numerical data, computer visualizations, experiments, and video tutorials. Students explore Earth system processes and build quantitative skills that enable them to objectively evaluate scientific findings for themselves as they move through ordered sequences that guide the learning. As a robust collection, EarthLabs modules engage students in extended, rigorous investigations allowing a deeper understanding of the ocean, climate and weather. This presentation provides an overview of the ten curriculum modules that comprise the EarthLabs collection developed by TERC and found at http://serc.carleton.edu/earthlabs/index.html. Evaluation data on the effectiveness and use in secondary education classrooms will be summarized.

  1. In Brief: Legislation proposed to enhance high school science labs

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2007-03-01

    At an 8 March hearing, the U.S. House of Representatives Science and Technology Subcommittee on Research and Education began consideration of new legislation intended to improve high school science laboratories. The bill, H.R. 524, would create a $5 million program at the U.S. National Science Foundation that would provide grants to improve high school science laboratories. The grants could be used to purchase or rent equipment and instrumentation, maintain or renovate facilities, train teachers, or design hands-on laboratory experiences.

  2. Best Practice in Middle-School Science

    ERIC Educational Resources Information Center

    Oliveira, Alandeom W.; Wilcox, Kristen C.; Angelis, Janet; Applebee, Arthur N.; Amodeo, Vincent; Snyder, Michele A.

    2013-01-01

    Using socio-ecological theory, this study explores best practice (educational practices correlated with higher student performance) in middle-school science. Seven schools with consistently higher student performance were compared with three demographically similar, average-performing schools. Best practice included instructional approaches…

  3. Next generation sequencing (NGS): a golden tool in forensic toolkit.

    PubMed

    Aly, S M; Sabri, D M

    The DNA analysis is a cornerstone in contemporary forensic sciences. DNA sequencing technologies are powerful tools that enrich molecular sciences in the past based on Sanger sequencing and continue to glowing these sciences based on Next generation sequencing (NGS). Next generation sequencing has excellent potential to flourish and increase the molecular applications in forensic sciences by jumping over the pitfalls of the conventional method of sequencing. The main advantages of NGS compared to conventional method that it utilizes simultaneously a large number of genetic markers with high-resolution of genetic data. These advantages will help in solving several challenges such as mixture analysis and dealing with minute degraded samples. Based on these new technologies, many markers could be examined to get important biological data such as age, geographical origins, tissue type determination, external visible traits and monozygotic twins identification. It also could get data related to microbes, insects, plants and soil which are of great medico-legal importance. Despite the dozens of forensic research involving NGS, there are requirements before using this technology routinely in forensic cases. Thus, there is a great need to more studies that address robustness of these techniques. Therefore, this work highlights the applications of forensic sciences in the era of massively parallel sequencing.

  4. Exploring the impact of an industrial volunteer/school science partnership on elementary teaching strategies and attitudes about future science study: A case study

    NASA Astrophysics Data System (ADS)

    White, Michael Robert

    This study reports the results of research designed to explore the impact of industrial volunteer/school partnerships on elementary science teaching behaviors and students' attitudes about future science study. Since these partnerships involved teachers and students in hands-on or laboratory-type science experiences, the study will add an elementary school component to a series of other studies conducted through the Science Education Program at Temple University that have addressed how to improve the learning outcomes from these experiences. Three suburban elementary schools were randomly selected by a single school district's science supervisor to be involved in this study. Two of the buildings were designated as the experimental schools and teachers worked directly with the researcher as an industrial partner. The third school served as a control with no organized industrial partner. An additional school building in a second suburban school district was selected to serve as a comparison school and a second scientist participated as an industrial volunteer. Unlike the researcher, this scientist had no formal training in science education. Each phase of the study included instruments piloted and reviewed by experienced elementary teachers for appropriateness or by objective experts in the field of education. A student attitude survey and selected tasks from the Inventory of Piagetian Developmental Tasks were administered to all students involved in the study. Empirical data collected through videotaped analysis using the validated Modified-Revised Vickery Science Teacher Behavior Inventory led to the development of a pattern of the most frequently used behaviors during elementary science instruction. A profile of each participating teacher was developed through the use of a validated attitude survey, notes taken during classroom interactions and from information collected during ethnographic interviews. A major conclusion drawn from this study is that neither type of partnership influenced the types of teaching behaviors used by elementary teachers during science instruction. Especially significant is that neither questioning wait-time nor level of questions asked was affected by the partnership experience. Furthermore, the partnership did not lead to teachers exhibiting a more constructivist-oriented approach to science instruction. However, teacher members of both partnerships expressed a strong wish for the partnership activities to continue.

  5. Enrichment programs to create a pipeline to biomedical science careers.

    PubMed

    Cregler, L L

    1993-01-01

    The Student Educational Enrichment Programs at the Medical College of Georgia in the School of Medicine were created to increase underrepresented minorities in the pipeline to biomedical science careers. Eight-week summer programs are conducted for high school, research apprentice, and intermediate and advanced college students. There is a prematriculation program for accepted medical, dental, and graduate students. Between 1979 and 1990, 245 high school students attended 12 summer programs. Of these, 240 (98%) entered college 1 year later. In 1986, after eight programs, 162 (68%) high school participants graduated from college with a baccalaureate degree, and 127 responded to a follow-up survey. Sixty-two (49%) of the college graduates attended health science schools, and 23 (18%) of these matriculated to medical school. Of college students, 504 participated in 13 summer programs. Four hundred (79%) of these students responded to a questionnaire, which indicated that 348 (87%) of the 400 entered health science occupations and/or professional schools; 179 (45%) of these students matriculated to medical school. Minority students participating in enrichment programs have greater success in gaining acceptance to college and professional school. These data suggest that early enrichment initiatives increase the number of underrepresented minorities in the biomedical science pipeline.

  6. Impact of instructional Approaches to Teaching Elementary Science on Student Achievement

    NASA Astrophysics Data System (ADS)

    Kensinger, Seth H.

    Strengthening our science education in the United States is essential to the future success of our country in the global marketplace. Immersing our elementary students with research-based quality science instruction is a critical component to build a strong foundation and motivate our students to become interested in science. The research for this study pertained to the type of elementary science instruction in correlation to academic achievement and gender. Through this study, the researcher answered the following questions: 1. What is the difference in achievement for elementary students who have been taught using one of the three science instructional approaches analyzed in this study: traditional science instruction, inquiry-based science instruction with little or no professional development and inquiry-based science instruction with high-quality professional development? 2. What is the difference in student achievement between inquiry-based instruction and non-inquiry based (traditional) instruction? 3. What is the difference in student achievement between inquiry with high quality professional development and inquiry with little or no professional development? 4. Do the three instructional approaches have differentiated effects across gender? The student achievement was measured using the 2010 fourth grade Pennsylvania System of School Assessment (PSSA) in Science. Data was collected from 15 elementary schools forming three main groupings of similar schools based on the results from the 2009 third grade PSSA in Mathematics and student and community demographics. In addition, five sub-group triads were formed to further analyze the data and each sub-group was composed of schools with matching demographic data. Each triad contained a school using a traditional approach to teaching science, a school utilizing an inquiry science approach with little or no professional development, and a school incorporating inquiry science instruction with high quality professional development. The five schools which provided its students with inquiry science and high quality professional development were Science Its Elementary (SIE) schools, as provided through a grant from the Pennsylvania Department of Education (PDE). The findings of the study indicated that there is evidence to suggest that elementary science achievement improves significantly when teachers have utilized inquiry instruction after receiving high-quality professional development. Specifically, the analysis of the whole group and the majority of the triad sub-groupings did result in a consistent trend to support science instruction utilizing inquiry with high-quality professional development compared to a traditional approach and an inquiry-based approach with little or no professional development. The gender analysis of this study focused on whether or not girls at the elementary school level would perform better than boys depending upon method of science instruction. The study revealed no relationship between approach to teaching science and achievement level based on gender. The whole group results and sub-group triads produced no significant findings for this part of the data analysis.

  7. Middle School Teacher Misconceptions and Anxieties Concerning Space Science Disciplinary Core Ideas in NGSS

    NASA Astrophysics Data System (ADS)

    Larsen, Kristine

    2017-01-01

    The Disciplinary Core Ideas (DCI) of the Next Generation Science Standards (NGSS) are grouped into the broad disciplinary areas of Physical Sciences, Life Sciences, Earth and Space Sciences, and Engineering, Technology and Application of Science, and feature learning progressions based on endpoint targets for each grade band. Since the Middle School DCIs build on the expected learning achievements to be reached by the end of Fifth Grade, and High School DCI similarly build on the expected learning achievements expected for the end of Eighth Grade, the Middle School grade band is of particular importance as the bridge between the Elementary and High School curriculum. In states where there is not a special Middle School Certification many of these science classes are taught by teachers prepared to teach at the Elementary level (and who may have limited content background). As a result, some pre-service and in-service teachers have expressed reduced self-confidence in both their own science content knowledge and their ability to apply it in the NGSS-based classroom, while decades of research has demonstrated the pervasiveness of science misconceptions among teachers. Thus the adoption of NGSS has the potential to drive talented teachers out of the profession who feel that they are ill-prepared for this sweeping transition. The key is providing rigorous education in both content and pedagogy for pre-service teachers and quality targeted professional development for in-service teachers. This report focuses on the Middle School Space Sciences grade band DCIs and presents research on specific difficulties, misconceptions and uncertainties with the material demonstrated by pre-service education students over the past four years in a required university science content course, as well as two year-long granted workshop series for current Middle School teachers. This information is relevant to the development of both new content courses aligned with NGSS for pre-service teachers and professional development for in-service teachers.

  8. The Effectiveness of Smart Schooling in Terms of Student Achievement in Science: A Study of Malaysian Practice

    ERIC Educational Resources Information Center

    Ong, Eng-Tek; Ruthven, Kenneth

    2012-01-01

    This paper reports the relative effectiveness of Smart and Mainstream schooling in terms of student achievement in science. The participants comprised 770 secondary school Form 3 (15-year-old) students from two Smart Schools and two Mainstream Schools in Malaysia. Using students' Standardised National Examination (SNE) primary-school science…

  9. Taking Science to School: Learning and Teaching Science in Grades K-8

    ERIC Educational Resources Information Center

    Duschl, Richard A., Ed.; Schweingruber, Heidi A., Ed.; Shouse, Andrew W., Ed.

    2007-01-01

    What is science for a child? How do children learn about science and how to do science? Drawing on a vast array of work from neuroscience to classroom observation, "Taking Science to School" provides a comprehensive picture of what we know about teaching and learning science from kindergarten through eighth grade. By looking at a broad range of…

  10. Exploring the Nature of High School Student Engagement with Science and Technology as an Outcome of Participation in Science Journalism

    ERIC Educational Resources Information Center

    Hope, Jennifer Michelle Gauble

    2012-01-01

    In a mixed-methods study of high school student participants in the National Science Foundation-funded Science Literacy through Science Journalism (SciJourn) project, the new Youth Engagement with Science & Technology (YEST) Survey and classroom case studies were used to determine program impact on participant engagement with science and…

  11. "I Liked the Experiment because There Aren't Too Many People Who Come into School to Burn Money": Promoting Participation in the Sciences with Chemical Magic

    ERIC Educational Resources Information Center

    Regan, Elaine

    2009-01-01

    This article reports on students' perspectives of an in-school promotional intervention aimed at challenging traditional methods of teaching science in schools in an effort to inspire interest in school science and increase enrolments. First, the context for the research is discussed before briefly describing the intervention strategy employed and…

  12. The Effect of Using Problem-Based Learning in Middle School Gifted Science Classes on Student Achievement and Students' Perceptions of Classroom Quality

    ERIC Educational Resources Information Center

    Horak, Anne Karen

    2013-01-01

    The purpose of this study was to explore the impact of the Problem Based Learning (PBL) units developed by a large suburban school district in the mid-Atlantic for the middle school gifted science curriculum on: a) students' performance on standardized tests in middle school Science, as measured by a sample of relevant test questions from a…

  13. Improving the primary school science learning unit about force and motion through lesson study

    NASA Astrophysics Data System (ADS)

    Phaikhumnam, Wuttichai; Yuenyong, Chokchai

    2018-01-01

    The study aimed to develop primary school science lesson plan based on inquiry cycle (5Es) through lesson study. The study focused on the development of 4 primary school science lesson plans of force and motion for Grade 3 students in KKU Demonstration Primary School (Suksasart), first semester of 2015 academic year. The methodology is mixed method. The Inthaprasitha (2010) lesson study cycle was implemented in group of KKU Demonstration Primary School. Instruments of reflection of lesson plan developing included participant observation, meeting and reflection report, lesson plan and other document. The instruments of examining students' learning include classroom observation and achievement test. Data was categorized from these instruments to find the issues of changing and improving the good lesson plan of Thai primary school science learning. The findings revealed that teachers could develop the lesson plans through lesson study. The issues of changing and improving were disused by considering on engaging students related to societal issues, students' prior knowledge, scientific concepts for primary school students, and what they learned from their changing. It indicated that the Lesson Study allowed primary school science teachers to share ideas and develop ideas to improve the lesson. The study may have implications for Thai science teacher education through Lesson Study.

  14. Science Scope.

    ERIC Educational Resources Information Center

    Stone, Richard, Ed.

    1995-01-01

    Discusses an education project launched by the National Academy of Sciences and the Pentagon to turn laid-off aerospace engineers into science teachers at Los Angeles middle schools and high schools. (MKR)

  15. Everyday science & science every day: Science-related talk & activities across settings

    NASA Astrophysics Data System (ADS)

    Zimmerman, Heather

    To understand the development of science-related thinking, acting, and learning in middle childhood, I studied youth in schools, homes, and other neighborhood settings over a three-year period. The research goal was to analyze how multiple everyday experiences influence children's participation in science-related practices and their thinking about science and scientists. Ethnographic and interaction analysis methodologies were to study the cognition and social interactions of the children as they participated in activities with peers, family, and teachers (n=128). Interviews and participant self-documentation protocols elucidated the participants' understandings of science. An Everyday Expertise (Bell et al., 2006) theoretical framework was employed to study the development of science understandings on three analytical planes: individual learner, social groups, and societal/community resources. Findings came from a cross-case analysis of urban science learners and from two within-case analyses of girls' science-related practices as they transitioned from elementary to middle school. Results included: (1) children participated actively in science across settings---including in their homes as well as in schools, (2) children's interests in science were not always aligned to the school science content, pedagogy, or school structures for participation, yet children found ways to engage with science despite these differences through crafting multiple pathways into science, (3) urban parents were active supporters of STEM-related learning environments through brokering access to social and material resources, (4) the youth often found science in their daily activities that formal education did not make use of, and (5) children's involvement with science-related practices can be developed into design principles to reach youth in culturally relevant ways.

  16. Individuals and Leadership in an Australian Secondary Science Department: A Qualitative Study

    NASA Astrophysics Data System (ADS)

    Melville, Wayne; Wallace, John; Bartley, Anthony

    2007-12-01

    In this article, we consider the complex and dynamic inter-relationships between individual science teachers, the social space of their work and their dispositions towards teacher leadership. Research into the representation of school science departments through individual science teachers is scarce. We explore the representations of four individual teachers to the assertions of teacher leadership proposed by Silva et al. (Teach Coll Rec, 102(4):779-804, 2000). These representations, expressed during regular science department meetings, occur in the social space of Bourdieu's "field" and are a reflection of the "game" of science education being played within the department. This departmentally centred space suggests an important implication when considering the relationship between subject departments and their schools. The development of an individual's representation of teacher leadership and the wider "field" of science education appears to shape the individual towards promoting their own sense of identity as a teacher of science, rather than as a teacher within a school. Our work suggests that for these individuals, the important "game" is science education, not school improvement. Consequently, the subject department may be a missing link between efforts to improve schools and current organizational practices.

  17. Conceptualizing Student Affect for Science and Technology at the Middle School Level: Development and Implementation of a Measure of Affect in Science and Technology (MAST)

    ERIC Educational Resources Information Center

    Romine, William L.; Sadler, Troy D.; Wulff, Eric P.

    2017-01-01

    We describe the development of the Measure of Affect in Science and Technology (MAST), and study its usefulness for measuring science affect in middle school students via both classical and Rasch measurement perspectives. We then proceed to utilize the measurement structure of the MAST to understand how middle school students at varying levels of…

  18. Promoting Science in Secondary School Education.

    PubMed

    Chiovitti, Anthony; Duncan, Jacinta C; Jabbar, Abdul

    2017-06-01

    Engaging secondary school students with science education is crucial for a society that demands a high level of scientific literacy in order to deal with the economic and social challenges of the 21st century. Here we present how parasitology could be used to engage and promote science in secondary school students under the auspice of a 'Specialist Centre' model for science education. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Fighting for physics and Earth science in Florida's high schools

    NASA Astrophysics Data System (ADS)

    Cottle, Paul

    2009-11-01

    During its Spring 2009 session, the Florida Legislature considered a bill that would have suspended its comprehensive standardized test in high school science and substituted an end-of-course test in biology to satisfy the requirements of the No Child Left Behind (NCLB) Act. By doing so, the bill would have further deemphasized high school physics and Earth science in a state where physics courses are sometimes not available in high schools (even in International Baccalaureate programs) and where the state's own statistics say that only 16% of high school graduates have taken a physics course. A group of about one hundred science faculty from thirteen colleges and universities in Florida responded with a letter to Governor Crist and visits to legislators asking that the biology-only provisions be defeated (and they were). The group has now produced a white paper on high school science requirements that has been distributed to government and business leaders and been publicized via op-ed pieces and news items in several media outlets statewide. This poster will describe the situation in Florida and the faculty group's efforts. It will also compare Florida's high school requirements in science with those in the other SESAPS states.

  20. An Investigation of Students' Personality Traits and Attitudes toward Science

    NASA Astrophysics Data System (ADS)

    Hong, Zuway-R.; Lin, Huann-shyang

    2011-05-01

    The purposes of this study were to validate an instrument of attitudes toward science and to investigate grade level, type of school, and gender differences in Taiwan's students' personality traits and attitudes toward science as well as predictors of attitudes toward science. Nine hundred and twenty-two elementary students and 1,954 secondary students completed the School Student Questionnaire in 2008. Factor analyses, correlation analyses, ANOVAs, and regressions were used to compare the similarities and differences among male and female students in different grade levels. The findings were as follows: female students had higher interest in science and made more contributions in teams than their male counterparts across all grade levels. As students advanced through school, student scores on the personality trait scales of Conscientiousness and Openness sharply declined; students' scores on Neuroticism dramatically increased. Elementary school and academic high school students had significantly higher total scores on interest in science than those of vocational high and junior high school students. Scores on the scales measuring the traits of Agreeableness, Extraversion, and Conscientiousness were the most significant predictors of students' attitudes toward science. Implications of these findings for classroom instruction are discussed.

Top