Do High School STEM Courses Prepare Non-College Bound Youth for Jobs in the STEM Economy?
ERIC Educational Resources Information Center
Bozick, Robert; Srinivasan, Sinduja; Gottfried, Michael
2017-01-01
Our study assesses whether high school science, technology, engineering, and mathematics (STEM) courses provide non-college bound youth with the skills and training necessary to successfully transition from high school into the STEM economy. Specifically, our study estimates the effects that advanced math, advanced science, engineering, and…
Utility-value intervention with parents increases students' STEM preparation and career pursuit.
Rozek, Christopher S; Svoboda, Ryan C; Harackiewicz, Judith M; Hulleman, Chris S; Hyde, Janet S
2017-01-31
During high school, developing competence in science, technology, engineering, and mathematics (STEM) is critically important as preparation to pursue STEM careers, yet students in the United States lag behind other countries, ranking 35th in mathematics and 27th in science achievement internationally. Given the importance of STEM careers as drivers of modern economies, this deficiency in preparation for STEM careers threatens the United States' continued economic progress. In the present study, we evaluated the long-term effects of a theory-based intervention designed to help parents convey the importance of mathematics and science courses to their high-school-aged children. A prior report on this intervention showed that it promoted STEM course-taking in high school; in the current follow-up study, we found that the intervention improved mathematics and science standardized test scores on a college preparatory examination (ACT) for adolescents by 12 percentile points. Greater high-school STEM preparation (STEM course-taking and ACT scores) was associated with increased STEM career pursuit (i.e., STEM career interest, the number of college STEM courses, and students' attitudes toward STEM) 5 y after the intervention. These results suggest that the intervention can affect STEM career pursuit indirectly by increasing high-school STEM preparation. This finding underscores the importance of targeting high-school STEM preparation to increase STEM career pursuit. Overall, these findings demonstrate that a motivational intervention with parents can have important effects on STEM preparation in high school, as well as downstream effects on STEM career pursuit 5 y later.
ERIC Educational Resources Information Center
Shi, Qi
2017-01-01
Using data from the Educational Longitudinal Study: 2002, the present study examined the effects of demographic variables, high school math course-taking and high school GPA on ELL students' STEM course-taking, achievement and attainment in college. Regression analysis showed female ELL students were more likely to take more STEM courses and get…
Utility-value intervention with parents increases students’ STEM preparation and career pursuit
Rozek, Christopher S.; Svoboda, Ryan C.; Harackiewicz, Judith M.; Hulleman, Chris S.; Hyde, Janet S.
2017-01-01
During high school, developing competence in science, technology, engineering, and mathematics (STEM) is critically important as preparation to pursue STEM careers, yet students in the United States lag behind other countries, ranking 35th in mathematics and 27th in science achievement internationally. Given the importance of STEM careers as drivers of modern economies, this deficiency in preparation for STEM careers threatens the United States’ continued economic progress. In the present study, we evaluated the long-term effects of a theory-based intervention designed to help parents convey the importance of mathematics and science courses to their high-school–aged children. A prior report on this intervention showed that it promoted STEM course-taking in high school; in the current follow-up study, we found that the intervention improved mathematics and science standardized test scores on a college preparatory examination (ACT) for adolescents by 12 percentile points. Greater high-school STEM preparation (STEM course-taking and ACT scores) was associated with increased STEM career pursuit (i.e., STEM career interest, the number of college STEM courses, and students’ attitudes toward STEM) 5 y after the intervention. These results suggest that the intervention can affect STEM career pursuit indirectly by increasing high-school STEM preparation. This finding underscores the importance of targeting high-school STEM preparation to increase STEM career pursuit. Overall, these findings demonstrate that a motivational intervention with parents can have important effects on STEM preparation in high school, as well as downstream effects on STEM career pursuit 5 y later. PMID:28096393
ERIC Educational Resources Information Center
Gottfried, Michael A.; Bozick, Robert
2016-01-01
Recently, through the support from the Obama administration, the traditional STEM curricula (science, technology, engineering, and mathematics) in high schools are being updated with integrated, applied STEM courses (e.g., technology and engineering) in order to enhance the "real world" applicability of scientific fields and ultimately…
ERIC Educational Resources Information Center
Hübner, Nicolas; Wille, Eike; Cambria, Jenna; Oschatz, Kerstin; Nagengast, Benjamin; Trautwein, Ulrich
2017-01-01
Math achievement, math self-concept, and vocational interests are critical predictors of STEM careers and are closely linked to high school coursework. Young women are less likely to choose advanced math courses in high school, and encouraging young women to enroll in advanced math courses may therefore bring more women into STEM careers. We…
STEM Pathways: Examining Persistence in Rigorous Math and Science Course Taking
NASA Astrophysics Data System (ADS)
Ashford, Shetay N.; Lanehart, Rheta E.; Kersaint, Gladis K.; Lee, Reginald S.; Kromrey, Jeffrey D.
2016-12-01
From 2006 to 2012, Florida Statute §1003.4156 required middle school students to complete electronic personal education planners (ePEPs) before promotion to ninth grade. The ePEP helped them identify programs of study and required high school coursework to accomplish their postsecondary education and career goals. During the same period Florida required completion of the ePEP, Florida's Career and Professional Education Act stimulated a rapid increase in the number of statewide high school career academies. Students with interests in STEM careers created STEM-focused ePEPs and may have enrolled in STEM career academies, which offered a unique opportunity to improve their preparedness for the STEM workforce through the integration of rigorous academic and career and technical education courses. This study examined persistence of STEM-interested (i.e., those with expressed interest in STEM careers) and STEM-capable (i.e., those who completed at least Algebra 1 in eighth grade) students ( n = 11,248), including those enrolled in STEM career academies, in rigorous mathematics and science course taking in Florida public high schools in comparison with the national cohort of STEM-interested students to measure the influence of K-12 STEM education efforts in Florida. With the exception of multi-race students, we found that Florida's STEM-capable students had lower persistence in rigorous mathematics and science course taking than students in the national cohort from ninth to eleventh grade. We also found that participation in STEM career academies did not support persistence in rigorous mathematics and science courses, a prerequisite for success in postsecondary STEM education and careers.
ERIC Educational Resources Information Center
Gottfried, Michael A.; Sublett, Cameron
2018-01-01
Over the most recent two decades, federal policy has urged high schools to embed applied science, technology, engineering, and mathematics (STEM) courses into the curriculum to reinforce concepts learned in traditional math and science classes as well as to motivate students' interests and long-term pursuits in STEM areas. While prior research has…
NASA Astrophysics Data System (ADS)
Hoepner, Cynthia Colon
President Obama has recently raised awareness on the need for our nation to grow a larger pool of students with knowledge in science mathematics, engineering, and technology (STEM). Currently, while the number of women pursuing college degrees continues to rise, there remains an under-representation of women in STEM majors across the country. Although research studies offer several contributing factors that point to a higher attrition rate of women in STEM than their male counterparts, no study has investigated the role that high school advanced placement (AP) math and science courses play in preparing students for the challenges of college STEM courses. The purpose of this study was to discover which AP math and science courses and/or influential factors could encourage more students, particularly females, to consider pursuing STEM fields in college. Further, this study examined which, if any, AP math or science courses positively contribute to a student's overall preparation for college STEM courses. This retrospective study combined quantitative and qualitative research methods. The survey sample consisted of 881 UCLA female and male students pursuing STEM majors. Qualitative data was gathered from four single-gender student focus groups, two female groups (15 females) and two male groups (16 males). This study examined which AP math and science courses students took in high school, who or what influenced them to take those courses, and which particular courses influenced student's choice of STEM major and/or best prepared her/him for the challenges of STEM courses. Findings reveal that while AP math and science course-taking patterns are similar of female and male STEM students, a significant gender-gap remains in five of the eleven AP courses. Students report four main influences on their choice of AP courses; self, desire for math/science major, higher grade point average or class rank, and college admissions. Further, three AP math and science courses were highlighted throughout the study. First, AP Chemistry was described as a foundational course necessary for the challenges of STEM courses. AP Calculus was considered a course with practical benefits across STEM majors. Finally, AP Biology was found to be a gateway course, which inspired students to continue to pursue STEM majors in college. All three courses were strongly recommended to high school students considering a STEM major. The findings will help grow a larger and equally prepared pool of females and males and help sustain a more even distribution of women across STEM fields.
Integrated STEM in secondary education: A case study
NASA Astrophysics Data System (ADS)
De Meester, Jolien; Knipprath, Heidi; Thielemans, Jan; De Cock, Mieke; Langie, Greet; Dehaene, Wim
2016-05-01
Despite many opportunities to study STEM (Science, Technology, Engineering & Mathematics) in Flemish secondary education, only a minority of pupils are actually pursuing STEM fields in higher education and jobs. One reason could be that they do not see the relevance of science and mathematics. In order to draw their pupils' interest in STEM, a Belgian school started a brand new initiative: the school set up and implemented a first year course that integrates various STEM disciplines, hoping to provide an answer to the question pupils often ask themselves about the need to study math and science. The integrated curriculum was developed by the school's teachers and a STEM education research group of the University of Leuven. To examine the pupils' attitude towards STEM and STEM professions and their notion of relevance of STEM at the end of this one-year course, a post-test was administered to the group of pupils who attended the integrated STEM course (the experimental group) and to a group of pupils that took traditional, non-integrated STEM courses (the control group). The results reveal that attending the integrated STEM course is significantly related to pupils' interest in STEM and notion of relevance of STEM. Another post-test was administered only to the experimental group to investigate pupils' understanding of math and physics concepts and their relation when taught in an integrated way. The results reveal that the pupils have some conceptual understanding and can, to a certain extent, make a transfer of concepts across different STEM disciplines. However, the test results did point out that some additional introductory training in pure math context is needed.
ERIC Educational Resources Information Center
White, Laurel Ann
2017-01-01
This study examined course enrollments for female and male Latino and Caucasian students with disabilities (SWD) in Science, Technology, Engineering, and Math (STEM) to establish baseline data in one region of the state of Washington. The study analyzed five academic years of STEM course enrollment in one high school Career and Technical Education…
Incorporating Engineering Design Challenges into STEM Courses
ERIC Educational Resources Information Center
Householder, Daniel L., Ed.; Hailey, Christine E., Ed.
2012-01-01
Successful strategies for incorporating engineering design challenges into science, technology, engineering, and mathematics (STEM) courses in American high schools are presented in this paper. The developers have taken the position that engineering design experiences should be an important component of the high school education of all American…
Applied STEM Coursework, High School Dropout Rates, and Students with Learning Disabilities
ERIC Educational Resources Information Center
Plasman, Jay Stratte; Gottfried, Michael A.
2018-01-01
Applied science, technology, engineering, and math (STEM) coursetaking is becoming more commonplace in traditional high school settings to help students reinforce their learning in academic STEM courses. Throughout U.S. educational history, vocational education has been a consistent focus for schools to keep students on the school-to-career…
NASA Astrophysics Data System (ADS)
White, Laurel Ann
This study examined course enrollments for female and male Latino and Caucasian students with disabilities (SWD) in Science, Technology, Engineering, and Math (STEM) to establish baseline data in one region of the state of Washington. The study analyzed five academic years of STEM course enrollment in one high school Career and Technical Education (CTE) program and one comprehensive community college. The study uncovered the following findings: (a) Latino and Caucasian SWD STEM enrollment percentages were not significantly different in the high school CTE program, but were significantly different in the STEM program in the comprehensive community college; (b) more females enrolled in Science and males in Engineering than anticipated, (c) Mathematics had the smallest enrollment pattern by ethnicity and gender in both settings, and (d) more males than females enrolled in Technology courses in the comprehensive community college. This research suggests the use of universal design of learning, theory of mind, and the ecological learning theory to encourage STEM enrollment for students with disabilities. Keywords: Career and Technical Education (CTE), Caucasian, comprehensive community college, disability, enrollment, female, high school, Latino, male, STEM, student enrollment, and students with disabilities.
Gender equity in STEM: The role of dual enrollment science courses in selecting a college major
NASA Astrophysics Data System (ADS)
Persons, Christopher Andrew
A disproportionately low number of women, despite rigorous high school preparation and evidenced interest in STEM through voluntary participation in additional coursework, declare a STEM-related college major. The result of this drop in participation in STEM-related college majors is a job market flooded with men and the support of an incorrect stereotype: STEM is for men. This research seeks to assess the effects, if any, that Dual Enrollment (DE) science courses have on students' self-identified intent to declare a STEM-related college major as well as the respective perceptions of both male and female students. Self-Determination Theory and Gender Equity Framework were used respectively as the theoretical frames. High school students from six schools in two district participated in an online survey and focus groups in this mixed methods study. The results of the research identified the role the DE course played in their choice of college major, possible interventions to correct the underrepresentation, and societal causes for the stereotype.
STEM-focused High Schools as a Strategy for Enhancing Readiness for Postsecondary STEM Programs
ERIC Educational Resources Information Center
Means, Barbara; Wang, Haiwen; Young, Viki; Peters, Vanessa L.; Lynch, Sharon J.
2016-01-01
The logic underlying inclusive STEM high schools (ISHSs) posits that requiring all students to take advanced college preparatory STEM courses while providing student-centered, reform-oriented instruction, ample student supports, and real-world STEM experiences and role models will prepare and inspire students admitted on the basis of STEM interest…
Choosing a STEM Path: "Course-Sequencing in High School and Postsecondary Outcomes"
ERIC Educational Resources Information Center
Lee, Jonghwan; Judy, Justina
2011-01-01
The College Ambition Program (CAP) model was developed to support high schools in preparing their students to enter STEM fields. CAP includes four programmatic components: mentoring, course counseling and advising, college-related activities and workshops, and teacher professional development and instructional support. This study is part of a…
A Case Study of a High School Fab Lab
NASA Astrophysics Data System (ADS)
Lacy, Jennifer E.
This dissertation examines making and design-based STEM education in a formal makerspace. It focuses on how the design and implementation of a Fab Lab learning environment and curriculum affect how instructors and students see themselves engaging in science, and how the Fab Lab relates to the social sorting practices that already take place at North High School. While there is research examining design-based STEM education in informal and formal learning environments, we know little about how K-12 teachers define STEM in making activities when no university or museum partnership exists. This study sought to help fill this gap in the research literature. This case study of a formal makerspace followed instructors and students in one introductory Fab Lab course for one semester. Additional observations of an introductory woodworking course helped build the case and set it into the school context, and provided supplementary material to better understand the similarities and differences between the Fab Lab course and a more traditional design-based learning course. Using evidence from observational field notes, participant interviews, course materials, and student work, I found that the North Fab Lab relies on artifacts and rhetoric symbolic of science and STEM to set itself apart from other design-based courses at North High School. Secondly, the North Fab Lab instructors and students were unable to explain how what they were doing in the Fab Lab was science, and instead relied on vague and unsupported claims related to interdisciplinary STEM practices and dated descriptions of science. Lastly, the design and implementation of the Fab Lab learning environment and curriculum and its separation from North High School's low tech, design-based courses effectively reinforced social sorting practices and cultural assumptions about student work and intelligence.
ERIC Educational Resources Information Center
Sümen, Özlem Özçakir; Çalisici, Hamza
2016-01-01
This study aims to implement a science, technology, engineering, and mathematics (STEM) education approach in an environmental education course. The research involved the design and implementation of STEM activities by researchers, as part of the environmental education course taught in the second year of a Primary School Teaching undergraduate…
Increasing Middle School Student Interest in STEM Careers with Videos of Scientists
ERIC Educational Resources Information Center
Wyss, Vanessa L.; Heulskamp, Diane; Siebert, Cathy J.
2012-01-01
Students are making choices in middle school that will impact their desire and ability to pursue STEM careers. Providing middle school students with accurate information about STEM (Science, Technology, Engineering, Mathematics) careers enables them to make more knowledgeable choices about courses of study and career paths. Practical ways of…
Harackiewicz, Judith M; Rozek, Christopher S; Hulleman, Chris S; Hyde, Janet S
2012-08-01
The pipeline toward careers in science, technology, engineering, and mathematics (STEM) begins to leak in high school, when some students choose not to take advanced mathematics and science courses. We conducted a field experiment testing whether a theory-based intervention that was designed to help parents convey the importance of mathematics and science courses to their high school-aged children would lead them to take more mathematics and science courses in high school. The three-part intervention consisted of two brochures mailed to parents and a Web site, all highlighting the usefulness of STEM courses. This relatively simple intervention led students whose parents were in the experimental group to take, on average, nearly one semester more of science and mathematics in the last 2 years of high school, compared with the control group. Parents are an untapped resource for increasing STEM motivation in adolescents, and the results demonstrate that motivational theory can be applied to this important pipeline problem.
Relationship between High School Mathematical Achievement and Quantitative GPA
ERIC Educational Resources Information Center
Brown, Jennifer L.; Halpin, Glennelle; Halpin, Gerald
2015-01-01
The demand for STEM graduates has increased, but the number of incoming freshmen who declare a STEM major has remained stagnant. High school courses, such as calculus, can open or close the gate for students interested in careers in STEM. The purpose of this study was to determine if high school mathematics preparation was a significant…
STEM and Career Exploratory Classes
ERIC Educational Resources Information Center
Chase, Darrell
2010-01-01
Districts face increasing pressure to improve students' mastery of curriculum in the fields of science, technology, engineering and mathematics (STEM). Yet the number of students enrolling in science and math courses drops dramatically in middle and high school. At Sylvester Middle School, Chinook Middle School and Cascade Middle School of the…
ERIC Educational Resources Information Center
Nikischer, Andrea B.
2013-01-01
This research investigates science, technology, engineering and mathematics (STEM) high school opportunity structures, including student experiences with math and science course sequences and progress, college guidance and counseling, and STEM extracurricular activities (Weis and Eisenhart, 2009), specifically related to STEM fields and career and…
ERIC Educational Resources Information Center
Icel, Mustafa; Davis, Matthew
2018-01-01
The purpose of this study is to evaluate how the high school-college partnership reflects on "senioritis" and students' STEM curiosity. The term "senioritis" described in this paper refers to high school senior students who have completed most of their graduation requirement courses in their third year of studies. During the…
Building Potemkin Schools: Science Curriculum Reform in a STEM School
ERIC Educational Resources Information Center
Teo, Tang Wee
2012-01-01
"Potemkin schools" is used as the phrase to capture what a US science, technology, engineering, and mathematics (STEM) public speciality high school becomes as a result of its institutional branding. By way of an examination of the efforts of one teacher drawn into school branding through his "inquiry-based reform" of an Advanced Chemistry course,…
NASA Astrophysics Data System (ADS)
Maltese, Adam V.
While the number of Bachelor's degrees awarded annually has nearly tripled over the past 40 years (NSF, 2008), the same cannot be said for degrees in the STEM (science, technology, engineering and mathematics) fields. The Bureau of Labor Statistics projects that by the year 2014 the combination of new positions and retirements will lead to 2 million job openings in STEM (BLS, 2005). Thus, the research questions I sought to answer with this study were: (1)What are the most common enrollment patterns for students who enter into and exit from the STEM pipeline during high school and college? (2) Controlling for differences in student background and early interest in STEM careers, what are the high school science and mathematics classroom experiences that characterize student completion of a college major in STEM? Using data from NELS:88 I analyzed descriptive statistics and completed logistic regressions to gain an understanding of factors related to student persistence in STEM. Approximately 4700 students with transcript records and who participated in all survey rounds were included in the analyses. The results of the descriptive analysis demonstrated that most students who went on to complete majors in STEM completed at least three or four years of STEM courses during high school, and enrolled in advanced high school mathematics and science courses at higher rates. At almost every pipeline checkpoint indicators of the level of coursework and achievement were significant in predicting student completion of a STEM degree. The results also support previous research that showed demographic variables have little effect on persistence once the sample is limited to those who have the intrinsic ability and desire to complete a college degree. The most significant finding is that measures of student interest and engagement in science and mathematics were significant in predicting completion of a STEM degree, above and beyond the effects of course enrollment and performance. A final analysis, which involved the comparison of descriptive statistics for students who switched into and out of the STEM pipeline during high school, suggested that attitudes toward mathematics and science play a major role in choices regarding pipeline persistence.
Kinks in the STEM Pipeline: Tracking STEM Graduation Rates Using Science and Mathematics Performance
ERIC Educational Resources Information Center
Redmond-Sanogo, Adrienne; Angle, Julie; Davis, Evan
2016-01-01
In an effort to maintain the global competitiveness of the United States, ensuring a strong Science, Technology, Engineering and Mathematics (STEM) workforce is essential. The purpose of this study was to identify high school courses that serve as predictors of success in college level gatekeeper courses, which in turn led to the successful…
STEM Education: An Incongruous Approach A Proposed Reform Model for a Large Suburban High School
NASA Astrophysics Data System (ADS)
Hughes, Patricia A.
It is unknown how the school can best influence the variables that determine pursuance of science study and career choice to bring about greater opportunity to learn challenging science curriculum for all students and promote Science Technology Engineering and Mathematics (STEM) education. Student decisions regarding the type of science class to elect in early secondary school years can impact their progression and academic success in subsequent rigorous and challenging offerings. Parents, counselors, peers, gender, socio-economic status and individual experience in previous coursework are variables of consideration. The purpose of this study is to examine these variables in a large suburban New Jersey School District aligned to STEM and Advanced Placement level course choice by students. Information regarding the influence of the variables can lead to a reform of the approach toward STEM education currently in place. The study will include a historical reflection of the approach to curriculum revision in the district. Increasing student enrollment in science courses beyond the required number stipulated for high school completion will open opportunities for entrance into STEM related careers or continued post secondary science study.
NASA Astrophysics Data System (ADS)
Yatchmeneff, Michele
The dramatic underrepresentation of Alaska Natives in science, technology, engineering and mathematics (STEM) degrees and professions calls for rigorous research in how students access these fields. Research has shown that students who complete advanced mathematics and science courses while in high school are more academically prepared to pursue and succeed in STEM degree programs and professions. There is limited research on what motivates precollege students to become more academically prepared before they graduate from high school. In Alaska, Alaska Native precollege students regularly underperform on required State of Alaska mathematics and science exams when compared to non-Alaska Native students. Research also suggests that different things may motivate Alaska Native students than racial majority students. Therefore there is a need to better understand what motivates Alaska Native students to take and successfully complete advanced mathematics and science courses while in high school so that they are academically prepared to pursue and succeed in STEM degrees and professions. The Alaska Native Science & Engineering Program (ANSEP) is a longitudinal STEM educational enrichment program that works with Alaska Native students starting in middle school through doctoral degrees and further professional endeavors. Research suggests that Alaska Native students participating in ANSEP are completing STEM degrees at higher rates than before the program was available. ANSEP appears to be unique due to its longitudinal approach and the large numbers of Alaska Native precollege, university, and graduate students it supports. ANSEP provides precollege students with opportunities to take advanced high school and college-level mathematics and science courses and complete STEM related projects. Students work and live together on campus during the program components. Student outcome data suggests that ANSEP has been successful at motivating precollege participants to successfully complete advanced high school and college-level mathematics and science courses prior to high school graduation. This study was designed to examine the motivations of Alaska Native high school students who participated in the ANSEP Precollege components to take advanced mathematics and science courses in high school or before college. Participants were 30 high school or college students, 25 of whom were Alaska Native, who were currently attending or had attended Alaska Native Science & Engineering Program (ANSEP) Precollege components in high school. Self-determination theory was used as this study's theoretical framework to develop the semi-structured interview questions and also analyze the interviews. A thematic approach was used to analyze the interviews. The results of this study indicated that ANSEP helped the Alaska Native high school students gain a sense of autonomy, competence, and relatedness in order to be motivated to take advanced mathematics and science courses in high school or before college. In particular, Alaska Native high school students described that relatedness was an important element to them being motivated to take advanced mathematics and science courses. More specifically, participants reported that the Alaska Native community developed at the ANSEP Building and the relationships they developed with their Alaska Native high school peers and staff played an influential role in the motivation of these students. These findings are important because research suggests that autonomy and competence are more important elements than relatedness because they generate or maintain intrinsic motivation. Alaska Native high school students reported that ANSEP was more successful in helping them gain a sense of competence and relatedness than at helping them gain a sense of autonomy. More specifically, the reason the participants did not feel ANSEP developed their sense of autonomy was because ANSEP restricted their actions during the ANSEP Precollege study sessions. My study implies that Alaska Native students need to feel like they belong in order to be motivated to take and succeed at taking advanced mathematics and science courses. Educators and STEM program leaders should incorporate elements of belonging into the educational environments they develop for their Alaska Native students. Future research should be conducted to determine if other racial minority students need to feel like they belong in order to be motivated to take and succeed at taking advanced mathematics and science courses. My study also indicated that Alaska Native students were motivated to take advanced mathematics and science courses by knowing ANSEP would support them in future programming because of its longitudinal approach. Funding agencies of STEM programs should consider funding programs that provide a longitudinal approach to help Alaska Native students' sense of competence grow. Future research should include studying other STEM programs to determine if they are motivating their students to take and succeed in advanced mathematics and science courses.
NASA Astrophysics Data System (ADS)
Freeman, R.; Bathon, J.; Fryar, A. E.; Lyon, E.; McGlue, M. M.
2017-12-01
As national awareness of the importance of STEM education has grown, so too has the number of high schools that specifically emphasize STEM education. Students at these schools outperform their peers and these institutions send students into the college STEM pipeline at twice the rate of the average high school or more. Another trend in secondary education is the "early college high school" (ECHS) model, which encourages students to prepare for and attend college while in high school. These high schools, particularly ECHS's that focus on STEM, represent a natural pool for recruitment into the geosciences, yet most efforts at linking high school STEM education to future careers focus on health sciences or engineering. Through the NSF GEOPATHS-IMPACT program, the University of Kentucky (UK) Department of Earth and Environmental Science and the STEAM Academy, a STEM-focused ECHS located in Lexington, KY, have partnered to expose students to geoscience content. This public ECHS admits students using a lottery system to ensure that the demographics of the high school match those of the surrounding community. The perennial problem for recruiting students into geosciences is the lack of awareness of it as a potential career, due to lack of exposure to the subject in high school. Although the STEAM Academy does not offer an explicitly-named geoscience course, students begin their first semester in 9th grade Integrated Science. This course aligns to the Next Generation Science Standards (NGSS), which include a variety of geoscience content. We are working with the teachers to build a project-based learning curriculum to include explicit mention and awareness of careers in geosciences. The second phase of our project involves taking advantage of the school's existing internship program, in which students develop professional skills and career awareness by spending either one day/week or one hour/day off campus. We hosted our second round of interns this year. Eventually we plan to enroll interested students in introductory earth science courses in our department or at a nearby community college. We hope to build a model for establishing a pipeline from an ECHS STEM high school to a geoscience department that can be implemented by other universities. Here we present the highlights and challenges of this first year of our program.
New educational tools to encourage high-school students' activity in stem
NASA Astrophysics Data System (ADS)
Mayorova, Vera; Grishko, Dmitriy; Leonov, Victor
2018-01-01
Many students have to choose their future profession during their last years in the high school and therefore to choose a university where they will get proper education. That choice may define their professional life for many years ahead or probably for the rest of their lives. Bauman Moscow State Technical University conducts various events to introduce future professions to high-school students. Such activity helps them to pick specialization in line with their interests and motivates them to study key scientific subjects. The paper focuses on newly developed educational tools to encourage high school students' interest in STEM disciplines. These tools include laboratory courses developed in the fields of physics, information technologies and mathematics. More than 2000 high school students already participated in these experimental courses. These activities are aimed at increasing the quality of STEM disciplines learning which will result in higher quality of training of future engineers.
NASA Astrophysics Data System (ADS)
Nikischer, Andrea B.
This research investigates science, technology, engineering and mathematics (STEM) high school opportunity structures, including student experiences with math and science course sequences and progress, college guidance and counseling, and STEM extracurricular activities (Weis and Eisenhart, 2009), specifically related to STEM fields and career and college choice, for top-performing math and science students. Differences in these structures and processes as they play out in two representative high schools that vary by social class and racial/ethnic makeup are examined. This comparative ethnography includes 36 school and classroom observations, 56 semi-structured individual interviews, and a review of relevant documents, all gathered during the focal students' junior year of high school. Three data chapters are presented, discussing three distinct, yet interconnected themes. In the first, I examine the ways in which chronic attendance problems and classroom distractions negatively impact math and science instruction time and lead to an instruction (time) deficit. In the second, I compare the math and science course and extra-curricular offerings at each school, and discuss the significant differences between sites regarding available STEM exposure and experience, also known as "STEM educational dose" (Wai, et al., 2010). In the third, I investigate available guidance counseling services and STEM and college-linking at each site. Perceived failures in the counseling services available are discussed. This dissertation is grounded in the literature on differences in academic achievement based on school setting, the nature/distribution of knowledge based on social class, and STEM opportunity structures. The concepts of "social capital" and "STEM capital" are engaged throughout. Ultimately, I argue through this dissertation that segregation by race, and most importantly social class, both between and within districts, damages the STEM pipeline for high-performing math and science students located in high-poverty, low-performing schools. I further argue that both federal and state accountability-based school reform efforts are failing to improve outcomes for students with proficiency and interest in STEM learning and STEM fields, and in fact, these reforms are harming top performing students and high school STEM opportunity structures. Recommendations for changes in policy and practice, and for further research, are provided.
Tour Through the Solar System: A Hands-On Planetary Geology Course for High School Students
NASA Astrophysics Data System (ADS)
Sherman, S. B.; Gillis-Davis, J. J.
2011-09-01
We have developed a course in planetary geology for high school students, the primary goals of which are to help students learn how to learn, to reduce the fear and anxiety associated with learning science and math, and to encourage an interest in science, technology, engineering, and mathematics (STEM) fields. Our emphasis in this course is on active learning in a learner-centered environment. All students scored significantly higher on the post-knowledge survey compared with the pre-knowledge survey, and there is a good correlation between the post-knowledge survey and the final exam. Student evaluations showed an increased interest in STEM fields as a result of this course.
Interest in STEM is contagious for students in biology, chemistry, and physics classes
Hazari, Zahra; Potvin, Geoff; Cribbs, Jennifer D.; Godwin, Allison; Scott, Tyler D.; Klotz, Leidy
2017-01-01
We report on a study of the effect of peers’ interest in high school biology, chemistry, and physics classes on students’ STEM (science, technology, engineering, and mathematics)–related career intentions and course achievement. We define an interest quorum as a science class where students perceive a high level of interest for the subject matter from their classmates. We hypothesized that students who experience such an interest quorum are more likely to choose STEM careers. Using data from a national survey study of students‘ experiences in high school science, we compared the effect of five levels of peer interest reported in biology, chemistry, and physics courses on students‘ STEM career intentions. The results support our hypothesis, showing a strong, positive effect of an interest quorum even after controlling for differences between students that pose competing hypotheses such as previous STEM career interest, academic achievement, family support for mathematics and science, and gender. Smaller positive effects of interest quorums were observed for course performance in some cases, with no detrimental effects observed across the study. Last, significant effects persisted even after controlling for differences in teaching quality. This work emphasizes the likely importance of interest quorums for creating classroom environments that increase students’ intentions toward STEM careers while enhancing or maintaining course performance. PMID:28808678
Interest in STEM is contagious for students in biology, chemistry, and physics classes.
Hazari, Zahra; Potvin, Geoff; Cribbs, Jennifer D; Godwin, Allison; Scott, Tyler D; Klotz, Leidy
2017-08-01
We report on a study of the effect of peers' interest in high school biology, chemistry, and physics classes on students' STEM (science, technology, engineering, and mathematics)-related career intentions and course achievement. We define an interest quorum as a science class where students perceive a high level of interest for the subject matter from their classmates. We hypothesized that students who experience such an interest quorum are more likely to choose STEM careers. Using data from a national survey study of students' experiences in high school science, we compared the effect of five levels of peer interest reported in biology, chemistry, and physics courses on students' STEM career intentions. The results support our hypothesis, showing a strong, positive effect of an interest quorum even after controlling for differences between students that pose competing hypotheses such as previous STEM career interest, academic achievement, family support for mathematics and science, and gender. Smaller positive effects of interest quorums were observed for course performance in some cases, with no detrimental effects observed across the study. Last, significant effects persisted even after controlling for differences in teaching quality. This work emphasizes the likely importance of interest quorums for creating classroom environments that increase students' intentions toward STEM careers while enhancing or maintaining course performance.
ERIC Educational Resources Information Center
Stroumbakis, Konstantinos
2010-01-01
Completion of higher level high school mathematics courses need not translate to success in introductory college level mathematics courses, which, in turn, may contribute to attrition from STEM programs. High school and college faculty rated online survey items, corresponding to content and pedagogy, with respect to importance for success in…
Stability and Volatility of STEM Career Interest in High School: A Gender Study
ERIC Educational Resources Information Center
Sadler, Philip M.; Sonnert, Gerhard; Hazari, Zahra; Tai, Robert
2012-01-01
This retrospective cohort study characterizes how interest in science, technology, engineering, mathematics (STEM) careers changes during high school for more than 6,000 students in a representative national sample of 34 two- and four-year colleges taking mandatory college English courses. Overall, large gender differences in career plans were…
Narrowing the Retention Gap of High School Females in an Integrated STEM Program
NASA Astrophysics Data System (ADS)
Seigworth, Clifton F.
This study examined the differences in the overall sense of belonging of female high school students in an integrated STEM program in comparison to gender, ethnicity, and socio-economic status. The researcher surveyed female and male students in grades 8 through 12 to determine if there were differences in attitudes toward STEM. Additionally, the researcher assessed the STEM teachers to determine if a relationship existed between the teachers' years of experience and level of education to their self-efficacy and attitudes pertaining to STEM. Lastly, the administrators and counselors of both the middle and high schools were surveyed using a written evaluation to understand and gain their perspective of an integrated STEM program with regard to increasing female participation in STEM-related courses.
Vignettes of Scholars: A Case Study of Black Male Students at a STEM Early College High School
ERIC Educational Resources Information Center
Adams, Tempestt Richardson
2016-01-01
Ensuring students graduate high school ready to enter college or the workforce has become a prime focus within secondary education. High school graduates are often ill-prepared for college-level work and often have to register for remedial courses before they can take standard college level courses (Southern Regional Education Board, 2010).…
ERIC Educational Resources Information Center
Stylianou, Liana; Plakitsi, Katerina; Papantoniou, Georgia
2016-01-01
Research on Junior and Senior high school students' attitude toward SE (Science Education) courses focuses on students' attitudes, views, interests and perceptions stemming from their school experiences related to the courses. This study examines the way third-year students of the Early Childhood Education Department in Ioannina have viewed and…
Understanding the STEM Pipeline. Working Paper 125
ERIC Educational Resources Information Center
Sass, Tim R.
2015-01-01
I investigate the determinants of high school completion and college attendance, the likelihood of taking science, technology, engineering or math (STEM) courses in the first year of college and the probability of earning a degree in a STEM field. The focus is on women and minorities, who tend to be underrepresented in STEM fields. Tracking four…
Success in Introductory Calculus: The Role of High School and Pre-Calculus Preparation
ERIC Educational Resources Information Center
Ayebo, Abraham; Ukkelberg, Sarah; Assuah, Charles
2017-01-01
Calculus at the college level has significant potential to serve as a pump for increasing the number of students majoring in STEM fields. It is a foundation course for all STEM majors and, if mastered well, should provide students with a positive and successful first-year experience and gateway into more advanced courses. Studies have shown that a…
ERIC Educational Resources Information Center
Berk, Louis J.; Muret-Wagstaff, Sharon L.; Goyal, Riya; Joyal, Julie A.; Gordon, James A.; Faux, Russell; Oriol, Nancy E.
2014-01-01
The most effective ways to promote learning and inspire careers related to science, technology, engineering, and mathematics (STEM) remain elusive. To address this gap, we reviewed the literature and designed and implemented a high-fidelity, medical simulation-based Harvard Medical School MEDscience course, which was integrated into high school…
A Possible Pathway for High School Science in a STEM World
ERIC Educational Resources Information Center
Sneider, Cary
2011-01-01
Today's high school science teachers find themselves in a period of transition. For the past decade there have been calls for replacing a narrow focus on science education--the traditional courses in physics, chemistry, biology, and Earth and space science--with a broader curriculum on STEM (that is, the four allied fields of science, technology,…
NASA Astrophysics Data System (ADS)
McIntosh, Daniel H.; Jennings, Derrick H.
2018-01-01
The need to grow and diversify the STEM workforce remains a critical national challenge. Research shows that STEM identity (how one views herself/himself with respect to STEM) is an important factor for success or failure. A Bridge to the Stars (ABttS) offers URM and low-income high-school students a high impact exposure to science through innovative experiential learning with a professional scientist in freshmen astronomy at UMKC, an urban research university. Showing students who traditionally do not self-identify with high-tech careers that they can succeed in a university science course is a promising way to help build positive STEM identities and aspirations during the critical bridge between high school and college. In five years, we have awarded 45 ABttS scholarships; 93% of these 15-17 year-old students have passed the course satisfactorily with an average grade of 80%. Remarkably, the ABttS scholar performance is on par with that of 600 UMKC students enrolled in the same courses over 8 semesters. Long-term tracking of former scholars shows positive attitudes regarding ABttS and persistence in STEM aspirations at promising rates based on small-number statistics. I will describe the implementation of this unique STEM immersion program offering extended and inclusive engagement in astronomy, arguably the most accessible window to science. I will share classroom and near-peer mentoring innovations, and a new third ABttS tier in which previous scholars can enroll in a freshmen science laboratory experience for UMKC credit. This novel course introduces novices to scientific research and Big Data science through authentic hands-on experiences centered on their own exploration of data from McIntosh's actual research. The long-term mission of ABttS is to see urban educational institutions across the U.S. adopt similar pipelines in all STEM disciplines built on the ABttS model. Adopting programs like ABttS for freshmen STEM majors, especially in urban colleges and universities, is a key step to overcoming the dire national deficit in URM and low-income STEM majors.
The Role of Advanced High School Coursework in Increasing STEM Career Interest
ERIC Educational Resources Information Center
Sadler, Philip M.; Sonnert, Gerhard; Hazari, Zahra; Tai, Robert
2014-01-01
Several avenues are open to students who wish to study advanced science or mathematics in high school, which include Advanced Placement courses and teacher-designed courses unaffiliated with organized programs. We employ a retrospective cohort study of 4,691 nationally representative college students at 34 randomly selected, colleges and…
High School Girls' Negotiation of Perceived Self-Efficacy and Science Course Trajectories
ERIC Educational Resources Information Center
Patterson, Jill Voorhees; Johnson, Ane Turner
2017-01-01
Sustainability issues have led to increased demands for a STEM-literate society and workforce. Potential contributors need to be competent, have an understanding of earth and physical sciences, and be willing to pursue such fields. High school girls, however, remain underrepresented in physical science course enrollments (College Board, 2014).…
NASA Astrophysics Data System (ADS)
Geary, E. E.; Egger, A. E.; Julin, S.; Ronca, R.; Vokos, S.; Ebert, E.; Clark-Blickenstaff, J.; Nollmeyer, G.
2015-12-01
A consortium of two and four year Washington State Colleges and Universities in partnership with Washington's Office of the Superintendent of Public Instruction (OSPI), the Teachers of Teachers of Science, and Teachers of Teachers of Mathematics, and other key stakeholders, is currently working to improve science and mathematics learning for all Washington State students by creating a new vision for STEM teacher preparation in Washington State aligned with the Next Generation Science Standards (NGSS) and the Common Core State Standards (CCSS) in Mathematics and Language Arts. Specific objectives include: (1) strengthening elementary and secondary STEM Teacher Preparation courses and curricula, (2) alignment of STEM teacher preparation programs across Washington State with the NGSS and CCSS, (3) development of action plans to support implementation of STEM Teacher Preparation program improvement at Higher Education Institutions (HEIs) across the state, (4) stronger collaborations between HEIs, K-12 schools, government agencies, Non-Governmental Organizations, and STEM businesses, involved in the preparation of preservice STEM teachers, (5) new teacher endorsements in Computer Science and Engineering, and (6) development of a proto-type model for rapid, adaptable, and continuous improvement of STEM teacher preparation programs. A 2015 NGSS gap analysis of teacher preparation programs across Washington State indicates relatively good alignment of courses and curricula with NGSS Disciplinary Core Ideas and Scientific practices, but minimal alignment with NGSS Engineering practices and Cross Cutting Concepts. Likewise, Computer Science and Sustainability ideas and practices are not well represented in current courses and curricula. During the coming year teams of STEM faculty, education faculty and administrators will work collaboratively to develop unique action plans for aligning and improving STEM teacher preparation courses and curricula at their institutions.
Middle school students' attitudes toward math and STEM career interests: A 4-year follow-up study
NASA Astrophysics Data System (ADS)
Schneider, Madalyn R.
The purpose of the current study is to examine middle school students' attitudes toward math, intent to pursue STEM-related education and occupations, and STEM interest from middle school to high school. The data used in this study are from a larger, on-going National Science Foundation (NSF) grant-funded study that is investigating middle school students' disengagement while using the Assistments system (Baker, Heffernan & San Pedro, 2012), a computer-based math tutoring system. The NSF grant study aims to explore how disengagement with STEM material can aid in the prediction of students' college enrollment as well as how it may interact with other factors affecting students' career choices (San Pedro, Baker, Bowers, Heffernan, 2013). Participants are students from urban and suburban schools in Massachusetts measured first in middle school and again four years later. Measures at Time 1 included: various items related to attitudes toward mathematics, occupations they could see themselves doing as adults, and the Brief Self-Control Scale (Tangney, Baumeister, & Luzio Boone, 2004). Measures at Time 2 included: items requesting the students' current mathematics and science courses and intended majors or occupations following high school graduation. Exploratory factor analysis, multiple regression and logistic regression analyses were used to test the following four hypotheses: I. There will be several distinct factors that emerge to provide information about middle school students' attitudes toward math; II. Students' attitudes toward math will correlate positively and significantly with students' intent to pursue STEM-related careers at Time 1 with a medium effect; III. Middle school attitudes toward mathematics will relate positively and significantly to level of high school mathematics and science courses with a medium effect; IV. Middle school intent to pursue STEM will correlate positively and significantly with high school intent to pursue STEM majors/careers with a medium effect. Results supported a 2-factor model of Attitudes toward Mathematics consisting of Math Self-Concept and Attitudes toward Assistments. Other significant findings include: a positive relationship between students' Attitudes toward Assistments and level of math class taken in high school; a positive relationship between students' Math Self-Concept and Self Control; a positive relationship between Self Control and students' endorsement of STEM careers while in middle school, and discrepancy between male and female students' endorsement of STEM careers as early as middle school. Although many of the study's primary hypotheses were not supported, the present study provides a framework and baseline for several important considerations. Limitations, including those related to the present study's small sample size, and future implications of the present study, which add to career development literature in STEM, are discussed in regard to both research and practice. Keywords: career development, middle school, attitudes, math, STEM, self-concept
ERIC Educational Resources Information Center
Ntemngwa, Celestin; Oliver, J. Steve
2018-01-01
The research study reported here was conducted to investigate the implementation of integrated STEM lessons within courses that have a single subject science focus. The purpose also included development of a pedagogical theory. This technology-based teaching was conceptualized by school administrators and teachers in order to provide middle school…
NASA Astrophysics Data System (ADS)
Tofel-Grehl, Colby
This dissertation is comprised of three independently conducted analyses of a larger investigation into the practices and features of specialized STEM high schools. While educators and policy makers advocate the development of many new specialized STEM high schools, little is known about the unique features and practices of these schools. The results of these manuscripts add to the literature exploring the promise of specialized STEM schools. Manuscript 1¹ is a qualitative investigation of the common features of STEM schools across multiple school model types. Schools were found to possess common cultural and academic features regardless of model type. Manuscript 2² builds on the findings of manuscript 1. With no meaningful differences found attributable to model type, the researchers used grounded theory to explore the relationships between observed differences among programs as related to the intensity of the STEM experience offered at schools. Schools were found to fall into two categories, high STEM intensity (HSI) and low STEM intensity (LSI), based on five major traits. Manuscript 3³ examines the commonalities and differences in classroom discourse and teachers' questioning techniques in STEM schools. It explicates these discursive practices in order to explore instructional practices across schools. It also examines factors that may influence classroom discourse such as discipline, level of teacher education, and course status as required or elective. Collectively, this research furthers the agenda of better understanding the potential advantages of specialized STEM high schools for preparing a future scientific workforce. ¹Tofel-Grehl, C., Callahan, C., & Gubbins, E. (2012). STEM high school communities: Common and differing features. Manuscript in preparation. ²Tofel-Grehl, C., Callahan, C., & Gubbins, E. (2012). Variations in the intensity of specialized science, technology, engineering, and mathematics (STEM) high schools. Manuscript in preparation. ³Tofel-Grehl, C., Callahan, C., & Gubbins, E. (2012). Comparative analyses of discourse in specialized STEM school classes. Manuscript in preparation.
ERIC Educational Resources Information Center
VanMeter-Adams, Amy; Frankenfeld, Cara L.; Bases, Jessica; Espina, Virginia; Liotta, Lance A.
2014-01-01
What early experiences attract students to pursue an education and career in science, technology, engineering, and mathematics (STEM)? Does hands-on research influence them to persevere and complete a major course of academic study in STEM? We evaluated survey responses from 149 high school and undergraduate students who gained hands-on research…
NASA Astrophysics Data System (ADS)
Heilbronner, Nancy N.
Many men and women who are talented in science, technology, engineering, and/or mathematics (STEM) choose not to pursue undergraduate majors or careers in these fields. To develop talents in STEM, educators must understand the factors that contribute to an individual's retention in STEM domains, as well as the factors that act as barriers to success, such as the role that gender plays in the underrepresentation of women in certain STEM fields (e.g., computer science and engineering) and changes in recent decades in the process of selecting STEM majors and careers. The purpose of this study was to explore the influences that guide decisions related to the selection of majors and occupations during high school, post-secondary education, and early careers. Survey methodology was used to explore the perceptions of 360 Science Talent Search (STS) semifinalists and finalists during the years 1987-1989 and 1997-1999, and quantitative procedures were used to analyze the data. A majority (74.2%) of STS participants majored in a STEM field in college, and most (68.6%) currently work in a STEM field. A greater percentage of men selected computer science, engineering, physics, and mathematics majors, and a greater percentage of women selected biological science and chemistry. Belief in one's ability to achieve in STEM was a predictor of STEM majors in college and STEM concentrations in graduate school, but differences were found between men's and women's self-efficacy in STEM during high school and in college, as women had lower self-efficacy. Sex was a predictor of STEM majors in college, but perceived quality of academic courses was not. STEM majors also reported more satisfaction with their STEM courses in high school and college than non-STEM majors. In a departure from the results of previous research, the reasons that men and women selected occupations were similar, as were the reasons they chose to leave or not to enter STEM. The most frequently cited reason for attrition was interest in another (non-STEM) field. Participants placed little importance on other reasons for leaving STEM that were identified in previous research, such as competition, social isolation, or financial considerations.
Natuculture Systems: Addressing Students' STEM and Agriculture Knowledge
NASA Astrophysics Data System (ADS)
Joyce, Alexander Augusto
The purpose of this study was to assess the inclusion of a Natuculture systems learning experience into selected high school STEM courses to determine high school students' interests in majoring in STEM and for pursuing careers in agricultural sciences. Natuculture is defined as "any human-made system that mimics nature in human-disturbed landscapes". The research occurred at an urban area high school located in the Piedmont region of North Carolina. Fifty-three students in grades 9-12 participated during an academic semester learning experience which included planting, maintenance, & harvesting for an oasissofa. Data was collected using a questionnaire and reflective journals to gather students' attitudes towards agriculture and science and knowledge towards agriculture. Results showed that while the experiences did not improve students' interest in pursuing careers in agricultural sciences, overall, they did increase their knowledge of concepts related to agriculture. It was concluded that students benefit from experiential learning experiences. Based on the study, it is recommended that future research follow up with students to learn of their educational and career choices in agriculture and future learning experiences include curricula that integrates agricultural topics with STEM courses.
Vignettes of scholars: A case study of black male students at a STEM early college high school
NASA Astrophysics Data System (ADS)
Adams, Tempestt Richardson
Ensuring students graduate high school ready to enter college or the workforce has become a prime focus within secondary education. High school graduates are often ill-prepared for college-level work and often have to register for remedial courses before they can take standard college level courses (Southern Regional Education Board, 2010). Serving as both a solution to this concern and an alternative to traditional high schools, early college high schools were created to focus on increasing the number of students graduating from high school and enrolling in college. Early college high schools seek to serve students who have traditionally underperformed in school and those who are underrepresented in higher education including students of color, first-generation college students, students from low socioeconomic backgrounds, and English language learners (Barnett, Bucceri, Hindo, Kim, 2013; "Overview & FAQS," 2013). In efforts to learn more about how early colleges are meeting the needs of students, this dissertation examines the experiences, identity construction, and perceptions of Black male students at a science, technology, engineering, and mathematics (STEM) based early college high school. Using a qualitative case study design, participants were eight Black male upperclassmen enrolled in a STEM early college high school, located on the campus of a four-year university. Data was collected through focus groups and individual interviews and data was analyzed thematically. Findings suggest students in this study have largely positive experiences at their early college high school. Despite some challenges, the early college high school environment helps facilitate scholar identities, and the STEM focus of the school helps students learn more about their strengths and weaknesses. The implications of the research, recommendations for educational stakeholders, and recommendations for future research are discussed.
A STEM-Based, High School Aviation Course
ERIC Educational Resources Information Center
Surra, Alex; Litowitz, Len S.
2015-01-01
The authors describe a vocational training course that was developed to give more than just an overview of how aircraft work, or a course on how to fly. This training course was a half-year course in aviation technology. Powered flight is an area of interest for many students, and the intent of creating a curriculum rich with science, technology,…
What It Takes to Complete High School: The Shifting Terrain of Course and Diploma Requirements
ERIC Educational Resources Information Center
Hoffman, Nancy
2013-01-01
In recent months, several states have altered their high school course requirements in various ways, from creating endorsements within a single diploma to creating new diplomas. These states appear to be making changes for a variety of reasons: to elevate career and technical education; to emphasize STEM fields; to improve the alignment with…
NASA Astrophysics Data System (ADS)
Lubrica, Joel V.; Abiasen, Jovalson T.; Dolipas, Bretel B.; Ramos, Jennifer Lyn S.
2017-01-01
In this article, we present results of our endeavours as physics educators to facilitate and support pedagogical change and development in the educational system of a developing country, the Philippines. We have discovered that the interaction of junior high school (years 7-10) students with physics apparatus can influence students’ interest in pursuing a career in science, technology, engineering and mathematics (STEM). This assertion stems from self-reports of students who gave their views immediately after their exposure to interactive apparatus in their own school, outside of their usual lessons. Participants claimed that their interest in following a STEM career path was ‘greatly increased’ due to their exposure to these apparatus. This was true even for students who were intending to take a non-STEM career path. Thus, we recommend that, in settings that have constraints involving access to practical equipment, ways to introduce school level interactive physics apparatus to secondary school students be conducted in order to attract more students towards STEM courses. Possibly, policies encouraging this type of exposure should also be formulated.
ERIC Educational Resources Information Center
Moore, J. Christopher
2012-01-01
University and high school students not pursuing a science, technology, engineering, and/or mathematics (STEM) course of study demonstrate less developed scientific reasoning than their STEM-based peers. Previous studies show that the majority of non-STEM students can be classified as either concrete operational or transitional reasoners in…
NASA Astrophysics Data System (ADS)
Bertram, M. A.; Thompson, L.; Ackerman, T. P.
2012-12-01
The University of Washington is adapting a popular UW Atmospheric Sciences course on Climate and Climate Change for the high school environment. In the process, a STEM-focused teaching and learning community has formed. With the support of NASA Global Climate Change Education 20 teachers have participated in an evolving professional development program that brings those actively engaged in research together with high school teachers passionate about bringing a formal climate science course into the high school. Over a period of several months participating teachers work through the UW course homework and delve deeply into specific subject areas. Then, during a week-long summer institute, scientists bring their particular expertise (e.g. radiation, modeling) to the high school teachers through lectures or labs. Together they identify existing lectures, textbook material and peer-reviewed resources and labs available through the internet that can be used to effectively teach the UW material to the high school students. Through this process the scientists learn how to develop teaching materials around their area of expertise, teachers engage deeply in the subject matter, and both the university and high school teachers are armed with the tools to effectively teach a STEM-focused introductory course in climate science. To date 12 new hands-on modules have been completed or are under development, exploring ice-cores, isotopes, historical temperature trends, energy balance, climate models, and more. Two modules have been tested in the classroom and are ready for peer-review through well-respected national resources such as CLEAN or the National Earth Science Teachers Association; three others are complete and will be implemented in a high school classroom this year, and the remainder under various stages of development. The UWHS ATMS 211 course was piloted in two APES (Advanced Placement Environmental Science classrooms) in Washington State in 2011/2012. The high school course used the UW Atmospheric Sciences curriculum, exams, and textbook (The Earth System, 3rd edition, Kump, Kasting and Crane, 2010), and one of the hands-on modules. Communication with these instructors during the year helped us define assessment strategies and to identify challenges of bringing the material into the high school classroom. This knowledge will be shared with teachers during our summer 2012 workshop and will inform approaches to teaching the course in 2012/2013. Proposed formats for implementation include year-long courses, using the APES/Climate format of 2011/2012, a union of Oceanography and Climate content, or in the context of an engineering course. Our initial vision was for a stand-alone semester or year-long course in climate science, incorporating excel and data handling as a learning tool and a suite of hands-on learning opportunities. Yet, the creative approaches to implementation of a new course in the schools, together with the breadth and depth of the UW curriculum and the Kump et al. 2010 textbook, have resulted in diverse educational approaches for bringing climate science into the high school.
Wang, Ming-Te; Degol, Jessica; Ye, Feifei
2015-01-01
Although young women now obtain higher course grades in math than boys and are just as likely to be enrolled in advanced math courses in high school, females continue to be underrepresented in some Science, Technology, Engineering, and Mathematics (STEM) occupations. This study drew on expectancy-value theory to assess (1) which intellectual and motivational factors in high school predict gender differences in career choices and (2) whether students' motivational beliefs mediated the pathway of gender on STEM career via math achievement by using a national longitudinal sample in the United States. We found that math achievement in 12th grade mediated the association between gender and attainment of a STEM career by the early to mid-thirties. However, math achievement was not the only factor distinguishing gender differences in STEM occupations. Even though math achievement explained career differences between men and women, math task value partially explained the gender differences in STEM career attainment that were attributed to math achievement. The identification of potential factors of women's underrepresentation in STEM will enhance our ability to design intervention programs that are optimally tailored to female needs to impact STEM achievement and occupational choices.
Wang, Ming-Te; Degol, Jessica; Ye, Feifei
2015-01-01
Although young women now obtain higher course grades in math than boys and are just as likely to be enrolled in advanced math courses in high school, females continue to be underrepresented in some Science, Technology, Engineering, and Mathematics (STEM) occupations. This study drew on expectancy-value theory to assess (1) which intellectual and motivational factors in high school predict gender differences in career choices and (2) whether students’ motivational beliefs mediated the pathway of gender on STEM career via math achievement by using a national longitudinal sample in the United States. We found that math achievement in 12th grade mediated the association between gender and attainment of a STEM career by the early to mid-thirties. However, math achievement was not the only factor distinguishing gender differences in STEM occupations. Even though math achievement explained career differences between men and women, math task value partially explained the gender differences in STEM career attainment that were attributed to math achievement. The identification of potential factors of women’s underrepresentation in STEM will enhance our ability to design intervention programs that are optimally tailored to female needs to impact STEM achievement and occupational choices. PMID:25741292
ERIC Educational Resources Information Center
Goldhaber, Dan; Gratz, Trevor; Theobald, Roddy
2016-01-01
We investigate the relationship between teacher licensure test scores and student test achievement and high school course-taking. We focus on three subject/grade combinations--middle school math, ninth-grade algebra and geometry, and ninth-grade biology--and find evidence that a teacher's basic skills test scores are modestly predictive of student…
ERIC Educational Resources Information Center
Mitts, Charles R.
2016-01-01
The International Technology and Engineering Educators Association (ITEEA) defines STEM as a new transdisciplinary subject in schools that integrates the disciplines of science, technology, engineering, and mathematics into a single course of study. There are three major problems with this definition: There is no consensus in support of the ITEEA…
Wayne School of Engineering: Case Study of a Rural Inclusive STEM-Focused High School
ERIC Educational Resources Information Center
Peters Burton, Erin; Kaminsky, Samuel E.; Lynch, Sharon; Behrend, Tara; Han, Edmund; Ross, Kathleen; House, Ann
2014-01-01
Rural schools face challenges that are often different than nonrural schools. Resource constraints are particularly acute in rural schools, and they struggle to offer advanced courses and extracurricular programs. The purpose of this paper is to present a descriptive, instrumental case study of an inclusive rural science, technology, engineering,…
Environmental Nanoscience: Turning Outreach Activities into a College Freshman Seminar
NASA Astrophysics Data System (ADS)
Nguyen, M. L.; Lau, B.
2017-12-01
Teaching nano concepts can be a daunting task due to the varying science backgrounds of the audience. Nonetheless, nanoscience education is important as nanotechnology expands. Our perspective is that nano education must be available at earlier stages than what is currently available. Through outreach activities, we examined how high school students and STEM middle/high school teachers approached answering questions about nanomaterials and the environment to design an effective freshman-level college seminar with achievable course goals. Specifically, participants were asked: 1) what color would you expect gold nanoparticles to be; 2) what are ways we can remove nanomaterials from the environment; and 3) what do you expect will happen to nanomaterials when salt is introduced into the system? Initial analysis showed STEM middle and high school teachers and high school students responded similarly. In response to question 1, the majority of the responses suggested color was a function of size. For question 2, both groups suggested the use of filters, magnets or a chemical reaction to remove the nanomaterials. For question 3, both groups expected a chemical reaction to occur. Understanding how foundational high school STEM concepts influenced responses could assist in the curriculum development for an introductory undergraduate nanoscience course. For example, familiar principles of physics and chemistry appeared to direct student responses. From these results, we developed three course goals to test in our college freshman seminar: 1) differentiate between properties of nanomaterials and conventional materials; 2) describe the role of nanomaterials in household items; and 3) form an opinion on the potential impacts of nanoscience and technology on the human health and the environment. Surveys from our first semester showed that the seminar was effective in achieving all course goals for the majority of students.
A Campus-Wide Study of STEM Courses: New Perspectives on Teaching Practices and Perceptions
Vinson, Erin L.; Smith, Jeremy A.; Lewin, Justin D.; Stetzer, MacKenzie R.
2014-01-01
At the University of Maine, middle and high school science, technology, engineering, and mathematics (STEM) teachers observed 51 STEM courses across 13 different departments and collected information on the active-engagement nature of instruction. The results of these observations show that faculty members teaching STEM courses cannot simply be classified into two groups, traditional lecturers or instructors who teach in a highly interactive manner, but instead exhibit a continuum of instructional behaviors between these two classifications. In addition, the observation data reveal that student behavior differs greatly in classes with varied levels of lecture. Although faculty members who teach large-enrollment courses are more likely to lecture, we also identified instructors of several large courses using interactive teaching methods. Observed faculty members were also asked to complete a survey about how often they use specific teaching practices, and we find that faculty members are generally self-aware of their own practices. Taken together, these findings provide comprehensive information about the range of STEM teaching practices at a campus-wide level and how such information can be used to design targeted professional development for faculty. PMID:25452485
Anatomy as the Backbone of an Integrated First Year Medical Curriculum: Design and Implementation
ERIC Educational Resources Information Center
Klement, Brenda J.; Paulsen, Douglas F.; Wineski, Lawrence E.
2011-01-01
Morehouse School of Medicine chose to restructure its first year medical curriculum in 2005. The anatomy faculty had prior experience in integrating courses, stemming from the successful integration of individual anatomical sciences courses into a single course called Human Morphology. The integration process was expanded to include the other…
Open-Ended Projects: 21st Century Learning in Engineering Education
ERIC Educational Resources Information Center
Nichols, Scott
2016-01-01
Preparing students to be competitive in the 21st century global economy is undoubtedly one of the major goals of all educators. Studies have shown that students who have an increased exposure to engaging STEM courses at the high school level are more likely to enter STEM majors at the collegiate level and, thus, STEM industries post-graduation…
ERIC Educational Resources Information Center
Young, Jemimah L.; Ero-Tolliver, Isi; Young, Jamaal R.; Ford, Donna Y.
2017-01-01
Diversifying the STEM workforce is a national concern. To address this concern, researchers, policymakers, and educators are working to increase STEM career interest and achievement in a more diverse population of learners. Black girls and young women represent a unique population of STEM learners that remain relatively untapped and largely under…
Predicting Undergraduates' Persistence in Science, Technology, Engineering, and Math Fields
NASA Astrophysics Data System (ADS)
Koch, Amanda Joy
A national shortage of workers in Science, Technology, Engineering, and Math (STEM) occupations has led to efforts to identify why people leave these fields. Lower persistence rates in STEM for females than for males have also led to examinations of features that cause females to leave STEM fields. The current study examines individual- and school-level features that influence undergraduate students' decisions to leave STEM majors, focusing on potential explanations for why females are more likely than males to leave. Persistence in STEM was examined in three samples: (a) persistence through the second year of college in a sample of high school seniors interested in STEM majors; (b) persistence through the fourth year of college in a sample of second year undergraduate STEM majors; and (c) persistence through the second, third, and fourth years of college in a sample of high school seniors interested in STEM majors. Differences between persistence in male-dominated and non-male-dominated STEM majors were also examined. In all samples, gender differences were found for most individual-level predictors, with males tending to score higher than females on measures such as SAT-Math, self-rated STEM ability, and high school extracurricular activities and awards in STEM. On the other hand, females earned better high school grades and had stronger relative non-STEM ability and achievement than males. Bivariate analyses indicated that those who persisted in STEM majors typically had higher scores than those who did not persist for SAT-Math, high school achievement, STEM course taking, undergraduate STEM grades, self-rated STEM ability, interest in STEM, extracurricular activities and awards in STEM, degree goals, and socioeconomic status. Multivariate analyses identified SAT-Math as one of the best predictors of persistence in high school samples, and undergraduate STEM GPA was one of the best predictors in the samples of second year undergraduates. In several samples, a significant cross-level interaction was found between gender and undergraduate females' college-level proportional representation in STEM; however, the effects were inconsistent across samples. Even when controlling for various individual- and school-level predictors, gender effects tended to remain significant, with females in most samples leaving STEM majors at higher rates than males.
ERIC Educational Resources Information Center
Goldhaber, Dan; Gratz, Trevor; Theobald, Roddy
2016-01-01
We investigate the relationship between teacher licensure test scores and student test achievement and high school course-taking. We focus on three subject/grade combinations-- middle school math, ninth-grade algebra and geometry, and ninth-grade biology--and find evidence that a teacher's basic skills test scores are modestly predictive of…
Course-Based Undergraduate Research Experiences Can Make Scientific Research More Inclusive
ERIC Educational Resources Information Center
Bangera, Gita; Brownell, Sara E.
2014-01-01
Current approaches to improving diversity in scientific research focus on graduating more science, technology, engineering, and mathematics (STEM) majors, but graduation with a STEM undergraduate degree alone is not sufficient for entry into graduate school. Undergraduate independent research experiences are becoming more or less a prerequisite…
Predicting College Readiness in STEM: A Longitudinal Study of Iowa Students
NASA Astrophysics Data System (ADS)
Rickels, Heather Anne
The demand for STEM college graduates is increasing. However, recent studies show there are not enough STEM majors to fulfill this need. This deficiency can be partially attributed to a gender discrepancy in the number of female STEM graduates and to the high rate of attrition of STEM majors. As STEM attrition has been associated with students being unprepared for STEM coursework, it is important to understand how STEM graduates change in achievement levels from middle school through high school and to have accurate readiness indicators for first-year STEM coursework. This study aimed to address these issues by comparing the achievement growth of STEM majors to non-STEM majors by gender in Science, Math, and Reading from Grade 6 to Grade 11 through latent growth models (LGMs). Then STEM Readiness Benchmarks were established in Science and Math on the Iowas (IAs) for typical first-year STEM courses and validity evidence was provided for the benchmarks. Results from the LGM analyses indicated that STEM graduates start at higher achievement levels in Grade 6 and maintain higher achievement levels through Grade 11 in all subjects. In addition, gender differences were examined. The findings indicate that students with high achievement levels self-select as STEM majors, regardless of gender. In addition, they suggest that students who are not on-track for a STEM degree may need to begin remediation prior to high school. Results from the benchmark analyses indicate that STEM coursework is more demanding and that students need to be better prepared academically in science and math if planning to pursue a STEM degree. In addition, the STEM Readiness Benchmarks were more accurate in predicting success in STEM courses than if general college readiness benchmarks were utilized. Also, students who met the STEM Readiness Benchmarks were more likely to graduate with a STEM degree. This study provides valuable information on STEM readiness to students, educators, and college admissions officers. Findings from this study can be used to better understand the level of academic achievement necessary to be successful as a STEM major and to provide guidance for students considering STEM majors in college. If students are being encouraged to purse STEM majors, it is important they have accurate information regarding their chances of success in STEM coursework.
Geoscience Education Research, Development, and Practice at Arizona State University
NASA Astrophysics Data System (ADS)
Semken, S. C.; Reynolds, S. J.; Johnson, J.; Baker, D. R.; Luft, J.; Middleton, J.
2009-12-01
Geoscience education research and professional development thrive in an authentically trans-disciplinary environment at Arizona State University (ASU), benefiting from a long history of mutual professional respect and collaboration among STEM disciplinary researchers and STEM education researchers--many of whom hold national and international stature. Earth science education majors (pre-service teachers), geoscience-education graduate students, and practicing STEM teachers richly benefit from this interaction, which includes team teaching of methods and research courses, joint mentoring of graduate students, and collaboration on professional development projects and externally funded research. The geologically, culturally, and historically rich Southwest offers a superb setting for studies of formal and informal teaching and learning, and ASU graduates the most STEM teachers of any university in the region. Research on geoscience teaching and learning at ASU is primarily conducted by three geoscience faculty in the School of Earth and Space Exploration and three science-education faculty in the Mary Lou Fulton Institute and Graduate School of Education. Additional collaborators are based in the College of Teacher Education and Leadership, other STEM schools and departments, and the Center for Research on Education in Science, Mathematics, Engineering, and Technology (CRESMET). Funding sources include NSF, NASA, US Dept Ed, Arizona Board of Regents, and corporations such as Resolution Copper. Current areas of active research at ASU include: Visualization in geoscience learning; Place attachment and sense of place in geoscience learning; Affective domain in geoscience learning; Culturally based differences in geoscience concepts; Use of annotated concept sketches in learning, teaching, and assessment; Student interactions with textbooks in introductory courses; Strategic recruitment and retention of secondary-school Earth science teachers; Research-based professional development for STEM teachers; Design and evaluation of innovative transdisciplinary and online curricula; and Visitor cognition of geologic time and basic principles in Southwestern National Parks.
ERIC Educational Resources Information Center
Gottfried, Michael; Bozick, Robert
2012-01-01
Academic math and science courses have been long shown to increase learning and educational attainment, but are they sufficient on their own to prepare youth for the challenges and rigor of the STEM workforce? Or, are there distinctive benefits to complementing these traditional academic courses with applied ones? Answers to these questions are…
Remixing My Life: The Multimodal Literacy Memoir Assignment and STEM
ERIC Educational Resources Information Center
Pytash, Kristine E.; Kist, William; Testa, Elizabeth
2017-01-01
The authors explore the experiences and multimodal compositions of a student at a STEM (science, technology, engineering, and mathematics) high school who opted to take an elective course on multimodal autobiography. They document how her meaning making included her beliefs and perspectives about the world, as well as a finely developed aesthetic…
Science after School: Way Cool! A Course-Based Approach to Teaching Science Outreach
ERIC Educational Resources Information Center
Curtis, Kathleen S.
2017-01-01
Outreach efforts directed toward improving STEM (Science, Technology, Engineering, and Mathematics) literacy are vitally important to ensure that all of our citizens are prepared to fully participate in an increasingly complex and technology-driven world. Attempts to maximize the effectiveness of STEM outreach has focused on younger populations,…
Competitive Robotics Brings out the Best in Students
ERIC Educational Resources Information Center
Caron, Darrell
2010-01-01
This article features Advanced Competitive Science (ACS), a two-year course introduced by a science teacher, Joe Pouliot, in 2004 at Trinity High School in Manchester, New Hampshire. More than a traditional STEM (science, technology, engineering, and math) course, ACS harnesses the excitement of robotics competitions to promote student…
Berk, Louis J; Muret-Wagstaff, Sharon L; Goyal, Riya; Joyal, Julie A; Gordon, James A; Faux, Russell; Oriol, Nancy E
2014-09-01
The most effective ways to promote learning and inspire careers related to science, technology, engineering, and mathematics (STEM) remain elusive. To address this gap, we reviewed the literature and designed and implemented a high-fidelity, medical simulation-based Harvard Medical School MEDscience course, which was integrated into high school science classes through collaboration between medical school and K-12 faculty. The design was based largely on the literature on concepts and mechanisms of self-efficacy. A structured telephone survey was conducted with 30 program alumni from the inaugural school who were no longer in high school. Near-term effects, enduring effects, contextual considerations, and diffusion and dissemination were queried. Students reported high incoming attitudes toward STEM education and careers, and these attitudes showed before versus after gains (P < .05). Students in this modest sample overwhelmingly attributed elevated and enduring levels of impact on their interest and confidence in pursuing a science or healthcare-related career to the program. Additionally, 63% subsequently took additional science or health courses, 73% participated in a job or educational experience that was science related during high school, and 97% went on to college. Four of every five program graduates cited a health-related college major, and 83% offered their strongest recommendation of the program to others. Further study and evaluation of simulation-based experiences that capitalize on informal, naturalistic learning and promote self-efficacy are warranted. Copyright © 2014 The American Physiological Society.
Berk, Louis J.; Muret-Wagstaff, Sharon L.; Goyal, Riya; Joyal, Julie A.; Gordon, James A.; Faux, Russell
2014-01-01
The most effective ways to promote learning and inspire careers related to science, technology, engineering, and mathematics (STEM) remain elusive. To address this gap, we reviewed the literature and designed and implemented a high-fidelity, medical simulation-based Harvard Medical School MEDscience course, which was integrated into high school science classes through collaboration between medical school and K–12 faculty. The design was based largely on the literature on concepts and mechanisms of self-efficacy. A structured telephone survey was conducted with 30 program alumni from the inaugural school who were no longer in high school. Near-term effects, enduring effects, contextual considerations, and diffusion and dissemination were queried. Students reported high incoming attitudes toward STEM education and careers, and these attitudes showed before versus after gains (P < .05). Students in this modest sample overwhelmingly attributed elevated and enduring levels of impact on their interest and confidence in pursuing a science or healthcare-related career to the program. Additionally, 63% subsequently took additional science or health courses, 73% participated in a job or educational experience that was science related during high school, and 97% went on to college. Four of every five program graduates cited a health-related college major, and 83% offered their strongest recommendation of the program to others. Further study and evaluation of simulation-based experiences that capitalize on informal, naturalistic learning and promote self-efficacy are warranted. PMID:25179609
Creating Interdisciplinary STEM Environments at the University of Nebraska at Omaha
NASA Astrophysics Data System (ADS)
Shuster, R. D.; Grandgenett, N. F.
2010-12-01
Effective, integrated and interdisciplinary STEM environments depend upon strong faculty collaboration. During the past decade, the University of Nebraska at Omaha (UNO) has put an emphasis on STEM faculty working together across departments, colleges, and the university system, as well as with local school systems. Supported by a University-wide Content and Pedagogy Committee and a new Office of STEM Education, faculty members have aggressively undertaken and evaluated various interdisciplinary STEM activities. This presentation will briefly describe three of these projects, including evaluation-related data and UNO support mechanisms. First, an interdisciplinary student research project has been developed involving our introductory geology and chemistry courses. The project includes collecting drinking water samples from around Omaha by geology students, the chemical analysis of drinking water by chemistry students, followed by water quality analysis of the chemical data by the geology students. Students learn about the scientific method, potential problems with project design, and limitations of interpretation of real data, while also applying knowledge learned in the class to this real world problem. This project reaches ~600 undergraduate students each year and requires close cooperation between faculty of the Chemistry and Geology programs. Evaluation data indicates that this project has had a positive impact on student attitude towards science in general and towards geology and chemistry in particular. The second project highlighted will be the Silicon Prairie Initiative for Robotics in Information Technology (SPIRIT). The SPIRIT project is a NSF funded collaboration between the UNO College of Education, the University of Nebraska at Lincoln College of Engineering, and local school systems. It strives to integrate the use of educational robotics and sensors in the teaching of STEM topics, particularly at the middle school and high school levels. The project has designed a flexible online curriculum that includes over 200 lessons with technical tutorials, assessments, and various resources. More than 250 teachers have been trained in extended workshops. Criterion-referenced test data of the students involved with these teachers have been encouraging. Further pilot test data also showed increases in positive STEM attitudes. The third project highlighted will be an interdisciplinary online Earth system science course for in-service teachers associated with the Earth System Science Education Alliance (ESSEA), which includes 42 universities across the U.S.. ESSEA instructional modules have been designed and shared by the participating institutions. UNO has been offering ESSEA coursework with participating faculty from Teacher Education (College of Education) and Geology (College of Arts & Sciences), writing ESSEA modules, and examining student feedback since 2004: involving more than 250 teachers, crossing a wide range of STEM-related teaching certifications. Project effectiveness has been examined by use of surveys, focus groups, and course products. By collaborating with colleagues across disciplines, colleges, and institutions, it is possible to have a positive impact on STEM education, through course offerings at UNO and through teacher professional development.
NASA Astrophysics Data System (ADS)
Parsons, B.; Kassimu, R.; Borjas, C. N.; Griffith, W. A.
2016-12-01
Brooke Parsons1, Rahmatu Kassimu2, Christopher Borjas3, and W. Ashley Griffith31Uplift Hampton Preparatory High School, Dallas, TX, 75232 2H. Grady Spruce High School, Dallas, TX, 75217 3Department of Earth and Environmental Sciences, University of Texas Arlington, Arlington, TX, 76019 As Earth Science courses appear in fewer high school curricula, we seek to find creative ways to integrate Earth Science themes as contextual examples into other K-12 STEM courses in order to develop (A) Earth Science literacy, and (B) a pipeline of young talent into our field. This presentation details the efforts of the 2nd year Teach for America (TFA) Rock Corps, a five year NSF-sponsored partnership between TFA and the University of Texas at Arlington designed to provide STEM teachers with genuine research opportunities using components that can be extrapolated to develop dynamic Geophysics-themed lesson plans and materials for their classrooms. Two teachers were selected from the Dallas-Fort Worth region of TFA to participate in original research modeling off-fault damage that occurs during earthquakes in a lab setting using a Split-Hopkinson-Pressure Bar (SHPB). In particular, we simulate a coseismic transient stress perturbation in a fault damage zone by combining traditional SHPB with a traveling harmonic oscillator: Two striker bars attached by an elastic spring are launched with a gas gun allowing us to create the double stress pulse expected during an earthquake rupture. This research affords teachers inspiration to implement Geophysics-themed lesson plans for their courses, Physics/Pre-AP Physics and Chemistry. The physics course will adopt principles of seismic wave propagation to teach concepts of impulse, momentum, conservation of energy, harmonic motion, wave velocity, wave propagation, and real world applications of waves. The chemistry course will implement geochemistry themed techniques into applying the scientific method, density, isotopic composition, pH calculations, and conservation of mass/energy. These course adaptations will address different learning objectives specified by the Texas Essential Knowledge and Skills (TEKS), and provide students with concrete labs, examples, and demonstrations of concepts through a geoscience lens.
Integrating Quantitative Reasoning into STEM Courses Using an Energy and Environment Context
NASA Astrophysics Data System (ADS)
Myers, J. D.; Lyford, M. E.; Mayes, R. L.
2010-12-01
Many secondary and post-secondary science classes do not integrate math into their curriculum, while math classes commonly teach concepts without meaningful context. Consequently, students lack basic quantitative skills and the ability to apply them in real-world contexts. For the past three years, a Wyoming Department of Education funded Math Science Partnership at the University of Wyoming (UW) has brought together middle and high school science and math teachers to model how math and science can be taught together in a meaningful way. The UW QR-STEM project emphasizes the importance of Quantitative Reasoning (QR) to student success in Science, Technology, Engineering and Mathematics (STEM). To provide a social context, QR-STEM has focused on energy and the environment. In particular, the project has examined how QR and STEM concepts play critical roles in many of the current global challenges of energy and environment. During four 3-day workshops each summer and over several virtual and short face-to-face meetings during the academic year, UW and community college science and math faculty work with math and science teachers from middle and high schools across the state to improve QR instruction in math and science classes. During the summer workshops, faculty from chemistry, physics, earth sciences, biology and math lead sessions to: 1) improve the basic science content knowledge of teachers; 2) improve teacher understanding of math and statistical concepts, 3) model how QR can be taught by engaging teachers in sessions that integrate math and science in an energy and environment context; and 4) focus curricula using Understanding by Design to identify enduring understandings on which to center instructional strategies and assessment. In addition to presenting content, faculty work with teachers as they develop classroom lessons and larger units to be implemented during the school year. Teachers form interdisciplinary groups which often consist of math and science teachers from the same school or district. By jointly developing units focused on energy and environment, math and science curricula can be coordinated during the school year. During development, teams present their curricular ideas for peer-review. Throughout the school year, teachers implement their units and collect pre-post data on student learning. Ultimately, science teachers integrate math into their science courses, and math teachers integrate science content in their math courses. Following implementation, participants share their experiences with their peers and faculty. Of central interest during these presentations are: 1) How did the QR-STEM experience change teacher practices in the classroom?; and 2) How did the modification of their teaching practices impact student learning and their ability to successfully master QR? The UW QR-STEM has worked with Wyoming science and math teachers from across the state over the three year grant period.
ERIC Educational Resources Information Center
Rozek, Christopher S.; Hyde, Janet S.; Svoboda, Ryan C.; Hulleman, Chris S.; Harackiewicz, Judith M.
2015-01-01
A foundation in science, technology, engineering, and mathematics (STEM) education is critical for students' college and career advancement, but many U.S. students fail to take advanced mathematics and science classes in high school. Research has neglected the potential role of parents in enhancing students' motivation for pursuing STEM courses.…
ERIC Educational Resources Information Center
Miller, Jennifer Renea
2016-01-01
This study investigated a Makerspace professional development program, the Makers' Guild, provided to teachers within north Texas over the course of a semester. The research employed a constructionist approach delivered via 2D and 3D technologies during STEM instructional activities within a creative space. Participants reported statistically…
Students in Rural Schools Have Limited Access to Advanced Mathematics Courses. Issue Brief No. 7
ERIC Educational Resources Information Center
Graham, Suzanne E.
2009-01-01
This Carsey brief reveals that students in rural areas and small towns have less access to higher-level mathematics courses than students in urban settings, which results in serious educational consequences, including lower scores on assessment tests and fewer qualified students entering science, technology, engineering, and mathematics (STEM) job…
Developing New Models of the COMP-LAB College Basic Writing Course for Other Settings. Final Report.
ERIC Educational Resources Information Center
Epes, Mary T.; And Others
A course designed for college students with severe writing problems, especially those stemming from nonstandard speech patterns, was adapted to a variety of noncollege settings: two high schools, a labor union, a manpower training program, and the staff education department of a psychiatric hospital. Each setting attempted to integrate classroom…
Collaboration: Taking Risks inside and outside the Classroom
ERIC Educational Resources Information Center
Childers, Pamela B.; Lowry, Michael J.
2004-01-01
Eight years ago, a new senior interdisciplinary science course called "Oceans: Past and Present" for the McCallie School in Tennessee was designed. The idea stemmed from the combination of a physics teacher's desire for a course based on a summer program at sea and a writing center director/teacher's longing for the ocean from the…
"Should I Stay or Should I Go"?: Rural and Remote Students in First Year STEM Courses
ERIC Educational Resources Information Center
Wilson, Sue; Lyons, Terry; Quinn, Frances
2013-01-01
Research on the achievement of rural and remote students in science and mathematics is located within a context of falling levels of participation in physical science and mathematics courses in Australian schools, and underrepresentation of rural students in higher education. International studies such as the Programme of International Student…
NASA Astrophysics Data System (ADS)
Genoways, Sharon K.
STEM (Science, Technology, Engineering and Math) education creates critical thinkers, increases science literacy, and enables the next generation of innovators, which leads to new products and processes that sustain our economy (Hossain & Robinson, 2012). We have been hearing the warnings for several years, that there simply are not enough young scientists entering into the STEM professional pathways to replace all of the retiring professionals (Brown, Brown, Reardon, & Merrill, 2011; Harsh, Maltese, & Tai, 2012; Heilbronner, 2011; Scott, 2012). The problem is not necessarily due to a lack of STEM skills and concept proficiency. There also appears to be a lack of interest in these fields. Recent evidence suggests that many of the most proficient students, especially minority students and women, have been gravitating away from science and engineering toward other professions. (President's Council of Advisors on Science and Technology, 2010). The purpose of this qualitative research study was an attempt to determine how high schools can best prepare and encourage young women for a career in engineering or computer science. This was accomplished by interviewing a pool of 21 women, 5 recent high school graduates planning to major in STEM, 5 college students who had completed at least one full year of coursework in an engineering or computer science major and 11 professional women who had been employed as an engineer or computer scientist for at least one full year. These women were asked to share the high school courses, activities, and experiences that best prepared them to pursue an engineering or computer science major. Five central themes emerged from this study; coursework in physics and calculus, promotion of STEM camps and clubs, teacher encouragement of STEM capabilities and careers, problem solving, critical thinking and confidence building activities in the classroom, and allowing students the opportunity to fail and ask questions in a safe environment. These themes may be implemented by any instructor, in any course, who wishes to provide students with the means to success in their quest for a STEM career.
NASA Astrophysics Data System (ADS)
Quinton, Jessica Elizabeth
Career interests develop over a lifetime and tend to solidify during late adolescence and early adulthood (Lent, Brown, and Hackett, 2002). The primary purpose of the present qualitative study, which is framed in Feminist Standpoint Theory (Haraway, 1988; Harding, 2007; Naples, 2007; Richardson, 2007), is to understand how eighth-grade, young women in a suburban, public, southern, middle school the South Carolina County School District (CCSD) (pseudonym) perceive their accessibility to Science, Technology, Engineering, and Mathematics (STEM) courses and careers. The secondary purpose is to understand these young women's "perceptions and unconscious beliefs about gender in science and mathematics" and how their "perceptions and unconscious beliefs about gender" in the STEM fields may impact the careers that these young women may choose in the future (American Association of University Women, 2010, 9). Within the present study, the perceptions of young women who identified as "Interested in Science," "Somewhat Interested in Science" and "Uninterested in Science" were identified. STEM courses and careers are a major emphasis in education today. Increasing the numbers of Americans who pursue STEM careers is a government priority, as these careers will strengthen the economy (AAUW 2010). The present study reveals how young women who are highly motivated, talented students perceive STEM courses and careers and how they are influenced by their experiences, gendered messages, and knowledge of STEM careers. To analyze the data, four of Saldana's (2010) dramaturgical codes were utilized including: 1. OBJectives, or motives; 2. CONflicts the participants faced; 3. TACtics to dealing with obstacles; and 4. ATTitudes toward the setting, others, and the conflict. The InVivo Codes allowed the participants stories to emerge through the set of dramaturgical codes that allowed for viewing the girls' experience sin different ways that added depth to their stories. The young women in the present study were affected by gendered messages and stereotypes about a woman's place in STEM. The participants felt better suited for some STEM careers based on interest, experience, and skill level. However, the participants perceived other STEM careers to be out of reach due to a lack of knowledge of the careers and the influence of gendered messages.
The Effects of Motivation on Student Performance on Science Assessments
NASA Astrophysics Data System (ADS)
Glenn, Tina Heard
Academic achievement of public school students in the United States has significantly fallen behind other countries. Students' lack of knowledge of, or interest in, basic science and math has led to fewer graduates of science, technology, engineering, and math-related fields (STEM), a factor that may affect their career success and will certainly affect the numbers in the workforce who are prepared for some STEM jobs. Drawing from self-determination theory and achievement theory, the purpose of this correlational study was to determine whether there were significant relationships between high school academic performance in science classes, motivations (self-efficacy, self-regulation, and intrinsic and extrinsic goal orientation), and academic performance in an introductory online college biology class. Data were obtained at 2 points in time from a convenience multiethnic sample of adult male ( n =16) and female (n = 49) community college students in the southeast United States. Correlational analyses indicated no statistically significant relationships for intrinsic or extrinsic goal orientation, self-efficacy, or self-regulation with high school science mean-GPA nor college biology final course grade. However, high school academic performance in science classes significantly predicted college performance in an entry-level online biology class. The implications of positive social change include knowledge useful for educational institutions to explore additional factors that may motivate students to enroll in science courses, potentially leading to an increase in scientific knowledge and STEM careers.
A campus-wide study of STEM courses: new perspectives on teaching practices and perceptions.
Smith, Michelle K; Vinson, Erin L; Smith, Jeremy A; Lewin, Justin D; Stetzer, MacKenzie R
2014-01-01
At the University of Maine, middle and high school science, technology, engineering, and mathematics (STEM) teachers observed 51 STEM courses across 13 different departments and collected information on the active-engagement nature of instruction. The results of these observations show that faculty members teaching STEM courses cannot simply be classified into two groups, traditional lecturers or instructors who teach in a highly interactive manner, but instead exhibit a continuum of instructional behaviors between these two classifications. In addition, the observation data reveal that student behavior differs greatly in classes with varied levels of lecture. Although faculty members who teach large-enrollment courses are more likely to lecture, we also identified instructors of several large courses using interactive teaching methods. Observed faculty members were also asked to complete a survey about how often they use specific teaching practices, and we find that faculty members are generally self-aware of their own practices. Taken together, these findings provide comprehensive information about the range of STEM teaching practices at a campus-wide level and how such information can be used to design targeted professional development for faculty. © 2014 M. K. Smith et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Examination of factors predicting secondary students' interest in tertiary STEM education
NASA Astrophysics Data System (ADS)
Chachashvili-Bolotin, Svetlana; Milner-Bolotin, Marina; Lissitsa, Sabina
2016-02-01
Based on the Social Cognitive Career Theory (SCCT), the study aims to investigate factors that predict students' interest in pursuing science, technology, engineering, and mathematics (STEM) fields in tertiary education both in general and in relation to their gender and socio-economic background. The results of the analysis of survey responses of 2458 secondary public school students in the fifth-largest Israeli city indicate that STEM learning experience positively associates with students' interest in pursuing STEM fields in tertiary education as opposed to non-STEM fields. Moreover, studying advanced science courses at the secondary school level decreases (but does not eliminate) the gender gap and eliminates the effect of family background on students' interest in pursuing STEM fields in the future. Findings regarding outcome expectations and self-efficacy beliefs only partially support the SCCT model. Outcome expectations and self-efficacy beliefs positively correlate with students' entering tertiary education but did not differentiate between their interests in the fields of study.
STEM Education-An Exploration of Its Impact on Female Academic Success in High School
NASA Astrophysics Data System (ADS)
Ybarra, Michael E.
The 21st century presents many new career opportunities and choices for women today. However, over the past decade, there has been a growing concern that there will not be enough students trained in Science, Technology, Engineering, and Math (STEM) to fill jobs in the United States. Current research reveals that there will be a need for highly skilled workers in the STEM industries, along with the opportunities to earn higher wages. With these opportunities ahead, it is paramount that secondary schools prepare not only their male students, but also their female students for these lucrative STEM careers. The purpose of this study was to investigate to what degree female high school students enrolled in a STEM academy, and who may play sports, experience academic differences in college preparatory math and science courses, and in the math and science portions of the California Standards Test. Academic differences shall be defined as differences in grade point averages. A comparison will be made of female students who take similar classes and play sports, but who are not enrolled in a STEM academy program. This comparison will then incorporate a quantitative non-experimental research design, along with a chi-square test.
College Bound in Middle School & High School? How Math Course Sequences Matter
ERIC Educational Resources Information Center
Finkelstein, Neal; Fong, Anthony; Tiffany-Morales, Juliet; Shields, Patrick; Huang, Min
2012-01-01
As California competes for jobs in an increasingly competitive global economy, the state faces a looming shortage of highly educated workers (PPIC, 2012). For a variety of reasons, the need for individuals with degrees in science, technology, engineering, and mathematics (STEM) is of particular concern. Nowhere is this more true than in the…
ERIC Educational Resources Information Center
Barak, Moshe; Asad, Khaled
2012-01-01
Background: This research focused on the development, implementation and evaluation of a course on image-processing principles aimed at middle-school students. Purpose: The overarching purpose of the study was that of integrating the learning of subjects in science, technology, engineering and mathematics (STEM), and linking the learning of these…
Engineering Design Challenges in High School STEM Courses: A Compilation of Invited Position Papers
ERIC Educational Resources Information Center
Householder, Daniel L., Ed.
2011-01-01
Since its initial funding by the National Science Foundation in 2004, the National Center for Engineering and Technology Education (NCETE) has worked to understand the infusion of engineering design experiences into the high school setting. Over the years, an increasing number of educators and professional groups have participated in the expanding…
STEM Pathways: Examining Persistence in Rigorous Math and Science Course Taking
ERIC Educational Resources Information Center
Ashford, Shetay N.; Lanehart, Rheta E.; Kersaint, Gladis K.; Lee, Reginald S.; Kromrey, Jeffrey D.
2016-01-01
From 2006 to 2012, Florida Statute §1003.4156 required middle school students to complete electronic personal education planners (ePEPs) before promotion to ninth grade. The ePEP helped them identify programs of study and required high school coursework to accomplish their postsecondary education and career goals. During the same period Florida…
The Prevalence and Quality of Source Attribution in Middle and High School Science Papers
ERIC Educational Resources Information Center
Vieyra, Michelle; Weaver, Kari
2016-01-01
Plagiarism is a commonly cited problem in higher education, especially in scientific writing and assignments for science courses. Students may not intentionally plagiarize, but may instead be confused about what proper source attribution entails. Much of this confusion likely stems from high school, either from lack of or inconsistent instruction…
ERIC Educational Resources Information Center
Pinkard, Nichole; Erete, Sheena; Martin, Caitlin K.; McKinney de Royston, Maxine
2017-01-01
Women use technology to mediate numerous aspects of their professional and personal lives. Yet, few design and create these technologies given that women, especially women of color, are grossly underrepresented in computer science and engineering courses. Decisions about participation in STEM are frequently made prior to high school, and these…
Penguins and Plagiarism: Stemming the Tide of Plagiarism in Elementary School
ERIC Educational Resources Information Center
Mitchell, Sara
2007-01-01
Plagiarism is on the rise on high school and college campuses. There are many reasons why students tend to plagiarize. One of these is that many students are interested in the shortest possible route through a course. Some students also fear that their writing ability is inadequate. If student plagiarism and lack of academic integrity are…
ERIC Educational Resources Information Center
Svoboda, Ryan C.; Rozek, Christopher S.; Hyde, Janet S.; Harackiewicz, Judith M.; Destin, Mesmin
2016-01-01
High school students from lower-socioeconomic status (SES) backgrounds are less likely to enroll in advanced mathematics and science courses compared to students from higher-SES backgrounds. The current longitudinal study draws on identity-based and expectancy-value theories of motivation to explain the SES and mathematics and science…
ERIC Educational Resources Information Center
Donnelly, Julie; Diaz, Carlos; Hernandez, Florencio E.
2016-01-01
Herein, we describe an effective and tested model of a week-long summer science intensive program for high school students that aimed to elaborate on concepts covered in a high school chemistry or biology course, and to provide high school students an opportunity to learn about studying and pursuing careers in the sciences. The program was…
NASA Astrophysics Data System (ADS)
Kier, Meredith Weaver
National efforts to interest students in STEM careers are intensifying around the globe, due to a shortage of professionals to fill the growing demands in these fields. Although some US studies find high interest in STEM in K-12 students, longitudinal studies show a decline in interest following middle school. Many students, particularly females and minorities, feel that they do not fit the image of a STEM professional. Little is known about perceptions held by students in rural areas, who have limited access to diverse STEM careers. This dissertation study employed an in school STEM career video intervention with eighty-five rural, minority, eighth grade students in a high poverty district in the southeastern US. Research questions explore students' STEM career interests before and after the STEM career video intervention, and analyze how students in this population negotiate a potential identity in STEM. Applying aspects of Lent, Brown, & Hackett's social cognitive career theory (SCCT), students' exploration sheets and video planning sheets were coded to understand positive or negative contributors to STEM career interests. Students' initial explorations were limited to careers to which they had been previously exposed at home or in class, and were influenced by their personal dispositions Over the course of the intervention, increased knowledge of careers increased the diversity of careers selected, attention to educational level, and the influence of more sophisticated career outcomes on interest. Students selected careers based on personal interests and outcome expectations, but were able to identify how their academic strengths, dispositions, and family support systems related to their career goals. Post survey analyses found the presence of role models and high self-efficacy were new predictors of interest. Study results imply that similar interventions can help students gain more sophisticated understandings of careers, can motivate students without external rewards, and that with extensive exposure to new careers, students will begin to consider their own skill set when trying on careers. Case studies of four highlighted issues of race, access to resources, hands-on experiences and course access, teachers' perceptions of them, and parental support among others that impact their STEM experiences and negotiations of a STEM self.
ERIC Educational Resources Information Center
Barak, Moshe; Assal, Muhammad
2018-01-01
This study presents the case of development and evaluation of a STEM-oriented 30-h robotics course for junior high school students (n = 32). Class activities were designed according to the P3 Task Taxonomy, which included: (1) practice-basic closed-ended tasks and exercises; (2) problem solving--small-scale open-ended assignments in which the…
NASA Astrophysics Data System (ADS)
Cuff, K. E.; Molinaro, M.
2005-12-01
Over the past decade, numerous calls have been made for the need to increase the participation of the nation's underrepresented population in science, technology, engineering, and technology (STEM) fields of endeavor. A key element in improving the less than impressive conditions that now exist with regard to this issue, is the development of effective approaches that result in positive changes in young people's attitudes toward education in general, and STEM subject matter in particular during the early stages of their intellectual development. The Environmental Science Information Technology Activities (ESITA) program provides opportunities for under-represented grades 9 - 10 students in the East San Francisco Bay Area to learn about and apply key STEM concepts and related skills. Consisting of two-year-long after school programs at community center and school-based sites, as well as a Summer Research Institute, the ESITA program engages participants in a combination of STEM content learning activities and environmental science research projects that address issues relevant to their communities. Design of the ESITA program has been informed by: 1) pilot-study data that indicated key elements necessary for ensuring high levels of participant enthusiasm and interest; 2) a conceptual framework for development of instructional materials grounded in recent research about student learning of STEM content; and 3) research about effective after school programs that present academic content. Throughout the program's two-year existence, ESITA students have participated in the following projects: investigations of the distribution of elevated lead levels in drinking water samples from Washington, D.C.; air and water quality studies in and around a popular lake situated within the nation's oldest wildlife refuge, located in downtown Oakland, California; and studies of the relationship between airborne particulate matter concentrations in Richmond, California, and activity at local petroleum refineries. As participants have used newly acquired skills and understandings while performing such investigations that are directly linked to relevant, real-world environmental problems and issues, they have: significantly increased their understanding of the process and nature of science; enhanced their intellectual self-confidence with regard to STEM; developed a deeper appreciation of how scientific research can contribute to the maintenance of healthy local environments; developed a greater interest in participating in STEM-related courses of study and after school programs; improved their general attitudes toward STEM. All of these gains significantly increase the capacity of participants to enroll and perform successfully in STEM courses in the future, which together enhances their chances of deciding to pursue STEM careers.
NASA Astrophysics Data System (ADS)
Cuff, K. E.; Corazza, L.; Liang, J.
2007-12-01
A U.C. Berkeley-based outreach program known as Environmental Science Information Technology Activities has been in operation over the past four years. The primary aim of the program is to provide opportunities for grades 9 and 10 students in diverse East San Francisco Bay Area communities to develop deeper understandings of the nature and conduct of science, which will increase their capacity to enroll and perform successfully in science, technology, engineering, and mathematics (STEM) courses in the future. Design of the program has been informed by recent research that indicates a close relationship between educational activities that promote the perception of STEM as being relevant and the ability to foster development of deeper conceptual understandings among teens. Accordingly, ESITA includes an important student-led environmental science research project component, which provides participants with opportunities to engage in research investigations that are directly linked to relevant, real-world environmental problems and issues facing their communities. Analysis of evidence gleaned from questionnaires, interviews with participants and specific assessment/evaluation instruments indicates that ESITA program activities, including after-school meetings, summer and school year research projects, and conference preparations and presentations has provided students with high-quality inquiry science experiences that increased their knowledge of STEM and IT concepts, as well as their understanding of the nature of the scientific enterprise. In addition, the program has achieved a high degree of success in that it has: enhanced participants' intellectual self-confidence with regard to STEM; developed deeper appreciation of how scientific research can contribute to the maintenance of healthy local environments; developed a greater interest in participating in STEM-related courses of study and after school programs; and improved attitudes toward STEM. Overall, evaluation results support the notion that providing opportunities for students to develop personal connections with particular issues discussed, and real-world STEM experiences that make STEM more relevant and interesting can help to bring about changes in attitude, which is a key component in improving STEM learning and understanding particularly among urban youth.
Predictors of student success in entry-level science courses
NASA Astrophysics Data System (ADS)
Singh, Mamta K.
Although the educational evaluation process is useful and valuable and is supported by the Higher Education Act, a strong research base for program evaluation of college entry-level science courses is still lacking. Studies in science disciplines such as, biology, chemistry, and physics have addressed various affective and demographic factors and their relationships to student achievement. However, the literature contains little information that specifically addresses student biology content knowledge skills (basics and higher order thinking skills) and identifies factors that affect students' success in entry-level college science courses. These gate-keeping courses require detailed evaluation if the goal of an institution is to increase students' performance and success in these courses. These factors are, in fact, a stepping stone for increasing the number of graduates in Science, Technology, Engineering, and Mathematics (STEM) majors. The present study measured students' biology content knowledge and investigated students' performance and success in college biology, chemistry, and physics entry-level courses. Seven variables---gender, ethnicity, high school Grade Point Average (GPA), high school science, college major, school financial aid support, and work hours were used as independent variables and course final performance as a dichotomous dependent variable. The sample comprised voluntary student participants in entry-level science courses. The study attempted to explore eight research questions. Content knowledge assessments, demographic information analysis, multiple regression analysis, and binary logistic regression analysis were used to address research questions. The results suggested that high school GPA was a consistently good predictor of students' performance and success in entry-level science courses. Additionally, high school chemistry was a significant predictor variable for student success in entry-level biology and chemistry courses. Similarly, students' performance and success in entry-level physics courses were influenced by high school physics. Finally, the study developed student success equation with high school GAP and high school chemistry as good predictors of students' success in entry-level science courses.
ERIC Educational Resources Information Center
Vinaja, Sean Stephen
2016-01-01
Many Christian students graduate from secondary schools and enter Christian colleges with worldviews that are unbiblical or contain unbiblical components, many of which stem from their beliefs regarding origins. Little research has been done to study the effect of gender on the role of a young-earth creationist (YEC) origins course in shaping…
ERIC Educational Resources Information Center
Hayali, Tolga
2013-01-01
This study examined the relationship between 2011 freshman college mathematics and science grades and freshman students' high school academics and demographic data, exploring the factors that contribute to the success of first-year STEM majoring freshman students at State University of New York at Oswego. The variables were Gender, Race, SES,…
Staying in STEM or changing course: Do natives and immigrants pursue the path of least resistance?
Han, Siqi
2016-07-01
This paper examines why Science, Technology, Engineering and Math (STEM) fields are becoming "immigrant" fields of study as native students shift from STEM fields to law, medicine and business. Using data from the 2010 National Survey of College Graduates, the analyses find that foreign college-educated immigrants with STEM degrees tend to remain in STEM fields, while natives are more likely to shift from STEM fields to law, medicine and business in graduate school. Among those who moved into law, medicine and business, the gains in earnings are larger for natives than for foreign educated immigrants. These results have important implications for the social mobility of highly educated natives and immigrants. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hinton, Tracy Barger
With the large expected growth in STEM-related careers in American industries, there are not enough graduates to fill these positions (United States Department of Labor, 2015). Increased efforts are being made to reform STEM education from early childhood to college level studies, mainly through increased efforts to incorporate new technologies and project-based learning activities (Hegedorn & Purnamasari, 2012). At the middle school level, a robotics educational platform can be a worthwhile activity that provides hands-on learning as students learn basic programming and engineering skills (Grubbs, 2013). Based on the popularity of LEGO toys, LEGO Education developed an engaging and effective way to learn about computer programming and basic engineering concepts (Welch & Huffman, 2011). LEGO MINDSTORMS offers a project-based learning environment that engages students in real-life, problem-solving challenges. The purpose of this qualitative study was to investigate the instructional use of a robotics educational curriculum on middle school students' attitudes toward and interests in STEM and their experiences with LEGO Robotics activities. Participants included 23 seventh grade students who were enrolled in a Career Cluster Technologies I class in a suburban middle school. Data for the study were collected from three focus group interviews, open-ended surveys, classroom observations, and the Career Cruising program. Findings revealed that the robotics activities led to an increased interest and higher self-efficacy in STEM tasks. If students continue to nurture and develop their STEM interests, it is possible that many of them may develop higher confidence and eventually set personal goals related to STEM classes and careers. While other studies have been conducted on similar topics, this qualitative research is unique because it contributed to the gap in research that investigates the impact of an in-class robotics curriculum on middle school students' attitudes and interests in STEM. Throughout the robotics unit, students exhibited positive reactions, including much excitement and enjoyment as they solved the robotics challenges. In addition, students demonstrated a greater interest in STEM courses and careers as a result of this hands-on activity. Middle school teachers should incorporate STEM-based activities such as robotics to help students gain hands-on STEM skills.
NASA Astrophysics Data System (ADS)
Urbina, Josue N.
There is a national need to increase the STEM-related workforce. Among factors leading towards STEM careers include the number of advanced high school mathematics and science courses students complete. Florida's enrollment patterns in STEM-related Advanced Placement (AP) courses, however, reveal that only a small percentage of students enroll into these classes. Therefore, screening tools are needed to find more students for these courses, who are academically ready, yet have not been identified. The purpose of this study was to investigate the extent to which scores from a national standardized test, Preliminary Scholastic Assessment Test/ National Merit Qualifying Test (PSAT/NMSQT), in conjunction with and compared to a state-mandated standardized test, Florida Comprehensive Assessment Test (FCAT), are related to selected AP exam performance in Seminole County Public Schools. An ex post facto correlational study was conducted using 6,189 student records from the 2010 - 2012 academic years. Multiple regression analyses using simultaneous Full Model testing showed differential moderate to strong relationships between scores in eight of the nine AP courses (i.e., Biology, Environmental Science, Chemistry, Physics B, Physics C Electrical, Physics C Mechanical, Statistics, Calculus AB and BC) examined. For example, the significant unique contribution to overall variance in AP scores was a linear combination of PSAT Math (M), Critical Reading (CR) and FCAT Reading (R) for Biology and Environmental Science. Moderate relationships for Chemistry included a linear combination of PSAT M, W (Writing) and FCAT M; a combination of FCAT M and PSAT M was most significantly associated with Calculus AB performance. These findings have implications for both research and practice. FCAT scores, in conjunction with PSAT scores, can potentially be used for specific STEM-related AP courses, as part of a systematic approach towards AP course identification and placement. For courses with moderate to strong relationships, validation studies and development of expectancy tables, which estimate the probability of successful performance on these AP exams, are recommended. Also, findings established a need to examine other related research issues including, but not limited to, extensive longitudinal studies and analyses of other available or prospective standardized test scores.
An examination of the impact of a first year experience course on STEM persistence
NASA Astrophysics Data System (ADS)
Welchert, Tammy S.
A review of STEM literature indicates that increased attention is being paid to STEM initiatives particularly with K-12 teachers and programs designed to foster interest in STEM fields at the secondary education level, both of which feed the STEM pipeline. The President of the United States, Barack Obama, Presidents of Higher Education Institutions, and an increased global awareness of the shortfall of workers in the STEM pipeline are driving the increased attention. Recognition that an inability to meet STEM workforce demands may jeopardize the position of the United States as a world leader is significant. The purpose of this study was to examine the impact of a first year experience course, Biology 115: First Year Seminar, specifically with regards to academic performance and retention, and to evaluate how the impact changes when course instruction was delivered in a 16-week versus an 8-week model. Three sample groups (N = 596) consisting of first time college freshmen declared as biology majors from 2005-2012 at the University of Missouri-Kansas City were selected for participation. Data was collected from student's high school and college transcripts and college applications by the Office of Institutional Research. A three phase analysis including descriptive statistics and t-tests, principle component analysis, and binary logistic regression were performed using a hierarchical model informed by Alexander Astins' Input-Environment-Output model. The majority of students were female, residents of the State of Missouri, and White. Analysis results indicated that students enrolled in the Biology 115 course earned higher grade point averages, were in better academic standing, and were retained at a higher level than the control group. Additionally, students enrolled in the course in the 8-Week model earned higher grade point averages and had higher retention from Year 1 to Year 2 and retention as biology majors over the 16-week model.
NASA Astrophysics Data System (ADS)
Wallace, Eric W.; Perry, Justin C.; Ferguson, Robert L.; Jackson, Debbie K.
2015-08-01
The present study investigated the impact of a Science, Technology, Engineering, Mathematics and Health (STEM+H) university-based pipeline program, the Careers in Health and Medical Professions Program, over the course of two summers among predominantly African-American high school students recruited from urban school districts ( N = 155). Based on a mixed methods approach, results indicated that youth made significant gains in both academic and career knowledge. Furthermore, youth generally rated the program's sessions favorably, but also rated sessions with varying levels of satisfaction. The limitations and implications for program delivery and evaluation methods among pipeline programs are discussed.
NASA Astrophysics Data System (ADS)
Barak, Moshe; Asad, Khaled
2012-04-01
Background : This research focused on the development, implementation and evaluation of a course on image-processing principles aimed at middle-school students. Purpose : The overarching purpose of the study was that of integrating the learning of subjects in science, technology, engineering and mathematics (STEM), and linking the learning of these subjects to the children's world and to the digital culture characterizing society today. Sample : The participants were 60 junior high-school students (9th grade). Design and method : Data collection included observations in the classes, administering an attitude questionnaire before and after the course, giving an achievement exam and analyzing the students' final projects. Results and conclusions : The findings indicated that boys' and girls' achievements were similar throughout the course, and all managed to handle the mathematical knowledge without any particular difficulties. Learners' motivation to engage in the subject was high in the project-based learning part of the course in which they dealt, for instance, with editing their own pictures and experimenting with a facial recognition method. However, the students were less interested in learning the theory at the beginning of the course. The course increased the girls', more than the boys', interest in learning scientific-technological subjects in school, and the gender gap in this regard was bridged.
NASA Astrophysics Data System (ADS)
Coopersmith, A.; Cie, D. K.; Calder, S.; Naho`olewa, D.; Rai, B.
2014-12-01
The Advanced Technology Solar Telescope (ATST) Mitigation Initiative and the Kahikina O Ka Lā Program are NSF-funded projects at the University of Hawai`i Maui College. These projects offer instruction and activities intended to increase diversity in STEM careers. Ke Alahaka, the 2014 summer bridge program, was offered to Native Hawaiian high-school students who indicated an interest in STEM areas. Content workshops were offered in Marine Science, Physics, Biotechnology, and Computer Science and Engineering as well as a Hawaiian Studies course designed to provide a cultural context for the STEM instruction. Focus groups and other program assessments indicate that 50% of the students attending the workshops intend to pursue a STEM major during their undergraduate studies.
NASA Astrophysics Data System (ADS)
Bergondo, D. L.; Mrakovcich, K. L.; Vlietstra, L.; Tebeau, P.; Verlinden, C.; Allen, L. A.; James, R.
2016-02-01
The US Coast Guard Academy, an undergraduate military Academy, in New London CT, provides STEM education programs to the local community that engage the public on hot topics in ocean sciences. Outreach efforts include classroom, lab, and field-based activities at the Academy as well as at local schools. In one course, we partner with a STEM high school collecting fish and environmental data on board a research vessel and subsequently students present the results of their project. In another course, cadets develop and present interactive demonstrations of marine science to local school groups. In addition, the Academy develops In another course, cadets develop and present interactive demonstrations of marine science to local school groups. In addition, the Academy develops and/or participates in outreach programs including Science Partnership for Innovation in Learning (SPIL), Women in Science, Physics of the Sea, and the Ocean Exploration Trust Honors Research Program. As part of the programs, instructors and cadets create interactive and collaborative activities that focus on hot topics in ocean sciences such as oil spill clean-up, ocean exploration, tsunamis, marine biodiversity, and conservation of aquatic habitats. Innovative science demonstrations such as real-time interactions with the Exploration Vessel (E/V) Nautilus, rotating tank simulations of ocean circulation, wave tank demonstrations, and determining what materials work best to contain and clean-up oil, are used to enhance ocean literacy. Children's books, posters and videos are some creative ways students summarize their understanding of ocean sciences and marine conservation. Despite time limitations of students and faculty, and challenges associated with securing funding to keep these programs sustainable, the impact of the programs is overwhelmingly positive. We have built stronger relationships with local community, enhanced ocean literacy, facilitated communication and mentorship between young students and scientists, and encouraged interest of underrepresented minorities in STEM education.
A Seminar Course to Prepare Astronomy Undergraduate Students for Multiple Career Paths
NASA Astrophysics Data System (ADS)
Hayes-Gehrke, Melissa; Harris, Andrew
2018-01-01
The increasing focus on the importance of STEM careers has led increasing numbers of students to enroll in STEM majors at the University of Maryland, including traditionally smaller majors such as Astronomy. The pursuit of a PhD is neither desirable nor appropriate for many of these students, but most of them lack knowledge of other options open to students with a rigorous science undergraduate degree. We have developed an interactive seminar (1-credit) course (first offered in Fall 2017) intended to expose new Astronomy majors to an array of possible career paths, and give them guidance on steps they can take to prepare for these careers as well as graduate school. Supporting topics include discussions of the elements necessary for success in their undergraduate studies, skills needed preparing for undergraduate research and internship experiences, and showing them how and when an undergraduate research experience will be beneficial for them. We present the seminar course learning goals, topic list and course structure, and results of pre- and post-attitudes surveys.
Persistence of undergraduate women in STEM fields
NASA Astrophysics Data System (ADS)
Pedone, Maggie Helene
The underrepresentation of women in science, technology, engineering, and mathematics (STEM) is a complex problem that continues to persist at the postsecondary level, particularly in computer science and engineering fields. This dissertation explored the pre-college and college level factors that influenced undergraduate women's persistence in STEM. This study also examined and compared the characteristics of undergraduate women who entered STEM fields and non-STEM fields in 2003-2004. The nationally representative Beginning Postsecondary Students Longitudinal Study (BPS:04/09) data set was used for analysis. BPS:04/09 study respondents were surveyed three times (NPSAS:04, BPS:04/06, BPS:04/09) over a six-year period, which enabled me to explore factors related to long-term persistence. Astin's Input-Environment-Output (I-E-O) model was used as the framework to examine student inputs and college environmental factors that predict female student persistence (output) in STEM. Chi-square tests revealed significant differences between undergraduate women who entered STEM and non-STEM fields in 2003-2004. Differences in student demographics, prior academic achievement, high school course-taking patterns, and student involvement in college such as participation in study groups and school clubs were found. Notably, inferential statistics showed that a significantly higher proportion of female minority students entered STEM fields than non-STEM fields. These findings challenge the myth that underrepresented female minorities are less inclined to enter STEM fields. Logistic regression analyses revealed thirteen significant predictors of persistence for undergraduate women in STEM. Findings showed that undergraduate women who were younger, more academically prepared, and academically and socially involved in college (e.g., lived on campus, interacted with faculty, participated in study groups, fine arts activities, and school sports) were more likely to persist in STEM fields. This longitudinal study showed that both pre-college and college level factors influenced undergraduate women's persistence in STEM. The research findings offer important implications for policy and practice initiatives in higher education that focus on the recruitment and retention of women in postsecondary STEM fields.
Seeds and Sparks: Cultivating Children's Interest in Physics through Public Outreach
NASA Astrophysics Data System (ADS)
Clark, Jessica
2006-11-01
The National Academies' ``Rising above the Gathering Storm'' report names the improvement of K-12 science and mathematics education as its highest priority recommendation. This recommendation includes enlarging the pipeline of students preparing to study STEM subjects at university by increasing the number of students who take (and pass) advanced high school level science courses. To this end, the American Physical Society's Public Outreach department offers PhysicsQuest, a free program designed to engage middle school science students in a learning adventure. The core idea of the program is to provide a fun and exciting way for students to encounter physics, thereby eliminating some of the fear often associated with the subject and making them more likely to take high school physics courses. In the end, the students do learn some physics, but, more importantly, they have a fun experience with physics. This talk further describes the PhysicsQuest program, including feedback and results from the 2005 project, and also gives an overview of other K-12 programs offered by APS Public Outreach. The report can be read online at http://www.nap.edu/catalog/11463.html#toc. STEM = Science, Technology, Engineering, Mathematics
Science dual enrollment: An examination of high school students' post-secondary aspirations
NASA Astrophysics Data System (ADS)
Berry, Chelsia
The purpose of this study was to determine if participation in science dual enrollment courses influenced African American high school students' post-secondary aspirations that will lead to college attendance. The investigation examined the relationship between African American students' learning experiences and how their self-efficacy and outcome expectations impact their goal setting. The goal was to determine the impact of the following variables on African American students' plan to pursue a bachelor's or advanced degree: (a) STEM exposure, (b) Algebra 1 achievement, (c) level of science class, and (d) receiving science college credit for dual enrollment course. The social cognitive career theory framed this body of research to explore how career and academic interests mature, are developed, and are translated into action. Science dual enrollment participation is a strategy for addressing the lack of African American presence in the STEM fields. The causal comparative ex post facto research design was used in this quantitative study. The researcher performed the Kruskal-Wallis non-parametric analysis of variance and Pearson's chi-square tests to analyze secondary data from the High School Longitudinal Study first follow-up student questionnaire. The results indicate that STEM exposure and early success in Algebra 1 have a statistically significant impact on African American students' ambition to pursue a bachelor's or advanced degree. According to the Pearson's chi-square and independent sample Kruskal-Wallis analyses, level of students' science class and receiving college credit for dual enrollment do not significantly influence African American students' postsecondary aspirations.
Family and Consumer Sciences and STEM Integration
ERIC Educational Resources Information Center
Carter, Vinson; Beachner, Maggie; Daugherty, Michael K.
2015-01-01
Family and consumer sciences (FCS) education has traditionally attracted a large percentage of female students (Vincenti, 1997; Werhan, 2013). Werhan (2013) reported that slightly less than 3.5 million students are engaged in FCS courses, and at the high school level, approximately 65% of them are female. This skewed representation of female…
Improving Algebra Preparation: Implications from Research on Student Misconceptions and Difficulties
ERIC Educational Resources Information Center
Welder, Rachael M.
2012-01-01
Through historical and contemporary research, educators have identified widespread misconceptions and difficulties faced by students in learning algebra. Many of these universal issues stem from content addressed long before students take their first algebra course. Yet elementary and middle school teachers may not understand how the subtleties of…
CU-STARs: Promoting STEM Diversity by Addressing First-year Attrition of Underrepresented Minorities
NASA Astrophysics Data System (ADS)
Battersby, Cara; Silvia, Devin W.; Ellingson, Erica; Sturner, Andrew P.; Peck, Courtney
2015-01-01
Upon first entering university, the fraction of students interested in pursuing a STEM major are distributed according to societal demographics (with 25% being underrepresented minorities), but by graduation, the fraction of students receiving STEM degrees is unbalanced, with underrepresented minorities receiving only 15% of STEM bachelor's degrees. The CU-STARs (CU Science, Technology, and Astronomy Recruits) program at the University of Colorado, Boulder is targeted to address the main triggers of early career attrition for underrepresented minorities in STEM disciplines. A select group of students are given financial support through work-study at the Fiske planetarium on campus, while resources to address other triggers of attrition are available to the entire cohort of interested students (typically ~5-10 per year). These resources are designed to promote social engagement and mentorship, while also providing a support network and resources to combat inadequate high school preparation for STEM courses. We achieve these goals through activities that include social events, mentor meetings, free tutoring, and special events to meet and talk with scientists. The culmination of the program for the recruits are a series of high school outreach events in underserved areas (inner city and rural alike), in which they become the expert. The STARs are paid for their time and take the lead in planning, teaching, and facilitating programs for the high school students, including classroom presentations, interactive lab activities, solar observing, and star parties. The high school outreach events provide role models and STEM exposure for the underserved high school community while simultaneously cementing the personal achievements and successes for the STARs. CU-STARs is now in its 4th year and is still growing. We are beginning the process of formal assessments of the program's success. We present details of the program implementation, a discussion of potential obstacles and future plans, and initial results of the program assessment, which speak highly of the program's contribution to individual student success.
NASA Astrophysics Data System (ADS)
Blake, R.; Liou-Mark, J.
2012-12-01
The U.S. remains in grave danger of losing its global competitive edge in STEM. To find solutions to this problem, the Obama Administration proposed two new national initiatives: the Educate to Innovate Initiative and the $100 million government/private industry initiative to train 100,000 STEM teachers and graduate 1 million additional STEM students over the next decade. To assist in ameliorating the national STEM plight, the New York City College of Technology has designed its NSF Research Experience for Undergraduate (REU) program in satellite and ground-based remote sensing to target underrepresented minority students. Since the inception of the program in 2008, a total of 45 undergraduate students of which 38 (84%) are considered underrepresented minorities in STEM have finished or are continuing with their research or are pursuing their STEM endeavors. The program is comprised of the three primary components. The first component, Structured Learning Environments: Preparation and Mentorship, provides the REU Scholars with the skill sets necessary for proficiency in satellite and ground-based remote sensing research. The students are offered mini-courses in Geographic Information Systems, MATLAB, and Remote Sensing. They also participate in workshops on the Ethics of Research. Each REU student is a member of a team that consists of faculty mentors, post doctorate/graduate students, and high school students. The second component, Student Support and Safety Nets, provides undergraduates a learning environment that supports them in becoming successful researchers. Special networking and Brown Bag sessions, and an annual picnic with research scientists are organized so that REU Scholars are provided with opportunities to expand their professional community. Graduate school support is provided by offering free Graduate Record Examination preparation courses and workshops on the graduate school application process. Additionally, students are supported by college counselors. Many of the students are first generation college students who often face issues that can impede their academic progress. The last component, Vision and Impetus for Advancement, allows REU Scholars to see themselves as STEM scientists and workforce professionals. Exposure trips provide students with an opportunity to meet scientists working in industry. Additionally, the students also present their research and participate at local, regional, and national conferences. Furthermore, since many of the students were never given the chance to visit STEM-focused industries and conferences. The program, therefore, helps to broaden their STEM experience. Of the 38 REU Scholars, 16%(6) of them are in graduate school in the STEM disciplines, 21%(8) of them have graduated and are in the STEM workforce, and 63%(24) of them continue to pursue their STEM degrees. Three of the students have won first place recognition for their research, and two of the students will be co-authors for two peer-review publications and one book chapter. Additionally, survey results show that 84% of the student participants now indicate interest in pursuing Master's degrees in STEM and 75% indicate interest in pursuing doctoral degrees in STEM. This program is supported by NSF REU grant #1062934.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuykendall, Tommie G.; Allsop, Jacob Lee; Anderson, Benjamin Robert
The cybersecurity consortium, which was established by DOE/NNSA’s Minority Serving Institutions Partnerships Program (MSIPP), allows students from any of the partner schools (13 HBCUs, two national laboratories, and a public school district) to have all consortia options available to them, to create career paths and to open doors to DOE sites and facilities to student members of the consortium. As a part of this year consortium activities, Sandia National Laboratories and the University of Virgin Islands conducted a week long cyber workshop that consisted of three courses; Digital Forensics and Malware Analysis, Python Programming, and ThunderBird Cup. These courses aremore » designed to enhance cyber defense skills and promote learning within STEM related fields.« less
The special study module: a novel approach to undergraduate teaching in occupational medicine.
Fletcher, G; Agius, R M
1995-12-01
Difficulties in teaching occupational medicine to undergraduates stem from the reduced availability of teaching time and the perception of the specialty. Recent changes in the General Medical Council curricular framework have permitted the development of a special study module (options course) in occupational medicine, in which a small number of motivated undergraduates elected to participate and which was adequately resourced. This course laid particular emphasis on changing students' attitudes towards the specialty, self-learning techniques, problem-solving and other skills such as workplace assessment. The objectives, content and teaching methods of the course are described, as is a preliminary evaluation. It is suggested that other medical schools should adopt and refine this approach in order to improve the quality of undergraduate training in at least a proportion of the output of medical schools.
The persistence of Black males in the STEM fields at Texas State University
NASA Astrophysics Data System (ADS)
Day, Beverly Woodson
For the past five years, enrollment in the College of Science and Engineering by first-time undergraduate students has steadily increased. However, retaining the students through their first-year and their persistence to their second year of college and beyond has been problematic. The purpose of this study is to add to the knowledge of why Black students, specifically Black men, are not persisting at Texas State University in the STEM majors. It will also determine if specific factors like the SAT scores, parent's education, high school rank, college GPA, college science and math courses (physics, math, biology and chemistry), college credits earned and average GPA in all science and math college courses predict college preparation and college performance for all students and for Black male students.
Nix, Samantha; Perez-Felkner, Lara; Thomas, Kirby
2015-01-01
Students' perceptions of their mathematics ability vary by gender and seem to influence science, technology, engineering, and mathematics (STEM) degree choice. Related, students' perceptions during academic difficulty are increasingly studied in educational psychology, suggesting a link between such perceptions and task persistence. Despite interest in examining the gender disparities in STEM, these concepts have not been considered in tandem. In this manuscript, we investigate how perceived ability under challenge-in particular in mathematics domains-influences entry into the most sex-segregated and mathematics-intensive undergraduate degrees: physics, engineering, mathematics, and computer science (PEMC). Using nationally representative Education Longitudinal Study of 2002 (ELS) data, we estimate the influence of perceived ability under challenging conditions on advanced high school science course taking, selection of an intended STEM major, and specific major type 2 years after high school. Demonstrating the importance of specificity when discussing how gender influences STEM career pathways, the intersecting effects of gender and perceived ability under mathematics challenge were distinct for each scientific major category. Perceived ability under challenge in secondary school varied by gender, and was highly predictive of selecting PEMC and health sciences majors. Notably, women's 12th grade perceptions of their ability under mathematics challenge increased their probability of selecting PEMC majors over and above biology. In addition, gender moderated the effect of growth mindset on students' selection of health science majors. Perceptions of ability under challenge in general and verbal domains also influenced retention in and declaration of certain STEM majors. The implications of these results are discussed, with particular attention to access to advanced scientific coursework in high school and interventions aimed at enhancing young women's perceptions of their ability, in particular in response to the potentially inhibiting influence of stereotype threat on their pathways to scientific degrees.
Nix, Samantha; Perez-Felkner, Lara; Thomas, Kirby
2015-01-01
Students' perceptions of their mathematics ability vary by gender and seem to influence science, technology, engineering, and mathematics (STEM) degree choice. Related, students' perceptions during academic difficulty are increasingly studied in educational psychology, suggesting a link between such perceptions and task persistence. Despite interest in examining the gender disparities in STEM, these concepts have not been considered in tandem. In this manuscript, we investigate how perceived ability under challenge—in particular in mathematics domains—influences entry into the most sex-segregated and mathematics-intensive undergraduate degrees: physics, engineering, mathematics, and computer science (PEMC). Using nationally representative Education Longitudinal Study of 2002 (ELS) data, we estimate the influence of perceived ability under challenging conditions on advanced high school science course taking, selection of an intended STEM major, and specific major type 2 years after high school. Demonstrating the importance of specificity when discussing how gender influences STEM career pathways, the intersecting effects of gender and perceived ability under mathematics challenge were distinct for each scientific major category. Perceived ability under challenge in secondary school varied by gender, and was highly predictive of selecting PEMC and health sciences majors. Notably, women's 12th grade perceptions of their ability under mathematics challenge increased their probability of selecting PEMC majors over and above biology. In addition, gender moderated the effect of growth mindset on students' selection of health science majors. Perceptions of ability under challenge in general and verbal domains also influenced retention in and declaration of certain STEM majors. The implications of these results are discussed, with particular attention to access to advanced scientific coursework in high school and interventions aimed at enhancing young women's perceptions of their ability, in particular in response to the potentially inhibiting influence of stereotype threat on their pathways to scientific degrees. PMID:26113823
The Gender Gap in High School Physics: Considering the Context of Local Communities
2014-01-01
Objectives We focus on variation in gender inequality in physics course-taking, questioning the notion of a ubiquitous male advantage. We consider how inequality in high school physics is related to the context of students’ local communities, specifically the representation of women in STEM occupations in the labor force. Methods This study uses nationally representative data from the National Longitudinal Study of Adolescent Health (Add Health) and its education component, the Adolescent Health and Academic Achievement Transcript Study (AHAA). Results Approximately half of schools are characterized by either gender equality or even a small female advantage in enrollment in this traditionally male subject. Furthermore, variation in the gender gap in physics is related to the percent of women who are employed in STEM occupations within the community. Conclusion Our study suggests that communities differ in the extent to which traditionally gendered status expectations shape beliefs and behaviors. PMID:25605978
Soils in Schools: Embedding Soil Science in STEM
ERIC Educational Resources Information Center
Bryce, Alisa
2015-01-01
Soil science, though relevant to a variety of subjects including science, geography, mathematics, social sciences and history, is typically perceived as a subgenre of agriculture. With a global need for soil scientists, and declining numbers in university soil courses, there's a growing gap between science needs and providers. One way to promote…
HARNESSING VALUES TO PROMOTE MOTIVATION IN EDUCATION.
Harackiewicz, Judith M; Tibbetts, Yoi; Canning, Elizabeth; Hyde, Janet S
2014-01-01
We review the interventions that promote motivation in academic contexts, with a focus on two primary questions: How can we motivate students to take more STEM courses? Once in those STEM courses, how can we keep students motivated and promote their academic achievement? We have approached these two motivational questions from several perspectives, examining the theoretical issues with basic laboratory research, conducting longitudinal questionnaire studies in classrooms, and developing interventions implemented in different STEM contexts. Our research is grounded in three theories that we believe are complementary: expectancy-value theory (Eccles & Wigfield, 2002), interest theory (Hidi & Renninger, 2006), and self-affirmation theory (Steele, 1988). As social psychologists, we have focused on motivational theory and used experimental methods, with an emphasis on values - students' perceptions of the value of academic tasks and students' personal values that shape their experiences in academic contexts. We review the experimental field studies in high-school science and college psychology classes, in which utility-value interventions promoted interest and performance for high-school students in science classes and for undergraduate students in psychology courses. We also review a randomized intervention in which parents received information about the utility value of math and science for their teens in high school; this intervention led students to take nearly one semester more of science and mathematics, compared with the control group. Finally, we review an experimental study of values affirmation in a college biology course and found that the intervention improved performance and retention for first-generation college students, closing the social-class achievement gap by 50%. We conclude by discussing the mechanisms through which these interventions work. These interventions are exciting for their broad applicability in improving students' academic choices and performance, they are also exciting regarding their potential for contributions to basic science. The combination of laboratory experiments and field experiments is advancing our understanding of the motivational principles and almost certainly will continue to do so. At the same time, interventions may benefit from becoming increasingly targeted at specific motivational processes that are effective with particular groups or in particular contexts.
HARNESSING VALUES TO PROMOTE MOTIVATION IN EDUCATION
Harackiewicz, Judith M.; Tibbetts, Yoi; Canning, Elizabeth; Hyde, Janet S.
2017-01-01
Purpose We review the interventions that promote motivation in academic contexts, with a focus on two primary questions: How can we motivate students to take more STEM courses? Once in those STEM courses, how can we keep students motivated and promote their academic achievement? Design/methodology/approach We have approached these two motivational questions from several perspectives, examining the theoretical issues with basic laboratory research, conducting longitudinal questionnaire studies in classrooms, and developing interventions implemented in different STEM contexts. Our research is grounded in three theories that we believe are complementary: expectancy-value theory (Eccles & Wigfield, 2002), interest theory (Hidi & Renninger, 2006), and self-affirmation theory (Steele, 1988). As social psychologists, we have focused on motivational theory and used experimental methods, with an emphasis on values – students’ perceptions of the value of academic tasks and students’ personal values that shape their experiences in academic contexts. Findings We review the experimental field studies in high-school science and college psychology classes, in which utility-value interventions promoted interest and performance for high-school students in science classes and for undergraduate students in psychology courses. We also review a randomized intervention in which parents received information about the utility value of math and science for their teens in high school; this intervention led students to take nearly one semester more of science and mathematics, compared with the control group. Finally, we review an experimental study of values affirmation in a college biology course and found that the intervention improved performance and retention for first-generation college students, closing the social-class achievement gap by 50%. We conclude by discussing the mechanisms through which these interventions work. Originality/value These interventions are exciting for their broad applicability in improving students’ academic choices and performance, they are also exciting regarding their potential for contributions to basic science. The combination of laboratory experiments and field experiments is advancing our understanding of the motivational principles and almost certainly will continue to do so. At the same time, interventions may benefit from becoming increasingly targeted at specific motivational processes that are effective with particular groups or in particular contexts. PMID:28890603
NASA Astrophysics Data System (ADS)
Henry, Kesha Atasha
This study explored the preparation of students for higher education and careers in agriculturally-related fields at an urban charter high school. The data were collected through interviews, observations, and field notes. The data were analyzed by qualitative methodology with phenomenology as the theoretical framework. Findings indicated that administrators thought it was important to incorporate agricultural science courses into urban school curricula. They stated that agricultural science courses gave urban students a different way of looking at science and helped to enhance the science and technology focus of the school. Further, agricultural science courses helped to break urban students' stereotypes about agriculture and helped to bring in more state funding for educational programs. However they thought that it was more challenging to teach agricultural science in urban versus rural schools and they focused more on Science, Technology, Engineering, and Mathematics (STEM) related careers. The students had mixed views about higher education and careers in agriculture. This was based on their limited knowledge and stereotypes about agricultural majors and career options. The students highlighted several key reasons why they chose to enroll in agricultural science courses. This included the benefits of dual science credits and the ability to earn an associate degree upon successful completion of their program. Students also loved science and appreciated the science intensive nature of the agricultural courses. Additionally, they thought that the agricultural science courses were better than the other optional courses. The results also showed that electronic media such as radio and TV had a negative impact on students' perceptions about higher education and careers in agriculturally-related fields. Conclusions and recommendations are presented.
A Bridge to the Stars: A Model High School-to-College Pipeline to Improve Diversity in STEM
NASA Astrophysics Data System (ADS)
McIntosh, Daniel H.; Jennings, Derrick H.
2017-01-01
Increasing participation by historically underrepresented Americans in the STEM workforce remains a national priority. Existing strategies have failed to increase diversity especially in the physical sciences despite federal mandates. To meet this urgent challenge, it is imperative to immediately identify and support the expansion of effective high school-to-college STEM pipelines. A Bridge to the Stars (ABttS) is a creative and tested pipeline designed to steadily increase the numbers of disadvantaged 15-21 year-olds pursuing and completing 4-year STEM degrees. This unique program offers extended engagement in astronomy, arguably the most accessible window to science, through a 3-tier STEM immersion program of innovative learning (in a freshman science course), authentic research training (in a freshman science lab), and supportive near-peer mentoring at U.Missouri-Kansas City, an urban research university. Each tier of the ABttS pipeline by itself has the potential to broaden student aspirations for careers as technological innovators or STEM educators. Students who elect to transition through multiple tiers will substantially reinforce their successes with STEM activities, and significantly bolster their self-esteem necessary to personally manifest STEM aspirations. We will summarize the impact of this program after 5 years, and share our latest improvements. The long-term mission of ABttS is to see urban educational institutions across the U.S. adopt similar pipelines in all STEM disciplines built on the ABttS model.
Communicating the Benefits of a Full Sequence of High School Science Courses
NASA Astrophysics Data System (ADS)
Nicholas, Catherine Marie
High school students are generally uninformed about the benefits of enrolling in a full sequence of science courses, therefore only about a third of our nation's high school graduates have completed the science sequence of Biology, Chemistry and Physics. The lack of students completing a full sequence of science courses contributes to the deficit in the STEM degree production rate needed to fill the demand of the current job market and remain competitive as a nation. The purpose of the study was to make a difference in the number of students who have access to information about the benefits of completing a full sequence of science courses. This dissertation study employed qualitative research methodology to gain a broad perspective of staff through a questionnaire and document review and then a deeper understanding through semi-structured interview protocol. The data revealed that a universal sequence of science courses in the high school district did not exist. It also showed that not all students had access to all science courses; students were sorted and tracked according to prerequisites that did not necessarily match the skill set needed for the courses. In addition, the study showed a desire for more support and direction from the district office. It was also apparent that there was a disconnect that existed between who staff members believed should enroll in a full sequence of science courses and who actually enrolled. Finally, communication about science was shown to occur mainly through counseling and peers. A common science sequence, detracking of science courses, increased communication about the postsecondary and academic benefits of a science education, increased district direction and realistic mathematics alignment were all discussed as solutions to the problem.
NASA Astrophysics Data System (ADS)
Calhoun, William Jason
The purpose of this study was to test how well social cognitive career theory (SCCT) explains the effects of an introductory freshman year science course on the career perspectives of African American males at a large, public mid-Atlantic state university. Embracing SCCT as the foundation of this project, the dissertation intended to gather data from these young men to develop insight into how and in what ways their self-efficacy throughout the semester was influenced by their first science course, and changing their outlook on Science, Technology, Engineering, and Mathematics (STEM) careers while in school and after graduation. To a small number of freshman African American male students who have declared themselves STEM majors, I utilized a qualitative study investigating this phenomenon. The major findings detailed themes that affected these young men including concerns about mathmatics preparation, isolation, balance, microagression, and help-seeking. Results indicate that there was an impact on the confidence, achievement, and goal setting for these young men due to these factors and that social cognitive career theory was an appropriate framework from which to test these questions.
In Brief: Improving science education
NASA Astrophysics Data System (ADS)
Showstack, Randy
2010-09-01
Over the course of the next decade, 100,000 science, technology, engineering, and math (STEM) teachers should be recruited in the United States, and 1000 new STEM-focused schools should be created, according to a 16 September report, “Prepare and inspire: K-12 education in science, technology, engineering, and math (STEM) for America's future.” Noting that the United States lags behind other nations in STEM education at the elementary and secondary levels, the report, prepared by the President's Council of Advisors on Science and Technology, also recommends improving federal coordination and leadership on STEM education and supporting a state-led movement for shared standards in math and science. The release of the report coincides with President Barack Obama's announcement of the launch of Change the Equation, an organization that aims to help with math and science education. More information is available at http://www.whitehouse.gov/administration/eop/ostp and http://www.changetheequation.org/.
Developing a Pre-Engineering Curriculum for 3D Printing Skills for High School Technology Education
ERIC Educational Resources Information Center
Chien, Yu-Hung
2017-01-01
This study developed an integrated-STEM CO[subscript 2] dragster design course using 3D printing technology. After developing a pre-engineering curriculum, we conducted a teaching experiment to assess students' differences in creativity, race forecast accuracy, and learning performance. We compared student performance in both 3D printing and…
ERIC Educational Resources Information Center
Ross, Michael J.
2013-01-01
Science education in the U.S. has failed for over a century to bring the experience of scientific induction to classrooms, from elementary science to undergraduate courses. The achievement of American students on international comparisons of science proficiency is unacceptable, and the disparities between groups underrepresented in STEM and others…
Web Based Technical Problem Solving for Enhancing Writing Skills of Secondary Vocational Students
ERIC Educational Resources Information Center
Papantoniou, Eleni; Hadzilacos, Thanasis
2017-01-01
We discuss some aspects of a pilot e-learning technical writing course addressed to 11th grade vocational high school students in Greece. The application of this alternative teaching intervention stemmed from the researcher-instructor's reflections relating to the integration of a problem based e-pedagogy that aims not just to familiarize students…
Whose Banner Are We Waving? Exploring STEM Partnerships for Marginalized Urban Youth
ERIC Educational Resources Information Center
Ridgeway, Monica L.; Yerrick, Randy K.
2018-01-01
This case study examines after school programming in citizen science from the perspective of Critical Race Theory. During the course of enacting community outreach projects this data was used to examine the positioning of experts, student, and teachers within the program. This study explores the role of race and ethnicity, and the ways in which…
ERIC Educational Resources Information Center
Baber, Lorenzo; Graham, Edmund; Taylor, Jason L.; Reese, George; Bragg, Debra D.; Lang, John; Zamani-Gallaher, Eboni M.
2015-01-01
In a knowledge-based economy, a postsecondary credential is vital for gainful employment and upward socioeconomic mobility. Unfortunately, the path a student takes from high school graduation to college course work is too often characterized by a troubling detour, namely, "remediation." According to Complete College America (2012), over…
NASA Astrophysics Data System (ADS)
Vijil, Veronica G.
2011-12-01
An overall increased awareness of the importance of science, technology, engineering, and mathematics (STEM) has prompted attention toward the continued underrepresentation of Hispanic women in this field. The purpose of this collective case study was to explore the support systems, perceived barriers, and prior experiences influencing high school Hispanic girls' decisions to pursue advanced coursework and related careers through a career pathway in science, technology, engineering, and mathematics (STEM) areas. Specifically, participants were interviewed regarding their mathematics and science experiences in elementary and middle schools, as well as perceived supports and barriers to their choices to pursue STEM careers and advanced coursework. Results indicated that the participants linked their elementary and middle school experiences with their teachers rather than specific activities. Accolades such as certificates and good grades for academic achievement contributed to the girls' strong self-efficacy at an early age. The participants possessed self-discipline and self-confidence, using intrinsic motivation to pursue their goals. Support systems included families and a few teachers. Barriers were revealed in different forms including derogatory comments by boys in class, difficult curricula with limited tutors available for higher level courses, and receipt of financial assistance to attend a university of their choice.
Building a Course on Global Sustainability using the grand challenges of Energy-Water-Climate
NASA Astrophysics Data System (ADS)
Myers, J. D.
2012-12-01
GEOL1600: Global Sustainability: Managing the Earth's Resources is a lower division integrated science course at the University of Wyoming that fulfills the university's science requirement. Course content and context has been developed using the grand challenge nexus of energy-water-and climate (EWC). The interconnection of these issues, their social relevance and timeliness has provided a framework that gives students an opportunity to recognize why STEM is relevant to their lives regardless of their ultimate professional career choices. The EWC nexus provides the filter to sieve the course's STEM content. It also provides an ideal mechanism by which the non-STEM perspectives important in grand challenge solutions can be seamlessly incorporated in the course. Through a combination of content and context, the relevance of these issues engage students in their own learning. Development of the course followed the Grand Challenge Scientific Literacy (GCSL) model independently developed by the author and two colleagues at the University of Wyoming. This course model stresses science principles centered on the nature of science (e.g., fundamental premises, habits of mind, critical thinking) and unifying scientific concepts (e.g., methods and tools, experimentation, modeling). Grand challenge principles identify the STEM and non-STEM concepts needed to understand the grand challenges, drawing on multiple STEM and non-STEM disciplines and subjects (i.e., economics, politics, unintended consequences, roles of stakeholders). Using the EWC nexus filter and building on the Grand Challenge Principles, specific content included in the course is selected is that most relevant to understanding the Grand Challenges, thereby stressing content depth over breadth. Because quantitative data and reasoning is critical to effectively evaluating challenge solutions, QR is a component of nearly all class activities, while engineering and technology aspects of grand challenges are explicitly stressed. Running concurrently through the course is a consideration of personal perspectives and their influence on student learning, particularly for controversial subjects. Organizationally, the course consists of three one hour lectures and a two hour lab each week. The lectures are used to introduce content and prepare the knowledge base students need for lab. Complementing traditional lectures are lecture worksheets (short activities applying topics previously presented in lecture) and lecture activities (more involved exercises that present a problem the students need to solve using previously learned scientific content and QR skills and tools). Labs focus on case studies set in global social contexts that are timely and relevant. Labs stress scientific skills (modeling groundwater flow) and also consider political and environmental issues, e.g. developing a policy to manage SO2 emissions from copper smelting. The ideas, concepts, educational materials and content developed in this course have been used as the basis for two Math Science Partnerships that have provided professional development for middle and high school science and math teachers and K-12 social, math and science teachers. These programs have worked with teachers to break down the barriers between disciplines and foster collaborative learning centered on socially relevant grand challenges.
Development and Implementation of an Integrated Science Course for Elementary Eduation Majors
NASA Astrophysics Data System (ADS)
Gunter, Mickey E.; Gammon, Steven D.; Kearney, Robert J.; Waller, Brenda E.; Oliver, David J.
1997-02-01
Currently the scientific community is trying to increase the general populationapos;s knowledge of science. These efforts stem from the fact that the citizenry needs a better understanding of scientific knowledge to make informed decisions on many issues of current concern. The problem of scientific illiteracy begins in grade school and can be traced to inadequate exposure to science and scientific thinking during the preparation of K - 8 teachers. Typically preservice elementary teachers are required to take only one or two disconnected science courses to obtain their teaching certificates. Also, introductory science courses are often large and impersonal, with the result that while students pass the courses, they may learn very little and retain even less.
Exploring K-12 mathematics course progression: implications for collegiate success in Florida
NASA Astrophysics Data System (ADS)
Campbell, Bethany; Varney, Christopher; Wade, Aaron
Increasingly, Florida college students are pressured to change their major as few times as possible and take only required classes, all in order to ``Finish in Four, Save More''. If they fail to do so, they may be subject to penalties such as Excess Hour Fees. Partially as a result of this, students wishing to study STEM are at a significant disadvantage if they enter college unprepared to take calculus their first semester. We explore the various ``paths to success'' to STEM degrees, defined by entering college having taken calculus in high school, starting from fifth grade onwards.
Pathways to college and STEM careers: enhancing the high school experience.
Schneider, Barbara; Broda, Michael; Judy, Justina; Burkander, Kri
2013-01-01
With a rising demand for a college degree and an increasingly complicated college search, application, and selection process, there are a number of interventions designed to ease the college-going process for adolescents and their families. One such intervention, the College Ambition Program (CAP), is specifically designed to be a whole-school intervention that comprehensively connects several important aspects of the college-going process and specifically is focused on increasing interest in science, technology, engineering, and math (STEM). With many adolescents having interest in STEM careers but lacking knowledge of how to transform these interests into plans, CAP supports students in developing and pursuing their educational and occupational goals. CAP offers students tutoring and mentoring, course-counseling and advising, assistance through the financial aid process, and college experiences through visits to college campuses. In addition to these four core components, CAP is also pursuing how to integrate mobile technology and texting to further provide students with tailored resources and information about the college-going process. This chapter describes the complexities of the college-going process, the components of the CAP intervention, and presents findings that demonstrate that these strategies can increase college-going rates and interest in STEM. The authors highlight the importance of developing a college-going culture within high schools that support the alignment of postsecondary and career goals. © WILEY PERIODICALS, INC.
Broadening Awareness and Participation in the Geosciences Among Underrepresented Minorities in STEM
NASA Astrophysics Data System (ADS)
Blake, R.; Liou-Mark, J.
2012-12-01
An acute STEM crisis exists nationally, and the problem is even more dire among the geosciences. Since about the middle of the last century, fewer undergraduate and graduate degrees have been granted in the geosciences than in any other STEM fields. To help in ameliorating this geoscience plight, particularly from among members of racial and ethnic groups that are underrepresented in STEM fields, the New York City College of Technology (City Tech) launched a vibrant geoscience program and convened a community of STEM students who are interested in learning about the geosciences. This program creates and introduces geoscience knowledge and opportunities to a diverse undergraduate student population that was never before exposed to geoscience courses at City Tech. This geoscience project is funded by the NSF OEDG program, and it brings awareness, knowledge, and geoscience opportunities to City Tech's students in a variety of ways. Firstly, two new geoscience courses have been created and introduced. One course is on Environmental Remote Sensing, and the other course is an Introduction to the Physics of Natural Disasters. The Remote Sensing course highlights the physical and mathematical principles underlying remote sensing techniques. It covers the radiative transfer equation, atmospheric sounding techniques, interferometric and lidar systems, and an introduction to image processing. Guest lecturers are invited to present their expertise on various geoscience topics. These sessions are open to all City Tech students, not just to those students who enroll in the course. The Introduction to the Physics of Natural Disasters course is expected to be offered in Spring 2013. This highly relevant, fundamental course will be open to all students, especially to non-science majors. The course focuses on natural disasters, the processes that control them, and their devastating impacts to human life and structures. Students will be introduced to the nature, causes, risks, effects, and prediction of natural disasters including earthquakes, volcanoes, tsunamis, landslides, subsidence, global climate change, severe weather, coastal erosion, floods, mass extinctions, wildfires, and meteoroid impacts. In addition to the brand new geoscience course offerings, City Tech students participate in geoscience - seminars, guest lectures, lecture series, and geoscience internship and fellowship workshops. The students also participate in geoscience exposure trips to NASA/GISS Columbia University, NOAA-CREST, and the Brookhaven National Laboratory. Moreover, the undergrads are provided opportunities for paid research internships via two NSF grants - NSF REU and NSF STEP. Geoscience projects are also integrated into course work, and students make geoscience group project presentations in class. Students also participate in geoscience career and graduate school workshops. The program also creates geoscience articulation agreements with the City College of New York so that students at City Tech may pursue Bachelor's and advanced degrees in the geosciences. This program is supported by NSF OEDG grant #1108281.
A Mixed-Methods Explanatory Study of the Failure Rate for Freshman STEM Calculus Students
ERIC Educational Resources Information Center
Worthley, Mary R.; Gloeckner, Gene W.; Kennedy, Paul A.
2016-01-01
In this study we aimed to understand who was struggling in freshman calculus courses, and why. Concentrating on the Fall sections of the class, the best predictors for success (R[superscript 2] = 0.4) were placement test results, the student's own appraisal of the quality of mathematics teaching they received in high school, and the Motivated…
The Georgia Perimeter College MESA Program: Propelling STEM Students to Success
ERIC Educational Resources Information Center
Law, Kouok K.
2011-01-01
From 2006 to 2008, while taking courses at Georgia Perimeter College (GPC), Joel Toussaint worked two jobs, one was at night. Now, he has graduated from Georgia Institute of Technology majoring in mechanical engineering, and he has been admitted to graduate school in mechanical engineer there. His plan for the future is to get his Ph. D. in…
ERIC Educational Resources Information Center
Gallagher, Carole; Huang, Kevin; Van Matre, Joseph
2015-01-01
This five-year evaluation examined the effectiveness of a promising middle-school mathematics intervention funded through an Investing in Innovation (i3) development grant. Evaluation objectives were to: (1) study the impact of an intervention aimed at increasing the academic achievement of students in Algebra I--a gate-keeping course--as measured…
In Brief: Revitalizing Earth science education
NASA Astrophysics Data System (ADS)
Showstack, Randy
2008-12-01
A 5-year, $3.9-million U.S. National Science Foundation Math Science Partnership grant to Michigan Technological University (MTU), in Houghton, aims to improve instruction in middle-school Earth and space science courses. The program will enable geoscience and education researchers to work with middle-school science teachers to test strategies designed to reform science, technology, engineering, and math (STEM) education. Project lead researcher Bill Rose said the project could be a template for improvement in STEM throughout the United States. Rose, one of seven MTU faculty members involved with the Michigan Institute for Teaching Excellence Program (MITEP), said the project is ``trying to do something constructive to attract more talented young people to advanced science, math, and technology.'' The project includes data collection and analysis overseen by an evaluation team from the Colorado School of Mines. Also participating in the project are scientists from Grand Valley State University, Allendale, Mich.; the Grand Rapids (Mich.) Area Pre-College Engineering Program; the American Geological Institute; and the U.S. National Park Service.
High School Students’ Learning and Perceptions of Phylogenetics of Flowering Plants
Landis, Jacob B.; Crippen, Kent J.
2014-01-01
Basic phylogenetics and associated “tree thinking” are often minimized or excluded in formal school curricula. Informal settings provide an opportunity to extend the K–12 school curriculum, introducing learners to new ideas, piquing interest in science, and fostering scientific literacy. Similarly, university researchers participating in science, technology, engineering, and mathematics (STEM) outreach activities increase awareness of college and career options and highlight interdisciplinary fields of science research and augment the science curriculum. To aid in this effort, we designed a 6-h module in which students utilized 12 flowering plant species to generate morphological and molecular phylogenies using biological techniques and bioinformatics tools. The phylogenetics module was implemented with 83 high school students during a weeklong university STEM immersion program and aimed to increase student understanding of phylogenetics and coevolution of plants and pollinators. Student response reflected positive engagement and learning gains as evidenced through content assessments, program evaluation surveys, and program artifacts. We present the results of the first year of implementation and discuss modifications for future use in our immersion programs as well as in multiple course settings at the high school and undergraduate levels. PMID:25452488
NASA Astrophysics Data System (ADS)
Pearce, M. D.
2017-12-01
CCRI is a year-long STEM education program designed to bring together teams of NASA scientists, graduate, undergraduate and high school interns and high school STEM educators to become immersed in NASA research focused on atmospheric and climate changes in the 21st century. GISS climate research combines analysis of global datasets with global models of atmospheric, land surface, and oceanic processes to study climate change on Earth and other planetary atmospheres as a useful tool in assessing our general understanding of climate change. CCRI interns conduct research, gain knowledge in assigned research discipline, develop and present scientific presentations summarizing their research experience. Specifically, CCRI interns write a scientific research paper explaining basic ideas, research protocols, abstract, results, conclusion and experimental design. Prepare and present a professional presentation of their research project at NASA GISS, prepare and present a scientific poster of their research project at local and national research symposiums along with other federal agencies. CCRI Educators lead research teams under the direction of a NASA GISS scientist, conduct research, develop research based learning units and assist NASA scientists with the mentoring of interns. Educators create an Applied Research STEM Curriculum Unit Portfolio based on their research experience integrating NASA unique resources, tools and content into a teacher developed unit plan aligned with the State and NGSS standards. STEM Educators also Integrate and implement NASA unique units and content into their STEM courses during academic year, perform community education STEM engagement events, mentor interns in writing a research paper, oral research reporting, power point design and scientific poster design for presentation to local and national audiences. The CCRI program contributes to the Federal STEM Co-STEM initiatives by providing opportunities, NASA education resources and programing that improve STEM instruction, increase and sustain youth and public engagement in STEM, enhance STEM experience of undergraduate students, better serve groups under-represented groups in STEM fields and design graduate education for tomorrow's STEM workforce.
The impact of taking a college pre-calculus course on students' college calculus performance
NASA Astrophysics Data System (ADS)
Sonnert, Gerhard; Sadler, Philip M.
2014-11-01
Poor performance on placement exams keeps many US students who pursue a STEM (science, technology, engineering, mathematics) career from enrolling directly in college calculus. Instead, they must take a pre-calculus course that aims to better prepare them for later calculus coursework. In the USA, enrollment in pre-calculus courses in two- and four-year colleges continues to grow, and these courses are well-populated with students who already took pre-calculus in high school. We examine student performance in college calculus, using regression discontinuity to estimate the effects of taking college pre-calculus or not, in a national US sample of 5507 students at 132 institutions. We find that students who take college pre-calculus do not earn higher calculus grades.
The Power of Educational Robotics
NASA Astrophysics Data System (ADS)
Cummings, Timothy
The purpose of this action research project was to investigate the impact a students' participation in educational robotics has on his or her performance in the STEM subjects. This study attempted to utilize educational robotics as a method for increasing student achievement and engagement in STEM subjects. Over the course of 12 weeks, an after-school robotics program was offered to students. Guided by the standards and principles of VEX IQ, a leading resource in educational robotics, students worked in collaboration on creating a design for their robot, building and testing their robot, and competing in the VEX IQ Crossover Challenge. Student data was gathered through a pre-participation survey, observations from the work they performed in robotics club, their performance in STEM subject classes, and the analysis of their end-of-the-year report card. Results suggest that the students who participate in robotics club experienced a positive impact on their performance in STEM subject classes.
Climate Literacy: STEM and Climate Change Education and Remote Sensing Applications
NASA Astrophysics Data System (ADS)
Reddy, S. R.
2015-12-01
NASA Innovations in Climate Education (NICE) is a competitive project to promote climate and Earth system science literacy and seeks to increase the access of underrepresented minority groups to science careers and educational opportunities. A three year funding was received from NASA to partnership with JSU and MSU under cooperative agreement "Strengthening Global Climate Change education through Remote Sensing Application in Coastal Environment using NASA Satellite Data and Models". The goal is to increase the number of highschool and undergraduate students at Jackson State University, a Historically Black University, who are prepared to pursue higher academic degrees and careers in STEM fields. A five Saturday course/workshop was held during March/April 2015 at JSU, focusing on historical and technical concepts of math, enginneering, technology and atmosphere and climate change and remote sensing technology and applications to weather and climate. Nine students from meteorology, biology, industrial technology and computer science/engineering of JSU and 19 high scool students from Jackson Public Schools participated in the course/workshop. The lecture topics include: introduction to remote sensing and GIS, introduction to atmospheric science, math and engineering, climate, introduction to NASA innovations in climate education, introduction to remote sensing technology for bio-geosphere, introduction to earth system science, principles of paleoclimatology and global change, daily weather briefing, satellite image interpretation and so on. In addition to lectures, lab sessions were held for hand-on experiences for remote sensing applications to atmosphere, biosphere, earth system science and climate change using ERDAS/ENVI GIS software and satellite tools. Field trip to Barnett reservoir and National weather Service (NWS) was part of the workshop. Basics of Earth System Science is a non-mathematical introductory course designed for high school seniors, high school teachers and undergraduate students who may or may not have adequate exposure to fundamental concepts of the key components of the modern earth system and their interactions. This is an online course that will be delivered using Blackboard platform available at Jackson State University.
Factors that Influence Community College Students' Interest in Science Coursework
NASA Astrophysics Data System (ADS)
Sasway, Hope
There is a need for science education research that explores community college student, instructor, and course characteristics that influence student interest and motivation to study science. Increasing student enrollment and persistence in STEM is a national concern. Nearly half of all college graduates have passed through a community college at some point in their higher education. This study at a large, ethnically diverse, suburban community college showed that student interest tends to change over the course of a semester, and these changes are related to student, instructor, and course variables. The theoretical framework for this study was based upon Adult Learning Theory and research in motivation to learn science. Adult Learning Theory relies heavily on self-directed learning and concepts of andragogy, or the art and science of teaching adults. This explanatory sequential mixed-methods case study of student course interest utilized quantitative data from 639 pre-and post-surveys and a background and personal experience questionnaire. The four factors of the survey instrument (attention, relevance, confidence, and satisfaction) were related to motivation and interest by interviewing 12 students selected through maximum variation sampling in order to reach saturation. Qualitative data were collected and categorized by these factors with extrinsic and intrinsic themes emerging from personal and educational experiences. Analysis of covariance showed student characteristics that were significant included age and whether the student already held a post-secondary degree. Significant instructor characteristics included whether the instructor taught full- or part-time, taught high school, held a doctoral degree, and had pedagogical training. Significant course characteristics included whether the biology course was a major, elective, or service course; whether the course had a library assignment; and high attrition rate. The binary logistic regression model showed six significant variables that predicted increased student interest: older students, previous degree holders, students that took courses at night rather than during the daytime, students who were taught by instructors who taught high school, instructors who taught part-time, and students who had a non-STEM major. Methodological triangulation ensured that the research questions were adequately addressed, as qualitative data corroborated and provided insights for quantitative results. These findings imply that interventions such as implementation of professional development, specifically in andragogical training for instructors and support personnel, are necessary in order to properly address the needs of community college students. Policy makers need to ensure that proper academic and financial counseling systems are in place for students enrolled in these science courses. Students were affected by past experiences and required support from others in order to increase their interest and motivation to study science. This study will inform efforts to help community college students persist in the pipeline to join in the STEM workforce or transfer to four-year colleges.
NASA Astrophysics Data System (ADS)
Reid, Jackie; Wilkes, Janelle
2016-08-01
Mapping quantitative skills across the science, technology, engineering and mathematics (STEM) curricula will help educators identify gaps and duplication in the teaching, practice and assessment of the necessary skills. This paper describes the development and implementation of quantitative skills mapping tools for courses in STEM at a regional university that offers both on-campus and distance modes of study. Key elements of the mapping project included the identification of key graduate quantitative skills, the development of curriculum mapping tools to record in which unit(s) and at what level of attainment each quantitative skill is taught, practised and assessed, and identification of differences in the way quantitative skills are developed for on-campus and distance students. Particular attention is given to the differences that are associated with intensive schools, which consist of concentrated periods of face-to-face learning over a three-four day period, and are available to distance education students enrolled in STEM units. The detailed quantitative skills mapping process has had an impact on the review of first-year mathematics units, resulted in crucial changes to the curriculum in a number of courses, and contributed to a more integrated approach, and a collective responsibility, to the development of students' quantitative skills for both face-to-face and online modes of learning.
Weeded Out? Gendered Responses to Failing Calculus.
Sanabria, Tanya; Penner, Andrew
2017-06-01
Although women graduate from college at higher rates than men, they remain underrepresented in science, technology, engineering, and mathematics (STEM) fields. This study examines whether women react to failing a STEM weed-out course by switching to a non-STEM major and graduating with a bachelor's degree in a non-STEM field. While competitive courses designed to weed out potential STEM majors are often invoked in discussions around why students exit the STEM pipeline, relatively little is known about how women and men react to failing these courses. We use detailed individual-level data from the National Educational Longitudinal Study (NELS) Postsecondary Transcript Study (PETS): 1988-2000 to show that women who failed an introductory calculus course are substantially less likely to earn a bachelor's degree in STEM. In doing so, we provide evidence that weed-out course failure might help us to better understand why women are less likely to earn degrees.
Weeded Out? Gendered Responses to Failing Calculus
Sanabria, Tanya; Penner, Andrew
2018-01-01
Although women graduate from college at higher rates than men, they remain underrepresented in science, technology, engineering, and mathematics (STEM) fields. This study examines whether women react to failing a STEM weed-out course by switching to a non-STEM major and graduating with a bachelor’s degree in a non-STEM field. While competitive courses designed to weed out potential STEM majors are often invoked in discussions around why students exit the STEM pipeline, relatively little is known about how women and men react to failing these courses. We use detailed individual-level data from the National Educational Longitudinal Study (NELS) Postsecondary Transcript Study (PETS): 1988–2000 to show that women who failed an introductory calculus course are substantially less likely to earn a bachelor’s degree in STEM. In doing so, we provide evidence that weed-out course failure might help us to better understand why women are less likely to earn degrees. PMID:29616148
Friedrichsen, Patricia
2009-01-01
The intersection of science and our society has led to legal and ethical issues in which we all play a part. To support development of scientific literacy, college science courses need to engage students in difficult dialogues around ethical issues. We describe a new course, Stem Cells and Society, in which students explore the basic biology of stem cell research and the controversy surrounding it. As part of the course, we highlight the nature of science, looking at the methods and norms within the scientific community. To gain a perspective on the current stem cell controversy, we examine the public debates in the 1970s surrounding in vitro fertilization, the stem cell initiative in Missouri, and the personal and religious viewpoints that have emerged relative to the stem cell debate. In the Stem Cells and Society course, students are challenged to develop and clarify their own personal positions concerning embryonic stem cell research. These positions are grounded in science, religion or personal philosophy, and law. PMID:19255139
NASA Astrophysics Data System (ADS)
Stark, L. A.; Malone, M.
2015-12-01
Multiple types of programs are needed to support the STEM workforce pipeline from pre-college through graduate school and beyond. Short-term, intensive programs provide opportunities to participate in authentic scientific research for students who may not be sure of their interest in science and for teachers who may be unable to devote an entire summer to a research experience. The iUTAH (innovative Urban Transitions and Aridregion Hydro-Systainability) Summer Research Institute utilizes an innovative approach for a 5-day program that engages high school and undergraduate students as well as middle and high school teachers in conducting research projects led by graduate students and faculty members. Each Institute involves 3-4 half to full-day research projects. Participants collect (usually in the field) and analyze data for use in on-going research or that is related to a current research project. The participants work in groups with the graduate students to create a poster about each research project. They present their posters on the last day of the Institute at the state-wide meeting of all researchers and involved in this EPSCoR-funded program. In addition to introducing participants to research, one of the Institute's goals is to provide opportunities for meaningful near-peer interactions with students along the STEM pipeline from high school to undergraduate to graduate school. On the end-of-Institute evaluations, almost all students have reported that their discussions with other participants and with graduate students and faculty were a "Highly effective" or "Effective" part of the Institute. In response to a question about how the Institute will impact their course choices or their plans to pursue a career in science, many high school and undergraduate students have noted that they plan to take more science courses. Each year several undergraduates who were previously unsure about a career in science have indicated that they now intend to pursue a science career. When asked how the Institute will impact their classroom practice, teachers most frequently report that they intend to purchase equipment that will enable them to carry out some of the Institute research projects with their students, and that they plan to provide more opportunities for students to collect and analyze data. Funding: NSF 1208055.
The pipeline of physiology courses in community colleges: to university, medical school, and beyond.
McFarland, Jenny; Pape-Lindstrom, Pamela
2016-12-01
Community colleges are significant in the landscape of undergraduate STEM (science technology, engineering, and mathematics) education (9), including biology, premedical, and other preprofessional education. Thirty percent of first-year medical school students in 2012 attended a community college. Students attend at different times in high school, their first 2 yr of college, and postbaccalaureate. The community college pathway is particularly important for traditionally underrepresented groups. Premedical students who first attend community college are more likely to practice in underserved communities (2). For many students, community colleges have significant advantages over 4-yr institutions. Pragmatically, they are local, affordable, and flexible, which accommodates students' work and family commitments. Academically, community colleges offer teaching faculty, smaller class sizes, and accessible learning support systems. Community colleges are fertile ground for universities and medical schools to recruit diverse students and support faculty. Community college students and faculty face several challenges (6, 8). There are limited interactions between 2- and 4-yr institutions, and the ease of transfer processes varies. In addition, faculty who study and work to improve the physiology education experience often encounter obstacles. Here, we describe barriers and detail existing resources and opportunities useful in navigating challenges. We invite physiology educators from 2- and 4-yr institutions to engage in sharing resources and facilitating physiology education improvement across institutions. Given the need for STEM majors and health care professionals, 4-yr colleges and universities will continue to benefit from students who take introductory biology, physiology, and anatomy and physiology courses at community colleges. Copyright © 2016 The American Physiological Society.
ERIC Educational Resources Information Center
Hauze, Sean; French, Debbie
2017-01-01
With a national emphasis on integrated science, technology, engineering, and mathematics (STEM) education in K-16 courses, incorporating technology in a meaningful way is critical. This research examines whether STEM and non-STEM teachers were able to incorporate technology in STEM courses successfully with sufficient professional development. The…
Pilot Program for Teaching Earth Science in New York
NASA Astrophysics Data System (ADS)
Nadeau, Patricia A.; Flores, Kennet E.; Ustunisik, Gokce; Zirakparvar, Nasser A.; Grcevich, Jana; Pagnotta, Ashley; Sessa, Jocelyn A.; Kinzler, Rosamond J.; Macdonald, Maritza; Mathez, Edmond; Mac Low, Mordecai-Mark
2013-06-01
During the 2009-2010 school year, 40% of New York City (NYC) Earth science teachers were not certified to teach Earth science [New York State Education Department (NYSED), 2011]. This highlights a longstanding shortage of certified teachers, which persists today and prevents many schools from offering courses on the subject, thus diminishing student opportunities to study or embark on careers in Earth science. More generally, the paucity of qualified, effective science teachers hinders student achievement in science, technology, engineering, and mathematics (STEM), and research has consistently shown that improving the quality of teaching substantially increases achievement in STEM-related fields [National Science Board, 2007]. With only 36% of NYC 8th graders scoring at or above the basic level of proficiency in science and with even lower scores for African-American and Hispanic students [Livingston and Wirt, 2005], the need for more qualified science teachers is clear.
ERIC Educational Resources Information Center
Bergeron, Liz; Gordon, Melissa
2017-01-01
The purpose of this study was to understand enrollment and performance differences between male and females in higher level secondary STEM courses. This study analyzes performance and enrollment of 355,688 secondary students in higher level STEM courses. This research also enabled an exploration of country level differences. The enrollment…
ERIC Educational Resources Information Center
Wang, Xueli
2016-01-01
This research focuses on course-taking patterns of beginning community college students enrolled in one or more non-remedial science, technology, engineering, and mathematics (STEM) courses during their first year of college, and how these patterns are mapped against upward transfer in STEM fields of study. Drawing upon postsecondary transcript…
NASA Astrophysics Data System (ADS)
Scott, Catherine Elizabeth
This study examined the characteristics of 10 science, technology, engineering, and mathematics (STEM) focused high schools. A comparative case designed was used to identify key components of STEM school designs. Schools were selected from various regions across the United States. Data collected included websites, national statistics database, standardized test scores, interviews and published articles. Results from this study indicate that there is a variety of STEM high school programs designed to increase students' ability to pursue college degrees in STEM fields. The school mission statements influence the overall school design. Students at STEM schools must submit an application to be admitted to STEM high schools. Half of the STEM high schools used a lottery system to select students. STEM high schools have a higher population of black students and a lower population of white and Hispanic students than most schools in the United States. They serve about the same number of economically disadvantaged students. The academic programs at STEM high schools are more rigorous with electives focused on STEM content. In addition to coursework requirements, students must also complete internships and/or a capstone project. Teachers who teach in STEM schools are provided regularly scheduled professional development activities that focus on STEM content and pedagogy. Teachers provide leadership in the development and delivery of the professional development activities.
Ikemura, Mai; Hashida, Tohru
2016-01-01
"Pharmacist-scientists" are needed in the clinical setting. However, research competency, including logical thinking, differs among pharmacists. This difference stems from the varying experience of research during university and graduate school. Thus, to ascertain the research experience within different educational systems, we evaluated pharmacists in Kobe City Medical Center General Hospital. In most instances, there was a direct correlation between the duration of research (in the laboratory at university or graduate school), and research experience gained, such as independent thinking and presentations at seminars or academic conferences. Respondents who graduated from the recently introduced 6-year pharmaceutical science course had less research experience than those who graduated with a combination 4-year degree and subsequent master's course. Conversely, the number of presentations at academic conferences and the number of published papers postgraduation were independent of research experience during university and graduate school. These results indicate that there is a considerable difference in the research experience during university and graduate school among pharmacists, and this is likely to impact their pharmaceutical skills.
NASA Astrophysics Data System (ADS)
Christensen, Rhonda; Knezek, Gerald; Tyler-Wood, Tandra
2015-12-01
This study examines positive dispositions reported by middle school and high school students participating in programs that feature STEM-related activities. Middle school students participating in school-to-home hands-on energy monitoring activities are compared to middle school and high school students in a different project taking part in activities such as an after-school robotics program. Both groups are compared and contrasted with a third group of high school students admitted at the eleventh grade to an academy of mathematics and science. All students were assessed using the same science, technology, engineering and mathematics (STEM) dispositions instrument. Findings indicate that the after-school group whose participants self-selected STEM engagement activities, and the self-selected academy of mathematics and science group, each had highly positive STEM dispositions comparable to those of STEM professionals, while a subset of the middle school whole-classroom energy monitoring group that reported high interest in STEM as a career, also possessed highly positive STEM dispositions comparable to the STEM Professionals group. The authors conclude that several different kinds of hands-on STEM engagement activities are likely to foster or maintain positive STEM dispositions at the middle school and high school levels, and that these highly positive levels of dispositions can be viewed as a target toward which projects seeking to interest mainstream secondary students in STEM majors in college and STEM careers, can hope to aspire. Gender findings regarding STEM dispositions are also reported for these groups.
What Does it Mean to Be a STEM School: A Comparison of Science Programs
NASA Astrophysics Data System (ADS)
Stanley, Rebecca Matthews
Schools that focus on science, technology, engineering, and mathematics (STEM) have been created to address a perceived need to increase numbers of students in the United States choosing and persisting in STEM career pathways. This study compared science programs in STEM and non-STEM high schools to determine how implementing a STEM design impacts science, a cornerstone of STEM. The multiple case study examined STEM integration, science instruction, and extracurricular opportunities in four high schools, two that were designated as STEM by the state's department of instruction and two that were comparable but did not have a focus on STEM. Results from this study indicate that STEM and non-STEM science programs are not significantly different in the schools studied. The two major differences that were found, greater incorporation of engineering design and increased access to extracurricular STEM activities, did not have beneficial impact on students' attitudes or career choices. Technology and math integration were similar but STEM schools integrated engineering design whereas non-STEM schools did not. Science instruction was similar. The numbers of observed inquiry-based lessons were similar, however, STEM schools had more project-based lessons, a form of inquiry-based instruction in which students create a product. A higher number of science-based extracurricular opportunities was available to students in STEM than non- STEM schools. This study offers important insight into the implementation of STEM education within existing school contexts and constraints.
Astronomy in Denver: Effects of a summer camp on girls’ preconceived notions of careers in STEM
NASA Astrophysics Data System (ADS)
Hoffman, Jennifer L.; Fetrow, Kirsten J.; Broder, Dale E.; Murphy, Shannon M.; Tinghitella, Robin; Hart, Quyen N.
2018-06-01
Despite gains in recent years, gender disparities persist in fields related to science, technology, engineering, and mathematics (STEM). Although young women can perform as well as their male peers in STEM courses and tests, they are less likely to pursue higher education and careers in STEM. Our study examined the effectiveness of a STEM-focused summer camp at increasing middle-school girls’ career aspirations in STEM and self-confidence with respect to scientific topics. The 15 participants were Denver-area girls ages 10 to 13 years old from groups underrepresented in STEM fields. During the weeklong DU SciTech camp, these girls built telescopes and computers, collected and classified insects, completed inquiry activities, and interacted with female STEM professionals from a variety of scientific fields and racial backgrounds. We hypothesized that camp attendance would expand girls’ perceptions of who does science, increase their awareness of and interest in STEM careers, and increase their scientific self-efficacy, or belief in their ability to succeed at STEM tasks. We found that DU SciTech improved the girls’ scientific self-efficacy and awareness of STEM careers, but it did not increase their (already high) interest in pursuing their own careers in STEM. We will present our results and discuss their implications for future summer camps and efforts to broaden STEM participation by young women from underrepresented groups.
A Bridge to the Stars: An Innovative Pipeline to Improve STEM Diversity
NASA Astrophysics Data System (ADS)
McIntosh, Daniel H.
2016-06-01
Improving diversity in the STEM workforce is a top priority for both the NSF and NASA. Increasing participation from underrepresented groups in the physical sciences like astronomy remains an even more serious challenge with little progress made despite federal mandates. Focusing resources on a small number of academically high-performing individuals is not enough and reinforces the idea that STEM is exclusive. To make real progress requires (1) identifying a larger pool of inner-city secondary students who may not have been exposed to many STEM opportunities nor have the highest grades, yet, may have both the ability and desire to succeed in STEM if inspired; (2) providing these students with high impact exposure to science through an extended and engaging interaction with a professional scientist that fosters student success; and (3) establishing long-term partnerships with community teachers and administrators to facilitate a critical bridge between high school and college. My bridge pipeline provides a role model. The extended engagement is enrollment in a 1-semester, learner-centered 'Astro100' course with an award-winning professor. Using NASA Space Grant funding, 31 scholarships have been awarded over 6 semesters. All Scholars meet underrepresented/underprivileged criteria based on race, sex or income; key demographics: 2/3 AA+HA, 2/3 female. To promote student success, the program includes mentoring interns drawn from top students in previous Astro100 courses; 50% are female. The Scholars gained university credit with an 81% overall average grade, 97% with a passing grade. Longitudinal tracking of college enrollment into STEM is underway.
NSF Programs That Support Research in the Two-Year College Classroom
NASA Astrophysics Data System (ADS)
Carter, V.; Ryan, J. G.; Singer, J.
2011-12-01
The National Science Foundation recognizes the significant role provided by two-year institutions in providing high quality STEM courses to large numbers of students. For some students the STEM courses completed while attending a two-year institution represent the only STEM courses a student may take; for others the courses serve as the foundation to continue on into a STEM major at a four-year institution; and some students complete STEM courses that lead directly into the workforce. Several programs in the Division of Undergraduate Research, including the Advanced Technological Education (ATE) program, STEM Talent Expansion Program (STEP), and the Transforming Undergraduate Education in STEM (TUES) program, support the inclusion of student research experiences at two-year institutions. Information about these programs and examples of successful funded projects will be provided. Resources for faculty considering applying for support will be shared with special attention to a faculty development program designed to help faculty learn about funding opportunities and prepare proposals for submission to the TUES and ATE programs.
NASA Astrophysics Data System (ADS)
Berryhill, K. J.; Slater, T. F.; Slater, S. J.; Harbour, C.; Forrester, J. H.
2016-12-01
A wide range of incoming knowledge is seen in students taking introductory astronomy courses. Using the Test Of Astronomy STandards (TOAST) as a pre-course measure of incoming knowledge, an evaluation was completed to discover any explanation for this variation. It would be reasonable to suggest that this could result from the variety we see in student's motivation, self-efficacy, general scholastic achievement, their high school science experience, or even whether one or more of their parents is in a STEM field. In this re-evaluation, there was no correlation seen between the above and the student's pre-test scores. Instead, the only predictor of pretest scores was student's exposure to astronomy through informal learning opportunities. This leads to important implications for faculty revitalizing their courses to improve student learning.
NASA Astrophysics Data System (ADS)
Padgett, D.
2016-12-01
Tennessee State University (TSU) is among seven partner institutions in the NASA-funded project "Mission Earth: Fusing Global Learning and Observations to Benefit the Environment (GLOBE) with NASA Assets to Build Systemic Innovation in STEM Education." The primary objective at the TSU site is to expose high school students from racial and ethnic groups traditionally underrepresented in STEM to atmospheric science and physical systems associated with climate change. Currently, undergraduate students enrolled in TSU's urban and physical courses develop lessons for high school students focused upon the analysis of global warming phenomena and related extreme weather events. The GLOBE Atmosphere Protocols are emphasized in exercises focused upon the urban heat island (UHI) phenomenon and air quality measurements. Pre-service teachers at TSU, and in-service teachers at four local high schools are being certified in the Atmosphere Protocols. Precipitation, ambient air temperature, surface temperature and other data are collected at the schools through a collaborative learning effort among the high school students, TSU undergraduates, and high school teachers. Data collected and recorded manually in the field are compared to each school's automated Weatherbug station measurements. Students and teachers engage in analysis of NASA imagery as part of the GLOBE Surface Temperature Protocol. At off-campus locations, US Clean Air Act (CAA) criteria air pollutant and Toxic Release Inventory (TRI) air pollutant sampling is being conducted in community-based participatory research (CBPR) format. Students partner with non-profit environmental organizations. Data collected using low-cost air sampling devices is being compared with readings from government air monitors. The GLOBE Aerosols Protocol is used in comparative assessments with air sampling results. Project deliverables include four new GLOBE schools, the enrollment of which is nearly entirely comprised of students underrepresented in STEM. A model for service learning activities with GLOBE to increase underrepresented groups participation in STEM is a second deliverable. A third deliverable, a comprehensive citizen science guidebook for grassroots level air quality assessment, is being developed for wide distribution.
Frankenfeld, Cara L.; Bases, Jessica; Espina, Virginia; Liotta, Lance A.
2014-01-01
What early experiences attract students to pursue an education and career in science, technology, engineering, and mathematics (STEM)? Does hands-on research influence them to persevere and complete a major course of academic study in STEM? We evaluated survey responses from 149 high school and undergraduate students who gained hands-on research experience in the 2007–2013 Aspiring Scientists Summer Internship Programs (ASSIP) at George Mason University. Participants demonstrated their strong interest in STEM by volunteering to participate in ASSIP and completing 300 h of summer research. The survey queried extracurricular experiences, classroom factors, and hands-on projects that first cultivated students’ interest in the STEM fields, and separately evaluated experiences that sustained their interest in pursuing a STEM degree. The majority of students (65.5%, p < 0.0001) reported extracurricular encounters, such as the influence of a relative or family member and childhood experiences, as the most significant factors that initially ignited their interest in STEM, while hands-on lab work was stated as sustaining their interest in STEM (92.6%). Based on these findings collected from a cohort of students who demonstrated a strong talent and interest in STEM, community-based programs that create awareness about STEM for both children and their family members may be key components for igniting long-term academic interest in STEM. PMID:25452491
NASA Astrophysics Data System (ADS)
Mussey, Season Shelly
2009-12-01
Historically, racial and ethnic minority students from low income backgrounds have faced unequal access to colleges and universities. Recently, both K-12 and higher education institutions, specifically the University of California, in response to Proposition 209, have made efforts to increase access and opportunities for all students. Similarly, female minority students are underrepresented in selected science, technology, engineering and math (STEM) majors and careers. Using a qualitative research design, this study investigates how first generation, low income, underrepresented minority students who graduated from an innovative college preparatory high school enact coping strategies that they were explicitly taught to achieve success within the context of university science and math courses. The presence of a unique, college-prep high school on the campus of UC San Diego, which accepts exclusively low-income students through a randomized lottery system, creates an unusual opportunity to study the transition from high school to college for this population, a cohort of underrepresented students who were taught similar academic coping strategies for success in college. This study aims to understand how students develop their college-going, academic identities within the context of their colleges and universities. Furthermore, this study intends to understand the phenomenon of "transition to college" as a lived experience of first-generation, low income, minority students, who all share a similar college preparatory, high school background. The main research questions are: (1) How do underrepresented students experience the transition from a college preparatory high school to college? (2) How are students developing their college-going, academic identities in the context of their educational institutions? and (3) What factors support or constrain student participation and success in college science courses? Twenty-eight students participated in this study. Based on surveys and individual interviews with the participants, twenty student narratives were written and analyzed. The students' narratives provide a picture of how these underrepresented students are experiencing the transition to college. In this sample, five factors impact the students' college-going academic identity development, major choice, and career path: (1) college preparation in high school, (2) self-efficacy, (3) success in college academics, (4) affinity group participation, and (5) interaction with college faculty.
NASA Astrophysics Data System (ADS)
Pierce, Donna M.; Radencic, Sarah P.; Walker, Ryan M.; Cartwright, John H.; Schmitz, Darrel W.; Bruce, Lori M.; McNeal, Karen S.
2014-11-01
Initiating New Science Partnerships in Rural Education (INSPIRE) is a five-year partnership between Mississippi State University and three school districts in Mississippi’s Golden Triangle region. This fellowship program is designed to strengthen the communication and scientific reasoning skills of STEM graduate students by having them design and implement inquiry-based lessons which channel various aspects of their research in our partner classrooms. Fellows are encouraged to explore a diversity of approaches in classroom lesson design and to use various technologies in their lessons, including GIS, SkyMaster weather stations, Celestia, proscopes, benchtop SEM, and others. Prior to entering the classrooms for a full school year, Fellows go through an intense graduate-level training course and work directly with their partner teachers, the program coordinator, and participating faculty, to fold their lessons into the curricula of the classrooms to which they’ve been assigned. Here, we will discuss the various written, oral, and visual exercises that have been most effective for training our Fellows, including group discussions of education literature, role playing and team-building exercises, preparation of written lesson plans for dissemination to other teachers nationwide, the Presentation Boot Camp program, and production of videos made by the Fellows highlighting careers in STEM fields. We will also discuss the changes observed in Fellows’ abilities to communicate science and mathematics over the course of their fellowship year. INSPIRE is funded by the NSF Graduate K-12 (GK-12) STEM Fellowship Program, award number DGE-0947419.
NASA Astrophysics Data System (ADS)
Hayali, Tolga
This study examined the relationship between 2011 freshman college mathematics and science grades and freshman students' high school academics and demographic data, exploring the factors that contribute to the success of first-year STEM majoring freshman students at State University of New York at Oswego. The variables were Gender, Race, SES, School Size, Parent with College Education, High School Grade Point Average (HSGPA), Transfer Credit, SAT Composite Score, and New York State Regents Exam results, based on data from 237 freshman students entering college immediately following high school. The findings show HSGPA as a significant predictor of success in freshman College Mathematics and Sciences, Transfer Credit as a significant predictor in College Mathematics and College Chemistry, SES as a significant predictor in College Biology and College Chemistry, Parent with College Education as a significant predictor in College Biology and New York State Chemistry Regents Exam as a significant predictor in College Chemistry. Based on these findings, guidance counselors, science educators, and education institutions can develop a framework to determine which measurements are meaningful and advise students to focus on excellent performance in the Chemistry Regents Exams, take more college courses during high school, and maintain a high grade point average.
ERIC Educational Resources Information Center
Bicer, Ali; Capraro, Robert M.; Capraro, Mary M.
2018-01-01
The purpose of this paper is to demonstrate Hispanic students' mathematics achievement growth rate in Inclusive science, technology, engineering, and mathematics (STEM) high schools compared to Hispanic students' mathematics achievement growth rate in traditional public schools. Twenty-eight schools, 14 of which were Texas STEM (T-STEM) academies…
NASA Astrophysics Data System (ADS)
Bicer, Ali; Capraro, Robert M.; Capraro, Mary M.
2018-07-01
The purpose of this paper is to demonstrate Hispanic students' mathematics achievement growth rate in Inclusive science, technology, engineering, and mathematics (STEM) high schools compared to Hispanic students' mathematics achievement growth rate in traditional public schools. Twenty-eight schools, 14 of which were Texas STEM (T-STEM) academies and 14 of which were matched non-STEM schools, were included in this study. A hierarchical linear modelling method was conducted. The result of the present study revealed that there was no difference in Hispanic students' mathematics achievement growth rate in T-STEM academies compared to Hispanic students' mathematics achievement growth rate in comparison schools. However, in terms of gender, the results indicated that female Hispanic students in T-STEM academies outperformed female Hispanic students in comparison schools in their mathematics growth rate.
Diversifying the STEM pipeline
Boelter, Christina; Link, Tanja C.; Perry, Brea L.; Leukefeld, Carl
2017-01-01
Structured Abstract Purpose The current paper focuses on the description and evaluation of a two-year STEM intervention targeting underserved middle schools students from minority and low SES backgrounds. Design/methodology/approach Middle school students from low-income and minority backgrounds (n = 166) were targeted to participate in a two-year, intensive, hands-on science and technology intervention to increase their interest in biomedical and health sciences. Quantitative and qualitative data were collected from TRY-IT! Students as well as a control group that did not participate in the intervention, teachers, and parents to assess changes in attitudes and knowledge with respect to a variety of STEM-related topics. Findings Quantitative analyses did not reveal significant long-lasting differences between the TRY-IT! and the control group, thus providing a mixed assessment of the effectiveness of the intervention. However, qualitative student responses collected during the second year of participation revealed positive attitudes toward the program experience and benefits of their exposure to science. In light of these findings, insights drawn from reflecting on successes and challenges experienced during the course of planning and implementing the study are provided to guide future programs and research. Originality/value The intervention was developed in response to the continued under representation of minority and lower SES individuals in STEM careers. An effort to boost positive attitudes toward science and math, as well as confidence in the accessibility of STEM careers among this population is important given the promising outlook of this career field compared to others for future generations. PMID:28553067
Pressurizing the STEM Pipeline: an Expectancy-Value Theory Analysis of Youths' STEM Attitudes
NASA Astrophysics Data System (ADS)
Ball, Christopher; Huang, Kuo-Ting; Cotten, Shelia R.; Rikard, R. V.
2017-08-01
Over the past decade, there has been a strong national push to increase minority students' positive attitudes towards STEM-related careers. However, despite this focus, minority students have remained underrepresented in these fields. Some researchers have directed their attention towards improving the STEM pipeline which carries students through our educational system and into STEM careers. Previous research has shown that expectancy-value theory (EVT) is useful for examining the short-term as well as long-term academic motivations and intentions of elementary age minority students. These findings provide insights into ways we may be able to potentially "patch" particular STEM pipeline leaks. In the current study, we advance this research by using EVT as a framework to examine the STEM attitudes of young students directly. We hypothesize that students' academic-related expectancies for success and subjective task values will be associated with an increase in STEM attitudes. Data for this study was gathered over the course of a large-scale computing intervention which sought to increase students' STEM interest. This computing intervention took place in an urban elementary school district located within the southeastern USA. Results from this study indicate that both intrinsic values and utility values predict students' STEM attitudes but they influence attitudes related to the various dimensions of STEM differently. These findings demonstrate that EVT provides a useful framework, which can be integrated into future computing interventions, to help encourage positive STEM attitudes in young children, thus increasing the internal pressure (or flow) within the STEM pipeline.
Inclusive STEM High School Design: 10 Critical Components
ERIC Educational Resources Information Center
Peters-Burton, Erin E.; Lynch, Sharon J.; Behrend, Tara S.; Means, Barbara B.
2014-01-01
Historically, the mission of science, technology, engineering, and mathematics (STEM) schools emphasized providing gifted and talented students with advanced STEM coursework. However, a newer type of STEM school is emerging in the United States: inclusive STEM high schools (ISHSs). ISHSs have open enrollment and are focused on preparing…
NASA Astrophysics Data System (ADS)
Cuff, K. E.; Corazza, L.
2006-12-01
Over the past eight years we have developed and implemented several U.C. Berkeley-based outreach programs that provide opportunities for grades nine through eleven students in the East San Francisco Bay Area to gain skills and understandings that increase their capacity to enroll and perform successfully in science, technology, engineering, and mathematics (STEM) courses in the future, which enhances their capacity to decide to pursue STEM careers. A common element of these programs is the opportunity they provide participants to engage in environmental science research projects that are directly linked to relevant, real-world environmental problems and issues facing their communities. Analysis of evidence gleaned from questionnaires, interviews and specific assessment instruments indicates that these programs have consistently achieved a high degree of success in that they have: significantly increased participants' understanding of the process and nature of science; enhanced their intellectual self-confidence with regard to STEM; developed deeper appreciation of how scientific research can contribute to the maintenance of healthy local environments; developed a greater interest in participating in STEM-related courses of study and after school programs; and improved attitudes toward STEM. These results corroborate recent research studies that indicate a close relationship between educational activities that promote the perception of STEM as being relevant and the ability to foster development of deeper conceptual understandings among teens. Moreover, they support the notion that providing opportunities for students to develop personal connections with particular issues discussed, and real-world STEM experiences that make STEM more relevant and interesting can help to bring about changes in attitude, which is a key component in improving STEM learning and understanding particularly among urban youth. Overall, our work suggests that in order for a given STEM education intervention strategy to be truly successful it must include activities that effectively counter the notion of STEM irrelevancy, and provide experiences that both address youth concerns and interests, and stimulate development and enactment of ideas within a broader community-based context.
ERIC Educational Resources Information Center
Blažev, Mirta; Karabegovic, Mia; Burušic, Josip; Selimbegovic, Leila
2017-01-01
The aim of the present study was to examine, for the first time, the level of gender-stereotyped beliefs about STEM-related school subjects among Croatian primary school students and to explore how stereotyped beliefs can be predicted from prior achievement in STEM school subjects and students' STEM interests. Eight hundred and eighty primary…
Hooking tomorrow's geoscientists: Authentic field inquiry as a compelling pedagogy
NASA Astrophysics Data System (ADS)
Wallstrom, Erica
2015-04-01
Engaging high school students in the geosciences without providing them with opportunities to directly explore, understand, and question the natural world is like trying to catch a fish without a hook. How can educators hope to inspire youth to pursue a career in the geosciences when the subject is first introduced to teenagers within the confines of a classroom? Regardless of the content and activities employed by the teacher, the synthetic classroom setting is unable to recreate the organic richness of an authentic outdoor learning environment. A new course offering at Rutland High School in Rutland, Vermont, USA shifts away from the traditional classroom based pedagogy by focusing the learning on exploring the temporal changes occurring in the region's geologic features. Numerous visits to local quarries, outcrops, overlooks, and universities guide the course curriculum. Students use their new understandings and personal observations to complete a culminating independent investigation. This alternate learning model is made possible through collaboration with local universities, businesses, and government agencies. If the geosciences is to remain competitive in the recruitment of exemplary STEM candidates, than the focus of high school earth science programs must be considered. This course offers one alternative to improve engagement and understanding of the geoscience standards. While not the only option, it offers one possibility for hooking students on geosciences.
Trends in Gender Segregation in the Choice of Science and Engineering Majors*
Mann, Allison; DiPrete, Thomas A.
2013-01-01
Numerous theories have been put forward for the high and continuing levels of gender segregation in science, technology, engineering, and mathematics (STEM) fields, but research has not systematically examined the extent to which these theories for the gender gap are consistent with actual trends. Using both administrative data and four separate longitudinal studies sponsored by the U.S. Department of Education’s National Center for Education Statistics (NCES), we evaluate several prominent explanations for the persisting gender gap in STEM fields related to mathematics performance and background and general life goals, and find that none of them are empirically satisfactory. Instead, we suggest that the structure of majors and their linkages to professional training and careers may combine with gender differences in educational goals to influence the persisting gender gap in STEM fields. An analysis of gendered career aspirations, course-taking patterns, and pathways to medical and law school supports this explanation. PMID:24090849
Do We Need Remedial College Math Courses?
NASA Astrophysics Data System (ADS)
Hughes, Anne O.; Khatri, D.
2006-12-01
Entering college freshmen, in increasing numbers, in practically every public institution of higher learning are in need of one or two remedial math courses. This is particularly a big problem at the Historically Black Colleges and Universities where a large number of remedial math course sections are offered to meet the growing demand for such courses. For most of these students, graduation is delayed by at least a year. In addition, these students continue to be taught by teaching methodologies that did not work for them even in high schools resulting in disgust and hatred for math. This situation makes entry for these students into STEM areas difficult and is the perfect recipe for failure in STEM disciplines if they enroll in college level courses. The University of the District of Columbia (UDC) is no exception. A first attempt was made in summer 2006 to remedy this situation. The problem for this exploratory research study was to ascertain if a short, intensive six-week project in basic math and introductory algebra would produce a recognizable improvement in the math performance of entering UDC freshmen students as measured by the UDC math placement test. The results are eye opening. On the pre-test for basic math (005), the mean score for the group (N=10) was 35.6, with the passing score being 70. On the post-test, the mean increased to 63.4 showing an improvement of 78 percent. The authors will present the results of this research study at the conference
ERIC Educational Resources Information Center
Lansiquot, Reneta D., Ed.
2016-01-01
This book highlights models for promoting interdisciplinary thinking and an appreciation for interdisciplinary understanding among students in STEM-related fields. Students majoring in science, technology, engineering, and mathematics often perceive that courses in their major are not related to the general education liberal arts courses required…
NASA Astrophysics Data System (ADS)
Pierce, D.; McNeal, K. S.; Radencic, S.
2011-12-01
The presence of a scientist or other STEM expert in secondary school science classroom can provide fresh new ideas for student learning. Through the Initiating New Science Partnerships in Rural Education (INSPIRE) program sponsored by NSF Graduate STEM Fellows in K-12 Education (GK-12), scientists and engineers at Mississippi State University work together with graduate students and area teachers to provide hands-on inquiry-based learning to middle school and high school students. Competitively selected graduate fellows from geosciences, physics, chemistry, and engineering spend ten hours per week in participating classrooms for an entire school year, working as a team with their assigned teacher to provide outstanding instruction in science and mathematics and to serve as positive role models for the students. We are currently in the second year of our five-year program, and we have already made significant achievements in science and mathematics instruction. We successfully hosted GIS Day on the Mississippi State University campus, allowing participating students to design an emergency response to a simulated flooding of the Mississippi Delta. We have also developed new laboratory exercises for high school physics classrooms, including a 3-D electric field mapping exercise, and the complete development of a robotics design course. Many of the activities developed by the fellows and teachers are written into formal lesson plans that are made publicly available as free downloads through our project website. All participants in this program channel aspects of their research interests and methods into classroom learning, thus providing students with the real-world applications of STEM principles. In return, participants enhance their own communication and scientific inquiry skills by employing lesson design techniques that are similar to defining their own research questions.
Inclusive STEM High Schools Increase Opportunities for Underrepresented Students
ERIC Educational Resources Information Center
Spillane, Nancy K.; Lynch, Sharon J.; Ford, Michael R.
2016-01-01
The authors report on a study of eight inclusive STEM high schools that are designed to increase the numbers of students in demographic groups underrepresented in STEM. As STEM schools, they have had broader and deeper STEM coursework (taken by all students) than required by their respective states and school districts; they also had outcome…
Effects of Transferring to STEM-Focused Charter and Magnet Schools on Student Achievement
ERIC Educational Resources Information Center
Judson, Eugene
2014-01-01
There have been strong calls to action in recent years to promote both school choice and the learning of science, technology, engineering, and mathematics (STEM). This has led to the burgeoning development of STEM-focused schools. Nine STEM-focused charter and 2 STEM-focused magnet schools that serve elementary-aged students were examined to…
Whose banner are we waving? Exploring STEM partnerships for marginalized urban youth
NASA Astrophysics Data System (ADS)
Ridgeway, Monica L.; Yerrick, Randy K.
2018-03-01
This case study examines after school programming in citizen science from the perspective of Critical Race Theory. During the course of enacting community outreach projects this data was used to examine the positioning of experts, student, and teachers within the program. This study explores the role of race and ethnicity, and the ways in which marginalization can manifest itself with black urban youth and teachers. Implications for partner selection and training are addressed.
Teaching torque with 5E learning strategy: an off-center disk case
NASA Astrophysics Data System (ADS)
Balta, Nuri
2018-01-01
In this paper, five simple demonstrations with an off-center disk that can be easily constructed and demonstrated in science class are described along with the 5E learning strategy. These demonstrations can be used to help students develop an understanding of the relationship between the centre of mass and torque. These STEM activities are appropriate for high school or first-year college physics, and are expected to engage students during physics courses.
NASA Astrophysics Data System (ADS)
Thana, Aduldej; Siripun, Kulpatsorn; Yuenyong, Chokchai
2018-01-01
The STEM education is new issue of teaching and learning in school setting. Building up STEM education professional learning community may provide some suggestions for further collaborative work of STEM Education from grounded up. This paper aimed to clarify the building up STEM education learning community in Khon Kaen Wittayayon (KKW) School setting. Participants included Khon Kaen University researchers, Khon Kaen Wittayayon School administrators and teachers. Methodology regarded interpretative paradigm. The tools of interpretation included participant observation, interview and document analysis. Data was analyzed to categories of condition for building up STEM education professional learning community. The findings revealed that the actions of developing STEM learning activities and research showed some issues of KKW STEM community of inquiry and improvement. The paper will discuss what and how the community learns about sharing vision of STEM Education, supportive physical and social conditions of KKW, sharing activities of STEM, and good things from some key STEM teachers' ambition. The paper may has implication of supporting STEM education in Thailand school setting.
A case study investigation of practices and beliefs of teachers at a STEM-focused elementary school
NASA Astrophysics Data System (ADS)
Martin, Billy J.
Proponents of STEM education have highlighted the need for increasing STEM skills among students. To address this need, there have been recommendations to create new STEM-focused schools, a majority of which are to be STEM-focused elementary and middle schools. However, STEM school research remains focused on outcomes at the secondary and postsecondary level, with little attention being given to knowing more about the role that elementary education plays in STEM outcomes. Case study design was used to investigate teachers at one STEM-focused elementary school to identify the practices and beliefs reported as important in STEM teaching and learning. Using survey and in-depth interviews, it was found that designation as a STEM-focused school promotes the use of more inquiry-oriented teaching practices and facilitates the use of strategies for developing confidence and competence in STEM among staff and students. The information uncovered in this study could provide leaders of any organization desiring to become a STEM-focused institution information about specific beliefs and practices that have the greatest potential to support changes in teaching.
ERIC Educational Resources Information Center
Murphy, Tony P.; Mancini-Samuelson, Gina J.
2012-01-01
A collaborative of STEM (science, technology, engineering, and mathematics) and education faculty developed a STEM certificate aimed at elementary education majors. A four-phase process model was used to create and evaluate courses. The certificate is comprised of three interdisciplinary, team-taught, lab-based courses: Environmental Biology,…
STEM after school programming: The effect on student achievement and attitude
NASA Astrophysics Data System (ADS)
Ashford, Vanessa Dale
Science, technology, engineering and math (STEM) curriculum has become a major component in to 21st century teaching and learning. STEM skills and STEM careers are in demand globally. Disadvantaged and minority students continue to have an achievement gap in STEM classes. They do not perform well in elementary and middle school and frequently do not pursue STEM-based studies in high school or careers in the field. One innovation in STEM education is after-school programming to increase student interest, attitudes, and achievement. This mixed-methods study examines the Discovery Place After-School STEM Program to compare the achievement levels of participants to non-participants in the program and provides recommendations for STEM after-school programming across the district. As part of the study, teachers were interviewed to examine attitudes and perceptions about the program. This study was conducted at an elementary school in a large urban school district in the southeastern United States which has a unique STEM-based after-school program. Student performance data indicated a significant difference in achievement between participants and non-participants in the program as measured by fifth grade science End-of-Grade test. Data from the seven units of study in the program showed significant achievement for three of the seven units.
Northeast Tennessee Educators' Perception of STEM Education Implementation
NASA Astrophysics Data System (ADS)
Turner, Kristin Beard
A quantitative nonexperimental survey study was developed to investigate Northeast Tennessee K-8 educators' perceptions of STEM education. This study was an examination of current perceptions of STEM education. Perceived need, current implementation practices, access to STEM resources, definition of STEM, and the current condition of STEM in Northeast Tennessee were also examined. The participating school districts are located in the Northeast Region of Tennessee: Bristol City Schools, Hamblen County Schools, Johnson City Schools, Johnson County Schools, Kingsport City Schools, Sullivan County Schools, and Washington County Schools. Educational professionals including both administrators and teachers in the elementary and/or middle school setting were surveyed. The closed and open form survey consisted of 20 research items grouped by 5 core research questions. Quantitative data were analyzed using single sample t tests. A 4 point Likert scale was used to measure responses with a 2.5 point of neutrality rating. The open-ended question was summarized and recorded for frequency. Research indicated that Northeast Tennessee K-8 educators perceive a need for STEM education to a significant extent. However, many do not feel prepared for implementation. Lack of professional development opportunities and STEM assets were reported as areas of need. Teachers reported implementation of inquiry-based, problem solving activities in their classrooms. The majority of participants reported that the current condition of STEM education in Northeast Tennessee is not meeting the needs of 21st century learners. Challenges facing STEM instruction include: funding designated for STEM is too low, professional development for STEM teacher is insufficient, and STEM Education in K-8 is lacking or inadequate.
The Impact of Length of Engagement in After-School STEM Programs on Middle School Girls
NASA Astrophysics Data System (ADS)
Cupp, Garth Meichel
An underrepresentation of females exists in the STEM fields. In order to tackle this issue, work begins early in the education of young women to ensure they are interested and have the confidence to gain a career in the STEM fields. It is important to engage girls in STEM opportunities in and out of school to ignite their interest and build their confidence. Brigid Barron's learning ecology perspective shows that girls pursuing STEM outside of the classroom is critical to their achievement in the STEM pipeline. This study investigated the impact after-school STEM learning opportunities have on middle school girls by investigating (a) how the length of engagement in after-school programs can affect the confidence of female students in their science and math abilities; (b) how length of engagement in after-school programs can affect the interest of female students in attaining a career in STEM; (c) how length of engagement in after-school programs can affect interest in science and math classes; and (d) how length of engagement can affect how female students' view gender parity in the STEM workforce. The major findings revealed no statistical significance when comparing confidence in math or science abilities or the perception that gender plays a role in attaining a career in STEM. The findings revealed statistical significance in the areas when comparing length of engagement in the girls' interest in their math class and attaining a career in three of the four STEM fields: science, technology, and engineering. The findings showed that multiple terms of engagement in the after-school STEM programs appear to be an effective catalyst to maintain the interest of girls pursuing STEM-related careers, in addition to allowing their interest in a topic to provide a new lens for the way they see their math work during the school day. The implications of this study show that schools must engage middle school girls who are interested in STEM in a multitude of settings, including outside of the classroom in order to maintain engagement in the STEM pipeline.
NASA Astrophysics Data System (ADS)
Delp, Matthew J.
This study utilized survey research to investigate how school districts within K-12 education select, implement, and evaluate Science, Technology, Engineering, and Mathematics (STEM) programs. Thirty school districts within the Math and Science Collaborative located in Western Pennsylvania participated in this research. In addition to characterizing the STEM programs of the participating school districts, this study also analyzed the alignment of these programs to the components of comprehensive STEM programs and critical approaches to substantiate STEM program implementation as stated in the literature (Augustine, 2005; Bybee, 2010a, 2010b; Carnevale et al., 2011; DeJarnette, 2010; Epstein & Miller, 2011b; Gardner et al., 1983; Hossain & Robinson, 2011, 2012; Kuenzi, 2008). Findings suggest that the primary goal for school districts, as it relates to STEM program implementation, is to influence students' interest and pursuit of STEM-related careers and degrees. In order to achieve this goal, results of this study indicate the focus of STEM program implementation occurs with the greatest frequency at the middle school (grades seven and eight) level, are developed as an adaptation to the curriculum, and are very diverse from one school district to the next. In addition, findings suggest that although school districts maintain they aim to promote careers and degrees in STEM, districts rely on traditional methods of evaluating STEM program implementation (i.e. standardized test scores) and do not track the longitudinal impact their STEM programs as they related to degrees and careers in STEM. Furthermore, results indicate district STEM programs are not aligned to the characteristics of comprehensive STEM programs as defined by the literature. In order to address the misalignment of school district goals and evaluation processes involved in STEM program implementation and the absence of the characteristics commensurate with comprehensive STEM programs, this study has created a framework to guide school districts in STEM program selection, implementation, and evaluation.
Dual identities: organizational negotiation in STEM-focused Catholic schools
NASA Astrophysics Data System (ADS)
Kloser, Matthew; Wilsey, Matthew; Hopkins, Dawn W.; Dallavis, Julie W.; Lavin, Erin; Comuniello, Michael
2017-06-01
In the last decade, STEM-focused schools have opened their doors nationally in the hope of meeting students' contemporary educational needs. Despite the growth of these STEM-focused institutions, minimal research exists that follows how schools make a transition toward a STEM focus and what organizational structures are most conducive to a successful transition. The adoption of a STEM focus has clear implications for a school's organizational identity. For Catholic schools, the negotiation of a new STEM focus is especially complex, as Catholic schools have been shown to generally possess a distinct religious and cultural organizational identity. The adoption of a second, STEM-focused identity raises questions about whether and how these identities can coexist. Framed by perspectives on organizational identity and existing conceptualizations of the cultural and religious hallmarks of Catholic schools, this study utilizes a multiple-case study design to explore the organizational transition of four Catholic K-8 institutions to Catholic STEM-focused schools. These cases demonstrate the particular challenges of negotiating multiple organizational identities. While variation existed in how the four schools accommodated these identities, the most promising environments for successful transition drew upon an aggregative model of identity negotiation, that is, when schools attended to both identities, but ensured that the original Catholic identity of the school remained foundational to all decisions. The least successful identity negotiations occurred when there was a lack of common understanding about what comprised a STEM-focused school, leading to minimal buy-in from stakeholders or when a school sought to make the transition for recruitment or marketing rather than mission-driven reasons. Discussion of the more successful identity aggregation provides a framework for schools within and beyond the religious sector that desire to adopt an additional STEM-focused identity.
Are our textbooks too good to be good? Let students own their textbooks to own the skills
NASA Astrophysics Data System (ADS)
Tao, Xiuping
The two new yearlong high school courses, AP Physics 1 and 2, are equivalent to the two-semester algebra-based introductory Physics college course. The AP courses have more than 300 instruction hours, while the college course less than 100. This partially explains why college instructors always struggle to cover the important topics to not necessarily prepared students. To make it worse, many college students are not buying or reading textbooks and rely on instructors to get the course content. The fragmented reception is preventing students from getting a complete picture of the course. Not that there is a shortage of textbooks. There are many 1000-page tomes costing 200 or more, too good to be good. All the struggles contribute to U.S. students' relatively low STEM skills. I propose to let students own their books to own the skills. Students need much shorter (thus manageable) and much more affordable books, and they need to own it for good. Cross-culture comparison reveals that students learn better when they truly own their books (without planning to resell).
Expanding STEM Opportunities through Inclusive STEM-Focused High Schools
ERIC Educational Resources Information Center
Means, Barbara; Wang, Haiwen; Wei, Xin; Lynch, Sharon; Peters, Vanessa; Young, Viki; Allen, Carrie
2017-01-01
Inclusive STEM high schools (ISHSs) (where STEM is science, technology, engineering, and mathematics) admit students on the basis of interest rather than competitive examination. This study examines the central assumption behind these schools--that they provide students from subgroups underrepresented in STEM with experiences that equip them…
NASA Astrophysics Data System (ADS)
Vinaja, Sean Stephen
Many Christian students graduate from secondary schools and enter Christian colleges with worldviews that are unbiblical or contain unbiblical components, many of which stem from their beliefs regarding origins. Little research has been done to study the effect of gender on the role of a young-earth creationist (YEC) origins course in shaping students' worldview. Research has shown that males and females respond differently to science and religion instruction; because the origins discussion is an intersection of science and religion, the study of gender's effect in developing a Bible-based worldview is important so that Christian colleges might more effectively guide their students in developing that biblical worldview. The purpose of this causal-comparative study was to determine whether students' gender affected their YEC worldview components after enrollment in a YEC origins course while controlling for their pre-course worldviews. A sample of 315 residential students enrolled in a YEC origins course at a conservative Christian college in the Southeast completed the Creationist Worldview Scale before and after taking the course; the survey also contained a demographic questionnaire that collected information regarding students' gender, major, classification, ethnicity, and secondary schooling. The data were analyzed using a one way ANCOVA. There were no statistically significant differences between male and female students' posttest age scores or posttest science scores, but there was a significant difference between their posttest theology scores. Suggestions for further research are also included.
NASA Astrophysics Data System (ADS)
Gallagher, L.; Morse, M.; Maxwell, R. M.; Cottrell, S.; Mattor, K.
2016-12-01
An ongoing NSF-WSC project was used as a launchpad for implementing a collaborative honors course at the Colorado School of Mines (CSM) and Colorado State University (CSU). The course examined current physical and social science research on the effects of the Mountain Pine Beetle (MPB) on regional social and hydro-ecological systems in the Rocky Mountain West. In addition to general classroom content delivery, community outreach experience and development for the participating undergraduate students was integrated into the course. Upon learning about ongoing MPB research from project PIs and researchers, students were guided to develop their own methodology to educate students and the community about the main project findings. Participants at CSM and CSU worked together to this end in a synchronous remote classroom environment. Students at both universities practiced their methods and activities with various audiences, including local elementary students, other undergraduate and graduate peers, and delivered their activities to sixth-grade students at a local outdoor lab program (Windy Peak Outdoor Lab, Jefferson County, CO). Windy Peak Outdoor Lab has integrated the student-developed content into their curriculum, which reaches approximately 6,000 students in the Jefferson County, CO school district each year. This experiential learning course will be used as a template for future Honors STEM education course development at CSM and was a unique vessel for conveying the studied effects of the MPB to a K-12 audience.
First-generation Hispanic freshmen perceptions of selecting a STEM major
NASA Astrophysics Data System (ADS)
Carrandi Molina, Elizabeth
The purpose of this study was to explore the perceptions of Hispanic first-generation college students (FGCSs) who made the immediate transition from high school into a science, technology, engineering, or mathematics (STEM) field of study at a public, four-year higher education institution in South Florida. The conceptual foundation for this study was Bourdieu's (1986) Theory of Cultural Capital and Bandura's (1977) Theory of Self-Efficacy. Ten purposefully sampled participants engaged in face-to-face interviews or Skye/FaceTime with a total maximum duration of 90 minutes including member checking. As a result of the data collection and analysis, a total of six themes emerged: lack of cultural capital transmitted by cultural activities, high levels of parental encouragement/involvement, high levels of cultural capital transmitted through formal schooling, high levels of self-efficacy, beliefs of personal success, and overcoming challenges. Theme one evoked two subthemes: challenges and family life. Theme two produced two subthemes: home culture and cultural values. Theme three formed two subthemes: course rigor and teacher-student communication/relationships. Theme four conjured three subthemes: mindset, vicarious experiences, and home discourse. Theme five yielded two subthemes: verbal persuasion and performance accomplishments/mastery experiences. Finally, theme six formed one subtheme: biases. Findings from this study may benefit the literature on the lack of representation of Hispanic FGCSs in STEM fields in higher education and may serve as a starting point for the conception of programs and initiatives to spark and sustain student interest in STEM, and ultimately influence a student's decision to pursue a STEM degree in higher education.
Evaluation to Improve a High School Summer Science Outreach Program †
Chiappinelli, Katherine B.; Moss, Britney L.; Lenz, Devjanee Swain; Tonge, Natasha A.; Joyce, Adam; Holt, Glen E.; Holt, Leslie Edmonds; Woolsey, Thomas A.
2016-01-01
The goal of the Young Scientist Program (YSP) at Washington University School of Medicine in St. Louis (WUSM) is to broaden science literacy and recruit talent for the scientific future. In particular, YSP seeks to expose underrepresented minority high school students from St. Louis public schools (SLPS) to a wide variety of careers in the sciences. The centerpiece of YSP, the Summer Focus Program (SFP), is a nine-week, intensive research experience for competitively chosen rising high school seniors (Scholars). Scholars are paired with volunteer graduate student, medical student, or postdoctoral fellow mentors who are active members of the practicing scientific community and serve as guides and exemplars of scientific careers. The SFP seeks to increase the number of underrepresented minority students pursuing STEM undergraduate degrees by making the Scholars more comfortable with science and science literacy. The data presented here provide results of the objective, quick, and simple methods developed by YSP to assess the efficacy of the SFP from 2006 to 2013. We demonstrate that the SFP successfully used formative evaluation to continuously improve the various activities within the SFP over the course of several years and in turn enhance student experiences within the SFP. Additionally we show that the SFP effectively broadened confidence in science literacy among participating high school students and successfully graduated a high percentage of students who went on to pursue science, technology, engineering, and mathematics (STEM) majors at the undergraduate level. PMID:27158303
Evaluation to Improve a High School Summer Science Outreach Program.
Chiappinelli, Katherine B; Moss, Britney L; Lenz, Devjanee Swain; Tonge, Natasha A; Joyce, Adam; Holt, Glen E; Holt, Leslie Edmonds; Woolsey, Thomas A
2016-05-01
The goal of the Young Scientist Program (YSP) at Washington University School of Medicine in St. Louis (WUSM) is to broaden science literacy and recruit talent for the scientific future. In particular, YSP seeks to expose underrepresented minority high school students from St. Louis public schools (SLPS) to a wide variety of careers in the sciences. The centerpiece of YSP, the Summer Focus Program (SFP), is a nine-week, intensive research experience for competitively chosen rising high school seniors (Scholars). Scholars are paired with volunteer graduate student, medical student, or postdoctoral fellow mentors who are active members of the practicing scientific community and serve as guides and exemplars of scientific careers. The SFP seeks to increase the number of underrepresented minority students pursuing STEM undergraduate degrees by making the Scholars more comfortable with science and science literacy. The data presented here provide results of the objective, quick, and simple methods developed by YSP to assess the efficacy of the SFP from 2006 to 2013. We demonstrate that the SFP successfully used formative evaluation to continuously improve the various activities within the SFP over the course of several years and in turn enhance student experiences within the SFP. Additionally we show that the SFP effectively broadened confidence in science literacy among participating high school students and successfully graduated a high percentage of students who went on to pursue science, technology, engineering, and mathematics (STEM) majors at the undergraduate level.
Are STEM High School Students Entering the STEM Pipeline?
ERIC Educational Resources Information Center
Franco, M. Suzanne; Patel, Nimisha H.; Lindsey, Jill
2012-01-01
This study compared the career skills and interests for students in two STEM schools to national data. Students completed the KUDER skills assessment and career planning online tools. Results were compared across school, grade level, and sex. The results provided evidence that STEM high school students expressed career intents in predominately…
NASA Astrophysics Data System (ADS)
Michelsen, R. R. H.; Dominguez, R.; Marchetti, A. H.
2017-12-01
The Commonwealth of Virginia has a significant and growing Latinx population, however this population is underrepresented in the Science, Technology, Engineering, and Mathematics (STEM) workforce. Hispanic American participation in STEM degrees is low, making up only 4.5% of all Geoscience Bachelor's degrees in 2008. This student population faces challenges including a high poverty rate, lack of family members or mentors who have attended college, and lack of placement in or availability of advanced high school science and math courses. Latina girls face additional challenges such as family responsibilities and overcoming stereotypes about science and math abilities. We have developed a program that is designed to recruit Latina high schoolers, expose them to and engage them in STEM disciplines, and facilitate their matriculation into college. There are two components: a multi-year, week-long summer residential program at Randolph-Macon College (RMC), where the participants live and work together, and special events at our partners during the school year. The residential program consists of science and technology activities with RMC faculty, such as field work focusing on hydrology and space science laboratories. Students also travel to non-profit partners such as the Lewis Ginter Botanical Gardens and connect with Latinx scientists and engineers at local corporate partners such as WestRock, a paper/cardboard packaging company. The girls will return next summer for more in-depth research experiences and receive a college scholarship upon their completion of the program. During the school year, there will be monthly activities at our non-profit partners to keep the girls engaged and strengthen relationships in the cohort. Strengths of our program include 1) attention to engaging high schoolers' families with targeted programming for them on campus the first day of the program, 2) providing all materials in Spanish as well as English, and 3) a team consisting of academic, non-profit, and Fortune-500 corporate stakeholders. Here we report the successes of the first summer program as well as the attitudes of the participants towards STEM before and after the program.
The successful implementation of STEM initiatives in lower income schools
NASA Astrophysics Data System (ADS)
Bakshi, Leena
The purpose of this study was to examine the leadership strategies utilized by superintendents, district administrators and school principals and the impact of these identified strategies on implementing STEM initiatives specifically for lower-income students. This study set out to determine (a) What role does district leadership play in the implementation of STEM initiatives in lower income secondary schools; (b) What internal systems of accountability exist in successful lower income secondary schools' STEM programs; (c) What leadership strategies are used to implement STEM curriculum initiatives; (d) How do school and district leadership support staff in order to achieve student engagement in STEM Initiative curriculum. This study used a mixed-methods approach to determine the impact of leadership strategies utilized by superintendents, district administrators and school principals on implementing STEM initiatives. Quantitative data analyzed survey questionnaires to determine the degree of correlation between the school districts that have demonstrated the successful implementation of STEM initiatives at the school and district levels. Qualitative data was collected using highly structured participant interviews and purposeful sampling of four district superintendents, one district-level administrator and five school leaders to capture the key strategies in implementing STEM initiatives in lower income secondary schools. Through the process of triangulation, the results of the study revealed that superintendents and principals should consider the characteristics of effective STEM initiatives that have shown a considerable degree of correlation with positive outcomes for lower income students. These included the leadership strategies of personnel's making decisions about the district's and school's instructional direction and an emphasis on the conceptual development of scientific principles using the Next Generation Science Standards coupled with the Common Core State Standards across the grade levels. It also emphasized the importance of establishing community partnerships as a primary resource. This study highlighted the criteria district and school leadership should include in implementing STEM initiatives and designing professional development models that result in meaningful instructional practices of STEM curriculum for secondary lower income students. Overall, this study provides insight for superintendents, district leaders and school administrators that can play an integral role in implementing STEM initiatives with access for socioeconomically disadvantaged students.
ERIC Educational Resources Information Center
Christensen, Rhonda; Knezek, Gerald; Tyler-Wood, Tandra
2015-01-01
This study examines positive dispositions reported by middle school and high school students participating in programs that feature STEM-related activities. Middle school students participating in school-to-home hands-on energy monitoring activities are compared to middle school and high school students in a different project taking part in…
NASA Astrophysics Data System (ADS)
Flowers, Reagan D.
The primary purpose of this study was to investigate how a management service organization can assist schools with reducing the achievement gap between minority and non-minority students in science, technology, engineering, and mathematics (STEM) during the after-school hours. Developing a strategic plan through creating a program that provides support services for the implementation of hands-on activities in STEM for children during the after-school hours was central to this purpose. This Project Demonstrating Excellence (PDE), a social action project, also presents historical and current after-school program developments in the nation. The study is quantitative and qualitative in nature. Surveys were utilized to quantitatively capture the opinions of participants in the social action project on three specific education related issues: (1) disparity in academic motivation of students to participate in after-school STEM enrichment programs; (2) whether teachers and school administrators saw a need for STEM after-school enrichment; and (3) developing STEM after-school programs that were centered on problem-solving and higher-order thinking skills to develop students' interest in STEM careers. The sample consisted of 50 participants comprised of students, teachers, and administrators. The focus groups and interviews provided the qualitative data for the study. The qualitative sample consisted of 14 participants comprised of students, parents and teachers, administrators, an education consultant, and a corporate sponsor. The empirical data obtained from the study survey, focus groups, and interviews provided a comprehensive profile on the current views and future expectations of STEM after-school enrichment, student and school needs, and community partnerships with STEM companies. Results of the study and review of the implementation of the social action project, C-STEM (communication, science, technology, engineering, and mathematics) Teacher and Student Support Services, Inc., revealed the need and focus for STEM after-school enrichment programs in Houston, Texas. This result, along with requirements of STEM Research and Special Programs Administrations and a multiyear and multilevel strategic plan inspired by this study, led to the conceptualization, development, and implementation of C-STEM Teacher and Student Support Services, Inc. at multiple schools in Houston, Texas. The purpose of C-STEM Teacher and Student Support Services, Inc. is to provide hands-on support services that encourage schools, organizations and families to improve academic achievement and socioemotional development through project-based learning in communication, science, technology, engineering, and mathematics (CSTEM) in grades 4-12.
Green Action through Education: A Model for Fostering Positive Attitudes about STEM
ERIC Educational Resources Information Center
Wheland, Ethel R.; Donovan, William J.; Dukes, J. Thomas; Qammar, Helen K.; Smith, Gregory A.; Williams, Bonnie L.
2013-01-01
This paper describes an innovative collaboration between instructors of non-STEM (science, technology, engineering, and mathematics) courses and scientists who teach STEM courses in the GATE (Green Action Through Education) learning community. The scientists in this project presented engaging science--in such diverse locations as a sewage…
NASA Astrophysics Data System (ADS)
Yager, E. M.; Bradley-Eitel, K.
2011-12-01
The focus of this CAREER award is to better understand and predict the mechanics of sediment transport, to link research and education through courses and shared field sites, and to increase female interest in STEM fields. To accomplish the education component of this proposal we have focused on the following three activities: 1) a Keystone course on the scientific method, 2) a Women Outside with Science (WOWS) camp and 3) a permanent field site for research and education on river processes. In the Keystone Course, students investigated the impact of roughness addition, in sediment-starved river reaches (e.g. downstream of dams), on the retention of gravel used for spawning. They developed research questions and hypotheses, designed and conducted a set of scaled laboratory flume experiments, analyzed their data and wrote a draft manuscript of their results. Student feedback was overwhelmingly positive on the merits of this course, which included hands-on learning of the following: basic sediment transport and fluvial geomorphology, applied statistics, laboratory methods, and scientific writing skills. Students sometimes struggled when flume experiments did not progress as planned, and in the analysis and interpretation of complex data. Some of the students in the course have reanalyzed data, conducted additional experiments and are currently rewriting the manuscript for submission to a peer-reviewed journal. Such a course fundamentally links research and teaching, and provides an introduction to research for advanced undergraduates or beginning graduate students. We have also run one summer WOWS camp, which was a ten day camping and inquiry based research experience for 20 female junior-high and high-school students. The girls studied climate change and water related issues, worked on a restoration project on the Little Salmon River, met with a fish biologist and did fish habitat surveys and studied water quality along the North Fork of the Payette River while on a raft trip. The girls also met with women working in various STEM careers as part of an evening program and afterwards indicated that the raft trip and career night were highlights of the program. A key reason for the success of this camp was working with an already established outdoor science school that focuses on teaching scientific inquiry to K-12 students. Finally, we are establishing a permanent field installation of bedload sediment traps, suspended sediment monitoring, and flow measurements in Reynolds Creek Experimental Watershed, a USDA research site just outside of Boise, Idaho. This site will be used to better understand the mechanics of sediment transport in steep streams and will be linked to teaching through graduate class and general public field trips.
NASA Astrophysics Data System (ADS)
Liou-Mark, J.; Blake, R.; Chukuigwe, C.
2013-12-01
For the past five years, the New York City College of Technology has administered a successful National Science Foundation (NSF) Research Experience for Undergraduates (REU) program. The program provides rich, substantive, academic and life-transformative STEM educational experiences for students who would otherwise not pursue STEM education altogether or would not pursue STEM education through to the graduate school level. The REU Scholars are provided with an opportunity to conduct intensive satellite and ground-based remote sensing research at the National Oceanic and Atmospheric Administration Cooperative Remote Sensing Science and Technology Center (NOAA-CREST). Candidates for the program are recruited from the City University of New York's twenty-three separate campuses. These students engage in a research experience that spans the summer and the fall and spring semesters. Eighty-four percent (84%) of the program participants are underrepresented minorities in STEM, and they are involved in a plethora of undergraduate research best practice activities that include: training courses in MATLAB programming, Geographic Information Systems, and Remote Sensing; workshops in Research Ethics, Scientific Writing, and Oral and Poster Research Presentations; national, regional, and local conference presentations; graduate school support; and geoscience exposure events at national laboratories, agencies, and research facilities. To enhance their success in the program, the REU Scholars are also provided with a comprehensive series of safety nets that include a multi-tiered mentoring design specifically to address critical issues faced by this diverse population. Since the inception of the REU program in 2008, a total of 61 undergraduate students have finished or are continuing with their research or are pursuing their STEM endeavors. All the REU Scholars conducted individual satellite and ground-based remote sensing research projects that ranged from the study of hurricanes to atmospheric water vapor distribution to spectral analysis of soil moisture. Of the 61 REU Scholars, 18.0% (11) are in graduate school in the STEM disciplines, 16.5% (10) have graduated and are in the STEM workforce, and 65.5% (40) continue to pursue their STEM degrees. All of the REU Scholars have made oral and poster presentations at local, region, and/or national conferences. Five of them have won first place recognition for their research, and three students will be co-authors for three peer-reviewed publications and two book chapters. (This program is supported by NSF REU grant #1062934.)
Preparing Students for Middle School Through After-School STEM Activities
NASA Astrophysics Data System (ADS)
Moreno, Nancy P.; Tharp, Barbara Z.; Vogt, Gregory; Newell, Alana D.; Burnett, Christopher A.
2016-12-01
The middle school years are a crucial time for cultivating students' interest in and preparedness for future STEM careers. However, not all middle school children are provided opportunities to engage, learn and achieve in STEM subject areas. Engineering, in particular, is neglected in these grades because it usually is not part of science or mathematics curricula. This study investigates the effectiveness of an engineering-integrated STEM curriculum designed for use in an after-school environment. The inquiry-based activities comprising the unit, Think Like an Astronaut, were intended to introduce students to STEM careers—specifically engineering and aerospace engineering—and enhance their skills and knowledge applicable related to typical middle school science objectives. Results of a field test with a diverse population of 5th grade students in nine schools revealed that Think Like an Astronaut lessons are appropriate for an after-school environment, and may potentially help increase students' STEM-related content knowledge and skills.
NASA Astrophysics Data System (ADS)
Miller, Brianna M.
Student achievement in science and math has been linked to per capita gross domestic product (GDP) growth propagating the belief that science, technology, engineering, and math (STEM) education is an important factor in economic prosperity. However, The No Child Left Behind Act of 2001 (NCLB), favors math over science, positioning the subjects as competitors rather than collaborators. Additionally, NCLB focuses almost exclusively on the cognitive outcome of students' achievement with the affective outcome of students' attitudes being nearly ignored. Positive attitudes toward science and math early on are essential for subsequent and cumulative decisions students make in taking courses, choosing majors, and pursuing careers. Positioning students' attitudes as a desirable educational outcome comparable to students' achievement is an emerging goal in the literature. Using the case of one school district in south-central Pennsylvania with three elementary schools, 15 upper elementary teachers, and 361 students, the purpose of this study was to better understand influences on upper elementary students' attitudes toward STEM (SA) subjects and careers. The study aimed to explore two influences on SA, opportunity to learn (OTL) and teacher's efficacy (TE), in the comparative contexts of math and science. The studied employed a mixed methods convergent design in which five data sets from four sources were collected over three phases to triangulate three constructs: OTL, TE, and SA. The goal of the study was to offer recommendations to the case school district for enhancing OTL, TE, and thus SA. Findings regarding OTL revealed that the opportunity to learn science was lower than math. Finding regarding TE revealed that outcome expectancy was lower than personal teaching efficacy in both science and math; and, teachers had low STEM career awareness, STEM integration, and technology use. Findings regarding SA revealed a lower perceived usefulness of science compared to math and a high interest in engineering careers, especially among girls. Based on these findings it was recommended that the school district utilize its District Level Plan and the pre-existing structures of Career Day and the Science Fair to integrate STEM education as a means of improving OTL, TE, and thus SA.
Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston
NASA Astrophysics Data System (ADS)
Chen, R. F.; Pelletier, P.; Dorsen, J.; Douglas, E. M.; Pringle, M. S.; Karp, J.
2009-12-01
Inquiry-based, hands-on, graduate content courses have been developed specifically for Boston Public School middle school teachers of Earth Science. Earth Science I: Weather and Water and Earth Science II: The Solid Earth--Earth History and Planetary Systems have been taught a total of seven times to over 120 teachers. Several key attributes to these successful courses have been identified, including co-instruction by a university professor and a high school and a middle school teacher that are familiar with the Boston curriculum, use of hands-on activities that are closed related to those used in the Boston curriculum, pre- and post-course local field trips, and identification of key learning objectives for each day. This model of professional development was developed over several years in all disciplines (Earth Science, Physics, Biology, Chemistry) by the Boston Science Partnership (BSP), an NSF-funded Math Science Partnership program. One of the core strategies of the BSP is these Contextualized Content Courses (CCC), graduate level, lab-based courses taught at either UMass Boston or Northeastern University during summer intensive or semester formats. Two of the eleven courses developed under the grant are Earth Science I & II. This presentation shares the model of the CCC, the impact on teacher participants, the value of these courses for the professor, and lessons learned for successful professional development. Findings about the courses’ impact and effectiveness come from our external evaluation by the Program Evaluation Research Group (PERG). The combination of content and modeling good instructional practices have many positive outcomes for teachers, including increased self-efficacy in science understanding and teaching, positive impacts on student achievement, and teacher shifts from more traditional, more lecture-based instructional models to more inquiry approaches. STEM faculty members become involved in science education and learn and practice new instructional strategies. The teacher co-instructors hold leadership roles for their peers and gain university teaching experience. The participants have a course that is content rich and tailored for their needs in the classroom. Earth scientists develop a “broader impact” for their science by increasing climate and earth science literacy for teachers who, in turn, reach 100s to 1000s of students every year, possibly stimulating interest for students becoming future earth scientists, but at the very least, increasing the public appreciation for earth science.
Analyzing the attributes of Indiana's STEM schools
NASA Astrophysics Data System (ADS)
Eltz, Jeremy
"Primary and secondary schools do not seem able to produce enough students with the interest, motivation, knowledge, and skills they will need to compete and prosper in the emerging world" (National Academy of Sciences [NAS], 2007a, p. 94). This quote indicated that there are changing expectations for today's students which have ultimately led to new models of education, such as charters, online and blended programs, career and technical centers, and for the purposes of this research, STEM schools. STEM education as defined in this study is a non-traditional model of teaching and learning intended to "equip them [students] with critical thinking, problem solving, creative and collaborative skills, and ultimately establishes connections between the school, work place, community and the global economy" (Science Foundation Arizona, 2014, p. 1). Focusing on science, technology, engineering, and math (STEM) education is believed by many educational stakeholders to be the solution for the deficits many students hold as they move on to college and careers. The National Governors Association (NGA; 2011) believes that building STEM skills in the nation's students will lead to the ability to compete globally with a new workforce that has the capacity to innovate and will in turn spur economic growth. In order to accomplish the STEM model of education, a group of educators and business leaders from Indiana developed a comprehensive plan for STEM education as an option for schools to use in order to close this gap. This plan has been promoted by the Indiana Department of Education (IDOE, 2014a) with the goal of increasing STEM schools throughout Indiana. To determine what Indiana's elementary STEM schools are doing, this study analyzed two of the elementary schools that were certified STEM by the IDOE. This qualitative case study described the findings and themes from two elementary STEM schools. Specifically, the research looked at the vital components to accomplish STEM education in an elementary school setting. Through use of the interviews, observations, and document analysis, information was gained about the characteristics of each of these two distinct schools. Analysis of all this evidence emerged eight distinct themes common to both STEM schools.
Bringing Computational Thinking into the High School Science and Math Classroom
NASA Astrophysics Data System (ADS)
Trouille, Laura; Beheshti, E.; Horn, M.; Jona, K.; Kalogera, V.; Weintrop, D.; Wilensky, U.; University CT-STEM Project, Northwestern; University CenterTalent Development, Northwestern
2013-01-01
Computational thinking (for example, the thought processes involved in developing algorithmic solutions to problems that can then be automated for computation) has revolutionized the way we do science. The Next Generation Science Standards require that teachers support their students’ development of computational thinking and computational modeling skills. As a result, there is a very high demand among teachers for quality materials. Astronomy provides an abundance of opportunities to support student development of computational thinking skills. Our group has taken advantage of this to create a series of astronomy-based computational thinking lesson plans for use in typical physics, astronomy, and math high school classrooms. This project is funded by the NSF Computing Education for the 21st Century grant and is jointly led by Northwestern University’s Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), the Computer Science department, the Learning Sciences department, and the Office of STEM Education Partnerships (OSEP). I will also briefly present the online ‘Astro Adventures’ courses for middle and high school students I have developed through NU’s Center for Talent Development. The online courses take advantage of many of the amazing online astronomy enrichment materials available to the public, including a range of hands-on activities and the ability to take images with the Global Telescope Network. The course culminates with an independent computational research project.
NASA Astrophysics Data System (ADS)
Garrison, D. R., Jr.; Neubauer, H.; Barber, T. J.; Griffith, W. A.
2015-12-01
National reform efforts such as the Next Generation Science Standards, Modeling Instruction™, and Project Lead the Way (PLTW) seek to more closely align K-12 students' STEM learning experiences with the practices of scientific and engineering inquiry. These reform efforts aim to lead students toward deeper understandings constructed through authentic scientific and engineering inquiry in classrooms, particularly via model building and testing, more closely mirroring the professional practice of scientists and engineers, whereas traditional instructional approaches have typically been lecture-driven. In this vein, we describe the approach taken in the first year of the Teach for America (TFA) RockCorps, a five-year, NSF-sponsored project designed to provide authentic research experiences for secondary teachers and foster the development of Geophysics-themed teaching materials through cooperative lesson plan development and purchase of scientific equipment. Initially, two teachers were selected from the local Dallas-Fort Worth Region of TFA to participate in original research studying the failure of rocks under impulsive loads using a Split-Hopkinson-Pressure Bar (SHPB). For the teachers, this work provides a context from which to derive Geophysics-themed lesson plans for their courses, Physics/Pre-AP and Principles of Engineering (POE), offered at two large public high schools in Dallas ISD. The Physics course will incorporate principles of seismic wave propagation to allow students to develop a model of wave behavior, including velocity, refraction, and resonance, and apply the model to predict propagation properties of a variety of waves through multiple media. For the PLTW POE course, tension and compression testing of a variety of rock samples will be incorporated into materials properties and testing units. Also, a project will give a group of seniors in the PLTW Engineering Design and Development course at this certified NAF Academy of Engineering the opportunity to collaborate with UT Arlington scientists to design and prototype a fixturing solution for material testing. These course adaptations address learning objectives specified by the Texas Essential Knowledge and Skills, using geoscience examples to make abstract concepts more concrete.
Project-based learning in a high school engineering program: A case study
NASA Astrophysics Data System (ADS)
France, Todd
Generating greater student interest in science, technology, engineering, and mathematics (STEM) has been a major topic of discussion among educators, policymakers, and researchers in recent years, as increasing the number of graduates in these fields is widely considered a necessary step for sustaining the progress of today's society. Fostering this interest must occur before students reach college, and substantial efforts have been made to engage students at K-12 levels in STEM-focused learning. Attempts to involve students in engineering, a vital and growing profession, yet one in which students often have little experience, have frequently emphasized the design and construction of physical products, a practice supported by project-based learning. This thesis examines the environment of an engineering high school course that employed the project-based model. The course is part of a dedicated curricular program which aims to provide students with positive experiences in engineering-related activities while also preparing them for the rigors of college. A case study was conducted to provide insight into the benefits and drawbacks of the learning model. The study's outcomes are intended to provide guidance to educators participating in the design and/or facilitation of project-based activities, particularly those involved with engineering education. The research was performed using a qualitative approach. Long-term engagement with course participants was deemed critical to gaining a comprehensive understanding of the interactions and events that transpired on a daily basis. Nine educators involved with the program were interviewed, as were nineteen of the course's thirty-nine students. A wealth of other relevant data -- including surveys, field notes, and evaluations of student work -- was compiled for analysis as well. The study findings suggest that experiences in problem solving and teamwork were the central benefits of the course. Limitations existed due to a high focus on hands-on work, which infringed upon the significance of math and science content as well as the utilization of disciplined inquiry. In addition, group projects failed to hold individuals accountable, leading to assessment challenges. Program-wide, a number of issues hindered the teachers' abilities to institute changes, most notably a commitment to serve students of all abilities.
Approaches to School Leadership in Inclusive STEM High Schools: A Cross-Case Analysis
NASA Astrophysics Data System (ADS)
Ford, Michael Robert
Inclusive STEM-focused high schools (ISHSs) are a relatively new phenomenon in the landscape of public education. This study of four exemplar ISHSs (identified by experts in STEM education as highly successfully in preparing students underrepresented in STEM for STEM majors in college and future STEM careers) provides a rich description of the approach to ISHS school leadership by identifying various internal and external leadership factors influencing school leadership. This study examined an existing data set that included site visits to four ISHSs along with pre- and post-visit data, and a cross-case analysis focused on the leadership contributions of ISHS leaders and their larger community. This study found that the ISHSs expanded the concept of school leadership to include leadership both within and outside the school. In addition, school leaders needed autonomy to innovate and respond to their schools' needs. This included autonomy in hiring new teachers, autonomy from school district influence, and autonomy from restrictive teachers' union regulation and policies. Finally, ISHSs needed to continually invest in increasing their schools' capacities. This included investing in teacher professionalization, providing pathways for school leadership, collaborating with business and industry, and identifying the best student supports. A product of this study was a proposition for characterizing school leadership in an ISHS. This proposition may offer valuable insight, implications, and information for states and schools districts that may be planning or improving STEM education programs.
ERIC Educational Resources Information Center
Weis, Lois; Eisenhart, Margaret; Cipollone, Kristin; Stich, Amy E.; Nikischer, Andrea B.; Hanson, Jarrod; Ohle Leibrandt, Sarah; Allen, Carrie D.; Dominguez, Rachel
2015-01-01
In this article, we present findings from a three-year comparative longitudinal and ethnographic study of how schools in two cities, Buffalo and Denver, have taken up STEM education reform, including the idea of "inclusive STEM-focused schools," to address weaknesses in urban high schools with majority low-income and minority students.…
ERIC Educational Resources Information Center
Sahin, Alpaslan; Ekmekci, Adem; Waxman, Hersh C.
2017-01-01
This study examines college students' science, technology, engineering, and mathematics (STEM) choices as they relate to high school experiences, parent, teacher, and self-expectations, and mathematics and science efficacy. Participants were 2246 graduates of a STEM-focused public Harmony Public Schools in Texas, Harmony Public Schools (HPS).…
Influence of students' STEM self-efficacy on STEM and physics career choice
NASA Astrophysics Data System (ADS)
Halim, Lilia; Rahman, Norshariani Abd; Ramli, Nor Aidillina Mohd; Mohtar, Lilia Ellany
2018-01-01
Interest towards STEM and STEM careers is declining worldwide. Among the STEM related careers, the physics discipline has been the most affected in terms of numbers and imbalance of gender. This study investigates the role of self-efficacy in STEM towards STEM careers and Physics career based on gender and types of school. Findings showed that there is a positive and significant correlation between students' STEM self-efficacy and interest towards all disciplines in STEM and Physics career. Boys showed high level of self-efficacy in engineering discipline while the girls' associate more with science. Students from boarding schools showed higher self-efficacy and interest towards STEM careers compared to students from public schools. An implication of the study is that self-efficacy and interest in STEM careers are enhanced through engagement with STEM activities in and outside of school. Emphasis should be given to the role of counselors in making STEM careers relevant to students.
Choosing STEM College Majors: Exploring the Role of Pre-College Engineering Courses
ERIC Educational Resources Information Center
Phelps, L. Allen; Camburn, Eric M.; Min, Sookweon
2018-01-01
Despite the recent policy proclamations urging state and local educators to implement integrated science, technology, engineering, and mathematics (STEM) curricula, relatively little is known about the role and impact of pre-college engineering courses within these initiatives. When combined with appropriate mathematics and science courses, high…
Course Placement Influences on Student Motivation
ERIC Educational Resources Information Center
Simzar, Rahila; Domina, Thurston; Conley, AnneMarie; Tran, Cathy
2013-01-01
A national initiative encourages STEM careers to prepare students to succeed in an increasingly competitive economy (National Research Council, 2011). The STEM pipeline is dependent on students' mathematics course-taking trajectories, which are determined once a student enrolls in his/her first Algebra course. Despite efforts to increase access to…
Stem cell research and policy in India: current scenario and future perspective.
Sharma, Alka
2009-01-01
Stem cell research is an exciting area of biomedical research, with potential to advance cell biology, and other new modalities of treatment for many untreatable diseases. The potential resides in the ability of these cells to develop into many different cell types in the body. In India, efforts are being made on several fronts to promote this area in an integrated way. The main features of the strategy are: explore the full potential of adult and embryonic stem cells (ESCs) through basic and translational research; generate patient specific human ESC lines; enhance creation of animal models for pre-clinical studies; virtual network of Centres; creation institutions; generation of well trained manpower; build partnership with large companies in path-breaking areas; promote closer interactions amongst basic scientists, clinical researchers and the industry. Newer initiatives include: establishment of a dedicated institute for stem cell science and regenerative medicine with its translational units; GMP and clean room facilities in medical schools; creation of a system for multi-centric clinical studies using autologous adult stem cells; national and international training courses for providing training to the students and the young scientists in the both embryonic and adult stem cells; and formulation of guidelines to conduct stem cell research in a responsible and ethically sensitive manner in the country. The core capacity must be nurtured and built to create the required critical mass to have impact.
ERIC Educational Resources Information Center
Cromley, Jennifer G.; Perez, Tony; Kaplan, Avi
2016-01-01
Student cognition and motivation, as well as institutional policies, determine student course grades and retention in science, technology, engineering, and mathematics (STEM) majors. Regarding cognition, study skills relate to course grades, and grades relate to retention in STEM. Several aspects of motivation are related to both grades and…
Integrative Approach for a Transformative Freshman-Level STEM Curriculum
Curran, Kathleen L.; Olsen, Paul E.; Nwogbaga, Agashi P.; Stotts, Stephanie
2016-01-01
In 2014 Wesley College adopted a unified undergraduate program of evidence-based high-impact teaching practices. Through foundation and federal and state grant support, the college completely revised its academic core curriculum and strengthened its academic support structures by including a comprehensive early alert system for at-risk students. In this core, science, technology, engineering, and mathematics (STEM) faculty developed fresh manifestations of integrated concept-based introductory courses and revised upper-division STEM courses around student-centered learning. STEM majors can participate in specifically designed paid undergraduate research experiences in directed research elective courses. Such a college-wide multi-tiered approach results in institutional cultural change. PMID:27064213
ERIC Educational Resources Information Center
Rakich, Sladjana S.; Tran, Vinh
2016-01-01
Often STEM schools and STEM enrichment programs attract primarily high achieving students or those with strong motivation or interest. However, to ensure that more students pursue interest in STEM, steps must be taken to provide access for all students. For a balanced and integrated career development focus, schools must provide learning…
Moving STEM beyond Schools: Students' Perceptions about an Out-of-School STEM Education Program
ERIC Educational Resources Information Center
Baran, Evrim; Bilici, Sedef Canbazoglu; Mesutoglu, Canan; Ocak, Ceren
2016-01-01
Recent reports call for reformed education policies in Turkey in accordance with the need to develop students' knowledge and skills about STEM education and improving STEM workforce in the country. This research implemented an integrated out-of-school STEM education program for 6th grade students who come from disadvantaged areas in a large urban…
ERIC Educational Resources Information Center
Bottia, Martha Cecilia; Stearns, Elizabeth; Mickelson, Roslyn Arlin; Moller, Stephanie; Parker, Ashley Dawn
2015-01-01
Background/Context: Schools are integral to augmenting and diversifying the science, technology, engineering, and mathematics (STEM) workforce. This is because K-12 schools can inspire and reinforce students' interest in STEM, in addition to academically preparing them to pursue a STEM career. Previous literature emphasizes the importance of…
ERIC Educational Resources Information Center
Lynch, Sharon J.; Spillane, Nancy; House, Ann; Peters-Burton, Erin; Behrend, Tara; Ross, Kathleen M.; Han, Edmund M.
2017-01-01
This instrumental case study of Manor New Tech High (MNTH) provides insight and understanding of a trend in U.S. education to create new STEM schools and increase the achievement of students underrepresented in STEM. MNTH was an inclusive, STEM-focused high school, in Manor, Texas. The creation of the school was stimulated by a statewide Texas…
Effective Practices for Evaluating STEM Out-of-School Time Programs
ERIC Educational Resources Information Center
Wilkerson, Stephanie B.; Haden, Carol M.
2014-01-01
Science, technology, engineering, and mathematics (STEM) programs in out-of-school time (OST) are designed to supplement school work, ignite student interest, and extend STEM learning. From interactive museum exhibits to summer-long science camps, opportunities for informal student engagement in STEM learning abound. The differences these programs…
Trends in gender segregation in the choice of science and engineering majors.
Mann, Allison; Diprete, Thomas A
2013-11-01
Numerous theories have been put forward for the high and continuing levels of gender segregation in science, technology, engineering, and mathematics (STEM) fields, but research has not systematically examined the extent to which these theories for the gender gap are consistent with actual trends. Using both administrative data and four separate longitudinal studies sponsored by the U.S. Department of Education's National Center for Education Statistics (NCES), we evaluate several prominent explanations for the persisting gender gap in STEM fields related to mathematics performance and background and general life goals, and find that none of them are empirically satisfactory. Instead, we suggest that the structure of majors and their linkages to professional training and careers may combine with gender differences in educational goals to influence the persisting gender gap in STEM fields. An analysis of gendered career aspirations, course-taking patterns, and pathways to medical and law school supports this explanation. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Tao; Wang, Wei; Liu, Heping; Zhang, Zhi-jie; Liang, Cunzhu; Wang, Li xin; Bu Ren, Tuo Ya
2007-09-01
The micrograph and the geographical information system(GIS) technology are combined, and applied into histiocytic anatomy. Through studying histiocytic changes of Cleistogenes squarrosa's vegetation organs, namely leaf and stem, the steppe plants' inherent mechanism of miniaturization is revealed. In the course of restoring succession, Cleistogenes squarrosa's anatomy of leaf and stem demonstrate the same variation trend in the three different sample plots: the longer the resume time is, the more, its cells which make up the organ are. According to opposite course, miniaturization has all taken place in the leaf and stem. However, there is difference in the miniaturization mechanism of the leaf and stem. (1) According to dissection structure of the blade, the reduction of organizing the figure of the mesophyll has caused miniaturization. (2) The miniaturization mechanism of the stem is the reduction of different organization's cell's figure of the stem.
NASA Astrophysics Data System (ADS)
Ramsey, Susan Brady
The purpose of this study is to examine the effectiveness of the National Math and Science Initiative's Advanced Placement Training and Incentive Program (APTIP) on the number of students taking AP science courses and their performance. The study evaluated 39 schools over a six-year period in six states that participate in the APTIP. The National Math and Science Initiative provided data for cohort I. A general linear model for repeated measures was used to evaluate the data. Data was evaluated three years prior to the intervention and three years during the intervention, which will actually continue for two more years (2012 and 2013) since cohort I schools were awarded five years of support. Students in APTIP schools enrolled in more AP science exams (AP Biology, AP Chemistry, AP Environmental Science, and AP Physics-B) over the course of the intervention. The quantity of students earning qualifying scores increased during the intervention years. APTIP is a multi-tiered program that includes seven days of teacher training, three six-hour student prep sessions, school equipment, reduced exam fees, and monetary incentives for students and teachers. This program positively impacted the quantity of enrollment and qualifying scores during the three years evaluated in this study. Increases in the number of female and African American students' test takers their and qualifying scores were seen in all three years of the APTIP intervention. This study supports the premise that the first step to increasing the Science, technology, engineering, and math (STEM) pipeline is giving access to advanced courses to more students in high schools.
NASA Astrophysics Data System (ADS)
Burt, Stacey M.
The problem addressed in this project is the lack of mathematically gifted females choosing to pursue advanced science, technology, engineering, and mathematics (STEM) courses in secondary education due to deficiencies in self-efficacy. The purpose of this project was to study the effects of a child-guided robotics program as it relates to the self-efficacy of mathematically gifted 6th grade female students and their future course choices in the advanced STEM content areas. This mixed-model study utilized a STEM attitude survey, artifacts, interviews, field notes, and standardized tests as measurement tools. Significance was found between genders in the treatment group for the standardized science scores, indicating closure in the achievement gap. Research suggests that STEM enrichment is beneficial for mathematically gifted females.
A Community - Centered Astronomy Research Program
NASA Astrophysics Data System (ADS)
Boyce, Pat; Boyce, Grady
2017-06-01
The Boyce Research Initiatives and Education Foundation (BRIEF) is providing semester-long, hands-on, astronomy research experiences for students of all ages that results in their publishing peer-reviewed papers. The course in astronomy and double star research has evolved from a face-to-face learning experience with two instructors to an online - hybrid course that simultaneously supports classroom instruction at a variety of schools in the San Diego area. Currently, there are over 65 students enrolled in three community colleges, seven high schools, and one university as well as individual adult learners. Instructional experience, courseware, and supporting systems were developed and refined through experience gained in classroom settings from 2014 through 2016. Topics of instruction include Kepler's Laws, basic astrometry, properties of light, CCD imaging, use of filters for varying stellar spectral types, and how to perform research, scientific writing, and proposal preparation. Volunteer instructors were trained by taking the course and producing their own research papers. An expanded program was launched in the fall semester of 2016. Twelve papers from seven schools were produced; eight have been accepted for publication by the Journal of Double Observations (JDSO) and the remainder are in peer review. Three additional papers have been accepted by the JDSO and two more are in process papers. Three college professors and five advanced amateur astronomers are now qualified volunteer instructors. Supporting tools are provided by a BRIEF server and other online services. The server-based tools range from Microsoft Office and planetarium software to top-notch imaging programs and computational software for data reduction for each student team. Observations are performed by robotic telescopes worldwide supported by BRIEF. With this success, student demand has increased significantly. Many of the graduates of the first semester course wanted to expand their astronomy knowledge and experience. To answer this demand, BRIEF is developing additional astronomy research courses with partners in advanced astrometry, photometry, and exoplanets. The program provides a significant opportunity for schools, teachers, and advanced amateur astronomers to introduce high school and college students to astronomy, science, and STEM careers.
High school students' learning and perceptions of phylogenetics of flowering plants.
Bokor, Julie R; Landis, Jacob B; Crippen, Kent J
2014-01-01
Basic phylogenetics and associated "tree thinking" are often minimized or excluded in formal school curricula. Informal settings provide an opportunity to extend the K-12 school curriculum, introducing learners to new ideas, piquing interest in science, and fostering scientific literacy. Similarly, university researchers participating in science, technology, engineering, and mathematics (STEM) outreach activities increase awareness of college and career options and highlight interdisciplinary fields of science research and augment the science curriculum. To aid in this effort, we designed a 6-h module in which students utilized 12 flowering plant species to generate morphological and molecular phylogenies using biological techniques and bioinformatics tools. The phylogenetics module was implemented with 83 high school students during a weeklong university STEM immersion program and aimed to increase student understanding of phylogenetics and coevolution of plants and pollinators. Student response reflected positive engagement and learning gains as evidenced through content assessments, program evaluation surveys, and program artifacts. We present the results of the first year of implementation and discuss modifications for future use in our immersion programs as well as in multiple course settings at the high school and undergraduate levels. © 2014 J. R. Bokor et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
ERIC Educational Resources Information Center
French, Debbie Ann
2016-01-01
In this dissertation, the researcher describes authentic scientific inquiry (ASI) within three stages of teacher preparation and development: a1) undergraduate STEM courses, b2) preservice secondary science education methods courses, and c3) inservice teacher professional development (PD). Incorporating (ASI)--pedagogy closely modeling the…
Batz, Zachary; Olsen, Brian J.; Dumont, Jonathan; Dastoor, Farahad; Smith, Michelle K.
2015-01-01
The high attrition rate among science, technology, engineering, and mathematics (STEM) majors has long been an area of concern for institutions and educational researchers. The transition from introductory to advanced courses has been identified as a particularly “leaky” point along the STEM pipeline, and students who struggle early in an introductory STEM course are predominantly at risk. Peer-tutoring programs offered to all students in a course have been widely found to help STEM students during this critical transition, but hiring a sufficient number of tutors may not be an option for some institutions. As an alternative, this study examines the viability of an optional peer-tutoring program offered to students who are struggling in a large-enrollment, introductory biology course. Struggling students who regularly attended peer tutoring increased exam performance, expert-like perceptions of biology, and course persistence relative to their struggling peers who were not attending the peer-tutoring sessions. The results of this study provide information to instructors who want to design targeted academic assistance for students who are struggling in introductory courses. PMID:25976652
VanMeter-Adams, Amy; Frankenfeld, Cara L; Bases, Jessica; Espina, Virginia; Liotta, Lance A
2014-01-01
What early experiences attract students to pursue an education and career in science, technology, engineering, and mathematics (STEM)? Does hands-on research influence them to persevere and complete a major course of academic study in STEM? We evaluated survey responses from 149 high school and undergraduate students who gained hands-on research experience in the 2007-2013 Aspiring Scientists Summer Internship Programs (ASSIP) at George Mason University. Participants demonstrated their strong interest in STEM by volunteering to participate in ASSIP and completing 300 h of summer research. The survey queried extracurricular experiences, classroom factors, and hands-on projects that first cultivated students' interest in the STEM fields, and separately evaluated experiences that sustained their interest in pursuing a STEM degree. The majority of students (65.5%, p < 0.0001) reported extracurricular encounters, such as the influence of a relative or family member and childhood experiences, as the most significant factors that initially ignited their interest in STEM, while hands-on lab work was stated as sustaining their interest in STEM (92.6%). Based on these findings collected from a cohort of students who demonstrated a strong talent and interest in STEM, community-based programs that create awareness about STEM for both children and their family members may be key components for igniting long-term academic interest in STEM. © 2014 A. VanMeter-Adams et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Dual Identities: Organizational Negotiation in STEM-Focused Catholic Schools
ERIC Educational Resources Information Center
Kloser, Matthew; Wilsey, Matthew; Hopkins, Dawn W.; Dallavis, Julie W.; Lavin, Erin; Comuniello, Michael
2018-01-01
In the last decade, STEM-focused schools have opened their doors nationally in the hope of meeting students' contemporary educational needs. Despite the growth of these STEM-focused institutions, minimal research exists that follows how schools make a transition toward a STEM focus and what organizational structures are most conducive to a…
Relationship of Middle School Student STEM Interest to Career Intent
ERIC Educational Resources Information Center
Christensen, Rhonda; Knezek, Gerald
2017-01-01
Understanding middle school students' perceptions regarding STEM dispositions, and the role attitudes play in establishing STEM career aspirations, is imperative to preparing the STEM workforce of the future. Data were gathered from more than 800 middle school students participating in a hands-on, real world application curriculum to examine the…
National Survey of STEM High Schools' Curricular and Instructional Strategies and Practices
ERIC Educational Resources Information Center
Forman, Jennifer; Gubbins, Elizabeth Jean; Villanueva, Merzili; Massicotte, Cindy; Callahan, Carolyn; Tofel-Grehl, Colby
2015-01-01
A limited number of highly selective high schools specializing in science, technology, engineering and mathematics (STEM) education have existed for many decades, encouraging youth with identified STEM talent to pursue careers as STEM leaders and innovators. As members of the National Consortium for Specialized Secondary Schools of Mathematics,…
ERIC Educational Resources Information Center
Franco, M. Suzanne; Patel, Nimisha H.
2017-01-01
High school students' perceptions and experiences regarding student engagement were investigated using 32 focus group sessions across 4 different types of STEM education settings in 2 metropolitan areas in the Midwest. Students' understandings and experiences related to student engagement were reflected via 5 categories: students' thinking of…
A Perspective from the National Consortium for Secondary STEM Schools
ERIC Educational Resources Information Center
Bonds, Crystal
2016-01-01
This article addresses the role of National Consortium for Secondary STEM Schools in the process of data-informed decision-making for both improving and addressing achievement gaps in participatory specialized STEM high schools.
Impact of Environmental Power Monitoring Activities on Middle School Student Perceptions of STEM
ERIC Educational Resources Information Center
Knezek, Gerald; Christensen, Rhonda; Tyler-Wood, Tandra; Periathiruvadi, Sita
2013-01-01
Middle school is a crucial stage in student development as students prepare for a fast changing future. The science, technology, engineering and mathematics (STEM) skills that students acquire in middle school lay the foundation for a successful career in STEM. Moreover, most STEM occupations require competencies in science, math and logical…
Effects of Implementing STEM-I Project-Based Learning Activities for Female High School Students
ERIC Educational Resources Information Center
Lou, Shi-Jer; Tsai, Huei-Yin; Tseng, Kuo-Hung; Shih, Ru-Chu
2014-01-01
This study aims to explore the application of STEM-I (STEM-Imagination) project-based learning activities and its effects on the effectiveness, processes, and characteristics of STEM integrative knowledge learning and imagination development for female high school students. A total of 72 female high school students were divided into 18 teams.…
ERIC Educational Resources Information Center
Belcher, Aaron Heath
2017-01-01
The purpose of this disquisition is to disseminate an improvement initiative in a public high school that addressed female Science, Technology, Engineering and Math (STEM) disparity in STEM classes. In this high school current instructional and career guidance practices were inadequate in providing female STEM students opportunities to experience…
ERIC Educational Resources Information Center
Yildirim, Bekir; Selvi, Mahmut
2016-01-01
This study was carried out to determine the view of prospective teachers with regard to STEM education given in Science, Technology, Society and Environment course and the effects of STEM education on prospective teachers' attitudes towards renewable energy sources and awareness of environment problems. The study was carried out in 2014-2015…
Understanding the gender gap: Social cognitive changes during an introductory stem course.
Hardin, Erin E; Longhurst, Melanie O
2016-03-01
Despite robust support for the basic theoretical model of social cognitive career theory (Lent, Brown, & Hackett, 1994) and predictions that, for example, increases (or declines) in self-efficacy would lead to subsequent increases (or declines) in interest, there has been surprisingly little longitudinal research that has directly examined the extent to which members of different groups (e.g., women and men) actually do experience changes in critical social-cognitive variables over time early in their curricula in the fields of science, technology, engineering, and mathematics (STEM). Knowing the extent to which such changes occur in typical introductory undergraduate courses is important for targeting interventions to increase persistence of underrepresented groups in STEM. We measured social-cognitive-career-theory-relevant variables near the middle and at the end of the 1st semester of a gateway introductory chemistry course and found that women had lower STEM self-efficacy, coping self-efficacy, and STEM interest than did men, even after controlling for actual course performance. Although there were no detrimental changes across the semester for women or men, men experienced a small but significant increase in their perceived support for pursuing a STEM degree, whereas women did not. (c) 2016 APA, all rights reserved).
ERIC Educational Resources Information Center
Rhodes, Ashley; Rozell, Tim; Shroyer, Gail
2014-01-01
Many students who have the ability to succeed in science, technology, engineering and math (STEM) disciplines are often alienated by the traditional instructional methods encountered within introductory courses; as a result, attrition from STEM fields is highest after completion of these courses. This is especially true for females. The present…
ERIC Educational Resources Information Center
Graves, Laura; Asunda, Paul A.; Plant, Stacey J.; Goad, Chester
2011-01-01
The purpose of this study was to investigate whether asynchronous online access of course recordings was beneficial to students with learning disabilities (LD) and/or Attention Deficit/Hyperactivity Disorder (ADHD) enrolled in science, technology, engineering, and mathematics (STEM) courses. Data were collected through semi-structured interviews…
ERIC Educational Resources Information Center
Savaria, Michael; Monteiro, Kristina
2017-01-01
Men outnumber women in the enrollment of science, technology, engineering, and mathematics (STEM) undergraduate majors. Course syllabi are distributed to students during open enrollment and provide key insights into the courses. A critical discourse analysis of introductory engineering syllabi at a 4-year public university revealed limited to no…
A Case Study of a Program for University STEM Faculty to Redesign Courses Using Technology
ERIC Educational Resources Information Center
Bernal, Elaine V.
2016-01-01
The purpose of this case study was to evaluate a multi-campus university program designed to support STEM faculty in redesigning bottleneck courses, with integration of technology as one strategy. Despite the positive student learning outcomes in course redesign programs with an aim to support faculty in technology integration, there remains a…
NASA Astrophysics Data System (ADS)
Reed, D. E.; Jones, G.; Heaney, A.
2013-12-01
Retention in the STEM fields is often a focus for higher education due to a shortage of trained workforce members. In particular, much effort has been spent on first year retention rates and introductory level courses under the assumption that students are more likely to drop out of STEM majors early in their higher education degree progress. While the retention rates of women, minorities, and low income students have been a priority by both the National Science Foundation and the private sector, we are interested in at-risk first year students for this study. The University of Wyoming Synergy Program's goal is to promote academic success and retention for underprepared and at-risk students by creating a series of first semester curricula as theme-based college transition skills courses that are paired with English courses. This creates a cohort group of courses for the students with increased communication between instructors at the same time allowing greater development of student social networks. In this study we are highlighting the results of the STEM students as compared with other at-risk participants in the program. The Synergy Program enrolls approximately 144 students each year with pre- and post-course surveys that directly measure which college skills students select as important as well as student expectations of the amount of time required for STEM courses. Follow-up surveys track the same queries for students who persist to their junior and senior year. In addition, instructors complete a summative survey about skills they find important to student success and individual student's challenges and successes with a variety of skills. Our results show a large gap in skills between those identified as important by students and those identified by their instructors. Expectations for the amount of time required to complete work for STEM courses and the reported time spent on course work are not constant when progressing throughout college. This analysis will show other higher education instructors both the course design and results from this study of at-risk students. Our results will include specific strategies for instructors or institutes to enhance STEM retention while increasing the overall college success of at-risk freshmen through this innovative course design.
STEM field courses that increase interest, opinions and confidence in conservation- related fields
NASA Astrophysics Data System (ADS)
Christensen, B. A.; Freeman, A. S.; Donovan, C.; Cooperstein, D.; Foellmer, M.; Ward, A.
2016-12-01
Students in the Environmental Studies and Biology programs at Adelphi University, situated in the NYC metropolitan area, have had little exposure to the outdoors or nature and are often reluctant to engage in field activities. We developed three courses to provide outdoor experiences at different levels of intensity, financial and travel/ time commitments. Adelphi in Australia is a three-week field course taught mostly at a marine station that includes day and night hikes, snorkeling on the Great Barrier Reef (GBR) and independent research. Adelphi in the U.S. Virgin Islands is a one-week field `starter course' focusing on snorkeling and hiking. Observing Nature is an on-campus, once a week course with nature-based readings, weekend hikes and camping. It was developed after Hurricane Sandy revealed a lack of experience and confidence living without some modern infrastructure. We evaluated student opinions, interests and career goals in a survey administered at the start and at the end of the course that focused on knowledge, skills, opinion, and interest in STEM. Opinion questions addressed confidence, awareness of conservation issues, and interest in outdoor activities. The survey confirmed most of our students have a limited relationship with the outdoors when they start our field classes. More than half had never camped. Most had learned about nature through school trips and family. When asked to rank hiking against other activities, the majority regularly placed hiking below `going to the beach' and 'watching a movie'. The post-survey asked how students would apply what they had learned (interest in the environment; staying in the sciences). The generally positive results indicate the courses play an important role in connecting our students with the outdoors, and may have a lasting impact if they in turn connect others or get involved with local conservation programs.
Modeling Successful STEM High Schools in the United States: An Ecology Framework
ERIC Educational Resources Information Center
Erdogan, Niyazi; Stuessy, Carol L.
2015-01-01
This study aims to generate a conceptual framework for specialized Science, Technology, Engineering, and Mathematics (STEM) schools. To do so, we focused on literature and found specialized STEM schools have existed for over 100 years and recently expanded nationwide. The current perception for these schools can be described as unique environments…
Mapping Curriculum Innovation in STEM Schools to Assessment Requirements: Tensions and Dilemmas
ERIC Educational Resources Information Center
Tan, Aik-Ling; Leong, Woon Foong
2014-01-01
Specialized science, technology, engineering, and mathematics (STEM) schools create niche areas in an attempt to attract the best students, establish the school status, and justify their privilege to valuable resources. One Singapore STEM school does this in applied science learning to differentiate its curriculum from the national prescribed…
Improving numeracy through values affirmation enhances decision and STEM outcomes
Peters, Ellen; Tompkins, Mary Kate; Schley, Dan; Meilleur, Louise; Sinayev, Aleksander; Tusler, Martin; Wagner, Laura; Crocker, Jennifer
2017-01-01
Greater numeracy has been correlated with better health and financial outcomes in past studies, but causal effects in adults are unknown. In a 9-week longitudinal study, undergraduate students, all taking a psychology statistics course, were randomly assigned to a control condition or a values-affirmation manipulation intended to improve numeracy. By the final week in the course, the numeracy intervention (statistics-course enrollment combined with values affirmation) enhanced objective numeracy, subjective numeracy, and two decision-related outcomes (financial literacy and health-related behaviors). It also showed positive indirect-only effects on financial outcomes and a series of STEM-related outcomes (course grades, intentions to take more math-intensive courses, later math-intensive courses taken based on academic transcripts). All decision and STEM-related outcome effects were mediated by the changes in objective and/or subjective numeracy and demonstrated similar and robust enhancements. Improvements to abstract numeric reasoning can improve everyday outcomes. PMID:28704410
The High School Environment and the Gender Gap in Science and Engineering
Legewie, Joscha; DiPrete, Thomas A.
2016-01-01
Despite the striking reversal of the gender gap in education, women pursue science, technology, engineering, and mathematics (STEM) degrees at much lower rates than those of their male peers. This study extends existing explanations for these gender differences and examines the role of the high school context for plans to major in STEM fields. Building on recent gender theories, we argue that widely shared and hegemonic gender beliefs manifest differently across schools so that the gender-specific formation of study plans is shaped by the local environment of high schools. Using the National Education Longitudinal Study, we first show large variations between high schools in the ability to attract students to STEM fields conditional on a large set of pre–high school measures. Schools that are successful in attracting students to these fields reduce the gender gap by 25 percent or more. As a first step toward understanding what matters about schools, we then estimate the effect of two concrete high school characteristics on plans to major in STEM fields in college—a high school's curriculum in STEM and gender segregation of extracurricular activities. These factors have a substantial effect on the gender gap in plans to major in STEM: a finding that is reaffirmed in a number of sensitivity analyses. Our focus on the high school context opens concrete avenues for policy intervention and is of central theoretical importance to understand the gender gap in orientations toward STEM fields. PMID:27857451
The High School Environment and the Gender Gap in Science and Engineering.
Legewie, Joscha; DiPrete, Thomas A
2014-10-01
Despite the striking reversal of the gender gap in education, women pursue science, technology, engineering, and mathematics (STEM) degrees at much lower rates than those of their male peers. This study extends existing explanations for these gender differences and examines the role of the high school context for plans to major in STEM fields. Building on recent gender theories, we argue that widely shared and hegemonic gender beliefs manifest differently across schools so that the gender-specific formation of study plans is shaped by the local environment of high schools. Using the National Education Longitudinal Study, we first show large variations between high schools in the ability to attract students to STEM fields conditional on a large set of pre-high school measures. Schools that are successful in attracting students to these fields reduce the gender gap by 25 percent or more. As a first step toward understanding what matters about schools, we then estimate the effect of two concrete high school characteristics on plans to major in STEM fields in college-a high school's curriculum in STEM and gender segregation of extracurricular activities. These factors have a substantial effect on the gender gap in plans to major in STEM: a finding that is reaffirmed in a number of sensitivity analyses. Our focus on the high school context opens concrete avenues for policy intervention and is of central theoretical importance to understand the gender gap in orientations toward STEM fields.
NASA Astrophysics Data System (ADS)
O'Neal, Melissa Jean
Canonical correlation analysis was used to analyze data from Trends in International Mathematics and Science Study (TIMSS) 2011 achievement databases encompassing information from fourth/eighth grades. Student achievement in life science/biology was correlated with achievement in mathematics and other sciences across three analytical areas: mathematics and science student performance, achievement in cognitive domains, and achievement in content domains. Strong correlations between student achievement in life science/biology with achievement in mathematics and overall science occurred for both high- and low-performing education systems. Hence, partial emphases on the inter-subject connections did not always lead to a better student learning outcome in STEM education. In addition, student achievement in life science/biology was positively correlated with achievement in mathematics and science cognitive domains; these patterns held true for correlations of life science/biology with mathematics as well as other sciences. The importance of linking student learning experiences between and within STEM domains to support high performance on TIMSS assessments was indicated by correlations of moderate strength (57 TIMSS assessments was indicated by correlations of moderate strength (57 < r < 85) stronger correlations (73 < r < 97) between life science/biology and other science domains. Results demonstrated the foundational nature of STEM knowledge at the fourth grade level, and established the importance of strong interconnections among life science/biology, mathematics, and other sciences. At the eighth grade level, students who built increasing levels of cognitive complexity upon firm foundations were prepared for successful learning throughout their educational careers. The results from this investigation promote a holistic design of school learning opportunities to improve student achievement in life science/biology and other science, technology, engineering, and mathematics (STEM) subjects at the elementary and middle school levels. While the curriculum can vary from combined STEM subjects to separated mathematics or science courses, both professional learning communities (PLC) for teachers and problem-based learning (PBL) for learners can be strengthened through new knowledge construction beyond the traditional boundaries of each subject. It is the knowledge transfer across subjects that breaks barriers of future STEM discoveries to improve STEM education outcomes.
Ethnographic case study of a high school science classroom: Strategies in stem education
NASA Astrophysics Data System (ADS)
Sohn, Lucinda N.
Historically, science education research has promoted that learning science occurs through direct physical experiences. In recent years, the need for best practices and student motivation have been highlighted in STEM research findings. In response to the instructional challenges in STEM education, the National Research Council has provided guidelines for improving STEM literacy through best practices in science and mathematics instruction. A baseline qualitative ethnographic case study of the effect of instructional practices on a science classroom was an opportunity to understand how a teacher and students work together to learn in an International Baccalaureate life science course. This study was approached through an interpretivist lens with the assumption that learning science is socially constructed. The following were the research questions: 1.) How does the teacher implement science instruction strategies in the classroom? 2.) In what ways are students engaged in the classroom? 3.) How are science concepts communicated in the classroom? The total 35 participants included a high school science teacher and two classes of 11th grade students in the International Baccalaureate program. Using exploratory qualitative methods of research, data was collected from field notes and transcripts from a series of classroom observations, a single one-on-one interview with the teacher and two focus groups with students from each of the two classes. Three themes emerged from text coded using initial and process coding with the computer assisted qualitative data analysis software, MAXQDA. The themes were: 1.) Physical Forms of Communication Play Key Role in Instructional Strategy, 2.) Science Learning Occurs in Casual Environment Full of Distractions, and 3.) Teacher Persona Plays Vital Role in Classroom Culture. The findings provided insight into the teacher's role on students' motivation to learn science. The recommendation for STEM programs and new curriculum is a holistic and sustainable model for development and implementation. This approach brings together the researcher and practitioner to design effective and specific programs tailored to student needs. The implication of using an effective team model to plan and coordinate individualized STEM initiatives is a long-term commitment to overall STEM literacy, thereby fostering increased access to STEM careers for all learners.
NASA Astrophysics Data System (ADS)
Chinn, P. W. U.
2016-12-01
Context/Purpose: The Hawaiian Islands span 1500 miles. Age, size, altitude and isolation produced diverse topographies, weather patterns, and unique ecosystems. Around 500 C.E. Polynesians arrived and developed sustainable social ecosystems, ahupua`a, extending from mountain-top to reef. Place-based ecological knowledge was key to personal identity and resource management that sustained 700,000 people at western contact. But Native Hawaiian students are persistently underrepresented in science. This two-year mixed methods study asks if professional development (PD) can transform teaching in ways that support K12 Native Hawaiian students' engagement and learning in STEM. Methods: Place-based PD informed by theories of structure and agency (Sewell, 1992) and cultural funds of knowledge (Moll, Amanti, Neff, & Gonzalez, 1992) explicitly intersected Hawaiian and western STEM knowledge and practices. NGSS and Nā Hopena A`o, general learner outcomes that reflect Hawaiian culture and values provided teachers with new schemas for designing curriculum and assessment through the lens of culture and place. Data sources include surveys, teacher and student documents, photographs. Results: Teachers' lessons on invasive species, water, soils, Hawaiian STEM, and sustainability and student work showed they learned key Hawaiian terms, understood the impact of invasive species on native plants and animals, felt stronger senses of responsibility, belonging, and place, and preferred outdoor learning. Survey results of 21 4th graders showed Native Hawaiian students (n=6) were more interested in taking STEM and Hawaiian culture/language courses, more concerned about invasive species and culturally important plant and animals, but less able to connect school and family activities than non-Hawaiian peers (n=15). Teacher agency is seen in their interest in collaborating across schools to develop ahupua`a based K12 STEM curricula. Interpretation and Conclusion: Findings suggest PD explicitly integrating Western and Hawaiian STEM systems contributes to teacher agency and place-based expertise. Future research with a new cohort of teachers will expand grades and numbers of students surveyed to validate first year findings and guide future PD oriented to STEM equity for Native Hawaiian students.
Scientix in our school- discovering STEM
NASA Astrophysics Data System (ADS)
Melcu, Cornelia
2017-04-01
My name is Cornelia Melcu and I am a primary school teacher in Brasov. Additionally, I am a teacher trainer of Preparatory Class Curriculum, Google Application in Education Course and European Projects Course and a mentor to new teachers and students in university. I am an eTwinning, Scientix and ESERO ambassador too. During the last three school years my school was involved in several STEM projects, part of Scientix community. The main goal of those projects was to develop basic STEM skills of our students based on project work integrated into the curriculum. Open the Gates to the Universe (http://gatestotheuniverse.blogspot.ro; https://twinspace.etwinning.net/12520/home) is an eTwinning project for primary school students started on September 2015 and finished on September 2016. Some of our partners were from the Mediterranean area. The students discovered different aspects of space science and astronomy working on international groups. They explored some aspects of Science included in their curriculum using resources from ESERO, ROEDUSEIS and Space Awareness (e.g. Calculate with Rosetta, Writing the travel diary, Build Rosetta, How to become an astronaut, etc.) The project was a great opportunity to apply integrated learning methods for developing competencies which are a part of the primary school curriculum in Romania. In Language and Communication classes the students talked about their partners living places and their traditions and habits. They learnt some basic words in their partners language related to the weather. They created stories- both in Romanian and English; they described life in space and astronomical phenomena. They talked to the other partners during the several online meetings we organized and wrote short stories in English. In Mathematics and Science they found out about the Milky Way, the Solar System, the weather, famous astronauts and astronomers. They calculated, solved problems, made experiments and explained specific natural phenomena related to Space. During the ICT lessons, they used different devices for creating and playing online games and quizzes, took photos and edited them, searched for and found specific information related to the topic. In Art they made cards, posters, drawings and paintings. They learnt songs in Music and in PE made outdoor experiments (like calculating the distance between planets in our Solar System using a scale). During the Personal Development lessons the students found out solutions for problems (e.g. How would you survive in Space?) and they presented their project work to their schoolmates, teachers and parents. The project 'started where the children were', it was built on the knowledge and ideas children brought with them to lessons and helped them to develop their understanding of scientific concepts related to the Universe. It helped them to understand the diversity of weather conditions and as part of a world community and their responsibility for the environment. The students are able to identify main planets and stars on the sky and they have of basic notions related to Earth and Sun; In conclusion, the project provides opportunities for learning STEM topics in pre-primary and primary education. Implementing the project gave the children and all the adults involved (staff, parents) a lot of fun and satisfaction.
High School STEM Teachers' Perceptions of the Work Environment
ERIC Educational Resources Information Center
Pedersen, Daphne E.; West, Robert R.
2017-01-01
How do secondary STEM teachers perceive the environments in which they teach? To what degree is STEM teaching at the secondary level situated in a gendered workplace organization? Using data from the 1999-2000 Schools and Staffing Survey, we examined how men and women who were full-time secondary school teachers in STEM fields (N = 5,617)…
ERIC Educational Resources Information Center
Eisenhart, Margaret; Weis, Lois; Allen, Carrie D.; Cipollone, Kristin; Stich, Amy; Dominguez, Rachel
2015-01-01
In response to numerous calls for more rigorous STEM (science, technology, engineering, and mathematics) education to improve US competitiveness and the job prospects of next-generation workers, especially those from low-income and minority groups, a growing number of schools emphasizing STEM have been established in the US over the past decade.…
ERIC Educational Resources Information Center
Holmes, Kathryn; Gore, Jennifer; Smith, Max; Lloyd, Adam
2018-01-01
Declining enrolments in science, technology, engineering and mathematics (STEM) disciplines and a lack of interest in STEM careers are concerning at a time when society is becoming more reliant on complex technologies. We examine student aspirations for STEM careers by drawing on surveys conducted annually from 2012 to 2015. School students in…
Boosting the Numbers of STEM Majors? the Role of High Schools with a STEM Program
ERIC Educational Resources Information Center
Bottia, Martha Cecilia; Stearns, Elizabeth; Mickelson, Roslyn Arlin; Moller, Stephanie
2018-01-01
This article investigates whether attending a high school that offers a specialized science, technology, engineering, and/or mathematics program (high school with a STEM program) boosts the number of students majoring in STEM when they are in college. We use a longitudinal sample of students in North Carolina, whom we follow from middle school…
STEM Education: Attracting and Retaining Female Students in Secondary STEM Programs
ERIC Educational Resources Information Center
Ruff, Zachary A.
2017-01-01
This narrative case study examines a high achieving STEM based high school and its ability to attract, retains, and engage female students. Given the recent importance placed on STEM graduates and STEM careers it is important for schools to understand how they can engage traditionally underserved minorities in STEM fields. The research used a…
STEM School Discourse Patterns
ERIC Educational Resources Information Center
Tofel-Grehl, Colby; Callahan, Carolyn M.
2016-01-01
Analysis of discursive practices in science classrooms within STEM schools may provide meaningful information about the nature of these classrooms and, potentially, their uniqueness. Full descriptions of current practice can serve as a foundation for exploring the differences in instructional norms within STEM specialized schools and across…
Preparing Students for Middle School through After-School STEM Activities
ERIC Educational Resources Information Center
Moreno, Nancy P.; Tharp, Barbara Z.; Vogt, Gregory; Newell, Alana D.; Burnett, Christopher A.
2016-01-01
The middle school years are a crucial time for cultivating students' interest in and preparedness for future STEM careers. However, not all middle school children are provided opportunities to engage, learn and achieve in STEM subject areas. Engineering, in particular, is neglected in these grades because it usually is not part of science or…
ERIC Educational Resources Information Center
Willson-Conrad, Angela; Kowalske, Megan Grunert
2018-01-01
Retention of students who major in STEM continues to be a major concern for universities. Many students cite poor teaching and disappointing grades as reasons for dropping out of STEM courses. Current college chemistry courses often assess what a student has learned through summative exams. To understand students' experiences of the exam process,…
NASA Astrophysics Data System (ADS)
Collins, Timothy A.
2011-12-01
Science inquiry is central to the science education reform efforts that began in the early 1990's. It is both a topic of instruction and a process to be experienced. Student engagement in the process of scientific inquiry was the focus of this study. The process of scientific inquiry can be conceived as a two-part task. In the initial part of the task, students identify a question or problem to study and then carry out an investigation to address the issue. In the second part of the task, students analyze their data to propose explanations and then report their findings. Knowing that students struggle with science inquiry tasks, this study sought to investigate ways to help students become more successful with the communication demands of science inquiry tasks. The study took place in a high school chemistry class. Students in this study completed a total of three inquiry tasks over the course of one school year. Students were split into four experimental groups in order to determine the effect of goal setting, metacognitive prompts, and sentence stems on student inquiry tasks. The quality of the student written work was assessed using a scoring rubric familiar to the students. In addition, students were asked at four different times in the school year to respond to a self-efficacy survey that measured student self-efficacy for chemistry content and science inquiry processes. Student self-efficacy for the process of scientific inquiry was positive and did not change over the course of the study while student scores on the science inquiry tasks rose significantly. The metacognitive prompts and instruction in goal setting did not have any effect on student inquiry scores. Results related to the effect of the sentence stems were mixed. An analysis of student work indicated that students who received high marks on their initial inquiry task in this study were the ones that adopted the use of the sentence stems. Students who received low marks on their initial inquiry task did not tend to use the sentence stems. An analysis of word counts that compared the number of words used in the Framing section to the number of words used in the Analysis section indicated that students may have been using insufficient writing strategies. This study concludes with implications for classroom practice and recommendations for future research around student writing in the science classroom.
NASA Astrophysics Data System (ADS)
Spillane, Nancy Kay
Within successful Inclusive Science, Technology, Engineering, and Mathematics (STEM)-focused High Schools (ISHSs), it is not only the students who are learning. Teachers, with diverse backgrounds, training, and experience, share and develop their knowledge through rich, embedded professional development to continuously shape their craft, improve their teaching, and support student success. This study of four exemplars of ISHSs (identified by experts in STEM education as highly successful in preparing students underrepresented in STEM for STEM majors in college and future STEM careers) provides a rich description of the relationships among the characteristics of STEM teachers, their professional development, and the school cultures that allow teachers to develop professionally and serve the needs of students. By providing a framework for the development of teaching staffs in ISHSs and contributing to the better understanding of STEM teaching in any school, this study offers valuable insight, implications, and information for states and school districts as they begin planning improvements to STEM education programs. A thorough examination of an existing data set that included site visits to four ISHSs along with pre- and post-visit data, provided the resource for this multiple case study with cross-case analysis of the teachers and their teacher professional development experiences. Administrators in these ISHSs had the autonomy to hire teachers with strong content backgrounds, philosophical alignment with the school missions, and a willingness to work collaboratively toward achieving the schools' goals. Ongoing teacher professional development began before school started and continued throughout the school day and year through intense and sustained, formal and informal, active learning experiences. Flexible professional development systems varied, but aligned with targeted school reforms and teacher and student needs. Importantly, collaborative teacher learning occurred within a school-wide culture of collaboration. Teachers were guided in establishing open lines of communication that supported regular engagement with others and the free flow of ideas, practices, and concerns. As a result of this collaboration, in conjunction with intentional pathways to teacher leadership, teacher professionalization was deliberately and successfully fostered creating an environment of shared mission and mutual trust, and a shared sense of responsibility for school-wide decision-making and school outcomes.
A Comparison of Student Spatial Abilities Across STEM Fields
NASA Astrophysics Data System (ADS)
Loftis, Thad; Cid, Xiimena; Lopez, Ramon
2011-10-01
It has been shown that STEM (Science, Technology, Engineering, and Mathematics) students have higher spatial abilities than students in the liberal arts or humanities. In order to track the change in spatial abilities within a group, studies in physics have examined topics in kinematics, chemistry has examined topics on molecular diagrams, mathematics has examined topics related to geometry, and engineering has developed courses specifically targeting students' spatial abilities. It is understood that students in STEM fields improve their spatial abilities while taking STEM courses, but very few studies have done comparisons amongst the different STEM fields. I will be presenting data comparing different STEM students' spatial ability, assessed using the Mental Rotation Test.
2013-01-01
student achievement or par- ticipation in STEM fields. For example, facilitators of a middle school student program...Assessment Annual Cost navy Seaperch Middle school Middle school robotics competition 45% 35,000 students , 4,000 teachers missing number of annual...participating in Seaperch increased interest in studying engineering in 25% of middle school and 30% of high school students program
NASA Astrophysics Data System (ADS)
Fogle, Thomas Ty
Research on introductory STEM course performance has indicated that student characteristics (age, ethnicity and gender) and Grade Point Average (G.P.A.) can be predictive of student performance, and by implication, a correlation among these factors can help determine course design interventions to help certain types of students perform well in introductory STEM courses. The basis of this study was a community college Visual Basic programming course taught in both online and hybrid format. Beginning students in this course represented a diverse population residing in a large, mid-western, city and surrounding communities. Many of these students were defined as "at-Risk" or "non-traditional, which generally means any combination of socio-economic, cultural, family and employment factors that indicate a student is non-traditional. Research has shown these students struggle academically in technologically dense STEM courses, and may require student services and support to achieve their individual performance goals. The overall number in the study range was 392 distance students and 287 blended course students. The main question of this research was to determine to what extent student characteristics in a community college context, and previous success, as measured in overall G.P.A., were related to course performance in an introductory Visual Basic programming (STEM) course; and, whether or not a combination of these factors and course modality was predictive of success. The study employed a quantitative, quasi-experimental design to assess whether students' course performance was linked to course modality, student characteristics and overall G.P.A. The results indicated that the only predictor of student performance was overall G.P.A. Despite the research analyzed in Chapter 2, there was no statistically significant relationship to modality, age, ethnicity, or gender to performance in the course. Cognitive load is significant in a computer programming course and it was theorized that would be expanded in an online context. However, the results of the analysis showed that course modality did not affect the chances of students performing well. Internal validity constraints may have contributed to the results, as the course is highly controlled and modularized in both online and hybrid format, and taught by few instructors, all of whom are available for face to face problem solving for both online and hybrid students.
NASA Astrophysics Data System (ADS)
Irish, Teresa J.
The aim of this study was to provide insights addressing national concerns in Science, Technology, Engineering, and Mathematics (STEM) education by examining how a set of six perimeter urban K-12 schools were transformed into STEM-focused professional learning communities (PLC). The concept of a STEM Academy as a STEM-focused PLC emphasizes the development of a STEM culture where professional discourse and teaching are focused on STEM learning. The STEM Academies examined used the STEM Academy Measurement Tool and Rubric (Tool) as a catalyst for discussion and change. This Tool was developed with input from stakeholders and used for school-wide initiatives, teacher professional development and K-12 student engagement to improve STEM teaching and learning. Two primary goals of this study were to assess the levels of awareness and use of the tool by all stakeholders involved in the project and to determine how the Tool assisted in the development and advancement of these schools as STEM PLCs. Data from the STEM Academy Participant Survey was analyzed to determine stakeholders' perceptions of the Tool in terms of (i) how aware stakeholders were of the Tool, (ii) whether they participated in the use of the Tool, (iii) how the characteristics of PLCs were perceived in their schools, and finally (iv) how the awareness of the Tool influenced teachers' perceptions of the presence of PLC characteristics. Findings indicate that school faculty were aware of the Tool on a number of different levels and evidence exists that the use of the Tool assisted in the development of STEM Academies, however impact varied from school to school. Implications of this study suggest that the survey should be used for a longer period of time to gain more in-depth knowledge on teachers' perceptions of the Tool as a catalyst across time. Additional findings indicate that the process for using the Tool should be ongoing and involve the stakeholders to have the greatest impact on school culture. This research contributes to the knowledge base related to building STEM PLCs aimed at improving K-12 teacher content and pedagogical knowledge as well as student learning and achievement in STEM education.
NASA Astrophysics Data System (ADS)
Alsup, Philip R.
Inspiring learners toward career options available in STEM fields (Science, Technology, Engineering, and Mathematics) is important not only for economic development but also for maintaining creative thinking and innovation. Limited amounts of research in STEM education have focused on the population of students enrolled in religious and parochial schools, and given the historic conflict between religion and science, this sector of American education is worthy of examination. The purpose of this quantitative study is to extend Gottfredson's (1981) Theory of Circumscription and Compromise as it relates to occupational aspirations. Bem's (1981) Gender Schema Theory is examined as it relates to the role of gender in career expectations, and Crenshaw's (1989) Intersectionality Theory is included as it pertains to religion as a group identifier. Six professionals in STEM career fields were video recorded while being interviewed about their skills and education as well as positive and negative aspects of their jobs. The interviews were compiled into a 25-minute video for the purpose of increasing understanding of STEM careers among middle school viewers. The research questions asked whether middle school students from conservative, Protestant Christian schools in a Midwest region increased in STEM-subject attitude and STEM-career interest as a result of viewing the video and whether gender interacted with exposure to the video. A quasi-experimental, nonequivalent control groups, pretest/posttest factorial design was employed to evaluate data collected from the STEM Semantic Survey. A Two-Way ANCOVA revealed no significant differences in dependent variables from pretest to posttest. Implications of the findings are examined and recommendations for future research are made. Descriptors: STEM career interest, STEM attitude, STEM gender disparity, Occupational aspirations, Conservative Protestant education.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anne Seifert; Louis Nadelson
2011-06-01
Advances in materials science are fundamental to technological developments and have broad societal impacs. For example, a cellular phone is composed of a polymer case, liquid crystal displays, LEDs, silicon chips, Ni-Cd batteries, resistors, capacitors, speakers, microphones all of which have required advances in materials science to be compacted into a phone which is typically smaller than a deck of cards. Like many technological developments, cellular phones have become a ubiquitous part of society, and yet most people know little about the materials science associated with their manufacture. The probable condition of constrained knowledge of materials science was the motivationmore » for developing and offering a 20 hour fourday course called 'Living in a Materials World.' In addition, materials science provides a connection between our every day experiences and the work of scientists and engineers. The course was offered as part of a larger K-12 teacher professional development project and was a component of a week-long summer institute designed specifically for upper elementary and middle school teachers which included 20 hour content strands, and 12 hours of plenary sessions, planning, and collaborative sharing. The focus of the institute was on enhancing teacher content knowledge in STEM, their capacity for teaching using inquiry, their comfort and positive attitudes toward teaching STEM, their knowledge of how people learn, and strategies for integrating STEM throughout the curriculum. In addition to the summer institute the participating teachers were provided with a kit of about $300 worth of materials and equipment to use to implement the content they learned in their classrooms. As part of this professional development project the participants were required to design and implement 5 lesson plans with their students this fall and report on the results, as part of the continuing education course associated with the project. 'Living in a Materials World' was one of the fifteen content strands offered at the institute. The summer institute participants were pre/post tested on their comfort with STEM, their perceptions of STEM education, their pedagogical discontentment, their implementations of inquiry, their attitudes toward student learning of STEM, and their content knowledge associated with their specific content strand. The results from our research indicate a significant increase in content knowledge (t = 11.36, p < .01) for the Living in a Materials World strand participants. Overall the summer institute participants were found to have significant increases in their comfort levels for teaching STEM (t = 10.94, p < .01), in inquiry implementation (t = 5.72, p < .01) and efficacy for teaching STEM (t = 6.27, p < .01) and significant decrease in pedagogical discontentment (t = -6.26, p < .01).« less
The Development of Curricular Guidelines for Introductory Microbiology that Focus on Understanding.
Merkel, Susan
2012-01-01
The number of students who leave majors in science, technology, engineering, and mathematics (STEM) due to a perception that courses are poorly taught is evidence that education reform in STEM is overdue. Despite decades of research that argues for student-centered teaching approaches, most introductory STEM courses are still taught in the large lecture format, focusing on rote memorization. While individual efforts in STEM educational reform are important, solutions will most certainly need to include institutional and cultural change. In biology, numerous national reports have called for educational reform to better prepare future scientists. We describe here a new, concept-based curriculum for Introductory Microbiology courses, designed to promote deep understanding of core concepts. Supported by the American Society for Microbiology (ASM) and based on the overarching concepts and competencies presented in the AAAS/NSF report Vision and Change in Undergraduate Biology Education: A Call to Action, we hope it will empower instructors to adapt student-centered approaches so that students in Introductory Microbiology courses can leave the course with a core set of enduring understandings of microbiology.
The Development of Curricular Guidelines for Introductory Microbiology that Focus on Understanding
Merkel, Susan
2012-01-01
The number of students who leave majors in science, technology, engineering, and mathematics (STEM) due to a perception that courses are poorly taught is evidence that education reform in STEM is overdue. Despite decades of research that argues for student-centered teaching approaches, most introductory STEM courses are still taught in the large lecture format, focusing on rote memorization. While individual efforts in STEM educational reform are important, solutions will most certainly need to include institutional and cultural change. In biology, numerous national reports have called for educational reform to better prepare future scientists. We describe here a new, concept-based curriculum for Introductory Microbiology courses, designed to promote deep understanding of core concepts. Supported by the American Society for Microbiology (ASM) and based on the overarching concepts and competencies presented in the AAAS/NSF report Vision and Change in Undergraduate Biology Education: A Call to Action, we hope it will empower instructors to adapt student-centered approaches so that students in Introductory Microbiology courses can leave the course with a core set of enduring understandings of microbiology. PMID:23653779
Li, Yu Ran; Wang, Xing Chang; Wang, Chuan Kuan; Liu, Fan; Zhang, Quan Zhi
2017-10-01
Plant temperature is an important parameter for estimating energy balance and vegetation respiration of forest ecosystem. To examine spatial variation in diurnal courses of stem temperatures (T s ) and its influencing factors, we measured the T s with copper constantan thermocouples at different depths, heights and azimuths within the stems of two broadleaved tree species with contrasting bark and wood properties, Betula platyphylla and Fraxinus mandshurica. The results showed that the monthly mean diurnal courses of the T s largely followed that of air temperature with a 'sinusoi dal' pattern, but the T s lagged behind the air temperature by 0 h at the stem surface to 4 h at 6 cm depth. The daily maximal values and ranges of the diurnal course of T s decreased gradually with increasing measuring depth across the stem and decreasing measuring height along the stem. The circumferential variation in T s was marginal, with slightly higher daily maximal values in the south and west directions during the daytime of the dormant season. Differences in thermal properties (i.e. , specific heat capacity and thermal conductivity) of both bark and wood tissue between the two species contributed to the inter specific variations in the radial variation in T s through influencing the heat exchange between the stem surface and ambient air as well as heat diffusion within the stem. The higher reflectance of the bark of B. platyphylla decreased the influence of solar radiation on T s . The stepwise regression showed that the diurnal courses of T s could be well predicted by the environmental factors (R 2 > 0.85) with an order of influence ranking as air temperature > water vapor pressure > net radiation > wind speed. It is necessary to take the radial, vertical and inter specific varia-tions in T s into account when estimating biomass heat storage and stem CO2 efflux.
ERIC Educational Resources Information Center
Franz-Odendaal, Tamara A.; Blotnicky, Karen; French, Frederick; Joy, Phillip
2016-01-01
To enhance understanding of factors that might improve STEM career participation, we assessed students' self-perceptions of competency and interest in science/math, engagement in STEM activities outside of school, and knowledge of STEM career requirements. We show that the primary positive influencer directing students to a STEM career is high…
Assessing the impact of Native American elders as co-educators for university students in STEM
NASA Astrophysics Data System (ADS)
Alkholy, Sarah Omar
Introduction: Minorities are underrepresented in the science, technology, engineering, and mathematics (STEM) workforce, post-secondary STEM education, and show high academic attrition rates. Academic performance and retention improve when culturally relevant support is provided. The interface of Western Science and Indigenous Science provides an opportunity for bridging this divide. This three parts project is an example of Community-based participatory research (CBPR) that aims to support academic institutions that serve minority students in STEM, and implement educational components (pedagogy) to serve the needs of the underserved community. Method: Part 1: was a cross-sectional used a survey given to participants designed to assess prevalence of natural health products use by students, and to determine how students learn about NHPs. Part 2: was a longitudinal survey pilot study based upon an online STEM course offer at four universities to determine the differences between U.S. vs. Canadian and minority vs. non-minority university students regarding their perceptions of traditional Elders as STEM co-educators, interest in STEM, and science identity by using a pre-and post- course survey. Part 3: was a longitudinal quasi-experiment based upon an online STEM course offered at four universities show what Indigenous science claims regarding: Elders are viewed as valuable STEM co-educators; Elders increase student interest in STEM; students exposed to Indigenous science improve their identity as a scientist; students exposed to Indigenous Science/Elders show improved learning outcomes. Result: We found that Native/Aboriginal students learn information about natural health products from traditional Elders significantly more so than non-Native/Aboriginal students. There were no statistically significant results from the pilot study. Findings from the quasi-experiment show that students taught with Indigenous science Elder co-educators have significantly greater interest in STEM than students not exposed to Elders' teachings. Minority students reported significantly less self-identification as a scientist than did White students at pre-course, but report similar identity as a scientist to White students post-course. Discussion: Future work should investigate the role of Elder traditional educators to convey NHPs information directed specifically to Aboriginal university students. We expect that Elder co-educators may then impact student science identity and interest in STEM. We expect that Elder co-educators may then impact student science identity and interest in STEM. Although there were no statistically significant results from the pilot study, the observed trends suggest that Indigenous science Elder educators merit involvement in novel pedagogical approaches and delivery modalities to reach minority students and to increase students' interest in STEM. From quasi-experiment we attribute these findings to the impact of culturally competent course content to minority students especially, in a post-secondary STEM class. This work establishes the need for convergence of Indigenous science and Western STEM in academia.
NASA Astrophysics Data System (ADS)
Scalzo, F.; Johnson, L.; Marchese, P.
2006-05-01
The New York City Research Initiative (NYCRI) is a research and academic program that involves high school students, undergraduate and graduate students, and high school teachers in research teams that are led by college/university principal investigators of NASA funded projects and/or NASA scientists. The principal investigators are at 12 colleges/universities within a 50-mile radius of New York City (NYC and surrounding counties, Southern Connecticut and Northern New Jersey), as well as the NASA Goddard Institute of Space Studies (GISS). This program has a summer research institute component in Earth Science and Space Science, and an academic year component that includes the formulation and implementation NASA research based learning units in existing STEM courses by high school and college faculty. NYCRI is a revision and expansion of the Institute on Climate and Planets at GISS and is funded by NASA MURED and the Goddard Space Flight Center's Education Office.
Women's self-efficacy perceptions in mathematics and science: Investigating USC-MESA students
NASA Astrophysics Data System (ADS)
Hong, Rebecca Cheng-Shun
This study is an investigation into female high school seniors in the USC-MESA program and how the role of self-efficacy perceptions in mathematics and science relates to their college major choice. Bandura's theory on self-efficacy provides the backdrop for this study. This study is qualitative and takes an ethnographic approach incorporating 23 interviews, 2 focus groups, 49.5 hours of observation, and document analysis. Results show that female high school seniors participating in the USC-MESA program demonstrate a strong self-efficacy perception in mathematics and science through their academic choices and pursuits in high school and beyond. This finding confirms a linear approach in understanding how courses taken in high school contribute to the trajectory of college academic choices. It also challenges the theory of self-efficacy in math and science to examine historically underrepresented populations in the field and the external factors that play a key role in their persistence to pursue STEM fields in college and beyond.
Classroom sound can be used to classify teaching practices in college science courses.
Owens, Melinda T; Seidel, Shannon B; Wong, Mike; Bejines, Travis E; Lietz, Susanne; Perez, Joseph R; Sit, Shangheng; Subedar, Zahur-Saleh; Acker, Gigi N; Akana, Susan F; Balukjian, Brad; Benton, Hilary P; Blair, J R; Boaz, Segal M; Boyer, Katharyn E; Bram, Jason B; Burrus, Laura W; Byrd, Dana T; Caporale, Natalia; Carpenter, Edward J; Chan, Yee-Hung Mark; Chen, Lily; Chovnick, Amy; Chu, Diana S; Clarkson, Bryan K; Cooper, Sara E; Creech, Catherine; Crow, Karen D; de la Torre, José R; Denetclaw, Wilfred F; Duncan, Kathleen E; Edwards, Amy S; Erickson, Karen L; Fuse, Megumi; Gorga, Joseph J; Govindan, Brinda; Green, L Jeanette; Hankamp, Paul Z; Harris, Holly E; He, Zheng-Hui; Ingalls, Stephen; Ingmire, Peter D; Jacobs, J Rebecca; Kamakea, Mark; Kimpo, Rhea R; Knight, Jonathan D; Krause, Sara K; Krueger, Lori E; Light, Terrye L; Lund, Lance; Márquez-Magaña, Leticia M; McCarthy, Briana K; McPheron, Linda J; Miller-Sims, Vanessa C; Moffatt, Christopher A; Muick, Pamela C; Nagami, Paul H; Nusse, Gloria L; Okimura, Kristine M; Pasion, Sally G; Patterson, Robert; Pennings, Pleuni S; Riggs, Blake; Romeo, Joseph; Roy, Scott W; Russo-Tait, Tatiane; Schultheis, Lisa M; Sengupta, Lakshmikanta; Small, Rachel; Spicer, Greg S; Stillman, Jonathon H; Swei, Andrea; Wade, Jennifer M; Waters, Steven B; Weinstein, Steven L; Willsie, Julia K; Wright, Diana W; Harrison, Colin D; Kelley, Loretta A; Trujillo, Gloriana; Domingo, Carmen R; Schinske, Jeffrey N; Tanner, Kimberly D
2017-03-21
Active-learning pedagogies have been repeatedly demonstrated to produce superior learning gains with large effect sizes compared with lecture-based pedagogies. Shifting large numbers of college science, technology, engineering, and mathematics (STEM) faculty to include any active learning in their teaching may retain and more effectively educate far more students than having a few faculty completely transform their teaching, but the extent to which STEM faculty are changing their teaching methods is unclear. Here, we describe the development and application of the machine-learning-derived algorithm Decibel Analysis for Research in Teaching (DART), which can analyze thousands of hours of STEM course audio recordings quickly, with minimal costs, and without need for human observers. DART analyzes the volume and variance of classroom recordings to predict the quantity of time spent on single voice (e.g., lecture), multiple voice (e.g., pair discussion), and no voice (e.g., clicker question thinking) activities. Applying DART to 1,486 recordings of class sessions from 67 courses, a total of 1,720 h of audio, revealed varied patterns of lecture (single voice) and nonlecture activity (multiple and no voice) use. We also found that there was significantly more use of multiple and no voice strategies in courses for STEM majors compared with courses for non-STEM majors, indicating that DART can be used to compare teaching strategies in different types of courses. Therefore, DART has the potential to systematically inventory the presence of active learning with ∼90% accuracy across thousands of courses in diverse settings with minimal effort.
Classroom sound can be used to classify teaching practices in college science courses
Seidel, Shannon B.; Wong, Mike; Bejines, Travis E.; Lietz, Susanne; Perez, Joseph R.; Sit, Shangheng; Subedar, Zahur-Saleh; Acker, Gigi N.; Akana, Susan F.; Balukjian, Brad; Benton, Hilary P.; Blair, J. R.; Boaz, Segal M.; Boyer, Katharyn E.; Bram, Jason B.; Burrus, Laura W.; Byrd, Dana T.; Caporale, Natalia; Carpenter, Edward J.; Chan, Yee-Hung Mark; Chen, Lily; Chovnick, Amy; Chu, Diana S.; Clarkson, Bryan K.; Cooper, Sara E.; Creech, Catherine; Crow, Karen D.; de la Torre, José R.; Denetclaw, Wilfred F.; Duncan, Kathleen E.; Edwards, Amy S.; Erickson, Karen L.; Fuse, Megumi; Gorga, Joseph J.; Govindan, Brinda; Green, L. Jeanette; Hankamp, Paul Z.; Harris, Holly E.; He, Zheng-Hui; Ingalls, Stephen; Ingmire, Peter D.; Jacobs, J. Rebecca; Kamakea, Mark; Kimpo, Rhea R.; Knight, Jonathan D.; Krause, Sara K.; Krueger, Lori E.; Light, Terrye L.; Lund, Lance; Márquez-Magaña, Leticia M.; McCarthy, Briana K.; McPheron, Linda J.; Miller-Sims, Vanessa C.; Moffatt, Christopher A.; Muick, Pamela C.; Nagami, Paul H.; Nusse, Gloria L.; Okimura, Kristine M.; Pasion, Sally G.; Patterson, Robert; Riggs, Blake; Romeo, Joseph; Roy, Scott W.; Russo-Tait, Tatiane; Schultheis, Lisa M.; Sengupta, Lakshmikanta; Small, Rachel; Spicer, Greg S.; Stillman, Jonathon H.; Swei, Andrea; Wade, Jennifer M.; Waters, Steven B.; Weinstein, Steven L.; Willsie, Julia K.; Wright, Diana W.; Harrison, Colin D.; Kelley, Loretta A.; Trujillo, Gloriana; Domingo, Carmen R.; Schinske, Jeffrey N.; Tanner, Kimberly D.
2017-01-01
Active-learning pedagogies have been repeatedly demonstrated to produce superior learning gains with large effect sizes compared with lecture-based pedagogies. Shifting large numbers of college science, technology, engineering, and mathematics (STEM) faculty to include any active learning in their teaching may retain and more effectively educate far more students than having a few faculty completely transform their teaching, but the extent to which STEM faculty are changing their teaching methods is unclear. Here, we describe the development and application of the machine-learning–derived algorithm Decibel Analysis for Research in Teaching (DART), which can analyze thousands of hours of STEM course audio recordings quickly, with minimal costs, and without need for human observers. DART analyzes the volume and variance of classroom recordings to predict the quantity of time spent on single voice (e.g., lecture), multiple voice (e.g., pair discussion), and no voice (e.g., clicker question thinking) activities. Applying DART to 1,486 recordings of class sessions from 67 courses, a total of 1,720 h of audio, revealed varied patterns of lecture (single voice) and nonlecture activity (multiple and no voice) use. We also found that there was significantly more use of multiple and no voice strategies in courses for STEM majors compared with courses for non-STEM majors, indicating that DART can be used to compare teaching strategies in different types of courses. Therefore, DART has the potential to systematically inventory the presence of active learning with ∼90% accuracy across thousands of courses in diverse settings with minimal effort. PMID:28265087
Individual and Institutional Factors of Applied STEM Coursetaking in High School
ERIC Educational Resources Information Center
Sublett, Cameron; Gottfried, Michael A.
2017-01-01
Background/Context: One approach to address the shortage of STEM-proficient high school graduates has been the development of applied STEM coursework, which seeks to increase STEM interest and retention by illustrating the interconnectedness and accessibility of STEM concepts. Importantly, however, no research has yet examined which student and…
Planning a Whole-School Approach to STEM
ERIC Educational Resources Information Center
Knowles, Becca
2014-01-01
An interdisciplinary approach to STEM has huge benefits in terms of engaging young people and increasing their awareness of the opportunities that STEM skills can provide. However, planning a whole-school approach to STEM education can be challenging. This article gives case studies of two recent projects in STEM education and introduces two…
The creation and validation of an instrument to measure school STEM Culture
NASA Astrophysics Data System (ADS)
White, Christopher
Although current research exists on school culture, there is a gap in the literature on specialized aspects of culture such as STEM Culture defined as the beliefs, values, practices, resources, and challenges in STEM fields (Science, Technology, Engineering and Mathematics) within a school. The objective of this study was to create a valid and reliable instrument, the STEM Culture Assessment Tool (STEM-CAT), that measures this cultural aspect based on a survey of stakeholder groups within the school community and use empirical data to support the use of this instrument to measure STEM Culture. Items were created and face validity was determined through a focus group and expert review before a pilot study was conducted to determine reliability of the items. Once items were determined reliable, the survey was given to eight high schools and results were correlated to the percentage of seniors who self-reported whether they intend to pursue STEM fields upon graduation. The results of this study indicate further need for research to determine how the STEM-CAT correlates to STEM culture due to some inconsistencies with the dependent variable in this study. Future research could be done correlating the results of the STEM-CAT with participation in Advanced Placement science and mathematics, SAT/ACT scores in science and mathematics or the number of students who actually pursue STEM fields rather than a prediction halfway through the 12th grade.
ERIC Educational Resources Information Center
Pierret, Chris; Friedrichsen, Patricia
2009-01-01
The intersection of science and our society has led to legal and ethical issues in which we all play a part. To support development of scientific literacy, college science courses need to engage students in difficult dialogues around ethical issues. We describe a new course, Stem Cells and Society, in which students explore the basic biology of…
ERIC Educational Resources Information Center
Glennie, Elizabeth; Mason, Marcinda; Dalton, Ben
2016-01-01
Some states have created science, technology, engineering, and mathematics (STEM) schools to encourage student interest and enhance student proficiency in STEM subjects. We examined a set of STEM schools serving disadvantaged students to see whether these students were more likely to take and pass advanced science and mathematics classes than…
ERIC Educational Resources Information Center
Griffin, Patricia A.
2015-01-01
STEM Schools purport to prepare students to learn and work in the 21st Century by providing students with innovative learning experiences through the interdisciplinary integration of science, technology, engineering, and math (Tsupros, 2009). Advocates of STEM and innovative school models argue that the traditional school system does not and…
NASA Astrophysics Data System (ADS)
Clark, C. D.; Prairie, J. C.; Walters, S. A.
2016-02-01
In the context of undergraduate education in oceanography, we are constantly striving for innovative ways to enhance student learning and enthusiasm for marine science. Community engagement is a form of experiential education that not only promotes a better understanding of concepts among undergraduate students but also allows them to interact with the community in a way that is mutually beneficial to both parties. Here I present on my experience in incorporating a community engagement project in my undergraduate physical oceanography course at the University of San Diego (USD) in collaboration with Mission Bay High School (MBHS), a local Title 1 International Baccalaureate high school with a high proportion of low-income students and students from underrepresented groups in STEM. As part of this project, the undergraduate students from my physical oceanography course were challenged to develop interactive workshops to present to the high school students at MBHS on some topic in oceanography. Prior to the workshops, the USD students met with the high school students at MBHS during an introductory meeting in which they could learn about each other's interests and backgrounds. The USD students then worked in teams of three to design a workshop proposal in which they outlined their plan for a workshop that was interactive and engaging, relying on demonstrations and activities rather than lecture. Each of the three teams then presented their workshops on separate days in the Mission Bay High School classroom. Finally, the USD students met again with the high school students at MBHS for a conclusion day in which both sets of students could discuss their experiences with the community engagement project. Through the workshop itself and a reflection essay written afterwards, the USD students learned to approach concepts in oceanography from a different perspective, and think about how student backgrounds can inform teaching these concepts. I will describe preliminary outcomes of this project and discuss the potential of community engagement projects in general to positively impact and integrate both undergraduate and high school education in ocean science.
STEM Vocational Socialization and Career Development in Middle Schools
ERIC Educational Resources Information Center
Kendall, Katherine A.
2017-01-01
Economic forecasts predict an unprecedented shortage of STEM workers in the United States. This study examined the vocational anticipatory socialization factors and classroom stratagems influencing middle school students' science, technology, engineering and mathematics (STEM) career development. Student attitudes towards STEM content areas and…
Only STEM Can Save Us? Examining Race, Place, and STEM Education as Property
ERIC Educational Resources Information Center
Bullock, Erika C.
2017-01-01
The rhetoric about science, technology, engineering, and mathematics (STEM) education in urban schools reflects a desire to imagine a new city that is poised to compete in a STEM-centered future. Therefore, STEM has been positioned as a critical part of urban education reform efforts. In various US cities, schools labeled as "failing"…
NASA Astrophysics Data System (ADS)
Sahin, Alpaslan; Ekmekci, Adem; Waxman, Hersh C.
2017-07-01
This study examines college students' science, technology, engineering, and mathematics (STEM) choices as they relate to high school experiences, parent, teacher, and self-expectations, and mathematics and science efficacy. Participants were 2246 graduates of a STEM-focused public Harmony Public Schools in Texas, Harmony Public Schools (HPS). Descriptive analyses indicated that the overall percentage of HPS graduates who chose a STEM major in college was greater than Texas state and national averages. Logistic regression analyses revealed that males and Asian students are more likely to choose a STEM major in college than females and non-Asian students, respectively. Moreover, students whose parents had a college degree in the U.S. are more likely to major in STEM fields than those who did not. Furthermore, males with higher mathematics efficacy and females with higher science efficacy are more likely to choose a STEM major than their counterparts with lower mathematics and science efficacy.
ERIC Educational Resources Information Center
Erdogan, Niyazi; Stuessy, Carol
2016-01-01
The most prominent option for finding a solution to the shortage of workers with STEM knowledge has been identified as specialized STEM schools by policymakers in the United States. The current perception of specialized STEM schools can be described as a unique environment that includes advanced curriculum, expert teachers, and opportunities for…
ERIC Educational Resources Information Center
Stoeger, Heidrun; Greindl, Teresa; Kuhlmann, Johanna; Balestrini, Daniel Patrick
2017-01-01
Magnet schools focused on science, technology, engineering, and mathematics (STEM) as well as extracurricular programs in STEM support talented students and help increase their participation rates in those domains. We examined whether and the extent to which the learning and educational capital of male and female students (N = 801) enrolled in…
STEM Education: Attracting and Retaining Female Students in Secondary STEM programs
NASA Astrophysics Data System (ADS)
Ruff, Zachary A.
This narrative case study examines a high achieving STEM based high school and its ability to attract, retains, and engage female students. Given the recent importance placed on STEM graduates and STEM careers it is important for schools to understand how they can engage traditionally underserved minorities in STEM fields. The research used a series of semi-structured interviews in an attempt to understand the point of view of the female student participants to try to comprehend the factors that allowed one school to not only attract female students to its program, but also to retain them and keep them engaged throughout their education.
Using FIRST LEGO League Robotics Competitions to Engage Middle School Students in Physics
NASA Astrophysics Data System (ADS)
Rosen, Jeffrey
2009-11-01
As the nation and world grapple with looming crises in sectors such as energy, health care and the environment, it is critical that we keep today's youth interested in careers in science, technology, engineering and math (STEM). Studies indicate that many students lose interest in the sciences by ages 10-13, when they are in grades 4-8 in the U.S. educational system. Many of the interventions to counteract this trend focus on boosting interest in STEM in secondary schools and universities. However the case can be made that the greater need is actually earlier in the education of the child. How can we work with this age group in an exciting way that will promote the study of science? Student robotics competitions might be one effective answer. Programs are currently being run around the country and the world that engage young people in the study of science through robotic competition. Many of these programs rely on mentors to guide the students through the process, which in the most effective programs includes the study of physic concepts through engineering design. During this presentation we will discuss the options for participating in programs that help the students and teachers better understand the science, specifically the physics, which underlies robotics. In particular, we will focus on the international program called FIRST LEGO League (FLL), in which students ages 9-14 are challenged every year to construct a LEGO robot that can navigate and complete a course of theme-related missions. The FLL program is currently operating in almost every state in the U.S. and relies on recruiting qualified mentors and judges who want to impact young people's interest in STEM. Physics professionals can make a tremendous difference in the lives of these eager middle school students.
Schaefer, Jennifer E
2016-01-01
The Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative introduced by the Obama Administration in 2013 presents a context for integrating many STEM competencies into undergraduate neuroscience coursework. The BRAIN Initiative core principles overlap with core STEM competencies identified by the AAAS Vision and Change report and other entities. This neurobiology course utilizes the BRAIN Initiative to serve as the unifying theme that facilitates a primary emphasis on student competencies such as scientific process, scientific communication, and societal relevance while teaching foundational neurobiological content such as brain anatomy, cellular neurophysiology, and activity modulation. Student feedback indicates that the BRAIN Initiative is an engaging and instructional context for this course. Course module organization, suitable BRAIN Initiative commentary literature, sample primary literature, and important assignments are presented.
Building STEM Opportunities for All
ERIC Educational Resources Information Center
Lynch, Sharon J.; Peters-Burton, Erin; Ford, Michael
2015-01-01
In response to a report from the President's Council of Advisors on Science and Technology, President Obama issued a challenge to the U.S. education system to create more than 1,000 new STEM-focused schools, including 200 high schools. Inclusive STEM-focused high schools--which focus their efforts on females, minorities, and students who are…
Urban High School Students in STEM Programs: An Explanatory Case Study
ERIC Educational Resources Information Center
Oparaocha, Didacus O.
2017-01-01
Inequality of resources in urban schools is a structural barrier to college preparation, access to social capital, college success. Per the literature, a number of issues prevent urban STEM high school students from participating in this innovative learning experience. Studies have shown that STEM experiential learning can influence attitudes,…
Examining Fidelity of Program Implementation in a STEM-Oriented Out-of-School Setting
ERIC Educational Resources Information Center
Barker, Bradley S.; Nugent, Gwen; Grandgenett, Neal F.
2014-01-01
In the United States and many other countries there is a growing emphasis on science, technology, engineering and mathematics (STEM) education that is expanding the number of both in-school and out-of-school instructional programs targeting important STEM outcomes. As instructional leaders increasingly train teachers and facilitators to undertake…
Inventatorium: A journey of "satori" and creativity in Latino and African American adolescents
NASA Astrophysics Data System (ADS)
Harvey, La Nelle
This study explores the experiences of African American and Latino students within the context of the Inventatorium, an alternative educational after-school program for culturally diverse students that nurtures creativity in science, technology, engineering, and math (STEM). The Inventatorium builds on students' natural curiosity and their enjoyment in creating things that appeal to them by providing the materials and other resources for them to bring their ideas to life. The things students create encompass mathematical and scientific concepts that emerge to explored as part of their creative processes. Mixed methods were used to look at growth in creativity over the course of a year. Qualitative data derived three themes: boundaries, environment, and change. Quantitative findings indicate that students showed growth in fluency and originality of drawings, but not with elaboration. This study has implications for the ways teachers construct learning experiences in STEM.
Gender, experience, and self-efficacy in introductory physics
NASA Astrophysics Data System (ADS)
Nissen, Jayson M.; Shemwell, Jonathan T.
2016-12-01
[This paper is part of the Focused Collection on Gender in Physics.] There is growing evidence of persistent gender achievement gaps in university physics instruction, not only for learning physics content, but also for developing productive attitudes and beliefs about learning physics. These gaps occur in both traditional and interactive-engagement (IE) styles of physics instruction. We investigated one gender gap in the area of attitudes and beliefs. This was men's and women's physics self-efficacy, which comprises students' thoughts and feelings about their capabilities to succeed as learners in physics. According to extant research using pre- and post-course surveys, the self-efficacy of both men and women tends to be reduced after taking traditional and IE physics courses. Moreover, self-efficacy is reduced further for women than for men. However, it remains unclear from these studies whether this gender difference is caused by physics instruction. It may be, for instance, that the greater reduction of women's self-efficacy in physics merely reflects a broader trend in university education that has little to do with physics per se. We investigated this and other alternative causes, using an in-the-moment measurement technique called the Experience Sampling Method (ESM). We used ESM to collect multiple samples of university students' feelings of self-efficacy during four types of activity for two one-week periods: (i) an introductory IE physics course, (ii) students' other introductory STEM courses, (iii) their non-STEM courses, and (iv) their activities outside of school. We found that women experienced the IE physics course with lower self-efficacy than men, but for the other three activity types, women's self-efficacy was not reliably different from men's. We therefore concluded that the experience of physics instruction in the IE physics course depressed women's self-efficacy. Using complementary measures showing the IE physics course to be similar to others in which gendered self-efficacy effects have been consistently observed, we further concluded that IE physics instruction in general is likely to be detrimental to women's self-efficacy. Consequently, there is a clear need to redress this inequity in IE physics, and probably also in traditional instruction.
Catalyzing Institutional Transformation: Insights from the AAU STEM Initiative
ERIC Educational Resources Information Center
Miller, Emily R.; Fairweather, James S.; Slakey, Linda; Smith, Tobin; King, Tara
2017-01-01
In 2011, the Association of American Universities (AAU) embarked on an ambitious effort to improve the instructional quality and effectiveness of undergraduate introductory Science, Technology, Engineering, and Mathematics (STEM) courses. The primary focus was on sustainable implementation of evidence-based methods of instruction in courses that…
ERIC Educational Resources Information Center
Philipp, Stephanie B.; Tretter, Thomas; Rich, Christine V.
2016-01-01
This study examined the development of peer mentoring skills and deepening of content knowledge by trained and supported undergraduate teaching assistants working with students in entry-level STEM courses across nine departments at a large research-intensive U.S. university.
Basu, Alo C.; Mondoux, Michelle A.; Whitt, Jessica L.; Isaacs, André K.; Narita, Tomohiko
2017-01-01
Neuroscience is an integrative discipline for which students must achieve broad-based proficiency in many of the sciences. We are motivated by the premise that student pursuit of proficiency in science, technology, engineering, and mathematics (STEM) can be supported by awareness of the application of knowledge and tools from the various disciplines for solving complex problems. We refer to this awareness as “interdisciplinary awareness.” Faculty from biology, chemistry, mathematics/computer science, physics, and psychology departments contributed to a novel integrative introductory neuroscience course with no pre-requisites. STEM concepts were taught in “flipped” class modules throughout the semester: Students viewed brief videos and completed accompanying homework assignments independently. In subsequent class meetings, students applied the STEM concepts to understand nervous system structure and function through engaged learning activities. The integrative introduction to neuroscience course was compared to two other courses to test the hypothesis that it would lead to greater gains in interdisciplinary awareness than courses that overlap in content but were not designed for this specific goal. Data on interdisciplinary awareness were collected using previously published tools at the beginning and end of each course, enabling within-subject analyses. Students in the integrative course significantly increased their identification of scientific terms as relevant to neuroscience in a term-discipline relevance survey and increased their use of terms related to levels of analysis (e.g., molecular, cellular, systems) in response to an open-ended prompt. These gains were seen over time within the integrative introduction to neuroscience course as well as relative to the other two courses. PMID:29371849
The Perceptions of Elementary STEM Schools in Missouri
ERIC Educational Resources Information Center
Alumbaugh, Kelli Michelle
2015-01-01
Science, technology, engineering, and mathematics education, or STEM, is an area that is currently growing in popularity with educators (Becker & Park, 2011). A qualitative study consisting of interviews was conducted and data were gathered from three leaders in professional STEM organizations, four principals from elementary STEM schools, and…
38 CFR 21.4270 - Measurement of courses.
Code of Federal Regulations, 2011 CFR
2011-07-01
...). (2) High school courses. If a student is pursuing high school courses at a rate which would result in an accredited high school diploma in four ordinary school years, VA considers him or her to be... high school courses. Trade, technical, high school, and high school preparatory courses shall be...
38 CFR 21.4270 - Measurement of courses.
Code of Federal Regulations, 2014 CFR
2014-07-01
...). (2) High school courses. If a student is pursuing high school courses at a rate which would result in an accredited high school diploma in four ordinary school years, VA considers him or her to be... high school courses. Trade, technical, high school, and high school preparatory courses shall be...
38 CFR 21.4270 - Measurement of courses.
Code of Federal Regulations, 2012 CFR
2012-07-01
...). (2) High school courses. If a student is pursuing high school courses at a rate which would result in an accredited high school diploma in four ordinary school years, VA considers him or her to be... high school courses. Trade, technical, high school, and high school preparatory courses shall be...
38 CFR 21.4270 - Measurement of courses.
Code of Federal Regulations, 2013 CFR
2013-07-01
...). (2) High school courses. If a student is pursuing high school courses at a rate which would result in an accredited high school diploma in four ordinary school years, VA considers him or her to be... high school courses. Trade, technical, high school, and high school preparatory courses shall be...
NASA Astrophysics Data System (ADS)
Wagner, Judson
Today's technology driven global economy has put pressure on the American education system to produce more students who are prepared for careers in Science, Technology, Engineering, and Math (STEM). Adding to this pressure is the demand for a more diverse workforce that can stimulate the development of new ideas and innovation. This in turn requires more female and under represented minority groups to pursue future careers in STEM. Though STEM careers include many of the highest paid professionals, school systems are dealing with exceptionally high numbers of students, especially female and under represented minorities, who begin but do not persist to STEM degree completion. Using the Expectancy-Value Theory (EVT) framework that attributes student motivation to a combination of intrinsic, utility, and attainment values, this study analyzed readily available survey data to gauge students' career related values. These values were indirectly investigated through a longitudinal approach, spanning five years, on the predictive nature of 8 th grade survey-derived recommendations for students to pursue a future in a particular career cluster. Using logistic regression analysis, it was determined that this 8 th grade data, particularly in STEM, provides significantly high probabilities of a 12th grader's average grade, SAT-Math score, the math and science elective courses they take, and most importantly, interest in the same career cluster.
Engaging Girls in STEM: A Discussion of Foundational and Current Research on What Works
NASA Astrophysics Data System (ADS)
Peterson, K.; Jesse, J.; Migus, L. H.
2012-08-01
Diversity in science, technology, engineering, and mathematics (STEM) education and careers occupies center stage in national discussions on U.S. competitiveness in the 21st century. Women constitute roughly half the total workforce in the U.S., but they hold just 25% of mathematical and science jobs and 11% of engineering jobs. Women earn nearly 60% of all bachelors and masters degrees, except in physics, computer science, and engineering, where the percentages are 20-25%. This disparity is even more pronounced at the doctoral level, where women earn fewer than 20% of awarded Ph.D.'s in physics or engineering. However, at the high school level, there is far less gender disparity: both female and male students take comparable advanced physical science and math courses. What, then, accounts for the lack of gender diversity in STEM advanced education and career paths? In fact, there is no consensus even among experts. So, what information and strategies do the EPO community need to know and include as part of designing and implementing programs to encourage more girls and women to engage in STEM for the long term? The panelists will discuss foundational and current research on pressing questions on why these trends exist and what can be done to change them. They will highlight research and evaluation results from programs that are successfully engaging girls in STEM.
Mathematical Practices and Arts Integration in an Activity-Based Projective Geometry Course
NASA Astrophysics Data System (ADS)
Ernest, Jessica Brooke
It is a general assumption that the mathematical activity of students in school should, at least to some degree, parallel the practices of professional mathematicians (Brown, Collins, Duguid, 1989; Moschkovich, 2013). This assumption is reflected in the Common Core State Standards (CCSSI, 2010) and National Council of Teachers of Mathematics (NCTM, 2000) standards documents. However, the practices included in these standards documents, while developed to reflect the practices of professional mathematicians, may be idealized versions of what mathematicians actually do (Moschkovich, 2013). This might lead us to question then: "What is it that mathematicians do, and what practices are not being represented in the standards documents?" In general, the creative work of mathematicians is absent from the standards and, in turn, from school mathematics curricula, much to the dismay of some mathematicians and researchers (Lockhart, 2009; Rogers, 1999). As a result, creativity is not typically being fostered in mathematics students. As a response to this lack of focus on fostering creativity (in each of the science, technology, engineering, and mathematics disciplines--the STEM disciplines), a movement to integrate the arts emerged. This movement, called the STEAM movement--introducing the letter A into the acronym STEM to signify incorporating the arts--has been gaining momentum, yet limited research has been carried out on the efficacy of integrating the arts into mathematics courses. My experiences as the co-instructor for an activity-based course focused on projective geometry led me to consider the course as a setting for investigating both mathematical practices and arts integration. In this work, I explored the mathematical practices in which students engaged while working to develop an understanding of projective geometry through group activities. Furthermore, I explored the way in which students' learning experiences were enriched through artistic engagement in the course. I discuss mathematical play and acts of imagination--two mathematical practices in which students engaged, and which emerged from a grounded theory approach to analysis of the classroom data. In addition, I discuss particular ways in which artistic engagement, including creating two mathematically inspired artistic pieces, enriched students' learning experiences in the course. The six themes I address are artistic engagement (a) fostering mathematical play, (b) giving students the opportunity to make sense of pop-up topics, (c) providing students with the opportunity to develop coordination of mathematical tools, (d) allowing students to weave their personal experiences with mathematics, (e) contributing to students' notions of the connections between mathematics and art, and (f) changing students' relationships with art.
Scientific Reasoning Abilities of Nonscience Majors in Physics-Based Courses
ERIC Educational Resources Information Center
Moore, J. Christopher; Rubbo, Louis J.
2012-01-01
We have found that non-STEM (science, technology, engineering, and mathematics) majors taking either a conceptual physics or astronomy course at two regional comprehensive institutions score significantly lower preinstruction on the Lawson's Classroom Test of Scientific Reasoning (LCTSR) in comparison to national average STEM majors. Based on…
Skill-Based Teaching for Undergraduate STEM Majors
ERIC Educational Resources Information Center
Davidovitch, Nitza; Shiller, Zvi
2016-01-01
This article presents a case study that illustrates the paradigmatic shift in higher education from content-centered teaching to learning-centered academic programs. This pragmatic change, triggered by the STEM movement, calls for the introduction of success measures in the course development process. The course described in this paper illustrates…
ERIC Educational Resources Information Center
Michael, Kurt Y.; Alsup, Philip R.
2016-01-01
Research focusing on science, technology, engineering, and math (STEM) education among conservative Protestant Christian school students is scarce. Crenshaw's intersectionality theory is examined as it pertains to religion as a group identifier. The STEM Semantic Survey was completed by 157 middle school students attending six different private…
ERIC Educational Resources Information Center
Reinhold, Sarah; Holzberger, Doris; Seidel, Tina
2018-01-01
Previous studies have pointed out that schools play a central role in students' orientation towards science, technology, engineering, and mathematics (STEM). However, studies use a variety of theoretical foundations in order to define variables and hypothesise relationships between schools and STEM orientation. In order to facilitate the…
Mann, Allison; Legewie, Joscha; DiPrete, Thomas A
2015-01-01
This study uses cross-national evidence to estimate the effect of school peer performance on the size of the gender gap in the formation of STEM career aspirations. We argue that STEM aspirations are influenced not only by gender stereotyping in the national culture but also by the performance of peers in the local school environment. Our analyses are based on the Program for International Student Assessment (PISA). They investigate whether 15-year-old students from 55 different countries expect to have STEM jobs at the age of 30. We find considerable gender differences in the plans to pursue careers in STEM occupations in all countries. Using PISA test scores in math and science aggregated at the school level as a measure of school performance, we find that stronger performance environments have a negative impact on student career aspirations in STEM. Although girls are less likely than boys to aspire to STEM occupations, even when they have comparable abilities, boys respond more than girls to competitive school performance environments. As a consequence, the aspirations gender gap narrows for high-performing students in stronger performance environments. We show that those effects are larger in countries that do not sort students into different educational tracks.
Actively Encouraging Learning and Degree Persistence in Advanced Astrophysics Courses
NASA Astrophysics Data System (ADS)
McIntosh, Daniel H.
2018-01-01
The need to grow and diversify the STEM workforce remains a critical national challenge. Less than 40% of college students interested in STEM achieve a bachelor's degree. These numbers are even more dire for women and URMs, underscoring a serious concern about the country's ability to remain competitive in science and tech. A major factor is persistent performance gaps in rigorous 'gateway' and advanced STEM courses for majors from diverse backgrounds leading to discouragement, a sense of exclusion, and high dropout rates. Education research has clearly demonstrated that interactive-engagement (`active learning') strategies increase performance, boost confidence, and help build positive 'identity' in STEM. Likewise, the evidence shows that traditional science education practices do not help most students gain a genuine understanding of concepts nor the necessary skill set to succeed in their disciplines. Yet, lecture-heavy courses continue to dominate the higher-ed curriculum, thus, reinforcing the tired notion that only a small percentage of 'special' students have the inherent ability to achieve a STEM degree. In short, very capable students with less experience and confidence in science, who belong to groups that traditionally are less identified with STEM careers, are effectively and efficiently 'weeded out' by traditional education practices. I will share specific examples for how I successfully incorporate active learning in advanced astrophysics courses to encourage students from all backgrounds to synthesize complex ideas, build bedrock conceptual frameworks, gain technical communication skills, and achieve mastery learning outcomes all necessary to successfully complete rigorous degrees like astrophysics. By creating an inclusive and active learning experience in junior-level extragalactic and stellar interiors/atmospheres courses, I am helping students gain fluency in their chosen major and the ability to 'think like a scientist', both critical to improving STEM degree retention and degree-completion rates. My long-term mission is to see STEM degree programs at U.S. colleges and universities adopt active learning strategies as the curricular norm. Understanding the benefits of this evidence-based best practice is a key step to increasing and diversifying the national STEM degree recipient pool.
STEM TIPS: Supporting the Beginning Secondary STEM Teacher
ERIC Educational Resources Information Center
Jones, Griff; Dana, Thomas; LaFramenta, Joanne; Adams, Thomasenia Lott; Arnold, Jason Dean
2016-01-01
The STEM TIPS mobile-ready support platform gives institutions or school districts the ability to provide immediate and customized mentoring to teachers through multiple tiers of web-based support and resources. Using the results of a needs assessment, STEM TIPS was created and launched in partnership with 18 Florida school districts. Further…
Long-term effects of course-embedded undergraduate research: The CASPiE longitudinal study
NASA Astrophysics Data System (ADS)
Szteinberg, Gabriela A.
The Center for Authentic Science Practice in Education (CASPiE) is a National Science Foundation funded initiative that seeks to introduce first- and second-year undergraduate students to research in their mainstream laboratory courses. To investigate the effects of this research-based curriculum, a longitudinal study was initiated at Purdue University (PU) and University of Illinois-Chicago (UIC), where CASPiE was implemented in a portion of laboratory sections of a general chemistry course (CHEM 116 at PU/CHEM 114 at UIC). The study examined the long-term effects of the CASPiE program on students' chemistry course performance, research involvement, and retention in STEM majors and future careers. The results of the academic records analyses showed that PU CASPiE students from the opt-in semesters, i.e. those when students chose to enroll in the CASPiE sections, were higher-achieving students from the beginning of their college years and performed significantly higher than the students in the traditional sections. There were no significant differences in chemistry course performance among PU students from the randomly assigned semester. However, looking from the first semester chemistry course to the upper 300 level chemistry courses, randomly assigned PU students from the traditional sections had a significant performance decrease. The CASPiE students had a performance decrease that was not significant. At UIC, there were no significant differences between CASPiE and traditional students' chemistry performance. Analyses of the academic records also revealed that there were no differences in STEM major retention between CASPiE and traditional students, from both PU and UIC. However, CASPiE students from UIC and the ones from the opt-in sections at PU graduated faster in average than traditional students. Students' responses to an online survey showed that there were no differences in students' choice of future plans in STEM or non-STEM fields (such as graduate or professional school, or type of job). Interviews with PU's CASPiE and traditional students revealed that CASPiE students thought their laboratory work was applicable and relevant to other research and their lives and they tended to remember their lab activities more than the traditional students. CASPiE students thought the lab work they did was rewarding and they felt a sense of accomplishment. CASPiE students from the randomly assigned semester thought the experience was rewarding in retrospect, which is an important finding because during that semester students were frustrated that they were not able to choose their participation in CASPiE. Traditional students thought their lab experience helped prepare them for future courses at PU, whereas CASPiE students thought they were better prepared for class and lab in general, they learned how to keep a research notebook and write scientific papers, and that overall they learned how to conduct research. Specifically, CASPiE students thought they were able to use creativity in their lab. Both students from CASPiE and traditional sections thought they learned how to work well in groups through their lab experiences. Based on the results, we can conclude that CASPiE was successful at providing first- and second-year students with research experiences in their second-semester general chemistry class, without negatively affecting their chemistry course performance, retention in STEM majors or future plans. PU CASPiE students from the opt-in years were higher-achieving students than the traditional counterparts therefore the significant differences in chemistry performance between these students are not surprising. The CASPiE curriculum did seem to have had an enhancing effect on the randomly assigned PU CASPiE students' chemistry performance over the years. Furthermore, CASPiE students from PU reported gains from doing research experiences that have previously been reported in the literature on undergraduate research experiences. The results from this study show that CASPiE could be a beneficial curriculum for STEM college educators who wish to have more students practice research during their college courses. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Schwab, Ellianna; Faherty, Jacqueline K.; Barua, Prachurjya; Cooper, Ellie; Das, Debjani; Simone-Gonzalez, Luna; Sowah, Maxine; Valdez, Laura; BridgeUP: STEM
2018-01-01
BridgeUP: STEM (BridgeUP) is a program at the American Museum of Natural History (AMNH) that seeks to empower women by providing early-career scientists with research fellowships and high-school aged women with instruction in computer science and algorithmic methods. BridgeUP achieves this goal by employing post-baccalaureate women as Helen Fellows, who, in addition to conducting their own scientific research, mentor and teach high school students from the New York City area. The courses, targeted at early high-school students, are designed to teach algorithmic thinking and scientific methodology through the lens of computational science. In this poster we present the new BridgeUP astronomy curriculum created for 9th and 10th grade girls.The astronomy course we present is designed to introduce basic concepts as well as big data manipulation through a guided exploration of Gaia (DR1). Students learn about measuring astronomical distances through hands-on lab experiments illustrating the brightness/distance relationship, angular size calculations of the height of AMNH buildings, and in-depth Hertzsprung-Russell Diagram activities. Throughout these labs, students increase their proficiency in collecting and analyzing data, while learning to build and share code in teams. The students use their new skills to create color-color diagrams of known co-moving clusters (Oh et al. 2017) in the DR1 dataset using Python, Pandas and Matplotlib. We discuss the successes and lessons learned in the first implementation of this curriculum and show the preliminary work of six of the students, who are continuing with computational astronomy research over the current school year.
ERIC Educational Resources Information Center
Puvirajah, Anton; Verma, Geeta; Li, Hongli; Martin-Hansen, Lisa
2015-01-01
As engagement with science, technology, engineering, and mathematics (STEM) increases in after-school programs (ASPs), it is important to examine the impact of this engagement on students' academic achievement, STEM participation, and affinity toward STEM. Results of these examinations can offer insights into both best practices that could be…
ERIC Educational Resources Information Center
Scott, Catherine
2012-01-01
This study examined the characteristics of 10 science, technology, engineering and mathematics (STEM) focused high schools that were selected from various regions across the United States. In an effort to better prepare students for careers in STEM fields, many schools have been designed and are currently operational, while even more are in the…
Enacting STEM Education for Digital Age Learners: The "Maker" Movement Goes to School
ERIC Educational Resources Information Center
Niederhauser, Dale S.; Schrum, Lynne
2016-01-01
The importance of STEM Education has become central to discussions about the future of schooling over the past 20 years. Predicated on the idea that a primary purpose of schooling is to prepare skilled and knowledgeable workers, these discussions have been grounded, in part, in cold-war era concerns about rapid advancements in STEM fields driven…
ERIC Educational Resources Information Center
Kasza, Paul; Slater, Timothy F.
2017-01-01
Specialized secondary schools in the United States focusing on Science, Technology, Engineering, and Math (STEM) are becoming commonplace in the United States. Such schools are generally referred to by U.S. teachers as Academies. In a purposeful effort to provide a resource to educators building new STEM Academies, this study provides both a…
NASA Astrophysics Data System (ADS)
Michaluk, Lynnette; Stoiko, Rachel; Stewart, Gay; Stewart, John
2018-04-01
Elementary teachers often hold inaccurate beliefs about the Nature of Science (NoS) and have negative attitudes toward science and mathematics. Using a pre-post design, the current study examined beliefs about the NoS, attitudes toward science and mathematics, and beliefs about the teaching of mathematics and science in a large sample study ( N = 343) of pre-service teachers receiving a curriculum-wide intervention to improve these factors in comparison with Science, Technology, Engineering, and Mathematics (STEM) and non-STEM majors in other physics courses ( N = 6697) who did not receive the intervention, over a 10-year period. Pre-service teachers evidenced initially more negative attitudes about mathematics and science than STEM majors and slightly more positive attitudes than non-STEM majors. Their attitudes toward mathematics and science and beliefs about the NoS were more similar to non-STEM than STEM majors. Pre-service teachers initially evidenced more positive beliefs about the teaching of mathematics and science, and their beliefs even increased slightly over the course of the semester, while these beliefs in other groups remained the same. Beliefs about the NoS and the teaching of mathematics and science were significantly negatively correlated for STEM and non-STEM majors, but were not significantly correlated for pre-service teachers. Beliefs about the NoS and attitudes toward mathematics and science were significantly positively correlated for both pre-service teachers and STEM students pursing the most mathematically demanding STEM majors. Attitudes toward science and mathematics were significantly positively correlated with accurate beliefs about the teaching of mathematics and science for all student groups.
Examining Study Habits in Undergraduate STEM Courses from a Situative Perspective
ERIC Educational Resources Information Center
Hora, Matthew T.; Oleson, Amanda K.
2017-01-01
Background: A growing body of research in cognitive psychology and education research is illuminating which study strategies are effective for optimal learning, but little descriptive research focuses on how undergraduate students in STEM courses actually study in real-world settings. Using a practice-based approach informed by situated cognition…
Teaching Introductory Life Science Courses in Colleges of Agriculture: Faculty Experiences
ERIC Educational Resources Information Center
Balschweid, Mark; Knobloch, Neil A.; Hains, Bryan J.
2014-01-01
Insignificant numbers of college students declaring STEM majors creates concern for the future of the U.S. economy within the global marketplace. This study highlights the educational development and teaching strategies employed by STEM faculty in teaching first-year students in contextualized life science courses, such as animal, plant, and food…
Exploring Design Elements for Online STEM Courses: Active Learning, Engagement & Assessment Design
ERIC Educational Resources Information Center
Chen, Baiyun; Bastedo, Kathleen; Howard, Wendy
2018-01-01
The purpose of this study was to examine effective design elements for online courses in the science, technology, engineering, and mathematics (STEM) fields at a large four-year public university in southeastern United States. Our research questions addressed the influence of online design elements on students' perception of learning and learning…
NASA Astrophysics Data System (ADS)
Halversen, C.; McDonnell, J. D.; Apple, J. K.; Weiss, E. L.
2016-02-01
Two university courses, 1) Promoting Climate Literacy and 2) Climate and Data Literacy, developed by the University of California Berkeley provide faculty across the country with course materials to help their students delve into the science underlying global environmental change. The courses include culturally responsive content, such as indigenous and place-based knowledge, and examine how people learn and consequently, how we should teach and communicate science. Promoting Climate Literacy was developed working with Scripps Institution of Oceanography, University of Washington, and Western Washington University. Climate and Data Literacy was developed with Rutgers University and Padilla Bay National Estuarine Research Reserve, WA. The Climate and Data Literacy course also focuses on helping students in science majors participating in U-Teach programs and students in pre-service teacher education programs gain skills in using real and near-real time data through engaging in investigations using web-based and locally-relevant data resources. The course helps these students understand and apply the scientific practices, disciplinary concepts and big ideas described in the Framework for K-12 Science Education and the Next Generation Science Standards (NGSS). This course focuses on students interested in teaching middle school science for three reasons: (1) teachers often have relatively weak understandings of the practices of science, and of complex Earth systems science and climate change; (2) the concepts that underlie climate change align well with the NGSS; and (3) middle school is a critical time for promoting student interest in science and for recruitment to STEM careers and lifelong climate literacy. This course is now being field tested in a number of U-Teach programs including Florida State University, Louisiana State University, as well as pre-service teacher education programs at California State University East Bay, and Western Washington University. The Promoting Climate Literacy course is focused on graduate and undergraduate science students interested in learning how to more effectively communicate climate science, while participating in outreach opportunities with the public. The course has been disseminated through a workshop for faculty at 17 universities.
NASA Astrophysics Data System (ADS)
Lyford, M. E.; Myers, J. D.; Mayes, R. L.
2009-12-01
Numerous educational studies have documented serious shortcomings in student's quantitative reasoning (QR), understanding of science and ability to connect these to their daily lives. These have driven many reform efforts in teacher professional development. Historically, most of these efforts have focused on science or math and rarely on the science-society connection. For the past two years, a Wyoming Department of Education funded Math-Science Partnership (MSP) professional development program has created a collaboration of university and community college faculty and middle and high school teachers to address QR, science and social relevance in the context of energy and the environment. This professional development project is designed to: 1) improve teacher content knowledge (both in the sciences and math); 2) demonstrate the many social contexts in which science and QR are relevant and can be taught; 3) model effective science and QR classroom activities for teachers; 4) provide teachers with the opportunity to develop and test their own classroom materials; 5) foster the development of professional learning communities across the state; and 6) initiate discussions about curriculum across disciplinary boundaries. Over the course of four summer meetings, participants investigate a series of issues centered on energy and the environment, including transportation, electricity, biogeochemical cycles, Peak Oil, carbon sequestration and climate change. Each issue is approached in an interdisciplinary manner, where relevant aspects from the life sciences, earth sciences, chemistry and physics are addressed. An introductory presentation on the general theme kicks off each meeting to introduce the problem. Subsequent sessions are lead by faculty from the various scientific disciplines as well as math. During their sessions, university and community college faculty model active learning exercises for each issue. These activities weave together the relevant disciplinary scientific concepts, societal connections, and the quantitative skills students need to understand the issues from the perspective of an engaged but questioning citizen of a democracy. The project encourages multidisciplinary teams of teachers (science and math) from a school or district to work together to develop curricula that may span across courses and across grade levels within a school. During the meetings, teachers work in teams to develop activities tied to energy and the environment which they present to the entire group for feedback. During the course of the school year, teachers implement their activities and share their experiences with the whole group through online-meetings. To date, the program has worked with three teacher cohorts of 25-30 teachers each. Teachers in the program are drawn from both the math and science areas thereby initiating cross-disciplinary discourses that are rarely accommodated by current school organizational structures.
Academic Success of Urban African American Elementary Students in Title I Schools
ERIC Educational Resources Information Center
Anderson, James Sebastian
2017-01-01
The researcher investigated the achievement of third- and fifth-grade urban African American students who attended science, technology, engineering, and mathematics (STEM), Non-STEM, and Theme Title I schools in science and mathematics on the 2015 Georgia Milestones Assessment. The researcher used data from 29 Non-STEM, 14 STEM, and 10 Theme…
Out-of-School Time Science Activities and Their Association with Career Interest in STEM
ERIC Educational Resources Information Center
Dabney, Katherine P.; Tai, Robert H.; Almarode, John T.; Miller-Friedmann, Jaimie L. L.; Sonnert, Gerhard; Sadler, Philip M.; Hazari, Zahra
2012-01-01
Spurred by concerns about an inadequately sized science, technology, engineering, and mathematics (STEM) workforce, there has been a growing interest in out-of-school time (OST) science activities as a means to foster STEM career interest. This study examines the association between OST science activities and STEM career interest in university…
Urban High School Student Engagement through CincySTEM iTEST Projects
ERIC Educational Resources Information Center
Beckett, Gulbahar H.; Hemmings, Annette; Maltbie, Catherine; Wright, Kathy; Sherman, Melissa; Sersion, Brian
2016-01-01
This paper focuses on the notable heightening of underrepresented students' engagement in STEM education through project-based learning CincySTEM iTEST projects. The projects, funded by an iTEST NSF grant, were designed and facilitated by teachers at a new STEM urban public high school serving low-income African-American students. Student…
NASA Astrophysics Data System (ADS)
Minutello, Michael F.
A grounded theory investigation of STEM attrition was conducted that describes and explains why undergraduates at a large Mid-Atlantic research university decided to leave their initial STEM majors to pursue non-STEM courses of study. Participants ultimately decided to leave their initial STEM majors because they were able to locate preferable non-STEM courses of study that did not present the same kinds of obstacles they had encountered in their original STEM majors. Grounded theory data analysis revealed participants initially enrolled in STEM majors with tenuous motivation that did not withstand the various obstacles that were present in introductory STEM coursework. Obstacles that acted as demotivating influences and prompted participants to locate alternative academic pathways include the following: (1.) disengaging curricula; (2.) competitive culture; (3.) disappointing grades; (4.) demanding time commitments; and (5.) unappealing career options. Once discouraged from continuing along their initial STEM pathways, participants then employed various strategies to discover suitable non-STEM majors that would allow them to realize their intrinsic interests and extrinsic goals. Participants were largely satisfied with their decisions to leave STEM and have achieved measures of personal satisfaction and professional success.
Efforts to Recruit Secondary STEM Teachers at Columbus State University
NASA Astrophysics Data System (ADS)
Webster, Zodiac T.; MaSST Preparation Council
2006-12-01
Physics as a discipline is not alone in having difficulty finding qualified teachers. Under-qualified teachers are present in high school Mathematics, Chemistry, Biology, and Earth-science classrooms as well. Columbus State University (CSU) has formed the Mathematics and Science Secondary Teachers (MaSST) Preparation Council to recruit more majors into our existing secondary teaching programs: Mathematics, Biology, Chemistry, and Geology. College of Education and College of Science faculty are working together to create a higher profile for these majors at our institution within the state of Georgia. In addition, we are planning an aggressive campaign to recruit from within by implementing a peer-tutoring program using outstanding students who have completed introductory math and science courses. Our group’s organization and initiatives can serve as a model for other institutions concerned about recruiting more high-school teachers.
NASA Astrophysics Data System (ADS)
Miller, Joelle A.
Focusing on Science, Technology, Engineering and Mathematics (STEM) literacy is a national priority for the United States. As competition increases internationally for scientific and technological innovations, the United States is concentrating on building its STEM capacity (Stephens, 2011). Despite the numerous STEM reform efforts there continues to be a decline in STEM graduates and STEM competencies (McNally, 2012; Langdon, Mckittrick, Beede, Doms, & Khan, 2011; Herschback, 2011). With attention focused on increasing STEM college majors and occupations among the student population, the current research investigation centered on the role of parent aspirations, student self-beliefs, and activities outside the classroom to determine the outcome of middle and high school students choosing a STEM college major. Research suggested that students formulate their degree attainment during their middle and high school years, and even earlier (Roach, 2006; Maltese & Tai, 2011); therefore, it was logical to investigate STEM persistence during middle and high school years. The study analyzed NELS:88, a longitudinal national public data set created by the National Center for Educational Statistics that used 12,144 participants. The students' self-reported data spanned over a 12-year period. Students completed five surveys in the NELS:88 data collection (NCES, 2011). Binary and multivariate logistical regressions determined if activities outside the classroom, parent aspirations, and student self-beliefs influenced STEM college majors. Conclusions of the study found significant relationships between the variables and STEM persistence. Individuals who participated in STEM activities after school were more likely to major in STEM (p<.001,Exp(B)=1.106). There was a significant positive relationship between parent aspirations and increased odds of choosing a STEM major (p<.0001, Exp(B)=1.041). There was a significant relationship between student self-beliefs and choosing a STEM major as students with higher self-beliefs had a decreased odds of choosing a non-STEM major (p<.05, Exp(B)=.988). When all three variables were considered together, self-beliefs were no longer significant (p<.166) but parent aspirations, (p<.0001, Exp(B)=1.034) and activities outside of the classroom (p<.0001, Exp(B)=1.097), both significantly predicted STEM participation. The results of the research inform policy makers in regard to funding decisions and the development of programs, especially ones that occur outside of the school day. The analysis may guide decisions for school administrators on how to influence student retention within the STEM pipeline. The findings add to existing research and provide a better understanding of predictors affecting student persistence in STEM.
ERIC Educational Resources Information Center
Sublett, Cameron; Plasman, Jay Stratte
2017-01-01
Over the past decade, CTE has been highlighted as a means of promoting college and career readiness for high school students. Applied STEM coursework is a promising area of high school study that has particular relevance in the technologically progressive world of today. Previous research has illustrated that applied STEM coursework in high school…
ERIC Educational Resources Information Center
Chun, Katie; Harris, Erin
2011-01-01
Increasing interest in science, technology, engineering, and mathematics (STEM) has become part of education reform efforts in recent years in order to prepare students for the challenges of the twenty-first century global economy. Out-of-school time (OST) programs that focus on girls' involvement in STEM can play an essential role in improving…
NASA Astrophysics Data System (ADS)
Wheeler, Erin R.
There is a national effort to increase the number of undergraduate students graduating in science, math, engineering, and technology (STEM) (National Science Foundation, 2007). The majority of students initially populating these STEM majors ultimately switch to and graduate from non-STEM majors (Seymour & Hewitt, 2000; Seymour, 2002). The source of attrition from STEM fields lies within the difficulty of concepts presented in freshman STEM introductory courses (Jensen & Moore, 2007, 2008, 2009; Seymour & Hewitt, 2000). These gateway courses are considered high-risk because nearly half of students enrolled in these courses receive either a "D" or "F" or completely withdraw from the course (Labov, 2004). Research shows that students who have uncalibrated self-efficacy and an attenuated self-regulated learning are unsuccessful in high-risk courses (Kitsantas et al., 2008; Ross, Green, Salisbury-Glennon, & Tollefson, 2006; Zimmerman, 2002). Traditional academic assistance, such as tutoring, learning to learn courses, and supplemental instruction, does not explicitly develop an undergraduate's self-efficacy and self-regulated learning as it specifically relates to the STEM domains (Cao & Nietfeld, 2007; Dembo & Seli, 2006; Ross et al., 2006; Simpson, Hind, Nist, Burrell, 1997). Some STEM departments have created academic interventions, such as one-credit seminars, orientation programs, and bridge programs, to directly address the needs of STEM majors (Belzer, 2003; Bonner, 2009; Chevalier, Chrisman, & Kelsey, 2001; Hutchison-Green, Follman, & Bodner, 2008; D. J. Minchella, Yazvac, C. W., Fodrea, R. A., Ball G., 2007; Reyes, Anderson-Rowland, & McCartney, 1998). This study focused on the effect of a biology-intensive orientation program on biology majors' self-efficacy and self-regulated learning. The study utilized approximately 300 undergraduate biology majors participating in a biology-intensive orientation that occurred on August 7-12, 2011, at a public state university. The pre-test and post-test measurements of the Motivated Strategies for Learning Questionnaire, as well as observations, interviews, and open-ended email surveys, were employed to evaluate the program as an effective format for developing self-regulated learning and self-efficacy. The Biology Intensive Orientation for Students (BIOS) was found to exhibit four elements that previous research deemed necessary to develop self-efficacy and self-regulation. BIOS were also shown successfully to calibrate students' self-efficacy and self-regulation to a level for optimal performance in Biology 1201. Camp participants exhibited higher self-efficacy, self-regulation, and final Biology 1201 grades than their non-BIOS peers. Self-efficacy was found to contribute more variance to course performance than self-regulation. Together these results offer insight into the mechanism behind the success of science boot camps and the role of motivation in STEM retention initiatives.
Using Grand Challenges to Teach Science: A Biology-Geology Collaboration
NASA Astrophysics Data System (ADS)
Lyford, M.; Myers, J. D.
2012-12-01
Three science courses at the University of Wyoming explore the inextricable connections between science and society by centering on grand challenges. Two of these courses are introductory integrated science courses for non-majors while the third is an upper level course for majors and non-majors. Through collaboration, the authors have developed these courses to explore the grand challenges of energy, water and climate. Each course focuses on the fundamental STEM principles required for a citizen to understand each grand challenge. However, the courses also emphasize the non-STEM perspectives (e.g., economics, politics, human well-being, externalities) that underlie each grand challenge and argue that creating equitable, sustainable and just solutions to the grand challenges hinges on an understanding of STEM and non-STEM perspectives. Moreover, the authors also consider the multitude of personal perspectives individuals bring to the classroom (e.g., values, beliefs, empathy misconceptions) that influence any stakeholder's ability to engage in fruitful discussions about grand challenge solutions. Discovering Science (LIFE 1002) focuses on the grand challenges of energy and climate. Students attend three one-hour lectures, one two-hour lab and a one-hour discussion each week. Lectures emphasize the STEM and non-STEM principles underlying each grand challenge. Laboratory activities are designed to be interdisciplinary and engage students in inquiry-driven activities to reinforce concepts from lecture and to model how science is conducted. Labs also expose students to the difficulties often associated with scientific studies, the limits of science, and the inherent uncertainties associated with scientific findings. Discussion sessions provide an opportunity for students to explore the complexity of the grand challenges from STEM and non-STEM perspectives, and expose the multitude of personal perspectives an individual might harbor related to each grand challenge. Global Sustainability: Managing Earth's Resources (GEOL 1600) focuses on the energy-water climate nexus with a similar emphasis on STEM and non-STEM perspectives as LIFE 1002. Each week, there are three one hour lectures and a two hour lab. To set the stage for global and systems thinking, the concept of the Anthropocene and planetary boundaries are introduced early in the semester. Lectures focus on a variety of energy-water-climate topics and provide the content background for the labs. Labs are mini-case studies that address a variety of issues set in different global contexts, e.g. groundwater in Bangladesh, coal in China and petroleum in Saudi Arabia. Often the labs cover two weeks with one part covering science and the other economics. Unlike the other two courses, Energy: A Geological Perspective (GEOL 3650), is enrolled with half geology majors and half non-majors, representing almost every college on campus. Its organizational structure is similar to 1600. Labs focus on case studies, each lasting from 3 to 5 weeks, with each week addressing a different aspect of the same issue and social context, e.g. geology, economics, engineering, regulatory and political/social. Students, working in groups, present oral and written reports. Topics range from nuclear power and weapons in Iran to atmospheric emissions and global climate treaties.
The Perceptions of STEM from Eighth-Grade African-American Girls in a High-Minority Middle School
NASA Astrophysics Data System (ADS)
Hare, LaChanda N.
Even with the existence of STEM curriculum and STEM programs that target women and minorities, African-American females still lag behind other ethnic groups in STEM fields. Reasons for the underrepresentation of females in STEM fields can be traced back to the early years of schooling. The purpose of this study was to identify the factors that impact African-American females' perspectives of STEM subjects and STEM careers. An explanatory sequential mixed-methods approach was used for data collection with a survey, focus group, and interview. Forty male (N=12) and female (N=28) students from different ethnic groups were surveyed. The focus group and interview sessions consisted of 21 African-American females from two distinct groups: those enrolled in the school's STEM program (STEM) and those who were not enrolled in the STEM program (Non-STEM). The self-efficacy theory and social cognitive career theory served as the theoretical constructs guiding the data analysis. Multiple regression results showed that outcome expectation and personal disposition had the greatest influence on the females' interest in STEM content and STEM careers. Results from the qualitative portion of the study revealed that the learning environment and STEM self-efficacy had a significant impact on African-American females' interest in STEM.
Small group gender ratios impact biology class performance and peer evaluations.
Sullivan, Lauren L; Ballen, Cissy J; Cotner, Sehoya
2018-01-01
Women are underrepresented in science, technology, engineering, and mathematics (STEM) disciplines. Evidence suggests the microclimate of the classroom is an important factor influencing female course grades and interest, which encourages retention of women in STEM fields. Here, we test whether the gender composition of small (8-9 person) learning groups impacts course performance, sense of social belonging, and intragroup peer evaluations of intellectual contributions. Across two undergraduate active learning courses in introductory biology, we manipulated the classroom microclimate by varying the gender ratios of learning groups, ranging from 0% female to 100% female. We found that as the percent of women in groups increased, so did overall course performance for all students, regardless of gender. Additionally, women assigned higher peer- evaluations in groups with more women than groups with less women. Our work demonstrates an added benefit of the retention of women in STEM: increased performance for all, and positive peer perceptions for women.
NASA Astrophysics Data System (ADS)
Gilchrist, Pamela O.; Carpenter, Eric D.; Gray-Battle, Asia
2014-07-01
A hybrid teacher professional development, student science technology mathematics and engineering pipeline enrichment program was operated by the reporting research group for the past 3 years. Overall, the program has reached 69 students from 13 counties in North Carolina and 57 teachers from 30 counties spread over a total of five states. Quantitative analysis of oral presentations given by participants at a program event is provided. Scores from multiple raters were averaged and used as a criterion in several regression analyses. Overall it was revealed that student grade point averages, most advanced science course taken, extra quality points earned in their most advanced science course taken, and posttest scores on a pilot research design survey were significant predictors of student oral presentation scores. Rationale for findings, opportunities for future research, and implications for the iterative development of the program are discussed.
NASA Astrophysics Data System (ADS)
Hashimoto-Martell, Erin A.; McNeill, Katherine L.; Hoffman, Emily M.
2012-10-01
This study explores the impact of an urban ecology program on participating middle school students' understanding of science and pro-environmental attitudes and behaviors. We gathered pre and post survey data from four classes and found significant gains in scientific knowledge, but no significant changes in student beliefs regarding the environment. We interviewed 12 students to better understand their beliefs. Although student responses showed they had learned discrete content knowledge, they lacked any ecological understanding of the environment and had mixed perceptions of the course's relevance in their lives. Students reported doing pro-environmental behaviors, but overwhelmingly contributed such actions to influences other than the urban ecology course. Analyses indicated a disconnect between the course, the environment, and the impact on the students' lives. Consequently, this suggests the importance of recognizing the implications of context, culture, and identity development of urban youth. Perhaps by providing explicit connections and skills in urban environmental programs through engaging students in environmental scientific investigations that stem from their own issues and questions can increase student engagement, motivation, and self-efficacy of environmental issues.
ERIC Educational Resources Information Center
Education Council, 2015
2015-01-01
There are many factors that affect student engagement in science, technology, engineering and mathematics (STEM). Underlying this are the views of the broader community--and parents in particular--about the relevance of STEM, and the approach to the teaching and learning of STEM from the early years and continuing throughout schooling. Connected…
ERIC Educational Resources Information Center
Ihrig, Lori M.; Lane, Erin; Mahatmya, Duhita; Assouline, Susan G.
2018-01-01
High-achieving students in economically disadvantaged, rural schools lack access to advanced coursework necessary to pursue science, technology, engineering, and mathematics (STEM) educational and employment goals at the highest levels, contributing to the excellence gap. Out-of-school STEM programming offers one pathway to students' talent…
Filling the Gap: Integrating STEM into Career and Technical Education Middle School Programs
ERIC Educational Resources Information Center
Wu-Rorrer, Ray
2017-01-01
The field of STEM education is an educational framework that has surged in application over the past decade. Science, Technology, Engineering, and Math (STEM) is infused in nearly every facet of our society. Filling the gap of current research in middle school career and technical education (CTE) and STEM programs is important as traditional CTE…
ERIC Educational Resources Information Center
Lesk, Cherish Christina Clark
2017-01-01
Active learning methodologies (ALM) are associated with student success, but little research on this topic has been pursued at the community college level. At a local community college, students in science, technology, engineering, and math (STEM) courses exhibited lower than average grades. The purpose of this study was to examine whether the use…
Multipurpose Use of Explain Everything iPad App for Teaching Chemistry Courses
ERIC Educational Resources Information Center
Ranga, Jayashree S.
2018-01-01
Explain Everything is an interactive, user-friendly, and easily accessible app for mobile devices. The interactive app-based teaching methods discussed here can be adopted in any STEM or non-STEM course. This app allows instructors to take advantage of both the chalkboard and PowerPoint slides on a single platform, create videos for lecture…
A Problem-Solving Framework to Assist Students and Teachers in STEM Courses
ERIC Educational Resources Information Center
Phillips, Jeffrey A.; Clemmer, Katharine W.; McCallum, Jeremy E. B.; Zachariah, Thomas M.
2017-01-01
Well-developed, problem-solving skills are essential for any student enrolled in a science, technology, engineering, and mathematics (STEM) course as well as for graduates in the workforce. One of the most essential skills is the ability to monitor one's own progress and understanding while solving a problem. Successful monitoring during the…
NASA Astrophysics Data System (ADS)
Fowlkes, Carol
Science, technology, engineering, and mathematics (STEM) fields are growing and have lucrative job opportunities for college graduates. However, the number of students in STEM majors and the number of those who persist in those majors is declining; there is also a growing gender gap in STEM graduates. This study investigated three perceived classroom experiences in STEM courses and the nature of differences in these experiences by student gender, instructor gender, and by those who persisted or did not persist in STEM majors. A factorial MANOVA was the statistical method by which the differences were explored. The statistical analysis revealed non-significant mean differences in three-way interaction, all two-way interactions, and all main effects. There were not gendered differences in students' perceptions of the opportunities for hands-on learning, the instructor cares about students' success, and the instructor encourages students' contributions. Further research is proposed to continue examination of this topic with a larger data set that is consistent with the literature regarding the population of STEM students and the number of STEM persisters, and the male-gendered nature of STEM fields.
Development of a Short-Form Measure of Science and Technology Self-efficacy Using Rasch Analysis
NASA Astrophysics Data System (ADS)
Lamb, Richard L.; Vallett, David; Annetta, Leonard
2014-10-01
Despite an increased focus on science, technology, engineering, and mathematics (STEM) in U.S. schools, today's students often struggle to maintain adequate performance in these fields compared with students in other countries (Cheek in Thinking constructively about science, technology, and society education. State University of New York, Albany, 1992; Enyedy and Goldberg 2004; Mandinach and Lewis 2006). In addition, despite considerable pressure to promote the placement of students into STEM career fields, U.S. placement is relatively low (Sadler et al. in Sci Educ 96(3):411-427, 2012; Subotnik et al. in Identifying and developing talent in science, technology, engineering, and mathematics (STEM): an agenda for research, policy and practice. International handbook, part XII, pp 1313-1326, 2009). One explanation for the decline of STEM career placement in the U.S. rests with low student affect concerning STEM concepts and related content, especially in terms of self-efficacy. Researchers define self-efficacy as the internal belief that a student can succeed in learning, and that understanding student success lies in students' externalized actions or behaviors (Bandura in Psychol Rev 84(2):191-215, 1977). Evidence suggests that high self-efficacy in STEM can result in student selection of STEM in later educational endeavors, culminating in STEM career selection (Zeldin et al. in J Res Sci Teach 45(9):1036-1058, 2007). However, other factors such as proficiency play a role as well. The lack of appropriate measures of self-efficacy can greatly affect STEM career selection due to inadequate targeting of this affective trait and loss of opportunity for early intervention by educators. Lack of early intervention decreases selection of STEM courses and careers (Valla and Williams in J Women Minor Sci Eng 18(1), 2012; Lent et al. in J Couns Psychol 38(4), 1991). Therefore, this study developed a short-form measure of self-efficacy to help identify students in need of intervention.
Monitoring the Pipeline: STEM Education in Rural U.S.
ERIC Educational Resources Information Center
Marksbury, Nancy
2017-01-01
Higher education institutions are charged with creating one million more STEM professionals over the next decade, a 34% increase in undergraduate STEM degrees annually (PCAST 2012). Examining why college STEM courses manifest high attrition rates, interdependencies emerge that begin in early childhood education. Those of us in higher education…
STEMulating Interest: A Meta-Analysis of the Effects of Out-of-School Time on Student STEM Interest
ERIC Educational Resources Information Center
Young, Jamaal; Ortiz, Nickolaus; Young, Jemimah
2017-01-01
This study is a meta-analysis of the effects of out-of-school time (after school, summer camps, enrichment programs, etc.) on the student interest in STEM. This study was guided by the following research questions: (1) How effective is OST as a means to foster student interest in STEM? (2) How does the effectiveness of OST differ by program and…
The DataTools Professional Development Program: Sustainability via a University Partnership
NASA Astrophysics Data System (ADS)
Haddad, N.; Ledley, T. S.; McAuliffe, C. A.; Reider, D.
2009-12-01
The DataTools professional development program (http://serc.carleton.edu/eet/msdatatools), offered by TERC, helps teachers integrate technology, scientific data, and inquiry into their middle and high school curricula. It leverages the resources and techniques of the Earth Exploration Toolbook (http://serc.carleton.edu/eet), an online collection of investigations that promotes the use of technology and scientific data in the context of studying the earth system. Over the course of the year-long program, teachers develop skills and a pedagogy of inquiry through a combination of on-line and face-to-face professional development and a significant amount of peer support. They learn to use information technologies that support the visualization and analysis of numerical, geospatial, and image data. DataTools was funded by NSF’s ITEST program to operate for three years. During year two we started to investigate the possibility of transforming the program into a graduate-level course at the University of Massachusetts, Dartmouth (UMD). The first step in that process was partnering with UMD to offer the third year of the NSF-funded program as a 3-credit graduate course on a 1-year trial basis. Our UMD partner participated in advertising the program to teachers in its network, provided classroom space at UMD for the face-to-face meetings and summer workshop, and offered three graduate credits to teachers who successfully completed the program. TERC staff continued to provide the professional development. The formation of the School for Education, Public Policy, and Civic Engagement at UMD, and the new STEM Department within that school appear to be favoring the transformation of this NSF-funded program into a sustainable graduate level course for in-service teachers. A key element to developing a sustainable course at a large university is to position it in a way that can service the largest number of students. In addition to the tremendous need of science professional development for teachers in the geographic region of UMD, the course can also serve as a science course for undergraduate students to fulfill general education requirements. This tremendously enlarges the number of students potentially served by the course. Nevertheless, after almost two years and a trial program that was hailed as a success by the participants, the work of transforming the DataTools program into a standard course is ongoing. In this session we will share details of our efforts, past and present, to sustain the operation of the DataTools program.
Multiple Case Study of STEM in School-Based Agricultural Education
ERIC Educational Resources Information Center
Stubbs, Eric A.; Myers, Brian E.
2015-01-01
This multiple case study investigated the integration of science, technology, engineering, and mathematics (STEM) in three Florida high school agriculture programs. Observations, interviews, documents, and artifacts provided qualitative data that indicated the types of STEM knowledge taught. Variables of interest included student and teacher…
NASA Astrophysics Data System (ADS)
Welch, C.; Osborne, B.
The UK national STEM Ambassadors programme provides inspiring role models for school students in science, technology, engineering, mathematics (STEM) subjects. STEMNET, the national body responsible for STEM Ambassa- dors aims to provide more than 27,000 STEM Ambassadors nationwide by the end of 2011. This paper reports on a project at Kingston University to embed STEM Ambassador training and activity in Year 2 of the undergraduate Aerospace Engineering, Astronautics and Space Technology degree. The project, known as KUSPACE (Kingston University Students Providing Amazing Classroom Experiences), was conceived to develop students' communication, planning and presentation skills and build links between different cohort years, while providing a valuable contribution to local primary schools' STEM programmes and simultaneously raising the public engagement profile of the university. This paper describes the pedagogical conception of the KUSPACE, its implementation in the curriculum, the delivery of it in the university and schools and its effect on the undergraduate students, as well as identifying good practice and drawing attention to lessons learned.STEMNET (www.stemnet.org) is the UK's Science, Technol- ogy, Engineering and Mathematics Network. Working with a broad range of UK partners and funded by the UK govern- ment's Department for Business Innovation and Skills, STEMNET plays a significant role in ensuring that five to nineteen year olds and their teachers can experience a wide range of activities and schemes which enhance and enrich the school curriculum [1]. Covering all aspects of Science, Tech- nology, Engineering and Maths (STEM), these activities and schemes are designed both to increase STEM awareness and literacy in the young people and also to encourage more of them to undertake post-16 STEM qualifications and associated careers [2]. STEMNET operates through forty-five local con- tract holders around the UK which help the network deliver its programmes to schools and organisations in their particular areas, mainly through the STEM Ambassador Programme (see below) and the Schools STEM Advisory Network.In support of its vision - `To increase young people's choice and chances through science, technology, engineering, and mathematics ' - STEMNET seeks to be a recognised leader in enabling all young people to achieve their potential in STEM by:
Batz, Zachary; Olsen, Brian J; Dumont, Jonathan; Dastoor, Farahad; Smith, Michelle K
2015-01-01
The high attrition rate among science, technology, engineering, and mathematics (STEM) majors has long been an area of concern for institutions and educational researchers. The transition from introductory to advanced courses has been identified as a particularly "leaky" point along the STEM pipeline, and students who struggle early in an introductory STEM course are predominantly at risk. Peer-tutoring programs offered to all students in a course have been widely found to help STEM students during this critical transition, but hiring a sufficient number of tutors may not be an option for some institutions. As an alternative, this study examines the viability of an optional peer-tutoring program offered to students who are struggling in a large-enrollment, introductory biology course. Struggling students who regularly attended peer tutoring increased exam performance, expert-like perceptions of biology, and course persistence relative to their struggling peers who were not attending the peer-tutoring sessions. The results of this study provide information to instructors who want to design targeted academic assistance for students who are struggling in introductory courses. © 2015 Z. Batz et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Teaching fluid mechanics to high schoolers: methods, challenges, and outcome
NASA Astrophysics Data System (ADS)
Manikantan, Harishankar
2017-11-01
This talk will summarize the goals, methods, and both short- and long-term feedback from two high-school-level courses in fluid mechanics involving 43 students and cumulatively spanning over 100 hours of instruction. The goals of these courses were twofold: (a) to spark an interest in science and engineering and attract a more diverse demographic into college-level STEM programs; and (b) to train students in a `college-like' method of approaching the physics of common phenomena, with fluid mechanics as the context. The methods of instruction included classes revolving around the idea of dispelling misconceptions, group activities, `challenge' rounds and mock design projects to use fluid mechanics phenomena to achieve a specified goal, and simple hands-on experiments. The feedback during instruction was overwhelmingly positive, particularly in terms of a changing and favorable attitude towards math and engineering. Long after the program, a visible impact lies in a diverse group of students acknowledging that the course had a positive effect in their decision to choose an engineering or science major in a four-year college.
NASA Astrophysics Data System (ADS)
Soto, Marissa; Suskavcevic, Miliana; Forrest, Rebecca; Cheung, Margaret; Kapral, Andrew; Khon, Lawrence
When teaching physics, many factors determine the final impact the course will have on a student. Using STEP, a teacher content professional development program, we are studying the incorporation of inquiry-based teaching strategies in the professional development of university professors through an active engagement program. Through the professors' involvement in the program, they gain experience with inquiry-based instruction that can be put into effect in their own classrooms to possibly create a shift in understanding and success ratesat physics undergraduate courses. This model consists of faculty peer mentoring, facilitating instruction within a community of practice, and implementation of undergraduate inquiry-based physics teaching strategies. Here, professors are facilitating the physics lessons to in-service high school teachers while using inquiry strategies and interactive activities rather than traditional lecture. This project aided the creation of an undergraduate inquiry-based physics course at the University of Houston. It could lead to a new form of professor professional development workshop that does not only benefit the professor, but also highschoolteachers not properly trained in the field of physics.
Feldhaus, Charles R; Wolter, Robert M; Hundley, Stephen P; Diemer, Tim
2006-04-01
This paper details efforts by the Purdue School of Engineering and Technology at Indiana University Purdue University Indianapolis (IUPUI) to create a single instrument for honors science, technology, engineering and mathematics (STEM) students wishing to demonstrate competence in the IUPUI Principles of Undergraduate Learning (PUL's) and Accreditation Board for Engineering and Technology (ABET) Engineering Accreditation Criterion (EAC) and Technology Accreditation Criterion (TAC) 2, a through k. Honors courses in Human Behavior, Ethical Decision-Making, Applied Leadership, International Issues and Leadership Theories and Processes were created along with a specific menu of activities and an assessment rubric based on PUL's and ABET criteria to evaluate student performance in the aforementioned courses. Students who complete the series of 18 Honors Credit hours are eligible for an Honors Certificate in Leadership Studies from the Department of Organizational Leadership and Supervision. Finally, an accounting of how various university assessment criteria, in this case the IUPUI Principles of Undergraduate Learning, can be linked to ABET outcomes and prove student competence in both, using the aforementioned courses, menu of items, and assessment rubrics; these will be analyzed and discussed.
2017-07-13
Education Specialists Lynn Dotson, left, of the NASA Public Engagement Center, and Lester Morales, right, of Texas State University's NASA STEM Educator Professional Development Collaborative, explain the Rocketry Engineering Design Challenge to teachers participating in the 2017 GE Foundation High School STEM Integration Conference at the Center for Space Education at NASA's Kennedy Space Center. High school teachers from across the country took part in the week-long conference, which is designed to explore effective ways for teachers, schools and districts from across the country to integrate STEM throughout the curriculum. The conference is a partnership between GE Foundation and the National Science Teachers Association.
NASA Astrophysics Data System (ADS)
Pickering, J.; Briggs, D. E.; Alonzo, J.
2011-12-01
Over the last decade many influential reports on how to improve the state of STEM education in the United States have concluded that students need exciting science experiences that speak to their interests - beyond the classroom. High school students spend only about one third of their time in school. After school programs are an important opportunity to engage them in activities that enhance their understanding of complex scientific issues and allow them to explore their interests in more depth. For the last four years the Peabody Museum, in partnership with Yale faculty, other local universities and the New Haven Public Schools, has engaged a diverse group of New Haven teens in an after school program that provides them with multiple opportunities to explore the geosciences and related careers, together with access to the skills and support needed for college matriculation. The program exposes 100 students each year to the world of geoscience research; internships; the development of a Museum exhibition; field trips; opportunities for paid work interpreting geoscience exhibits; mentoring by successful college students; and an introduction to local higher education institutions. It is designed to address issues that particularly influence the college and career choices of students from communities traditionally underrepresented in STEM. Independent in-depth evaluation, using quantitative and qualitative methods, has shown that the program has enormous positive impact on the students. Results show that the program significantly improves students' knowledge and understanding of the geosciences and geoscience careers, together with college and college preparation. In the last two years 70% - 80% of respondents agreed that the program has changed the way they feel about science, and in 2010/11 over half of the students planned to pursue a science degree - a considerable increase from intentions voiced at the beginning of the program. The findings show that the students' knowledge of many geoscience fields (e.g., ocean sciences, human environmental impact) and careers in these areas had increased significantly. The high school to college transition is a time when many students leave the STEM pipeline. Increased knowledge of the geosciences at this critical time encourages them to take courses in these areas in college and to delve more deeply into the subject. The program has been supported by grants from the NSF "Opportunities for Enhancing Diversity in the Geosciences" Program, the Institute of Museum and Library Services, and other funders.
2017-07-13
Teachers participate in the Rocketry Engineering Design Challenge during the 2017 GE Foundation High School STEM Integration Conference at the Center for Space Education at NASA's Kennedy Space Center. High school teachers from across the country took part in the week-long conference, which is designed to explore effective ways for teachers, schools and districts from across the country to integrate STEM throughout the curriculum. The conference is a partnership between GE Foundation and the National Science Teachers Association.
The School Counselor and STEM Career Development
ERIC Educational Resources Information Center
Falco, Lia D.
2017-01-01
There is an increasing concern that the demand for science, technology, engineering, and math (STEM) workers in the United States will exceed the supply. In the United States, very few students, and underrepresented students in particular, are pursuing STEM educational and occupational goals that underscores the need for school counselors to…
NASA Astrophysics Data System (ADS)
Chow, Christina M.
Maintaining a competitive edge within the 21st century is dependent on the cultivation of human capital, producing qualified and innovative employees capable of competing within the new global marketplace. Technological advancements in communications technology as well as large scale, infrastructure development has led to a leveled playing field where students in the U.S. will ultimately be competing for jobs with not only local, but also international, peers. Thus, the ability to understand and learn from our global competitors, starting with the examination of innovative education systems and best practice strategies, is tantamount to the economic development, and ultimate survival, of the U.S. as a whole. The purpose of this study was to investigate the current state of science, technology, engineering and mathematics (STEM) education and workforce pipelines in the U.S., China, and Taiwan. Two broad research questions examined STEM workforce production in terms of a) structural differences in primary and secondary school systems, including analysis of minimum high school graduation requirements and assessments as well as b) organizational differences in tertiary education and trends in STEM undergraduate and graduate degrees awarded in each region of interest. While each of the systems studied had their relative strengths and weaknesses, each of the Asian economies studied had valuable insights that can be categorized broadly in terms of STEM capacity, STEM interest and a greater understanding of global prospects that led to heightened STEM awareness. In China and Taiwan, STEM capacity was built via both traditional and vocational school systems. Focused and structured curriculum during the primary and early secondary school years built solid mathematics and science skills that translated into higher performance on international assessments and competitions. Differentiated secondary school options, including vocational high school and technical colleges and programs beginning shortly after junior high produced a greater number of alternatives for producing STEM capable students. A heightened interest in the STEM fields was built upon standardized academic core curriculum that ultimately yielded a greater percentage of qualified and interested Asian students pursuing bachelor's and advanced STEM degrees both in their native country and abroad. Rewards and incentives built into school systems, expansion of tertiary degree-granting programs, as well as the development of multiple university entrance pathways has served to heighten interest and perception of STEM careers as well as recruit top students into STEM fields. Further, foreign language classes, starting from either the first or third year of primary school, coupled with information technology and other experimental science and research themed classes, resulted in students who were more aware of global market demands. Analysis of longitudinal data shows that over a nine-year period, this combination of increased STEM capacity, interest and awareness resulted in a far greater percentage of 9th graders who eventually became STEM certificate, bachelor's, and advanced degree holders capable of competing in the global marketplace.
NASA Astrophysics Data System (ADS)
LeBeau, Brandon; Harwell, Michael; Monson, Debra; Dupuis, Danielle; Medhanie, Amanuel; Post, Thomas R.
2012-04-01
Background: The importance of increasing the number of US college students completing degrees in science, technology, engineering or mathematics (STEM) has prompted calls for research to provide a better understanding of factors related to student participation in these majors, including the impact of a student's high-school mathematics curriculum. Purpose: This study examines the relationship between various student and high-school characteristics and completion of a STEM major in college. Of specific interest is the influence of a student's high-school mathematics curriculum on the completion of a STEM major in college. Sample: The sample consisted of approximately 3500 students from 229 high schools. Students were predominantly Caucasian (80%), with slightly more males than females (52% vs 48%). Design and method: A quasi-experimental design with archival data was used for students who enrolled in, and graduated from, a post-secondary institution in the upper Midwest. To be included in the sample, students needed to have completed at least three years of high-school mathematics. A generalized linear mixed model was used with students nested within high schools. The data were cross-sectional. Results: High-school predictors were not found to have a significant impact on the completion of a STEM major. Significant student-level predictors included ACT mathematics score, gender and high-school mathematics GPA. Conclusions: The results provide evidence that on average students are equally prepared for the rigorous mathematics coursework regardless of the high-school mathematics curriculum they completed.
Improving student learning in calculus through applications
NASA Astrophysics Data System (ADS)
Young, C. Y.; Georgiopoulos, M.; Hagen, S. C.; Geiger, C. L.; Dagley-Falls, M. A.; Islas, A. L.; Ramsey, P. J.; Lancey, P. M.; Straney, R. A.; Forde, D. S.; Bradbury, E. E.
2011-07-01
Nationally only 40% of the incoming freshmen Science, Technology, Engineering and Mathematics (STEM) majors are successful in earning a STEM degree. The University of Central Florida (UCF) EXCEL programme is a National Science Foundation funded STEM Talent Expansion Programme whose goal is to increase the number of UCF STEM graduates. One of the key requirements for STEM majors is a strong foundation in Calculus. To improve student learning in calculus, the EXCEL programme developed two special courses at the freshman level called Applications of Calculus I (Apps I) and Applications of Calculus II (Apps II). Apps I and II are one-credit classes that are co-requisites for Calculus I and II. These classes are teams taught by science and engineering professors whose goal is to demonstrate to students where the calculus topics they are learning appear in upper level science and engineering classes as well as how faculty use calculus in their STEM research programmes. This article outlines the process used in producing the educational materials for the Apps I and II courses, and it also discusses the assessment results pertaining to this specific EXCEL activity. Pre- and post-tests conducted with experimental and control groups indicate significant improvement in student learning in Calculus II as a direct result of the application courses.
NASA Astrophysics Data System (ADS)
LeGrand, Julie
The issue of female underrespresentation in science, mathematics, engineering, and technology careers and courses has been well researched over the last several decades. However, as gender gaps in achievement close and representation becomes more equitable in certain academic domains, research has turned to social and cultural factors to explain why fewer women persist in STEM studies and careers than men. The purpose of this study was to examine gender differences in science and math attitudes and interests from elementary school, to middle school, to high school. To examine possible gender-specific shifts in students' interest and attitudes in science and math, 136 students from a suburban, public school district were surveyed at the elementary school level (N=31), middle school level (N=54), and high school level (N=51) and various constructs were used to assess the responses in accordance with expectancy-value theory. Utilizing a mixed-methods approach, a random sample of students from each grade level then participated in focus groups, and corollary themes were identified. Results from a logistical regression analysis and Mann-Whitney Test indicated that significant gender differences exist for interest, efficacy, expectancy, and value within science domains (p<.05), although these differences are not the same at each grade level or for each scientific discipline. Significant gender differences in mathematics are present only at the elementary school level.
NASA Astrophysics Data System (ADS)
Belcher, Aaron Heath
The purpose of this disquisition is to disseminate an improvement initiative in a public high school that addressed female Science, Technology, Engineering and Math (STEM) disparity in STEM classes. In this high school current instructional and career guidance practices were inadequate in providing female STEM students opportunities to experience relevant instruction in STEM through the application of real world practices. The improvement initiative identified four interventions using qualitative research that addressed the question, how do instructional and career guidance practices that emphasize the real world application of STEM impact the academic choices and career aspirations of female STEM students? The interventions include (1) instructional feedback (2) instructional resources, (3) career coaching, and (4) community college partnership. These interventions were chosen as a result of insider research methods that followed a scan, focus, summarize framework for understanding the problem. The aim of the improvement initiative was to develop structured protocols that impact STEM classroom and career guidance practices. An intervention team intended to identify opportunities for female STEM students to experience the real world application of STEM. First, the research context is explained. Then, a review of the literature explains foundation knowledge that led to the conceptual and leadership framework. Next, the research methodology is outlined including design and participants, survey instruments, procedures, timeline, and measures. The research methodology is followed by an analysis of data for instructional and career guidance practice efficacy. Finally, a discussion of the initiative and its outcome are illustrated through the stories of three female STEM students. As a result of these stories, the intervention team developed STEM classroom observation protocols. These protocols can be used by school leaders as a structure for STEM instruction and career guidance.
NASA Astrophysics Data System (ADS)
Hinds, Beverley Fiona
The purpose of this qualitative study was to determine what inspires or leads seventh-grade African-American girls toward an interest in STEM, to characterize and describe the context of an out-of-school STEM learning environment, explore the impact on the seventh- grade African-American girls who participated in the program as it relates to individual STEM identity, and identify personal and academic experiences of seventh-grade African- American girls that contribute to the discouragement or pursuit of science and math-related academic pathways and careers. Notable findings in this study included the following: 1. Participants were interested in STEM and able to identify both external and internal influences that supported their involvement and interest in STEM activities. External influences expanded and elevated exposure to STEM experiences. 2. The MJS program provided an opportunity for participants to overcome challenges related to science and math knowledge and skills in school. 3. The MJS program increased levels of interest in STEM for the participants. 4. All participants increased their capacity to demonstrate increased knowledge in STEM content as a result of the learning experiences within the MJS program, and participants transferred this knowledge to experiences outside of the program including school. 5. The STEM learning environment provided multiple opportunities for participants to meet high expectation and access to engaging activities within a supportive, well-managed setting. 6. The MJS program participants demonstrated behaviors related to building a STEM identity through the components described by Carlone and Johnson (2007), including recognition-internal and external acknowledgement of being a STEM person; competence-demonstrating an understanding of STEM content; and performance-publically exhibiting STEM knowledge and skills. The findings in this study suggested that African-American seventh-grade girls interested in STEM are inspired and encouraged to participate in STEM by both internal and external factors. Highly effective afterschool STEM programs increase interest, knowledge and skills in STEM. The capacity for building a STEM identity was expanded as explored/measured by the components of recognition, competence, and performance (Carlone & Johnson, 2007). The learning environment conditions and support for building a STEM identity enhance the pursuit of STEM-related fields for African-American middle school girls. Application of these factors add to the potential for a decrease in the gap of representation of African-American women engaged in STEM. Future studies may explore how African-American middle schools girls interested in STEM construct identity as it relates to STEM, racial, and gender identity development and how the mentoring experience in afterschool STEM programs impacts the career choices of pre-teaching students.
Expanding STEM opportunities through inclusive STEM-focused high schools.
Means, Barbara; Wang, Haiwen; Wei, Xin; Lynch, Sharon; Peters, Vanessa; Young, Viki; Allen, Carrie
2017-09-01
Inclusive STEM high schools (ISHSs) (where STEM is science, technology, engineering, and mathematics) admit students on the basis of interest rather than competitive examination. This study examines the central assumption behind these schools-that they provide students from subgroups underrepresented in STEM with experiences that equip them academically and attitudinally to enter and stay in the STEM pipeline. Hierarchical modeling was applied to data from student surveys and state longitudinal data records for 5113 students graduating from 39 ISHSs and 22 comprehensive high schools in North Carolina and Texas. Compared to peers from the same demographic group with similar Grade 8 achievement levels, underrepresented minority and female ISHS students in both states were more likely to undertake advanced STEM coursework. Hispanics in Texas and females in both states expressed more STEM career interest in Grade 12 if they attended an ISHS. Positive relationships between ISHS attendance and grade point average were found in the total sample and each subgroup in North Carolina. Positive ISHS advantages in terms of test scores for the total student sample were found for science in both states and for mathematics in Texas. For the various student subgroups, test score differences favored the ISHS samples but attained statistical significance only for African Americans' science achievement scores in the Texas study.
NASA Astrophysics Data System (ADS)
Rider-Bertrand, Joey H.
At the start of the 21st century, STEM education was a new priority in many schools as the focus shifted from separate disciplines to integrative STEM education. Unfortunately, there was limited research to offer guidance to practitioners (Brown, 2012; Honey, Pearson & Schweingruber, 2014). This qualitative, multiple case study explored the experiences of two multi-disciplinary teams of secondary teachers from Pennsylvania who developed and implemented integrative STEM curriculum. Four teachers from a rural high school and four teachers from a suburban high school participated in the study. A document review of integrative STEM curriculum and semi-structured interviews were conducted to learn about the curriculum development process and teachers' perceptions regarding conditions that support or hinder success. Individual and cross-case analyses were performed to establish findings and themes. Although the individual case themes varied slightly, the cross-case themes and assertions that emerged provided highly sought after guidance to practitioners and added to the limited body of research on integrative STEM education. This study found that current curriculum models do not fit integrative STEM curriculum, the development process is fluid, and substantial administrative support and resources are necessary to develop, implement, and sustain integrative STEM education programs. The results offered implications for all educators, as well as two examples of how teachers navigated the terrain of integrative STEM curriculum.
ERIC Educational Resources Information Center
Weisblat, Gina; McClellan, Jeffrey
2013-01-01
MC Squared STEM High School is part of the Cleveland Metropolitan School District. It has a project-based curriculum that focuses on the core stem skills: science, technology, engineering, and math. As the school celebrated its first graduating class in 2012, administrators felt it was the right time to look back and evaluate the school's…
ERIC Educational Resources Information Center
Castleman, Benjamin L.; Long, Bridget Terry; Mabel, Zachary A.
2014-01-01
The fastest growing supply of jobs in the United States today is in Science, Technology, Engineering, and Mathematics (STEM) fields. Yet despite the availability of work in STEM, there is not a sufficient supply of workers to fill open positions. Amidst the growing demand for STEM workers, educational achievement and attainment in STEM fields in…
Mission EarthFusing GLOBE with NASA Assets to Build SystemicInnovation in STEM Education
NASA Astrophysics Data System (ADS)
Czajkowski, K. P.; Garik, P.; Padgett, D.; Darche, S.; Struble, J.; Adaktilou, N.
2016-12-01
Mission Earth is a project funded through the NASA CAN that is developing a systematic embedding of NASA assets that is being implemented by a partnership of organizations across the US. Mission Earth brings together scientists and science educators to develop a K-12 "Earth as a system" curriculum progression following research-based best practices. GLOBE and NASA assets will be infused into the curricula of schools along the K-12 continuum, leveraging existing partnerships and networks and supported through state departments of education and targeting underrepresented groups, as a systemic, effective, and sustainable approach to meeting NASA's science education objectives. This presentation will discuss plans for the Mission Earth project and successes and lessons learned in the first year. Mission Earth is developing curricular materials to support vertically integrated learning progressions. It develops models of professional development utilizing sustainable infrastructures. It will support STEM careers focusing on career technical education (CTE). And, it will engage undergraduate education majors through pre-service courses and engineering students through engineering challenges.
ERIC Educational Resources Information Center
Bottia, Martha Cecilia; Mickelson, Roslyn Arlin; Giersch, Jason; Stearns, Elizabeth; Moller, Stephanie
2018-01-01
We analyze longitudinal data from students who spent their academic careers in North Carolina (NC) public secondary schools and attended NC public universities to investigate the importance of high school racial composition and opportunities to learn in secondary school for choosing a science, technology, engineering, and mathematics (STEM) major.…
The Baltimore City Schools Middle School STEM Summer Program with VEX Robotics
ERIC Educational Resources Information Center
Mac Iver, Martha Abele; Mac Iver, Douglas J.
2015-01-01
In 2011 Baltimore City Schools submitted a successful proposal for an Investing in Innovations (i3) grant to offer a three year (2012-2014) summer program designed to expose rising sixth through eighth grade students to VEX robotics. The i3-funded Middle School Science, Technology, Engineering and Mathematics (STEM) Summer Learning Program was…
14 CFR Appendix L to Part 141 - Pilot Ground School Course
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Pilot Ground School Course L Appendix L to... School Course 1. Applicability. This appendix prescribes the minimum curriculum for a pilot ground school course required under this part. 2. General requirements. An approved course of training for a pilot...
14 CFR Appendix L to Part 141 - Pilot Ground School Course
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Pilot Ground School Course L Appendix L to... School Course 1. Applicability. This appendix prescribes the minimum curriculum for a pilot ground school course required under this part. 2. General requirements. An approved course of training for a pilot...
14 CFR Appendix L to Part 141 - Pilot Ground School Course
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Pilot Ground School Course L Appendix L to... School Course 1. Applicability. This appendix prescribes the minimum curriculum for a pilot ground school course required under this part. 2. General requirements. An approved course of training for a pilot...
Differential Access to High School Counseling, Postsecondary Destinations, and STEM Careers
ERIC Educational Resources Information Center
Nikischer, Andrea B.; Weis, Lois; Dominguez, Rachel
2016-01-01
Background/Context: Policy makers, school district officials, teachers and parents have embraced science, technology, engineering, and mathematics (STEM) subjects as a way to promote a stronger pipeline to college and career STEM. In so doing, these varied groups seek to raise job prospects for next-generation workers, increase opportunities for…
ERIC Educational Resources Information Center
Wang, Xueli
2013-01-01
This study draws upon social cognitive career theory and higher education literature to test a conceptual framework for understanding the entrance into science, technology, engineering, and mathematics (STEM) majors by recent high school graduates attending 4-year institutions. Results suggest that choosing a STEM major is directly influenced by…
Boosting STEM Interest in High School
ERIC Educational Resources Information Center
Schneider, Barbara; Judy, Justina; Mazuca, Christina
2012-01-01
One of the most critical labor shortages facing the U.S. involves the number of young adults entering careers in what's now commonly referred to as STEM (science, technology, engineering, and mathematics). Equally troubling is that the participation of blacks and Hispanics in STEM careers continues to lag that of whites and Asians. High school is…
ERIC Educational Resources Information Center
Hudson, Peter; English, Lyn; Dawes, Les; King, Donna; Baker, Steve
2015-01-01
Science, technology, engineering, and mathematics (STEM) education is an emerging initiative in Australia, particularly in primary schools. This qualitative research aimed to understand Year 4 students' involvement in an integrated STEM education unit that focused on science concepts (e.g., states of matter, testing properties of materials) and…
Connecting Urban Students with Engineering Design: Community-Focused, Student-Driven Projects
ERIC Educational Resources Information Center
Parker, Carolyn; Kruchten, Catherine; Moshfeghian, Audrey
2017-01-01
The STEM Achievement in Baltimore Elementary Schools (SABES) program is a community partnership initiative that includes both in-school and afterschool STEM education for grades 3-5. It was designed to broaden participation and achievement in STEM education by bringing science and engineering to the lives of low-income urban elementary school…
Teaching STEM after School: Correlates of Instructional Comfort
ERIC Educational Resources Information Center
Cohen, Benjamin
2018-01-01
Science, technology, engineering and mathematics (STEM) education is a critical component of federal policymakers' agendas. Out-of-school time (OST) programs are designated as an important venue to teach STEM to K-12 students. Using a sample of OST direct staff in Pennsylvania (n = 133), the present analysis examines instructional methods used for…
A Journey from STEM to STEAM: A Middle School Case Study
ERIC Educational Resources Information Center
Hunter-Doniger, Tracey; Sydow, Lindsey
2016-01-01
This article examines the initial journey of a middle school in South Carolina from a STEM (science, technology, engineering, and math) curriculum to a STEAM (STEM + art) curriculum. This is the first of a three-year longitudinal study that investigated the perceptions of the effectiveness, relative importance, and sustainability of a STEAM…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Louis Nadelson; Anne Louise Seifert; Meagan McKinney
Business, industry, parks, nature settings, government infrastructure, and people, can be invaluable resources for connecting STEM curriculum within context which results in conditions ideal for promoting purposeful learning of authentic STEM content. Thus, community-based STEM resources offer ideal context for teaching STEM content. A benefit of focusing teacher attention on these contextual, content aligned resources is that they are in every community; making place-based STEM education a possibility, regardless of the location of STEM teaching and learning. Further, associating STEM teaching and learning with local resources addresses workforce development and the STEM pipeline by exposing students to STEM careers andmore » applications in their local communities. The desire to align STEM teaching and learning with local STEM related resources guided the design of our week-long integrated STEM K-12 teacher professional development (PD) program, i-STEM. We have completed four years of our i-STEM PD program and have made place-based STEM a major emphasis of our curriculum. This report focuses on the data collected in the fourth year of our program. Our week-long i-STEM PD served over 425 educators last summer (2013), providing them with in depth theme-based integrated STEM short courses which were limited to an average of 15 participants and whole group plenary sessions focused around placed based integrated STEM, inquiry, engineering design, standards and practices of Common Core and 21st Century skills. This state wide PD was distributed in five Idaho community colleges and took place over two weeks. The STEM short courses included topics on engineering for sustainability, using engineering to spark interest in STEM, municipal water systems, health, agriculture, food safety, mining, forestry, energy, and others. Integral to these short courses were field trips designed to connect the K-12 educators to the resources in their local communities that could be leveraged for teaching integrated STEM and provide a relevant context for teaching STEM content. Workplace presentations made by place-based STEM experts and provided teachers field trips to place-base STEM industries and business such as manufacturing plants, waste water treatment systems, mines, nature parks, food processing plants, research, hospitals, and laboratory facilities. We researched the 425 participants’ conceptions of place-based STEM prior to and after their taking part in the summer institutes, which included fieldtrips. Our findings revealed substantial increase in our participants’ knowledge, interest, and plans to use place-based resources for teaching integrated STEM. We detail the data analysis and provide a theoretical foundation and justification for the importance of place-based STEM to address the STEM pipeline for the future workforce.« less
Nutrition education in Japanese medical schools: a follow-up survey.
Orimo, Hideo; Ueno, Takahiro; Yoshida, Hiroshi; Sone, Hirohito; Tanaka, Akira; Itakura, Hiroshige
2013-01-01
A questionnaire survey was used to determine the status of nutrition education in Japanese medical schools in 2009. A similar survey was conducted in 2004, at which time nutritional education was determined to be inadequate in Japanese medical schools. The current questionnaire was sent to the directors of Centers for Medical Education of 80 medical schools, who represented all medical schools in Japan. Sixty-seven medical schools (83.8%) responded, of which 25 schools (37.3%) offered dedicated nutrition courses and 36 schools (53.7%) did not offer dedicated nutrition courses but offered something related to nutrition in other courses; six schools (9.0%) did not offer any nutrition education. Overall, 61 schools (91.0%) offered at least some nutritional topics in their undergraduate education. Nevertheless, only 11 schools (16.4%) seem to dedicate more than 5 hours to substantial nutrition education as judged by their syllabi. Although the mean length of the course was 11 hours, substantial nutrition education accounted for only 4.2 hours. Of the 25 medical schools that offered dedicated nutrition courses, seven schools offered the nutrition course as a stand-alone course and 18 schools offered it as an integrated course. In conclusion, the status of nutrition education in Japan has improved slightly but is still inadequate.
ERIC Educational Resources Information Center
Wladis, Claire; Conway, Katherine M.; Hachey, Alyse C.
2015-01-01
Objective: This study analyzes how ethnicity, gender, and non-traditional student characteristics relate to differential online versus face-to-face outcomes in science, technology, engineering, and mathematics (STEM) courses at community colleges. Method: This study used a sample of 3,600 students in online and face-to-face courses matched by…
ERIC Educational Resources Information Center
Hall, Angela Renee
2011-01-01
This investigative research focuses on the level of readiness of Science, Technology, Engineering, and Mathematics (STEM) students entering Historically Black Colleges and Universities (HBCU) in the college Calculus sequence. Calculus is a fundamental course for STEM courses. The level of readiness of the students for Calculus can very well play a…
ERIC Educational Resources Information Center
Fink, Rachel D.
2002-01-01
Discussing the ethical issues involved in topics such as cloning and stem cell research in a large introductory biology course is often difficult. Teachers may be wary of presenting material biased by personal beliefs, and students often feel inhibited speaking about moral issues in a large group. Yet, to ignore what is happening "out there"…
Small group gender ratios impact biology class performance and peer evaluations
Cotner, Sehoya
2018-01-01
Women are underrepresented in science, technology, engineering, and mathematics (STEM) disciplines. Evidence suggests the microclimate of the classroom is an important factor influencing female course grades and interest, which encourages retention of women in STEM fields. Here, we test whether the gender composition of small (8–9 person) learning groups impacts course performance, sense of social belonging, and intragroup peer evaluations of intellectual contributions. Across two undergraduate active learning courses in introductory biology, we manipulated the classroom microclimate by varying the gender ratios of learning groups, ranging from 0% female to 100% female. We found that as the percent of women in groups increased, so did overall course performance for all students, regardless of gender. Additionally, women assigned higher peer- evaluations in groups with more women than groups with less women. Our work demonstrates an added benefit of the retention of women in STEM: increased performance for all, and positive peer perceptions for women. PMID:29614091
Assessing Admission Interviews at Residential STEM Schools
ERIC Educational Resources Information Center
Jones, Brent M.
2011-01-01
Seventeen state-sponsored residential math and science schools have been created across the country to direct talented teens toward STEM careers. Admission is selective, based on competitive grades, standardized test scores, and references. Most of the schools also require preadmission interviews. However, selection interviews may be challenged as…
ERIC Educational Resources Information Center
Jensen, Jamie L.; Neeley, Shannon; Hatch, Jordan B.; Piorczynski, Ted
2017-01-01
The United States produces too few Science, Technology, Engineering, and Mathematics (STEM) graduates to meet demand. We investigated scientific reasoning ability as a possible factor in STEM retention. To do this, we classified students in introductory biology courses at a large private university as either declared STEM or non-STEM majors and…
ERIC Educational Resources Information Center
Cetin, Ali; Balta, Nuri
2017-01-01
This qualitative study was designed to introduce STEM (Science, Technology, Engineering, Mathematics) activities to preservice science teachers and identify their views about STEM materials. In this context, a competition was organized with 42 preservice science teachers (13 male- 29 female) who took Instructional Technologies and Material…
Christophel, Eva; Schnotz, Wolfgang
2017-01-01
Women are still underrepresented in engineering courses although some German universities offer separate women’s engineering courses which include virtual STEM learning environments. To outline information about fundamental aspects relevant for virtual STEM learning, one has to reveal which similarities both genders in virtual learning show. Moreover, the question arises as to whether there are in fact differences in the virtual science learning of female and male learners. Working with virtual STEM learning environments requires strategic and arithmetic-operative competences. Even if we assume that female and male learners have similar competences levels, their correlational pattern of competences, motivational variables, and invested effort during virtual STEM learning might differ. If such gender differences in the correlations between cognitive and motivational variables and learning behavior were revealed, it would be possible to finetune study conditions for female students in a separate engineering course and shape virtual STEM learning in a more gender-appropriate manner. That might support an increase in the number of women in engineering courses. To reveal the differences and similarities between female and male learners, a field study was conducted with 56 students (female = 27, male = 29) as part of the Open MINT Labs project (the German term for Open STEM Labs, OML). The participants had to complete a virtual STEM learning environment during their regular science lessons. The data were collected with questionnaires. The results revealed that the strategic competences of both genders were positively correlated with situational interest in the virtual learning environment. This result shows the big impact strategic competences have for both genders regarding their situational interest. In contrast, the correlations between mental effort and competences differed between female and male participants. Especially female learners’ mental effort decreased if they had more strategic competences. On the other hand, female learners’ mental effort increased if they had more arithmetic-operative competences. All in all, female learners seem to be more sensitive to differences in their strategic and arithmetic-operative competences regarding their mental effort. These results imply that the implementation of separate women’s engineering courses could be an interesting approach. PMID:29114234
Christophel, Eva; Schnotz, Wolfgang
2017-01-01
Women are still underrepresented in engineering courses although some German universities offer separate women's engineering courses which include virtual STEM learning environments. To outline information about fundamental aspects relevant for virtual STEM learning, one has to reveal which similarities both genders in virtual learning show. Moreover, the question arises as to whether there are in fact differences in the virtual science learning of female and male learners. Working with virtual STEM learning environments requires strategic and arithmetic-operative competences. Even if we assume that female and male learners have similar competences levels, their correlational pattern of competences, motivational variables, and invested effort during virtual STEM learning might differ. If such gender differences in the correlations between cognitive and motivational variables and learning behavior were revealed, it would be possible to finetune study conditions for female students in a separate engineering course and shape virtual STEM learning in a more gender-appropriate manner. That might support an increase in the number of women in engineering courses. To reveal the differences and similarities between female and male learners, a field study was conducted with 56 students (female = 27, male = 29) as part of the Open MINT Labs project (the German term for Open STEM Labs, OML). The participants had to complete a virtual STEM learning environment during their regular science lessons. The data were collected with questionnaires. The results revealed that the strategic competences of both genders were positively correlated with situational interest in the virtual learning environment. This result shows the big impact strategic competences have for both genders regarding their situational interest. In contrast, the correlations between mental effort and competences differed between female and male participants. Especially female learners' mental effort decreased if they had more strategic competences. On the other hand, female learners' mental effort increased if they had more arithmetic-operative competences. All in all, female learners seem to be more sensitive to differences in their strategic and arithmetic-operative competences regarding their mental effort. These results imply that the implementation of separate women's engineering courses could be an interesting approach.
African-American Female Students and STEM: Principals' Leadership Perspectives
NASA Astrophysics Data System (ADS)
Sampson, Kristin Morgan
As the U.S. becomes more diverse, school leaders, major corporations, and areas of national defense continue to investigate science, technology, engineering and math (STEM) education issues. African-American female students have historically been underrepresented in STEM fields, yet educational leadership research, examining this population is limited. The purpose of this qualitative study was to explore how principals support African-American female students in schools with a STEM program. The Critical Race Theory (CRT)was used as a theoretical framework to highlight the inadequacies to support educational inequalities. The application of the CRT in this study is due to the embedded inequality practices within the educational system, that have resulted in the underrepresentation of African-American female students in STEM. To complement CRT, the transformative leadership model was also utilized to examine the emancipatory leadership practices principals utilized. These theories framed the context of this study by recognizing the need to address how support is actualized to African-American female students in STEM by their principals. A case study approach was an appropriate method to answer the two research questions, 1) How do principals feel they support African-American female students in their STEM programs? and 2) What practices do principals engage in that support underrepresented students in STEM? This approach intended to uncover how a principal leads a multifaceted population of underrepresented students in STEM programs. Two principals of STEM schools, where more than 50% of the population were African-American, were interviewed and observed completing daily operations at community-wide events. The STEM Coordinators and a teacher were also interviewed, and test scores were examined to provide further information about the STEM program, and public records were obtained to analyze the principals' means of communication. I found that principals supported African-American female students by engaging the community, and exhibiting leadership practices that align with the school culture. The results of this research bring voice to principals who lead schools with thriving STEM programs with majority African American female students. Leaders that exhibit transformative leadership practices by acknowledging race, and recognizing obstacles students of color face, support negating color-blinding ideologies that could impede the progress of all students.
Siew, Nyet Moi; Amir, Nazir; Chong, Chin Lu
2015-01-01
Whilst much attention has focused on project-based approaches to teaching Science, Technology, Engineering and Mathematics (STEM) subjects, little has been reported on the views of South-East Asian science teachers on project-based STEM approaches. Such knowledge could provide relevant information for education training institutions on how to influence innovative teaching of STEM subjects in schools. This article reports on a study that investigated the perceptions of 25 pre-service and 21 in-service Malaysian science teachers in adopting an interdisciplinary project-based STEM approach to teaching science. The teachers undertook an eight hour workshop which exposed them to different science-based STEM projects suitable for presenting science content in the Malaysian high school science syllabus. Data on teachers' perceptions were captured through surveys, interviews, open-ended questions and classroom discussion before and at the end of the workshop. Study findings showed that STEM professional development workshops can provide insights into the support required for teachers to adopt innovative, effective, project-based STEM approaches to teaching science in their schools.
STEM learning research through a funds of knowledge lens
NASA Astrophysics Data System (ADS)
Civil, Marta
2016-03-01
This article examines STEM learning as a cultural process with a focus on non-dominant communities. Building on my work in funds of knowledge and mathematics education, I present three vignettes to raise some questions around connections between in-school and out-of-school mathematics. How do we define competence? How do task and environment affect engagement? What is the role of affect, language, and cognition in different settings? These vignettes serve to highlight the complexity of moving across different domains of STEM practice—everyday life, school, and STEM disciplines. Based on findings from occupational interviews I discuss characteristics of learning and engaging in everyday practices and propose several areas for further research, including the nature of everyday STEM practices, valorization of knowledge, language choice, and different forms of engagement.
2017-07-13
Teachers prepare to demonstrate the projects they built for the Rocketry Engineering Design Challenge during the 2017 GE Foundation High School STEM Integration Conference at the Center for Space Education at NASA's Kennedy Space Center. High school teachers from across the country took part in the week-long conference, which is designed to explore effective ways for teachers, schools and districts from across the country to integrate STEM throughout the curriculum. The conference is a partnership between GE Foundation and the National Science Teachers Association.
Anatomy as the Backbone of an Integrated First Year Medical Curriculum: Design and Implementation
Klement, Brenda J.; Paulsen, Douglas F.; Wineski, Lawrence E
2011-01-01
Morehouse School of Medicine chose to restructure its first year medical curriculum in 2005. The anatomy faculty had prior experience in integrating courses, stemming from the successful integration of individual anatomical sciences courses into a single course called Human Morphology. The integration process was expanded to include the other first year basic science courses (Biochemistry, Physiology, and Neurobiology) as we progressed toward an integrated curriculum. A team, consisting of the course directors, a curriculum coordinator and the Associate Dean for Educational and Faculty Affairs, was assembled to build the new curriculum. For the initial phase, the original course titles were retained but the lecture order was reorganized around the Human Morphology topic sequence. The material from all four courses was organized into four sequential units. Other curricular changes included placing laboratories and lectures more consistently in the daily routine, reducing lecture time from 120 to 90 minute blocks, eliminating unnecessary duplication of content, and increasing the amount of independent study time. Examinations were constructed to include questions from all courses on a single test, reducing the number of examination days in each block from three to one. The entire restructuring process took two years to complete, and the revised curriculum was implemented for the students entering in 2007. The outcomes of the restructured curriculum include a reduction in the number of contact hours by 28%, higher or equivalent subject examination average scores, enhanced student satisfaction, and a first year curriculum team better prepared to move forward with future integration. PMID:21538939
ERIC Educational Resources Information Center
Lichtenberger, Eric; George-Jackson, Casey
2013-01-01
This study examined how various individual, family, and school level contextual factors impact the likelihood of planning to major in one of the science, technology, engineering, or mathematics (STEM) fields for high school students. A binary logistic regression model was developed to determine the extent to which each of the covariates helped to…
Interest-Driven Learning among Middle School Youth in an Out-of-School STEM Studio
ERIC Educational Resources Information Center
Evans, Michael A.; Lopez, Megan; Maddox, Donna; Drape, Tiffany; Duke, Rebekah
2014-01-01
The concept of connected learning proposes that youth leverage individual interest and social media to drive learning with an academic focus. To illustrate, we present in-depth case studies of Ryan and Sam, two middle-school-age youth, to document an out-of-school intervention intended to direct toward intentional learning in STEM that taps…
Elementary School Student Burnout Scale for Grades 6-8: A Study of Validity and Reliability
ERIC Educational Resources Information Center
Aypay, Ayse
2011-01-01
The purpose of this study is to develop an "Elementary School Student Burnout Scale for Grades 6-8". The study group included 691 students out of 10 schools in Eskisehir. Both Exploratory Factor Analysis and Confirmatory Factor Analysis were conducted on the data (Burnout stem from school activities, burnout stem from family, feeling of…
ERIC Educational Resources Information Center
Çevik, Mustafa; Özgünay, Esma
2018-01-01
The aim of this study is to explore the views of science, mathematics and information technologies teachers working in secondary schools and administrators of the schools, in which these teachers are working, regarding STEM. This research is based on a survey model in which quantitative data tools were used to directly obtain the opinions of…
ERIC Educational Resources Information Center
Southern Regional Education Board (SREB), 2012
2012-01-01
Schools that give students access to STEM (science, technology, engineering and mathematics) studies are accomplishing several objectives: introducing students to higher-level academic and career studies, expanding project-based learning in the curriculum, enticing students to remain in school until graduation, and preparing students for…
NASA Astrophysics Data System (ADS)
Sparrow, Elena; Spellman, Katie; Fabbri, Cindy; Verbyla, David; Yoshikawa, Kenji; Fochesatto, Gilberto; Comiso, Josefino; Chase, Malinda; Jones, Debra; Bacsujlaky, Mara
2016-04-01
A warming climate has changed the timing of the seasons in the Arctic and elsewhere. Our project will engage learners in the investigation of the shifting seasons' impacts on vegetation, soils, hydrology, infrastructure, livelihoods, and communities and the feedbacks between these factors. Primary and secondary students, pre- and in-service teachers and lifelong learners will use historical and current National Aeronautics and Space Agency (NASA) data, NASA experts, and the Global Learning and Observations to Benefit the Environment (GLOBE) methods to help uncover the surprises from and consequences of earlier springs, warmer and later falls, changing ice cover, later freeze-up and earlier break-up of rivers and lakes. Key objectives are to: 1) provide new opportunities to bring NASA assets to learners of all ages, 2) enhance Science, Technology, Engineering and Mathematics (STEM) learning and understanding of the Earth system, 3) improve STEM instruction, 4) enhance STEM experience of undergraduate students, and 5) increase participation of groups historically underrepresented in STEM such as Native Americans who are also more vulnerable to climate change impacts. Incorporating issues of local importance with national and global implications, into educational experiences will make learning relevant which may be helpful to communities in developing strategies for adaptation. We intend to use NASA assets (e.g. MODIS snow data, NDVI, Cloudsat, and SMAP data), GLOBE methodologies (classic and new ground observations and measurements) to develop and deliver curriculum materials including culturally responsive learning activities, course/modules, professional development workshops, and educational experiences using best practices in pedagogy such as constructivism, inquiry- and place- based, interdisciplinary and systems approach, and cutting-edge technology to reach a variety of target audiences, while improving STEM education. Audiences include K-12 teachers and their students, home-schooled students, pre-service teachers, undergraduate students, and community members as citizen scientists. Those served will include groups historically under-represented in STEM fields (e.g. Alaska Natives). Learners will be engaged using face-to-face, online, and mobile technologies. Formative and summative assessments as well as outcome-based metrics will be developed to evaluate the success of program efforts. To accomplish objectives and leverage efforts, this project brings together subject matter experts, educational professionals, and practitioners in a teaming arrangement as well as leveraged partnerships that include the GLOBE Program, NASA Langley Education Program, NASA Goddard Space Flight Center, International Arctic Research Institute, School of Education, School of Natural Resources and Extension, Geophysical Institute, Institute of Arctic Biology, University of Alaska Fairbanks, Association of Interior Native Educators, Kenaitze Tribe Environmental Education Program, Urban and Rural School Districts, 4-H Program, Goldstream Group, Inc., National Science Foundation (NSF) Alaska Experimental Program to Stimulate Competitive Research, NSF Bonanza Creek Long Term Ecological Research and the NSF Polar Learning and Responding Climate Change Education Partnership.
Motivational decline and recovery in higher education STEM courses
NASA Astrophysics Data System (ADS)
Young, Anna M.; Wendel, Paul J.; Esson, Joan M.; Plank, Kathryn M.
2018-06-01
Decline in student motivation is a concern for STEM education, especially for underrepresented groups in the sciences. Using the Science Motivation Questionnaire II, 41 foundational STEM courses were surveyed at the beginning and end of each semester in an academic year at a small primarily undergraduate university. Significant pre- to post-semester declines were observed in each of five measured motivational factors (Intrinsic motivation, Career motivation, Self determination, Self-efficacy, and Grade motivation), with effect sizes ranging from 0.21 to 0.41. However, in the second semester pre-survey, four motivational factors rebounded, including three returning to initial levels, suggesting that the observed motivational decline is not long-lasting. Analysis suggests that declines are not related to survey fatigue or student demographics, but rather to grades and, in the case of one motivational factor, to academic field. These findings suggest that a refocus on grading practices across STEM fields may influence student motivation and persistence in STEM.
Science Notes: The Clubbers' Guide--School Biology Clubs
ERIC Educational Resources Information Center
Howarth, Sue
2014-01-01
The STEM team at the University of Worcester support STEM activities in schools in Herefordshire and Worcestershire. Part of this help includes suggesting activities for STEM clubs. As the biologist on the team author, Sue Howarth was asked by teachers for ideas to use in biology clubs. This article was prompted by feedback that these ideas might…
ERIC Educational Resources Information Center
Wei, Xin; Yu, Jennifer; Shattuck, Paul; Blackorby, Jose
2017-01-01
Previous studies suggest that individuals with an Autism Spectrum Disorder (ASD) are more likely than other disability groups and the general population to gravitate toward science, technology, engineering, and mathematics (STEM) fields. However, the field knows little about which factors influenced the STEM pipeline between high school and…
ERIC Educational Resources Information Center
Wei, Xin; Yu, Jennifer W.; Shattuck, Paul; Blackorby, Jose
2017-01-01
Previous studies suggest that individuals with an autism spectrum disorder (ASD) are more likely than other disability groups and the general population to gravitate toward science, technology, engineering, and mathematics (STEM) fields. However, the field knows little about which factors influence the STEM pipeline between high school and…
iTeachSTEM: Technological Edgework in High School Teachers' iPad Adoption
ERIC Educational Resources Information Center
Hughes, Joan E.; Ko, Yujung; Boklage, Audrey
2017-01-01
Few studies of iPad-supported teaching have been set in secondary school STEM contexts, and there is limited examination of teacher practice. This study examined how STEM teachers' pedagogical practices took shape when participating in a secondary-level innovation to use iPads to support critical thinking, collaboration, creativity, and…
ERIC Educational Resources Information Center
Brown, Josh; Brown, Ryan; Merrill, Chris
2012-01-01
Science, Technology, Engineering, and Mathematics (STEM) teachers teach multiple concepts that lend themselves to possible collaboration on a daily basis. Much like Metz's (2009) insightful discussion about the importance of science educators creating partnerships in the community "outside the school walls," integrative STEM teaching also requires…
ERIC Educational Resources Information Center
Baker, Courtney K.; Galanti, Terrie M.
2017-01-01
Background: This research highlights a school-university collaboration to pilot a professional development framework for integrating STEM in K-6 mathematics classrooms in a mid-Atlantic suburban school division. Because mathematics within STEM integration is often characterized as the calculations or the data representations in science classrooms,…
The Relationship between Project-Based Learning and Rigor in STEM-Focused High Schools
ERIC Educational Resources Information Center
Edmunds, Julie; Arshavsky, Nina; Glennie, Elizabeth; Charles, Karen; Rice, Olivia
2016-01-01
Project-based learning (PjBL) is an approach often favored in STEM classrooms, yet some studies have shown that teachers struggle to implement it with academic rigor. This paper explores the relationship between PjBL and rigor in the classrooms of ten STEM-oriented high schools. Utilizing three different data sources reflecting three different…
38 CFR 21.122 - School course.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2011-07-01 2011-07-01 false School course. 21.122... Educational and Vocational Training Services § 21.122 School course. (a) Explanation of terms—schools, educational institution, and institution. These terms mean any public or private school, secondary school...
38 CFR 21.122 - School course.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false School course. 21.122... Educational and Vocational Training Services § 21.122 School course. (a) Explanation of terms—schools, educational institution, and institution. These terms mean any public or private school, secondary school...
Library School Education for Medical Librarianship *
Roper, Fred W.
1979-01-01
This paper reviews the current situation in library school education for medical librarianship in the United States and Canada based on information from a questionnaire sent to teachers of courses in medical librarianship in accredited library schools. Since 1939, when the first course devoted entirely to medical librarianship was offered at Columbia University, courses have been introduced into the curricula of at least forty-seven of the ALA-accredited library schools. In 1978 there were seventy courses available through forty-seven library schools. Possibilities for specialization in medical librarianship are examined. Course content is reviewed. Implications of the MLA certification examination for library school courses are explored. PMID:385086
Library school education for medical librarianship.
Roper, F W
1979-10-01
This paper reviews the current situation in library school education for medical librarianship in the United States and Canada based on information from a questionnaire sent to teachers of courses in medical librarianship in accredited library schools. Since 1939, when the first course devoted entirely to medical librarianship was offered at Columbia University, courses have been introduced into the curricula of at least forty-seven of the ALA-accredited library schools. In 1978 there were seventy courses available through forty-seven library schools. Possibilities for specialization in medical librarianship are examined. Course content is reviewed. Implications of the MLA certification examination for library school courses are explored.
Multivariate Assessment of Middle School Students' Interest in STEM Career: a Profile from Turkey
NASA Astrophysics Data System (ADS)
Koyunlu Ünlü, Zeynep; Dökme, İlbilge
2018-05-01
According to a report by the Turkish Industry and Business Association, Turkey will need approximately 1 million individuals to be employed in Science Technology Engineering Mathematics (STEM) fields by 2023, and 31% of this requirement will not be met. For continuous economic development, there is a need to integrate STEM into education in Turkey, which brings the need for research in this area. This study, based on a survey model, aimed to determine the level of interest of a sample of Turkish middle school students in STEM careers on the basis of gender, where they lived, grade levels, their end-of-semester grades, and their parents' educational status and levels of income. The research data was collected using the STEM Career Interest Survey (STEM-CIS) and Personal Information Form, which were applied to 851 middle school students (fifth and eighth graders). The collected data was analyzed with SPSS using Mann Whitney U and Kruskal Wallis H tests. It was found that middle school students' interest in STEM careers differed according to sex, where they lived, and grade levels but it did not differ in relation to their parents' educational status and the levels of income of the family. It is believed that the results obtained in this study reflecting the profile in Turkey will guide educational policy makers, curriculum developers, teachers, pre-service teachers, and researchers about STEM education.
46 CFR 11.307 - Training schools with approved radar observer courses.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Training schools with approved radar observer courses... AND SEAMEN REQUIREMENTS FOR OFFICER ENDORSEMENTS Training Schools with Approved Courses § 11.307 Training schools with approved radar observer courses. The Commanding Officer, National Maritime Center...
46 CFR 11.307 - Training schools with approved radar observer courses.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Training schools with approved radar observer courses... AND SEAMEN REQUIREMENTS FOR OFFICER ENDORSEMENTS Training Schools with Approved Courses § 11.307 Training schools with approved radar observer courses. The Commanding Officer, National Maritime Center...
ERIC Educational Resources Information Center
Iverson, Ellen A. Roscoe
2016-01-01
The purpose of this study was to understand the factors that support the adoption of active learning teaching strategies in undergraduate courses by faculty members, specifically in the STEM disciplines related to geoscience. The focus of the study centered on the context of the department which was identified as a gap in evaluation and…
ERIC Educational Resources Information Center
Reece, Amber J.; Butler, Malcolm B.
2017-01-01
Biology I is a required course for many science, technology, engineering, and mathematics (STEM) majors and is often their first college-level laboratory experience. The replacement of the traditional face-to-face laboratory experience with virtual laboratories could influence students' content knowledge, motivation to learn biology, and overall…
Bridging the gap with a duel-credit Earth Science course
NASA Astrophysics Data System (ADS)
Van Norden, W.
2011-12-01
College-bound high school students rarely have any exposure to the Earth Sciences. Earth Science may be offered to Middle School students. What is offered in High School, however, is usually a watered-down course offered to the weakest students. Meanwhile, our best and brightest students are steered towards biology, chemistry, and physics, what most schools consider the "real sciences". As a direct result, our population is not literate in the Earth Sciences and few students choose to study the Earth Science in college. One way to counteract this trend is to offer a rigorous capstone Earth Science course to High School Juniors and Seniors. Offering a course does not guarantee enrollment, however. Top science students are too busy taking Advanced Placement courses to consider a non-AP course. For that reason, the best way to lure top students into studying Earth Science is to create a duel-credit course, for which students receive both high school and college credit. A collaboration between high school teachers and college professors can result in a quality Earth Science course that bridges the huge gap that now exists between middle school science and college Earth Science. Harvard-Westlake School has successfully offered a duel-credit course with UCLA, and has created a model that can be used by other schools.
Self-efficacy beliefs of underrepresented minorities in science, technology, engineering, and math
NASA Astrophysics Data System (ADS)
Garibay, Guadalupe
The purpose of this study is to understand the self-perceptions, confidence, and self-efficacy of underrepresented minorities (URMs) as they undertake Science, Technology, Engineering and Math (STEM) courses during their K-12 years in urban-public schools. Through the lens of Bandura's self-efficacy theory, this study analyzed self-efficacious behaviors as they revealed themselves in K-12 classrooms. The participants were 11th- and 12th-grade students, their parents, their STEM teachers, and their mentor. The goal was to understand what has been inhibiting the growth of URM representation in STEM majors and in STEM fields. This qualitative study was designed to understand the participants' stories and uncover personal characteristics such as grit, perseverance, and determination in the face of obstacles. The instruments used in this study were interviews, observations, and self-efficacy surveys. The findings revealed that the participants' perceptions of the students' abilities to succeed in a STEM field were all tentatively positive. The participants focused on the many obstacles already overcome by the students and used it as precedent for future success. All the student-participants shared a similar set of adult types in their lives--adults who believed not only in their STEM abilities, but also in their abilities to face obstacles, who were willing to give their time and expertise when necessary, and who shared similar experiences in terms of the lack of educational resources or of economic struggles. It was these shared experiences that strengthened the beliefs that, if the adult participants could succeed in education or succeed in spite of poverty, the student participants could succeed, as well.
Effect of Out-of-School Time STEM Education Programs: Implications for Policy
NASA Astrophysics Data System (ADS)
Talbot, Harry A.
Today's world requires greater STEM knowledge for employment and understanding of emerging issues. A predicted 3 million jobs will be created in STEM-related fields but the percentage of earned STEM-related degrees is diminishing. A lack of progress in STEM education for American students is most pronounced among females who make up 48% of the workforce and 24% of STEM employees. A lack of STEM interest among students is compounded by limited time in the school day for STEM topics, lack of teacher confidence in teaching STEM, and a lack of professional development. This study examines the impact of Out-of-School-Time (OST) programs on knowledge acquisition and attitudes toward STEM topics by gender. Program content was delivered by undergraduate pre-teacher candidates and undergraduate STEM majors, using a structured, hands-on engineering program developed for the National Aeronautics and Space Administration (NASA). Monthly professional development was provided to OST staff by NASA content specialists and instructors from Fresno State University. A repeated-measures design analyzed group differences across three points in time: prior to the start of instruction (pretest), immediately following the end of instruction (posttest), and 60 days following (post posttest). A within-group comparison measured posttest and post-post-test changes for each gender. Program students included in the study participated for at least 12 of the 24 program hours offered and completed all three assessments. The findings showed that STEM knowledge acquisition advanced at similar levels for both genders. These results were consistent with the existing research. Findings related to attitudes toward STEM topics showed that female students did not change over time but males students' interest lessened over time. These findings did not support the current research in this area. Recommendations for practice include developing programs that focus on gender differentiated learning styles, linking pre-service teachers with undergraduate STEM majors in the delivery of OST STEM content and skill development, and creating an environment that links the regular day school programs, OST programs, family, media,and cultural institutions to support STEM education. Universities should also play a leading role in the training of future teachers and STEM-field practitioners.
Perez-Felkner, Lara; McDonald, Sarah-Kathryn; Schneider, Barbara; Grogan, Erin
2012-11-01
Although important strides toward gender parity have been made in several scientific fields, women remain underrepresented in the physical sciences, engineering, mathematics, and computer sciences (PEMCs). This study examines the effects of adolescents' subjective orientations, course taking, and academic performance on the likelihood of majoring in PEMC in college. Results indicate that racial-ethnic and gender underrepresentation in science, technology, engineering, and mathematics (STEM) fields are interrelated and should be examined with attention to the intersecting factors influencing female and racial-ethnic minority adolescents' pathways toward careers in these fields. Among those who major in PEMC fields, women closely resemble men with respect to their subjective orientations. The effects of subjective orientations on women's chances of majoring in PEMC vary by their secondary school mathematics course completion levels. Women who take more mathematics courses are more likely to major in PEMC; however, course taking alone does not attenuate gender disparities in declaring these majors. High mathematics ability (as measured by standardized test scores in the 10th grade) appears to be positively associated with women's selection of social, behavioral, clinical, and health science majors. This association is less robust (and slightly negative) for women in PEMC. While advanced course taking appears to assist women in selecting PEMC majors, women who enter these fields may not be as strong as those who select other, less male-dominated scientific fields.
ERIC Educational Resources Information Center
Roberts, Julia Link
2015-01-01
How do schools with a focus on science, technology, engineering, and mathematics (STEM) fit in with state goals to increase innovation and to boost the economy? This article briefly discusses how educators can encourage creativity and innovation.
STEM integration in middle school career and technical education programs: A Delphi design study
NASA Astrophysics Data System (ADS)
Wu-Rorrer, Billy Ray
The purpose of this qualitative method study with a Delphi research design sought to determine how STEM programs can be effectively integrated into middle school career and technical education programs by local, state, and national educators, administrators, directors, specialists, and curriculum writers. The significance of the study is to provide leaders in CTE with a greater awareness, insight, and strategies about how CTE programs can more effectively integrate academics into career and technical education programs through STEM-related programming. The findings will increase the limited amount of available literature providing best practice strategies for the integration of STEM curriculum into middle school CTE programs. One basic question has guided this research: How can STEM programs be effectively integrated into middle school career and technical education programs? A total of twelve strategies were identified. The strategies of real-world applications and administrative buy-in were the two predominant strategies consistently addressed throughout the review of literature and all three sub-questions in the research study. The Delphi design study consisted of pilot round and three rounds of data collection on barriers, strategies, and professional development for STEM integration in middle school career and technical education programs. Four panelists participated in the pilot round, and 16 panel members not involved in the pilot round participated in the three rounds of questioning and consensus building. In the future, more comprehensive studies can build upon this foundational investigation of middle school CTE programs.
The Impact of the Design Process on Student Self-Efficacy and Content Knowledge
ERIC Educational Resources Information Center
Gess, Ashley J. H.
2015-01-01
The United States of America needs STEM trained workers, STEM faculty and STEM professionals to improve its technical and professional workforce in order to maintain leadership in a global economy. However, American students are not opting to remain in a STEM course of study, and this is especially so for women and minorities. Of the students who…
NASA Astrophysics Data System (ADS)
Rock, B. N.; Hale, S. R.; Graham, K. J.; Hayden, L.; Barber, L.; Perry, C.; Schloss, J.; Sullivan, E.; Yuan, J.; Abebe, E.; Mitchell, L.; Abrams, E.; Gagnon, M.
2008-12-01
Watershed Watch (NSF 0525433) engages early undergraduate students from two-year and four-year colleges in student-driven full inquiry-based instruction in the biogeosciences. Program goals for Watershed Watch are to test if inquiry-rich student-driven projects sufficiently engage undeclared students (or noncommittal STEM majors) to declare a STEM major (or remain with their STEM major). A significant component of this program is an intensive two-week Summer course, in which undeclared freshmen research various aspects of a local watershed. Students develop their own research questions and study design, collect and analyze data, and produce a scientific or an oral poster presentation. The course objectives, curriculum and schedule are presented as a model for dissemination for other institutions and programs seeking to develop inquiry-rich courses designed to attract students into biogeoscience disciplines. Data from self-reported student feedback indicated the most important factors explaining high-levels of student motivation and research excellence in the course are 1) working with committed, energetic, and enthusiastic faculty mentors; and 2) faculty mentors demonstrating high degrees of teamwork and coordination.
ERIC Educational Resources Information Center
Wladis, Claire; Conway, Katherine; Hachey, Alyse C.
2017-01-01
Research has documented lower retention rates in online versus face-to-face courses. However, little research has focused on the impact of course-level characteristics (e.g. elective versus distributional versus major requirements; difficulty level; STEM status) on online course outcomes. Yet, focusing interventions at the course level versus the…
NASA Astrophysics Data System (ADS)
Swanson Hoyle, Kylie Jayne
After-school programs, such as a STEM Career Club, can promote student interest, engagement, and awareness of STEM majors and fields, as well as encourage teachers to become more knowledgeable and competent in STEM areas. In this dissertation study, two schools were selected from a larger NSF-funded project to participate in this study. Teacher- Coaches (T-Coaches) from two rural middle schools in the southeastern United States (U.S.) participated in teacher professional development (TPD) sessions and Professional Learning Community (PLC) meetings to prepare them to lead an after-school STEM Club. The Community of Practice (CoP) framework and Social Cognitive Theory are employed to investigate underlying factors that contribute to teacher interactions and preparations, and differing STEM program outcomes. Data from the Dimensions of Success (DoS) observation tool, the teacher belief interview (TBI), T-Coach participation and attendance at TPD, attendance and audio recordings from PLC meetings, and T-Coach card sorts were analyzed over approximately 6 meetings for 5 months. Findings are presented in two chapters. In Chapter Four, a comparative case study of the interactions of the teachers at two participating middle schools is analyzed. Results indicate that for each case, the club's T-Coaches interacted positively to prepare for club meetings and have a well-functioning CoP within their PLC. The first case (Northern Middle School) interacted in ways that aligned with the CoP framework (enterprise and repertoire), which led them to achieve, on average, desirable ratings on 7 of the 12 DoS dimensions. However, the other case (Southern Middle School), the T-Coaches interacted in ways that demonstrated more equal levels of enterprise, mutuality, and repertoire; this PLC had higher DoS ratings during the STEM Clubs in all dimensions (11/12 met desirable ratings). These findings suggest that high levels of all of the social learning characteristics within PLCs can support more exemplary STEM Club implementation. In Chapter Five, results from the two schools of teachers' beliefs and practices indicate that for STEM program success, the whole of the team is better than the sum of its parts. Since individuals' values on each team aligned with different DoS dimensions, it was more likely that each dimension would be represented during STEM Clubs. Findings suggest that it was necessary for two T-Coaches who valued a certain dimension to ensure a DoS dimension would be met on the DoS rating. However, it was not sufficient that T-Coaches only valued a certain dimension. The dimension was not met if the T-Coaches did not have the training and preparation to meaningfully act on their beliefs. Informed by factors from Bandura's Social Cognitive Theory, these T-Coaches carried out different behaviors at the STEM Clubs depending on their personal beliefs and values, and the environment. Five TPD participation scenarios, ranging from full to no TPD preparation, identified from the findings seemed to predict the quality of the STEM Club, based on DoS scores. The following conclusions can be drawn: 1) Professional learning community meetings aided in the development of T-Coaches' community of practice and preparation for STEM clubs; 2) A CoP with high levels of all of the social learning characteristics (enterprise, mutuality, and repertoire) led to more desirable club outcomes than a team with lower levels in any of these areas; 3) At least two people who have developed the content knowledge and relevant skills and who value club success were needed at club meetings to ensure STEM Club success; 4) Teacher-Coaches became more prepared to lead successful STEM Clubs through engaged attendance at TPD and PLC meetings; 5) Interdisciplinary teacher teams, including non-STEM teachers, can successfully lead STEM clubs if the individuals are able to learn the content/skills.
Special Schools and Other Options for Gifted STEM Students
ERIC Educational Resources Information Center
Olszewski-Kubilius, Paula
2010-01-01
Special schools focused on the Science, Technology, Engineering, and Mathematics (STEM) disciplines are one of the best options for gifted students with talent and interest in these areas. Such schools offer benefits, such as unique opportunities for research and mentoring, that other options cannot. In this article, I compare the advantages and…
Challenges for a New Generation of STEM Students
ERIC Educational Resources Information Center
Abeysekera, Krishani; Perkins-Hall, Sharon; Davari, Sadegh; Hackler, Amanda Smith
2017-01-01
STEM competitions are fairly widespread in middle schools and high schools, but do not commonly occur at the university level. We have developed a repeatable model for a one-day competition in which high school, community college and university students can build confidence in their own critical thinking abilities and develop enthusiasm for…
Understanding Accountability from a Microanalysis of Power Dynamics in a Specialized STEM School
ERIC Educational Resources Information Center
Teo, Tang Wee; Osborne, Margery
2014-01-01
The central thesis of this article is that conceptualizations of accountability systems need to be more encompassing to accommodate the current diversity of school choice. This article examines an emerging type of school that specializes in advanced STEM (science, technology, engineering, and mathematics) curriculum for gifted and academically…
Is Science Me? Exploring Middle School Students' STE-M Career Aspirations
ERIC Educational Resources Information Center
Aschbacher, Pamela R.; Ing, Marsha; Tsai, Sherry M.
2014-01-01
This study explores middle school students' aspirations in science, technology, engineering, and medical (STE-M) careers by analyzing survey data during their eighth and ninth grade years from an ethnically and economically diverse sample of Southern California urban and suburban public school students (n = 493). Students were classified based on…
NASA Astrophysics Data System (ADS)
Ogston, A. S.; Eidam, E.; Webster, K. L.; Hale, R. P.
2016-02-01
Experiential learning is becoming well-rooted in undergraduate curriculum as a means of stimulating interest in STEM fields, and of preparing students for future careers in scientific research and communication. To further these goals in coastal sciences, an intensive, research-focused course was developed at the UW Friday Harbor Labs. The course revolved around an active NSF-funded research project concerning the highly publicized Elwha River Restoration project. Between 2008 and 2014, four groups of research "apprentices" spent their academic quarter in residence at a small, coastal marine lab in a learning environment that integrated interdisciplinary lectures, workshops on data analysis and laboratory methods, and the research process from proposal to oceanographic research cruise to publication. This environment helped students gain important skills in fieldwork planning and execution, laboratory and digital data analyses, and manuscript preparation from start to finish—all while elevating their knowledge of integrated earth science topics related to a coastal restoration project. Students developed their own research proposals and pursued their individual interests within the overall research topic, thereby expanding the overall breadth of the NSF-funded research program. The topics of student interest were often beyond the researcher's expertise, which ultimately led to more interdisciplinary findings beyond the quarter-long class. This also provided opportunities for student creativity and leadership, and for collaboration with fellow course participants and with students from many other disciplines in residence at the marine lab. Tracking the outcomes of the diverse student group undertaking this program indicates that these undergraduate (and post-bac) students are generally attending graduate school at a high rate, and launching careers in education, coastal management, and other STEM fields.
ERIC Educational Resources Information Center
Kenney, Meghan
2013-01-01
Legislative changes and discussions about the United States falling further and further behind other nations in science, technology, engineering, and math (STEM) achievement are growing. As they grow, STEM instruction in elementary school has earned its place as a national area of interest in education. In the case of Ivory School District,…
ERIC Educational Resources Information Center
Rider-Bertrand, Joey H.
2017-01-01
At the start of the 21st century, STEM education was a new priority in many schools as the focus shifted from separate disciplines to integrative STEM education. Unfortunately, there was limited research to offer guidance to practitioners (Brown, 2012; Honey, Pearson & Schweingruber, 2014). This qualitative, multiple case study explored the…
ERIC Educational Resources Information Center
Graves, Leila A.; Hughes, Harrison; Balgopal, Meena M.
2016-01-01
School gardens are ideal places for students to ask and answer questions about science. This paper describes a case study of two 3rd grade teachers and two STEM coordinators who were recruited to implement and evaluate a horticultural-based curriculum developed for this study. Informed by the Teacher-Centered Systemic Reform model we conducted a…
ERIC Educational Resources Information Center
Cohen, Jonathan D.; Renken, Maggie; Calandra, Brendan
2017-01-01
As part of the design and development of an informal learning environment meant to increase urban middle school students' interest in technology-focused STEM careers, and to support their twenty-first century skill development, researchers developed and administered the ICT/Twenty-First Century Skills Questionnaire. Both STEM-ICT professionals and…
STEM for Non-STEM Majors: Enhancing Science Literacy in Large Classes
ERIC Educational Resources Information Center
Jin, Guang; Bierma, Tom
2013-01-01
This study evaluated a strategy using "clickers," POGIL (process oriented guided inquiry learning), and a focused science literacy orientation in an applied science course for non-STEM undergraduates taught in large classes. The effectiveness of these interventions in improving the science literacy of students was evaluated using a…
Documenting Instructional Practices in Large Introductory STEM Lecture Courses
ERIC Educational Resources Information Center
Vu, Viet Quoc
2017-01-01
STEM education reform in higher education is framed around the need to improve student learning outcomes, increase student retention, and increase the number of underrepresented minorities and female students in STEM fields, all of which would ultimately contribute to America's competitiveness and prosperity. To achieve these goals, education…
ERIC Educational Resources Information Center
Van Horne, Sam; Henze, Marisa; Schuh, Kathy L.; Colvin, Carolyn; Russell, Jae-Eun
2017-01-01
E-textbooks are more prevalent in college courses, but much recent research still shows that students prefer paper textbooks and have difficulty regulating their learning with digital course materials. Still, college instructors--especially in lower-division STEM courses--often adopt digital course materials with e-textbooks that include a variety…
NASA Astrophysics Data System (ADS)
Price, Kasey Marie
Women have been underrepresented in the STEM fields since the 1650's to today (Hunter, 2005). This study examined the extracurricular participation of undergraduate women, in Fall 2009, using both quantitative and qualitative methods, who were majoring in at least one (1) of the 49 STEM majors at Southeastern State University participated in STEM extracurricular programs and if any specific program contributed to success more than other programs. A second question was whether participation in an extracurricular program(s) influenced their success. Women who were older, had been enrolled more semesters, had more credit hours, and had families with higher incomes were more likely to be involved in STEM only or STEM and Non-STEM extracurricular activities. Additionally, students who completed a high level of high school math, had a higher high school GPA, had received a regular high school diploma, and who had mothers with a higher level of education were also more likely to be involved in STEM only or STEM and Non-STEM extracurricular activities. Students who had been enrolled in college seven (7) or more semesters, who had selected their current major within their first year of college, were more likely to be involved in STEM extracurricular activities. Students believe that their STEM extracurricular involvement helps them to be successful because it provided them with student relationships, opportunity for the future, advising relationships, mentorship, and exploration of the campus and larger community. This study may be useful for student affairs professionals and academics who take an active role in serving as advisors, mentors, and providers of STEM-related opportunities.
Student’s STEM Literacy in Biotechnology Learning at Junior High School
NASA Astrophysics Data System (ADS)
Nurlaely, N.; Permanasari, A.; Riandi, R.
2017-09-01
A considerable study to student’s STEM literacy achievement profile, especially in biotechnology learning, has been conducted to make the innovation of the STEM-based learning. The study aims to find out the STEM literacy. The sample is taken through purposive sampling technique to 45 students of 9th grade of a junior high school in Tasikmalaya district. The instruments are multiple choice questions. Data are analysed by calculating mean score of students’ STEM literacy achievement. The results show that student’s STEM literacy achievement was low. Science literacy aspect was the lowest, while mathematical literacy gained better than another aspect. The low achievement of students’ STEM literacy was because of learning activities that have not been able to integrate science, technology, engineering, and mathematics in science learning. The literacy profile indicates the importance of applying STEM approach to science learning, and it is recommended to improve students’ STEM literacy achievement.
Salem, George A; Selby, George B
2017-01-01
Inflammatory bowel disease (IBD) is a complex, relapsing and remitting, disease characterized by an exaggerated immune response in a susceptible host. The symptoms and complications of the disease can be debilitating. Advances in medical treatment in the last decade changed the course of the disease in many patients. Despite the use of novel agents for controlling disease, a proportion of patients' disease courses continue to be either refractory, or become resistant, to available therapeutic options. Stem-cell therapy, with hematopoietic stem cells (HSCs) or mesenchymal stem cells (MSCs), is a promising modality of treatment for severe refractory cases, mainly Crohn's disease (CD) patients. HSCs have the ability to migrate to damaged tissue, which provides them with further properties to differentiate to epithelial or immune-modulatory cells to restore normal mucosal tissue and integrity. MSCs therapy is a promising model for patients with perianal CD due to their immunosuppressive properties, ability to migrate to areas of injury, and demonstration of colonic healing, including fistulizing tracts. The results from ongoing clinical trials will provide a valuable understanding of the future of stem-cell therapy as a treatment option in refractory cases of IBD, a disease whose pathogenesis remains unknown, and is notoriously difficult to treat.
A survey of resuscitation training in Canadian undergraduate medical programs.
Goldstein, D H; Beckwith, R K
1991-07-01
To establish a national profile of undergraduate training in resuscitation at Canadian medical schools, to compare the resuscitation training programs of the schools and to determine the cost of teaching seven resuscitation courses. Mail survey in 1989 and follow-up telephone interviews in 1991 to update and verify the information. The undergraduate deans of the 16 Canadian medical schools. The mail survey asked five questions: (a) Is completion of a standard first aid or cardiopulmonary resuscitation (CPR) course a requirement for admission to medical school? (b) Are these courses and those in basic and advanced cardiac, trauma and neurologic life support for children and adults provided to undergraduate students? (c) During which undergraduate year are these courses offered? (d) Is their successful completion required for graduation? and (e) Who funds the training courses? The medical schools placed emphasis on the seven courses differently. More than half the schools required the completion of courses before admission or taught some courses but did not require the completion of the courses for graduation. On average, fewer than three of the seven courses were taught, and the completion of fewer than two was required for graduation. About half of the courses were funded by the universities. The annual projected maximum cost of teaching the seven courses was $1790 per medical student. The seven resuscitation courses have not been fully implemented at the undergraduate level in Canadian medical schools.
Success of students in a college physics course with and without experiencing a high school course
NASA Astrophysics Data System (ADS)
Yager, Robert E.; Krajcik, Joseph S.
High school students with high ability were enrolled in a standard college physics course for each of two summers with the same professor, same course outline, same textbook, same laboratories, and the same examinations. Half of each group had completed a high school physics course; half had not. Dormitory counselors were available for assistance and support. In addition, tutors were available in the laboratories to provide any help necessary with interpretation of lectures and performances in the laboratory, and with mathematical computation. Pre- and posttest measures concerning course content and attitude were given. After the eight-week summer instruction, the students who had not completed high school physics performed as well on the final course examination; there were no differences with respect to course grade or attitude toward physics. The group that had not completed high school physics used the tutors provided far more frequently than did students who had completed the high school course. When high-ability students are enrolled in college physics with tutors made available for needed assistance, there appears to be no advantage for students to complete the standard high school physics course.
The Efficacy of a Student Organization for STEM Students
ERIC Educational Resources Information Center
Mwaikinda, Sekela R.; Aruguete, Mara S.
2016-01-01
Our study tests the effectiveness of STEM Alliance, a student organization aimed at increasing academic and social support for students pursuing STEM majors. STEM Alliance offered weekly, extracurricular activities aimed at preparing students for graduate school and STEM careers. Students attending STEM Alliance events showed greater academic and…
Spirituality and health in the curricula of medical schools in Brazil.
Lucchetti, Giancarlo; Lucchetti, Alessandra Lamas Granero; Espinha, Daniele Corcioli Mendes; de Oliveira, Leandro Romani; Leite, José Roberto; Koenig, Harold G
2012-08-18
According to recent surveys, 59% of British medical schools and 90% of US medical schools have courses or content on spirituality and health (S/H). There is little research, however, on the teaching of S/H in medical schools in other countries, such as those in Latin America, Asia, Australia and Africa. The present study seeks to investigate the current status of teaching on S/H in Brazilian medical schools. All medical schools in Brazil (private and public) were selected for evaluation, were contacted by email and phone, and were administered a questionnaire. The questionnaire, sent by e-mail, asked medical school directors/deans about any S/H courses that were taught, details about those courses, S/H lectures or seminars, importance of teaching this subject for medical school directors, and medical schools characteristics. A total of 86 out of 180 (47.7%) medical schools responded. Results indicated that 10.4% of Brazilian Medical Schools have a dedicated S/H courses and 40.5% have courses or content on spirituality and health. Only two medical schools have S/H courses that involve hands-on training and three schools have S/H courses that teach how to conduct a spiritual history. The majority of medical directors (54%) believe that S/H is important to teach in their schools. Few Brazilian medical schools have courses dealing specifically with S/H and less than half provide some form of teaching on the subject. Unfortunately, there is no standard curriculum on S/H. Nevertheless, the majority of medical directors believe this issue is an important subject that should be taught.
Engaging High School Students in Investigative STEM Activities Based on Field Research
NASA Astrophysics Data System (ADS)
Stevens, J.; Sheriff, M. M.; Washington, D. S.; Putnam, A. E.; Strand, P.; Radue, M. J.
2017-12-01
The lead author, an Environmental Science teacher at Gary Comer High School (GCHS), a public charter on the South Side of Chicago, accompanied two students over the course of two summers to conduct field research in remote mountain ranges of interior Asia. The expeditions were funded by the National Science Foundation and orchestrated collaboratively with PI Putnam with the purposes of bringing along high school students and teachers (1) to introduce students from urban areas to practical Earth Science and (2) to bolster the Environmental Science curriculum at GCHS by providing real world events to relate to classroom learning. During the first field trip, a student from GCHS and the lead author traveled to western Mongolia to participate in collecting samples for cosmogenic-nuclide dating of glacial landforms. The student performed all parts of sample collection and used the data to create a poster analyzing the rate of recession of the Potanin Glacier. She went on to present her findings at the AGU Fall Meeting 2016. At GCHS, she assisted the teacher in lessons about climate change. Next year she will be attending the University of Vermont to pursue a major in a STEM field. The second student traveled to the Tibetan Plateau in China and also participated fully in sampling activities. She plans on presenting her project on creating 3D models of sample boulders at the AGU Meeting in 2017. She will present her findings to the rest of the student body at GCHS, assist with pertinent Environmental Science lessons for Freshmen, and explain her experience at the Gary Comer Middle School. The lead author faced several restrictions in the classroom due to standardized testing requirements, leading to more focus on testing skills rather than investigative learning. Next year the focus will switch from ACT to SAT standards, allowing more freedom to pursue investigative lessons. The success of adding information on the field experience will be assessed at the end of the 2017-2018 school year.
ERIC Educational Resources Information Center
National Forum on Education Statistics, 2011
2011-01-01
In this handbook, "Prior-to-Secondary School Course Classification System: School Codes for the Exchange of Data" (SCED), the National Center for Education Statistics (NCES) and the National Forum on Education Statistics have extended the existing secondary course classification system with codes and descriptions for courses offered at…
ERIC Educational Resources Information Center
Castleman, Benjamin L.; Long, Bridget Terry; Mabel, Zachary
2018-01-01
Although workers in science, technology, engineering, and math (STEM) fields earn above-average wages, the number of college graduates prepared for STEM jobs lags behind employer demand. A key question is how to recruit and retain college students in STEM majors. We offer new evidence on the role of financial aid in supporting STEM attainment.…
The Function of Neuroendocrine Cells in Prostate Cancer
2015-06-20
Comprehensive Cancer Center and 4Broad Center for Regenerative Medicine and Stem Cell Biology, David Geffen School of Medicine at UCLA, 10833 Le Conte... Regenerative Medicine and Stem Cell Research, UCLA David Geffen School of Medicine , Los Angeles, California. 2Department of Urology, The First...progress in prostate cancer. Soochou University Annual Translational Medicine Meeting, Suzhou, China, November 2013 21. Prostate Cancer Stem Cells
NASA Astrophysics Data System (ADS)
French, Debbie Ann
In this dissertation, the researcher describes authentic scientific inquiry (ASI) within three stages of teacher preparation and development: a1) undergraduate STEM courses, b2) preservice secondary science education methods courses, and c3) inservice teacher professional development (PD). Incorporating (ASI)-- pedagogy closely modeling the research practices of scientists--is at the forefront of national science, technology, engineering, and mathematics (STEM) initiatives and the Next Generation Science Standards (NGSS). In the first of three research articles, 42 students participated in an introductory astronomy course which employed inquiry-based pedagogy. The researcher administered the Test Of Astronomy STandards (TOAST) pre/post instruction. In the second article, 56 preservice secondary science teachers completed ideal lesson plan scenarios before and after 80 hours of methods instruction. The researcher scored the scenarios using a rubrirubric developedc according to the NGSS Science and Engineering Practices, and analyzed the components from the scenarios. The third article surveyed 63 inservice STEM teachers with prior research and industry experience. The researcher highlights teacher ASI perspectives. Overall, teachers incorporated opportunities for K-20 students to use scientific instrumentation and technology to collect and analyze data, work collaboratively, and develop evidence-based conclusions. Few teachers provided opportunities for students to ask scientific questions or disseminate results, suggesting the need that teachers (at all levels) need scaffolded instruction in these areas. The researcher argues that while ASI and STEM PDs are effective for teachers, developing similar interest, on-going communities of practice may provide support for teacher to implement the ASI practices in their classrooms.
NASA Astrophysics Data System (ADS)
Tazaz, A.; Wilson, R. M.; Schoen, R.; Blumsack, S.; King, L.; Dyehouse, M.
2013-12-01
'The Integrating STEM Project' engaged 6-8 grade teachers through activities incorporating mathematics, science and technology incorporating both Next Generation Science Standards (NGSS) and Common Core State Standards-Mathematics (CCSS-Math). A group of researchers from Oceanography, Mathematics, and Education set out to provide middle school teachers with a 2 year intensive STEM integration professional development with a focus on environmental topics and to monitor the achievement outcomes in their students. Over the course of 2 years the researchers created challenging professional development sessions to expand teacher knowledge and teachers were tasked to transform the information gained during the professional development sessions for classroom use. One lesson resource kit presented to the teachers, which was directly applicable to the classroom, included Model Eliciting Activities (MEA's) to explore the positive and negative effects land development has on climate and the environment, and how land development impacts storm water management. MEA's were developed to encourage students to create models to solve complex problems and to allow teachers to investigate students thinking. MEA's are a great curriculum technique used in engineering fields to help engage students by providing hands on activities using real world data and problems. We wish to present the Storm Water Management Resource toolkit including the MEA and present the outcomes observed from student engagement in this activity.
Teaching School Finance Online: Promise or Problems?
ERIC Educational Resources Information Center
DeLuca, Barbara M.; Wiesenauer, Kathy; Hinshaw, Steven
2002-01-01
Uses course evaluations and email messages between students and instructors to investigate opinions of online school-finance courses compared with other online courses in a principal-preparation program. Recommends more opportunity for student discussion in future online school-finance courses. (PKP)
Australian Enrolment Trends in Technology and Engineering: Putting the T and E Back into School STEM
ERIC Educational Resources Information Center
Kennedy, JohnPaul; Quinn, Frances; Lyons, Terry
2018-01-01
There has been much political and educational focus on Science, Technology, Engineering and Mathematics (STEM) in Australian schools in recent years and while there has been significant research examining science and mathematics enrolments in senior high school, little is known about the corresponding trends in Technologies and engineering.…
The Teachers' Role in Developing, Opening, and Nurturing an Inclusive STEM-Focused School
ERIC Educational Resources Information Center
Slavit, David; Nelson, Tamara Holmlund; Lesseig, Kristin
2016-01-01
Background: This study is about teachers' collective activity during the development and initial year of a science, technology, engineering, and mathematics (STEM)-focused school in the USA. The target school of this study was inclusive, as it sought admission of students from varying backgrounds and levels of ability. Drawing from narrative…
An Assessment of Factors Relating to High School Students' Science Self-Efficacy
ERIC Educational Resources Information Center
Gibson, Jakeisha Jamice
2017-01-01
This mixed-methods case study examined two out-of-school (OST) Science, Technology, Engineering and Math (STEM) programs at a science-oriented high school on students' Self-Efficacy. Because STEM is a key for future innovation and economic growth, Americans have been developing a variety of approaches to increase student interest in science within…
Opinions of Secondary School Science and Mathematics Teachers on STEM Education
ERIC Educational Resources Information Center
Yildirim, Bekir; Türk, Cumhur
2018-01-01
In this study, the opinions of middle school science teachers and mathematics teachers towards STEM education were examined. The research was carried out for 30 hours with 28 middle school science and mathematics teachers who were working in Istanbul during the spring semester of 2016-2017 academic year. 75% of these teachers are female teachers…
ERIC Educational Resources Information Center
Jen, Enyi; Moon, Sidney M.
2015-01-01
This retrospective qualitative study was designed to investigate perceptions of the learning experiences of STEM (science, technology, engineering, and mathematics)-talented male students who were in a self-contained, single-gender, gifted program in a selective high school in Taiwan. Twenty-four graduates of the high school's gifted program…
Business Partnerships to Advance STEM Education: A Model of Success for the Nation
ERIC Educational Resources Information Center
Diaz-Rubio, Ivette
2013-01-01
In order to best prepare the U.S. workforce, schools need to focus on science, technology, engineering, and mathematics (STEM) education. However, given the current educational climate of reduced school funding, high teacher turnover, and increasing student diversity, the public school system simply cannot do this alone. This is where businesses…
STEM and the Arts and Humanities: Debunking a False Dichotomy
ERIC Educational Resources Information Center
Hartzell, Richard
2017-01-01
The false dichotomy that suggests schools must choose between STEM (or STEAM) and the humanities would not merit the time it takes to write an article if not for a dangerous crescendo of backlash clouding the senses of boards and administrations around the independent school world. In this article, the author, an upper school principal of Taipei…
NASA Astrophysics Data System (ADS)
Watermeyer, Richard; Morton, Pat; Collins, Jill
2016-06-01
This paper reports on teacher attitudes to changes in the provision of careers guidance in the U.K., particularly as it relates to Science, Technology, Engineering and Mathematics (STEM). It draws on survey data of n = 94 secondary-school teachers operating in STEM domains and their attitudes towards a U.K. and devolved policy of internalising careers guidance within schools. The survey presents a mixed message of teachers recognising the significance of their unique position in providing learners with careers guidance yet concern that their 'relational proximity' to students and 'informational distance' from higher education and STEM industry may produce bias and misinformation that is harmful to their educational and occupational futures.
46 CFR 310.3 - Schools and courses.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 8 2011-10-01 2011-10-01 false Schools and courses. 310.3 Section 310.3 Shipping... Minimum Standards for State, Territorial or Regional Maritime Academies and Colleges § 310.3 Schools and courses. (a) Schools with Federal aid. The following schools are presently operating with Federal aid...
NASA Astrophysics Data System (ADS)
Ha`o, Celeste
2015-08-01
This paper presents the development of "MANU 'Imiloa, Modern & Ancient ways of Navigating our Universe." Given the large bodies of research indicating that indigenous peoples are vastly underrepresented in STEM and particularly in astronomy, and that the middle school years serve as a bottleneck in the STEM pipeline, innovative approaches to engaging indigenous populations at the middle school level should be of great interest to the international astronomy education community. Manu `Imiloa is an integrated astronomy and STEM curriculum project, based in the indigenous Hawaiian culture, that serves as a place-based model of how astronomy and STEM can be meaningfully taught to middle school (age 12-15) students. Fusing the culture-based instructional model of Moenahā, with the reemerging cultural practice of Polynesian navigation, Manu `Imiloa breathes life into astronomy through the art of Polynesian wayfinding.
NASA Astrophysics Data System (ADS)
Degennaro, Donna; Brown, Tiffany L.
2009-03-01
The design of educational experiences is often mediated by historical, institutional, and social conceptions. Although these influences can initially shape the way that educational opportunities are created and implemented, this preliminary form has the potential to reorganize. In this paper, we illustrate how history shows its presence in the ways that instructors systematically arrange a technology course for urban youth. This original approach to the course inhibits youth participation. Incrementally, however, the cultural enactments of instructors and students lead to a reorganization of activity. Through highlighting history and examining the intersection of culture, we provide insight into the ways in which adolescents of color become successfully engaged in learning technology. We focus our study by asking how co-existence and the dialectic of structure and agency play a role as youth develop an identity as a technology user. Further, this emergent learning design affords outsiders a unique view of the educational and contextual experiences of these youth. Our illustration of how history, enacted culture and identity mediate the emergent learning design stems from a grounded theory approach to analyzing video, interview and artifact data in this after-school technology course.