Sample records for school supercomputing challenge

  1. The Sky's the Limit When Super Students Meet Supercomputers.

    ERIC Educational Resources Information Center

    Trotter, Andrew

    1991-01-01

    In a few select high schools in the U.S., supercomputers are allowing talented students to attempt sophisticated research projects using simultaneous simulations of nature, culture, and technology not achievable by ordinary microcomputers. Schools can get their students online by entering contests and seeking grants and partnerships with…

  2. Full speed ahead for software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, A.

    1986-03-10

    Supercomputing software is moving into high gear, spurred by the rapid spread of supercomputers into new applications. The critical challenge is how to develop tools that will make it easier for programmers to write applications that take advantage of vectorizing in the classical supercomputer and the parallelism that is emerging in supercomputers and minisupercomputers. Writing parallel software is a challenge that every programmer must face because parallel architectures are springing up across the range of computing. Cray is developing a host of tools for programmers. Tools to support multitasking (in supercomputer parlance, multitasking means dividing up a single program tomore » run on multiple processors) are high on Cray's agenda. On tap for multitasking is Premult, dubbed a microtasking tool. As a preprocessor for Cray's CFT77 FORTRAN compiler, Premult will provide fine-grain multitasking.« less

  3. US Department of Energy High School Student Supercomputing Honors Program: A follow-up assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    The US DOE High School Student Supercomputing Honors Program was designed to recognize high school students with superior skills in mathematics and computer science and to provide them with formal training and experience with advanced computer equipment. This document reports on the participants who attended the first such program, which was held at the National Magnetic Fusion Energy Computer Center at the Lawrence Livermore National Laboratory (LLNL) during August 1985.

  4. The ChemViz Project: Using a Supercomputer To Illustrate Abstract Concepts in Chemistry.

    ERIC Educational Resources Information Center

    Beckwith, E. Kenneth; Nelson, Christopher

    1998-01-01

    Describes the Chemistry Visualization (ChemViz) Project, a Web venture maintained by the University of Illinois National Center for Supercomputing Applications (NCSA) that enables high school students to use computational chemistry as a technique for understanding abstract concepts. Discusses the evolution of computational chemistry and provides a…

  5. Supercomputations and big-data analysis in strong-field ultrafast optical physics: filamentation of high-peak-power ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Voronin, A. A.; Panchenko, V. Ya; Zheltikov, A. M.

    2016-06-01

    High-intensity ultrashort laser pulses propagating in gas media or in condensed matter undergo complex nonlinear spatiotemporal evolution where temporal transformations of optical field waveforms are strongly coupled to an intricate beam dynamics and ultrafast field-induced ionization processes. At the level of laser peak powers orders of magnitude above the critical power of self-focusing, the beam exhibits modulation instabilities, producing random field hot spots and breaking up into multiple noise-seeded filaments. This problem is described by a (3  +  1)-dimensional nonlinear field evolution equation, which needs to be solved jointly with the equation for ultrafast ionization of a medium. Analysis of this problem, which is equivalent to solving a billion-dimensional evolution problem, is only possible by means of supercomputer simulations augmented with coordinated big-data processing of large volumes of information acquired through theory-guiding experiments and supercomputations. Here, we review the main challenges of supercomputations and big-data processing encountered in strong-field ultrafast optical physics and discuss strategies to confront these challenges.

  6. ParaBTM: A Parallel Processing Framework for Biomedical Text Mining on Supercomputers.

    PubMed

    Xing, Yuting; Wu, Chengkun; Yang, Xi; Wang, Wei; Zhu, En; Yin, Jianping

    2018-04-27

    A prevailing way of extracting valuable information from biomedical literature is to apply text mining methods on unstructured texts. However, the massive amount of literature that needs to be analyzed poses a big data challenge to the processing efficiency of text mining. In this paper, we address this challenge by introducing parallel processing on a supercomputer. We developed paraBTM, a runnable framework that enables parallel text mining on the Tianhe-2 supercomputer. It employs a low-cost yet effective load balancing strategy to maximize the efficiency of parallel processing. We evaluated the performance of paraBTM on several datasets, utilizing three types of named entity recognition tasks as demonstration. Results show that, in most cases, the processing efficiency can be greatly improved with parallel processing, and the proposed load balancing strategy is simple and effective. In addition, our framework can be readily applied to other tasks of biomedical text mining besides NER.

  7. Integration of Panda Workload Management System with supercomputers

    NASA Astrophysics Data System (ADS)

    De, K.; Jha, S.; Klimentov, A.; Maeno, T.; Mashinistov, R.; Nilsson, P.; Novikov, A.; Oleynik, D.; Panitkin, S.; Poyda, A.; Read, K. F.; Ryabinkin, E.; Teslyuk, A.; Velikhov, V.; Wells, J. C.; Wenaus, T.

    2016-09-01

    The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System for managing the workflow for all data processing on over 140 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 250000 cores with a peak performance of 0.3+ petaFLOPS, next LHC data taking runs will require more resources than Grid computing can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, Europe and Russia (in particular with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF), Supercomputer at the National Research Center "Kurchatov Institute", IT4 in Ostrava, and others). The current approach utilizes a modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run singlethreaded workloads in parallel on Titan's multi-core worker nodes. This implementation was tested with a variety of Monte-Carlo workloads on several supercomputing platforms. We will present our current accomplishments in running PanDA WMS at supercomputers and demonstrate our ability to use PanDA as a portal independent of the computing facility's infrastructure for High Energy and Nuclear Physics, as well as other data-intensive science applications, such as bioinformatics and astro-particle physics.

  8. Integration Of PanDA Workload Management System With Supercomputers for ATLAS and Data Intensive Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De, K; Jha, S; Klimentov, A

    2016-01-01

    The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Managementmore » System for managing the workflow for all data processing on over 150 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 250,000 cores with a peak performance of 0.3 petaFLOPS, LHC data taking runs require more resources than Grid computing can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, Europe and Russia (in particular with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF), MIRA supercomputer at Argonne Leadership Computing Facilities (ALCF), Supercomputer at the National Research Center Kurchatov Institute , IT4 in Ostrava and others). Current approach utilizes modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on LCFs multi-core worker nodes. This implementation was tested with a variety of Monte-Carlo workloads on several supercomputing platforms for ALICE and ATLAS experiments and it is in full production for the ATLAS experiment since September 2015. We will present our current accomplishments with running PanDA WMS at supercomputers and demonstrate our ability to use PanDA as a portal independent of the computing facilities infrastructure for High Energy and Nuclear Physics as well as other data-intensive science applications, such as bioinformatics and astro-particle physics.« less

  9. Code IN Exhibits - Supercomputing 2000

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; McCann, Karen M.; Biswas, Rupak; VanderWijngaart, Rob F.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    The creation of parameter study suites has recently become a more challenging problem as the parameter studies have become multi-tiered and the computational environment has become a supercomputer grid. The parameter spaces are vast, the individual problem sizes are getting larger, and researchers are seeking to combine several successive stages of parameterization and computation. Simultaneously, grid-based computing offers immense resource opportunities but at the expense of great difficulty of use. We present ILab, an advanced graphical user interface approach to this problem. Our novel strategy stresses intuitive visual design tools for parameter study creation and complex process specification, and also offers programming-free access to grid-based supercomputer resources and process automation.

  10. Characterizing output bottlenecks in a supercomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Bing; Chase, Jeffrey; Dillow, David A

    2012-01-01

    Supercomputer I/O loads are often dominated by writes. HPC (High Performance Computing) file systems are designed to absorb these bursty outputs at high bandwidth through massive parallelism. However, the delivered write bandwidth often falls well below the peak. This paper characterizes the data absorption behavior of a center-wide shared Lustre parallel file system on the Jaguar supercomputer. We use a statistical methodology to address the challenges of accurately measuring a shared machine under production load and to obtain the distribution of bandwidth across samples of compute nodes, storage targets, and time intervals. We observe and quantify limitations from competing traffic,more » contention on storage servers and I/O routers, concurrency limitations in the client compute node operating systems, and the impact of variance (stragglers) on coupled output such as striping. We then examine the implications of our results for application performance and the design of I/O middleware systems on shared supercomputers.« less

  11. A Layered Solution for Supercomputing Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grider, Gary

    To solve the supercomputing challenge of memory keeping up with processing speed, a team at Los Alamos National Laboratory developed two innovative memory management and storage technologies. Burst buffers peel off data onto flash memory to support the checkpoint/restart paradigm of large simulations. MarFS adds a thin software layer enabling a new tier for campaign storage—based on inexpensive, failure-prone disk drives—between disk drives and tape archives.

  12. INTEGRATION OF PANDA WORKLOAD MANAGEMENT SYSTEM WITH SUPERCOMPUTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De, K; Jha, S; Maeno, T

    Abstract The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the funda- mental nature of matter and the basic forces that shape our universe, and were recently credited for the dis- covery of a Higgs boson. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Datamore » Analysis) Workload Management System for managing the workflow for all data processing on over 140 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data cen- ters are physically scattered all over the world. While PanDA currently uses more than 250000 cores with a peak performance of 0.3+ petaFLOPS, next LHC data taking runs will require more resources than Grid computing can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, Europe and Russia (in particular with Titan supercomputer at Oak Ridge Leadership Com- puting Facility (OLCF), Supercomputer at the National Research Center Kurchatov Institute , IT4 in Ostrava, and others). The current approach utilizes a modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run single- threaded workloads in parallel on Titan s multi-core worker nodes. This implementation was tested with a variety of Monte-Carlo workloads on several supercomputing platforms. We will present our current accom- plishments in running PanDA WMS at supercomputers and demonstrate our ability to use PanDA as a portal independent of the computing facility s infrastructure for High Energy and Nuclear Physics, as well as other data-intensive science applications, such as bioinformatics and astro-particle physics.« less

  13. Integration Of PanDA Workload Management System With Supercomputers for ATLAS and Data Intensive Science

    NASA Astrophysics Data System (ADS)

    Klimentov, A.; De, K.; Jha, S.; Maeno, T.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Wells, J.; Wenaus, T.

    2016-10-01

    The.LHC, operating at CERN, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System for managing the workflow for all data processing on over 150 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 250,000 cores with a peak performance of 0.3 petaFLOPS, LHC data taking runs require more resources than grid can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, in particular with Titan supercomputer at Oak Ridge Leadership Computing Facility. Current approach utilizes modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on LCFs multi-core worker nodes. This implementation was tested with a variety of Monte-Carlo workloads on several supercomputing platforms for ALICE and ATLAS experiments and it is in full pro duction for the ATLAS since September 2015. We will present our current accomplishments with running PanDA at supercomputers and demonstrate our ability to use PanDA as a portal independent of the computing facilities infrastructure for High Energy and Nuclear Physics as well as other data-intensive science applications, such as bioinformatics and astro-particle physics.

  14. A Layered Solution for Supercomputing Storage

    ScienceCinema

    Grider, Gary

    2018-06-13

    To solve the supercomputing challenge of memory keeping up with processing speed, a team at Los Alamos National Laboratory developed two innovative memory management and storage technologies. Burst buffers peel off data onto flash memory to support the checkpoint/restart paradigm of large simulations. MarFS adds a thin software layer enabling a new tier for campaign storage—based on inexpensive, failure-prone disk drives—between disk drives and tape archives.

  15. Calibrating Building Energy Models Using Supercomputer Trained Machine Learning Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanyal, Jibonananda; New, Joshua Ryan; Edwards, Richard

    2014-01-01

    Building Energy Modeling (BEM) is an approach to model the energy usage in buildings for design and retrofit purposes. EnergyPlus is the flagship Department of Energy software that performs BEM for different types of buildings. The input to EnergyPlus can often extend in the order of a few thousand parameters which have to be calibrated manually by an expert for realistic energy modeling. This makes it challenging and expensive thereby making building energy modeling unfeasible for smaller projects. In this paper, we describe the Autotune research which employs machine learning algorithms to generate agents for the different kinds of standardmore » reference buildings in the U.S. building stock. The parametric space and the variety of building locations and types make this a challenging computational problem necessitating the use of supercomputers. Millions of EnergyPlus simulations are run on supercomputers which are subsequently used to train machine learning algorithms to generate agents. These agents, once created, can then run in a fraction of the time thereby allowing cost-effective calibration of building models.« less

  16. Science and Technology Review June 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Pruneda, J.H.

    2000-06-01

    This issue contains the following articles: (1) ''Accelerating on the ASCI Challenge''. (2) ''New Day Daws in Supercomputing'' When the ASCI White supercomputer comes online this summer, DOE's Stockpile Stewardship Program will make another significant advanced toward helping to ensure the safety, reliability, and performance of the nation's nuclear weapons. (3) ''Uncovering the Secrets of Actinides'' Researchers are obtaining fundamental information about the actinides, a group of elements with a key role in nuclear weapons and fuels. (4) ''A Predictable Structure for Aerogels''. (5) ''Tibet--Where Continents Collide''.

  17. Homemade Buckeye-Pi: A Learning Many-Node Platform for High-Performance Parallel Computing

    NASA Astrophysics Data System (ADS)

    Amooie, M. A.; Moortgat, J.

    2017-12-01

    We report on the "Buckeye-Pi" cluster, the supercomputer developed in The Ohio State University School of Earth Sciences from 128 inexpensive Raspberry Pi (RPi) 3 Model B single-board computers. Each RPi is equipped with fast Quad Core 1.2GHz ARMv8 64bit processor, 1GB of RAM, and 32GB microSD card for local storage. Therefore, the cluster has a total RAM of 128GB that is distributed on the individual nodes and a flash capacity of 4TB with 512 processors, while it benefits from low power consumption, easy portability, and low total cost. The cluster uses the Message Passing Interface protocol to manage the communications between each node. These features render our platform the most powerful RPi supercomputer to date and suitable for educational applications in high-performance-computing (HPC) and handling of large datasets. In particular, we use the Buckeye-Pi to implement optimized parallel codes in our in-house simulator for subsurface media flows with the goal of achieving a massively-parallelized scalable code. We present benchmarking results for the computational performance across various number of RPi nodes. We believe our project could inspire scientists and students to consider the proposed unconventional cluster architecture as a mainstream and a feasible learning platform for challenging engineering and scientific problems.

  18. Adventures in supercomputing: An innovative program for high school teachers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliver, C.E.; Hicks, H.R.; Summers, B.G.

    1994-12-31

    Within the realm of education, seldom does an innovative program become available with the potential to change an educator`s teaching methodology. Adventures in Supercomputing (AiS), sponsored by the U.S. Department of Energy (DOE), is such a program. It is a program for high school teachers that changes the teacher paradigm from a teacher-directed approach of teaching to a student-centered approach. {open_quotes}A student-centered classroom offers better opportunities for development of internal motivation, planning skills, goal setting and perseverance than does the traditional teacher-directed mode{close_quotes}. Not only is the process of teaching changed, but the cross-curricula integration within the AiS materials ismore » remarkable. Written from a teacher`s perspective, this paper will describe the AiS program and its effects on teachers and students, primarily at Wartburg Central High School, in Wartburg, Tennessee. The AiS program in Tennessee is sponsored by Oak Ridge National Laboratory (ORNL).« less

  19. BigData and computing challenges in high energy and nuclear physics

    NASA Astrophysics Data System (ADS)

    Klimentov, A.; Grigorieva, M.; Kiryanov, A.; Zarochentsev, A.

    2017-06-01

    In this contribution we discuss the various aspects of the computing resource needs experiments in High Energy and Nuclear Physics, in particular at the Large Hadron Collider. This will evolve in the future when moving from LHC to HL-LHC in ten years from now, when the already exascale levels of data we are processing could increase by a further order of magnitude. The distributed computing environment has been a great success and the inclusion of new super-computing facilities, cloud computing and volunteering computing for the future is a big challenge, which we are successfully mastering with a considerable contribution from many super-computing centres around the world, academic and commercial cloud providers. We also discuss R&D computing projects started recently in National Research Center ``Kurchatov Institute''

  20. Effective Analysis of NGS Metagenomic Data with Ultra-Fast Clustering Algorithms (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Li, Weizhong

    2018-02-12

    San Diego Supercomputer Center's Weizhong Li on "Effective Analysis of NGS Metagenomic Data with Ultra-fast Clustering Algorithms" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  1. NASA Advanced Supercomputing Facility Expansion

    NASA Technical Reports Server (NTRS)

    Thigpen, William W.

    2017-01-01

    The NASA Advanced Supercomputing (NAS) Division enables advances in high-end computing technologies and in modeling and simulation methods to tackle some of the toughest science and engineering challenges facing NASA today. The name "NAS" has long been associated with leadership and innovation throughout the high-end computing (HEC) community. We play a significant role in shaping HEC standards and paradigms, and provide leadership in the areas of large-scale InfiniBand fabrics, Lustre open-source filesystems, and hyperwall technologies. We provide an integrated high-end computing environment to accelerate NASA missions and make revolutionary advances in science. Pleiades, a petaflop-scale supercomputer, is used by scientists throughout the U.S. to support NASA missions, and is ranked among the most powerful systems in the world. One of our key focus areas is in modeling and simulation to support NASA's real-world engineering applications and make fundamental advances in modeling and simulation methods.

  2. Role of High-End Computing in Meeting NASA's Science and Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Tu, Eugene L.; Van Dalsem, William R.

    2006-01-01

    Two years ago, NASA was on the verge of dramatically increasing its HEC capability and capacity. With the 10,240-processor supercomputer, Columbia, now in production for 18 months, HEC has an even greater impact within the Agency and extending to partner institutions. Advanced science and engineering simulations in space exploration, shuttle operations, Earth sciences, and fundamental aeronautics research are occurring on Columbia, demonstrating its ability to accelerate NASA s exploration vision. This talk describes how the integrated production environment fostered at the NASA Advanced Supercomputing (NAS) facility at Ames Research Center is accelerating scientific discovery, achieving parametric analyses of multiple scenarios, and enhancing safety for NASA missions. We focus on Columbia s impact on two key engineering and science disciplines: Aerospace, and Climate. We also discuss future mission challenges and plans for NASA s next-generation HEC environment.

  3. Porting Ordinary Applications to Blue Gene/Q Supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maheshwari, Ketan C.; Wozniak, Justin M.; Armstrong, Timothy

    2015-08-31

    Efficiently porting ordinary applications to Blue Gene/Q supercomputers is a significant challenge. Codes are often originally developed without considering advanced architectures and related tool chains. Science needs frequently lead users to want to run large numbers of relatively small jobs (often called many-task computing, an ensemble, or a workflow), which can conflict with supercomputer configurations. In this paper, we discuss techniques developed to execute ordinary applications over leadership class supercomputers. We use the high-performance Swift parallel scripting framework and build two workflow execution techniques-sub-jobs and main-wrap. The sub-jobs technique, built on top of the IBM Blue Gene/Q resource manager Cobalt'smore » sub-block jobs, lets users submit multiple, independent, repeated smaller jobs within a single larger resource block. The main-wrap technique is a scheme that enables C/C++ programs to be defined as functions that are wrapped by a high-performance Swift wrapper and that are invoked as a Swift script. We discuss the needs, benefits, technicalities, and current limitations of these techniques. We further discuss the real-world science enabled by these techniques and the results obtained.« less

  4. Performance Evaluation of Supercomputers using HPCC and IMB Benchmarks

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Ciotti, Robert; Gunney, Brian T. N.; Spelce, Thomas E.; Koniges, Alice; Dossa, Don; Adamidis, Panagiotis; Rabenseifner, Rolf; Tiyyagura, Sunil R.; Mueller, Matthias; hide

    2006-01-01

    The HPC Challenge (HPCC) benchmark suite and the Intel MPI Benchmark (IMB) are used to compare and evaluate the combined performance of processor, memory subsystem and interconnect fabric of five leading supercomputers - SGI Altix BX2, Cray XI, Cray Opteron Cluster, Dell Xeon cluster, and NEC SX-8. These five systems use five different networks (SGI NUMALINK4, Cray network, Myrinet, InfiniBand, and NEC IXS). The complete set of HPCC benchmarks are run on each of these systems. Additionally, we present Intel MPI Benchmarks (IMB) results to study the performance of 11 MPI communication functions on these systems.

  5. Supercomputer requirements for selected disciplines important to aerospace

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Kim, John; Holst, Terry L.; Deiwert, George S.; Cooper, David M.; Watson, Andrew B.; Bailey, F. Ron

    1989-01-01

    Speed and memory requirements placed on supercomputers by five different disciplines important to aerospace are discussed and compared with the capabilities of various existing computers and those projected to be available before the end of this century. The disciplines chosen for consideration are turbulence physics, aerodynamics, aerothermodynamics, chemistry, and human vision modeling. Example results for problems illustrative of those currently being solved in each of the disciplines are presented and discussed. Limitations imposed on physical modeling and geometrical complexity by the need to obtain solutions in practical amounts of time are identified. Computational challenges for the future, for which either some or all of the current limitations are removed, are described. Meeting some of the challenges will require computer speeds in excess of exaflop/s (10 to the 18th flop/s) and memories in excess of petawords (10 to the 15th words).

  6. Science on Sequoia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertsch, Adam; Draeger, Erik; Richards, David

    2017-01-12

    With Sequoia at Lawrence Livermore National Laboratory, researchers explore grand challenging problems and are generating results at scales never before achieved. Sequoia is the first computer to have more than one million processors and is one of the fastest supercomputers in the world.

  7. MEGADOCK 4.0: an ultra-high-performance protein-protein docking software for heterogeneous supercomputers.

    PubMed

    Ohue, Masahito; Shimoda, Takehiro; Suzuki, Shuji; Matsuzaki, Yuri; Ishida, Takashi; Akiyama, Yutaka

    2014-11-15

    The application of protein-protein docking in large-scale interactome analysis is a major challenge in structural bioinformatics and requires huge computing resources. In this work, we present MEGADOCK 4.0, an FFT-based docking software that makes extensive use of recent heterogeneous supercomputers and shows powerful, scalable performance of >97% strong scaling. MEGADOCK 4.0 is written in C++ with OpenMPI and NVIDIA CUDA 5.0 (or later) and is freely available to all academic and non-profit users at: http://www.bi.cs.titech.ac.jp/megadock. akiyama@cs.titech.ac.jp Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  8. Role of High-End Computing in Meeting NASA's Science and Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak

    2006-01-01

    High-End Computing (HEC) has always played a major role in meeting the modeling and simulation needs of various NASA missions. With NASA's newest 62 teraflops Columbia supercomputer, HEC is having an even greater impact within the Agency and beyond. Significant cutting-edge science and engineering simulations in the areas of space exploration, Shuttle operations, Earth sciences, and aeronautics research, are already occurring on Columbia, demonstrating its ability to accelerate NASA s exploration vision. The talk will describe how the integrated supercomputing production environment is being used to reduce design cycle time, accelerate scientific discovery, conduct parametric analysis of multiple scenarios, and enhance safety during the life cycle of NASA missions.

  9. An Advanced User Interface Approach for Complex Parameter Study Process Specification in the Information Power Grid

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; McCann, Karen M.; Biswas, Rupak; VanderWijngaart, Rob; Yan, Jerry C. (Technical Monitor)

    2000-01-01

    The creation of parameter study suites has recently become a more challenging problem as the parameter studies have now become multi-tiered and the computational environment has become a supercomputer grid. The parameter spaces are vast, the individual problem sizes are getting larger, and researchers are now seeking to combine several successive stages of parameterization and computation. Simultaneously, grid-based computing offers great resource opportunity but at the expense of great difficulty of use. We present an approach to this problem which stresses intuitive visual design tools for parameter study creation and complex process specification, and also offers programming-free access to grid-based supercomputer resources and process automation.

  10. When Rural Reality Goes Virtual.

    ERIC Educational Resources Information Center

    Husain, Dilshad D.

    1998-01-01

    In rural towns where sparse population and few business are barriers, virtual reality may be the only way to bring work-based learning to students. A partnership between a small-town high school, the Ohio Supercomputer Center, and a high-tech business will enable students to explore the workplace using virtual reality. (JOW)

  11. Los Alamos National Laboratory Science Education Programs. Progress report, October 1, 1994--December 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, D.H.

    During the 1994 summer institute NTEP teachers worked in coordination with LANL and the Los Alamos Middle School and Mountain Elementary School to gain experience in communicating on-line, to gain further information from the Internet and in using electronic Bulletin Board Systems (BBSs) to exchange ideas with other teachers. To build on their telecommunications skills, NTEP teachers participated in the International Telecommunications In Education Conference (Tel*ED `94) at the Albuquerque Convention Center on November 11 & 12, 1994. They attended the multimedia keynote address, various workshops highlighting many aspects of educational telecommunications skills, and the Telecomm Rodeo sponsored by Losmore » Alamos National Laboratory. The Rodeo featured many presentations by Laboratory personnel and educational institutions on ways in which telecommunications technologies can be use din the classroom. Many were of the `hands-on` type, so that teachers were able to try out methods and equipment and evaluate their usefulness in their own schools and classrooms. Some of the presentations featured were the Geonet educational BBS system, the Supercomputing Challenge, and the Sunrise Project, all sponsored by LANL; the `CU-seeMe` live video software, various simulation software packages, networking help, and many other interesting and useful exhibits.« less

  12. Challenges in scaling NLO generators to leadership computers

    NASA Astrophysics Data System (ADS)

    Benjamin, D.; Childers, JT; Hoeche, S.; LeCompte, T.; Uram, T.

    2017-10-01

    Exascale computing resources are roughly a decade away and will be capable of 100 times more computing than current supercomputers. In the last year, Energy Frontier experiments crossed a milestone of 100 million core-hours used at the Argonne Leadership Computing Facility, Oak Ridge Leadership Computing Facility, and NERSC. The Fortran-based leading-order parton generator called Alpgen was successfully scaled to millions of threads to achieve this level of usage on Mira. Sherpa and MadGraph are next-to-leading order generators used heavily by LHC experiments for simulation. Integration times for high-multiplicity or rare processes can take a week or more on standard Grid machines, even using all 16-cores. We will describe our ongoing work to scale the Sherpa generator to thousands of threads on leadership-class machines and reduce run-times to less than a day. This work allows the experiments to leverage large-scale parallel supercomputers for event generation today, freeing tens of millions of grid hours for other work, and paving the way for future applications (simulation, reconstruction) on these and future supercomputers.

  13. GPAW - massively parallel electronic structure calculations with Python-based software.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enkovaara, J.; Romero, N.; Shende, S.

    2011-01-01

    Electronic structure calculations are a widely used tool in materials science and large consumer of supercomputing resources. Traditionally, the software packages for these kind of simulations have been implemented in compiled languages, where Fortran in its different versions has been the most popular choice. While dynamic, interpreted languages, such as Python, can increase the effciency of programmer, they cannot compete directly with the raw performance of compiled languages. However, by using an interpreted language together with a compiled language, it is possible to have most of the productivity enhancing features together with a good numerical performance. We have used thismore » approach in implementing an electronic structure simulation software GPAW using the combination of Python and C programming languages. While the chosen approach works well in standard workstations and Unix environments, massively parallel supercomputing systems can present some challenges in porting, debugging and profiling the software. In this paper we describe some details of the implementation and discuss the advantages and challenges of the combined Python/C approach. We show that despite the challenges it is possible to obtain good numerical performance and good parallel scalability with Python based software.« less

  14. Adventures in supercomputing, a K-12 program in computational science: An assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliver, C.E.; Hicks, H.R.; Iles-Brechak, K.D.

    1994-10-01

    In this paper, the authors describe only those elements of the Department of Energy Adventures in Supercomputing (AiS) program for high school teachers, such as school selection, which have a direct bearing on assessment. Schools submit an application to participate in the AiS program. They propose a team of at least two teachers to implement the AiS curriculum. The applications are evaluated by selection committees in each of the five participating states to determine which schools are the most qualified to carry out the program and reach a significant number of women, minorities, and economically disadvantaged students, all of whommore » have historically been underrepresented in the sciences. Typically, selected schools either have a large disadvantaged student population, or the applying teachers propose specific means to attract these segments of their student body into AiS classes. Some areas with AiS schools have significant numbers of minority students, some have economically disadvantaged, usually rural, students, and all areas have the potential to reach a higher proportion of women than technical classes usually attract. This report presents preliminary findings based on three types of data: demographic, student journals, and contextual. Demographic information is obtained for both students and teachers. Students have been asked to maintain journals which include replies to specific questions that are posed each month. An analysis of the answers to these questions helps to form a picture of how students progress through the course of the school year. Onsite visits by assessment professionals conducting student and teacher interviews, provide a more in depth, qualitative basis for understanding student motivations.« less

  15. Towards future high performance computing: What will change? How can we be efficient?

    NASA Astrophysics Data System (ADS)

    Düben, Peter

    2017-04-01

    How can we make the most out of "exascale" supercomputers that will be available soon and enable us to calculate an amazing number of 1,000,000,000,000,000,000 real numbers operations within a single second? How do we need to design applications to use these machines efficiently? What are the limits? We will discuss opportunities and limits of the use of future high performance computers from the perspective of Earth System Modelling. We will provide an overview about future challenges and outline how numerical application will need to be changed to run efficiently on supercomputers in the future. We will also discuss how different disciplines can support each other and talk about data handling and numerical precision of data.

  16. NREL Supercomputer Tackles Grid Challenges | News | NREL

    Science.gov Websites

    traditional database processes. Photo by Dennis Schroeder, NREL "Big data" is playing an imagery, and large-scale simulation data. Photo by Dennis Schroeder, NREL "Peregrine provides much . Photo by Dennis Schroeder, NREL Collaboration is key, and it is hard-wired into the ESIF's core. NREL

  17. Design of multiple sequence alignment algorithms on parallel, distributed memory supercomputers.

    PubMed

    Church, Philip C; Goscinski, Andrzej; Holt, Kathryn; Inouye, Michael; Ghoting, Amol; Makarychev, Konstantin; Reumann, Matthias

    2011-01-01

    The challenge of comparing two or more genomes that have undergone recombination and substantial amounts of segmental loss and gain has recently been addressed for small numbers of genomes. However, datasets of hundreds of genomes are now common and their sizes will only increase in the future. Multiple sequence alignment of hundreds of genomes remains an intractable problem due to quadratic increases in compute time and memory footprint. To date, most alignment algorithms are designed for commodity clusters without parallelism. Hence, we propose the design of a multiple sequence alignment algorithm on massively parallel, distributed memory supercomputers to enable research into comparative genomics on large data sets. Following the methodology of the sequential progressiveMauve algorithm, we design data structures including sequences and sorted k-mer lists on the IBM Blue Gene/P supercomputer (BG/P). Preliminary results show that we can reduce the memory footprint so that we can potentially align over 250 bacterial genomes on a single BG/P compute node. We verify our results on a dataset of E.coli, Shigella and S.pneumoniae genomes. Our implementation returns results matching those of the original algorithm but in 1/2 the time and with 1/4 the memory footprint for scaffold building. In this study, we have laid the basis for multiple sequence alignment of large-scale datasets on a massively parallel, distributed memory supercomputer, thus enabling comparison of hundreds instead of a few genome sequences within reasonable time.

  18. Teaching weather and climate science in primary schools - a pilot project from the UK Met Office

    NASA Astrophysics Data System (ADS)

    Orrell, Richard; Liggins, Felicity; Challenger, Lesley; Lethem, Dom; Campbell, Katy

    2017-04-01

    Wow Schools is a pilot project from the Met Office with an aim to inspire and educate the next generation of scientists and, uniquely, use the data collected by schools to improve weather forecasts and warnings across the UK. Wow Schools was launched in late 2015 with a competition open to primary schools across the UK. 74 schools entered the draw, all hoping to be picked as one of the ten lucky schools taking part in the pilot scheme. Each winning school received a fully automatic weather station (AWS), enabling them to transmit real-time local weather observations to the Met Office's Weather Observation Website (WOW - wow.metoffice.gov.uk), an award winning web portal for uploading and sharing a range of environmental observations. They were also given a package of materials designed to get students out of the classroom to observe the weather, get hands-on with the science underpinning weather forecasting, and analyse the data they are collecting. The curriculum-relevant materials were designed with the age group 7 to 11 in mind, but could be extended to support other age groups. Each school was offered a visit by a Wow Schools Ambassador (a Met Office employee) to bring the students' learning to life, and access to a dedicated forecast for its location generated by our new supercomputer. These forecasts are improved by the school's onsite AWS reinforcing the link between observations and forecast production. The Wow Schools pilot ran throughout 2016. Here, we present the initial findings of the project, examining the potential benefits and challenges of working with schools across the UK to: enrich students' understanding of the science of weather forecasting; to source an ongoing supply of weather observations and discover how these might be used in the forecasting process; and explore what materials and business model(s) would be most useful and affordable if a wider roll-out of the initiative was undertaken.

  19. The Q continuum simulation: Harnessing the power of GPU accelerated supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heitmann, Katrin; Frontiere, Nicholas; Sewell, Chris

    2015-08-01

    Modeling large-scale sky survey observations is a key driver for the continuing development of high-resolution, large-volume, cosmological simulations. We report the first results from the "Q Continuum" cosmological N-body simulation run carried out on the GPU-accelerated supercomputer Titan. The simulation encompasses a volume of (1300 Mpc)(3) and evolves more than half a trillion particles, leading to a particle mass resolution of m(p) similar or equal to 1.5 . 10(8) M-circle dot. At thismass resolution, the Q Continuum run is currently the largest cosmology simulation available. It enables the construction of detailed synthetic sky catalogs, encompassing different modeling methodologies, including semi-analyticmore » modeling and sub-halo abundance matching in a large, cosmological volume. Here we describe the simulation and outputs in detail and present first results for a range of cosmological statistics, such as mass power spectra, halo mass functions, and halo mass-concentration relations for different epochs. We also provide details on challenges connected to running a simulation on almost 90% of Titan, one of the fastest supercomputers in the world, including our usage of Titan's GPU accelerators.« less

  20. An Interface for Biomedical Big Data Processing on the Tianhe-2 Supercomputer.

    PubMed

    Yang, Xi; Wu, Chengkun; Lu, Kai; Fang, Lin; Zhang, Yong; Li, Shengkang; Guo, Guixin; Du, YunFei

    2017-12-01

    Big data, cloud computing, and high-performance computing (HPC) are at the verge of convergence. Cloud computing is already playing an active part in big data processing with the help of big data frameworks like Hadoop and Spark. The recent upsurge of high-performance computing in China provides extra possibilities and capacity to address the challenges associated with big data. In this paper, we propose Orion-a big data interface on the Tianhe-2 supercomputer-to enable big data applications to run on Tianhe-2 via a single command or a shell script. Orion supports multiple users, and each user can launch multiple tasks. It minimizes the effort needed to initiate big data applications on the Tianhe-2 supercomputer via automated configuration. Orion follows the "allocate-when-needed" paradigm, and it avoids the idle occupation of computational resources. We tested the utility and performance of Orion using a big genomic dataset and achieved a satisfactory performance on Tianhe-2 with very few modifications to existing applications that were implemented in Hadoop/Spark. In summary, Orion provides a practical and economical interface for big data processing on Tianhe-2.

  1. Supercomputing with TOUGH2 family codes for coupled multi-physics simulations of geologic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Yamamoto, H.; Nakajima, K.; Zhang, K.; Nanai, S.

    2015-12-01

    Powerful numerical codes that are capable of modeling complex coupled processes of physics and chemistry have been developed for predicting the fate of CO2 in reservoirs as well as its potential impacts on groundwater and subsurface environments. However, they are often computationally demanding for solving highly non-linear models in sufficient spatial and temporal resolutions. Geological heterogeneity and uncertainties further increase the challenges in modeling works. Two-phase flow simulations in heterogeneous media usually require much longer computational time than that in homogeneous media. Uncertainties in reservoir properties may necessitate stochastic simulations with multiple realizations. Recently, massively parallel supercomputers with more than thousands of processors become available in scientific and engineering communities. Such supercomputers may attract attentions from geoscientist and reservoir engineers for solving the large and non-linear models in higher resolutions within a reasonable time. However, for making it a useful tool, it is essential to tackle several practical obstacles to utilize large number of processors effectively for general-purpose reservoir simulators. We have implemented massively-parallel versions of two TOUGH2 family codes (a multi-phase flow simulator TOUGH2 and a chemically reactive transport simulator TOUGHREACT) on two different types (vector- and scalar-type) of supercomputers with a thousand to tens of thousands of processors. After completing implementation and extensive tune-up on the supercomputers, the computational performance was measured for three simulations with multi-million grid models, including a simulation of the dissolution-diffusion-convection process that requires high spatial and temporal resolutions to simulate the growth of small convective fingers of CO2-dissolved water to larger ones in a reservoir scale. The performance measurement confirmed that the both simulators exhibit excellent scalabilities showing almost linear speedup against number of processors up to over ten thousand cores. Generally this allows us to perform coupled multi-physics (THC) simulations on high resolution geologic models with multi-million grid in a practical time (e.g., less than a second per time step).

  2. Comprehensive efficiency analysis of supercomputer resource usage based on system monitoring data

    NASA Astrophysics Data System (ADS)

    Mamaeva, A. A.; Shaykhislamov, D. I.; Voevodin, Vad V.; Zhumatiy, S. A.

    2018-03-01

    One of the main problems of modern supercomputers is the low efficiency of their usage, which leads to the significant idle time of computational resources, and, in turn, to the decrease in speed of scientific research. This paper presents three approaches to study the efficiency of supercomputer resource usage based on monitoring data analysis. The first approach performs an analysis of computing resource utilization statistics, which allows to identify different typical classes of programs, to explore the structure of the supercomputer job flow and to track overall trends in the supercomputer behavior. The second approach is aimed specifically at analyzing off-the-shelf software packages and libraries installed on the supercomputer, since efficiency of their usage is becoming an increasingly important factor for the efficient functioning of the entire supercomputer. Within the third approach, abnormal jobs – jobs with abnormally inefficient behavior that differs significantly from the standard behavior of the overall supercomputer job flow – are being detected. For each approach, the results obtained in practice in the Supercomputer Center of Moscow State University are demonstrated.

  3. Seismic signal processing on heterogeneous supercomputers

    NASA Astrophysics Data System (ADS)

    Gokhberg, Alexey; Ermert, Laura; Fichtner, Andreas

    2015-04-01

    The processing of seismic signals - including the correlation of massive ambient noise data sets - represents an important part of a wide range of seismological applications. It is characterized by large data volumes as well as high computational input/output intensity. Development of efficient approaches towards seismic signal processing on emerging high performance computing systems is therefore essential. Heterogeneous supercomputing systems introduced in the recent years provide numerous computing nodes interconnected via high throughput networks, every node containing a mix of processing elements of different architectures, like several sequential processor cores and one or a few graphical processing units (GPU) serving as accelerators. A typical representative of such computing systems is "Piz Daint", a supercomputer of the Cray XC 30 family operated by the Swiss National Supercomputing Center (CSCS), which we used in this research. Heterogeneous supercomputers provide an opportunity for manifold application performance increase and are more energy-efficient, however they have much higher hardware complexity and are therefore much more difficult to program. The programming effort may be substantially reduced by the introduction of modular libraries of software components that can be reused for a wide class of seismology applications. The ultimate goal of this research is design of a prototype for such library suitable for implementing various seismic signal processing applications on heterogeneous systems. As a representative use case we have chosen an ambient noise correlation application. Ambient noise interferometry has developed into one of the most powerful tools to image and monitor the Earth's interior. Future applications will require the extraction of increasingly small details from noise recordings. To meet this demand, more advanced correlation techniques combined with very large data volumes are needed. This poses new computational problems that require dedicated HPC solutions. The chosen application is using a wide range of common signal processing methods, which include various IIR filter designs, amplitude and phase correlation, computing the analytic signal, and discrete Fourier transforms. Furthermore, various processing methods specific for seismology, like rotation of seismic traces, are used. Efficient implementation of all these methods on the GPU-accelerated systems represents several challenges. In particular, it requires a careful distribution of work between the sequential processors and accelerators. Furthermore, since the application is designed to process very large volumes of data, special attention had to be paid to the efficient use of the available memory and networking hardware resources in order to reduce intensity of data input and output. In our contribution we will explain the software architecture as well as principal engineering decisions used to address these challenges. We will also describe the programming model based on C++ and CUDA that we used to develop the software. Finally, we will demonstrate performance improvements achieved by using the heterogeneous computing architecture. This work was supported by a grant from the Swiss National Supercomputing Centre (CSCS) under project ID d26.

  4. Optimization of Supercomputer Use on EADS II System

    NASA Technical Reports Server (NTRS)

    Ahmed, Ardsher

    1998-01-01

    The main objective of this research was to optimize supercomputer use to achieve better throughput and utilization of supercomputers and to help facilitate the movement of non-supercomputing (inappropriate for supercomputer) codes to mid-range systems for better use of Government resources at Marshall Space Flight Center (MSFC). This work involved the survey of architectures available on EADS II and monitoring customer (user) applications running on a CRAY T90 system.

  5. Supercomputer applications in molecular modeling.

    PubMed

    Gund, T M

    1988-01-01

    An overview of the functions performed by molecular modeling is given. Molecular modeling techniques benefiting from supercomputing are described, namely, conformation, search, deriving bioactive conformations, pharmacophoric pattern searching, receptor mapping, and electrostatic properties. The use of supercomputers for problems that are computationally intensive, such as protein structure prediction, protein dynamics and reactivity, protein conformations, and energetics of binding is also examined. The current status of supercomputing and supercomputer resources are discussed.

  6. The role of graphics super-workstations in a supercomputing environment

    NASA Technical Reports Server (NTRS)

    Levin, E.

    1989-01-01

    A new class of very powerful workstations has recently become available which integrate near supercomputer computational performance with very powerful and high quality graphics capability. These graphics super-workstations are expected to play an increasingly important role in providing an enhanced environment for supercomputer users. Their potential uses include: off-loading the supercomputer (by serving as stand-alone processors, by post-processing of the output of supercomputer calculations, and by distributed or shared processing), scientific visualization (understanding of results, communication of results), and by real time interaction with the supercomputer (to steer an iterative computation, to abort a bad run, or to explore and develop new algorithms).

  7. 48 CFR 252.225-7011 - Restriction on acquisition of supercomputers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of supercomputers. 252.225-7011 Section 252.225-7011 Federal Acquisition Regulations System DEFENSE... CLAUSES Text of Provisions And Clauses 252.225-7011 Restriction on acquisition of supercomputers. As prescribed in 225.7012-3, use the following clause: Restriction on Acquisition of Supercomputers (JUN 2005...

  8. 48 CFR 252.225-7011 - Restriction on acquisition of supercomputers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of supercomputers. 252.225-7011 Section 252.225-7011 Federal Acquisition Regulations System DEFENSE... CLAUSES Text of Provisions And Clauses 252.225-7011 Restriction on acquisition of supercomputers. As prescribed in 225.7012-3, use the following clause: Restriction on Acquisition of Supercomputers (JUN 2005...

  9. 48 CFR 252.225-7011 - Restriction on acquisition of supercomputers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of supercomputers. 252.225-7011 Section 252.225-7011 Federal Acquisition Regulations System DEFENSE... CLAUSES Text of Provisions And Clauses 252.225-7011 Restriction on acquisition of supercomputers. As prescribed in 225.7012-3, use the following clause: Restriction on Acquisition of Supercomputers (JUN 2005...

  10. 48 CFR 252.225-7011 - Restriction on acquisition of supercomputers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of supercomputers. 252.225-7011 Section 252.225-7011 Federal Acquisition Regulations System DEFENSE... CLAUSES Text of Provisions And Clauses 252.225-7011 Restriction on acquisition of supercomputers. As prescribed in 225.7012-3, use the following clause: Restriction on Acquisition of Supercomputers (JUN 2005...

  11. 48 CFR 252.225-7011 - Restriction on acquisition of supercomputers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of supercomputers. 252.225-7011 Section 252.225-7011 Federal Acquisition Regulations System DEFENSE... CLAUSES Text of Provisions And Clauses 252.225-7011 Restriction on acquisition of supercomputers. As prescribed in 225.7012-3, use the following clause: Restriction on Acquisition of Supercomputers (JUN 2005...

  12. Application-level regression testing framework using Jenkins

    DOE PAGES

    Budiardja, Reuben; Bouvet, Timothy; Arnold, Galen

    2017-09-26

    Monitoring and testing for regression of large-scale systems such as the NCSA's Blue Waters supercomputer are challenging tasks. In this paper, we describe the solution we came up with to perform those tasks. The goal was to find an automated solution for running user-level regression tests to evaluate system usability and performance. Jenkins, an automation server software, was chosen for its versatility, large user base, and multitude of plugins including collecting data and plotting test results over time. We also describe our Jenkins deployment to launch and monitor jobs on remote HPC system, perform authentication with one-time password, and integratemore » with our LDAP server for its authorization. We show some use cases and describe our best practices for successfully using Jenkins as a user-level system-wide regression testing and monitoring framework for large supercomputer systems.« less

  13. Application-level regression testing framework using Jenkins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budiardja, Reuben; Bouvet, Timothy; Arnold, Galen

    Monitoring and testing for regression of large-scale systems such as the NCSA's Blue Waters supercomputer are challenging tasks. In this paper, we describe the solution we came up with to perform those tasks. The goal was to find an automated solution for running user-level regression tests to evaluate system usability and performance. Jenkins, an automation server software, was chosen for its versatility, large user base, and multitude of plugins including collecting data and plotting test results over time. We also describe our Jenkins deployment to launch and monitor jobs on remote HPC system, perform authentication with one-time password, and integratemore » with our LDAP server for its authorization. We show some use cases and describe our best practices for successfully using Jenkins as a user-level system-wide regression testing and monitoring framework for large supercomputer systems.« less

  14. Data-intensive computing on numerically-insensitive supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahrens, James P; Fasel, Patricia K; Habib, Salman

    2010-12-03

    With the advent of the era of petascale supercomputing, via the delivery of the Roadrunner supercomputing platform at Los Alamos National Laboratory, there is a pressing need to address the problem of visualizing massive petascale-sized results. In this presentation, I discuss progress on a number of approaches including in-situ analysis, multi-resolution out-of-core streaming and interactive rendering on the supercomputing platform. These approaches are placed in context by the emerging area of data-intensive supercomputing.

  15. Computer Electromagnetics and Supercomputer Architecture

    NASA Technical Reports Server (NTRS)

    Cwik, Tom

    1993-01-01

    The dramatic increase in performance over the last decade for microporcessor computations is compared with that for the supercomputer computations. This performance, the projected performance, and a number of other issues such as cost and the inherent pysical limitations in curent supercomputer technology have naturally led to parallel supercomputers and ensemble of interconnected microprocessors.

  16. Edison - A New Cray Supercomputer Advances Discovery at NERSC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dosanjh, Sudip; Parkinson, Dula; Yelick, Kathy

    2014-02-06

    When a supercomputing center installs a new system, users are invited to make heavy use of the computer as part of the rigorous testing. In this video, find out what top scientists have discovered using Edison, a Cray XC30 supercomputer, and how NERSC's newest supercomputer will accelerate their future research.

  17. Edison - A New Cray Supercomputer Advances Discovery at NERSC

    ScienceCinema

    Dosanjh, Sudip; Parkinson, Dula; Yelick, Kathy; Trebotich, David; Broughton, Jeff; Antypas, Katie; Lukic, Zarija, Borrill, Julian; Draney, Brent; Chen, Jackie

    2018-01-16

    When a supercomputing center installs a new system, users are invited to make heavy use of the computer as part of the rigorous testing. In this video, find out what top scientists have discovered using Edison, a Cray XC30 supercomputer, and how NERSC's newest supercomputer will accelerate their future research.

  18. DDBJ read annotation pipeline: a cloud computing-based pipeline for high-throughput analysis of next-generation sequencing data.

    PubMed

    Nagasaki, Hideki; Mochizuki, Takako; Kodama, Yuichi; Saruhashi, Satoshi; Morizaki, Shota; Sugawara, Hideaki; Ohyanagi, Hajime; Kurata, Nori; Okubo, Kousaku; Takagi, Toshihisa; Kaminuma, Eli; Nakamura, Yasukazu

    2013-08-01

    High-performance next-generation sequencing (NGS) technologies are advancing genomics and molecular biological research. However, the immense amount of sequence data requires computational skills and suitable hardware resources that are a challenge to molecular biologists. The DNA Data Bank of Japan (DDBJ) of the National Institute of Genetics (NIG) has initiated a cloud computing-based analytical pipeline, the DDBJ Read Annotation Pipeline (DDBJ Pipeline), for a high-throughput annotation of NGS reads. The DDBJ Pipeline offers a user-friendly graphical web interface and processes massive NGS datasets using decentralized processing by NIG supercomputers currently free of charge. The proposed pipeline consists of two analysis components: basic analysis for reference genome mapping and de novo assembly and subsequent high-level analysis of structural and functional annotations. Users may smoothly switch between the two components in the pipeline, facilitating web-based operations on a supercomputer for high-throughput data analysis. Moreover, public NGS reads of the DDBJ Sequence Read Archive located on the same supercomputer can be imported into the pipeline through the input of only an accession number. This proposed pipeline will facilitate research by utilizing unified analytical workflows applied to the NGS data. The DDBJ Pipeline is accessible at http://p.ddbj.nig.ac.jp/.

  19. DDBJ Read Annotation Pipeline: A Cloud Computing-Based Pipeline for High-Throughput Analysis of Next-Generation Sequencing Data

    PubMed Central

    Nagasaki, Hideki; Mochizuki, Takako; Kodama, Yuichi; Saruhashi, Satoshi; Morizaki, Shota; Sugawara, Hideaki; Ohyanagi, Hajime; Kurata, Nori; Okubo, Kousaku; Takagi, Toshihisa; Kaminuma, Eli; Nakamura, Yasukazu

    2013-01-01

    High-performance next-generation sequencing (NGS) technologies are advancing genomics and molecular biological research. However, the immense amount of sequence data requires computational skills and suitable hardware resources that are a challenge to molecular biologists. The DNA Data Bank of Japan (DDBJ) of the National Institute of Genetics (NIG) has initiated a cloud computing-based analytical pipeline, the DDBJ Read Annotation Pipeline (DDBJ Pipeline), for a high-throughput annotation of NGS reads. The DDBJ Pipeline offers a user-friendly graphical web interface and processes massive NGS datasets using decentralized processing by NIG supercomputers currently free of charge. The proposed pipeline consists of two analysis components: basic analysis for reference genome mapping and de novo assembly and subsequent high-level analysis of structural and functional annotations. Users may smoothly switch between the two components in the pipeline, facilitating web-based operations on a supercomputer for high-throughput data analysis. Moreover, public NGS reads of the DDBJ Sequence Read Archive located on the same supercomputer can be imported into the pipeline through the input of only an accession number. This proposed pipeline will facilitate research by utilizing unified analytical workflows applied to the NGS data. The DDBJ Pipeline is accessible at http://p.ddbj.nig.ac.jp/. PMID:23657089

  20. Integration of Russian Tier-1 Grid Center with High Performance Computers at NRC-KI for LHC experiments and beyond HENP

    NASA Astrophysics Data System (ADS)

    Belyaev, A.; Berezhnaya, A.; Betev, L.; Buncic, P.; De, K.; Drizhuk, D.; Klimentov, A.; Lazin, Y.; Lyalin, I.; Mashinistov, R.; Novikov, A.; Oleynik, D.; Polyakov, A.; Poyda, A.; Ryabinkin, E.; Teslyuk, A.; Tkachenko, I.; Yasnopolskiy, L.

    2015-12-01

    The LHC experiments are preparing for the precision measurements and further discoveries that will be made possible by higher LHC energies from April 2015 (LHC Run2). The need for simulation, data processing and analysis would overwhelm the expected capacity of grid infrastructure computing facilities deployed by the Worldwide LHC Computing Grid (WLCG). To meet this challenge the integration of the opportunistic resources into LHC computing model is highly important. The Tier-1 facility at Kurchatov Institute (NRC-KI) in Moscow is a part of WLCG and it will process, simulate and store up to 10% of total data obtained from ALICE, ATLAS and LHCb experiments. In addition Kurchatov Institute has supercomputers with peak performance 0.12 PFLOPS. The delegation of even a fraction of supercomputing resources to the LHC Computing will notably increase total capacity. In 2014 the development a portal combining a Tier-1 and a supercomputer in Kurchatov Institute was started to provide common interfaces and storage. The portal will be used not only for HENP experiments, but also by other data- and compute-intensive sciences like biology with genome sequencing analysis; astrophysics with cosmic rays analysis, antimatter and dark matter search, etc.

  1. Final Scientific Report: A Scalable Development Environment for Peta-Scale Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karbach, Carsten; Frings, Wolfgang

    2013-02-22

    This document is the final scientific report of the project DE-SC000120 (A scalable Development Environment for Peta-Scale Computing). The objective of this project is the extension of the Parallel Tools Platform (PTP) for applying it to peta-scale systems. PTP is an integrated development environment for parallel applications. It comprises code analysis, performance tuning, parallel debugging and system monitoring. The contribution of the Juelich Supercomputing Centre (JSC) aims to provide a scalable solution for system monitoring of supercomputers. This includes the development of a new communication protocol for exchanging status data between the target remote system and the client running PTP.more » The communication has to work for high latency. PTP needs to be implemented robustly and should hide the complexity of the supercomputer's architecture in order to provide a transparent access to various remote systems via a uniform user interface. This simplifies the porting of applications to different systems, because PTP functions as abstraction layer between parallel application developer and compute resources. The common requirement for all PTP components is that they have to interact with the remote supercomputer. E.g. applications are built remotely and performance tools are attached to job submissions and their output data resides on the remote system. Status data has to be collected by evaluating outputs of the remote job scheduler and the parallel debugger needs to control an application executed on the supercomputer. The challenge is to provide this functionality for peta-scale systems in real-time. The client server architecture of the established monitoring application LLview, developed by the JSC, can be applied to PTP's system monitoring. LLview provides a well-arranged overview of the supercomputer's current status. A set of statistics, a list of running and queued jobs as well as a node display mapping running jobs to their compute resources form the user display of LLview. These monitoring features have to be integrated into the development environment. Besides showing the current status PTP's monitoring also needs to allow for submitting and canceling user jobs. Monitoring peta-scale systems especially deals with presenting the large amount of status data in a useful manner. Users require to select arbitrary levels of detail. The monitoring views have to provide a quick overview of the system state, but also need to allow for zooming into specific parts of the system, into which the user is interested in. At present, the major batch systems running on supercomputers are PBS, TORQUE, ALPS and LoadLeveler, which have to be supported by both the monitoring and the job controlling component. Finally, PTP needs to be designed as generic as possible, so that it can be extended for future batch systems.« less

  2. Integration of PanDA workload management system with Titan supercomputer at OLCF

    NASA Astrophysics Data System (ADS)

    De, K.; Klimentov, A.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Schovancova, J.; Vaniachine, A.; Wenaus, T.

    2015-12-01

    The PanDA (Production and Distributed Analysis) workload management system (WMS) was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. While PanDA currently distributes jobs to more than 100,000 cores at well over 100 Grid sites, the future LHC data taking runs will require more resources than Grid computing can possibly provide. To alleviate these challenges, ATLAS is engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF). The current approach utilizes a modified PanDA pilot framework for job submission to Titan's batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on Titan's multicore worker nodes. It also gives PanDA new capability to collect, in real time, information about unused worker nodes on Titan, which allows precise definition of the size and duration of jobs submitted to Titan according to available free resources. This capability significantly reduces PanDA job wait time while improving Titan's utilization efficiency. This implementation was tested with a variety of Monte-Carlo workloads on Titan and is being tested on several other supercomputing platforms. Notice: This manuscript has been authored, by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  3. The computational future for climate and Earth system models: on the path to petaflop and beyond.

    PubMed

    Washington, Warren M; Buja, Lawrence; Craig, Anthony

    2009-03-13

    The development of the climate and Earth system models has had a long history, starting with the building of individual atmospheric, ocean, sea ice, land vegetation, biogeochemical, glacial and ecological model components. The early researchers were much aware of the long-term goal of building the Earth system models that would go beyond what is usually included in the climate models by adding interactive biogeochemical interactions. In the early days, the progress was limited by computer capability, as well as by our knowledge of the physical and chemical processes. Over the last few decades, there has been much improved knowledge, better observations for validation and more powerful supercomputer systems that are increasingly meeting the new challenges of comprehensive models. Some of the climate model history will be presented, along with some of the successes and difficulties encountered with present-day supercomputer systems.

  4. Impact of the Columbia Supercomputer on NASA Space and Exploration Mission

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Kwak, Dochan; Kiris, Cetin; Lawrence, Scott

    2006-01-01

    NASA's 10,240-processor Columbia supercomputer gained worldwide recognition in 2004 for increasing the space agency's computing capability ten-fold, and enabling U.S. scientists and engineers to perform significant, breakthrough simulations. Columbia has amply demonstrated its capability to accelerate NASA's key missions, including space operations, exploration systems, science, and aeronautics. Columbia is part of an integrated high-end computing (HEC) environment comprised of massive storage and archive systems, high-speed networking, high-fidelity modeling and simulation tools, application performance optimization, and advanced data analysis and visualization. In this paper, we illustrate the impact Columbia is having on NASA's numerous space and exploration applications, such as the development of the Crew Exploration and Launch Vehicles (CEV/CLV), effects of long-duration human presence in space, and damage assessment and repair recommendations for remaining shuttle flights. We conclude by discussing HEC challenges that must be overcome to solve space-related science problems in the future.

  5. 48 CFR 225.7012 - Restriction on supercomputers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Restriction on supercomputers. 225.7012 Section 225.7012 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS... supercomputers. ...

  6. 48 CFR 225.7012 - Restriction on supercomputers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Restriction on supercomputers. 225.7012 Section 225.7012 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS... supercomputers. ...

  7. 48 CFR 225.7012 - Restriction on supercomputers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Restriction on supercomputers. 225.7012 Section 225.7012 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS... supercomputers. ...

  8. 48 CFR 225.7012 - Restriction on supercomputers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Restriction on supercomputers. 225.7012 Section 225.7012 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS... supercomputers. ...

  9. 48 CFR 225.7012 - Restriction on supercomputers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Restriction on supercomputers. 225.7012 Section 225.7012 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS... supercomputers. ...

  10. Automatic discovery of the communication network topology for building a supercomputer model

    NASA Astrophysics Data System (ADS)

    Sobolev, Sergey; Stefanov, Konstantin; Voevodin, Vadim

    2016-10-01

    The Research Computing Center of Lomonosov Moscow State University is developing the Octotron software suite for automatic monitoring and mitigation of emergency situations in supercomputers so as to maximize hardware reliability. The suite is based on a software model of the supercomputer. The model uses a graph to describe the computing system components and their interconnections. One of the most complex components of a supercomputer that needs to be included in the model is its communication network. This work describes the proposed approach for automatically discovering the Ethernet communication network topology in a supercomputer and its description in terms of the Octotron model. This suite automatically detects computing nodes and switches, collects information about them and identifies their interconnections. The application of this approach is demonstrated on the "Lomonosov" and "Lomonosov-2" supercomputers.

  11. TOP500 Supercomputers for June 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack

    2004-06-23

    23rd Edition of TOP500 List of World's Fastest Supercomputers Released: Japan's Earth Simulator Enters Third Year in Top Position MANNHEIM, Germany; KNOXVILLE, Tenn.;&BERKELEY, Calif. In what has become a closely watched event in the world of high-performance computing, the 23rd edition of the TOP500 list of the world's fastest supercomputers was released today (June 23, 2004) at the International Supercomputer Conference in Heidelberg, Germany.

  12. Automotive applications of superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginsberg, M.

    1987-01-01

    These proceedings compile papers on supercomputers in the automobile industry. Titles include: An automotive engineer's guide to the effective use of scalar, vector, and parallel computers; fluid mechanics, finite elements, and supercomputers; and Automotive crashworthiness performance on a supercomputer.

  13. Essential issues in multiprocessor systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gajski, D.D.; Peir, J.K.

    1985-06-01

    During the past several years, a great number of proposals have been made with the objective to increase supercomputer performance by an order of magnitude on the basis of a utilization of new computer architectures. The present paper is concerned with a suitable classification scheme for comparing these architectures. It is pointed out that there are basically four schools of thought as to the most important factor for an enhancement of computer performance. According to one school, the development of faster circuits will make it possible to retain present architectures, except, possibly, for a mechanism providing synchronization of parallel processes.more » A second school assigns priority to the optimization and vectorization of compilers, which will detect parallelism and help users to write better parallel programs. A third school believes in the predominant importance of new parallel algorithms, while the fourth school supports new models of computation. The merits of the four approaches are critically evaluated. 50 references.« less

  14. Improved Access to Supercomputers Boosts Chemical Applications.

    ERIC Educational Resources Information Center

    Borman, Stu

    1989-01-01

    Supercomputing is described in terms of computing power and abilities. The increase in availability of supercomputers for use in chemical calculations and modeling are reported. Efforts of the National Science Foundation and Cray Research are highlighted. (CW)

  15. Scientific Visualization in High Speed Network Environments

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi; Kutler, Paul (Technical Monitor)

    1997-01-01

    In several cases, new visualization techniques have vastly increased the researcher's ability to analyze and comprehend data. Similarly, the role of networks in providing an efficient supercomputing environment have become more critical and continue to grow at a faster rate than the increase in the processing capabilities of supercomputers. A close relationship between scientific visualization and high-speed networks in providing an important link to support efficient supercomputing is identified. The two technologies are driven by the increasing complexities and volume of supercomputer data. The interaction of scientific visualization and high-speed networks in a Computational Fluid Dynamics simulation/visualization environment are given. Current capabilities supported by high speed networks, supercomputers, and high-performance graphics workstations at the Numerical Aerodynamic Simulation Facility (NAS) at NASA Ames Research Center are described. Applied research in providing a supercomputer visualization environment to support future computational requirements are summarized.

  16. Towards Efficient Supercomputing: Searching for the Right Efficiency Metric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Chung-Hsing; Kuehn, Jeffery A; Poole, Stephen W

    2012-01-01

    The efficiency of supercomputing has traditionally been in the execution time. In early 2000 s, the concept of total cost of ownership was re-introduced, with the introduction of efficiency measure to include aspects such as energy and space. Yet the supercomputing community has never agreed upon a metric that can cover these aspects altogether and also provide a fair basis for comparison. This paper exam- ines the metrics that have been proposed in the past decade, and proposes a vector-valued metric for efficient supercom- puting. Using this metric, the paper presents a study of where the supercomputing industry has beenmore » and how it stands today with respect to efficient supercomputing.« less

  17. NASA's supercomputing experience

    NASA Technical Reports Server (NTRS)

    Bailey, F. Ron

    1990-01-01

    A brief overview of NASA's recent experience in supercomputing is presented from two perspectives: early systems development and advanced supercomputing applications. NASA's role in supercomputing systems development is illustrated by discussion of activities carried out by the Numerical Aerodynamical Simulation Program. Current capabilities in advanced technology applications are illustrated with examples in turbulence physics, aerodynamics, aerothermodynamics, chemistry, and structural mechanics. Capabilities in science applications are illustrated by examples in astrophysics and atmospheric modeling. Future directions and NASA's new High Performance Computing Program are briefly discussed.

  18. OpenMP Performance on the Columbia Supercomputer

    NASA Technical Reports Server (NTRS)

    Haoqiang, Jin; Hood, Robert

    2005-01-01

    This presentation discusses Columbia World Class Supercomputer which is one of the world's fastest supercomputers providing 61 TFLOPs (10/20/04). Conceived, designed, built, and deployed in just 120 days. A 20-node supercomputer built on proven 512-processor nodes. The largest SGI system in the world with over 10,000 Intel Itanium 2 processors and provides the largest node size incorporating commodity parts (512) and the largest shared-memory environment (2048) with 88% efficiency tops the scalar systems on the Top500 list.

  19. Supercomputer networking for space science applications

    NASA Technical Reports Server (NTRS)

    Edelson, B. I.

    1992-01-01

    The initial design of a supercomputer network topology including the design of the communications nodes along with the communications interface hardware and software is covered. Several space science applications that are proposed experiments by GSFC and JPL for a supercomputer network using the NASA ACTS satellite are also reported.

  20. Remote visual analysis of large turbulence databases at multiple scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pulido, Jesus; Livescu, Daniel; Kanov, Kalin

    The remote analysis and visualization of raw large turbulence datasets is challenging. Current accurate direct numerical simulations (DNS) of turbulent flows generate datasets with billions of points per time-step and several thousand time-steps per simulation. Until recently, the analysis and visualization of such datasets was restricted to scientists with access to large supercomputers. The public Johns Hopkins Turbulence database simplifies access to multi-terabyte turbulence datasets and facilitates the computation of statistics and extraction of features through the use of commodity hardware. In this paper, we present a framework designed around wavelet-based compression for high-speed visualization of large datasets and methodsmore » supporting multi-resolution analysis of turbulence. By integrating common technologies, this framework enables remote access to tools available on supercomputers and over 230 terabytes of DNS data over the Web. Finally, the database toolset is expanded by providing access to exploratory data analysis tools, such as wavelet decomposition capabilities and coherent feature extraction.« less

  1. Portable implementation model for CFD simulations. Application to hybrid CPU/GPU supercomputers

    NASA Astrophysics Data System (ADS)

    Oyarzun, Guillermo; Borrell, Ricard; Gorobets, Andrey; Oliva, Assensi

    2017-10-01

    Nowadays, high performance computing (HPC) systems experience a disruptive moment with a variety of novel architectures and frameworks, without any clarity of which one is going to prevail. In this context, the portability of codes across different architectures is of major importance. This paper presents a portable implementation model based on an algebraic operational approach for direct numerical simulation (DNS) and large eddy simulation (LES) of incompressible turbulent flows using unstructured hybrid meshes. The strategy proposed consists in representing the whole time-integration algorithm using only three basic algebraic operations: sparse matrix-vector product, a linear combination of vectors and dot product. The main idea is based on decomposing the nonlinear operators into a concatenation of two SpMV operations. This provides high modularity and portability. An exhaustive analysis of the proposed implementation for hybrid CPU/GPU supercomputers has been conducted with tests using up to 128 GPUs. The main objective consists in understanding the challenges of implementing CFD codes on new architectures.

  2. Collaborative Supercomputing for Global Change Science

    NASA Astrophysics Data System (ADS)

    Nemani, R.; Votava, P.; Michaelis, A.; Melton, F.; Milesi, C.

    2011-03-01

    There is increasing pressure on the science community not only to understand how recent and projected changes in climate will affect Earth's global environment and the natural resources on which society depends but also to design solutions to mitigate or cope with the likely impacts. Responding to this multidimensional challenge requires new tools and research frameworks that assist scientists in collaborating to rapidly investigate complex interdisciplinary science questions of critical societal importance. One such collaborative research framework, within the NASA Earth sciences program, is the NASA Earth Exchange (NEX). NEX combines state-of-the-art supercomputing, Earth system modeling, remote sensing data from NASA and other agencies, and a scientific social networking platform to deliver a complete work environment. In this platform, users can explore and analyze large Earth science data sets, run modeling codes, collaborate on new or existing projects, and share results within or among communities (see Figure S1 in the online supplement to this Eos issue (http://www.agu.org/eos_elec)).

  3. Remote visual analysis of large turbulence databases at multiple scales

    DOE PAGES

    Pulido, Jesus; Livescu, Daniel; Kanov, Kalin; ...

    2018-06-15

    The remote analysis and visualization of raw large turbulence datasets is challenging. Current accurate direct numerical simulations (DNS) of turbulent flows generate datasets with billions of points per time-step and several thousand time-steps per simulation. Until recently, the analysis and visualization of such datasets was restricted to scientists with access to large supercomputers. The public Johns Hopkins Turbulence database simplifies access to multi-terabyte turbulence datasets and facilitates the computation of statistics and extraction of features through the use of commodity hardware. In this paper, we present a framework designed around wavelet-based compression for high-speed visualization of large datasets and methodsmore » supporting multi-resolution analysis of turbulence. By integrating common technologies, this framework enables remote access to tools available on supercomputers and over 230 terabytes of DNS data over the Web. Finally, the database toolset is expanded by providing access to exploratory data analysis tools, such as wavelet decomposition capabilities and coherent feature extraction.« less

  4. Most Social Scientists Shun Free Use of Supercomputers.

    ERIC Educational Resources Information Center

    Kiernan, Vincent

    1998-01-01

    Social scientists, who frequently complain that the federal government spends too little on them, are passing up what scholars in the physical and natural sciences see as the government's best give-aways: free access to supercomputers. Some social scientists say the supercomputers are difficult to use; others find desktop computers provide…

  5. A fault tolerant spacecraft supercomputer to enable a new class of scientific discovery

    NASA Technical Reports Server (NTRS)

    Katz, D. S.; McVittie, T. I.; Silliman, A. G., Jr.

    2000-01-01

    The goal of the Remote Exploration and Experimentation (REE) Project is to move supercomputeing into space in a coste effective manner and to allow the use of inexpensive, state of the art, commercial-off-the-shelf components and subsystems in these space-based supercomputers.

  6. TOP500 Supercomputers for November 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack

    2003-11-16

    22nd Edition of TOP500 List of World s Fastest Supercomputers Released MANNHEIM, Germany; KNOXVILLE, Tenn.; BERKELEY, Calif. In what has become a much-anticipated event in the world of high-performance computing, the 22nd edition of the TOP500 list of the worlds fastest supercomputers was released today (November 16, 2003). The Earth Simulator supercomputer retains the number one position with its Linpack benchmark performance of 35.86 Tflop/s (''teraflops'' or trillions of calculations per second). It was built by NEC and installed last year at the Earth Simulator Center in Yokohama, Japan.

  7. Some Problems and Solutions in Transferring Ecosystem Simulation Codes to Supercomputers

    NASA Technical Reports Server (NTRS)

    Skiles, J. W.; Schulbach, C. H.

    1994-01-01

    Many computer codes for the simulation of ecological systems have been developed in the last twenty-five years. This development took place initially on main-frame computers, then mini-computers, and more recently, on micro-computers and workstations. Recent recognition of ecosystem science as a High Performance Computing and Communications Program Grand Challenge area emphasizes supercomputers (both parallel and distributed systems) as the next set of tools for ecological simulation. Transferring ecosystem simulation codes to such systems is not a matter of simply compiling and executing existing code on the supercomputer since there are significant differences in the system architectures of sequential, scalar computers and parallel and/or vector supercomputers. To more appropriately match the application to the architecture (necessary to achieve reasonable performance), the parallelism (if it exists) of the original application must be exploited. We discuss our work in transferring a general grassland simulation model (developed on a VAX in the FORTRAN computer programming language) to a Cray Y-MP. We show the Cray shared-memory vector-architecture, and discuss our rationale for selecting the Cray. We describe porting the model to the Cray and executing and verifying a baseline version, and we discuss the changes we made to exploit the parallelism in the application and to improve code execution. As a result, the Cray executed the model 30 times faster than the VAX 11/785 and 10 times faster than a Sun 4 workstation. We achieved an additional speed-up of approximately 30 percent over the original Cray run by using the compiler's vectorizing capabilities and the machine's ability to put subroutines and functions "in-line" in the code. With the modifications, the code still runs at only about 5% of the Cray's peak speed because it makes ineffective use of the vector processing capabilities of the Cray. We conclude with a discussion and future plans.

  8. Portable Map-Reduce Utility for MIT SuperCloud Environment

    DTIC Science & Technology

    2015-09-17

    Reuther, A. Rosa, C. Yee, “Driving Big Data With Big Compute,” IEEE HPEC, Sep 10-12, 2012, Waltham, MA. [6] Apache Hadoop 1.2.1 Documentation: HDFS... big data architecture, which is designed to address these challenges, is made of the computing resources, scheduler, central storage file system...databases, analytics software and web interfaces [1]. These components are common to many big data and supercomputing systems. The platform is

  9. Distributed user services for supercomputers

    NASA Technical Reports Server (NTRS)

    Sowizral, Henry A.

    1989-01-01

    User-service operations at supercomputer facilities are examined. The question is whether a single, possibly distributed, user-services organization could be shared by NASA's supercomputer sites in support of a diverse, geographically dispersed, user community. A possible structure for such an organization is identified as well as some of the technologies needed in operating such an organization.

  10. Demonstration of Cost-Effective, High-Performance Computing at Performance and Reliability Levels Equivalent to a 1994 Vector Supercomputer

    NASA Technical Reports Server (NTRS)

    Babrauckas, Theresa

    2000-01-01

    The Affordable High Performance Computing (AHPC) project demonstrated that high-performance computing based on a distributed network of computer workstations is a cost-effective alternative to vector supercomputers for running CPU and memory intensive design and analysis tools. The AHPC project created an integrated system called a Network Supercomputer. By connecting computer work-stations through a network and utilizing the workstations when they are idle, the resulting distributed-workstation environment has the same performance and reliability levels as the Cray C90 vector Supercomputer at less than 25 percent of the C90 cost. In fact, the cost comparison between a Cray C90 Supercomputer and Sun workstations showed that the number of distributed networked workstations equivalent to a C90 costs approximately 8 percent of the C90.

  11. (Extreme) Core-collapse Supernova Simulations

    NASA Astrophysics Data System (ADS)

    Mösta, Philipp

    2017-01-01

    In this talk I will present recent progress on modeling core-collapse supernovae with massively parallel simulations on the largest supercomputers available. I will discuss the unique challenges in both input physics and computational modeling that come with a problem involving all four fundamental forces and relativistic effects and will highlight recent breakthroughs overcoming these challenges in full 3D simulations. I will pay particular attention to how these simulations can be used to reveal the engines driving some of the most extreme explosions and conclude by discussing what remains to be done in simulation work to maximize what we can learn from current and future time-domain astronomy transient surveys.

  12. Will Moores law be sufficient?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeBenedictis, Erik P.

    2004-07-01

    It seems well understood that supercomputer simulation is an enabler for scientific discoveries, weapons, and other activities of value to society. It also seems widely believed that Moore's Law will make progressively more powerful supercomputers over time and thus enable more of these contributions. This paper seeks to add detail to these arguments, revealing them to be generally correct but not a smooth and effortless progression. This paper will review some key problems that can be solved with supercomputer simulation, showing that more powerful supercomputers will be useful up to a very high yet finite limit of around 1021 FLOPSmore » (1 Zettaflops) . The review will also show the basic nature of these extreme problems. This paper will review work by others showing that the theoretical maximum supercomputer power is very high indeed, but will explain how a straightforward extrapolation of Moore's Law will lead to technological maturity in a few decades. The power of a supercomputer at the maturity of Moore's Law will be very high by today's standards at 1016-1019 FLOPS (100 Petaflops to 10 Exaflops), depending on architecture, but distinctly below the level required for the most ambitious applications. Having established that Moore's Law will not be that last word in supercomputing, this paper will explore the nearer term issue of what a supercomputer will look like at maturity of Moore's Law. Our approach will quantify the maximum performance as permitted by the laws of physics for extension of current technology and then find a design that approaches this limit closely. We study a 'multi-architecture' for supercomputers that combines a microprocessor with other 'advanced' concepts and find it can reach the limits as well. This approach should be quite viable in the future because the microprocessor would provide compatibility with existing codes and programming styles while the 'advanced' features would provide a boost to the limits of performance.« less

  13. Aqueous Cation-Amide Binding: Free Energies and IR Spectral Signatures by Ab Initio Molecular Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pluharova, Eva; Baer, Marcel D.; Mundy, Christopher J.

    2014-07-03

    Understanding specific ion effects on proteins remains a considerable challenge. N-methylacetamide serves as a useful proxy for the protein backbone that can be well characterized both experimentally and theoretically. The spectroscopic signatures in the amide I band reflecting the strength of the interaction of alkali cations and alkali earth dications with the carbonyl group remain difficult to assign and controversial to interpret. Herein, we directly compute the IR shifts corresponding to the binding of either sodium or calcium to aqueous N-methylacetamide using ab initio molecular dynamics simulations. We show that the two cations interact with aqueous N-methylacetamide with different affinitiesmore » and in different geometries. Since sodium exhibits a weak interaction with the carbonyl group, the resulting amide I band is similar to an unperturbed carbonyl group undergoing aqueous solvation. In contrast, the stronger calcium binding results in a clear IR shift with respect to N-methylacetamide in pure water. Support from the Czech Ministry of Education (grant LH12001) is gratefully acknowledged. EP thanks the International Max-Planck Research School for support and the Alternative Sponsored Fellowship program at Pacific Northwest National Laboratory (PNNL). PJ acknowledges the Praemium Academie award from the Academy of Sciences. Calculations of the free energy profiles were made possible through generous allocation of computer time from the North-German Supercomputing Alliance (HLRN). Calculations of vibrational spectra were performed in part using the computational resources in the National Energy Research Supercomputing Center (NERSC) at Lawrence Berkeley National Laboratory. This work was supported by National Science Foundation grant CHE-0431312. CJM is supported by the U.S. Department of Energy`s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. PNNL is operated for the Department of Energy by Battelle. MDB is grateful for the support of the Linus Pauling Distinguished Postdoctoral Fellowship Program at PNNL.« less

  14. Qualifying for the Green500: Experience with the newest generation of supercomputers at LANL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yilk, Todd

    The High Performance Computing Division of Los Alamos National Laboratory recently brought four new supercomputing platforms on line: Trinity with separate partitions built around the Haswell and Knights Landing CPU architectures for capability computing and Grizzly, Fire, and Ice for capacity computing applications. The power monitoring infrastructure of these machines is significantly enhanced over previous supercomputing generations at LANL and all were qualified at the highest level of the Green500 benchmark. Here, this paper discusses supercomputing at LANL, the Green500 benchmark, and notes on our experience meeting the Green500's reporting requirements.

  15. Qualifying for the Green500: Experience with the newest generation of supercomputers at LANL

    DOE PAGES

    Yilk, Todd

    2018-02-17

    The High Performance Computing Division of Los Alamos National Laboratory recently brought four new supercomputing platforms on line: Trinity with separate partitions built around the Haswell and Knights Landing CPU architectures for capability computing and Grizzly, Fire, and Ice for capacity computing applications. The power monitoring infrastructure of these machines is significantly enhanced over previous supercomputing generations at LANL and all were qualified at the highest level of the Green500 benchmark. Here, this paper discusses supercomputing at LANL, the Green500 benchmark, and notes on our experience meeting the Green500's reporting requirements.

  16. Non-preconditioned conjugate gradient on cell and FPGA based hybrid supercomputer nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubois, David H; Dubois, Andrew J; Boorman, Thomas M

    2009-01-01

    This work presents a detailed implementation of a double precision, non-preconditioned, Conjugate Gradient algorithm on a Roadrunner heterogeneous supercomputer node. These nodes utilize the Cell Broadband Engine Architecture{sup TM} in conjunction with x86 Opteron{sup TM} processors from AMD. We implement a common Conjugate Gradient algorithm, on a variety of systems, to compare and contrast performance. Implementation results are presented for the Roadrunner hybrid supercomputer, SRC Computers, Inc. MAPStation SRC-6 FPGA enhanced hybrid supercomputer, and AMD Opteron only. In all hybrid implementations wall clock time is measured, including all transfer overhead and compute timings.

  17. Non-preconditioned conjugate gradient on cell and FPCA-based hybrid supercomputer nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubois, David H; Dubois, Andrew J; Boorman, Thomas M

    2009-03-10

    This work presents a detailed implementation of a double precision, Non-Preconditioned, Conjugate Gradient algorithm on a Roadrunner heterogeneous supercomputer node. These nodes utilize the Cell Broadband Engine Architecture{trademark} in conjunction with x86 Opteron{trademark} processors from AMD. We implement a common Conjugate Gradient algorithm, on a variety of systems, to compare and contrast performance. Implementation results are presented for the Roadrunner hybrid supercomputer, SRC Computers, Inc. MAPStation SRC-6 FPGA enhanced hybrid supercomputer, and AMD Opteron only. In all hybrid implementations wall clock time is measured, including all transfer overhead and compute timings.

  18. High-Performance Computing: Industry Uses of Supercomputers and High-Speed Networks. Report to Congressional Requesters.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC. Information Management and Technology Div.

    This report was prepared in response to a request for information on supercomputers and high-speed networks from the Senate Committee on Commerce, Science, and Transportation, and the House Committee on Science, Space, and Technology. The following information was requested: (1) examples of how various industries are using supercomputers to…

  19. Supercomputer Provides Molecular Insight into Cellulose (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-02-01

    Groundbreaking research at the National Renewable Energy Laboratory (NREL) has used supercomputing simulations to calculate the work that enzymes must do to deconstruct cellulose, which is a fundamental step in biomass conversion technologies for biofuels production. NREL used the new high-performance supercomputer Red Mesa to conduct several million central processing unit (CPU) hours of simulation.

  20. GREEN SUPERCOMPUTING IN A DESKTOP BOX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HSU, CHUNG-HSING; FENG, WU-CHUN; CHING, AVERY

    2007-01-17

    The computer workstation, introduced by Sun Microsystems in 1982, was the tool of choice for scientists and engineers as an interactive computing environment for the development of scientific codes. However, by the mid-1990s, the performance of workstations began to lag behind high-end commodity PCs. This, coupled with the disappearance of BSD-based operating systems in workstations and the emergence of Linux as an open-source operating system for PCs, arguably led to the demise of the workstation as we knew it. Around the same time, computational scientists started to leverage PCs running Linux to create a commodity-based (Beowulf) cluster that provided dedicatedmore » computer cycles, i.e., supercomputing for the rest of us, as a cost-effective alternative to large supercomputers, i.e., supercomputing for the few. However, as the cluster movement has matured, with respect to cluster hardware and open-source software, these clusters have become much more like their large-scale supercomputing brethren - a shared (and power-hungry) datacenter resource that must reside in a machine-cooled room in order to operate properly. Consequently, the above observations, when coupled with the ever-increasing performance gap between the PC and cluster supercomputer, provide the motivation for a 'green' desktop supercomputer - a turnkey solution that provides an interactive and parallel computing environment with the approximate form factor of a Sun SPARCstation 1 'pizza box' workstation. In this paper, they present the hardware and software architecture of such a solution as well as its prowess as a developmental platform for parallel codes. In short, imagine a 12-node personal desktop supercomputer that achieves 14 Gflops on Linpack but sips only 185 watts of power at load, resulting in a performance-power ratio that is over 300% better than their reference SMP platform.« less

  1. Challenges and opportunities of cloud computing for atmospheric sciences

    NASA Astrophysics Data System (ADS)

    Pérez Montes, Diego A.; Añel, Juan A.; Pena, Tomás F.; Wallom, David C. H.

    2016-04-01

    Cloud computing is an emerging technological solution widely used in many fields. Initially developed as a flexible way of managing peak demand it has began to make its way in scientific research. One of the greatest advantages of cloud computing for scientific research is independence of having access to a large cyberinfrastructure to fund or perform a research project. Cloud computing can avoid maintenance expenses for large supercomputers and has the potential to 'democratize' the access to high-performance computing, giving flexibility to funding bodies for allocating budgets for the computational costs associated with a project. Two of the most challenging problems in atmospheric sciences are computational cost and uncertainty in meteorological forecasting and climate projections. Both problems are closely related. Usually uncertainty can be reduced with the availability of computational resources to better reproduce a phenomenon or to perform a larger number of experiments. Here we expose results of the application of cloud computing resources for climate modeling using cloud computing infrastructures of three major vendors and two climate models. We show how the cloud infrastructure compares in performance to traditional supercomputers and how it provides the capability to complete experiments in shorter periods of time. The monetary cost associated is also analyzed. Finally we discuss the future potential of this technology for meteorological and climatological applications, both from the point of view of operational use and research.

  2. Input/output behavior of supercomputing applications

    NASA Technical Reports Server (NTRS)

    Miller, Ethan L.

    1991-01-01

    The collection and analysis of supercomputer I/O traces and their use in a collection of buffering and caching simulations are described. This serves two purposes. First, it gives a model of how individual applications running on supercomputers request file system I/O, allowing system designer to optimize I/O hardware and file system algorithms to that model. Second, the buffering simulations show what resources are needed to maximize the CPU utilization of a supercomputer given a very bursty I/O request rate. By using read-ahead and write-behind in a large solid stated disk, one or two applications were sufficient to fully utilize a Cray Y-MP CPU.

  3. Prospects for Boiling of Subcooled Dielectric Liquids for Supercomputer Cooling

    NASA Astrophysics Data System (ADS)

    Zeigarnik, Yu. A.; Vasil'ev, N. V.; Druzhinin, E. A.; Kalmykov, I. V.; Kosoi, A. S.; Khodakov, K. A.

    2018-02-01

    It is shown experimentally that using forced-convection boiling of dielectric coolants of the Novec 649 Refrigerant subcooled relative to the saturation temperature makes possible removing heat flow rates up to 100 W/cm2 from modern supercomputer chip interface. This fact creates prerequisites for the application of dielectric liquids in cooling systems of modern supercomputers with increased requirements for their operating reliability.

  4. National Test Facility civilian agency use of supercomputers not feasible

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-01

    Based on interviews with civilian agencies cited in the House report (DOE, DoEd, HHS, FEMA, NOAA), none would be able to make effective use of NTF`s excess supercomputing capabilities. These agencies stated they could not use the resources primarily because (1) NTF`s supercomputers are older machines whose performance and costs cannot match those of more advanced computers available from other sources and (2) some agencies have not yet developed applications requiring supercomputer capabilities or do not have funding to support such activities. In addition, future support for the hardware and software at NTF is uncertain, making any investment by anmore » outside user risky.« less

  5. Kriging for Spatial-Temporal Data on the Bridges Supercomputer

    NASA Astrophysics Data System (ADS)

    Hodgess, E. M.

    2017-12-01

    Currently, kriging of spatial-temporal data is slow and limited to relatively small vector sizes. We have developed a method on the Bridges supercomputer, at the Pittsburgh supercomputer center, which uses a combination of the tools R, Fortran, the Message Passage Interface (MPI), OpenACC, and special R packages for big data. This combination of tools now permits us to complete tasks which could previously not be completed, or takes literally hours to complete. We ran simulation studies from a laptop against the supercomputer. We also look at "real world" data sets, such as the Irish wind data, and some weather data. We compare the timings. We note that the timings are suprising good.

  6. Multiple DNA and protein sequence alignment on a workstation and a supercomputer.

    PubMed

    Tajima, K

    1988-11-01

    This paper describes a multiple alignment method using a workstation and supercomputer. The method is based on the alignment of a set of aligned sequences with the new sequence, and uses a recursive procedure of such alignment. The alignment is executed in a reasonable computation time on diverse levels from a workstation to a supercomputer, from the viewpoint of alignment results and computational speed by parallel processing. The application of the algorithm is illustrated by several examples of multiple alignment of 12 amino acid and DNA sequences of HIV (human immunodeficiency virus) env genes. Colour graphic programs on a workstation and parallel processing on a supercomputer are discussed.

  7. Topical perspective on massive threading and parallelism.

    PubMed

    Farber, Robert M

    2011-09-01

    Unquestionably computer architectures have undergone a recent and noteworthy paradigm shift that now delivers multi- and many-core systems with tens to many thousands of concurrent hardware processing elements per workstation or supercomputer node. GPGPU (General Purpose Graphics Processor Unit) technology in particular has attracted significant attention as new software development capabilities, namely CUDA (Compute Unified Device Architecture) and OpenCL™, have made it possible for students as well as small and large research organizations to achieve excellent speedup for many applications over more conventional computing architectures. The current scientific literature reflects this shift with numerous examples of GPGPU applications that have achieved one, two, and in some special cases, three-orders of magnitude increased computational performance through the use of massive threading to exploit parallelism. Multi-core architectures are also evolving quickly to exploit both massive-threading and massive-parallelism such as the 1.3 million threads Blue Waters supercomputer. The challenge confronting scientists in planning future experimental and theoretical research efforts--be they individual efforts with one computer or collaborative efforts proposing to use the largest supercomputers in the world is how to capitalize on these new massively threaded computational architectures--especially as not all computational problems will scale to massive parallelism. In particular, the costs associated with restructuring software (and potentially redesigning algorithms) to exploit the parallelism of these multi- and many-threaded machines must be considered along with application scalability and lifespan. This perspective is an overview of the current state of threading and parallelize with some insight into the future. Published by Elsevier Inc.

  8. Parallel Multivariate Spatio-Temporal Clustering of Large Ecological Datasets on Hybrid Supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sreepathi, Sarat; Kumar, Jitendra; Mills, Richard T.

    A proliferation of data from vast networks of remote sensing platforms (satellites, unmanned aircraft systems (UAS), airborne etc.), observational facilities (meteorological, eddy covariance etc.), state-of-the-art sensors, and simulation models offer unprecedented opportunities for scientific discovery. Unsupervised classification is a widely applied data mining approach to derive insights from such data. However, classification of very large data sets is a complex computational problem that requires efficient numerical algorithms and implementations on high performance computing (HPC) platforms. Additionally, increasing power, space, cooling and efficiency requirements has led to the deployment of hybrid supercomputing platforms with complex architectures and memory hierarchies like themore » Titan system at Oak Ridge National Laboratory. The advent of such accelerated computing architectures offers new challenges and opportunities for big data analytics in general and specifically, large scale cluster analysis in our case. Although there is an existing body of work on parallel cluster analysis, those approaches do not fully meet the needs imposed by the nature and size of our large data sets. Moreover, they had scaling limitations and were mostly limited to traditional distributed memory computing platforms. We present a parallel Multivariate Spatio-Temporal Clustering (MSTC) technique based on k-means cluster analysis that can target hybrid supercomputers like Titan. We developed a hybrid MPI, CUDA and OpenACC implementation that can utilize both CPU and GPU resources on computational nodes. We describe performance results on Titan that demonstrate the scalability and efficacy of our approach in processing large ecological data sets.« less

  9. Supercomputing in Aerospace

    NASA Technical Reports Server (NTRS)

    Kutler, Paul; Yee, Helen

    1987-01-01

    Topics addressed include: numerical aerodynamic simulation; computational mechanics; supercomputers; aerospace propulsion systems; computational modeling in ballistics; turbulence modeling; computational chemistry; computational fluid dynamics; and computational astrophysics.

  10. Simulations of Hurricane Katrina (2005) with the 0.125 degree finite-volume General Circulation Model on the NASA Columbia Supercomputer

    NASA Technical Reports Server (NTRS)

    Shen, B.-W.; Atlas, R.; Reale, O.; Lin, S.-J.; Chern, J.-D.; Chang, J.; Henze, C.

    2006-01-01

    Hurricane Katrina was the sixth most intense hurricane in the Atlantic. Katrina's forecast poses major challenges, the most important of which is its rapid intensification. Hurricane intensity forecast with General Circulation Models (GCMs) is difficult because of their coarse resolution. In this article, six 5-day simulations with the ultra-high resolution finite-volume GCM are conducted on the NASA Columbia supercomputer to show the effects of increased resolution on the intensity predictions of Katrina. It is found that the 0.125 degree runs give comparable tracks to the 0.25 degree, but provide better intensity forecasts, bringing the center pressure much closer to observations with differences of only plus or minus 12 hPa. In the runs initialized at 1200 UTC 25 AUG, the 0.125 degree simulates a more realistic intensification rate and better near-eye wind distributions. Moreover, the first global 0.125 degree simulation without convection parameterization (CP) produces even better intensity evolution and near-eye winds than the control run with CP.

  11. High Performance Distributed Computing in a Supercomputer Environment: Computational Services and Applications Issues

    NASA Technical Reports Server (NTRS)

    Kramer, Williams T. C.; Simon, Horst D.

    1994-01-01

    This tutorial proposes to be a practical guide for the uninitiated to the main topics and themes of high-performance computing (HPC), with particular emphasis to distributed computing. The intent is first to provide some guidance and directions in the rapidly increasing field of scientific computing using both massively parallel and traditional supercomputers. Because of their considerable potential computational power, loosely or tightly coupled clusters of workstations are increasingly considered as a third alternative to both the more conventional supercomputers based on a small number of powerful vector processors, as well as high massively parallel processors. Even though many research issues concerning the effective use of workstation clusters and their integration into a large scale production facility are still unresolved, such clusters are already used for production computing. In this tutorial we will utilize the unique experience made at the NAS facility at NASA Ames Research Center. Over the last five years at NAS massively parallel supercomputers such as the Connection Machines CM-2 and CM-5 from Thinking Machines Corporation and the iPSC/860 (Touchstone Gamma Machine) and Paragon Machines from Intel were used in a production supercomputer center alongside with traditional vector supercomputers such as the Cray Y-MP and C90.

  12. NAS technical summaries: Numerical aerodynamic simulation program, March 1991 - February 1992

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA created the Numerical Aerodynamic Simulation (NAS) Program in 1987 to focus resources on solving critical problems in aeroscience and related disciplines by utilizing the power of the most advanced supercomputers available. The NAS Program provides scientists with the necessary computing power to solve today's most demanding computational fluid dynamics problems and serves as a pathfinder in integrating leading-edge supercomputing technologies, thus benefiting other supercomputer centers in Government and industry. This report contains selected scientific results from the 1991-92 NAS Operational Year, March 4, 1991 to March 3, 1992, which is the fifth year of operation. During this year, the scientific community was given access to a Cray-2 and a Cray Y-MP. The Cray-2, the first generation supercomputer, has four processors, 256 megawords of central memory, and a total sustained speed of 250 million floating point operations per second. The Cray Y-MP, the second generation supercomputer, has eight processors and a total sustained speed of one billion floating point operations per second. Additional memory was installed this year, doubling capacity from 128 to 256 megawords of solid-state storage-device memory. Because of its higher performance, the Cray Y-MP delivered approximately 77 percent of the total number of supercomputer hours used during this year.

  13. The " Swarm of Ants vs. Herd of Elephants" Debated Revisited: Performance Measurements of PVM-Overflow Across a Wide Spectrum of Architectures

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Jespersen, Dennis; Buning, Peter; Bailey, David (Technical Monitor)

    1996-01-01

    The Gorden Bell Prizes given out at Supercomputing every year includes at least two catergories: performance (highest GFLOP count) and price-performance (GFLOP/million $$) for real applications. In the past five years, the winners of the price-performance categories all came from networks of work-stations. This reflects three important facts: 1. supercomputers are still too expensive for the masses; 2. achieving high performance for real applications takes real work; and, most importantly; 3. it is possible to obtain acceptable performance for certain real applications on network of work stations. With the continued advance of network technology as well as increased performance of "desktop" workstation, the "Swarm of Ants vs. Herd of Elephants" debate, which began with vector multiprocessors (VPPs) against SIMD type multiprocessors (e.g. CM2), is now recast as VPPs against Symetric Multiprocessors (SMPs, e.g. SGI PowerChallenge). This paper reports on performance studies we performed solving a large scale (2-million grid pt.s) CFD problem involving a Boeing 747 based on a parallel version of OVERFLOW that utilizes message passing on PVM. A performance monitoring tool developed under NASA HPCC, called AIMS, was used to instrument and analyze the the performance data thus obtained. We plan to compare its performance data obtained across a wide spectrum of architectures including: the Cray C90, IBM/SP2, SGI/Power Challenge Cluster, to a group of workstations connected over a simple network. The metrics of comparison includes speed-up, price-performance, throughput, and turn-around time. We also plan to present a plan of attack for various issues that will make the execution of Grand Challenge Applications across the Global Information Infrastructure a reality.

  14. Supercomputing '91; Proceedings of the 4th Annual Conference on High Performance Computing, Albuquerque, NM, Nov. 18-22, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Various papers on supercomputing are presented. The general topics addressed include: program analysis/data dependence, memory access, distributed memory code generation, numerical algorithms, supercomputer benchmarks, latency tolerance, parallel programming, applications, processor design, networks, performance tools, mapping and scheduling, characterization affecting performance, parallelism packaging, computing climate change, combinatorial algorithms, hardware and software performance issues, system issues. (No individual items are abstracted in this volume)

  15. Desktop supercomputer: what can it do?

    NASA Astrophysics Data System (ADS)

    Bogdanov, A.; Degtyarev, A.; Korkhov, V.

    2017-12-01

    The paper addresses the issues of solving complex problems that require using supercomputers or multiprocessor clusters available for most researchers nowadays. Efficient distribution of high performance computing resources according to actual application needs has been a major research topic since high-performance computing (HPC) technologies became widely introduced. At the same time, comfortable and transparent access to these resources was a key user requirement. In this paper we discuss approaches to build a virtual private supercomputer available at user's desktop: a virtual computing environment tailored specifically for a target user with a particular target application. We describe and evaluate possibilities to create the virtual supercomputer based on light-weight virtualization technologies, and analyze the efficiency of our approach compared to traditional methods of HPC resource management.

  16. Demonstration of NICT Space Weather Cloud --Integration of Supercomputer into Analysis and Visualization Environment--

    NASA Astrophysics Data System (ADS)

    Watari, S.; Morikawa, Y.; Yamamoto, K.; Inoue, S.; Tsubouchi, K.; Fukazawa, K.; Kimura, E.; Tatebe, O.; Kato, H.; Shimojo, S.; Murata, K. T.

    2010-12-01

    In the Solar-Terrestrial Physics (STP) field, spatio-temporal resolution of computer simulations is getting higher and higher because of tremendous advancement of supercomputers. A more advanced technology is Grid Computing that integrates distributed computational resources to provide scalable computing resources. In the simulation research, it is effective that a researcher oneself designs his physical model, performs calculations with a supercomputer, and analyzes and visualizes for consideration by a familiar method. A supercomputer is far from an analysis and visualization environment. In general, a researcher analyzes and visualizes in the workstation (WS) managed at hand because the installation and the operation of software in the WS are easy. Therefore, it is necessary to copy the data from the supercomputer to WS manually. Time necessary for the data transfer through long delay network disturbs high-accuracy simulations actually. In terms of usefulness, integrating a supercomputer and an analysis and visualization environment seamlessly with a researcher's familiar method is important. NICT has been developing a cloud computing environment (NICT Space Weather Cloud). In the NICT Space Weather Cloud, disk servers are located near its supercomputer and WSs for data analysis and visualization. They are connected to JGN2plus that is high-speed network for research and development. Distributed virtual high-capacity storage is also constructed by Grid Datafarm (Gfarm v2). Huge-size data output from the supercomputer is transferred to the virtual storage through JGN2plus. A researcher can concentrate on the research by a familiar method without regard to distance between a supercomputer and an analysis and visualization environment. Now, total 16 disk servers are setup in NICT headquarters (at Koganei, Tokyo), JGN2plus NOC (at Otemachi, Tokyo), Okinawa Subtropical Environment Remote-Sensing Center, and Cybermedia Center, Osaka University. They are connected on JGN2plus, and they constitute 1PB (physical size) virtual storage by Gfarm v2. These disk servers are connected with supercomputers of NICT and Osaka University. A system that data output from the supercomputers are automatically transferred to the virtual storage had been built up. Transfer rate is about 50 GB/hrs by actual measurement. It is estimated that the performance is reasonable for a certain simulation and analysis for reconstruction of coronal magnetic field. This research is assumed an experiment of the system, and the verification of practicality is advanced at the same time. Herein we introduce an overview of the space weather cloud system so far we have developed. We also demonstrate several scientific results using the space weather cloud system. We also introduce several web applications of the cloud as a service of the space weather cloud, which is named as "e-SpaceWeather" (e-SW). The e-SW provides with a variety of space weather online services from many aspects.

  17. Color graphics, interactive processing, and the supercomputer

    NASA Technical Reports Server (NTRS)

    Smith-Taylor, Rudeen

    1987-01-01

    The development of a common graphics environment for the NASA Langley Research Center user community and the integration of a supercomputer into this environment is examined. The initial computer hardware, the software graphics packages, and their configurations are described. The addition of improved computer graphics capability to the supercomputer, and the utilization of the graphic software and hardware are discussed. Consideration is given to the interactive processing system which supports the computer in an interactive debugging, processing, and graphics environment.

  18. Automated Help System For A Supercomputer

    NASA Technical Reports Server (NTRS)

    Callas, George P.; Schulbach, Catherine H.; Younkin, Michael

    1994-01-01

    Expert-system software developed to provide automated system of user-helping displays in supercomputer system at Ames Research Center Advanced Computer Facility. Users located at remote computer terminals connected to supercomputer and each other via gateway computers, local-area networks, telephone lines, and satellite links. Automated help system answers routine user inquiries about how to use services of computer system. Available 24 hours per day and reduces burden on human experts, freeing them to concentrate on helping users with complicated problems.

  19. NASA Advanced Supercomputing (NAS) User Services Group

    NASA Technical Reports Server (NTRS)

    Pandori, John; Hamilton, Chris; Niggley, C. E.; Parks, John W. (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides an overview of NAS (NASA Advanced Supercomputing), its goals, and its mainframe computer assets. Also covered are its functions, including systems monitoring and technical support.

  20. NSF Commits to Supercomputers.

    ERIC Educational Resources Information Center

    Waldrop, M. Mitchell

    1985-01-01

    The National Science Foundation (NSF) has allocated at least $200 million over the next five years to support four new supercomputer centers. Issues and trends related to this NSF initiative are examined. (JN)

  1. Mira: Argonne's 10-petaflops supercomputer

    ScienceCinema

    Papka, Michael; Coghlan, Susan; Isaacs, Eric; Peters, Mark; Messina, Paul

    2018-02-13

    Mira, Argonne's petascale IBM Blue Gene/Q system, ushers in a new era of scientific supercomputing at the Argonne Leadership Computing Facility. An engineering marvel, the 10-petaflops supercomputer is capable of carrying out 10 quadrillion calculations per second. As a machine for open science, any researcher with a question that requires large-scale computing resources can submit a proposal for time on Mira, typically in allocations of millions of core-hours, to run programs for their experiments. This adds up to billions of hours of computing time per year.

  2. Adventures in Computational Grids

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Sometimes one supercomputer is not enough. Or your local supercomputers are busy, or not configured for your job. Or you don't have any supercomputers. You might be trying to simulate worldwide weather changes in real time, requiring more compute power than you could get from any one machine. Or you might be collecting microbiological samples on an island, and need to examine them with a special microscope located on the other side of the continent. These are the times when you need a computational grid.

  3. Mira: Argonne's 10-petaflops supercomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papka, Michael; Coghlan, Susan; Isaacs, Eric

    2013-07-03

    Mira, Argonne's petascale IBM Blue Gene/Q system, ushers in a new era of scientific supercomputing at the Argonne Leadership Computing Facility. An engineering marvel, the 10-petaflops supercomputer is capable of carrying out 10 quadrillion calculations per second. As a machine for open science, any researcher with a question that requires large-scale computing resources can submit a proposal for time on Mira, typically in allocations of millions of core-hours, to run programs for their experiments. This adds up to billions of hours of computing time per year.

  4. Breakthrough: NETL's Simulation-Based Engineering User Center (SBEUC)

    ScienceCinema

    Guenther, Chris

    2018-05-23

    The National Energy Technology Laboratory relies on supercomputers to develop many novel ideas that become tomorrow's energy solutions. Supercomputers provide a cost-effective, efficient platform for research and usher technologies into widespread use faster to bring benefits to the nation. In 2013, Secretary of Energy Dr. Ernest Moniz dedicated NETL's new supercomputer, the Simulation Based Engineering User Center, or SBEUC. The SBEUC is dedicated to fossil energy research and is a collaborative tool for all of NETL and our regional university partners.

  5. A high level language for a high performance computer

    NASA Technical Reports Server (NTRS)

    Perrott, R. H.

    1978-01-01

    The proposed computational aerodynamic facility will join the ranks of the supercomputers due to its architecture and increased execution speed. At present, the languages used to program these supercomputers have been modifications of programming languages which were designed many years ago for sequential machines. A new programming language should be developed based on the techniques which have proved valuable for sequential programming languages and incorporating the algorithmic techniques required for these supercomputers. The design objectives for such a language are outlined.

  6. Technology advances and market forces: Their impact on high performance architectures

    NASA Technical Reports Server (NTRS)

    Best, D. R.

    1978-01-01

    Reasonable projections into future supercomputer architectures and technology require an analysis of the computer industry market environment, the current capabilities and trends within the component industry, and the research activities on computer architecture in the industrial and academic communities. Management, programmer, architect, and user must cooperate to increase the efficiency of supercomputer development efforts. Care must be taken to match the funding, compiler, architecture and application with greater attention to testability, maintainability, reliability, and usability than supercomputer development programs of the past.

  7. Floating point arithmetic in future supercomputers

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Barton, John T.; Simon, Horst D.; Fouts, Martin J.

    1989-01-01

    Considerations in the floating-point design of a supercomputer are discussed. Particular attention is given to word size, hardware support for extended precision, format, and accuracy characteristics. These issues are discussed from the perspective of the Numerical Aerodynamic Simulation Systems Division at NASA Ames. The features believed to be most important for a future supercomputer floating-point design include: (1) a 64-bit IEEE floating-point format with 11 exponent bits, 52 mantissa bits, and one sign bit and (2) hardware support for reasonably fast double-precision arithmetic.

  8. Breakthrough: NETL's Simulation-Based Engineering User Center (SBEUC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guenther, Chris

    The National Energy Technology Laboratory relies on supercomputers to develop many novel ideas that become tomorrow's energy solutions. Supercomputers provide a cost-effective, efficient platform for research and usher technologies into widespread use faster to bring benefits to the nation. In 2013, Secretary of Energy Dr. Ernest Moniz dedicated NETL's new supercomputer, the Simulation Based Engineering User Center, or SBEUC. The SBEUC is dedicated to fossil energy research and is a collaborative tool for all of NETL and our regional university partners.

  9. Tracing Scientific Facilities through the Research Literature Using Persistent Identifiers

    NASA Astrophysics Data System (ADS)

    Mayernik, M. S.; Maull, K. E.

    2016-12-01

    Tracing persistent identifiers to their source publications is an easy task when authors use them, since it is a simple matter of matching the persistent identifier to the specific text string of the identifier. However, trying to understand if a publication uses the resource behind an identifier when such identifier is not referenced explicitly is a harder task. In this research, we explore the effectiveness of alternative strategies of associating publications with uses of the resource referenced by an identifier when it may not be explicit. This project is explored within the context of the NCAR supercomputer, where we are broadly interesting in the science that can be traced to the usage of the NCAR supercomputing facility, by way of the peer-reviewed research publications that utilize and reference it. In this project we explore several ways of drawing linkages between publications and the NCAR supercomputing resources. Identifying and compiling peer-reviewed publications related to NCAR supercomputer usage are explored via three sources: 1) User-supplied publications gathered through a community survey, 2) publications that were identified via manual searching of the Google scholar search index, and 3) publications associated with National Science Foundation (NSF) grants extracted from a public NSF database. These three sources represent three styles of collecting information about publications that likely imply usage of the NCAR supercomputing facilities. Each source has strengths and weaknesses, thus our discussion will explore how our publication identification and analysis methods vary in terms of accuracy, reliability, and effort. We will also discuss strategies for enabling more efficient tracing of research impacts of supercomputing facilities going forward through the assignment of a persistent web identifier to the NCAR supercomputer. While this solution has potential to greatly enhance our ability to trace the use of the facility through publications, authors must cite the facility consistently. It is therefore necessary to provide recommendations for citation and attribution behavior, and we will conclude our discussion with how such recommendations have improved tracing the supercomputer facility allowing for more consistent and widespread measurement of its impact.

  10. NASA Center for Climate Simulation (NCCS) Presentation

    NASA Technical Reports Server (NTRS)

    Webster, William P.

    2012-01-01

    The NASA Center for Climate Simulation (NCCS) offers integrated supercomputing, visualization, and data interaction technologies to enhance NASA's weather and climate prediction capabilities. It serves hundreds of users at NASA Goddard Space Flight Center, as well as other NASA centers, laboratories, and universities across the US. Over the past year, NCCS has continued expanding its data-centric computing environment to meet the increasingly data-intensive challenges of climate science. We doubled our Discover supercomputer's peak performance to more than 800 teraflops by adding 7,680 Intel Xeon Sandy Bridge processor-cores and most recently 240 Intel Xeon Phi Many Integrated Core (MIG) co-processors. A supercomputing-class analysis system named Dali gives users rapid access to their data on Discover and high-performance software including the Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT), with interfaces from user desktops and a 17- by 6-foot visualization wall. NCCS also is exploring highly efficient climate data services and management with a new MapReduce/Hadoop cluster while augmenting its data distribution to the science community. Using NCCS resources, NASA completed its modeling contributions to the Intergovernmental Panel on Climate Change (IPCG) Fifth Assessment Report this summer as part of the ongoing Coupled Modellntercomparison Project Phase 5 (CMIP5). Ensembles of simulations run on Discover reached back to the year 1000 to test model accuracy and projected climate change through the year 2300 based on four different scenarios of greenhouse gases, aerosols, and land use. The data resulting from several thousand IPCC/CMIP5 simulations, as well as a variety of other simulation, reanalysis, and observationdatasets, are available to scientists and decision makers through an enhanced NCCS Earth System Grid Federation Gateway. Worldwide downloads have totaled over 110 terabytes of data.

  11. On the energy footprint of I/O management in Exascale HPC systems

    DOE PAGES

    Dorier, Matthieu; Yildiz, Orcun; Ibrahim, Shadi; ...

    2016-03-21

    The advent of unprecedentedly scalable yet energy hungry Exascale supercomputers poses a major challenge in sustaining a high performance-per-watt ratio. With I/O management acquiring a crucial role in supporting scientific simulations, various I/O management approaches have been proposed to achieve high performance and scalability. But, the details of how these approaches affect energy consumption have not been studied yet. Therefore, this paper aims to explore how much energy a supercomputer consumes while running scientific simulations when adopting various I/O management approaches. In particular, we closely examine three radically different I/O schemes including time partitioning, dedicated cores, and dedicated nodes. Tomore » accomplish this, we implement the three approaches within the Damaris I/O middleware and perform extensive experiments with one of the target HPC applications of the Blue Waters sustained-petaflop supercomputer project: the CM1 atmospheric model. Our experimental results obtained on the French Grid'5000 platform highlight the differences among these three approaches and illustrate in which way various configurations of the application and of the system can impact performance and energy consumption. Moreover, we propose and validate a mathematical model that estimates the energy consumption of a HPC simulation under different I/O approaches. This proposed model gives hints to pre-select the most energy-efficient I/O approach for a particular simulation on a particular HPC system and therefore provides a step towards energy-efficient HPC simulations in Exascale systems. To the best of our knowledge, our work provides the first in-depth look into the energy-performance tradeoffs of I/O management approaches.« less

  12. Solving global shallow water equations on heterogeneous supercomputers

    PubMed Central

    Fu, Haohuan; Gan, Lin; Yang, Chao; Xue, Wei; Wang, Lanning; Wang, Xinliang; Huang, Xiaomeng; Yang, Guangwen

    2017-01-01

    The scientific demand for more accurate modeling of the climate system calls for more computing power to support higher resolutions, inclusion of more component models, more complicated physics schemes, and larger ensembles. As the recent improvements in computing power mostly come from the increasing number of nodes in a system and the integration of heterogeneous accelerators, how to scale the computing problems onto more nodes and various kinds of accelerators has become a challenge for the model development. This paper describes our efforts on developing a highly scalable framework for performing global atmospheric modeling on heterogeneous supercomputers equipped with various accelerators, such as GPU (Graphic Processing Unit), MIC (Many Integrated Core), and FPGA (Field Programmable Gate Arrays) cards. We propose a generalized partition scheme of the problem domain, so as to keep a balanced utilization of both CPU resources and accelerator resources. With optimizations on both computing and memory access patterns, we manage to achieve around 8 to 20 times speedup when comparing one hybrid GPU or MIC node with one CPU node with 12 cores. Using a customized FPGA-based data-flow engines, we see the potential to gain another 5 to 8 times improvement on performance. On heterogeneous supercomputers, such as Tianhe-1A and Tianhe-2, our framework is capable of achieving ideally linear scaling efficiency, and sustained double-precision performances of 581 Tflops on Tianhe-1A (using 3750 nodes) and 3.74 Pflops on Tianhe-2 (using 8644 nodes). Our study also provides an evaluation on the programming paradigm of various accelerator architectures (GPU, MIC, FPGA) for performing global atmospheric simulation, to form a picture about both the potential performance benefits and the programming efforts involved. PMID:28282428

  13. Modern gyrokinetic particle-in-cell simulation of fusion plasmas on top supercomputers

    DOE PAGES

    Wang, Bei; Ethier, Stephane; Tang, William; ...

    2017-06-29

    The Gyrokinetic Toroidal Code at Princeton (GTC-P) is a highly scalable and portable particle-in-cell (PIC) code. It solves the 5D Vlasov-Poisson equation featuring efficient utilization of modern parallel computer architectures at the petascale and beyond. Motivated by the goal of developing a modern code capable of dealing with the physics challenge of increasing problem size with sufficient resolution, new thread-level optimizations have been introduced as well as a key additional domain decomposition. GTC-P's multiple levels of parallelism, including inter-node 2D domain decomposition and particle decomposition, as well as intra-node shared memory partition and vectorization have enabled pushing the scalability ofmore » the PIC method to extreme computational scales. In this paper, we describe the methods developed to build a highly parallelized PIC code across a broad range of supercomputer designs. This particularly includes implementations on heterogeneous systems using NVIDIA GPU accelerators and Intel Xeon Phi (MIC) co-processors and performance comparisons with state-of-the-art homogeneous HPC systems such as Blue Gene/Q. New discovery science capabilities in the magnetic fusion energy application domain are enabled, including investigations of Ion-Temperature-Gradient (ITG) driven turbulence simulations with unprecedented spatial resolution and long temporal duration. Performance studies with realistic fusion experimental parameters are carried out on multiple supercomputing systems spanning a wide range of cache capacities, cache-sharing configurations, memory bandwidth, interconnects and network topologies. These performance comparisons using a realistic discovery-science-capable domain application code provide valuable insights on optimization techniques across one of the broadest sets of current high-end computing platforms worldwide.« less

  14. Modern gyrokinetic particle-in-cell simulation of fusion plasmas on top supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bei; Ethier, Stephane; Tang, William

    The Gyrokinetic Toroidal Code at Princeton (GTC-P) is a highly scalable and portable particle-in-cell (PIC) code. It solves the 5D Vlasov-Poisson equation featuring efficient utilization of modern parallel computer architectures at the petascale and beyond. Motivated by the goal of developing a modern code capable of dealing with the physics challenge of increasing problem size with sufficient resolution, new thread-level optimizations have been introduced as well as a key additional domain decomposition. GTC-P's multiple levels of parallelism, including inter-node 2D domain decomposition and particle decomposition, as well as intra-node shared memory partition and vectorization have enabled pushing the scalability ofmore » the PIC method to extreme computational scales. In this paper, we describe the methods developed to build a highly parallelized PIC code across a broad range of supercomputer designs. This particularly includes implementations on heterogeneous systems using NVIDIA GPU accelerators and Intel Xeon Phi (MIC) co-processors and performance comparisons with state-of-the-art homogeneous HPC systems such as Blue Gene/Q. New discovery science capabilities in the magnetic fusion energy application domain are enabled, including investigations of Ion-Temperature-Gradient (ITG) driven turbulence simulations with unprecedented spatial resolution and long temporal duration. Performance studies with realistic fusion experimental parameters are carried out on multiple supercomputing systems spanning a wide range of cache capacities, cache-sharing configurations, memory bandwidth, interconnects and network topologies. These performance comparisons using a realistic discovery-science-capable domain application code provide valuable insights on optimization techniques across one of the broadest sets of current high-end computing platforms worldwide.« less

  15. Saving all the bits

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1990-01-01

    The scientific tradition of saving all the data from experiments for independent validation and for further investigation is under profound challenge by modern satellite data collectors and by supercomputers. The volume of data is beyond the capacity to store, transmit, and comprehend the data. A promising line of study is discovery machines that study the data at the collection site and transmit statistical summaries of patterns observed. Examples of discovery machines are the Autoclass system and the genetic memory system of NASA-Ames, and the proposal for knowbots by Kahn and Cerf.

  16. Compression behavior and spectroscopic properties of insensitive explosive 1,3,5-triamino-2,4,6-trinitrobenzene from dispersion-corrected density functional theory

    NASA Astrophysics Data System (ADS)

    Su, Yan; Fan, Junyu; Zheng, Zhaoyang; Zhao, Jijun; Song, Huajie

    2018-05-01

    Not Available Project supported by the Science Challenge Project of China (Grant No. TZ2016001), the National Natural Science Foundation of China (Grant Nos. 11674046 and 11372053), the Fundamental Research Funds for the Central Universities of China (Grant No. DUT17GF203), the Opening Project of State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, China (Grant No. KFJJ16-01M), and the Supercomputing Center of Dalian University of Technology, China.

  17. Code Optimization and Parallelization on the Origins: Looking from Users' Perspective

    NASA Technical Reports Server (NTRS)

    Chang, Yan-Tyng Sherry; Thigpen, William W. (Technical Monitor)

    2002-01-01

    Parallel machines are becoming the main compute engines for high performance computing. Despite their increasing popularity, it is still a challenge for most users to learn the basic techniques to optimize/parallelize their codes on such platforms. In this paper, we present some experiences on learning these techniques for the Origin systems at the NASA Advanced Supercomputing Division. Emphasis of this paper will be on a few essential issues (with examples) that general users should master when they work with the Origins as well as other parallel systems.

  18. Energy Efficient Supercomputing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anypas, Katie

    2014-10-17

    Katie Anypas, Head of NERSC's Services Department discusses the Lab's research into developing increasingly powerful and energy efficient supercomputers at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.

  19. Energy Efficient Supercomputing

    ScienceCinema

    Anypas, Katie

    2018-05-07

    Katie Anypas, Head of NERSC's Services Department discusses the Lab's research into developing increasingly powerful and energy efficient supercomputers at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.

  20. Job Management Requirements for NAS Parallel Systems and Clusters

    NASA Technical Reports Server (NTRS)

    Saphir, William; Tanner, Leigh Ann; Traversat, Bernard

    1995-01-01

    A job management system is a critical component of a production supercomputing environment, permitting oversubscribed resources to be shared fairly and efficiently. Job management systems that were originally designed for traditional vector supercomputers are not appropriate for the distributed-memory parallel supercomputers that are becoming increasingly important in the high performance computing industry. Newer job management systems offer new functionality but do not solve fundamental problems. We address some of the main issues in resource allocation and job scheduling we have encountered on two parallel computers - a 160-node IBM SP2 and a cluster of 20 high performance workstations located at the Numerical Aerodynamic Simulation facility. We describe the requirements for resource allocation and job management that are necessary to provide a production supercomputing environment on these machines, prioritizing according to difficulty and importance, and advocating a return to fundamental issues.

  1. Leveraging the national cyberinfrastructure for biomedical research.

    PubMed

    LeDuc, Richard; Vaughn, Matthew; Fonner, John M; Sullivan, Michael; Williams, James G; Blood, Philip D; Taylor, James; Barnett, William

    2014-01-01

    In the USA, the national cyberinfrastructure refers to a system of research supercomputer and other IT facilities and the high speed networks that connect them. These resources have been heavily leveraged by scientists in disciplines such as high energy physics, astronomy, and climatology, but until recently they have been little used by biomedical researchers. We suggest that many of the 'Big Data' challenges facing the medical informatics community can be efficiently handled using national-scale cyberinfrastructure. Resources such as the Extreme Science and Discovery Environment, the Open Science Grid, and Internet2 provide economical and proven infrastructures for Big Data challenges, but these resources can be difficult to approach. Specialized web portals, support centers, and virtual organizations can be constructed on these resources to meet defined computational challenges, specifically for genomics. We provide examples of how this has been done in basic biology as an illustration for the biomedical informatics community.

  2. Leveraging the national cyberinfrastructure for biomedical research

    PubMed Central

    LeDuc, Richard; Vaughn, Matthew; Fonner, John M; Sullivan, Michael; Williams, James G; Blood, Philip D; Taylor, James; Barnett, William

    2014-01-01

    In the USA, the national cyberinfrastructure refers to a system of research supercomputer and other IT facilities and the high speed networks that connect them. These resources have been heavily leveraged by scientists in disciplines such as high energy physics, astronomy, and climatology, but until recently they have been little used by biomedical researchers. We suggest that many of the ‘Big Data’ challenges facing the medical informatics community can be efficiently handled using national-scale cyberinfrastructure. Resources such as the Extreme Science and Discovery Environment, the Open Science Grid, and Internet2 provide economical and proven infrastructures for Big Data challenges, but these resources can be difficult to approach. Specialized web portals, support centers, and virtual organizations can be constructed on these resources to meet defined computational challenges, specifically for genomics. We provide examples of how this has been done in basic biology as an illustration for the biomedical informatics community. PMID:23964072

  3. Approaching the exa-scale: a real-world evaluation of rendering extremely large data sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patchett, John M; Ahrens, James P; Lo, Li - Ta

    2010-10-15

    Extremely large scale analysis is becoming increasingly important as supercomputers and their simulations move from petascale to exascale. The lack of dedicated hardware acceleration for rendering on today's supercomputing platforms motivates our detailed evaluation of the possibility of interactive rendering on the supercomputer. In order to facilitate our understanding of rendering on the supercomputing platform, we focus on scalability of rendering algorithms and architecture envisioned for exascale datasets. To understand tradeoffs for dealing with extremely large datasets, we compare three different rendering algorithms for large polygonal data: software based ray tracing, software based rasterization and hardware accelerated rasterization. We presentmore » a case study of strong and weak scaling of rendering extremely large data on both GPU and CPU based parallel supercomputers using Para View, a parallel visualization tool. Wc use three different data sets: two synthetic and one from a scientific application. At an extreme scale, algorithmic rendering choices make a difference and should be considered while approaching exascale computing, visualization, and analysis. We find software based ray-tracing offers a viable approach for scalable rendering of the projected future massive data sizes.« less

  4. Supercomputing Drives Innovation - Continuum Magazine | NREL

    Science.gov Websites

    years, NREL scientists have used supercomputers to simulate 3D models of the primary enzymes and Scientist, discuss a 3D model of wind plant aerodynamics, showing low velocity wakes and impact on

  5. Exploiting Thread Parallelism for Ocean Modeling on Cray XC Supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarje, Abhinav; Jacobsen, Douglas W.; Williams, Samuel W.

    The incorporation of increasing core counts in modern processors used to build state-of-the-art supercomputers is driving application development towards exploitation of thread parallelism, in addition to distributed memory parallelism, with the goal of delivering efficient high-performance codes. In this work we describe the exploitation of threading and our experiences with it with respect to a real-world ocean modeling application code, MPAS-Ocean. We present detailed performance analysis and comparisons of various approaches and configurations for threading on the Cray XC series supercomputers.

  6. A mass storage system for supercomputers based on Unix

    NASA Technical Reports Server (NTRS)

    Richards, J.; Kummell, T.; Zarlengo, D. G.

    1988-01-01

    The authors present the design, implementation, and utilization of a large mass storage subsystem (MSS) for the numerical aerodynamics simulation. The MSS supports a large networked, multivendor Unix-based supercomputing facility. The MSS at Ames Research Center provides all processors on the numerical aerodynamics system processing network, from workstations to supercomputers, the ability to store large amounts of data in a highly accessible, long-term repository. The MSS uses Unix System V and is capable of storing hundreds of thousands of files ranging from a few bytes to 2 Gb in size.

  7. Supercomputer algorithms for efficient linear octree encoding of three-dimensional brain images.

    PubMed

    Berger, S B; Reis, D J

    1995-02-01

    We designed and implemented algorithms for three-dimensional (3-D) reconstruction of brain images from serial sections using two important supercomputer architectures, vector and parallel. These architectures were represented by the Cray YMP and Connection Machine CM-2, respectively. The programs operated on linear octree representations of the brain data sets, and achieved 500-800 times acceleration when compared with a conventional laboratory workstation. As the need for higher resolution data sets increases, supercomputer algorithms may offer a means of performing 3-D reconstruction well above current experimental limits.

  8. Intelligent supercomputers: the Japanese computer sputnik

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, G.

    1983-11-01

    Japan's government-supported fifth-generation computer project has had a pronounced effect on the American computer and information systems industry. The US firms are intensifying their research on and production of intelligent supercomputers, a combination of computer architecture and artificial intelligence software programs. While the present generation of computers is built for the processing of numbers, the new supercomputers will be designed specifically for the solution of symbolic problems and the use of artificial intelligence software. This article discusses new and exciting developments that will increase computer capabilities in the 1990s. 4 references.

  9. Introducing Mira, Argonne's Next-Generation Supercomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-03-19

    Mira, the new petascale IBM Blue Gene/Q system installed at the ALCF, will usher in a new era of scientific supercomputing. An engineering marvel, the 10-petaflops machine is capable of carrying out 10 quadrillion calculations per second.

  10. Green Supercomputing at Argonne

    ScienceCinema

    Pete Beckman

    2017-12-09

    Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF) talks about Argonne National Laboratory's green supercomputing—everything from designing algorithms to use fewer kilowatts per operation to using cold Chicago winter air to cool the machine more efficiently.

  11. TOP500 Supercomputers for June 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack

    2003-06-23

    21st Edition of TOP500 List of World's Fastest Supercomputers Released MANNHEIM, Germany; KNOXVILLE, Tenn.;&BERKELEY, Calif. In what has become a much-anticipated event in the world of high-performance computing, the 21st edition of the TOP500 list of the world's fastest supercomputers was released today (June 23, 2003). The Earth Simulator supercomputer built by NEC and installed last year at the Earth Simulator Center in Yokohama, Japan, with its Linpack benchmark performance of 35.86 Tflop/s (teraflops or trillions of calculations per second), retains the number one position. The number 2 position is held by the re-measured ASCI Q system at Los Alamosmore » National Laboratory. With 13.88 Tflop/s, it is the second system ever to exceed the 10 Tflop/smark. ASCIQ was built by Hewlett-Packard and is based on the AlphaServerSC computer system.« less

  12. Advanced Computing for Manufacturing.

    ERIC Educational Resources Information Center

    Erisman, Albert M.; Neves, Kenneth W.

    1987-01-01

    Discusses ways that supercomputers are being used in the manufacturing industry, including the design and production of airplanes and automobiles. Describes problems that need to be solved in the next few years for supercomputers to assume a major role in industry. (TW)

  13. Supercomputers Join the Fight against Cancer – U.S. Department of Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Department of Energy has some of the best supercomputers in the world. Now, they’re joining the fight against cancer. Learn about our new partnership with the National Cancer Institute and GlaxoSmithKline Pharmaceuticals.

  14. NAS-current status and future plans

    NASA Technical Reports Server (NTRS)

    Bailey, F. R.

    1987-01-01

    The Numerical Aerodynamic Simulation (NAS) has met its first major milestone, the NAS Processing System Network (NPSN) Initial Operating Configuration (IOC). The program has met its goal of providing a national supercomputer facility capable of greatly enhancing the Nation's research and development efforts. Furthermore, the program is fulfilling its pathfinder role by defining and implementing a paradigm for supercomputing system environments. The IOC is only the begining and the NAS Program will aggressively continue to develop and implement emerging supercomputer, communications, storage, and software technologies to strengthen computations as a critical element in supporting the Nation's leadership role in aeronautics.

  15. CRAY mini manual. Revision D

    NASA Technical Reports Server (NTRS)

    Tennille, Geoffrey M.; Howser, Lona M.

    1993-01-01

    This document briefly describes the use of the CRAY supercomputers that are an integral part of the Supercomputing Network Subsystem of the Central Scientific Computing Complex at LaRC. Features of the CRAY supercomputers are covered, including: FORTRAN, C, PASCAL, architectures of the CRAY-2 and CRAY Y-MP, the CRAY UNICOS environment, batch job submittal, debugging, performance analysis, parallel processing, utilities unique to CRAY, and documentation. The document is intended for all CRAY users as a ready reference to frequently asked questions and to more detailed information contained in the vendor manuals. It is appropriate for both the novice and the experienced user.

  16. Scaling of data communications for an advanced supercomputer network

    NASA Technical Reports Server (NTRS)

    Levin, E.; Eaton, C. K.; Young, Bruce

    1986-01-01

    The goal of NASA's Numerical Aerodynamic Simulation (NAS) Program is to provide a powerful computational environment for advanced research and development in aeronautics and related disciplines. The present NAS system consists of a Cray 2 supercomputer connected by a data network to a large mass storage system, to sophisticated local graphics workstations and by remote communication to researchers throughout the United States. The program plan is to continue acquiring the most powerful supercomputers as they become available. The implications of a projected 20-fold increase in processing power on the data communications requirements are described.

  17. Roadrunner Supercomputer Breaks the Petaflop Barrier

    ScienceCinema

    Los Alamos National Lab - Brian Albright, Charlie McMillan, Lin Yin

    2017-12-09

    At 3:30 a.m. on May 26, 2008, Memorial Day, the "Roadrunner" supercomputer exceeded a sustained speed of 1 petaflop/s, or 1 million billion calculations per second. The sustained performance makes Roadrunner more than twice as fast as the current number 1

  18. QCD on the BlueGene/L Supercomputer

    NASA Astrophysics Data System (ADS)

    Bhanot, G.; Chen, D.; Gara, A.; Sexton, J.; Vranas, P.

    2005-03-01

    In June 2004 QCD was simulated for the first time at sustained speed exceeding 1 TeraFlops in the BlueGene/L supercomputer at the IBM T.J. Watson Research Lab. The implementation and performance of QCD in the BlueGene/L is presented.

  19. Supercomputer Issues from a University Perspective.

    ERIC Educational Resources Information Center

    Beering, Steven C.

    1984-01-01

    Discusses issues related to the access of and training of university researchers in using supercomputers, considering National Science Foundation's (NSF) role in this area, microcomputers on campuses, and the limited use of existing telecommunication networks. Includes examples of potential scientific projects (by subject area) utilizing…

  20. Beyond Moore’s technologies: operation principles of a superconductor alternative

    PubMed Central

    Klenov, Nikolay V; Bakurskiy, Sergey V; Kupriyanov, Mikhail Yu; Gudkov, Alexander L; Sidorenko, Anatoli S

    2017-01-01

    The predictions of Moore’s law are considered by experts to be valid until 2020 giving rise to “post-Moore’s” technologies afterwards. Energy efficiency is one of the major challenges in high-performance computing that should be answered. Superconductor digital technology is a promising post-Moore’s alternative for the development of supercomputers. In this paper, we consider operation principles of an energy-efficient superconductor logic and memory circuits with a short retrospective review of their evolution. We analyze their shortcomings in respect to computer circuits design. Possible ways of further research are outlined. PMID:29354341

  1. ATLAS computing on CSCS HPC

    NASA Astrophysics Data System (ADS)

    Filipcic, A.; Haug, S.; Hostettler, M.; Walker, R.; Weber, M.

    2015-12-01

    The Piz Daint Cray XC30 HPC system at CSCS, the Swiss National Supercomputing centre, was the highest ranked European system on TOP500 in 2014, also featuring GPU accelerators. Event generation and detector simulation for the ATLAS experiment have been enabled for this machine. We report on the technical solutions, performance, HPC policy challenges and possible future opportunities for HEP on extreme HPC systems. In particular a custom made integration to the ATLAS job submission system has been developed via the Advanced Resource Connector (ARC) middleware. Furthermore, a partial GPU acceleration of the Geant4 detector simulations has been implemented.

  2. High Efficiency Photonic Switch for Data Centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaComb, Lloyd J.; Bablumyan, Arkady; Ordyan, Armen

    2016-12-06

    The worldwide demand for instant access to information is driving internet growth rates above 50% annually. This rapid growth is straining the resources and architectures of existing data centers, metro networks and high performance computer centers. If the current business as usual model continues, data centers alone will require 400TWhr of electricity by 2020. In order to meet the challenges of a faster and more cost effective data centers, metro networks and supercomputing facilities, we have demonstrated a new type of optical switch that will support transmissions speeds up to 1Tb/s, and requires significantly less energy per bit than

  3. Advances and issues from the simulation of planetary magnetospheres with recent supercomputer systems

    NASA Astrophysics Data System (ADS)

    Fukazawa, K.; Walker, R. J.; Kimura, T.; Tsuchiya, F.; Murakami, G.; Kita, H.; Tao, C.; Murata, K. T.

    2016-12-01

    Planetary magnetospheres are very large, while phenomena within them occur on meso- and micro-scales. These scales range from 10s of planetary radii to kilometers. To understand dynamics in these multi-scale systems, numerical simulations have been performed by using the supercomputer systems. We have studied the magnetospheres of Earth, Jupiter and Saturn by using 3-dimensional magnetohydrodynamic (MHD) simulations for a long time, however, we have not obtained the phenomena near the limits of the MHD approximation. In particular, we have not studied meso-scale phenomena that can be addressed by using MHD.Recently we performed our MHD simulation of Earth's magnetosphere by using the K-computer which is the first 10PFlops supercomputer and obtained multi-scale flow vorticity for the both northward and southward IMF. Furthermore, we have access to supercomputer systems which have Xeon, SPARC64, and vector-type CPUs and can compare simulation results between the different systems. Finally, we have compared the results of our parameter survey of the magnetosphere with observations from the HISAKI spacecraft.We have encountered a number of difficulties effectively using the latest supercomputer systems. First the size of simulation output increases greatly. Now a simulation group produces over 1PB of output. Storage and analysis of this much data is difficult. The traditional way to analyze simulation results is to move the results to the investigator's home computer. This takes over three months using an end-to-end 10Gbps network. In reality, there are problems at some nodes such as firewalls that can increase the transfer time to over one year. Another issue is post-processing. It is hard to treat a few TB of simulation output due to the memory limitations of a post-processing computer. To overcome these issues, we have developed and introduced the parallel network storage, the highly efficient network protocol and the CUI based visualization tools.In this study, we will show the latest simulation results using the petascale supercomputer and problems from the use of these supercomputer systems.

  4. Finite element methods on supercomputers - The scatter-problem

    NASA Technical Reports Server (NTRS)

    Loehner, R.; Morgan, K.

    1985-01-01

    Certain problems arise in connection with the use of supercomputers for the implementation of finite-element methods. These problems are related to the desirability of utilizing the power of the supercomputer as fully as possible for the rapid execution of the required computations, taking into account the gain in speed possible with the aid of pipelining operations. For the finite-element method, the time-consuming operations may be divided into three categories. The first two present no problems, while the third type of operation can be a reason for the inefficient performance of finite-element programs. Two possibilities for overcoming certain difficulties are proposed, giving attention to a scatter-process.

  5. NSF Establishes First Four National Supercomputer Centers.

    ERIC Educational Resources Information Center

    Lepkowski, Wil

    1985-01-01

    The National Science Foundation (NSF) has awarded support for supercomputer centers at Cornell University, Princeton University, University of California (San Diego), and University of Illinois. These centers are to be the nucleus of a national academic network for use by scientists and engineers throughout the United States. (DH)

  6. Library Services in a Supercomputer Center.

    ERIC Educational Resources Information Center

    Layman, Mary

    1991-01-01

    Describes library services that are offered at the San Diego Supercomputer Center (SDSC), which is located at the University of California at San Diego. Topics discussed include the user population; online searching; microcomputer use; electronic networks; current awareness programs; library catalogs; and the slide collection. A sidebar outlines…

  7. Probing the cosmic causes of errors in supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Cosmic rays from outer space are causing errors in supercomputers. The neutrons that pass through the CPU may be causing binary data to flip leading to incorrect calculations. Los Alamos National Laboratory has developed detectors to determine how much data is being corrupted by these cosmic particles.

  8. Flux-Level Transit Injection Experiments with NASA Pleiades Supercomputer

    NASA Astrophysics Data System (ADS)

    Li, Jie; Burke, Christopher J.; Catanzarite, Joseph; Seader, Shawn; Haas, Michael R.; Batalha, Natalie; Henze, Christopher; Christiansen, Jessie; Kepler Project, NASA Advanced Supercomputing Division

    2016-06-01

    Flux-Level Transit Injection (FLTI) experiments are executed with NASA's Pleiades supercomputer for the Kepler Mission. The latest release (9.3, January 2016) of the Kepler Science Operations Center Pipeline is used in the FLTI experiments. Their purpose is to validate the Analytic Completeness Model (ACM), which can be computed for all Kepler target stars, thereby enabling exoplanet occurrence rate studies. Pleiades, a facility of NASA's Advanced Supercomputing Division, is one of the world's most powerful supercomputers and represents NASA's state-of-the-art technology. We discuss the details of implementing the FLTI experiments on the Pleiades supercomputer. For example, taking into account that ~16 injections are generated by one core of the Pleiades processors in an hour, the “shallow” FLTI experiment, in which ~2000 injections are required per target star, can be done for 16% of all Kepler target stars in about 200 hours. Stripping down the transit search to bare bones, i.e. only searching adjacent high/low periods at high/low pulse durations, makes the computationally intensive FLTI experiments affordable. The design of the FLTI experiments and the analysis of the resulting data are presented in “Validating an Analytic Completeness Model for Kepler Target Stars Based on Flux-level Transit Injection Experiments” by Catanzarite et al. (#2494058).Kepler was selected as the 10th mission of the Discovery Program. Funding for the Kepler Mission has been provided by the NASA Science Mission Directorate.

  9. NSF Says It Will Support Supercomputer Centers in California and Illinois.

    ERIC Educational Resources Information Center

    Strosnider, Kim; Young, Jeffrey R.

    1997-01-01

    The National Science Foundation will increase support for supercomputer centers at the University of California, San Diego and the University of Illinois, Urbana-Champaign, while leaving unclear the status of the program at Cornell University (New York) and a cooperative Carnegie-Mellon University (Pennsylvania) and University of Pittsburgh…

  10. Access to Supercomputers. Higher Education Panel Report 69.

    ERIC Educational Resources Information Center

    Holmstrom, Engin Inel

    This survey was conducted to provide the National Science Foundation with baseline information on current computer use in the nation's major research universities, including the actual and potential use of supercomputers. Questionnaires were sent to 207 doctorate-granting institutions; after follow-ups, 167 institutions (91% of the institutions…

  11. NOAA announces significant investment in next generation of supercomputers

    Science.gov Websites

    provide more timely, accurate weather forecasts. (Credit: istockphoto.com) Today, NOAA announced the next phase in the agency's efforts to increase supercomputing capacity to provide more timely, accurate turn will lead to more timely, accurate, and reliable forecasts." Ahead of this upgrade, each of

  12. Developments in the simulation of compressible inviscid and viscous flow on supercomputers

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Buning, P. G.

    1985-01-01

    In anticipation of future supercomputers, finite difference codes are rapidly being extended to simulate three-dimensional compressible flow about complex configurations. Some of these developments are reviewed. The importance of computational flow visualization and diagnostic methods to three-dimensional flow simulation is also briefly discussed.

  13. Computing and data processing

    NASA Technical Reports Server (NTRS)

    Smarr, Larry; Press, William; Arnett, David W.; Cameron, Alastair G. W.; Crutcher, Richard M.; Helfand, David J.; Horowitz, Paul; Kleinmann, Susan G.; Linsky, Jeffrey L.; Madore, Barry F.

    1991-01-01

    The applications of computers and data processing to astronomy are discussed. Among the topics covered are the emerging national information infrastructure, workstations and supercomputers, supertelescopes, digital astronomy, astrophysics in a numerical laboratory, community software, archiving of ground-based observations, dynamical simulations of complex systems, plasma astrophysics, and the remote control of fourth dimension supercomputers.

  14. Spiking network simulation code for petascale computers.

    PubMed

    Kunkel, Susanne; Schmidt, Maximilian; Eppler, Jochen M; Plesser, Hans E; Masumoto, Gen; Igarashi, Jun; Ishii, Shin; Fukai, Tomoki; Morrison, Abigail; Diesmann, Markus; Helias, Moritz

    2014-01-01

    Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties and parameters of their constituents. At cellular resolution, the entities of theory are neurons and synapses and over the past decade researchers have learned to manage the heterogeneity of neurons and synapses with efficient data structures. Already early parallel simulation codes stored synapses in a distributed fashion such that a synapse solely consumes memory on the compute node harboring the target neuron. As petaflop computers with some 100,000 nodes become increasingly available for neuroscience, new challenges arise for neuronal network simulation software: Each neuron contacts on the order of 10,000 other neurons and thus has targets only on a fraction of all compute nodes; furthermore, for any given source neuron, at most a single synapse is typically created on any compute node. From the viewpoint of an individual compute node, the heterogeneity in the synaptic target lists thus collapses along two dimensions: the dimension of the types of synapses and the dimension of the number of synapses of a given type. Here we present a data structure taking advantage of this double collapse using metaprogramming techniques. After introducing the relevant scaling scenario for brain-scale simulations, we quantitatively discuss the performance on two supercomputers. We show that the novel architecture scales to the largest petascale supercomputers available today.

  15. HEP Computing Tools, Grid and Supercomputers for Genome Sequencing Studies

    NASA Astrophysics Data System (ADS)

    De, K.; Klimentov, A.; Maeno, T.; Mashinistov, R.; Novikov, A.; Poyda, A.; Tertychnyy, I.; Wenaus, T.

    2017-10-01

    PanDA - Production and Distributed Analysis Workload Management System has been developed to address ATLAS experiment at LHC data processing and analysis challenges. Recently PanDA has been extended to run HEP scientific applications on Leadership Class Facilities and supercomputers. The success of the projects to use PanDA beyond HEP and Grid has drawn attention from other compute intensive sciences such as bioinformatics. Recent advances of Next Generation Genome Sequencing (NGS) technology led to increasing streams of sequencing data that need to be processed, analysed and made available for bioinformaticians worldwide. Analysis of genomes sequencing data using popular software pipeline PALEOMIX can take a month even running it on the powerful computer resource. In this paper we will describe the adaptation the PALEOMIX pipeline to run it on a distributed computing environment powered by PanDA. To run pipeline we split input files into chunks which are run separately on different nodes as separate inputs for PALEOMIX and finally merge output file, it is very similar to what it done by ATLAS to process and to simulate data. We dramatically decreased the total walltime because of jobs (re)submission automation and brokering within PanDA. Using software tools developed initially for HEP and Grid can reduce payload execution time for Mammoths DNA samples from weeks to days.

  16. Spiking network simulation code for petascale computers

    PubMed Central

    Kunkel, Susanne; Schmidt, Maximilian; Eppler, Jochen M.; Plesser, Hans E.; Masumoto, Gen; Igarashi, Jun; Ishii, Shin; Fukai, Tomoki; Morrison, Abigail; Diesmann, Markus; Helias, Moritz

    2014-01-01

    Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties and parameters of their constituents. At cellular resolution, the entities of theory are neurons and synapses and over the past decade researchers have learned to manage the heterogeneity of neurons and synapses with efficient data structures. Already early parallel simulation codes stored synapses in a distributed fashion such that a synapse solely consumes memory on the compute node harboring the target neuron. As petaflop computers with some 100,000 nodes become increasingly available for neuroscience, new challenges arise for neuronal network simulation software: Each neuron contacts on the order of 10,000 other neurons and thus has targets only on a fraction of all compute nodes; furthermore, for any given source neuron, at most a single synapse is typically created on any compute node. From the viewpoint of an individual compute node, the heterogeneity in the synaptic target lists thus collapses along two dimensions: the dimension of the types of synapses and the dimension of the number of synapses of a given type. Here we present a data structure taking advantage of this double collapse using metaprogramming techniques. After introducing the relevant scaling scenario for brain-scale simulations, we quantitatively discuss the performance on two supercomputers. We show that the novel architecture scales to the largest petascale supercomputers available today. PMID:25346682

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bland, Arthur S Buddy; Hack, James J; Baker, Ann E

    Oak Ridge National Laboratory's (ORNL's) Cray XT5 supercomputer, Jaguar, kicked off the era of petascale scientific computing in 2008 with applications that sustained more than a thousand trillion floating point calculations per second - or 1 petaflop. Jaguar continues to grow even more powerful as it helps researchers broaden the boundaries of knowledge in virtually every domain of computational science, including weather and climate, nuclear energy, geosciences, combustion, bioenergy, fusion, and materials science. Their insights promise to broaden our knowledge in areas that are vitally important to the Department of Energy (DOE) and the nation as a whole, particularly energymore » assurance and climate change. The science of the 21st century, however, will demand further revolutions in computing, supercomputers capable of a million trillion calculations a second - 1 exaflop - and beyond. These systems will allow investigators to continue attacking global challenges through modeling and simulation and to unravel longstanding scientific questions. Creating such systems will also require new approaches to daunting challenges. High-performance systems of the future will need to be codesigned for scientific and engineering applications with best-in-class communications networks and data-management infrastructures and teams of skilled researchers able to take full advantage of these new resources. The Oak Ridge Leadership Computing Facility (OLCF) provides the nation's most powerful open resource for capability computing, with a sustainable path that will maintain and extend national leadership for DOE's Office of Science (SC). The OLCF has engaged a world-class team to support petascale science and to take a dramatic step forward, fielding new capabilities for high-end science. This report highlights the successful delivery and operation of a petascale system and shows how the OLCF fosters application development teams, developing cutting-edge tools and resources for next-generation systems.« less

  18. Management, Analysis, and Visualization of Experimental and Observational Data – The Convergence of Data and Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethel, E. Wes; Greenwald, Martin; Kleese van Dam, Kerstin

    Scientific user facilities—particle accelerators, telescopes, colliders, supercomputers, light sources, sequencing facilities, and more—operated by the U.S. Department of Energy (DOE) Office of Science (SC) generate ever increasing volumes of data at unprecedented rates from experiments, observations, and simulations. At the same time there is a growing community of experimentalists that require real-time data analysis feedback, to enable them to steer their complex experimental instruments to optimized scientific outcomes and new discoveries. Recent efforts in DOE-SC have focused on articulating the data-centric challenges and opportunities facing these science communities. Key challenges include difficulties coping with data size, rate, and complexity inmore » the context of both real-time and post-experiment data analysis and interpretation. Solutions will require algorithmic and mathematical advances, as well as hardware and software infrastructures that adequately support data-intensive scientific workloads. This paper presents the summary findings of a workshop held by DOE-SC in September 2015, convened to identify the major challenges and the research that is needed to meet those challenges.« less

  19. Management, Analysis, and Visualization of Experimental and Observational Data -- The Convergence of Data and Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethel, E. Wes; Greenwald, Martin; Kleese van Dam, Kersten

    Scientific user facilities---particle accelerators, telescopes, colliders, supercomputers, light sources, sequencing facilities, and more---operated by the U.S. Department of Energy (DOE) Office of Science (SC) generate ever increasing volumes of data at unprecedented rates from experiments, observations, and simulations. At the same time there is a growing community of experimentalists that require real-time data analysis feedback, to enable them to steer their complex experimental instruments to optimized scientific outcomes and new discoveries. Recent efforts in DOE-SC have focused on articulating the data-centric challenges and opportunities facing these science communities. Key challenges include difficulties coping with data size, rate, and complexity inmore » the context of both real-time and post-experiment data analysis and interpretation. Solutions will require algorithmic and mathematical advances, as well as hardware and software infrastructures that adequately support data-intensive scientific workloads. This paper presents the summary findings of a workshop held by DOE-SC in September 2015, convened to identify the major challenges and the research that is needed to meet those challenges.« less

  20. Parallel Index and Query for Large Scale Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Jerry; Wu, Kesheng; Ruebel, Oliver

    2011-07-18

    Modern scientific datasets present numerous data management and analysis challenges. State-of-the-art index and query technologies are critical for facilitating interactive exploration of large datasets, but numerous challenges remain in terms of designing a system for process- ing general scientific datasets. The system needs to be able to run on distributed multi-core platforms, efficiently utilize underlying I/O infrastructure, and scale to massive datasets. We present FastQuery, a novel software framework that address these challenges. FastQuery utilizes a state-of-the-art index and query technology (FastBit) and is designed to process mas- sive datasets on modern supercomputing platforms. We apply FastQuery to processing ofmore » a massive 50TB dataset generated by a large scale accelerator modeling code. We demonstrate the scalability of the tool to 11,520 cores. Motivated by the scientific need to search for inter- esting particles in this dataset, we use our framework to reduce search time from hours to tens of seconds.« less

  1. Efficient development of memory bounded geo-applications to scale on modern supercomputers

    NASA Astrophysics Data System (ADS)

    Räss, Ludovic; Omlin, Samuel; Licul, Aleksandar; Podladchikov, Yuri; Herman, Frédéric

    2016-04-01

    Numerical modeling is an actual key tool in the area of geosciences. The current challenge is to solve problems that are multi-physics and for which the length scale and the place of occurrence might not be known in advance. Also, the spatial extend of the investigated domain might strongly vary in size, ranging from millimeters for reactive transport to kilometers for glacier erosion dynamics. An efficient way to proceed is to develop simple but robust algorithms that perform well and scale on modern supercomputers and permit therefore very high-resolution simulations. We propose an efficient approach to solve memory bounded real-world applications on modern supercomputers architectures. We optimize the software to run on our newly acquired state-of-the-art GPU cluster "octopus". Our approach shows promising preliminary results on important geodynamical and geomechanical problematics: we have developed a Stokes solver for glacier flow and a poromechanical solver including complex rheologies for nonlinear waves in stressed rocks porous rocks. We solve the system of partial differential equations on a regular Cartesian grid and use an iterative finite difference scheme with preconditioning of the residuals. The MPI communication happens only locally (point-to-point); this method is known to scale linearly by construction. The "octopus" GPU cluster, which we use for the computations, has been designed to achieve maximal data transfer throughput at minimal hardware cost. It is composed of twenty compute nodes, each hosting four Nvidia Titan X GPU accelerators. These high-density nodes are interconnected with a parallel (dual-rail) FDR InfiniBand network. Our efforts show promising preliminary results for the different physics investigated. The glacier flow solver achieves good accuracy in the relevant benchmarks and the coupled poromechanical solver permits to explain previously unresolvable focused fluid flow as a natural outcome of the porosity setup. In both cases, near peak memory bandwidth transfer is achieved. Our approach allows us to get the best out of the current hardware.

  2. High Temporal Resolution Mapping of Seismic Noise Sources Using Heterogeneous Supercomputers

    NASA Astrophysics Data System (ADS)

    Paitz, P.; Gokhberg, A.; Ermert, L. A.; Fichtner, A.

    2017-12-01

    The time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems like earthquake fault zones, volcanoes, geothermal and hydrocarbon reservoirs. We present results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service providing seismic noise source maps for Central Europe with high temporal resolution. We use source imaging methods based on the cross-correlation of seismic noise records from all seismic stations available in the region of interest. The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept to provide the interested researchers worldwide with regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for collecting, on a periodic basis, raw seismic records from the European seismic networks, (2) high-performance noise source mapping application responsible for the generation of source maps using cross-correlation of seismic records, (3) back-end infrastructure for the coordination of various tasks and computations, (4) front-end Web interface providing the service to the end-users and (5) data repository. The noise source mapping itself rests on the measurement of logarithmic amplitude ratios in suitably pre-processed noise correlations, and the use of simplified sensitivity kernels. During the implementation we addressed various challenges, in particular, selection of data sources and transfer protocols, automation and monitoring of daily data downloads, ensuring the required data processing performance, design of a general service-oriented architecture for coordination of various sub-systems, and engineering an appropriate data storage solution. The present pilot version of the service implements noise source maps for Switzerland. Extension of the solution to Central Europe is planned for the next project phase.

  3. Supercomputer use in orthopaedic biomechanics research: focus on functional adaptation of bone.

    PubMed

    Hart, R T; Thongpreda, N; Van Buskirk, W C

    1988-01-01

    The authors describe two biomechanical analyses carried out using numerical methods. One is an analysis of the stress and strain in a human mandible, and the other analysis involves modeling the adaptive response of a sheep bone to mechanical loading. The computing environment required for the two types of analyses is discussed. It is shown that a simple stress analysis of a geometrically complex mandible can be accomplished using a minicomputer. However, more sophisticated analyses of the same model with dynamic loading or nonlinear materials would require supercomputer capabilities. A supercomputer is also required for modeling the adaptive response of living bone, even when simple geometric and material models are use.

  4. NREL's Building-Integrated Supercomputer Provides Heating and Efficient Computing (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-09-01

    NREL's Energy Systems Integration Facility (ESIF) is meant to investigate new ways to integrate energy sources so they work together efficiently, and one of the key tools to that investigation, a new supercomputer, is itself a prime example of energy systems integration. NREL teamed with Hewlett-Packard (HP) and Intel to develop the innovative warm-water, liquid-cooled Peregrine supercomputer, which not only operates efficiently but also serves as the primary source of building heat for ESIF offices and laboratories. This innovative high-performance computer (HPC) can perform more than a quadrillion calculations per second as part of the world's most energy-efficient HPC datamore » center.« less

  5. Supercomputer optimizations for stochastic optimal control applications

    NASA Technical Reports Server (NTRS)

    Chung, Siu-Leung; Hanson, Floyd B.; Xu, Huihuang

    1991-01-01

    Supercomputer optimizations for a computational method of solving stochastic, multibody, dynamic programming problems are presented. The computational method is valid for a general class of optimal control problems that are nonlinear, multibody dynamical systems, perturbed by general Markov noise in continuous time, i.e., nonsmooth Gaussian as well as jump Poisson random white noise. Optimization techniques for vector multiprocessors or vectorizing supercomputers include advanced data structures, loop restructuring, loop collapsing, blocking, and compiler directives. These advanced computing techniques and superconducting hardware help alleviate Bellman's curse of dimensionality in dynamic programming computations, by permitting the solution of large multibody problems. Possible applications include lumped flight dynamics models for uncertain environments, such as large scale and background random aerospace fluctuations.

  6. Optimization of large matrix calculations for execution on the Cray X-MP vector supercomputer

    NASA Technical Reports Server (NTRS)

    Hornfeck, William A.

    1988-01-01

    A considerable volume of large computational computer codes were developed for NASA over the past twenty-five years. This code represents algorithms developed for machines of earlier generation. With the emergence of the vector supercomputer as a viable, commercially available machine, an opportunity exists to evaluate optimization strategies to improve the efficiency of existing software. This result is primarily due to architectural differences in the latest generation of large-scale machines and the earlier, mostly uniprocessor, machines. A sofware package being used by NASA to perform computations on large matrices is described, and a strategy for conversion to the Cray X-MP vector supercomputer is also described.

  7. NAS Technical Summaries, March 1993 - February 1994

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA created the Numerical Aerodynamic Simulation (NAS) Program in 1987 to focus resources on solving critical problems in aeroscience and related disciplines by utilizing the power of the most advanced supercomputers available. The NAS Program provides scientists with the necessary computing power to solve today's most demanding computational fluid dynamics problems and serves as a pathfinder in integrating leading-edge supercomputing technologies, thus benefitting other supercomputer centers in government and industry. The 1993-94 operational year concluded with 448 high-speed processor projects and 95 parallel projects representing NASA, the Department of Defense, other government agencies, private industry, and universities. This document provides a glimpse at some of the significant scientific results for the year.

  8. NAS technical summaries. Numerical aerodynamic simulation program, March 1992 - February 1993

    NASA Technical Reports Server (NTRS)

    1994-01-01

    NASA created the Numerical Aerodynamic Simulation (NAS) Program in 1987 to focus resources on solving critical problems in aeroscience and related disciplines by utilizing the power of the most advanced supercomputers available. The NAS Program provides scientists with the necessary computing power to solve today's most demanding computational fluid dynamics problems and serves as a pathfinder in integrating leading-edge supercomputing technologies, thus benefitting other supercomputer centers in government and industry. The 1992-93 operational year concluded with 399 high-speed processor projects and 91 parallel projects representing NASA, the Department of Defense, other government agencies, private industry, and universities. This document provides a glimpse at some of the significant scientific results for the year.

  9. Congressional Panel Seeks To Curb Access of Foreign Students to U.S. Supercomputers.

    ERIC Educational Resources Information Center

    Kiernan, Vincent

    1999-01-01

    Fearing security problems, a congressional committee on Chinese espionage recommends that foreign students and other foreign nationals be barred from using supercomputers at national laboratories unless they first obtain export licenses from the federal government. University officials dispute the data on which the report is based and find the…

  10. The Age of the Supercomputer Gives Way to the Age of the Super Infrastructure.

    ERIC Educational Resources Information Center

    Young, Jeffrey R.

    1997-01-01

    In October 1997, the National Science Foundation will discontinue financial support for two university-based supercomputer facilities to concentrate resources on partnerships led by facilities at the University of California, San Diego and the University of Illinois, Urbana-Champaign. The reconfigured program will develop more user-friendly and…

  11. Intricacies of modern supercomputing illustrated with recent advances in simulations of strongly correlated electron systems

    NASA Astrophysics Data System (ADS)

    Schulthess, Thomas C.

    2013-03-01

    The continued thousand-fold improvement in sustained application performance per decade on modern supercomputers keeps opening new opportunities for scientific simulations. But supercomputers have become very complex machines, built with thousands or tens of thousands of complex nodes consisting of multiple CPU cores or, most recently, a combination of CPU and GPU processors. Efficient simulations on such high-end computing systems require tailored algorithms that optimally map numerical methods to particular architectures. These intricacies will be illustrated with simulations of strongly correlated electron systems, where the development of quantum cluster methods, Monte Carlo techniques, as well as their optimal implementation by means of algorithms with improved data locality and high arithmetic density have gone hand in hand with evolving computer architectures. The present work would not have been possible without continued access to computing resources at the National Center for Computational Science of Oak Ridge National Laboratory, which is funded by the Facilities Division of the Office of Advanced Scientific Computing Research, and the Swiss National Supercomputing Center (CSCS) that is funded by ETH Zurich.

  12. Extracting the Textual and Temporal Structure of Supercomputing Logs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, S; Singh, I; Chandra, A

    2009-05-26

    Supercomputers are prone to frequent faults that adversely affect their performance, reliability and functionality. System logs collected on these systems are a valuable resource of information about their operational status and health. However, their massive size, complexity, and lack of standard format makes it difficult to automatically extract information that can be used to improve system management. In this work we propose a novel method to succinctly represent the contents of supercomputing logs, by using textual clustering to automatically find the syntactic structures of log messages. This information is used to automatically classify messages into semantic groups via an onlinemore » clustering algorithm. Further, we describe a methodology for using the temporal proximity between groups of log messages to identify correlated events in the system. We apply our proposed methods to two large, publicly available supercomputing logs and show that our technique features nearly perfect accuracy for online log-classification and extracts meaningful structural and temporal message patterns that can be used to improve the accuracy of other log analysis techniques.« less

  13. Toward a Proof of Concept Cloud Framework for Physics Applications on Blue Gene Supercomputers

    NASA Astrophysics Data System (ADS)

    Dreher, Patrick; Scullin, William; Vouk, Mladen

    2015-09-01

    Traditional high performance supercomputers are capable of delivering large sustained state-of-the-art computational resources to physics applications over extended periods of time using batch processing mode operating environments. However, today there is an increasing demand for more complex workflows that involve large fluctuations in the levels of HPC physics computational requirements during the simulations. Some of the workflow components may also require a richer set of operating system features and schedulers than normally found in a batch oriented HPC environment. This paper reports on progress toward a proof of concept design that implements a cloud framework onto BG/P and BG/Q platforms at the Argonne Leadership Computing Facility. The BG/P implementation utilizes the Kittyhawk utility and the BG/Q platform uses an experimental heterogeneous FusedOS operating system environment. Both platforms use the Virtual Computing Laboratory as the cloud computing system embedded within the supercomputer. This proof of concept design allows a cloud to be configured so that it can capitalize on the specialized infrastructure capabilities of a supercomputer and the flexible cloud configurations without resorting to virtualization. Initial testing of the proof of concept system is done using the lattice QCD MILC code. These types of user reconfigurable environments have the potential to deliver experimental schedulers and operating systems within a working HPC environment for physics computations that may be different from the native OS and schedulers on production HPC supercomputers.

  14. Scalable nuclear density functional theory with Sky3D

    NASA Astrophysics Data System (ADS)

    Afibuzzaman, Md; Schuetrumpf, Bastian; Aktulga, Hasan Metin

    2018-02-01

    In nuclear astrophysics, quantum simulations of large inhomogeneous dense systems as they appear in the crusts of neutron stars present big challenges. The number of particles in a simulation with periodic boundary conditions is strongly limited due to the immense computational cost of the quantum methods. In this paper, we describe techniques for an efficient and scalable parallel implementation of Sky3D, a nuclear density functional theory solver that operates on an equidistant grid. Presented techniques allow Sky3D to achieve good scaling and high performance on a large number of cores, as demonstrated through detailed performance analysis on a Cray XC40 supercomputer.

  15. Performance Analysis and Scaling Behavior of the Terrestrial Systems Modeling Platform TerrSysMP in Large-Scale Supercomputing Environments

    NASA Astrophysics Data System (ADS)

    Kollet, S. J.; Goergen, K.; Gasper, F.; Shresta, P.; Sulis, M.; Rihani, J.; Simmer, C.; Vereecken, H.

    2013-12-01

    In studies of the terrestrial hydrologic, energy and biogeochemical cycles, integrated multi-physics simulation platforms take a central role in characterizing non-linear interactions, variances and uncertainties of system states and fluxes in reciprocity with observations. Recently developed integrated simulation platforms attempt to honor the complexity of the terrestrial system across multiple time and space scales from the deeper subsurface including groundwater dynamics into the atmosphere. Technically, this requires the coupling of atmospheric, land surface, and subsurface-surface flow models in supercomputing environments, while ensuring a high-degree of efficiency in the utilization of e.g., standard Linux clusters and massively parallel resources. A systematic performance analysis including profiling and tracing in such an application is crucial in the understanding of the runtime behavior, to identify optimum model settings, and is an efficient way to distinguish potential parallel deficiencies. On sophisticated leadership-class supercomputers, such as the 28-rack 5.9 petaFLOP IBM Blue Gene/Q 'JUQUEEN' of the Jülich Supercomputing Centre (JSC), this is a challenging task, but even more so important, when complex coupled component models are to be analysed. Here we want to present our experience from coupling, application tuning (e.g. 5-times speedup through compiler optimizations), parallel scaling and performance monitoring of the parallel Terrestrial Systems Modeling Platform TerrSysMP. The modeling platform consists of the weather prediction system COSMO of the German Weather Service; the Community Land Model, CLM of NCAR; and the variably saturated surface-subsurface flow code ParFlow. The model system relies on the Multiple Program Multiple Data (MPMD) execution model where the external Ocean-Atmosphere-Sea-Ice-Soil coupler (OASIS3) links the component models. TerrSysMP has been instrumented with the performance analysis tool Scalasca and analyzed on JUQUEEN with processor counts on the order of 10,000. The instrumentation is used in weak and strong scaling studies with real data cases and hypothetical idealized numerical experiments for detailed profiling and tracing analysis. The profiling is not only useful in identifying wait states that are due to the MPMD execution model, but also in fine-tuning resource allocation to the component models in search of the most suitable load balancing. This is especially necessary, as with numerical experiments that cover multiple (high resolution) spatial scales, the time stepping, coupling frequencies, and communication overheads are constantly shifting, which makes it necessary to re-determine the model setup with each new experimental design.

  16. The impact of the U.S. supercomputing initiative will be global

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Dona

    2016-01-15

    Last July, President Obama issued an executive order that created a coordinated federal strategy for HPC research, development, and deployment called the U.S. National Strategic Computing Initiative (NSCI). However, this bold, necessary step toward building the next generation of supercomputers has inaugurated a new era for U.S. high performance computing (HPC).

  17. Parallel-vector solution of large-scale structural analysis problems on supercomputers

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.; Nguyen, Duc T.; Agarwal, Tarun K.

    1989-01-01

    A direct linear equation solution method based on the Choleski factorization procedure is presented which exploits both parallel and vector features of supercomputers. The new equation solver is described, and its performance is evaluated by solving structural analysis problems on three high-performance computers. The method has been implemented using Force, a generic parallel FORTRAN language.

  18. Predicting Hurricanes with Supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-01-01

    Hurricane Emily, formed in the Atlantic Ocean on July 10, 2005, was the strongest hurricane ever to form before August. By checking computer models against the actual path of the storm, researchers can improve hurricane prediction. In 2010, NOAA researchers were awarded 25 million processor-hours on Argonne's BlueGene/P supercomputer for the project. Read more at http://go.usa.gov/OLh

  19. Supercomputers Of The Future

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Kim, John; Holst, Terry L.; Deiwert, George S.; Cooper, David M.; Watson, Andrew B.; Bailey, F. Ron

    1992-01-01

    Report evaluates supercomputer needs of five key disciplines: turbulence physics, aerodynamics, aerothermodynamics, chemistry, and mathematical modeling of human vision. Predicts these fields will require computer speed greater than 10(Sup 18) floating-point operations per second (FLOP's) and memory capacity greater than 10(Sup 15) words. Also, new parallel computer architectures and new structured numerical methods will make necessary speed and capacity available.

  20. Advances in petascale kinetic plasma simulation with VPIC and Roadrunner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowers, Kevin J; Albright, Brian J; Yin, Lin

    2009-01-01

    VPIC, a first-principles 3d electromagnetic charge-conserving relativistic kinetic particle-in-cell (PIC) code, was recently adapted to run on Los Alamos's Roadrunner, the first supercomputer to break a petaflop (10{sup 15} floating point operations per second) in the TOP500 supercomputer performance rankings. They give a brief overview of the modeling capabilities and optimization techniques used in VPIC and the computational characteristics of petascale supercomputers like Roadrunner. They then discuss three applications enabled by VPIC's unprecedented performance on Roadrunner: modeling laser plasma interaction in upcoming inertial confinement fusion experiments at the National Ignition Facility (NIF), modeling short pulse laser GeV ion acceleration andmore » modeling reconnection in magnetic confinement fusion experiments.« less

  1. Supercomputing Sheds Light on the Dark Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, Salman; Heitmann, Katrin

    2012-11-15

    At Argonne National Laboratory, scientists are using supercomputers to shed light on one of the great mysteries in science today, the Dark Universe. With Mira, a petascale supercomputer at the Argonne Leadership Computing Facility, a team led by physicists Salman Habib and Katrin Heitmann will run the largest, most complex simulation of the universe ever attempted. By contrasting the results from Mira with state-of-the-art telescope surveys, the scientists hope to gain new insights into the distribution of matter in the universe, advancing future investigations of dark energy and dark matter into a new realm. The team's research was named amore » finalist for the 2012 Gordon Bell Prize, an award recognizing outstanding achievement in high-performance computing.« less

  2. Surprise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curran, L.

    1988-03-03

    Interest has been building in recent months over the imminent arrival of a new class of supercomputer, called the ''supercomputer on a desk'' or the single-user model. Most observers expected the first such product to come from either of two startups, Ardent Computer Corp. or Stellar Computer Inc. But a surprise entry has shown up. Apollo Computer Inc. is launching a new work station this week that racks up an impressive list of industry first as it puts supercomputer power at the disposal of a single user. The new series 10000 from the Chelmsford, Mass., a company is built aroundmore » a reduced-instruction-set architecture that the company calls Prism, for parallel reduced-instruction-set multiprocessor. This article describes the 10000 and Prism.« less

  3. Progress and supercomputing in computational fluid dynamics; Proceedings of U.S.-Israel Workshop, Jerusalem, Israel, December 1984

    NASA Technical Reports Server (NTRS)

    Murman, E. M. (Editor); Abarbanel, S. S. (Editor)

    1985-01-01

    Current developments and future trends in the application of supercomputers to computational fluid dynamics are discussed in reviews and reports. Topics examined include algorithm development for personal-size supercomputers, a multiblock three-dimensional Euler code for out-of-core and multiprocessor calculations, simulation of compressible inviscid and viscous flow, high-resolution solutions of the Euler equations for vortex flows, algorithms for the Navier-Stokes equations, and viscous-flow simulation by FEM and related techniques. Consideration is given to marching iterative methods for the parabolized and thin-layer Navier-Stokes equations, multigrid solutions to quasi-elliptic schemes, secondary instability of free shear flows, simulation of turbulent flow, and problems connected with weather prediction.

  4. High End Computing Technologies for Earth Science Applications: Trends, Challenges, and Innovations

    NASA Technical Reports Server (NTRS)

    Parks, John (Technical Monitor); Biswas, Rupak; Yan, Jerry C.; Brooks, Walter F.; Sterling, Thomas L.

    2003-01-01

    Earth science applications of the future will stress the capabilities of even the highest performance supercomputers in the areas of raw compute power, mass storage management, and software environments. These NASA mission critical problems demand usable multi-petaflops and exabyte-scale systems to fully realize their science goals. With an exciting vision of the technologies needed, NASA has established a comprehensive program of advanced research in computer architecture, software tools, and device technology to ensure that, in partnership with US industry, it can meet these demanding requirements with reliable, cost effective, and usable ultra-scale systems. NASA will exploit, explore, and influence emerging high end computing architectures and technologies to accelerate the next generation of engineering, operations, and discovery processes for NASA Enterprises. This article captures this vision and describes the concepts, accomplishments, and the potential payoff of the key thrusts that will help meet the computational challenges in Earth science applications.

  5. Ice Storm Supercomputer

    ScienceCinema

    None

    2018-05-01

    A new Idaho National Laboratory supercomputer is helping scientists create more realistic simulations of nuclear fuel. Dubbed "Ice Storm" this 2048-processor machine allows researchers to model and predict the complex physics behind nuclear reactor behavior. And with a new visualization lab, the team can see the results of its simulations on the big screen. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  6. Open Skies Project Computational Fluid Dynamic Analysis

    DTIC Science & Technology

    1994-03-01

    109 -. -_ _ 9 . CONCLUSIONSI1 f 10. LIST OF REFERENCES _________ ___________112 APPENDIX A: Transition Prediction __________________116 B...Behind the Open Skies Plate 20 8. VSAERO Results on the Alternate Fairing 21 9 . Centerline Cp Comparisons 22 10. VSAERO Wing Effects Study Centerline C...problems. The assistance Mrs. Mary Ann Mages, at Kirtland Supercomputer Center ( PL /SCPR) gave by setting a precedent for supercomputer account

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack

    20th Edition of TOP500 List of World's Fastest Supercomputers Released MANNHEIM, Germany; KNOXVILLE, Tenn.;&BERKELEY, Calif. In what has become a much-anticipated event in the world of high-performance computing, the 20th edition of the TOP500 list of the world's fastest supercomputers was released today (November 15, 2002). The Earth Simulator supercomputer installed earlier this year at the Earth Simulator Center in Yokohama, Japan, is with its Linpack benchmark performance of 35.86 Tflop/s (trillions of calculations per second) retains the number one position. The No.2 and No.3 positions are held by two new, identical ASCI Q systems at Los Alamos National Laboratorymore » (7.73Tflop/s each). These systems are built by Hewlett-Packard and based on the Alpha Server SC computer system.« less

  8. STAMPS: Software Tool for Automated MRI Post-processing on a supercomputer.

    PubMed

    Bigler, Don C; Aksu, Yaman; Miller, David J; Yang, Qing X

    2009-08-01

    This paper describes a Software Tool for Automated MRI Post-processing (STAMP) of multiple types of brain MRIs on a workstation and for parallel processing on a supercomputer (STAMPS). This software tool enables the automation of nonlinear registration for a large image set and for multiple MR image types. The tool uses standard brain MRI post-processing tools (such as SPM, FSL, and HAMMER) for multiple MR image types in a pipeline fashion. It also contains novel MRI post-processing features. The STAMP image outputs can be used to perform brain analysis using Statistical Parametric Mapping (SPM) or single-/multi-image modality brain analysis using Support Vector Machines (SVMs). Since STAMPS is PBS-based, the supercomputer may be a multi-node computer cluster or one of the latest multi-core computers.

  9. Japanese project aims at supercomputer that executes 10 gflops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burskey, D.

    1984-05-03

    Dubbed supercom by its multicompany design team, the decade-long project's goal is an engineering supercomputer that can execute 10 billion floating-point operations/s-about 20 times faster than today's supercomputers. The project, guided by Japan's Ministry of International Trade and Industry (MITI) and the Agency of Industrial Science and Technology encompasses three parallel research programs, all aimed at some angle of the superconductor. One program should lead to superfast logic and memory circuits, another to a system architecture that will afford the best performance, and the last to the software that will ultimately control the computer. The work on logic and memorymore » chips is based on: GAAS circuit; Josephson junction devices; and high electron mobility transistor structures. The architecture will involve parallel processing.« less

  10. B-MIC: An Ultrafast Three-Level Parallel Sequence Aligner Using MIC.

    PubMed

    Cui, Yingbo; Liao, Xiangke; Zhu, Xiaoqian; Wang, Bingqiang; Peng, Shaoliang

    2016-03-01

    Sequence alignment is the central process for sequence analysis, where mapping raw sequencing data to reference genome. The large amount of data generated by NGS is far beyond the process capabilities of existing alignment tools. Consequently, sequence alignment becomes the bottleneck of sequence analysis. Intensive computing power is required to address this challenge. Intel recently announced the MIC coprocessor, which can provide massive computing power. The Tianhe-2 is the world's fastest supercomputer now equipped with three MIC coprocessors each compute node. A key feature of sequence alignment is that different reads are independent. Considering this property, we proposed a MIC-oriented three-level parallelization strategy to speed up BWA, a widely used sequence alignment tool, and developed our ultrafast parallel sequence aligner: B-MIC. B-MIC contains three levels of parallelization: firstly, parallelization of data IO and reads alignment by a three-stage parallel pipeline; secondly, parallelization enabled by MIC coprocessor technology; thirdly, inter-node parallelization implemented by MPI. In this paper, we demonstrate that B-MIC outperforms BWA by a combination of those techniques using Inspur NF5280M server and the Tianhe-2 supercomputer. To the best of our knowledge, B-MIC is the first sequence alignment tool to run on Intel MIC and it can achieve more than fivefold speedup over the original BWA while maintaining the alignment precision.

  11. LFRic: Building a new Unified Model

    NASA Astrophysics Data System (ADS)

    Melvin, Thomas; Mullerworth, Steve; Ford, Rupert; Maynard, Chris; Hobson, Mike

    2017-04-01

    The LFRic project, named for Lewis Fry Richardson, aims to develop a replacement for the Met Office Unified Model in order to meet the challenges which will be presented by the next generation of exascale supercomputers. This project, a collaboration between the Met Office, STFC Daresbury and the University of Manchester, builds on the earlier GungHo project to redesign the dynamical core, in partnership with NERC. The new atmospheric model aims to retain the performance of the current ENDGame dynamical core and associated subgrid physics, while also enabling a far greater scalability and flexibility to accommodate future supercomputer architectures. Design of the model revolves around a principle of a 'separation of concerns', whereby the natural science aspects of the code can be developed without worrying about the underlying architecture, while machine dependent optimisations can be carried out at a high level. These principles are put into practice through the development of an autogenerated Parallel Systems software layer (known as the PSy layer) using a domain-specific compiler called PSyclone. The prototype model includes a re-write of the dynamical core using a mixed finite element method, in which different function spaces are used to represent the various fields. It is able to run in parallel with MPI and OpenMP and has been tested on over 200,000 cores. In this talk an overview of the both the natural science and computational science implementations of the model will be presented.

  12. RISC Processors and High Performance Computing

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Bailey, David H.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    In this tutorial, we will discuss top five current RISC microprocessors: The IBM Power2, which is used in the IBM RS6000/590 workstation and in the IBM SP2 parallel supercomputer, the DEC Alpha, which is in the DEC Alpha workstation and in the Cray T3D; the MIPS R8000, which is used in the SGI Power Challenge; the HP PA-RISC 7100, which is used in the HP 700 series workstations and in the Convex Exemplar; and the Cray proprietary processor, which is used in the new Cray J916. The architecture of these microprocessors will first be presented. The effective performance of these processors will then be compared, both by citing standard benchmarks and also in the context of implementing a real applications. In the process, different programming models such as data parallel (CM Fortran and HPF) and message passing (PVM and MPI) will be introduced and compared. The latest NAS Parallel Benchmark (NPB) absolute performance and performance per dollar figures will be presented. The next generation of the NP13 will also be described. The tutorial will conclude with a discussion of general trends in the field of high performance computing, including likely future developments in hardware and software technology, and the relative roles of vector supercomputers tightly coupled parallel computers, and clusters of workstations. This tutorial will provide a unique cross-machine comparison not available elsewhere.

  13. High Performance Molecular Visualization: In-Situ and Parallel Rendering with EGL.

    PubMed

    Stone, John E; Messmer, Peter; Sisneros, Robert; Schulten, Klaus

    2016-05-01

    Large scale molecular dynamics simulations produce terabytes of data that is impractical to transfer to remote facilities. It is therefore necessary to perform visualization tasks in-situ as the data are generated, or by running interactive remote visualization sessions and batch analyses co-located with direct access to high performance storage systems. A significant challenge for deploying visualization software within clouds, clusters, and supercomputers involves the operating system software required to initialize and manage graphics acceleration hardware. Recently, it has become possible for applications to use the Embedded-system Graphics Library (EGL) to eliminate the requirement for windowing system software on compute nodes, thereby eliminating a significant obstacle to broader use of high performance visualization applications. We outline the potential benefits of this approach in the context of visualization applications used in the cloud, on commodity clusters, and supercomputers. We discuss the implementation of EGL support in VMD, a widely used molecular visualization application, and we outline benefits of the approach for molecular visualization tasks on petascale computers, clouds, and remote visualization servers. We then provide a brief evaluation of the use of EGL in VMD, with tests using developmental graphics drivers on conventional workstations and on Amazon EC2 G2 GPU-accelerated cloud instance types. We expect that the techniques described here will be of broad benefit to many other visualization applications.

  14. Extensible Computational Chemistry Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-08-09

    ECCE provides a sophisticated graphical user interface, scientific visualization tools, and the underlying data management framework enabling scientists to efficiently set up calculations and store, retrieve, and analyze the rapidly growing volumes of data produced by computational chemistry studies. ECCE was conceived as part of the Environmental Molecular Sciences Laboratory construction to solve the problem of researchers being able to effectively utilize complex computational chemistry codes and massively parallel high performance compute resources. Bringing the power of these codes and resources to the desktops of researcher and thus enabling world class research without users needing a detailed understanding of themore » inner workings of either the theoretical codes or the supercomputers needed to run them was a grand challenge problem in the original version of the EMSL. ECCE allows collaboration among researchers using a web-based data repository where the inputs and results for all calculations done within ECCE are organized. ECCE is a first of kind end-to-end problem solving environment for all phases of computational chemistry research: setting up calculations with sophisticated GUI and direct manipulation visualization tools, submitting and monitoring calculations on remote high performance supercomputers without having to be familiar with the details of using these compute resources, and performing results visualization and analysis including creating publication quality images. ECCE is a suite of tightly integrated applications that are employed as the user moves through the modeling process.« less

  15. High Performance Molecular Visualization: In-Situ and Parallel Rendering with EGL

    PubMed Central

    Stone, John E.; Messmer, Peter; Sisneros, Robert; Schulten, Klaus

    2016-01-01

    Large scale molecular dynamics simulations produce terabytes of data that is impractical to transfer to remote facilities. It is therefore necessary to perform visualization tasks in-situ as the data are generated, or by running interactive remote visualization sessions and batch analyses co-located with direct access to high performance storage systems. A significant challenge for deploying visualization software within clouds, clusters, and supercomputers involves the operating system software required to initialize and manage graphics acceleration hardware. Recently, it has become possible for applications to use the Embedded-system Graphics Library (EGL) to eliminate the requirement for windowing system software on compute nodes, thereby eliminating a significant obstacle to broader use of high performance visualization applications. We outline the potential benefits of this approach in the context of visualization applications used in the cloud, on commodity clusters, and supercomputers. We discuss the implementation of EGL support in VMD, a widely used molecular visualization application, and we outline benefits of the approach for molecular visualization tasks on petascale computers, clouds, and remote visualization servers. We then provide a brief evaluation of the use of EGL in VMD, with tests using developmental graphics drivers on conventional workstations and on Amazon EC2 G2 GPU-accelerated cloud instance types. We expect that the techniques described here will be of broad benefit to many other visualization applications. PMID:27747137

  16. Japanese supercomputer technology.

    PubMed

    Buzbee, B L; Ewald, R H; Worlton, W J

    1982-12-17

    Under the auspices of the Ministry for International Trade and Industry the Japanese have launched a National Superspeed Computer Project intended to produce high-performance computers for scientific computation and a Fifth-Generation Computer Project intended to incorporate and exploit concepts of artificial intelligence. If these projects are successful, which appears likely, advanced economic and military research in the United States may become dependent on access to supercomputers of foreign manufacture.

  17. Supercomputer Simulations Help Develop New Approach to Fight Antibiotic Resistance

    ScienceCinema

    Zgurskaya, Helen; Smith, Jeremy

    2018-06-13

    ORNL leveraged powerful supercomputing to support research led by University of Oklahoma scientists to identify chemicals that seek out and disrupt bacterial proteins called efflux pumps, known to be a major cause of antibiotic resistance. By running simulations on Titan, the team selected molecules most likely to target and potentially disable the assembly of efflux pumps found in E. coli bacteria cells.

  18. Aviation Research and the Internet

    NASA Technical Reports Server (NTRS)

    Scott, Antoinette M.

    1995-01-01

    The Internet is a network of networks. It was originally funded by the Defense Advanced Research Projects Agency or DOD/DARPA and evolved in part from the connection of supercomputer sites across the United States. The National Science Foundation (NSF) made the most of their supercomputers by connecting the sites to each other. This made the supercomputers more efficient and now allows scientists, engineers and researchers to access the supercomputers from their own labs and offices. The high speed networks that connect the NSF supercomputers form the backbone of the Internet. The World Wide Web (WWW) is a menu system. It gathers Internet resources from all over the world into a series of screens that appear on your computer. The WWW is also a distributed. The distributed system stores data information on many computers (servers). These servers can go out and get data when you ask for it. Hypermedia is the base of the WWW. One can 'click' on a section and visit other hypermedia (pages). Our approach to demonstrating the importance of aviation research through the Internet began with learning how to put pages on the Internet (on-line) ourselves. We were assigned two aviation companies; Vision Micro Systems Inc. and Innovative Aerodynamic Technologies (IAT). We developed home pages for these SBIR companies. The equipment used to create the pages were the UNIX and Macintosh machines. HTML Supertext software was used to write the pages and the Sharp JX600S scanner to scan the images. As a result, with the use of the UNIX, Macintosh, Sun, PC, and AXIL machines, we were able to present our home pages to over 800,000 visitors.

  19. Enabling Diverse Software Stacks on Supercomputers using High Performance Virtual Clusters.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younge, Andrew J.; Pedretti, Kevin; Grant, Ryan

    While large-scale simulations have been the hallmark of the High Performance Computing (HPC) community for decades, Large Scale Data Analytics (LSDA) workloads are gaining attention within the scientific community not only as a processing component to large HPC simulations, but also as standalone scientific tools for knowledge discovery. With the path towards Exascale, new HPC runtime systems are also emerging in a way that differs from classical distributed com- puting models. However, system software for such capabilities on the latest extreme-scale DOE supercomputing needs to be enhanced to more appropriately support these types of emerging soft- ware ecosystems. In thismore » paper, we propose the use of Virtual Clusters on advanced supercomputing resources to enable systems to support not only HPC workloads, but also emerging big data stacks. Specifi- cally, we have deployed the KVM hypervisor within Cray's Compute Node Linux on a XC-series supercomputer testbed. We also use libvirt and QEMU to manage and provision VMs directly on compute nodes, leveraging Ethernet-over-Aries network emulation. To our knowledge, this is the first known use of KVM on a true MPP supercomputer. We investigate the overhead our solution using HPC benchmarks, both evaluating single-node performance as well as weak scaling of a 32-node virtual cluster. Overall, we find single node performance of our solution using KVM on a Cray is very efficient with near-native performance. However overhead increases by up to 20% as virtual cluster size increases, due to limitations of the Ethernet-over-Aries bridged network. Furthermore, we deploy Apache Spark with large data analysis workloads in a Virtual Cluster, ef- fectively demonstrating how diverse software ecosystems can be supported by High Performance Virtual Clusters.« less

  20. IBM PC enhances the world's future

    NASA Technical Reports Server (NTRS)

    Cox, Jozelle

    1988-01-01

    Although the purpose of this research is to illustrate the importance of computers to the public, particularly the IBM PC, present examinations will include computers developed before the IBM PC was brought into use. IBM, as well as other computing facilities, began serving the public years ago, and is continuing to find ways to enhance the existence of man. With new developments in supercomputers like the Cray-2, and the recent advances in artificial intelligence programming, the human race is gaining knowledge at a rapid pace. All have benefited from the development of computers in the world; not only have they brought new assets to life, but have made life more and more of a challenge everyday.

  1. Depiction of interfacial morphology in impact welded Ti/Cu bimetallic systems using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Nassiri, Ali; Vivek, Anupam; Abke, Tim; Liu, Bert; Lee, Taeseon; Daehn, Glenn

    2017-06-01

    Numerical simulations of high-velocity impact welding are extremely challenging due to the coupled physics and highly dynamic nature of the process. Thus, conventional mesh-based numerical methodologies are not able to accurately model the process owing to the excessive mesh distortion close to the interface of two welded materials. A simulation platform was developed using smoothed particle hydrodynamics, implemented in a parallel architecture on a supercomputer. Then, the numerical simulations were compared to experimental tests conducted by vaporizing foil actuator welding. The close correspondence of the experiment and modeling in terms of interface characteristics allows the prediction of local temperature and strain distributions, which are not easily measured.

  2. Grand challenges in mass storage: A systems integrators perspective

    NASA Technical Reports Server (NTRS)

    Lee, Richard R.; Mintz, Daniel G.

    1993-01-01

    Within today's much ballyhooed supercomputing environment, with its CFLOPS of CPU power, and Gigabit networks, there exists a major roadblock to computing success; that of Mass Storage. The solution to this mass storage problem is considered to be one of the 'Grand Challenges' facing the computer industry today, as well as long into the future. It has become obvious to us, as well as many others in the industry, that there is no clear single solution in sight. The Systems Integrator today is faced with a myriad of quandaries in approaching this challenge. He must first be innovative in approach, second choose hardware solutions that are volumetric efficient; high in signal bandwidth; available from multiple sources; competitively priced, and have forward growth extendibility. In addition he must also comply with a variety of mandated, and often conflicting software standards (GOSIP, POSIX, IEEE, MSRM 4.0, and others), and finally he must deliver a systems solution with the 'most bang for the buck' in terms of cost vs. performance factors. These quandaries challenge the Systems Integrator to 'push the envelope' in terms of his or her ingenuity and innovation on an almost daily basis. This dynamic is explored further, and an attempt to acquaint the audience with rational approaches to this 'Grand Challenge' is made.

  3. Next Generation Security for the 10,240 Processor Columbia System

    NASA Technical Reports Server (NTRS)

    Hinke, Thomas; Kolano, Paul; Shaw, Derek; Keller, Chris; Tweton, Dave; Welch, Todd; Liu, Wen (Betty)

    2005-01-01

    This presentation includes a discussion of the Columbia 10,240-processor system located at the NASA Advanced Supercomputing (NAS) division at the NASA Ames Research Center which supports each of NASA's four missions: science, exploration systems, aeronautics, and space operations. It is comprised of 20 Silicon Graphics nodes, each consisting of 512 Itanium II processors. A 64 processor Columbia front-end system supports users as they prepare their jobs and then submits them to the PBS system. Columbia nodes and front-end systems use the Linux OS. Prior to SC04, the Columbia system was used to attain a processing speed of 51.87 TeraFlops, which made it number two on the Top 500 list of the world's supercomputers and the world's fastest "operational" supercomputer since it was fully engaged in supporting NASA users.

  4. CFD applications: The Lockheed perspective

    NASA Technical Reports Server (NTRS)

    Miranda, Luis R.

    1987-01-01

    The Numerical Aerodynamic Simulator (NAS) epitomizes the coming of age of supercomputing and opens exciting horizons in the world of numerical simulation. An overview of supercomputing at Lockheed Corporation in the area of Computational Fluid Dynamics (CFD) is presented. This overview will focus on developments and applications of CFD as an aircraft design tool and will attempt to present an assessment, withing this context, of the state-of-the-art in CFD methodology.

  5. Computational mechanics analysis tools for parallel-vector supercomputers

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.; Nguyen, Duc T.; Baddourah, Majdi; Qin, Jiangning

    1993-01-01

    Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigensolution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization search analysis and domain decomposition. The source code for many of these algorithms is available.

  6. Achieving supercomputer performance for neural net simulation with an array of digital signal processors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, U.A.; Baumle, B.; Kohler, P.

    1992-10-01

    Music, a DSP-based system with a parallel distributed-memory architecture, provides enormous computing power yet retains the flexibility of a general-purpose computer. Reaching a peak performance of 2.7 Gflops at a significantly lower cost, power consumption, and space requirement than conventional supercomputers, Music is well suited to computationally intensive applications such as neural network simulation. 12 refs., 9 figs., 2 tabs.

  7. A Heterogeneous High-Performance System for Computational and Computer Science

    DTIC Science & Technology

    2016-11-15

    Patents Submitted Patents Awarded Awards Graduate Students Names of Post Doctorates Names of Faculty Supported Names of Under Graduate students supported...team of research faculty from the departments of computer science and natural science at Bowie State University. The supercomputer is not only to...accelerated HPC systems. The supercomputer is also ideal for the research conducted in the Department of Natural Science, as research faculty work on

  8. LLMapReduce: Multi-Lingual Map-Reduce for Supercomputing Environments

    DTIC Science & Technology

    2015-11-20

    1990s. Popularized by Google [36] and Apache Hadoop [37], map-reduce has become a staple technology of the ever- growing big data community...Lexington, MA, U.S.A Abstract— The map-reduce parallel programming model has become extremely popular in the big data community. Many big data ...to big data users running on a supercomputer. LLMapReduce dramatically simplifies map-reduce programming by providing simple parallel programming

  9. Advanced Numerical Techniques of Performance Evaluation. Volume 1

    DTIC Science & Technology

    1990-06-01

    system scheduling3thread. The scheduling thread then runs any other ready thread that can be found. A thread can only sleep or switch out on itself...Polychronopoulos and D.J. Kuck. Guided Self- Scheduling : A Practical Scheduling Scheme for Parallel Supercomputers. IEEE Transactions on Computers C...Kuck 1987] C.D. Polychronopoulos and D.J. Kuck. Guided Self- Scheduling : A Practical Scheduling Scheme for Parallel Supercomputers. IEEE Trans. on Comp

  10. PoPLAR: Portal for Petascale Lifescience Applications and Research

    PubMed Central

    2013-01-01

    Background We are focusing specifically on fast data analysis and retrieval in bioinformatics that will have a direct impact on the quality of human health and the environment. The exponential growth of data generated in biology research, from small atoms to big ecosystems, necessitates an increasingly large computational component to perform analyses. Novel DNA sequencing technologies and complementary high-throughput approaches--such as proteomics, genomics, metabolomics, and meta-genomics--drive data-intensive bioinformatics. While individual research centers or universities could once provide for these applications, this is no longer the case. Today, only specialized national centers can deliver the level of computing resources required to meet the challenges posed by rapid data growth and the resulting computational demand. Consequently, we are developing massively parallel applications to analyze the growing flood of biological data and contribute to the rapid discovery of novel knowledge. Methods The efforts of previous National Science Foundation (NSF) projects provided for the generation of parallel modules for widely used bioinformatics applications on the Kraken supercomputer. We have profiled and optimized the code of some of the scientific community's most widely used desktop and small-cluster-based applications, including BLAST from the National Center for Biotechnology Information (NCBI), HMMER, and MUSCLE; scaled them to tens of thousands of cores on high-performance computing (HPC) architectures; made them robust and portable to next-generation architectures; and incorporated these parallel applications in science gateways with a web-based portal. Results This paper will discuss the various developmental stages, challenges, and solutions involved in taking bioinformatics applications from the desktop to petascale with a front-end portal for very-large-scale data analysis in the life sciences. Conclusions This research will help to bridge the gap between the rate of data generation and the speed at which scientists can study this data. The ability to rapidly analyze data at such a large scale is having a significant, direct impact on science achieved by collaborators who are currently using these tools on supercomputers. PMID:23902523

  11. Computational mechanics analysis tools for parallel-vector supercomputers

    NASA Technical Reports Server (NTRS)

    Storaasli, O. O.; Nguyen, D. T.; Baddourah, M. A.; Qin, J.

    1993-01-01

    Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigen-solution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization algorithm and domain decomposition. The source code for many of these algorithms is available from NASA Langley.

  12. NASA's Pleiades Supercomputer Crunches Data For Groundbreaking Analysis and Visualizations

    NASA Image and Video Library

    2016-11-23

    The Pleiades supercomputer at NASA's Ames Research Center, recently named the 13th fastest computer in the world, provides scientists and researchers high-fidelity numerical modeling of complex systems and processes. By using detailed analyses and visualizations of large-scale data, Pleiades is helping to advance human knowledge and technology, from designing the next generation of aircraft and spacecraft to understanding the Earth's climate and the mysteries of our galaxy.

  13. A Long History of Supercomputing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grider, Gary

    As part of its national security science mission, Los Alamos National Laboratory and HPC have a long, entwined history dating back to the earliest days of computing. From bringing the first problem to the nation’s first computer to building the first machine to break the petaflop barrier, Los Alamos holds many “firsts” in HPC breakthroughs. Today, supercomputers are integral to stockpile stewardship and the Laboratory continues to work with vendors in developing the future of HPC.

  14. Introducing Argonne’s Theta Supercomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Theta, the Argonne Leadership Computing Facility’s (ALCF) new Intel-Cray supercomputer, is officially open to the research community. Theta’s massively parallel, many-core architecture puts the ALCF on the path to Aurora, the facility’s future Intel-Cray system. Capable of nearly 10 quadrillion calculations per second, Theta enables researchers to break new ground in scientific investigations that range from modeling the inner workings of the brain to developing new materials for renewable energy applications.

  15. Graphics supercomputer for computational fluid dynamics research

    NASA Astrophysics Data System (ADS)

    Liaw, Goang S.

    1994-11-01

    The objective of this project is to purchase a state-of-the-art graphics supercomputer to improve the Computational Fluid Dynamics (CFD) research capability at Alabama A & M University (AAMU) and to support the Air Force research projects. A cutting-edge graphics supercomputer system, Onyx VTX, from Silicon Graphics Computer Systems (SGI), was purchased and installed. Other equipment including a desktop personal computer, PC-486 DX2 with a built-in 10-BaseT Ethernet card, a 10-BaseT hub, an Apple Laser Printer Select 360, and a notebook computer from Zenith were also purchased. A reading room has been converted to a research computer lab by adding some furniture and an air conditioning unit in order to provide an appropriate working environments for researchers and the purchase equipment. All the purchased equipment were successfully installed and are fully functional. Several research projects, including two existing Air Force projects, are being performed using these facilities.

  16. Modelling sodium cobaltate by mapping onto magnetic Ising model

    NASA Astrophysics Data System (ADS)

    Gemperline, Patrick; Morris, David Jonathan Pryce

    Fast Ion conductors are a class of crystals that are frequently used as battery materials, especially in smart phones, laptops, and other portable devices. Sodium Cobalt Oxide, NaxCoO2, falls into this class of crystals, but is unique because it possesses the ability to act as a thermoelectric material and a superconductor at different concentrations of Na+. The crystal lattice is mapped onto an Ising Magnetic Spin model and a Monte-Carol Simulation is used to find the most energetically favorable configuration of spins. This spin configuration is mapped back to the crystal lattice resulting in the most stable crystal structure of Sodium Cobalt Oxide at various concentrations. Knowing the atomic structures of the crystals will aid in the research of the materials capabilities and the possible uses of the material commercially. Ohio Supercomputer Center. 1987. Ohio Supercomputer Center. Columbus OH: Ohio Supercomputer Center. and the John Hauck Foundation.

  17. Status report of the end-to-end ASKAP software system: towards early science operations

    NASA Astrophysics Data System (ADS)

    Guzman, Juan Carlos; Chapman, Jessica; Marquarding, Malte; Whiting, Matthew

    2016-08-01

    The Australian SKA Pathfinder (ASKAP) is a novel centimetre radio synthesis telescope currently in the commissioning phase and located in the midwest region of Western Australia. It comprises of 36 x 12 m diameter reflector antennas each equipped with state-of-the-art and award winning Phased Array Feeds (PAF) technology. The PAFs provide a wide, 30 square degree field-of-view by forming up to 36 separate dual-polarisation beams at once. This results in a high data rate: 70 TB of correlated visibilities in an 8-hour observation, requiring custom-written, high-performance software running in dedicated High Performance Computing (HPC) facilities. The first six antennas equipped with first-generation PAF technology (Mark I), named the Boolardy Engineering Test Array (BETA) have been in use since 2014 as a platform to test PAF calibration and imaging techniques, and along the way it has been producing some great science results. Commissioning of the ASKAP Array Release 1, that is the first six antennas with second-generation PAFs (Mark II) is currently under way. An integral part of the instrument is the Central Processor platform hosted at the Pawsey Supercomputing Centre in Perth, which executes custom-written software pipelines, designed specifically to meet the ASKAP imaging requirements of wide field of view and high dynamic range. There are three key hardware components of the Central Processor: The ingest nodes (16 x node cluster), the fast temporary storage (1 PB Lustre file system) and the processing supercomputer (200 TFlop system). This High-Performance Computing (HPC) platform is managed and supported by the Pawsey support team. Due to the limited amount of data generated by BETA and the first ASKAP Array Release, the Central Processor platform has been running in a more "traditional" or user-interactive mode. But this is about to change: integration and verification of the online ingest pipeline starts in early 2016, which is required to support the full 300 MHz bandwidth for Array Release 1; followed by the deployment of the real-time data processing components. In addition to the Central Processor, the first production release of the CSIRO ASKAP Science Data Archive (CASDA) has also been deployed in one of the Pawsey Supercomputing Centre facilities and it is integrated to the end-to-end ASKAP data flow system. This paper describes the current status of the "end-to-end" data flow software system from preparing observations to data acquisition, processing and archiving; and the challenges of integrating an HPC facility as a key part of the instrument. It also shares some lessons learned since the start of integration activities and the challenges ahead in preparation for the start of the Early Science program.

  18. An approach to secure weather and climate models against hardware faults

    NASA Astrophysics Data System (ADS)

    Düben, Peter D.; Dawson, Andrew

    2017-03-01

    Enabling Earth System models to run efficiently on future supercomputers is a serious challenge for model development. Many publications study efficient parallelization to allow better scaling of performance on an increasing number of computing cores. However, one of the most alarming threats for weather and climate predictions on future high performance computing architectures is widely ignored: the presence of hardware faults that will frequently hit large applications as we approach exascale supercomputing. Changes in the structure of weather and climate models that would allow them to be resilient against hardware faults are hardly discussed in the model development community. In this paper, we present an approach to secure the dynamical core of weather and climate models against hardware faults using a backup system that stores coarse resolution copies of prognostic variables. Frequent checks of the model fields on the backup grid allow the detection of severe hardware faults, and prognostic variables that are changed by hardware faults on the model grid can be restored from the backup grid to continue model simulations with no significant delay. To justify the approach, we perform model simulations with a C-grid shallow water model in the presence of frequent hardware faults. As long as the backup system is used, simulations do not crash and a high level of model quality can be maintained. The overhead due to the backup system is reasonable and additional storage requirements are small. Runtime is increased by only 13 % for the shallow water model.

  19. An approach to secure weather and climate models against hardware faults

    NASA Astrophysics Data System (ADS)

    Düben, Peter; Dawson, Andrew

    2017-04-01

    Enabling Earth System models to run efficiently on future supercomputers is a serious challenge for model development. Many publications study efficient parallelisation to allow better scaling of performance on an increasing number of computing cores. However, one of the most alarming threats for weather and climate predictions on future high performance computing architectures is widely ignored: the presence of hardware faults that will frequently hit large applications as we approach exascale supercomputing. Changes in the structure of weather and climate models that would allow them to be resilient against hardware faults are hardly discussed in the model development community. We present an approach to secure the dynamical core of weather and climate models against hardware faults using a backup system that stores coarse resolution copies of prognostic variables. Frequent checks of the model fields on the backup grid allow the detection of severe hardware faults, and prognostic variables that are changed by hardware faults on the model grid can be restored from the backup grid to continue model simulations with no significant delay. To justify the approach, we perform simulations with a C-grid shallow water model in the presence of frequent hardware faults. As long as the backup system is used, simulations do not crash and a high level of model quality can be maintained. The overhead due to the backup system is reasonable and additional storage requirements are small. Runtime is increased by only 13% for the shallow water model.

  20. Green Supercomputing at Argonne

    ScienceCinema

    Beckman, Pete

    2018-02-07

    Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF) talks about Argonne National Laboratory's green supercomputing—everything from designing algorithms to use fewer kilowatts per operation to using cold Chicago winter air to cool the machine more efficiently. Argonne was recognized for green computing in the 2009 HPCwire Readers Choice Awards. More at http://www.anl.gov/Media_Center/News/2009/news091117.html Read more about the Argonne Leadership Computing Facility at http://www.alcf.anl.gov/

  1. Unified, Cross-Platform, Open-Source Library Package for High-Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozacik, Stephen

    Compute power is continually increasing, but this increased performance is largely found in sophisticated computing devices and supercomputer resources that are difficult to use, resulting in under-utilization. We developed a unified set of programming tools that will allow users to take full advantage of the new technology by allowing them to work at a level abstracted away from the platform specifics, encouraging the use of modern computing systems, including government-funded supercomputer facilities.

  2. A performance comparison of scalar, vector, and concurrent vector computers including supercomputers for modeling transport of reactive contaminants in groundwater

    NASA Astrophysics Data System (ADS)

    Tripathi, Vijay S.; Yeh, G. T.

    1993-06-01

    Sophisticated and highly computation-intensive models of transport of reactive contaminants in groundwater have been developed in recent years. Application of such models to real-world contaminant transport problems, e.g., simulation of groundwater transport of 10-15 chemically reactive elements (e.g., toxic metals) and relevant complexes and minerals in two and three dimensions over a distance of several hundred meters, requires high-performance computers including supercomputers. Although not widely recognized as such, the computational complexity and demand of these models compare with well-known computation-intensive applications including weather forecasting and quantum chemical calculations. A survey of the performance of a variety of available hardware, as measured by the run times for a reactive transport model HYDROGEOCHEM, showed that while supercomputers provide the fastest execution times for such problems, relatively low-cost reduced instruction set computer (RISC) based scalar computers provide the best performance-to-price ratio. Because supercomputers like the Cray X-MP are inherently multiuser resources, often the RISC computers also provide much better turnaround times. Furthermore, RISC-based workstations provide the best platforms for "visualization" of groundwater flow and contaminant plumes. The most notable result, however, is that current workstations costing less than $10,000 provide performance within a factor of 5 of a Cray X-MP.

  3. Challenges Faced by Maine School Districts in Providing High Quality Public Education. Research Brief

    ERIC Educational Resources Information Center

    Silvernail, David L.; Linet, Sarah R.

    2014-01-01

    The goal of this study was to: (1) identify challenges faced by Maine school districts in providing high quality public education; (2) describe the magnitude of the challenges; and (3) identify areas where school districts were experiencing some success in meeting these challenges. The School Districts Challenge Survey was distributed online to…

  4. Extreme-Scale De Novo Genome Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georganas, Evangelos; Hofmeyr, Steven; Egan, Rob

    De novo whole genome assembly reconstructs genomic sequence from short, overlapping, and potentially erroneous DNA segments and is one of the most important computations in modern genomics. This work presents HipMER, a high-quality end-to-end de novo assembler designed for extreme scale analysis, via efficient parallelization of the Meraculous code. Genome assembly software has many components, each of which stresses different components of a computer system. This chapter explains the computational challenges involved in each step of the HipMer pipeline, the key distributed data structures, and communication costs in detail. We present performance results of assembling the human genome and themore » large hexaploid wheat genome on large supercomputers up to tens of thousands of cores.« less

  5. ATLAS and LHC computing on CRAY

    NASA Astrophysics Data System (ADS)

    Sciacca, F. G.; Haug, S.; ATLAS Collaboration

    2017-10-01

    Access and exploitation of large scale computing resources, such as those offered by general purpose HPC centres, is one important measure for ATLAS and the other Large Hadron Collider experiments in order to meet the challenge posed by the full exploitation of the future data within the constraints of flat budgets. We report on the effort of moving the Swiss WLCG T2 computing, serving ATLAS, CMS and LHCb, from a dedicated cluster to the large Cray systems at the Swiss National Supercomputing Centre CSCS. These systems do not only offer very efficient hardware, cooling and highly competent operators, but also have large backfill potentials due to size and multidisciplinary usage and potential gains due to economy at scale. Technical solutions, performance, expected return and future plans are discussed.

  6. Climate Data Assimilation on a Massively Parallel Supercomputer

    NASA Technical Reports Server (NTRS)

    Ding, Hong Q.; Ferraro, Robert D.

    1996-01-01

    We have designed and implemented a set of highly efficient and highly scalable algorithms for an unstructured computational package, the PSAS data assimilation package, as demonstrated by detailed performance analysis of systematic runs on up to 512-nodes of an Intel Paragon. The preconditioned Conjugate Gradient solver achieves a sustained 18 Gflops performance. Consequently, we achieve an unprecedented 100-fold reduction in time to solution on the Intel Paragon over a single head of a Cray C90. This not only exceeds the daily performance requirement of the Data Assimilation Office at NASA's Goddard Space Flight Center, but also makes it possible to explore much larger and challenging data assimilation problems which are unthinkable on a traditional computer platform such as the Cray C90.

  7. Development of seismic tomography software for hybrid supercomputers

    NASA Astrophysics Data System (ADS)

    Nikitin, Alexandr; Serdyukov, Alexandr; Duchkov, Anton

    2015-04-01

    Seismic tomography is a technique used for computing velocity model of geologic structure from first arrival travel times of seismic waves. The technique is used in processing of regional and global seismic data, in seismic exploration for prospecting and exploration of mineral and hydrocarbon deposits, and in seismic engineering for monitoring the condition of engineering structures and the surrounding host medium. As a consequence of development of seismic monitoring systems and increasing volume of seismic data, there is a growing need for new, more effective computational algorithms for use in seismic tomography applications with improved performance, accuracy and resolution. To achieve this goal, it is necessary to use modern high performance computing systems, such as supercomputers with hybrid architecture that use not only CPUs, but also accelerators and co-processors for computation. The goal of this research is the development of parallel seismic tomography algorithms and software package for such systems, to be used in processing of large volumes of seismic data (hundreds of gigabytes and more). These algorithms and software package will be optimized for the most common computing devices used in modern hybrid supercomputers, such as Intel Xeon CPUs, NVIDIA Tesla accelerators and Intel Xeon Phi co-processors. In this work, the following general scheme of seismic tomography is utilized. Using the eikonal equation solver, arrival times of seismic waves are computed based on assumed velocity model of geologic structure being analyzed. In order to solve the linearized inverse problem, tomographic matrix is computed that connects model adjustments with travel time residuals, and the resulting system of linear equations is regularized and solved to adjust the model. The effectiveness of parallel implementations of existing algorithms on target architectures is considered. During the first stage of this work, algorithms were developed for execution on supercomputers using multicore CPUs only, with preliminary performance tests showing good parallel efficiency on large numerical grids. Porting of the algorithms to hybrid supercomputers is currently ongoing.

  8. Earth and environmental science in the 1980's: Part 1: Environmental data systems, supercomputer facilities and networks

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Overview descriptions of on-line environmental data systems, supercomputer facilities, and networks are presented. Each description addresses the concepts of content, capability, and user access relevant to the point of view of potential utilization by the Earth and environmental science community. The information on similar systems or facilities is presented in parallel fashion to encourage and facilitate intercomparison. In addition, summary sheets are given for each description, and a summary table precedes each section.

  9. A Long History of Supercomputing

    ScienceCinema

    Grider, Gary

    2018-06-13

    As part of its national security science mission, Los Alamos National Laboratory and HPC have a long, entwined history dating back to the earliest days of computing. From bringing the first problem to the nation’s first computer to building the first machine to break the petaflop barrier, Los Alamos holds many “firsts” in HPC breakthroughs. Today, supercomputers are integral to stockpile stewardship and the Laboratory continues to work with vendors in developing the future of HPC.

  10. LightForce Photon-Pressure Collision Avoidance: Updated Efficiency Analysis Utilizing a Highly Parallel Simulation Approach

    DTIC Science & Technology

    2014-09-01

    simulation time frame from 30 days to one year. This was enabled by porting the simulation to the Pleiades supercomputer at NASA Ames Research Center, a...including the motivation for changes to our past approach. We then present the software implementation (3) on the NASA Ames Pleiades supercomputer...significantly updated since last year’s paper [25]. The main incentive for that was the shift to a highly parallel approach in order to utilize the Pleiades

  11. Parallel-Vector Algorithm For Rapid Structural Anlysis

    NASA Technical Reports Server (NTRS)

    Agarwal, Tarun R.; Nguyen, Duc T.; Storaasli, Olaf O.

    1993-01-01

    New algorithm developed to overcome deficiency of skyline storage scheme by use of variable-band storage scheme. Exploits both parallel and vector capabilities of modern high-performance computers. Gives engineers and designers opportunity to include more design variables and constraints during optimization of structures. Enables use of more refined finite-element meshes to obtain improved understanding of complex behaviors of aerospace structures leading to better, safer designs. Not only attractive for current supercomputers but also for next generation of shared-memory supercomputers.

  12. Development and Applications of a Modular Parallel Process for Large Scale Fluid/Structures Problems

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A modular process that can efficiently solve large scale multidisciplinary problems using massively parallel supercomputers is presented. The process integrates disciplines with diverse physical characteristics by retaining the efficiency of individual disciplines. Computational domain independence of individual disciplines is maintained using a meta programming approach. The process integrates disciplines without affecting the combined performance. Results are demonstrated for large scale aerospace problems on several supercomputers. The super scalability and portability of the approach is demonstrated on several parallel computers.

  13. Role of HPC in Advancing Computational Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    2004-01-01

    On behalf of the High Performance Computing and Modernization Program (HPCMP) and NASA Advanced Supercomputing Division (NAS) a study is conducted to assess the role of supercomputers on computational aeroelasticity of aerospace vehicles. The study is mostly based on the responses to a web based questionnaire that was designed to capture the nuances of high performance computational aeroelasticity, particularly on parallel computers. A procedure is presented to assign a fidelity-complexity index to each application. Case studies based on major applications using HPCMP resources are presented.

  14. PerSEUS: Ultra-Low-Power High Performance Computing for Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Doxas, I.; Andreou, A.; Lyon, J.; Angelopoulos, V.; Lu, S.; Pritchett, P. L.

    2017-12-01

    Peta-op SupErcomputing Unconventional System (PerSEUS) aims to explore the use for High Performance Scientific Computing (HPC) of ultra-low-power mixed signal unconventional computational elements developed by Johns Hopkins University (JHU), and demonstrate that capability on both fluid and particle Plasma codes. We will describe the JHU Mixed-signal Unconventional Supercomputing Elements (MUSE), and report initial results for the Lyon-Fedder-Mobarry (LFM) global magnetospheric MHD code, and a UCLA general purpose relativistic Particle-In-Cell (PIC) code.

  15. Heart Fibrillation and Parallel Supercomputers

    NASA Technical Reports Server (NTRS)

    Kogan, B. Y.; Karplus, W. J.; Chudin, E. E.

    1997-01-01

    The Luo and Rudy 3 cardiac cell mathematical model is implemented on the parallel supercomputer CRAY - T3D. The splitting algorithm combined with variable time step and an explicit method of integration provide reasonable solution times and almost perfect scaling for rectilinear wave propagation. The computer simulation makes it possible to observe new phenomena: the break-up of spiral waves caused by intracellular calcium and dynamics and the non-uniformity of the calcium distribution in space during the onset of the spiral wave.

  16. AIC Computations Using Navier-Stokes Equations on Single Image Supercomputers For Design Optimization

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru

    2004-01-01

    A procedure to accurately generate AIC using the Navier-Stokes solver including grid deformation is presented. Preliminary results show good comparisons between experiment and computed flutter boundaries for a rectangular wing. A full wing body configuration of an orbital space plane is selected for demonstration on a large number of processors. In the final paper the AIC of full wing body configuration will be computed. The scalability of the procedure on supercomputer will be demonstrated.

  17. Discover Supercomputer 5

    NASA Image and Video Library

    2017-12-08

    Two rows of the “Discover” supercomputer at the NASA Center for Climate Simulation (NCCS) contain more than 4,000 computer processors. Discover has a total of nearly 15,000 processors. Credit: NASA/Pat Izzo To learn more about NCCS go to: www.nasa.gov/topics/earth/features/climate-sim-center.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  18. Discover Supercomputer 4

    NASA Image and Video Library

    2017-12-08

    This close-up view highlights one row—approximately 2,000 computer processors—of the “Discover” supercomputer at the NASA Center for Climate Simulation (NCCS). Discover has a total of nearly 15,000 processors. Credit: NASA/Pat Izzo To learn more about NCCS go to: www.nasa.gov/topics/earth/features/climate-sim-center.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  19. Extreme Scale Plasma Turbulence Simulations on Top Supercomputers Worldwide

    DOE PAGES

    Tang, William; Wang, Bei; Ethier, Stephane; ...

    2016-11-01

    The goal of the extreme scale plasma turbulence studies described in this paper is to expedite the delivery of reliable predictions on confinement physics in large magnetic fusion systems by using world-class supercomputers to carry out simulations with unprecedented resolution and temporal duration. This has involved architecture-dependent optimizations of performance scaling and addressing code portability and energy issues, with the metrics for multi-platform comparisons being 'time-to-solution' and 'energy-to-solution'. Realistic results addressing how confinement losses caused by plasma turbulence scale from present-day devices to the much larger $25 billion international ITER fusion facility have been enabled by innovative advances in themore » GTC-P code including (i) implementation of one-sided communication from MPI 3.0 standard; (ii) creative optimization techniques on Xeon Phi processors; and (iii) development of a novel performance model for the key kernels of the PIC code. Our results show that modeling data movement is sufficient to predict performance on modern supercomputer platforms.« less

  20. Multi-petascale highly efficient parallel supercomputer

    DOEpatents

    Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.; Blumrich, Matthias A.; Boyle, Peter; Brunheroto, Jose R.; Chen, Dong; Cher, Chen -Yong; Chiu, George L.; Christ, Norman; Coteus, Paul W.; Davis, Kristan D.; Dozsa, Gabor J.; Eichenberger, Alexandre E.; Eisley, Noel A.; Ellavsky, Matthew R.; Evans, Kahn C.; Fleischer, Bruce M.; Fox, Thomas W.; Gara, Alan; Giampapa, Mark E.; Gooding, Thomas M.; Gschwind, Michael K.; Gunnels, John A.; Hall, Shawn A.; Haring, Rudolf A.; Heidelberger, Philip; Inglett, Todd A.; Knudson, Brant L.; Kopcsay, Gerard V.; Kumar, Sameer; Mamidala, Amith R.; Marcella, James A.; Megerian, Mark G.; Miller, Douglas R.; Miller, Samuel J.; Muff, Adam J.; Mundy, Michael B.; O'Brien, John K.; O'Brien, Kathryn M.; Ohmacht, Martin; Parker, Jeffrey J.; Poole, Ruth J.; Ratterman, Joseph D.; Salapura, Valentina; Satterfield, David L.; Senger, Robert M.; Smith, Brian; Steinmacher-Burow, Burkhard; Stockdell, William M.; Stunkel, Craig B.; Sugavanam, Krishnan; Sugawara, Yutaka; Takken, Todd E.; Trager, Barry M.; Van Oosten, James L.; Wait, Charles D.; Walkup, Robert E.; Watson, Alfred T.; Wisniewski, Robert W.; Wu, Peng

    2015-07-14

    A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.

  1. Computational fluid dynamics research at the United Technologies Research Center requiring supercomputers

    NASA Astrophysics Data System (ADS)

    Landgrebe, Anton J.

    1987-03-01

    An overview of research activities at the United Technologies Research Center (UTRC) in the area of Computational Fluid Dynamics (CFD) is presented. The requirement and use of various levels of computers, including supercomputers, for the CFD activities is described. Examples of CFD directed toward applications to helicopters, turbomachinery, heat exchangers, and the National Aerospace Plane are included. Helicopter rotor codes for the prediction of rotor and fuselage flow fields and airloads were developed with emphasis on rotor wake modeling. Airflow and airload predictions and comparisons with experimental data are presented. Examples are presented of recent parabolized Navier-Stokes and full Navier-Stokes solutions for hypersonic shock-wave/boundary layer interaction, and hydrogen/air supersonic combustion. In addition, other examples of CFD efforts in turbomachinery Navier-Stokes methodology and separated flow modeling are presented. A brief discussion of the 3-tier scientific computing environment is also presented, in which the researcher has access to workstations, mid-size computers, and supercomputers.

  2. Computational fluid dynamics research at the United Technologies Research Center requiring supercomputers

    NASA Technical Reports Server (NTRS)

    Landgrebe, Anton J.

    1987-01-01

    An overview of research activities at the United Technologies Research Center (UTRC) in the area of Computational Fluid Dynamics (CFD) is presented. The requirement and use of various levels of computers, including supercomputers, for the CFD activities is described. Examples of CFD directed toward applications to helicopters, turbomachinery, heat exchangers, and the National Aerospace Plane are included. Helicopter rotor codes for the prediction of rotor and fuselage flow fields and airloads were developed with emphasis on rotor wake modeling. Airflow and airload predictions and comparisons with experimental data are presented. Examples are presented of recent parabolized Navier-Stokes and full Navier-Stokes solutions for hypersonic shock-wave/boundary layer interaction, and hydrogen/air supersonic combustion. In addition, other examples of CFD efforts in turbomachinery Navier-Stokes methodology and separated flow modeling are presented. A brief discussion of the 3-tier scientific computing environment is also presented, in which the researcher has access to workstations, mid-size computers, and supercomputers.

  3. Antenna pattern control using impedance surfaces

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Liu, Kefeng

    1992-01-01

    During this research period, we have effectively transferred existing computer codes from CRAY supercomputer to work station based systems. The work station based version of our code preserved the accuracy of the numerical computations while giving a much better turn-around time than the CRAY supercomputer. Such a task relieved us of the heavy dependence of the supercomputer account budget and made codes developed in this research project more feasible for applications. The analysis of pyramidal horns with impedance surfaces was our major focus during this research period. Three different modeling algorithms in analyzing lossy impedance surfaces were investigated and compared with measured data. Through this investigation, we discovered that a hybrid Fourier transform technique, which uses the eigen mode in the stepped waveguide section and the Fourier transformed field distributions across the stepped discontinuities for lossy impedances coating, gives a better accuracy in analyzing lossy coatings. After a further refinement of the present technique, we will perform an accurate radiation pattern synthesis in the coming reporting period.

  4. Scheduling for Parallel Supercomputing: A Historical Perspective of Achievable Utilization

    NASA Technical Reports Server (NTRS)

    Jones, James Patton; Nitzberg, Bill

    1999-01-01

    The NAS facility has operated parallel supercomputers for the past 11 years, including the Intel iPSC/860, Intel Paragon, Thinking Machines CM-5, IBM SP-2, and Cray Origin 2000. Across this wide variety of machine architectures, across a span of 10 years, across a large number of different users, and through thousands of minor configuration and policy changes, the utilization of these machines shows three general trends: (1) scheduling using a naive FIFO first-fit policy results in 40-60% utilization, (2) switching to the more sophisticated dynamic backfilling scheduling algorithm improves utilization by about 15 percentage points (yielding about 70% utilization), and (3) reducing the maximum allowable job size further increases utilization. Most surprising is the consistency of these trends. Over the lifetime of the NAS parallel systems, we made hundreds, perhaps thousands, of small changes to hardware, software, and policy, yet, utilization was affected little. In particular these results show that the goal of achieving near 100% utilization while supporting a real parallel supercomputing workload is unrealistic.

  5. Data communication requirements for the advanced NAS network

    NASA Technical Reports Server (NTRS)

    Levin, Eugene; Eaton, C. K.; Young, Bruce

    1986-01-01

    The goal of the Numerical Aerodynamic Simulation (NAS) Program is to provide a powerful computational environment for advanced research and development in aeronautics and related disciplines. The present NAS system consists of a Cray 2 supercomputer connected by a data network to a large mass storage system, to sophisticated local graphics workstations, and by remote communications to researchers throughout the United States. The program plan is to continue acquiring the most powerful supercomputers as they become available. In the 1987/1988 time period it is anticipated that a computer with 4 times the processing speed of a Cray 2 will be obtained and by 1990 an additional supercomputer with 16 times the speed of the Cray 2. The implications of this 20-fold increase in processing power on the data communications requirements are described. The analysis was based on models of the projected workload and system architecture. The results are presented together with the estimates of their sensitivity to assumptions inherent in the models.

  6. A Call to Challenge

    ERIC Educational Resources Information Center

    Colleary, Shawn

    2004-01-01

    This article features the Challenge School, a magnet school in the CherryCreek School District in Colorado that focuses on academically advanced, motivated, and gifted students. The school was developed as an alternative to best meet the needs of these students. The Challenge School focuses on high student achievement and commensurate academic…

  7. A History of High-Performance Computing

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Faster than most speedy computers. More powerful than its NASA data-processing predecessors. Able to leap large, mission-related computational problems in a single bound. Clearly, it s neither a bird nor a plane, nor does it need to don a red cape, because it s super in its own way. It's Columbia, NASA s newest supercomputer and one of the world s most powerful production/processing units. Named Columbia to honor the STS-107 Space Shuttle Columbia crewmembers, the new supercomputer is making it possible for NASA to achieve breakthroughs in science and engineering, fulfilling the Agency s missions, and, ultimately, the Vision for Space Exploration. Shortly after being built in 2004, Columbia achieved a benchmark rating of 51.9 teraflop/s on 10,240 processors, making it the world s fastest operational computer at the time of completion. Putting this speed into perspective, 20 years ago, the most powerful computer at NASA s Ames Research Center, home of the NASA Advanced Supercomputing Division (NAS), ran at a speed of about 1 gigaflop (one billion calculations per second). The Columbia supercomputer is 50,000 times faster than this computer and offers a tenfold increase in capacity over the prior system housed at Ames. What s more, Columbia is considered the world s largest Linux-based, shared-memory system. The system is offering immeasurable benefits to society and is the zenith of years of NASA/private industry collaboration that has spawned new generations of commercial, high-speed computing systems.

  8. Building more powerful less expensive supercomputers using Processing-In-Memory (PIM) LDRD final report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Richard C.

    2009-09-01

    This report details the accomplishments of the 'Building More Powerful Less Expensive Supercomputers Using Processing-In-Memory (PIM)' LDRD ('PIM LDRD', number 105809) for FY07-FY09. Latency dominates all levels of supercomputer design. Within a node, increasing memory latency, relative to processor cycle time, limits CPU performance. Between nodes, the same increase in relative latency impacts scalability. Processing-In-Memory (PIM) is an architecture that directly addresses this problem using enhanced chip fabrication technology and machine organization. PIMs combine high-speed logic and dense, low-latency, high-bandwidth DRAM, and lightweight threads that tolerate latency by performing useful work during memory transactions. This work examines the potential ofmore » PIM-based architectures to support mission critical Sandia applications and an emerging class of more data intensive informatics applications. This work has resulted in a stronger architecture/implementation collaboration between 1400 and 1700. Additionally, key technology components have impacted vendor roadmaps, and we are in the process of pursuing these new collaborations. This work has the potential to impact future supercomputer design and construction, reducing power and increasing performance. This final report is organized as follow: this summary chapter discusses the impact of the project (Section 1), provides an enumeration of publications and other public discussion of the work (Section 1), and concludes with a discussion of future work and impact from the project (Section 1). The appendix contains reprints of the refereed publications resulting from this work.« less

  9. Intended Persistence: Comparing Academic and Creative Challenges in High School

    ERIC Educational Resources Information Center

    Hoffmann, Jessica D.; Ivcevic, Zorana; Zamora, Gabriele; Bazhydai, Marina; Brackett, Marc

    2016-01-01

    How do high school students approach academic and creative challenges? This study compares the content of academic and creative challenges for 190 high school students, and examines students' intentions to persist. Students reported experiencing academic and creative challenges in different areas: academic challenges were described primarily in…

  10. Understanding Leadership in Schools Facing Challenging Circumstances: A Chilean Case Study

    ERIC Educational Resources Information Center

    Ahumada, Luis; Galdames, Sergio; Clarke, Simon

    2016-01-01

    During the last 10 years, research into schools facing challenging circumstances has attracted the attention of researchers around the world. The aim of this study was to understand the challenges that school leaders face as they per form their work, the nature of the context in which these challenges arise, the strategies school leaders adopt to…

  11. Challenges for Novice School Leaders: Facing Today's Issues in School Administration

    ERIC Educational Resources Information Center

    Beam, Andrea P.; Claxton, Russell L.; Smith, Samuel J.

    2016-01-01

    Challenges for novice school leaders evolve as information is managed differently and as societal and regulatory expectations change. This study addresses unique challenges faced by practicing school administrators (n = 159) during their first three years in a school leadership position. It focuses on their perceptions, how perceptions of present…

  12. High temporal resolution mapping of seismic noise sources using heterogeneous supercomputers

    NASA Astrophysics Data System (ADS)

    Gokhberg, Alexey; Ermert, Laura; Paitz, Patrick; Fichtner, Andreas

    2017-04-01

    Time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems. Significant interest in seismic noise source maps with high temporal resolution (days) is expected to come from a number of domains, including natural resources exploration, analysis of active earthquake fault zones and volcanoes, as well as geothermal and hydrocarbon reservoir monitoring. Currently, knowledge of noise sources is insufficient for high-resolution subsurface monitoring applications. Near-real-time seismic data, as well as advanced imaging methods to constrain seismic noise sources have recently become available. These methods are based on the massive cross-correlation of seismic noise records from all available seismic stations in the region of interest and are therefore very computationally intensive. Heterogeneous massively parallel supercomputing systems introduced in the recent years combine conventional multi-core CPU with GPU accelerators and provide an opportunity for manifold increase and computing performance. Therefore, these systems represent an efficient platform for implementation of a noise source mapping solution. We present the first results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service that provides seismic noise source maps for Central Europe with high temporal resolution (days to few weeks depending on frequency and data availability). The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept in order to provide the interested external researchers the regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for collecting, on a periodic basis, raw seismic records from the European seismic networks, (2) high-performance noise source mapping application responsible for generation of source maps using cross-correlation of seismic records, (3) back-end infrastructure for the coordination of various tasks and computations, (4) front-end Web interface providing the service to the end-users and (5) data repository. The noise mapping application is composed of four principal modules: (1) pre-processing of raw data, (2) massive cross-correlation, (3) post-processing of correlation data based on computation of logarithmic energy ratio and (4) generation of source maps from post-processed data. Implementation of the solution posed various challenges, in particular, selection of data sources and transfer protocols, automation and monitoring of daily data downloads, ensuring the required data processing performance, design of a general service oriented architecture for coordination of various sub-systems, and engineering an appropriate data storage solution. The present pilot version of the service implements noise source maps for Switzerland. Extension of the solution to Central Europe is planned for the next project phase.

  13. Delivering Science on Day One

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Timothy J.

    2016-03-01

    While benchmarking software is useful for testing the performance limits and stability of Argonne National Laboratory’s new Theta supercomputer, there is no substitute for running real applications to explore the system’s potential. The Argonne Leadership Computing Facility’s Theta Early Science Program, modeled after its highly successful code migration program for the Mira supercomputer, has one primary aim: to deliver science on day one. Here is a closer look at the type of science problems that will be getting early access to Theta, a next-generation machine being rolled out this year.

  14. Supercomputer analysis of sedimentary basins.

    PubMed

    Bethke, C M; Altaner, S P; Harrison, W J; Upson, C

    1988-01-15

    Geological processes of fluid transport and chemical reaction in sedimentary basins have formed many of the earth's energy and mineral resources. These processes can be analyzed on natural time and distance scales with the use of supercomputers. Numerical experiments are presented that give insights to the factors controlling subsurface pressures, temperatures, and reactions; the origin of ores; and the distribution and quality of hydrocarbon reservoirs. The results show that numerical analysis combined with stratigraphic, sea level, and plate tectonic histories provides a powerful tool for studying the evolution of sedimentary basins over geologic time.

  15. Discover Supercomputer 3

    NASA Image and Video Library

    2017-12-08

    The heart of the NASA Center for Climate Simulation (NCCS) is the “Discover” supercomputer. In 2009, NCCS added more than 8,000 computer processors to Discover, for a total of nearly 15,000 processors. Credit: NASA/Pat Izzo To learn more about NCCS go to: www.nasa.gov/topics/earth/features/climate-sim-center.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  16. Discover Supercomputer 2

    NASA Image and Video Library

    2017-12-08

    The heart of the NASA Center for Climate Simulation (NCCS) is the “Discover” supercomputer. In 2009, NCCS added more than 8,000 computer processors to Discover, for a total of nearly 15,000 processors. Credit: NASA/Pat Izzo To learn more about NCCS go to: www.nasa.gov/topics/earth/features/climate-sim-center.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  17. Discover Supercomputer 1

    NASA Image and Video Library

    2017-12-08

    The heart of the NASA Center for Climate Simulation (NCCS) is the “Discover” supercomputer. In 2009, NCCS added more than 8,000 computer processors to Discover, for a total of nearly 15,000 processors. Credit: NASA/Pat Izzo To learn more about NCCS go to: www.nasa.gov/topics/earth/features/climate-sim-center.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  18. Development of the general interpolants method for the CYBER 200 series of supercomputers

    NASA Technical Reports Server (NTRS)

    Stalnaker, J. F.; Robinson, M. A.; Spradley, L. W.; Kurzius, S. C.; Thoenes, J.

    1988-01-01

    The General Interpolants Method (GIM) is a 3-D, time-dependent, hybrid procedure for generating numerical analogs of the conservation laws. This study is directed toward the development and application of the GIM computer code for fluid dynamic research applications as implemented for the Cyber 200 series of supercomputers. An elliptic and quasi-parabolic version of the GIM code are discussed. Turbulence models, algebraic and differential equations, were added to the basic viscous code. An equilibrium reacting chemistry model and an implicit finite difference scheme are also included.

  19. The Navier-Stokes computer

    NASA Technical Reports Server (NTRS)

    Nosenchuck, D. M.; Littman, M. G.

    1986-01-01

    The Navier-Stokes computer (NSC) has been developed for solving problems in fluid mechanics involving complex flow simulations that require more speed and capacity than provided by current and proposed Class VI supercomputers. The machine is a parallel processing supercomputer with several new architectural elements which can be programmed to address a wide range of problems meeting the following criteria: (1) the problem is numerically intensive, and (2) the code makes use of long vectors. A simulation of two-dimensional nonsteady viscous flows is presented to illustrate the architecture, programming, and some of the capabilities of the NSC.

  20. Merging the Machines of Modern Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Laura; Collins, Jim

    Two recent projects have harnessed supercomputing resources at the US Department of Energy’s Argonne National Laboratory in a novel way to support major fusion science and particle collider experiments. Using leadership computing resources, one team ran fine-grid analysis of real-time data to make near-real-time adjustments to an ongoing experiment, while a second team is working to integrate Argonne’s supercomputers into the Large Hadron Collider/ATLAS workflow. Together these efforts represent a new paradigm of the high-performance computing center as a partner in experimental science.

  1. Final Report for DOE Award ER25756

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesselman, Carl

    2014-11-17

    The SciDAC-funded Center for Enabling Distributed Petascale Science (CEDPS) was established to address technical challenges that arise due to the frequent geographic distribution of data producers (in particular, supercomputers and scientific instruments) and data consumers (people and computers) within the DOE laboratory system. Its goal is to produce technical innovations that meet DOE end-user needs for (a) rapid and dependable placement of large quantities of data within a distributed high-performance environment, and (b) the convenient construction of scalable science services that provide for the reliable and high-performance processing of computation and data analysis requests from many remote clients. The Centermore » is also addressing (c) the important problem of troubleshooting these and other related ultra-high-performance distributed activities from the perspective of both performance and functionality« less

  2. Havens: Explicit Reliable Memory Regions for HPC Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hukerikar, Saurabh; Engelmann, Christian

    2016-01-01

    Supporting error resilience in future exascale-class supercomputing systems is a critical challenge. Due to transistor scaling trends and increasing memory density, scientific simulations are expected to experience more interruptions caused by transient errors in the system memory. Existing hardware-based detection and recovery techniques will be inadequate to manage the presence of high memory fault rates. In this paper we propose a partial memory protection scheme based on region-based memory management. We define the concept of regions called havens that provide fault protection for program objects. We provide reliability for the regions through a software-based parity protection mechanism. Our approach enablesmore » critical program objects to be placed in these havens. The fault coverage provided by our approach is application agnostic, unlike algorithm-based fault tolerance techniques.« less

  3. Fast and Accurate Simulation of the Cray XMT Multithreaded Supercomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa, Oreste; Tumeo, Antonino; Secchi, Simone

    Irregular applications, such as data mining and analysis or graph-based computations, show unpredictable memory/network access patterns and control structures. Highly multithreaded architectures with large processor counts, like the Cray MTA-1, MTA-2 and XMT, appear to address their requirements better than commodity clusters. However, the research on highly multithreaded systems is currently limited by the lack of adequate architectural simulation infrastructures due to issues such as size of the machines, memory footprint, simulation speed, accuracy and customization. At the same time, Shared-memory MultiProcessors (SMPs) with multi-core processors have become an attractive platform to simulate large scale machines. In this paper, wemore » introduce a cycle-level simulator of the highly multithreaded Cray XMT supercomputer. The simulator runs unmodified XMT applications. We discuss how we tackled the challenges posed by its development, detailing the techniques introduced to make the simulation as fast as possible while maintaining a high accuracy. By mapping XMT processors (ThreadStorm with 128 hardware threads) to host computing cores, the simulation speed remains constant as the number of simulated processors increases, up to the number of available host cores. The simulator supports zero-overhead switching among different accuracy levels at run-time and includes a network model that takes into account contention. On a modern 48-core SMP host, our infrastructure simulates a large set of irregular applications 500 to 2000 times slower than real time when compared to a 128-processor XMT, while remaining within 10\\% of accuracy. Emulation is only from 25 to 200 times slower than real time.« less

  4. Testing and Validating Gadget2 for GPUs

    NASA Astrophysics Data System (ADS)

    Wibking, Benjamin; Holley-Bockelmann, K.; Berlind, A. A.

    2013-01-01

    We are currently upgrading a version of Gadget2 (Springel et al., 2005) that is optimized for NVIDIA's CUDA GPU architecture (Frigaard, unpublished) to work with the latest libraries and graphics cards. Preliminary tests of its performance indicate a ~40x speedup in the particle force tree approximation calculation, with overall speedup of 5-10x for cosmological simulations run with GPUs compared to running on the same CPU cores without GPU acceleration. We believe this speedup can be reasonably increased by an additional factor of two with futher optimization, including overlap of computation on CPU and GPU. Tests of single-precision GPU numerical fidelity currently indicate accuracy of the mass function and the spectral power density to within a few percent of extended-precision CPU results with the unmodified form of Gadget. Additionally, we plan to test and optimize the GPU code for Millenium-scale "grand challenge" simulations of >10^9 particles, a scale that has been previously untested with this code, with the aid of the NSF XSEDE flagship GPU-based supercomputing cluster codenamed "Keeneland." Current work involves additional validation of numerical results, extending the numerical precision of the GPU calculations to double precision, and evaluating performance/accuracy tradeoffs. We believe that this project, if successful, will yield substantial computational performance benefits to the N-body research community as the next generation of GPU supercomputing resources becomes available, both increasing the electrical power efficiency of ever-larger computations (making simulations possible a decade from now at scales and resolutions unavailable today) and accelerating the pace of research in the field.

  5. A Decade-long Continental-Scale Convection-Resolving Climate Simulation on GPUs

    NASA Astrophysics Data System (ADS)

    Leutwyler, David; Fuhrer, Oliver; Lapillonne, Xavier; Lüthi, Daniel; Schär, Christoph

    2016-04-01

    The representation of moist convection in climate models represents a major challenge, due to the small scales involved. Convection-resolving models have proven to be very useful tools in numerical weather prediction and in climate research. Using horizontal grid spacings of O(1km), they allow to explicitly resolve deep convection leading to an improved representation of the water cycle. However, due to their extremely demanding computational requirements, they have so far been limited to short simulations and/or small computational domains. Innovations in the supercomputing domain have led to new supercomputer-designs that involve conventional multicore CPUs and accelerators such as graphics processing units (GPUs). One of the first atmospheric models that has been fully ported to GPUs is the Consortium for Small-Scale Modeling weather and climate model COSMO. This new version allows us to expand the size of the simulation domain to areas spanning continents and the time period up to one decade. We present results from a decade-long, convection-resolving climate simulation using the GPU-enabled COSMO version. The simulation is driven by the ERA-interim reanalysis. The results illustrate how the approach allows for the representation of interactions between synoptic-scale and meso-scale atmospheric circulations at scales ranging from 1000 to 10 km. We discuss the performance of the convection-resolving modeling approach on the European scale. Specifically we focus on the annual cycle of convection in Europe, on the organization of convective clouds and on the verification of hourly rainfall with various high resolution datasets.

  6. The advanced role of computational mechanics and visualization in science and technology: analysis of the Germanwings Flight 9525 crash

    NASA Astrophysics Data System (ADS)

    Chen, Goong; Wang, Yi-Ching; Perronnet, Alain; Gu, Cong; Yao, Pengfei; Bin-Mohsin, Bandar; Hajaiej, Hichem; Scully, Marlan O.

    2017-03-01

    Computational mathematics, physics and engineering form a major constituent of modern computational science, which now stands on an equal footing with the established branches of theoretical and experimental sciences. Computational mechanics solves problems in science and engineering based upon mathematical modeling and computing, bypassing the need for expensive and time-consuming laboratory setups and experimental measurements. Furthermore, it allows the numerical simulations of large scale systems, such as the formation of galaxies that could not be done in any earth bound laboratories. This article is written as part of the 21st Century Frontiers Series to illustrate some state-of-the-art computational science. We emphasize how to do numerical modeling and visualization in the study of a contemporary event, the pulverizing crash of the Germanwings Flight 9525 on March 24, 2015, as a showcase. Such numerical modeling and the ensuing simulation of aircraft crashes into land or mountain are complex tasks as they involve both theoretical study and supercomputing of a complex physical system. The most tragic type of crash involves ‘pulverization’ such as the one suffered by this Germanwings flight. Here, we show pulverizing airliner crashes by visualization through video animations from supercomputer applications of the numerical modeling tool LS-DYNA. A sound validation process is challenging but essential for any sophisticated calculations. We achieve this by validation against the experimental data from a crash test done in 1993 of an F4 Phantom II fighter jet into a wall. We have developed a method by hybridizing two primary methods: finite element analysis and smoothed particle hydrodynamics. This hybrid method also enhances visualization by showing a ‘debris cloud’. Based on our supercomputer simulations and the visualization, we point out that prior works on this topic based on ‘hollow interior’ modeling can be quite problematic and, thus, not likely to be correct. We discuss the effects of terrain on pulverization using the information from the recovered flight-data-recorder and show our forensics and assessments of what may have happened during the final moments of the crash. Finally, we point out that our study has potential for being made into real-time flight crash simulators to help the study of crashworthiness and survivability for future aviation safety. Some forward-looking statements are also made.

  7. Towards Cloud-Resolving European-Scale Climate Simulations using a fully GPU-enabled Prototype of the COSMO Regional Model

    NASA Astrophysics Data System (ADS)

    Leutwyler, David; Fuhrer, Oliver; Cumming, Benjamin; Lapillonne, Xavier; Gysi, Tobias; Lüthi, Daniel; Osuna, Carlos; Schär, Christoph

    2014-05-01

    The representation of moist convection is a major shortcoming of current global and regional climate models. State-of-the-art global models usually operate at grid spacings of 10-300 km, and therefore cannot fully resolve the relevant upscale and downscale energy cascades. Therefore parametrization of the relevant sub-grid scale processes is required. Several studies have shown that this approach entails major uncertainties for precipitation processes, which raises concerns about the model's ability to represent precipitation statistics and associated feedback processes, as well as their sensitivities to large-scale conditions. Further refining the model resolution to the kilometer scale allows representing these processes much closer to first principles and thus should yield an improved representation of the water cycle including the drivers of extreme events. Although cloud-resolving simulations are very useful tools for climate simulations and numerical weather prediction, their high horizontal resolution and consequently the small time steps needed, challenge current supercomputers to model large domains and long time scales. The recent innovations in the domain of hybrid supercomputers have led to mixed node designs with a conventional CPU and an accelerator such as a graphics processing unit (GPU). GPUs relax the necessity for cache coherency and complex memory hierarchies, but have a larger system memory-bandwidth. This is highly beneficial for low compute intensity codes such as atmospheric stencil-based models. However, to efficiently exploit these hybrid architectures, climate models need to be ported and/or redesigned. Within the framework of the Swiss High Performance High Productivity Computing initiative (HP2C) a project to port the COSMO model to hybrid architectures has recently come to and end. The product of these efforts is a version of COSMO with an improved performance on traditional x86-based clusters as well as hybrid architectures with GPUs. We present our redesign and porting approach as well as our experience and lessons learned. Furthermore, we discuss relevant performance benchmarks obtained on the new hybrid Cray XC30 system "Piz Daint" installed at the Swiss National Supercomputing Centre (CSCS), both in terms of time-to-solution as well as energy consumption. We will demonstrate a first set of short cloud-resolving climate simulations at the European-scale using the GPU-enabled COSMO prototype and elaborate our future plans on how to exploit this new model capability.

  8. School Building Designs: Principles and Challenges of the 21st Century.

    ERIC Educational Resources Information Center

    Chan, T. C.

    2002-01-01

    Reviews school-facility challenges and design principles described in 2000 U.S. Department of Education report on school planning and design. Describes additional school-facility design challenges and planning principles. Describes five critical facility-planning issues for the 21st Century. (Contains 14 references.) (PKP)

  9. Sexting: New Challenges for Schools and Professional School Counselors

    ERIC Educational Resources Information Center

    McEachern, Adriana G.; McEachern-Ciattoni, Renee T.; Martin, Filomena

    2012-01-01

    Sexting, the practice of sending sexually explicit messages or photographs of oneself or others on digital electronic devices, presents challenges for schools and professional school counselors. The implications of sexting for schools, school counselors, students, and parents are discussed. School counselor interventions, developing school…

  10. HACC: Simulating sky surveys on state-of-the-art supercomputing architectures

    NASA Astrophysics Data System (ADS)

    Habib, Salman; Pope, Adrian; Finkel, Hal; Frontiere, Nicholas; Heitmann, Katrin; Daniel, David; Fasel, Patricia; Morozov, Vitali; Zagaris, George; Peterka, Tom; Vishwanath, Venkatram; Lukić, Zarija; Sehrish, Saba; Liao, Wei-keng

    2016-01-01

    Current and future surveys of large-scale cosmic structure are associated with a massive and complex datastream to study, characterize, and ultimately understand the physics behind the two major components of the 'Dark Universe', dark energy and dark matter. In addition, the surveys also probe primordial perturbations and carry out fundamental measurements, such as determining the sum of neutrino masses. Large-scale simulations of structure formation in the Universe play a critical role in the interpretation of the data and extraction of the physics of interest. Just as survey instruments continue to grow in size and complexity, so do the supercomputers that enable these simulations. Here we report on HACC (Hardware/Hybrid Accelerated Cosmology Code), a recently developed and evolving cosmology N-body code framework, designed to run efficiently on diverse computing architectures and to scale to millions of cores and beyond. HACC can run on all current supercomputer architectures and supports a variety of programming models and algorithms. It has been demonstrated at scale on Cell- and GPU-accelerated systems, standard multi-core node clusters, and Blue Gene systems. HACC's design allows for ease of portability, and at the same time, high levels of sustained performance on the fastest supercomputers available. We present a description of the design philosophy of HACC, the underlying algorithms and code structure, and outline implementation details for several specific architectures. We show selected accuracy and performance results from some of the largest high resolution cosmological simulations so far performed, including benchmarks evolving more than 3.6 trillion particles.

  11. HACC: Simulating sky surveys on state-of-the-art supercomputing architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, Salman; Pope, Adrian; Finkel, Hal

    2016-01-01

    Current and future surveys of large-scale cosmic structure are associated with a massive and complex datastream to study, characterize, and ultimately understand the physics behind the two major components of the ‘Dark Universe’, dark energy and dark matter. In addition, the surveys also probe primordial perturbations and carry out fundamental measurements, such as determining the sum of neutrino masses. Large-scale simulations of structure formation in the Universe play a critical role in the interpretation of the data and extraction of the physics of interest. Just as survey instruments continue to grow in size and complexity, so do the supercomputers thatmore » enable these simulations. Here we report on HACC (Hardware/Hybrid Accelerated Cosmology Code), a recently developed and evolving cosmology N-body code framework, designed to run efficiently on diverse computing architectures and to scale to millions of cores and beyond. HACC can run on all current supercomputer architectures and supports a variety of programming models and algorithms. It has been demonstrated at scale on Cell- and GPU-accelerated systems, standard multi-core node clusters, and Blue Gene systems. HACC’s design allows for ease of portability, and at the same time, high levels of sustained performance on the fastest supercomputers available. We present a description of the design philosophy of HACC, the underlying algorithms and code structure, and outline implementation details for several specific architectures. We show selected accuracy and performance results from some of the largest high resolution cosmological simulations so far performed, including benchmarks evolving more than 3.6 trillion particles.« less

  12. NASA's Participation in the National Computational Grid

    NASA Technical Reports Server (NTRS)

    Feiereisen, William J.; Zornetzer, Steve F. (Technical Monitor)

    1998-01-01

    Over the last several years it has become evident that the character of NASA's supercomputing needs has changed. One of the major missions of the agency is to support the design and manufacture of aero- and space-vehicles with technologies that will significantly reduce their cost. It is becoming clear that improvements in the process of aerospace design and manufacturing will require a high performance information infrastructure that allows geographically dispersed teams to draw upon resources that are broader than traditional supercomputing. A computational grid draws together our information resources into one system. We can foresee the time when a Grid will allow engineers and scientists to use the tools of supercomputers, databases and on line experimental devices in a virtual environment to collaborate with distant colleagues. The concept of a computational grid has been spoken of for many years, but several events in recent times are conspiring to allow us to actually build one. In late 1997 the National Science Foundation initiated the Partnerships for Advanced Computational Infrastructure (PACI) which is built around the idea of distributed high performance computing. The Alliance lead, by the National Computational Science Alliance (NCSA), and the National Partnership for Advanced Computational Infrastructure (NPACI), lead by the San Diego Supercomputing Center, have been instrumental in drawing together the "Grid Community" to identify the technology bottlenecks and propose a research agenda to address them. During the same period NASA has begun to reformulate parts of two major high performance computing research programs to concentrate on distributed high performance computing and has banded together with the PACI centers to address the research agenda in common.

  13. Calculation of Free Energy Landscape in Multi-Dimensions with Hamiltonian-Exchange Umbrella Sampling on Petascale Supercomputer.

    PubMed

    Jiang, Wei; Luo, Yun; Maragliano, Luca; Roux, Benoît

    2012-11-13

    An extremely scalable computational strategy is described for calculations of the potential of mean force (PMF) in multidimensions on massively distributed supercomputers. The approach involves coupling thousands of umbrella sampling (US) simulation windows distributed to cover the space of order parameters with a Hamiltonian molecular dynamics replica-exchange (H-REMD) algorithm to enhance the sampling of each simulation. In the present application, US/H-REMD is carried out in a two-dimensional (2D) space and exchanges are attempted alternatively along the two axes corresponding to the two order parameters. The US/H-REMD strategy is implemented on the basis of parallel/parallel multiple copy protocol at the MPI level, and therefore can fully exploit computing power of large-scale supercomputers. Here the novel technique is illustrated using the leadership supercomputer IBM Blue Gene/P with an application to a typical biomolecular calculation of general interest, namely the binding of calcium ions to the small protein Calbindin D9k. The free energy landscape associated with two order parameters, the distance between the ion and its binding pocket and the root-mean-square deviation (rmsd) of the binding pocket relative the crystal structure, was calculated using the US/H-REMD method. The results are then used to estimate the absolute binding free energy of calcium ion to Calbindin D9k. The tests demonstrate that the 2D US/H-REMD scheme greatly accelerates the configurational sampling of the binding pocket, thereby improving the convergence of the potential of mean force calculation.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meneses, Esteban; Ni, Xiang; Jones, Terry R

    The unprecedented computational power of cur- rent supercomputers now makes possible the exploration of complex problems in many scientific fields, from genomic analysis to computational fluid dynamics. Modern machines are powerful because they are massive: they assemble millions of cores and a huge quantity of disks, cards, routers, and other components. But it is precisely the size of these machines that glooms the future of supercomputing. A system that comprises many components has a high chance to fail, and fail often. In order to make the next generation of supercomputers usable, it is imperative to use some type of faultmore » tolerance platform to run applications on large machines. Most fault tolerance strategies can be optimized for the peculiarities of each system and boost efficacy by keeping the system productive. In this paper, we aim to understand how failure characterization can improve resilience in several layers of the software stack: applications, runtime systems, and job schedulers. We examine the Titan supercomputer, one of the fastest systems in the world. We analyze a full year of Titan in production and distill the failure patterns of the machine. By looking into Titan s log files and using the criteria of experts, we provide a detailed description of the types of failures. In addition, we inspect the job submission files and describe how the system is used. Using those two sources, we cross correlate failures in the machine to executing jobs and provide a picture of how failures affect the user experience. We believe such characterization is fundamental in developing appropriate fault tolerance solutions for Cray systems similar to Titan.« less

  15. Sign: large-scale gene network estimation environment for high performance computing.

    PubMed

    Tamada, Yoshinori; Shimamura, Teppei; Yamaguchi, Rui; Imoto, Seiya; Nagasaki, Masao; Miyano, Satoru

    2011-01-01

    Our research group is currently developing software for estimating large-scale gene networks from gene expression data. The software, called SiGN, is specifically designed for the Japanese flagship supercomputer "K computer" which is planned to achieve 10 petaflops in 2012, and other high performance computing environments including Human Genome Center (HGC) supercomputer system. SiGN is a collection of gene network estimation software with three different sub-programs: SiGN-BN, SiGN-SSM and SiGN-L1. In these three programs, five different models are available: static and dynamic nonparametric Bayesian networks, state space models, graphical Gaussian models, and vector autoregressive models. All these models require a huge amount of computational resources for estimating large-scale gene networks and therefore are designed to be able to exploit the speed of 10 petaflops. The software will be available freely for "K computer" and HGC supercomputer system users. The estimated networks can be viewed and analyzed by Cell Illustrator Online and SBiP (Systems Biology integrative Pipeline). The software project web site is available at http://sign.hgc.jp/ .

  16. Massively parallel algorithm and implementation of RI-MP2 energy calculation for peta-scale many-core supercomputers.

    PubMed

    Katouda, Michio; Naruse, Akira; Hirano, Yukihiko; Nakajima, Takahito

    2016-11-15

    A new parallel algorithm and its implementation for the RI-MP2 energy calculation utilizing peta-flop-class many-core supercomputers are presented. Some improvements from the previous algorithm (J. Chem. Theory Comput. 2013, 9, 5373) have been performed: (1) a dual-level hierarchical parallelization scheme that enables the use of more than 10,000 Message Passing Interface (MPI) processes and (2) a new data communication scheme that reduces network communication overhead. A multi-node and multi-GPU implementation of the present algorithm is presented for calculations on a central processing unit (CPU)/graphics processing unit (GPU) hybrid supercomputer. Benchmark results of the new algorithm and its implementation using the K computer (CPU clustering system) and TSUBAME 2.5 (CPU/GPU hybrid system) demonstrate high efficiency. The peak performance of 3.1 PFLOPS is attained using 80,199 nodes of the K computer. The peak performance of the multi-node and multi-GPU implementation is 514 TFLOPS using 1349 nodes and 4047 GPUs of TSUBAME 2.5. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Optical clock distribution in supercomputers using polyimide-based waveguides

    NASA Astrophysics Data System (ADS)

    Bihari, Bipin; Gan, Jianhua; Wu, Linghui; Liu, Yujie; Tang, Suning; Chen, Ray T.

    1999-04-01

    Guided-wave optics is a promising way to deliver high-speed clock-signal in supercomputer with minimized clock-skew. Si- CMOS compatible polymer-based waveguides for optoelectronic interconnects and packaging have been fabricated and characterized. A 1-to-48 fanout optoelectronic interconnection layer (OIL) structure based on Ultradel 9120/9020 for the high-speed massive clock signal distribution for a Cray T-90 supercomputer board has been constructed. The OIL employs multimode polymeric channel waveguides in conjunction with surface-normal waveguide output coupler and 1-to-2 splitters. Surface-normal couplers can couple the optical clock signals into and out from the H-tree polyimide waveguides surface-normally, which facilitates the integration of photodetectors to convert optical-signal to electrical-signal. A 45-degree surface- normal couplers has been integrated at each output end. The measured output coupling efficiency is nearly 100 percent. The output profile from 45-degree surface-normal coupler were calculated using Fresnel approximation. the theoretical result is in good agreement with experimental result. A total insertion loss of 7.98 dB at 850 nm was measured experimentally.

  18. Flow visualization of CFD using graphics workstations

    NASA Technical Reports Server (NTRS)

    Lasinski, Thomas; Buning, Pieter; Choi, Diana; Rogers, Stuart; Bancroft, Gordon

    1987-01-01

    High performance graphics workstations are used to visualize the fluid flow dynamics obtained from supercomputer solutions of computational fluid dynamic programs. The visualizations can be done independently on the workstation or while the workstation is connected to the supercomputer in a distributed computing mode. In the distributed mode, the supercomputer interactively performs the computationally intensive graphics rendering tasks while the workstation performs the viewing tasks. A major advantage of the workstations is that the viewers can interactively change their viewing position while watching the dynamics of the flow fields. An overview of the computer hardware and software required to create these displays is presented. For complex scenes the workstation cannot create the displays fast enough for good motion analysis. For these cases, the animation sequences are recorded on video tape or 16 mm film a frame at a time and played back at the desired speed. The additional software and hardware required to create these video tapes or 16 mm movies are also described. Photographs illustrating current visualization techniques are discussed. Examples of the use of the workstations for flow visualization through animation are available on video tape.

  19. Two-dimensional nonsteady viscous flow simulation on the Navier-Stokes computer miniNode

    NASA Technical Reports Server (NTRS)

    Nosenchuck, Daniel M.; Littman, Michael G.; Flannery, William

    1986-01-01

    The needs of large-scale scientific computation are outpacing the growth in performance of mainframe supercomputers. In particular, problems in fluid mechanics involving complex flow simulations require far more speed and capacity than that provided by current and proposed Class VI supercomputers. To address this concern, the Navier-Stokes Computer (NSC) was developed. The NSC is a parallel-processing machine, comprised of individual Nodes, each comparable in performance to current supercomputers. The global architecture is that of a hypercube, and a 128-Node NSC has been designed. New architectural features, such as a reconfigurable many-function ALU pipeline and a multifunction memory-ALU switch, have provided the capability to efficiently implement a wide range of algorithms. Efficient algorithms typically involve numerically intensive tasks, which often include conditional operations. These operations may be efficiently implemented on the NSC without, in general, sacrificing vector-processing speed. To illustrate the architecture, programming, and several of the capabilities of the NSC, the simulation of two-dimensional, nonsteady viscous flows on a prototype Node, called the miniNode, is presented.

  20. Long-Term file activity patterns in a UNIX workstation environment

    NASA Technical Reports Server (NTRS)

    Gibson, Timothy J.; Miller, Ethan L.

    1998-01-01

    As mass storage technology becomes more affordable for sites smaller than supercomputer centers, understanding their file access patterns becomes crucial for developing systems to store rarely used data on tertiary storage devices such as tapes and optical disks. This paper presents a new way to collect and analyze file system statistics for UNIX-based file systems. The collection system runs in user-space and requires no modification of the operating system kernel. The statistics package provides details about file system operations at the file level: creations, deletions, modifications, etc. The paper analyzes four months of file system activity on a university file system. The results confirm previously published results gathered from supercomputer file systems, but differ in several important areas. Files in this study were considerably smaller than those at supercomputer centers, and they were accessed less frequently. Additionally, the long-term creation rate on workstation file systems is sufficiently low so that all data more than a day old could be cheaply saved on a mass storage device, allowing the integration of time travel into every file system.

  1. Autonomic Closure for Turbulent Flows Using Approximate Bayesian Computation

    NASA Astrophysics Data System (ADS)

    Doronina, Olga; Christopher, Jason; Hamlington, Peter; Dahm, Werner

    2017-11-01

    Autonomic closure is a new technique for achieving fully adaptive and physically accurate closure of coarse-grained turbulent flow governing equations, such as those solved in large eddy simulations (LES). Although autonomic closure has been shown in recent a priori tests to more accurately represent unclosed terms than do dynamic versions of traditional LES models, the computational cost of the approach makes it challenging to implement for simulations of practical turbulent flows at realistically high Reynolds numbers. The optimization step used in the approach introduces large matrices that must be inverted and is highly memory intensive. In order to reduce memory requirements, here we propose to use approximate Bayesian computation (ABC) in place of the optimization step, thereby yielding a computationally-efficient implementation of autonomic closure that trades memory-intensive for processor-intensive computations. The latter challenge can be overcome as co-processors such as general purpose graphical processing units become increasingly available on current generation petascale and exascale supercomputers. In this work, we outline the formulation of ABC-enabled autonomic closure and present initial results demonstrating the accuracy and computational cost of the approach.

  2. Implementing the Rock Challenge: Teacher Perspectives on a Performing Arts Programme

    ERIC Educational Resources Information Center

    Jones, Mathew; Murphy, Simon; Salmon, Debra; Kimberlee, Richard; Orme, Judy

    2004-01-01

    The Rock Challenge is a school-based performing arts programme that aims to promote healthy lifestyles amongst secondary school students. This paper reports on teacher perspectives on the implementation of The Rock Challenge in nine English schools. This study highlights how performing arts programmes, such as The Rock Challenge, are unlikely to…

  3. Challenges Facing Teachers New to Working in Schools Overseas

    ERIC Educational Resources Information Center

    Halicioglu, Margaret L.

    2015-01-01

    This article considers the potential challenges facing teachers moving abroad for the first time, both professional challenges in their school and personal challenges in their private life. It suggests that such teachers embarking on a professional adventure overseas would benefit from careful consideration of the kind of school they will thrive…

  4. OpenTopography: Addressing Big Data Challenges Using Cloud Computing, HPC, and Data Analytics

    NASA Astrophysics Data System (ADS)

    Crosby, C. J.; Nandigam, V.; Phan, M.; Youn, C.; Baru, C.; Arrowsmith, R.

    2014-12-01

    OpenTopography (OT) is a geoinformatics-based data facility initiated in 2009 for democratizing access to high-resolution topographic data, derived products, and tools. Hosted at the San Diego Supercomputer Center (SDSC), OT utilizes cyberinfrastructure, including large-scale data management, high-performance computing, and service-oriented architectures to provide efficient Web based access to large, high-resolution topographic datasets. OT collocates data with processing tools to enable users to quickly access custom data and derived products for their application. OT's ongoing R&D efforts aim to solve emerging technical challenges associated with exponential growth in data, higher order data products, as well as user base. Optimization of data management strategies can be informed by a comprehensive set of OT user access metrics that allows us to better understand usage patterns with respect to the data. By analyzing the spatiotemporal access patterns within the datasets, we can map areas of the data archive that are highly active (hot) versus the ones that are rarely accessed (cold). This enables us to architect a tiered storage environment consisting of high performance disk storage (SSD) for the hot areas and less expensive slower disk for the cold ones, thereby optimizing price to performance. From a compute perspective, OT is looking at cloud based solutions such as the Microsoft Azure platform to handle sudden increases in load. An OT virtual machine image in Microsoft's VM Depot can be invoked and deployed quickly in response to increased system demand. OT has also integrated SDSC HPC systems like the Gordon supercomputer into our infrastructure tier to enable compute intensive workloads like parallel computation of hydrologic routing on high resolution topography. This capability also allows OT to scale to HPC resources during high loads to meet user demand and provide more efficient processing. With a growing user base and maturing scientific user community comes new requests for algorithms and processing capabilities. To address this demand, OT is developing an extensible service based architecture for integrating community-developed software. This "plugable" approach to Web service deployment will enable new processing and analysis tools to run collocated with OT hosted data.

  5. Opportunities for leveraging OS virtualization in high-end supercomputing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bridges, Patrick G.; Pedretti, Kevin Thomas Tauke

    2010-11-01

    This paper examines potential motivations for incorporating virtualization support in the system software stacks of high-end capability supercomputers. We advocate that this will increase the flexibility of these platforms significantly and enable new capabilities that are not possible with current fixed software stacks. Our results indicate that compute, virtual memory, and I/O virtualization overheads are low and can be further mitigated by utilizing well-known techniques such as large paging and VMM bypass. Furthermore, since the addition of virtualization support does not affect the performance of applications using the traditional native environment, there is essentially no disadvantage to its addition.

  6. Designing a connectionist network supercomputer.

    PubMed

    Asanović, K; Beck, J; Feldman, J; Morgan, N; Wawrzynek, J

    1993-12-01

    This paper describes an effort at UC Berkeley and the International Computer Science Institute to develop a supercomputer for artificial neural network applications. Our perspective has been strongly influenced by earlier experiences with the construction and use of a simpler machine. In particular, we have observed Amdahl's Law in action in our designs and those of others. These observations inspire attention to many factors beyond fast multiply-accumulate arithmetic. We describe a number of these factors along with rough expressions for their influence and then give the applications targets, machine goals and the system architecture for the machine we are currently designing.

  7. Building black holes: supercomputer cinema.

    PubMed

    Shapiro, S L; Teukolsky, S A

    1988-07-22

    A new computer code can solve Einstein's equations of general relativity for the dynamical evolution of a relativistic star cluster. The cluster may contain a large number of stars that move in a strong gravitational field at speeds approaching the speed of light. Unstable star clusters undergo catastrophic collapse to black holes. The collapse of an unstable cluster to a supermassive black hole at the center of a galaxy may explain the origin of quasars and active galactic nuclei. By means of a supercomputer simulation and color graphics, the whole process can be viewed in real time on a movie screen.

  8. Supercomputer analysis of purine and pyrimidine metabolism leading to DNA synthesis.

    PubMed

    Heinmets, F

    1989-06-01

    A model-system is established to analyze purine and pyrimidine metabolism leading to DNA synthesis. The principal aim is to explore the flow and regulation of terminal deoxynucleoside triophosphates (dNTPs) in various input and parametric conditions. A series of flow equations are established, which are subsequently converted to differential equations. These are programmed (Fortran) and analyzed on a Cray chi-MP/48 supercomputer. The pool concentrations are presented as a function of time in conditions in which various pertinent parameters of the system are modified. The system is formulated by 100 differential equations.

  9. Performance of the Widely-Used CFD Code OVERFLOW on the Pleides Supercomputer

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    2017-01-01

    Computational performance studies were made for NASA's widely used Computational Fluid Dynamics code OVERFLOW on the Pleiades Supercomputer. Two test cases were considered: a full launch vehicle with a grid of 286 million points and a full rotorcraft model with a grid of 614 million points. Computations using up to 8000 cores were run on Sandy Bridge and Ivy Bridge nodes. Performance was monitored using times reported in the day files from the Portable Batch System utility. Results for two grid topologies are presented and compared in detail. Observations and suggestions for future work are made.

  10. Cosmological neutrino simulations at extreme scale

    DOE PAGES

    Emberson, J. D.; Yu, Hao-Ran; Inman, Derek; ...

    2017-08-01

    Constraining neutrino mass remains an elusive challenge in modern physics. Precision measurements are expected from several upcoming cosmological probes of large-scale structure. Achieving this goal relies on an equal level of precision from theoretical predictions of neutrino clustering. Numerical simulations of the non-linear evolution of cold dark matter and neutrinos play a pivotal role in this process. We incorporate neutrinos into the cosmological N-body code CUBEP3M and discuss the challenges associated with pushing to the extreme scales demanded by the neutrino problem. We highlight code optimizations made to exploit modern high performance computing architectures and present a novel method ofmore » data compression that reduces the phase-space particle footprint from 24 bytes in single precision to roughly 9 bytes. We scale the neutrino problem to the Tianhe-2 supercomputer and provide details of our production run, named TianNu, which uses 86% of the machine (13,824 compute nodes). With a total of 2.97 trillion particles, TianNu is currently the world’s largest cosmological N-body simulation and improves upon previous neutrino simulations by two orders of magnitude in scale. We finish with a discussion of the unanticipated computational challenges that were encountered during the TianNu runtime.« less

  11. School Leadership and Technology Challenges: Lessons from a New American High School

    ERIC Educational Resources Information Center

    Peck, Craig; Mullen, Carol A.; Lashley, Carl; Eldridge, John A.

    2011-01-01

    In this evidence-based practice article the authors investigate the challenges that leaders (administrators, staff, and teachers) face in high schools where personnel navigate technology reform. We studied an American comprehensive high school within a large school district in southeastern United States. School administrators and teachers faced…

  12. Challenges Students' Face in Their Transition from Primary to Secondary School and the Interventions Schools Take to Ease the Transition

    ERIC Educational Resources Information Center

    Tarekegne, Wudu Melese

    2015-01-01

    This study explores the major challenges that affect students' enrollment and participation and the key measures schools take to mitigate the challenge and help students continue their education. The data were collected from 23 secondary school grade nine students in Amahara Regional State in Ethiopia using the structured questionnaires from…

  13. Challenges to collaboration in school mental health and strategies for overcoming them.

    PubMed

    Weist, Mark D; Mellin, Elizabeth A; Chambers, Kerri L; Lever, Nancy A; Haber, Deborah; Blaber, Christine

    2012-02-01

    This article reviews challenges to collaboration in school mental health (SMH) and presents practical strategies for overcoming them. The importance of collaboration to the success of SMH programs is reviewed, with a particular focus on collaboration between school- and community-employed professionals. Challenges to effective collaboration between school- and community-employed professionals in SMH are considered. Strategies for overcoming challenges to effective collaboration are presented. Marginalization of the SMH agenda, limited interdisciplinary teamwork, restricted coordination mechanisms, confidentiality concerns, and resource and funding issues are key challenges to collaboration. Strategies targeted toward each of these challenges may help improve the effectiveness of SMH programs and ultimately student outcomes. Collaboration between school- and community-employed professionals is critical to the success of SMH programs. Despite its promise, the success of SMH programs can be jeopardized by ineffective collaboration between school- and community-employed professionals. Strategies to overcome marginalization, promote authentic interdisciplinary teamwork, build effective coordination mechanisms, protect student and family confidentiality, and promote policy change and resource enhancements should be addressed in SMH improvement planning. © 2012, American School Health Association.

  14. Spatiotemporal modeling of node temperatures in supercomputers

    DOE PAGES

    Storlie, Curtis Byron; Reich, Brian James; Rust, William Newton; ...

    2016-06-10

    Los Alamos National Laboratory (LANL) is home to many large supercomputing clusters. These clusters require an enormous amount of power (~500-2000 kW each), and most of this energy is converted into heat. Thus, cooling the components of the supercomputer becomes a critical and expensive endeavor. Recently a project was initiated to investigate the effect that changes to the cooling system in a machine room had on three large machines that were housed there. Coupled with this goal was the aim to develop a general good-practice for characterizing the effect of cooling changes and monitoring machine node temperatures in this andmore » other machine rooms. This paper focuses on the statistical approach used to quantify the effect that several cooling changes to the room had on the temperatures of the individual nodes of the computers. The largest cluster in the room has 1,600 nodes that run a variety of jobs during general use. Since extremes temperatures are important, a Normal distribution plus generalized Pareto distribution for the upper tail is used to model the marginal distribution, along with a Gaussian process copula to account for spatio-temporal dependence. A Gaussian Markov random field (GMRF) model is used to model the spatial effects on the node temperatures as the cooling changes take place. This model is then used to assess the condition of the node temperatures after each change to the room. The analysis approach was used to uncover the cause of a problematic episode of overheating nodes on one of the supercomputing clusters. Lastly, this same approach can easily be applied to monitor and investigate cooling systems at other data centers, as well.« less

  15. Charliecloud: Unprivileged containers for user-defined software stacks in HPC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Priedhorsky, Reid; Randles, Timothy C.

    Supercomputing centers are seeing increasing demand for user-defined software stacks (UDSS), instead of or in addition to the stack provided by the center. These UDSS support user needs such as complex dependencies or build requirements, externally required configurations, portability, and consistency. The challenge for centers is to provide these services in a usable manner while minimizing the risks: security, support burden, missing functionality, and performance. We present Charliecloud, which uses the Linux user and mount namespaces to run industry-standard Docker containers with no privileged operations or daemons on center resources. Our simple approach avoids most security risks while maintaining accessmore » to the performance and functionality already on offer, doing so in less than 500 lines of code. Charliecloud promises to bring an industry-standard UDSS user workflow to existing, minimally altered HPC resources.« less

  16. Schools as Sites for Recruiting Participants and Implementing Research.

    PubMed

    Bartlett, Robin; Wright, Tiffany; Olarinde, Tia; Holmes, Tara; Beamon, Emily R; Wallace, Debra

    2017-01-01

    Schools can be a valuable resource for recruitment of participants for research involving children, adolescents, and parents. Awareness of the benefits and challenges of working with schools can assist researchers in developing effective school partnerships. This article discusses the advantages of conducting research within the school system as well as the challenges that may also arise. Such challenges include developing key contacts, building relationships, logistical arrangements, and facilitating trust in the research topic and team. Suggestions for strategies to forge successful collaborative relationships with schools are provided.

  17. Changes & Challenges for Rural Schools.

    ERIC Educational Resources Information Center

    Blair, Leslie Asher, Ed.

    2001-01-01

    This theme issue of the newsletter SEDLetter contains articles about the challenges facing rural youth, communities, and schools, and the ways that rural schools are meeting those challenges. "When Rural Traditions Really Count" (Ullik Rouk) outlines the rural situation with regard to adolescent substance abuse, youth gangs, teen pregnancy,…

  18. A Private [School] Matter: The State of Materials Challenges in Private College Preparatory School Libraries in the Southeast United States

    ERIC Educational Resources Information Center

    Franklin, Renee E.

    2008-01-01

    Materials challenges and censorship occur often in public and private educational settings. Private schools and their library media centers are not subject to the First Amendment but research reported in this article examines the state of challenges to materials held in private schools media centers in the southeast United States as a way to gauge…

  19. Core-collapse supernovae as supercomputing science: A status report toward six-dimensional simulations with exact Boltzmann neutrino transport in full general relativity

    NASA Astrophysics Data System (ADS)

    Kotake, Kei; Sumiyoshi, Kohsuke; Yamada, Shoichi; Takiwaki, Tomoya; Kuroda, Takami; Suwa, Yudai; Nagakura, Hiroki

    2012-08-01

    This is a status report on our endeavor to reveal the mechanism of core-collapse supernovae (CCSNe) by large-scale numerical simulations. Multi-dimensionality of the supernova engine, general relativistic magnetohydrodynamics, energy and lepton number transport by neutrinos emitted from the forming neutron star, as well as nuclear interactions there, are all believed to play crucial roles in repelling infalling matter and producing energetic explosions. These ingredients are non-linearly coupled with one another in the dynamics of core collapse, bounce, and shock expansion. Serious quantitative studies of CCSNe hence make extensive numerical computations mandatory. Since neutrinos are neither in thermal nor in chemical equilibrium in general, their distributions in the phase space should be computed. This is a six-dimensional (6D) neutrino transport problem and quite a challenge, even for those with access to the most advanced numerical resources such as the "K computer". To tackle this problem, we have embarked on efforts on multiple fronts. In particular, we report in this paper our recent progresses in the treatment of multidimensional (multi-D) radiation hydrodynamics. We are currently proceeding on two different paths to the ultimate goal. In one approach, we employ an approximate but highly efficient scheme for neutrino transport and treat 3D hydrodynamics and/or general relativity rigorously; some neutrino-driven explosions will be presented and quantitative comparisons will be made between 2D and 3D models. In the second approach, on the other hand, exact, but so far Newtonian, Boltzmann equations are solved in two and three spatial dimensions; we will show some example test simulations. We will also address the perspectives of exascale computations on the next generation supercomputers.

  20. Scaling a Convection-Resolving RCM to Near-Global Scales

    NASA Astrophysics Data System (ADS)

    Leutwyler, D.; Fuhrer, O.; Chadha, T.; Kwasniewski, G.; Hoefler, T.; Lapillonne, X.; Lüthi, D.; Osuna, C.; Schar, C.; Schulthess, T. C.; Vogt, H.

    2017-12-01

    In the recent years, first decade-long kilometer-scale resolution RCM simulations have been performed on continental-scale computational domains. However, the size of the planet Earth is still an order of magnitude larger and thus the computational implications of performing global climate simulations at this resolution are challenging. We explore the gap between the currently established RCM simulations and global simulations by scaling the GPU accelerated version of the COSMO model to a near-global computational domain. To this end, the evolution of an idealized moist baroclinic wave has been simulated over the course of 10 days with a grid spacing of up to 930 m. The computational mesh employs 36'000 x 16'001 x 60 grid points and covers 98.4% of the planet's surface. The code shows perfect weak scaling up to 4'888 Nodes of the Piz Daint supercomputer and yields 0.043 simulated years per day (SYPD) which is approximately one seventh of the 0.2-0.3 SYPD required to conduct AMIP-type simulations. However, at half the resolution (1.9 km) we've observed 0.23 SYPD. Besides formation of frontal precipitating systems containing embedded explicitly-resolved convective motions, the simulations reveal a secondary instability that leads to cut-off warm-core cyclonic vortices in the cyclone's core, once the grid spacing is refined to the kilometer scale. The explicit representation of embedded moist convection and the representation of the previously unresolved instabilities exhibit a physically different behavior in comparison to coarser-resolution simulations. The study demonstrates that global climate simulations using kilometer-scale resolution are imminent and serves as a baseline benchmark for global climate model applications and future exascale supercomputing systems.

  1. Site in a box: Improving the Tier 3 experience

    NASA Astrophysics Data System (ADS)

    Dost, J. M.; Fajardo, E. M.; Jones, T. R.; Martin, T.; Tadel, A.; Tadel, M.; Würthwein, F.

    2017-10-01

    The Pacific Research Platform is an initiative to interconnect Science DMZs between campuses across the West Coast of the United States over a 100 gbps network. The LHC @ UC is a proof of concept pilot project that focuses on interconnecting 6 University of California campuses. It is spearheaded by computing specialists from the UCSD Tier 2 Center in collaboration with the San Diego Supercomputer Center. A machine has been shipped to each campus extending the concept of the Data Transfer Node to a cluster in a box that is fully integrated into the local compute, storage, and networking infrastructure. The node contains a full HTCondor batch system, and also an XRootD proxy cache. User jobs routed to the DTN can run on 40 additional slots provided by the machine, and can also flock to a common GlideinWMS pilot pool, which sends jobs out to any of the participating UCs, as well as to Comet, the new supercomputer at SDSC. In addition, a common XRootD federation has been created to interconnect the UCs and give the ability to arbitrarily export data from the home university, to make it available wherever the jobs run. The UC level federation also statically redirects to either the ATLAS FAX or CMS AAA federation respectively to make globally published datasets available, depending on end user VO membership credentials. XRootD read operations from the federation transfer through the nearest DTN proxy cache located at the site where the jobs run. This reduces wide area network overhead for subsequent accesses, and improves overall read performance. Details on the technical implementation, challenges faced and overcome in setting up the infrastructure, and an analysis of usage patterns and system scalability will be presented.

  2. Supporting Middle School Students Whose Parents Are Deployed: Challenges and Strategies for Schools

    ERIC Educational Resources Information Center

    Williams, Brenda

    2013-01-01

    Middle school students from military families face unique challenges, especially when their parents are deployed. Among the challenges they experience are frequent relocations; issues that affect academic achievement; uncertainty; and changes in roles, responsibilities, and relationships at home. Reunification involves issues of the returning…

  3. Phase-Adequate Engagement at the Post-School Transition

    ERIC Educational Resources Information Center

    Dietrich, Julia; Parker, Philip; Salmela-Aro, Katariina

    2012-01-01

    The transition from general education (e.g., high school) to vocational and tertiary education (e.g., college, vocational school) or to the labor market presents a number of developmental challenges. These challenges include making career choices and, more broadly, managing the transition. Coping with these challenges depends on the individual,…

  4. SchoolDude's Affordable Solutions for Educational Operations Challenges

    ERIC Educational Resources Information Center

    School Administrator, 2005

    2005-01-01

    School administrators face one of the most daunting challenges in history--providing quality learning environments during a tremendous financial crisis. The crisis may seem overwhelming, but web-native operations management technology offered by SchoolDude.com can help them overcome these challenges. The Internet makes technology more affordable…

  5. Making a Difference in Challenging Urban Schools: Successful Principals

    ERIC Educational Resources Information Center

    Michalak, Joanna M.

    2009-01-01

    The article reports upon findings from four multiple-perspective case studies of successful principals in challenging urban contexts. Each principal was described as making a significant difference to the quality of school education. The findings are obtained from the Polish part of the "Leading Schools Successfully in Challenging Urban…

  6. Responding to the Challenges of Inclusion in Irish Schools

    ERIC Educational Resources Information Center

    Day, Thérèse; Prunty, Anita

    2015-01-01

    While much progress has been made in relation to including students in mainstream education in Ireland, significant challenges remain. Despite positive attitudes, the implementation of effective inclusive practice at school level persists as one of the most pervasive challenges. This study investigated how six Irish schools, three primary and…

  7. School Leader Relationships: The Need for Explicit Training on Rapport, Trust, and Communication

    ERIC Educational Resources Information Center

    Lasater, Kara

    2016-01-01

    An important aspect of school leadership is relationship development, but developing meaningful relationships as a school leader is challenging. School leader relationships are challenged by diverse stakeholder groups, varied contexts, and difficult situations. The complex nature of school leader relationships necessitates explicit training for…

  8. Conversion of a Large, Urban High School to Small Schools: Leadership Challenges and Opportunities

    ERIC Educational Resources Information Center

    Nehring, James; Lohmeier, Jill H.; Colombo, Michaela

    2009-01-01

    This article reports findings from a study of the experiences of 11 school principals who are leading the conversion of a large, comprehensive, urban high school into six thematic small schools. Specifically, this study addresses the question, What do high school principals identify as the leadership challenges and opportunities embedded in the…

  9. "Teachers Know You Can Do More": Understanding How School Cultures of Success Affect Urban High School Students

    ERIC Educational Resources Information Center

    Rodriguez, Louie F.

    2008-01-01

    Urban high school reform is one of the most significant challenges facing education today. In response to this challenge, reformers have put significant energy toward restructuring the large high school primarily through creating smaller school settings. Although the research literature often draws connections between school size and student…

  10. Developing School Heads as Instructional Leaders in School-Based Assessment: Challenges and Next Steps

    ERIC Educational Resources Information Center

    Lingam, Govinda Ishwar; Lingam, Narsamma

    2016-01-01

    The study explored challenges faced by school leaders in the Pacific nation of Solomon Islands in school-based assessment, and the adequacy of an assessment course to prepare them. A questionnaire including both open and closed-ended questions elicited relevant data from the school leaders. Modelling best practices in school-based assessment was…

  11. Evaluating a School-Based Day Treatment Program for Students with Challenging Behaviors

    ERIC Educational Resources Information Center

    Hickman, Antoine Lewis

    2014-01-01

    Jade County Public Schools has provided school-based therapeutic day treatment in its public schools for more than 10 years. This program was adopted by the school system to provide an intervention in the school and classroom to address the challenging behaviors of students with emotional and behavioral disorders. Currently, three human services…

  12. Monitoring Object Library Usage and Changes

    NASA Technical Reports Server (NTRS)

    Owen, R. K.; Craw, James M. (Technical Monitor)

    1995-01-01

    The NASA Ames Numerical Aerodynamic Simulation program Aeronautics Consolidated Supercomputing Facility (NAS/ACSF) supercomputing center services over 1600 users, and has numerous analysts with root access. Several tools have been developed to monitor object library usage and changes. Some of the tools do "noninvasive" monitoring and other tools implement run-time logging even for object-only libraries. The run-time logging identifies who, when, and what is being used. The benefits are that real usage can be measured, unused libraries can be discontinued, training and optimization efforts can be focused at those numerical methods that are actually used. An overview of the tools will be given and the results will be discussed.

  13. Watson will see you now: a supercomputer to help clinicians make informed treatment decisions.

    PubMed

    Doyle-Lindrud, Susan

    2015-02-01

    IBM has collaborated with several cancer care providers to develop and train the IBM supercomputer Watson to help clinicians make informed treatment decisions. When a patient is seen in clinic, the oncologist can input all of the clinical information into the computer system. Watson will then review all of the data and recommend treatment options based on the latest evidence and guidelines. Once the oncologist makes the treatment decision, this information can be sent directly to the insurance company for approval. Watson has the ability to standardize care and accelerate the approval process, a benefit to the healthcare provider and the patient.

  14. Particle simulation on heterogeneous distributed supercomputers

    NASA Technical Reports Server (NTRS)

    Becker, Jeffrey C.; Dagum, Leonardo

    1993-01-01

    We describe the implementation and performance of a three dimensional particle simulation distributed between a Thinking Machines CM-2 and a Cray Y-MP. These are connected by a combination of two high-speed networks: a high-performance parallel interface (HIPPI) and an optical network (UltraNet). This is the first application to use this configuration at NASA Ames Research Center. We describe our experience implementing and using the application and report the results of several timing measurements. We show that the distribution of applications across disparate supercomputing platforms is feasible and has reasonable performance. In addition, several practical aspects of the computing environment are discussed.

  15. The transition of a real-time single-rotor helicopter simulation program to a supercomputer

    NASA Technical Reports Server (NTRS)

    Martinez, Debbie

    1995-01-01

    This report presents the conversion effort and results of a real-time flight simulation application transition to a CONVEX supercomputer. Enclosed is a detailed description of the conversion process and a brief description of the Langley Research Center's (LaRC) flight simulation application program structure. Currently, this simulation program may be configured to represent Sikorsky S-61 helicopter (a five-blade, single-rotor, commercial passenger-type helicopter) or an Army Cobra helicopter (either the AH-1 G or AH-1 S model). This report refers to the Sikorsky S-61 simulation program since it is the most frequently used configuration.

  16. Accelerating Virtual High-Throughput Ligand Docking: current technology and case study on a petascale supercomputer.

    PubMed

    Ellingson, Sally R; Dakshanamurthy, Sivanesan; Brown, Milton; Smith, Jeremy C; Baudry, Jerome

    2014-04-25

    In this paper we give the current state of high-throughput virtual screening. We describe a case study of using a task-parallel MPI (Message Passing Interface) version of Autodock4 [1], [2] to run a virtual high-throughput screen of one-million compounds on the Jaguar Cray XK6 Supercomputer at Oak Ridge National Laboratory. We include a description of scripts developed to increase the efficiency of the predocking file preparation and postdocking analysis. A detailed tutorial, scripts, and source code for this MPI version of Autodock4 are available online at http://www.bio.utk.edu/baudrylab/autodockmpi.htm.

  17. Sequence search on a supercomputer.

    PubMed

    Gotoh, O; Tagashira, Y

    1986-01-10

    A set of programs was developed for searching nucleic acid and protein sequence data bases for sequences similar to a given sequence. The programs, written in FORTRAN 77, were optimized for vector processing on a Hitachi S810-20 supercomputer. A search of a 500-residue protein sequence against the entire PIR data base Ver. 1.0 (1) (0.5 M residues) is carried out in a CPU time of 45 sec. About 4 min is required for an exhaustive search of a 1500-base nucleotide sequence against all mammalian sequences (1.2M bases) in Genbank Ver. 29.0. The CPU time is reduced to about a quarter with a faster version.

  18. Science & Technology Review November 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radousky, H

    This months issue has the following articles: (1) Expanded Supercomputing Maximizes Scientific Discovery--Commentary by Dona Crawford; (2) Thunder's Power Delivers Breakthrough Science--Livermore's Thunder supercomputer allows researchers to model systems at scales never before possible. (3) Extracting Key Content from Images--A new system called the Image Content Engine is helping analysts find significant but hard-to-recognize details in overhead images. (4) Got Oxygen?--Oxygen, especially oxygen metabolism, was key to evolution, and a Livermore project helps find out why. (5) A Shocking New Form of Laserlike Light--According to research at Livermore, smashing a crystal with a shock wave can result in coherent light.

  19. A high performance linear equation solver on the VPP500 parallel supercomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakanishi, Makoto; Ina, Hiroshi; Miura, Kenichi

    1994-12-31

    This paper describes the implementation of two high performance linear equation solvers developed for the Fujitsu VPP500, a distributed memory parallel supercomputer system. The solvers take advantage of the key architectural features of VPP500--(1) scalability for an arbitrary number of processors up to 222 processors, (2) flexible data transfer among processors provided by a crossbar interconnection network, (3) vector processing capability on each processor, and (4) overlapped computation and transfer. The general linear equation solver based on the blocked LU decomposition method achieves 120.0 GFLOPS performance with 100 processors in the LIN-PACK Highly Parallel Computing benchmark.

  20. Optimal Full Information Synthesis for Flexible Structures Implemented on Cray Supercomputers

    NASA Technical Reports Server (NTRS)

    Lind, Rick; Balas, Gary J.

    1995-01-01

    This paper considers an algorithm for synthesis of optimal controllers for full information feedback. The synthesis procedure reduces to a single linear matrix inequality which may be solved via established convex optimization algorithms. The computational cost of the optimization is investigated. It is demonstrated the problem dimension and corresponding matrices can become large for practical engineering problems. This algorithm represents a process that is impractical for standard workstations for large order systems. A flexible structure is presented as a design example. Control synthesis requires several days on a workstation but may be solved in a reasonable amount of time using a Cray supercomputer.

  1. SiGN-SSM: open source parallel software for estimating gene networks with state space models.

    PubMed

    Tamada, Yoshinori; Yamaguchi, Rui; Imoto, Seiya; Hirose, Osamu; Yoshida, Ryo; Nagasaki, Masao; Miyano, Satoru

    2011-04-15

    SiGN-SSM is an open-source gene network estimation software able to run in parallel on PCs and massively parallel supercomputers. The software estimates a state space model (SSM), that is a statistical dynamic model suitable for analyzing short time and/or replicated time series gene expression profiles. SiGN-SSM implements a novel parameter constraint effective to stabilize the estimated models. Also, by using a supercomputer, it is able to determine the gene network structure by a statistical permutation test in a practical time. SiGN-SSM is applicable not only to analyzing temporal regulatory dependencies between genes, but also to extracting the differentially regulated genes from time series expression profiles. SiGN-SSM is distributed under GNU Affero General Public Licence (GNU AGPL) version 3 and can be downloaded at http://sign.hgc.jp/signssm/. The pre-compiled binaries for some architectures are available in addition to the source code. The pre-installed binaries are also available on the Human Genome Center supercomputer system. The online manual and the supplementary information of SiGN-SSM is available on our web site. tamada@ims.u-tokyo.ac.jp.

  2. Transferring ecosystem simulation codes to supercomputers

    NASA Technical Reports Server (NTRS)

    Skiles, J. W.; Schulbach, C. H.

    1995-01-01

    Many ecosystem simulation computer codes have been developed in the last twenty-five years. This development took place initially on main-frame computers, then mini-computers, and more recently, on micro-computers and workstations. Supercomputing platforms (both parallel and distributed systems) have been largely unused, however, because of the perceived difficulty in accessing and using the machines. Also, significant differences in the system architectures of sequential, scalar computers and parallel and/or vector supercomputers must be considered. We have transferred a grassland simulation model (developed on a VAX) to a Cray Y-MP/C90. We describe porting the model to the Cray and the changes we made to exploit the parallelism in the application and improve code execution. The Cray executed the model 30 times faster than the VAX and 10 times faster than a Unix workstation. We achieved an additional speedup of 30 percent by using the compiler's vectoring and 'in-line' capabilities. The code runs at only about 5 percent of the Cray's peak speed because it ineffectively uses the vector and parallel processing capabilities of the Cray. We expect that by restructuring the code, it could execute an additional six to ten times faster.

  3. Federal Market Information Technology in the Post Flash Crash Era: Roles for Supercomputing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethel, E. Wes; Leinweber, David; Ruebel, Oliver

    2011-09-16

    This paper describes collaborative work between active traders, regulators, economists, and supercomputing researchers to replicate and extend investigations of the Flash Crash and other market anomalies in a National Laboratory HPC environment. Our work suggests that supercomputing tools and methods will be valuable to market regulators in achieving the goal of market safety, stability, and security. Research results using high frequency data and analytics are described, and directions for future development are discussed. Currently the key mechanism for preventing catastrophic market action are “circuit breakers.” We believe a more graduated approach, similar to the “yellow light” approach in motorsports tomore » slow down traffic, might be a better way to achieve the same goal. To enable this objective, we study a number of indicators that could foresee hazards in market conditions and explore options to confirm such predictions. Our tests confirm that Volume Synchronized Probability of Informed Trading (VPIN) and a version of volume Herfindahl-Hirschman Index (HHI) for measuring market fragmentation can indeed give strong signals ahead of the Flash Crash event on May 6 2010. This is a preliminary step toward a full-fledged early-warning system for unusual market conditions.« less

  4. Computing with Beowulf

    NASA Technical Reports Server (NTRS)

    Cohen, Jarrett

    1999-01-01

    Parallel computers built out of mass-market parts are cost-effectively performing data processing and simulation tasks. The Supercomputing (now known as "SC") series of conferences celebrated its 10th anniversary last November. While vendors have come and gone, the dominant paradigm for tackling big problems still is a shared-resource, commercial supercomputer. Growing numbers of users needing a cheaper or dedicated-access alternative are building their own supercomputers out of mass-market parts. Such machines are generally called Beowulf-class systems after the 11th century epic. This modern-day Beowulf story began in 1994 at NASA's Goddard Space Flight Center. A laboratory for the Earth and space sciences, computing managers there threw down a gauntlet to develop a $50,000 gigaFLOPS workstation for processing satellite data sets. Soon, Thomas Sterling and Don Becker were working on the Beowulf concept at the University Space Research Association (USRA)-run Center of Excellence in Space Data and Information Sciences (CESDIS). Beowulf clusters mix three primary ingredients: commodity personal computers or workstations, low-cost Ethernet networks, and the open-source Linux operating system. One of the larger Beowulfs is Goddard's Highly-parallel Integrated Virtual Environment, or HIVE for short.

  5. Compute Server Performance Results

    NASA Technical Reports Server (NTRS)

    Stockdale, I. E.; Barton, John; Woodrow, Thomas (Technical Monitor)

    1994-01-01

    Parallel-vector supercomputers have been the workhorses of high performance computing. As expectations of future computing needs have risen faster than projected vector supercomputer performance, much work has been done investigating the feasibility of using Massively Parallel Processor systems as supercomputers. An even more recent development is the availability of high performance workstations which have the potential, when clustered together, to replace parallel-vector systems. We present a systematic comparison of floating point performance and price-performance for various compute server systems. A suite of highly vectorized programs was run on systems including traditional vector systems such as the Cray C90, and RISC workstations such as the IBM RS/6000 590 and the SGI R8000. The C90 system delivers 460 million floating point operations per second (FLOPS), the highest single processor rate of any vendor. However, if the price-performance ration (PPR) is considered to be most important, then the IBM and SGI processors are superior to the C90 processors. Even without code tuning, the IBM and SGI PPR's of 260 and 220 FLOPS per dollar exceed the C90 PPR of 160 FLOPS per dollar when running our highly vectorized suite,

  6. 1993 Gordon Bell Prize Winners

    NASA Technical Reports Server (NTRS)

    Karp, Alan H.; Simon, Horst; Heller, Don; Cooper, D. M. (Technical Monitor)

    1994-01-01

    The Gordon Bell Prize recognizes significant achievements in the application of supercomputers to scientific and engineering problems. In 1993, finalists were named for work in three categories: (1) Performance, which recognizes those who solved a real problem in the quickest elapsed time. (2) Price/performance, which encourages the development of cost-effective supercomputing. (3) Compiler-generated speedup, which measures how well compiler writers are facilitating the programming of parallel processors. The winners were announced November 17 at the Supercomputing 93 conference in Portland, Oregon. Gordon Bell, an independent consultant in Los Altos, California, is sponsoring $2,000 in prizes each year for 10 years to promote practical parallel processing research. This is the sixth year of the prize, which Computer administers. Something unprecedented in Gordon Bell Prize competition occurred this year: A computer manufacturer was singled out for recognition. Nine entries reporting results obtained on the Cray C90 were received, seven of the submissions orchestrated by Cray Research. Although none of these entries showed sufficiently high performance to win outright, the judges were impressed by the breadth of applications that ran well on this machine, all nine running at more than a third of the peak performance of the machine.

  7. Trinity to Trinity 1945-2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moniz, Ernest; Carr, Alan; Bethe, Hans

    The Trinity Test of July 16, 1945 was the first full-scale, real-world test of a nuclear weapon; with the new Trinity supercomputer Los Alamos National Laboratory's goal is to do this virtually, in 3D. Trinity was the culmination of a fantastic effort of groundbreaking science and engineering by hundreds of men and women at Los Alamos and other Manhattan Project sites. It took them less than two years to change the world. The Laboratory is marking the 70th anniversary of the Trinity Test because it not only ushered in the Nuclear Age, but with it the origin of today’s advancedmore » supercomputing. We live in the Age of Supercomputers due in large part to nuclear weapons science here at Los Alamos. National security science, and nuclear weapons science in particular, at Los Alamos National Laboratory have provided a key motivation for the evolution of large-scale scientific computing. Beginning with the Manhattan Project there has been a constant stream of increasingly significant, complex problems in nuclear weapons science whose timely solutions demand larger and faster computers. The relationship between national security science at Los Alamos and the evolution of computing is one of interdependence.« less

  8. Improving Memory Error Handling Using Linux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlton, Michael Andrew; Blanchard, Sean P.; Debardeleben, Nathan A.

    As supercomputers continue to get faster and more powerful in the future, they will also have more nodes. If nothing is done, then the amount of memory in supercomputer clusters will soon grow large enough that memory failures will be unmanageable to deal with by manually replacing memory DIMMs. "Improving Memory Error Handling Using Linux" is a process oriented method to solve this problem by using the Linux kernel to disable (offline) faulty memory pages containing bad addresses, preventing them from being used again by a process. The process of offlining memory pages simplifies error handling and results in reducingmore » both hardware and manpower costs required to run Los Alamos National Laboratory (LANL) clusters. This process will be necessary for the future of supercomputing to allow the development of exascale computers. It will not be feasible without memory error handling to manually replace the number of DIMMs that will fail daily on a machine consisting of 32-128 petabytes of memory. Testing reveals the process of offlining memory pages works and is relatively simple to use. As more and more testing is conducted, the entire process will be automated within the high-performance computing (HPC) monitoring software, Zenoss, at LANL.« less

  9. Cots Correlator Platform

    NASA Astrophysics Data System (ADS)

    Schaaf, Kjeld; Overeem, Ruud

    2004-06-01

    Moore’s law is best exploited by using consumer market hardware. In particular, the gaming industry pushes the limit of processor performance thus reducing the cost per raw flop even faster than Moore’s law predicts. Next to the cost benefits of Common-Of-The-Shelf (COTS) processing resources, there is a rapidly growing experience pool in cluster based processing. The typical Beowulf cluster of PC’s supercomputers are well known. Multiple examples exists of specialised cluster computers based on more advanced server nodes or even gaming stations. All these cluster machines build upon the same knowledge about cluster software management, scheduling, middleware libraries and mathematical libraries. In this study, we have integrated COTS processing resources and cluster nodes into a very high performance processing platform suitable for streaming data applications, in particular to implement a correlator. The required processing power for the correlator in modern radio telescopes is in the range of the larger supercomputers, which motivates the usage of supercomputer technology. Raw processing power is provided by graphical processors and is combined with an Infiniband host bus adapter with integrated data stream handling logic. With this processing platform a scalable correlator can be built with continuously growing processing power at consumer market prices.

  10. Trinity to Trinity 1945-2015

    ScienceCinema

    Moniz, Ernest; Carr, Alan; Bethe, Hans; Morrison, Phillip; Ramsay, Norman; Teller, Edward; Brixner, Berlyn; Archer, Bill; Agnew, Harold; Morrison, John

    2018-01-16

    The Trinity Test of July 16, 1945 was the first full-scale, real-world test of a nuclear weapon; with the new Trinity supercomputer Los Alamos National Laboratory's goal is to do this virtually, in 3D. Trinity was the culmination of a fantastic effort of groundbreaking science and engineering by hundreds of men and women at Los Alamos and other Manhattan Project sites. It took them less than two years to change the world. The Laboratory is marking the 70th anniversary of the Trinity Test because it not only ushered in the Nuclear Age, but with it the origin of today’s advanced supercomputing. We live in the Age of Supercomputers due in large part to nuclear weapons science here at Los Alamos. National security science, and nuclear weapons science in particular, at Los Alamos National Laboratory have provided a key motivation for the evolution of large-scale scientific computing. Beginning with the Manhattan Project there has been a constant stream of increasingly significant, complex problems in nuclear weapons science whose timely solutions demand larger and faster computers. The relationship between national security science at Los Alamos and the evolution of computing is one of interdependence.

  11. KNBD: A Remote Kernel Block Server for Linux

    NASA Technical Reports Server (NTRS)

    Becker, Jeff

    1999-01-01

    I am developing a prototype of a Linux remote disk block server whose purpose is to serve as a lower level component of a parallel file system. Parallel file systems are an important component of high performance supercomputers and clusters. Although supercomputer vendors such as SGI and IBM have their own custom solutions, there has been a void and hence a demand for such a system on Beowulf-type PC Clusters. Recently, the Parallel Virtual File System (PVFS) project at Clemson University has begun to address this need (1). Although their system provides much of the functionality of (and indeed was inspired by) the equivalent file systems in the commercial supercomputer market, their system is all in user-space. Migrating their 10 services to the kernel could provide a performance boost, by obviating the need for expensive system calls. Thanks to Pavel Machek, the Linux kernel has provided the network block device (2) with kernels 2.1.101 and later. You can configure this block device to redirect reads and writes to a remote machine's disk. This can be used as a building block for constructing a striped file system across several nodes.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, David H.

    The NAS Parallel Benchmarks (NPB) are a suite of parallel computer performance benchmarks. They were originally developed at the NASA Ames Research Center in 1991 to assess high-end parallel supercomputers. Although they are no longer used as widely as they once were for comparing high-end system performance, they continue to be studied and analyzed a great deal in the high-performance computing community. The acronym 'NAS' originally stood for the Numerical Aeronautical Simulation Program at NASA Ames. The name of this organization was subsequently changed to the Numerical Aerospace Simulation Program, and more recently to the NASA Advanced Supercomputing Center, althoughmore » the acronym remains 'NAS.' The developers of the original NPB suite were David H. Bailey, Eric Barszcz, John Barton, David Browning, Russell Carter, LeoDagum, Rod Fatoohi, Samuel Fineberg, Paul Frederickson, Thomas Lasinski, Rob Schreiber, Horst Simon, V. Venkatakrishnan and Sisira Weeratunga. The original NAS Parallel Benchmarks consisted of eight individual benchmark problems, each of which focused on some aspect of scientific computing. The principal focus was in computational aerophysics, although most of these benchmarks have much broader relevance, since in a much larger sense they are typical of many real-world scientific computing applications. The NPB suite grew out of the need for a more rational procedure to select new supercomputers for acquisition by NASA. The emergence of commercially available highly parallel computer systems in the late 1980s offered an attractive alternative to parallel vector supercomputers that had been the mainstay of high-end scientific computing. However, the introduction of highly parallel systems was accompanied by a regrettable level of hype, not only on the part of the commercial vendors but even, in some cases, by scientists using the systems. As a result, it was difficult to discern whether the new systems offered any fundamental performance advantage over vector supercomputers, and, if so, which of the parallel offerings would be most useful in real-world scientific computation. In part to draw attention to some of the performance reporting abuses prevalent at the time, the present author wrote a humorous essay 'Twelve Ways to Fool the Masses,' which described in a light-hearted way a number of the questionable ways in which both vendor marketing people and scientists were inflating and distorting their performance results. All of this underscored the need for an objective and scientifically defensible measure to compare performance on these systems.« less

  13. Assessment of Changes in School Nutrition Programs and the School Environment as a Result of Following the HealthierUS School Challenge Program

    ERIC Educational Resources Information Center

    Brown, Jennifer S.; Bednar, Carolyn; DiMarco, Nancy M.; Connors, Priscilla L.

    2012-01-01

    Purpose/Objectives: The purpose of this study was to determine changes in school nutrition programs and the school environment as reported by school nutrition directors who are following the U.S. Department of Agriculture's HealthierUS School Challenge (HUSSC) program. The objective was to determine before and after changes in the average lunch…

  14. An All-School Library Challenge

    ERIC Educational Resources Information Center

    Quirk, Connie

    2005-01-01

    The library media center is hosting an all-school team challenge, designed to celebrate reading and library skills. Students could choose from the contest categories like "Lord of the Rings", "Harry Potter", Author Facts Challenge and Opening Lines Challenge for the competition and those students who read more challenging books show their…

  15. The Challenge of Teacher Retention in Urban Schools: Evidence of Variation from a Cross-Site Analysis

    ERIC Educational Resources Information Center

    Papay, John P.; Bacher-Hicks, Andrew; Page, Lindsay C.; Marinell, William H.

    2017-01-01

    Substantial teacher turnover poses a challenge to staffing public schools with effective teachers. The scope of the teacher retention challenge across school districts, however, remains poorly defined. Applying consistent data practices and analytical techniques to administrative data sets from 16 urban districts, we document substantial…

  16. Challenge the Gap: Evaluation Report and Executive Summary

    ERIC Educational Resources Information Center

    West, Mel; Ainscow, Mel; Wigelsworth, Michael; Troncoso, Patricio

    2017-01-01

    Challenge the Gap (CtG) is a school collaboration programme designed by Challenge Partners that aims to break the link between disadvantage and attainment. The main components of CtG are: (1) after-school workshops drawing on published research and evidenced practice; (2) focused in-school interventions with a selected cohort of disadvantaged…

  17. National School Debate: Banning Cell Phones in Public Schools: Analyzing a National School and Community Relations Problem

    ERIC Educational Resources Information Center

    Johnson, Clarence; Kritsonis, William Allan

    2007-01-01

    School systems in America face many critical challenges pertaining to regulating cell phone use by students in today's schools. School executives and classroom teachers face challenges daily relative to how to effectively deal with student's using cell phones. There are many drawbacks and benefits for cell phone use by students. The authors…

  18. Overcoming Challenges in School-Wide Survey Administration.

    PubMed

    Rasberry, Catherine N; Rose, India; Kroupa, Elizabeth; Hebert, Andrew; Geller, Amanda; Morris, Elana; Lesesne, Catherine A

    2018-01-01

    School-based surveys provide a useful method for gathering data from youth. Existing literature offers many examples of data collection through school-based surveys, and a small subset of literature describes methodological approaches or general recommendations for health promotion professionals seeking to conduct school-based data collection. Much less is available on real-life logistical challenges (e.g., minimizing disruption in the school day) and corresponding solutions. In this article, we fill that literature gap by offering practical considerations for the administration of school-based surveys. The protocol and practical considerations outlined in the article are based on a survey conducted with 11,681 students from seven large, urban public high schools in the southeast United States. We outline our protocol for implementing a school-based survey that was conducted with all students school-wide, and we describe six types of key challenges faced in conducting the survey: consent procedures, scheduling, locating students within the schools, teacher failure to administer the survey, improper administration of the survey, and minimizing disruption. For each challenge, we offer our key lessons learned and associated recommendations for successfully implementing school-based surveys, and we provide relevant tools for practitioners planning to conduct their own surveys in schools.

  19. Assessing School Leadership Challenges in Ghana Using Leadership Practices Inventory

    ERIC Educational Resources Information Center

    Edwards, Alexander Kyei; Aboagye, Samuel Kwadwo

    2015-01-01

    The Ghana Education Service (GES) is facing challenges in school leadership and hence a lot of criticisms on basic school performances. The issue is whether school leadership relates to school performances and that there is the need for transformation leadership. The purpose of this study was to discuss self-reported leadership practices…

  20. Using School Change States to Analyze Comprehensive School Reform Projects

    ERIC Educational Resources Information Center

    Wetherill, Karen S.; Applefield, James M.

    2005-01-01

    Comprehensive school reform (CSR) projects are being funded throughout the United States in a determined effort to improve the performance of public education. The multidimensional nature of comprehensive school reform presents unique challenges for explaining widely discrepant outcomes among schools. These challenges are addressed in a study of 8…

  1. Leadership and Context Connectivity: Merging Two Forces for Sustainable School Improvement

    ERIC Educational Resources Information Center

    Marishane, Nylon Ramodikoe

    2016-01-01

    School improvement is admittedly the main business of school leadership. However, while there is agreement on the importance of school improvement, sustaining this improvement remains a challenge. The challenge seems to lie in the disconnection between the leader and the context in which the school operates. This chapter presents contextual…

  2. Leadership for Rural Schools: Lessons for All Educators.

    ERIC Educational Resources Information Center

    Chalker, Donald M., Ed.

    Rural schools present unique challenges for school administrators, challenges that require knowledge of various skills in a range of disciplines. This book touches nearly every aspect of rural school leadership. It aims to help educational leaders in small or rural schools better understand their role, and to help all educators learn elements of…

  3. Chicano Alternative Education.

    ERIC Educational Resources Information Center

    Galicia, H. Homero; Almaguer, Clementina

    Alternative schooling is challenging some basic notions of curriculum, operation, and structure of traditional schools; it is not challenging the basic concept of schooling. Chicano alternative education, an elusive concept, lacks a precise definition. Chicano alternative schools reflect a vast diversity in structure, focus, and goals. The Chicano…

  4. Trident: scalable compute archives: workflows, visualization, and analysis

    NASA Astrophysics Data System (ADS)

    Gopu, Arvind; Hayashi, Soichi; Young, Michael D.; Kotulla, Ralf; Henschel, Robert; Harbeck, Daniel

    2016-08-01

    The Astronomy scientific community has embraced Big Data processing challenges, e.g. associated with time-domain astronomy, and come up with a variety of novel and efficient data processing solutions. However, data processing is only a small part of the Big Data challenge. Efficient knowledge discovery and scientific advancement in the Big Data era requires new and equally efficient tools: modern user interfaces for searching, identifying and viewing data online without direct access to the data; tracking of data provenance; searching, plotting and analyzing metadata; interactive visual analysis, especially of (time-dependent) image data; and the ability to execute pipelines on supercomputing and cloud resources with minimal user overhead or expertise even to novice computing users. The Trident project at Indiana University offers a comprehensive web and cloud-based microservice software suite that enables the straight forward deployment of highly customized Scalable Compute Archive (SCA) systems; including extensive visualization and analysis capabilities, with minimal amount of additional coding. Trident seamlessly scales up or down in terms of data volumes and computational needs, and allows feature sets within a web user interface to be quickly adapted to meet individual project requirements. Domain experts only have to provide code or business logic about handling/visualizing their domain's data products and about executing their pipelines and application work flows. Trident's microservices architecture is made up of light-weight services connected by a REST API and/or a message bus; a web interface elements are built using NodeJS, AngularJS, and HighCharts JavaScript libraries among others while backend services are written in NodeJS, PHP/Zend, and Python. The software suite currently consists of (1) a simple work flow execution framework to integrate, deploy, and execute pipelines and applications (2) a progress service to monitor work flows and sub-work flows (3) ImageX, an interactive image visualization service (3) an authentication and authorization service (4) a data service that handles archival, staging and serving of data products, and (5) a notification service that serves statistical collation and reporting needs of various projects. Several other additional components are under development. Trident is an umbrella project, that evolved from the One Degree Imager, Portal, Pipeline, and Archive (ODI-PPA) project which we had initially refactored toward (1) a powerful analysis/visualization portal for Globular Cluster System (GCS) survey data collected by IU researchers, 2) a data search and download portal for the IU Electron Microscopy Center's data (EMC-SCA), 3) a prototype archive for the Ludwig Maximilian University's Wide Field Imager. The new Trident software has been used to deploy (1) a metadata quality control and analytics portal (RADY-SCA) for DICOM formatted medical imaging data produced by the IU Radiology Center, 2) Several prototype work flows for different domains, 3) a snapshot tool within IU's Karst Desktop environment, 4) a limited component-set to serve GIS data within the IU GIS web portal. Trident SCA systems leverage supercomputing and storage resources at Indiana University but can be configured to make use of any cloud/grid resource, from local workstations/servers to (inter)national supercomputing facilities such as XSEDE.

  5. Seven challenges for neuroscience.

    PubMed

    Markram, Henry

    2013-01-01

    Although twenty-first century neuroscience is a major scientific enterprise, advances in basic research have not yet translated into benefits for society. In this paper, I outline seven fundamental challenges that need to be overcome. First, neuroscience has to become "big science" - we need big teams with the resources and competences to tackle the big problems. Second, we need to create interlinked sets of data providing a complete picture of single areas of the brain at their different levels of organization with "rungs" linking the descriptions for humans and other species. Such "data ladders" will help us to meet the third challenge - the development of efficient predictive tools, enabling us to drastically increase the information we can extract from expensive experiments. The fourth challenge goes one step further: we have to develop novel hardware and software sufficiently powerful to simulate the brain. In the future, supercomputer-based brain simulation will enable us to make in silico manipulations and recordings, which are currently completely impossible in the lab. The fifth and sixth challenges are translational. On the one hand we need to develop new ways of classifying and simulating brain disease, leading to better diagnosis and more effective drug discovery. On the other, we have to exploit our knowledge to build new brain-inspired technologies, with potentially huge benefits for industry and for society. This leads to the seventh challenge. Neuroscience can indeed deliver huge benefits but we have to be aware of widespread social concern about our work. We need to recognize the fears that exist, lay them to rest, and actively build public support for neuroscience research. We have to set goals for ourselves that the public can recognize and share. And then we have to deliver on our promises. Only in this way, will we receive the support and funding we need.

  6. Lessons Learned in Evaluating a Multisite, Comprehensive Teen Dating Violence Prevention Strategy: Design and Challenges of the Evaluation of Dating Matters: Strategies to Promote Healthy Teen Relationships.

    PubMed

    Niolon, Phyllis Holditch; Taylor, Bruce G; Latzman, Natasha E; Vivolo-Kantor, Alana M; Valle, Linda Anne; Tharp, Andra T

    2016-03-01

    This paper describes the multisite, longitudinal cluster randomized controlled trial (RCT) design of the evaluation of the Dating Matters: Strategies to Promote Healthy Relationships initiative, and discusses challenges faced in conducting this evaluation. Health departments in 4 communities are partnering with middle schools in high-risk, urban communities to implement 2 models of teen dating violence (TDV) prevention over 4 years. Schools were randomized to receive either the Dating Matters comprehensive strategy or the "standard of care" strategy (an existing, evidence-based TDV prevention curriculum). Our design permits comparison of the relative effectiveness of the comprehensive and standard of care strategies. Multiple cohorts of students from 46 middle schools are surveyed in middle school and high school, and parents and educators from participating schools are also surveyed. Challenges discussed in conducting a multisite RCT include site variability, separation of implementation and evaluation responsibilities, school retention, parent engagement in research activities, and working within the context of high-risk urban schools and communities. We discuss the strengths and weaknesses of our approaches to these challenges in the hopes of informing future research. Despite multiple challenges, the design of the Dating Matters evaluation remains strong. We hope this paper provides researchers who are conducting complex evaluations of behavioral interventions with thoughtful discussion of the challenges we have faced and potential solutions to such challenges.

  7. Lessons Learned in Evaluating a Multisite, Comprehensive Teen Dating Violence Prevention Strategy: Design and Challenges of the Evaluation of Dating Matters: Strategies to Promote Healthy Teen Relationships

    PubMed Central

    Niolon, Phyllis Holditch; Taylor, Bruce G.; Latzman, Natasha E.; Vivolo-Kantor, Alana M.; Valle, Linda Anne; Tharp, Andra T.

    2018-01-01

    Objective This paper describes the multisite, longitudinal cluster randomized controlled trial (RCT) design of the evaluation of the Dating Matters: Strategies to Promote Healthy Relationships initiative, and discusses challenges faced in conducting this evaluation. Method Health departments in 4 communities are partnering with middle schools in high-risk, urban communities to implement 2 models of teen dating violence (TDV) prevention over 4 years. Schools were randomized to receive either the Dating Matters comprehensive strategy or the “standard of care” strategy (an existing, evidence-based TDV prevention curriculum). Our design permits comparison of the relative effectiveness of the comprehensive and standard of care strategies. Multiple cohorts of students from 46 middle schools are surveyed in middle school and high school, and parents and educators from participating schools are also surveyed. Results Challenges discussed in conducting a multisite RCT include site variability, separation of implementation and evaluation responsibilities, school retention, parent engagement in research activities, and working within the context of high-risk urban schools and communities. We discuss the strengths and weaknesses of our approaches to these challenges in the hopes of informing future research. Conclusions Despite multiple challenges, the design of the Dating Matters evaluation remains strong. We hope this paper provides researchers who are conducting complex evaluations of behavioral interventions with thoughtful discussion of the challenges we have faced and potential solutions to such challenges. PMID:29607239

  8. Lunches Selected and Consumed from the National School Lunch Program in Schools Designated As HealthierUS School Challenge Schools Are More Nutritious than Lunches Brought from Home

    ERIC Educational Resources Information Center

    Bergman, Ethan A.; Saade, Catherine; Shaw, Emily; Englund, Tim; Cashman, Linda; Taylor, Katie Weigt; Watkins, Tracee; Rushing, Keith

    2014-01-01

    Purpose/Objective: The purpose of this study was to compare the nutrient content of National School Lunch Program (NSLP) lunches and lunches brought from home (LBFH) lunches in elementary schools participating in the HealthierUS School Challenge (HUSSC). Methods: Participants included students in grades 2-5 in four Washington state HUSSC…

  9. Food Challenge: Serving Up 4-H to Non-Traditional Audiences

    ERIC Educational Resources Information Center

    Dodd, Sara; Follmer-Reece, Holly E.; Kostina-Ritchey, Erin; Reyna, Roxanna

    2015-01-01

    This article describes a novel approach for introducing 4-H to non-traditional/diverse audiences using 4-H Food Challenge. Set in a low SES and minority-serving rural school, Food Challenge was presented during the school day to all 7th grade students, with almost half voluntarily participating in an after-school club component. Program design…

  10. Standing by Their Principles: Two Librarians Who Faced Challenges

    ERIC Educational Resources Information Center

    Adams, Helen; Leu, DaNae; Venuto, Dee Ann

    2015-01-01

    What do school librarians fear most? Hands down, their biggest fear is a formal challenge to a resource in the school library. There are no accurate statistics about the number of challenges to school library resources. The staff of ALA's Office for Intellectual Freedom estimates that only about 20 percent are reported to ALA annually. For the…

  11. School Mathematics Leaders' Perceptions of Successes and Challenges of Their Leadership Role within a Mathematics Improvement Project

    ERIC Educational Resources Information Center

    Sexton, Matt; Downton, Ann

    2014-01-01

    The mathematics curriculum leader plays an important role in leading the mathematics curriculum in primary schools. They experience successes and face challenges associated with this leadership role. The perceptions that 25 mathematics leaders held about the successes and challenges they experienced whilst participating in a school mathematics…

  12. The Maui's Dolphin Challenge: Lessons from a School-Based Litter Reduction Project

    ERIC Educational Resources Information Center

    Townrow, Carly S.; Laurence, Nick; Blythe, Charlotte; Long, Jenny; Harré, Niki

    2016-01-01

    The Maui's Dolphin Challenge was a litter reduction project that was run twice at a secondary school in Aotearoa New Zealand. The project drew on a theoretical framework encompassing four psycho-social principles: values, embodied learning, efficacy, and perceived social norms. It challenged students to reduce the litter at the school by offering…

  13. Zero Energy Schools: The Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torcellini, Paul A

    School buildings have a lot of potential to achieve zero energy (ZE) in new construction as well as in retrofits. There are many examples of schools operating at ZE, and many technical resources available to guide school districts and their design and construction teams through the process. When school districts embark on the path to ZE, however, they often confront challenges related to processes and a perception that ZE buildings require 'new,' unconventional, and expensive technologies, materials, or equipment. Here are some of the challenges school districts and their design and construction teams commonly encounter, and the solutions they usemore » to overcome them.« less

  14. Hazing in Public Schools: A Liability Challenge for School Leaders

    ERIC Educational Resources Information Center

    Essex, Nathan L.

    2014-01-01

    Hazing in public schools is a significant problem that may result in serious physical or emotional harm to students who are victims. According to experts in the field, each year more than 1,500,000 American students become new hazing victims. Hazing also results in legal challenges for school personnel. The courts consider public schools to be…

  15. The Practice of School Psychology in Quebec English Schools: Current Challenges and Opportunities

    ERIC Educational Resources Information Center

    Finn, Cindy A.

    2016-01-01

    In Quebec, school psychology is alive and well. This article outlines current challenges and opportunities related to the practice of psychology in Quebec English schools. Changes to the practice of psychology in Quebec over the last decade have had an impact on the delivery of psychological services in schools. Modifications of the admission…

  16. Leading the Newly Consolidated High School: Exciting Opportunity or Overwhelming Challenge?

    ERIC Educational Resources Information Center

    Thurman, Lance E.; Hackmann, Donald G.

    2015-01-01

    In the current economic times, school personnel are regularly challenged to reduce the costs of operating the nation's school systems. School district consolidations often are proposed as a mechanism to realize fiscal savings for local communities; indeed, the number of U.S. school districts has declined dramatically over the past 70 years,…

  17. Challenges to Library Materials from Principals in United States Secondary Schools--A "Victory" of Sorts.

    ERIC Educational Resources Information Center

    Hopkins, Dianne McAfee

    1995-01-01

    Examines challenges to school library materials initiated by principals in public middle, junior, and senior high school libraries based on a 1990 survey. A review of literature emphasizing the leadership of principals, their role in school library program development, and the principal and school library censorship is included. (Author/LRW)

  18. Challenges of Virtual School Leadership

    ERIC Educational Resources Information Center

    Richardson, Jayson W.; LaFrance, Jason; Beck, Dennis

    2015-01-01

    The purpose of this case study was to examine challenges faced by virtual school leaders in the United States. Through semistructured interviews, the researchers explored challenges faced by eighteen leaders of fully online or blended online programs. Analysis revealed six main challenges: funding, staff, accountability, time, parents, and…

  19. Nanoscale Bio-engineering Solutions for Space Exploration: The Nanopore Sequencer

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor; Cozmuta, Ioana

    2004-01-01

    Characterization of biological systems at the molecular level and extraction of essential information for nano-engineering design to guide the nano-fabrication of solid-state sensors and molecular identification devices is a computational challenge. The alpha hemolysin protein ion channel is used as a model system for structural analysis of nucleic acids like DNA. Applied voltage draws a DNA strand and surrounding ionic solution through the biological nanopore. The subunits in the DNA strand block ion flow by differing amounts. Atomistic scale simulations are employed using NASA supercomputers to study DNA translocation, with the aim to enhance single DNA subunit identification. Compared to protein channels, solid-state nanopores offer a better temporal control of the translocation of DNA and the possibility to easily tune its chemistry to increase the signal resolution. Potential applications for NASA missions, besides real-time genome sequencing include astronaut health, life detection and decoding of various genomes.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Aiman; Laguna, Ignacio; Sato, Kento

    Future high-performance computing systems may face frequent failures with their rapid increase in scale and complexity. Resilience to faults has become a major challenge for large-scale applications running on supercomputers, which demands fault tolerance support for prevalent MPI applications. Among failure scenarios, process failures are one of the most severe issues as they usually lead to termination of applications. However, the widely used MPI implementations do not provide mechanisms for fault tolerance. We propose FTA-MPI (Fault Tolerance Assistant MPI), a programming model that provides support for failure detection, failure notification and recovery. Specifically, FTA-MPI exploits a try/catch model that enablesmore » failure localization and transparent recovery of process failures in MPI applications. We demonstrate FTA-MPI with synthetic applications and a molecular dynamics code CoMD, and show that FTA-MPI provides high programmability for users and enables convenient and flexible recovery of process failures.« less

  1. Nanoscale Bioengineering Solutions for Space Exploration the Nanopore Sequencer

    NASA Technical Reports Server (NTRS)

    Ioana, Cozmuta; Viktor, Stoic

    2005-01-01

    Characterization of biological systems at the molecular level and extraction of essential information for nano-engineering design to guide the nano-fabrication of solid-state sensors and molecular identification devices is a computational challenge. The alpha hemolysin protein ion channel is used as a model system for structural analysis of nucleic acids like DNA. Applied voltage draws a DNA strand and surrounding ionic solution through the biological nanopore. The subunits in the DNA strand block ion flow by differing amounts. Atomistic scale simulations are employed using NASA supercomputers to study DNA translocation. with the aim to enhance single DNA subunit identification. Compared to protein channels, solid-state nanopores offer a better temporal control of the translocation of DNA and the possibility to easily tune its chemistry to increase the signal resolution. Potential applications for NASA missions, besides real-time genome sequencing include astronaut health, life detection and decoding of various genomes. http://phenomrph.arc.nasa.gov/index.php

  2. Parallel performance optimizations on unstructured mesh-based simulations

    DOE PAGES

    Sarje, Abhinav; Song, Sukhyun; Jacobsen, Douglas; ...

    2015-06-01

    This paper addresses two key parallelization challenges the unstructured mesh-based ocean modeling code, MPAS-Ocean, which uses a mesh based on Voronoi tessellations: (1) load imbalance across processes, and (2) unstructured data access patterns, that inhibit intra- and inter-node performance. Our work analyzes the load imbalance due to naive partitioning of the mesh, and develops methods to generate mesh partitioning with better load balance and reduced communication. Furthermore, we present methods that minimize both inter- and intranode data movement and maximize data reuse. Our techniques include predictive ordering of data elements for higher cache efficiency, as well as communication reduction approaches.more » We present detailed performance data when running on thousands of cores using the Cray XC30 supercomputer and show that our optimization strategies can exceed the original performance by over 2×. Additionally, many of these solutions can be broadly applied to a wide variety of unstructured grid-based computations.« less

  3. Machine Learning Toolkit for Extreme Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2014-03-31

    Support Vector Machines (SVM) is a popular machine learning technique, which has been applied to a wide range of domains such as science, finance, and social networks for supervised learning. MaTEx undertakes the challenge of designing a scalable parallel SVM training algorithm for large scale systems, which includes commodity multi-core machines, tightly connected supercomputers and cloud computing systems. Several techniques are proposed for improved speed and memory space usage including adaptive and aggressive elimination of samples for faster convergence , and sparse format representation of data samples. Several heuristics for earliest possible to lazy elimination of non-contributing samples are consideredmore » in MaTEx. In many cases, where an early sample elimination might result in a false positive, low overhead mechanisms for reconstruction of key data structures are proposed. The proposed algorithm and heuristics are implemented and evaluated on various publicly available datasets« less

  4. Template Interfaces for Agile Parallel Data-Intensive Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakrishnan, Lavanya; Gunter, Daniel; Pastorello, Gilerto Z.

    Tigres provides a programming library to compose and execute large-scale data-intensive scientific workflows from desktops to supercomputers. DOE User Facilities and large science collaborations are increasingly generating large enough data sets that it is no longer practical to download them to a desktop to operate on them. They are instead stored at centralized compute and storage resources such as high performance computing (HPC) centers. Analysis of this data requires an ability to run on these facilities, but with current technologies, scaling an analysis to an HPC center and to a large data set is difficult even for experts. Tigres ismore » addressing the challenge of enabling collaborative analysis of DOE Science data through a new concept of reusable "templates" that enable scientists to easily compose, run and manage collaborative computational tasks. These templates define common computation patterns used in analyzing a data set.« less

  5. ls1 mardyn: The Massively Parallel Molecular Dynamics Code for Large Systems.

    PubMed

    Niethammer, Christoph; Becker, Stefan; Bernreuther, Martin; Buchholz, Martin; Eckhardt, Wolfgang; Heinecke, Alexander; Werth, Stephan; Bungartz, Hans-Joachim; Glass, Colin W; Hasse, Hans; Vrabec, Jadran; Horsch, Martin

    2014-10-14

    The molecular dynamics simulation code ls1 mardyn is presented. It is a highly scalable code, optimized for massively parallel execution on supercomputing architectures and currently holds the world record for the largest molecular simulation with over four trillion particles. It enables the application of pair potentials to length and time scales that were previously out of scope for molecular dynamics simulation. With an efficient dynamic load balancing scheme, it delivers high scalability even for challenging heterogeneous configurations. Presently, multicenter rigid potential models based on Lennard-Jones sites, point charges, and higher-order polarities are supported. Due to its modular design, ls1 mardyn can be extended to new physical models, methods, and algorithms, allowing future users to tailor it to suit their respective needs. Possible applications include scenarios with complex geometries, such as fluids at interfaces, as well as nonequilibrium molecular dynamics simulation of heat and mass transfer.

  6. Numerical Simulation of Black Holes

    NASA Astrophysics Data System (ADS)

    Teukolsky, Saul

    2003-04-01

    Einstein's equations of general relativity are prime candidates for numerical solution on supercomputers. There is some urgency in being able to carry out such simulations: Large-scale gravitational wave detectors are now coming on line, and the most important expected signals cannot be predicted except numerically. Problems involving black holes are perhaps the most interesting, yet also particularly challenging computationally. One difficulty is that inside a black hole there is a physical singularity that cannot be part of the computational domain. A second difficulty is the disparity in length scales between the size of the black hole and the wavelength of the gravitational radiation emitted. A third difficulty is that all existing methods of evolving black holes in three spatial dimensions are plagued by instabilities that prohibit long-term evolution. I will describe the ideas that are being introduced in numerical relativity to deal with these problems, and discuss the results of recent calculations of black hole collisions.

  7. The Science DMZ: A Network Design Pattern for Data-Intensive Science

    DOE PAGES

    Dart, Eli; Rotman, Lauren; Tierney, Brian; ...

    2014-01-01

    The ever-increasing scale of scientific data has become a significant challenge for researchers that rely on networks to interact with remote computing systems and transfer results to collaborators worldwide. Despite the availability of high-capacity connections, scientists struggle with inadequate cyberinfrastructure that cripples data transfer performance, and impedes scientific progress. The Science DMZ paradigm comprises a proven set of network design patterns that collectively address these problems for scientists. We explain the Science DMZ model, including network architecture, system configuration, cybersecurity, and performance tools, that creates an optimized network environment for science. We describe use cases from universities, supercomputing centers andmore » research laboratories, highlighting the effectiveness of the Science DMZ model in diverse operational settings. In all, the Science DMZ model is a solid platform that supports any science workflow, and flexibly accommodates emerging network technologies. As a result, the Science DMZ vastly improves collaboration, accelerating scientific discovery.« less

  8. High performance computing applications in neurobiological research

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Cheng, Rei; Doshay, David G.; Linton, Samuel W.; Montgomery, Kevin; Parnas, Bruce R.

    1994-01-01

    The human nervous system is a massively parallel processor of information. The vast numbers of neurons, synapses and circuits is daunting to those seeking to understand the neural basis of consciousness and intellect. Pervading obstacles are lack of knowledge of the detailed, three-dimensional (3-D) organization of even a simple neural system and the paucity of large scale, biologically relevant computer simulations. We use high performance graphics workstations and supercomputers to study the 3-D organization of gravity sensors as a prototype architecture foreshadowing more complex systems. Scaled-down simulations run on a Silicon Graphics workstation and scale-up, three-dimensional versions run on the Cray Y-MP and CM5 supercomputers.

  9. Multi-petascale highly efficient parallel supercomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.

    A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaflop-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC). The ASIC nodes are interconnected by a five dimensional torus network that optimally maximize the throughput of packet communications between nodes and minimize latency. The network implements collective network and a global asynchronous network that provides global barrier and notification functions. Integrated in the node design include a list-based prefetcher. The memory system implements transaction memory, thread level speculation, and multiversioning cache that improves soft error rate at the same time andmore » supports DMA functionality allowing for parallel processing message-passing.« less

  10. The TESS science processing operations center

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.; Twicken, Joseph D.; McCauliff, Sean; Campbell, Jennifer; Sanderfer, Dwight; Lung, David; Mansouri-Samani, Masoud; Girouard, Forrest; Tenenbaum, Peter; Klaus, Todd; Smith, Jeffrey C.; Caldwell, Douglas A.; Chacon, A. D.; Henze, Christopher; Heiges, Cory; Latham, David W.; Morgan, Edward; Swade, Daryl; Rinehart, Stephen; Vanderspek, Roland

    2016-08-01

    The Transiting Exoplanet Survey Satellite (TESS) will conduct a search for Earth's closest cousins starting in early 2018 and is expected to discover 1,000 small planets with Rp < 4 R⊕ and measure the masses of at least 50 of these small worlds. The Science Processing Operations Center (SPOC) is being developed at NASA Ames Research Center based on the Kepler science pipeline and will generate calibrated pixels and light curves on the NASA Advanced Supercomputing Division's Pleiades supercomputer. The SPOC will also search for periodic transit events and generate validation products for the transit-like features in the light curves. All TESS SPOC data products will be archived to the Mikulski Archive for Space Telescopes (MAST).

  11. CFD code evaluation for internal flow modeling

    NASA Technical Reports Server (NTRS)

    Chung, T. J.

    1990-01-01

    Research on the computational fluid dynamics (CFD) code evaluation with emphasis on supercomputing in reacting flows is discussed. Advantages of unstructured grids, multigrids, adaptive methods, improved flow solvers, vector processing, parallel processing, and reduction of memory requirements are discussed. As examples, researchers include applications of supercomputing to reacting flow Navier-Stokes equations including shock waves and turbulence and combustion instability problems associated with solid and liquid propellants. Evaluation of codes developed by other organizations are not included. Instead, the basic criteria for accuracy and efficiency have been established, and some applications on rocket combustion have been made. Research toward an ultimate goal, the most accurate and efficient CFD code, is in progress and will continue for years to come.

  12. Internal computational fluid mechanics on supercomputers for aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Andersen, Bernhard H.; Benson, Thomas J.

    1987-01-01

    The accurate calculation of three-dimensional internal flowfields for application towards aerospace propulsion systems requires computational resources available only on supercomputers. A survey is presented of three-dimensional calculations of hypersonic, transonic, and subsonic internal flowfields conducted at the Lewis Research Center. A steady state Parabolized Navier-Stokes (PNS) solution of flow in a Mach 5.0, mixed compression inlet, a Navier-Stokes solution of flow in the vicinity of a terminal shock, and a PNS solution of flow in a diffusing S-bend with vortex generators are presented and discussed. All of these calculations were performed on either the NAS Cray-2 or the Lewis Research Center Cray XMP.

  13. Supercomputer modeling of hydrogen combustion in rocket engines

    NASA Astrophysics Data System (ADS)

    Betelin, V. B.; Nikitin, V. F.; Altukhov, D. I.; Dushin, V. R.; Koo, Jaye

    2013-08-01

    Hydrogen being an ecological fuel is very attractive now for rocket engines designers. However, peculiarities of hydrogen combustion kinetics, the presence of zones of inverse dependence of reaction rate on pressure, etc. prevents from using hydrogen engines in all stages not being supported by other types of engines, which often brings the ecological gains back to zero from using hydrogen. Computer aided design of new effective and clean hydrogen engines needs mathematical tools for supercomputer modeling of hydrogen-oxygen components mixing and combustion in rocket engines. The paper presents the results of developing verification and validation of mathematical model making it possible to simulate unsteady processes of ignition and combustion in rocket engines.

  14. Close to real life. [solving for transonic flow about lifting airfoils using supercomputers

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Bailey, F. Ron

    1988-01-01

    NASA's Numerical Aerodynamic Simulation (NAS) facility for CFD modeling of highly complex aerodynamic flows employs as its basic hardware two Cray-2s, an ETA-10 Model Q, an Amdahl 5880 mainframe computer that furnishes both support processing and access to 300 Gbytes of disk storage, several minicomputers and superminicomputers, and a Thinking Machines 16,000-device 'connection machine' processor. NAS, which was the first supercomputer facility to standardize operating-system and communication software on all processors, has done important Space Shuttle aerodynamics simulations and will be critical to the configurational refinement of the National Aerospace Plane and its intergrated powerplant, which will involve complex, high temperature reactive gasdynamic computations.

  15. Optimal wavelength-space crossbar switches for supercomputer optical interconnects.

    PubMed

    Roudas, Ioannis; Hemenway, B Roe; Grzybowski, Richard R; Karinou, Fotini

    2012-08-27

    We propose a most economical design of the Optical Shared MemOry Supercomputer Interconnect System (OSMOSIS) all-optical, wavelength-space crossbar switch fabric. It is shown, by analysis and simulation, that the total number of on-off gates required for the proposed N × N switch fabric can scale asymptotically as N ln N if the number of input/output ports N can be factored into a product of small primes. This is of the same order of magnitude as Shannon's lower bound for switch complexity, according to which the minimum number of two-state switches required for the construction of a N × N permutation switch is log2 (N!).

  16. CONVEX mini manual

    NASA Technical Reports Server (NTRS)

    Tennille, Geoffrey M.; Howser, Lona M.

    1993-01-01

    The use of the CONVEX computers that are an integral part of the Supercomputing Network Subsystems (SNS) of the Central Scientific Computing Complex of LaRC is briefly described. Features of the CONVEX computers that are significantly different than the CRAY supercomputers are covered, including: FORTRAN, C, architecture of the CONVEX computers, the CONVEX environment, batch job submittal, debugging, performance analysis, utilities unique to CONVEX, and documentation. This revision reflects the addition of the Applications Compiler and X-based debugger, CXdb. The document id intended for all CONVEX users as a ready reference to frequently asked questions and to more detailed information contained with the vendor manuals. It is appropriate for both the novice and the experienced user.

  17. MILC Code Performance on High End CPU and GPU Supercomputer Clusters

    NASA Astrophysics Data System (ADS)

    DeTar, Carleton; Gottlieb, Steven; Li, Ruizi; Toussaint, Doug

    2018-03-01

    With recent developments in parallel supercomputing architecture, many core, multi-core, and GPU processors are now commonplace, resulting in more levels of parallelism, memory hierarchy, and programming complexity. It has been necessary to adapt the MILC code to these new processors starting with NVIDIA GPUs, and more recently, the Intel Xeon Phi processors. We report on our efforts to port and optimize our code for the Intel Knights Landing architecture. We consider performance of the MILC code with MPI and OpenMP, and optimizations with QOPQDP and QPhiX. For the latter approach, we concentrate on the staggered conjugate gradient and gauge force. We also consider performance on recent NVIDIA GPUs using the QUDA library.

  18. National Storage Laboratory: a collaborative research project

    NASA Astrophysics Data System (ADS)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard W.

    1993-01-01

    The grand challenges of science and industry that are driving computing and communications have created corresponding challenges in information storage and retrieval. An industry-led collaborative project has been organized to investigate technology for storage systems that will be the future repositories of national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and provider of applications. The expected result is the creation of a National Storage Laboratory to serve as a prototype and demonstration facility. It is expected that this prototype will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte-class files at gigabit-per-second data rates. Specifically, the collaboration expects to make significant advances in hardware, software, and systems technology in four areas of need, (1) network-attached high performance storage; (2) multiple, dynamic, distributed storage hierarchies; (3) layered access to storage system services; and (4) storage system management.

  19. Software Engineering Support of the Third Round of Scientific Grand Challenge Investigations: Earth System Modeling Software Framework Survey

    NASA Technical Reports Server (NTRS)

    Talbot, Bryan; Zhou, Shu-Jia; Higgins, Glenn; Zukor, Dorothy (Technical Monitor)

    2002-01-01

    One of the most significant challenges in large-scale climate modeling, as well as in high-performance computing in other scientific fields, is that of effectively integrating many software models from multiple contributors. A software framework facilitates the integration task, both in the development and runtime stages of the simulation. Effective software frameworks reduce the programming burden for the investigators, freeing them to focus more on the science and less on the parallel communication implementation. while maintaining high performance across numerous supercomputer and workstation architectures. This document surveys numerous software frameworks for potential use in Earth science modeling. Several frameworks are evaluated in depth, including Parallel Object-Oriented Methods and Applications (POOMA), Cactus (from (he relativistic physics community), Overture, Goddard Earth Modeling System (GEMS), the National Center for Atmospheric Research Flux Coupler, and UCLA/UCB Distributed Data Broker (DDB). Frameworks evaluated in less detail include ROOT, Parallel Application Workspace (PAWS), and Advanced Large-Scale Integrated Computational Environment (ALICE). A host of other frameworks and related tools are referenced in this context. The frameworks are evaluated individually and also compared with each other.

  20. School-Based Management Developments: Challenges and Impacts

    ERIC Educational Resources Information Center

    Bandur, Agustinus

    2012-01-01

    Purpose: The purpose of this paper is to examine the current school-based management (SBM) policy reform in Indonesia, with an emphasis on the impacts of shifting authority and responsibility to school level, as well as challenges confronted by the school council members, followed by remedial measures to minimize the problems.…

  1. Meeting the Challenge of Involving Parents in School. Newsletter

    ERIC Educational Resources Information Center

    Center for Comprehensive School Reform and Improvement, 2005

    2005-01-01

    Parent involvement continues to challenge practitioners engaged in school reform despite being a required component of many school improvement initiatives--from Title I Schoolwide Programs to federally mandated school improvement plans. The benefits of parent involvement are clear: A growing body of research shows that successful parent…

  2. From the Field: Learning Leaders

    ERIC Educational Resources Information Center

    Weigel, Kathleen; Jones, Richard

    2015-01-01

    Leadership is essential to successful schools. One of the ways to support effective school leadership is to share ideas and best practices to address the common challenges faced by school leaders. This question and response format addresses common challenges and questions from practicing school leaders in the manner that a mentor might respond to…

  3. Autism and Reading: Teaching a Sudanese Refugee Boy

    ERIC Educational Resources Information Center

    Walker-Dalhouse, Doris; Dalhouse, A. Derick

    2015-01-01

    Refugee families in the United States face numerous challenges in becoming acculturated. School-age children of refugees face the additional challenges of acquiring academic language and meeting school expectations for behavior and social interactions while attempting to navigate the school curriculum. This case study examines the school and home…

  4. The Challenge of Technology: Action Strategies for the School Library Media Specialist. School Library Media Programs: Focus on Trends and Issues; No. 13.

    ERIC Educational Resources Information Center

    Wright, Kieth

    This book describes some of the challenges facing school library media specialists as they work with teachers and administrators in making appropriate use of computers in schools. Five chapters address the following topics: (1) the school in the context of the emerging information society; (2) the roles of school library media specialists in the…

  5. Facilitating the High School-to-College Transition for Students with Psychiatric Disabilities: Information and Strategies for School Counselors

    ERIC Educational Resources Information Center

    Fier, Sara M.; Brzezinski, Lynda G.

    2010-01-01

    The transition from high school to college is challenging for many students. In addition to the typical challenges faced by students starting college, students with previously diagnosed psychiatric disabilities have illness-related challenges to face as they transition to college. This article provides information on the current state of concerns…

  6. Challenges in Pre-Tertiary Education in South Africa: Is School Social Work Part of the Solution?

    ERIC Educational Resources Information Center

    Pretorius, Edmarié

    2016-01-01

    Schools are seen as primary contributors to the social development of learners. Apart from the questionable quality of education in South Africa, the developmental and social challenges faced by learners and educators within schools in South Africa are diverse. These challenges fall within the domain of social work practice. For more than a…

  7. Challenging Behaviour: Principals' Experience of Stress and Perception of the Effects of Challenging Behaviour on Staff in Special Schools in Ireland

    ERIC Educational Resources Information Center

    Kelly, Aine; Carey, Sean; McCarthy, Siobhan; Coyle, Ciaran

    2007-01-01

    This paper examines the sources of stress and the effects of managing challenging behaviour on principals of special schools in Ireland, including schools for pupils with an intellectual disability, emotional disturbance, specific learning disability and physical and sensory disability, and children of traveller families. In this study principals…

  8. Challenges Faced by a Faith-Based School in a Rural, Predominantly Secular Setting: Implications

    ERIC Educational Resources Information Center

    Evangelinou-Yiannakis, Angela

    2016-01-01

    A new, independent Catholic school in rural Australia has had to face significant challenges in relation to its distinct Catholic ethos and curriculum. The challenges have included resistance from parents of the School with regard to the weekly time allocation for Religious Education, the nature of the faith-based curriculum, and the way in which…

  9. The Effect of Enrollment in Middle School Challenge Courses on Advanced Placement Exams in Social Studies and Science

    ERIC Educational Resources Information Center

    Glaude-Bolte, Katherine

    2010-01-01

    Educators seek to guide students through appropriate programs and courses that prepare them for future success, in more advanced coursework and in other challenges of life. Some middle schools offer Challenge, or honors, courses for students who have demonstrated high ability. High schools often offer Advanced Placement (AP) courses, which are…

  10. Challenges and Successful Pedagogical Strategies: Experiences from Six Swedish Students with Blindness and Autism in Different School Settings

    ERIC Educational Resources Information Center

    de Verdier, Kim; Fernell, Elisabeth; Ek, Ulla

    2018-01-01

    The prevalence of autism in children with blindness is much higher than in the general population. There are many challenges regarding the school situation for children with this complex dual disability. This study explored challenges and successful strategies in school for a sample of six Swedish children with blindness and autism, with and…

  11. Early Lessons in Restructuring Schools: Case Studies of Schools of Tomorrow...Today.

    ERIC Educational Resources Information Center

    Lieberman, Ann; And Others

    The call to restructure schools is born from a new set of challenges facing U.S. society as well as its education system. This paper describes the process followed by 12 schools that participated in meeting the challenges in the "Schools of Tomorrow...Today" (ST/T) project, supported by the New York City Teacher Centers Consortium (TCC) of the…

  12. School Nurse Perspectives of Challenges and How They Perceive Success in Their Professional Nursing Roles

    ERIC Educational Resources Information Center

    Smith, Shirley G.; Firmin, Michael W.

    2009-01-01

    This is a phenomenological study of 25 school nurses employed in a large, urban school district in the midwestern section of the United States. In addition to school nursing, the participants also had professional work experience in other nursing specialties. Thematic analysis of the data focused on the challenges faced by the school nurses, their…

  13. An Examination of School Leadership in Singapore through the Lens of the Fourth Way

    ERIC Educational Resources Information Center

    Ng, Pak Tee

    2012-01-01

    School leadership is an important factor in educational reform and school transformation. This article aims to examine the challenges of school leadership in Singapore through the lens of the Fourth Way. In particular, this article makes reference to three messages in the Fourth Way and examines the paradoxes and challenges faced by school leaders…

  14. The Impact of Bullying on School Performance in Six Selected Schools in South Carolina

    ERIC Educational Resources Information Center

    Cooper, Stephanie A.

    2011-01-01

    The nation's K-12 schools are faced with numerous critical challenges, such as elevating academic achievement, and meeting No Child Left Behind state standards (Kowalski et al., 2008). But bullying in schools is becoming one of the most challenging issues that school personnel are encountering. In a Stanford University, study it was revealed that…

  15. Coordinated school health program and dietetics professionals: partners in promoting healthful eating.

    PubMed

    Gross, Sandra M; Cinelli, Bethann

    2004-05-01

    Although research indicates that school meal programs contribute to improved academic performance and healthier eating behaviors for students who participate, fewer than 60% of students choose the National School Lunch Program or School Breakfast Program. School meal programs have a difficult time competing with foods that are marketed to young people through sophisticated advertising campaigns. Youth's preferences for fast foods, soft drinks, and salty snacks; mixed messages sent by school personnel; school food preparation and serving space limitations; inadequate meal periods; and lack of education standards for school foodservice directors challenge school meal programs as well. A coordinated school health program offers a framework for meeting these challenges and provides children and adolescents with the knowledge and skills necessary for healthful eating. This article identifies challenges facing school foodservice directors in delivering healthful meals and acquaints dietetics professionals with the coordinated school health program to be used as a tool for addressing unhealthful weight gain and promoting healthful eating.

  16. Adolescents and Substance Abuse: Warning Signs and School Counseling Interventions

    ERIC Educational Resources Information Center

    Fuller, LaShonda B.

    2012-01-01

    Adolescence is a challenging time for many young persons. Navigating the academic, personal/social, and career planning challenges associated with adolescence indeed is challenging even with excellent school, family, and community support. For those adolescents struggling with substance use and abuse, these challenges become even greater. School…

  17. [Construction and application of bioinformatic analysis platform for aquatic pathogen based on the MilkyWay-2 supercomputer].

    PubMed

    Fang, Xiang; Li, Ning-qiu; Fu, Xiao-zhe; Li, Kai-bin; Lin, Qiang; Liu, Li-hui; Shi, Cun-bin; Wu, Shu-qin

    2015-07-01

    As a key component of life science, bioinformatics has been widely applied in genomics, transcriptomics, and proteomics. However, the requirement of high-performance computers rather than common personal computers for constructing a bioinformatics platform significantly limited the application of bioinformatics in aquatic science. In this study, we constructed a bioinformatic analysis platform for aquatic pathogen based on the MilkyWay-2 supercomputer. The platform consisted of three functional modules, including genomic and transcriptomic sequencing data analysis, protein structure prediction, and molecular dynamics simulations. To validate the practicability of the platform, we performed bioinformatic analysis on aquatic pathogenic organisms. For example, genes of Flavobacterium johnsoniae M168 were identified and annotated via Blast searches, GO and InterPro annotations. Protein structural models for five small segments of grass carp reovirus HZ-08 were constructed by homology modeling. Molecular dynamics simulations were performed on out membrane protein A of Aeromonas hydrophila, and the changes of system temperature, total energy, root mean square deviation and conformation of the loops during equilibration were also observed. These results showed that the bioinformatic analysis platform for aquatic pathogen has been successfully built on the MilkyWay-2 supercomputer. This study will provide insights into the construction of bioinformatic analysis platform for other subjects.

  18. A special purpose silicon compiler for designing supercomputing VLSI systems

    NASA Technical Reports Server (NTRS)

    Venkateswaran, N.; Murugavel, P.; Kamakoti, V.; Shankarraman, M. J.; Rangarajan, S.; Mallikarjun, M.; Karthikeyan, B.; Prabhakar, T. S.; Satish, V.; Venkatasubramaniam, P. R.

    1991-01-01

    Design of general/special purpose supercomputing VLSI systems for numeric algorithm execution involves tackling two important aspects, namely their computational and communication complexities. Development of software tools for designing such systems itself becomes complex. Hence a novel design methodology has to be developed. For designing such complex systems a special purpose silicon compiler is needed in which: the computational and communicational structures of different numeric algorithms should be taken into account to simplify the silicon compiler design, the approach is macrocell based, and the software tools at different levels (algorithm down to the VLSI circuit layout) should get integrated. In this paper a special purpose silicon (SPS) compiler based on PACUBE macrocell VLSI arrays for designing supercomputing VLSI systems is presented. It is shown that turn-around time and silicon real estate get reduced over the silicon compilers based on PLA's, SLA's, and gate arrays. The first two silicon compiler characteristics mentioned above enable the SPS compiler to perform systolic mapping (at the macrocell level) of algorithms whose computational structures are of GIPOP (generalized inner product outer product) form. Direct systolic mapping on PLA's, SLA's, and gate arrays is very difficult as they are micro-cell based. A novel GIPOP processor is under development using this special purpose silicon compiler.

  19. Communication Characterization and Optimization of Applications Using Topology-Aware Task Mapping on Large Supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sreepathi, Sarat; D'Azevedo, Eduardo; Philip, Bobby

    On large supercomputers, the job scheduling systems may assign a non-contiguous node allocation for user applications depending on available resources. With parallel applications using MPI (Message Passing Interface), the default process ordering does not take into account the actual physical node layout available to the application. This contributes to non-locality in terms of physical network topology and impacts communication performance of the application. In order to mitigate such performance penalties, this work describes techniques to identify suitable task mapping that takes the layout of the allocated nodes as well as the application's communication behavior into account. During the first phasemore » of this research, we instrumented and collected performance data to characterize communication behavior of critical US DOE (United States - Department of Energy) applications using an augmented version of the mpiP tool. Subsequently, we developed several reordering methods (spectral bisection, neighbor join tree etc.) to combine node layout and application communication data for optimized task placement. We developed a tool called mpiAproxy to facilitate detailed evaluation of the various reordering algorithms without requiring full application executions. This work presents a comprehensive performance evaluation (14,000 experiments) of the various task mapping techniques in lowering communication costs on Titan, the leadership class supercomputer at Oak Ridge National Laboratory.« less

  20. Use of high performance networks and supercomputers for real-time flight simulation

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II

    1993-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be consistent in processing time and be completed in as short a time as possible. These operations include simulation mathematical model computation and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to the Computer Automated Measurement and Control (CAMAC) technology which resulted in a factor of ten increase in the effective bandwidth and reduced latency of modules necessary for simulator communication. This technology extension is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC are completing the development of the use of supercomputers for mathematical model computation to support real-time flight simulation. This includes the development of a real-time operating system and development of specialized software and hardware for the simulator network. This paper describes the data acquisition technology and the development of supercomputing for flight simulation.

  1. The Role of School Nurses, Challenges, and Reactions to Delegation Legislation: A Qualitative Approach.

    PubMed

    Lineberry, Michelle; Whitney, Elizabeth; Noland, Melody

    2018-06-01

    Passage of new laws, national standards regarding delegation, and the recommendation for at least one full-time nurse in every school have provided more visibility to the role of school nurses. Recent legislative amendments in Kentucky presented an opportunity to examine how the role of the school nurse is changing. Aims were to describe the (1) role of school nurses in Kentucky, (2) impact of school nurses, (3) challenges faced by school nurses, and (4) impact of budget cuts and legislation. Three focus groups were conducted. School nurses faced challenges of limited time and resources, communication barriers, and multiple documentation requirements. Nurses' greatest impacts were their availability, recognition of psychosocial problems and health concerns, and connection with resources. Nurses had not yet encountered many changes due to new legislation that expanded delegation of diabetes-related tasks to unlicensed school personnel, but some had concerns about possible negative effects while others expressed support.

  2. The Relationship of Leadership Practices on Teacher Morale and School Performance in Elementary Schools

    ERIC Educational Resources Information Center

    Howard, Mary Frances.

    2012-01-01

    The nation's K-12 schools are faced with critical challenges: elevating academic achievement, recruiting high-caliber teachers, engaging parental involvement and at-risk students. The national and global economic crisis has significantly compounded these challenges (Fullan, 2002; McEwan, 2003; Kowalski, 2008). School leaders are mandated by…

  3. Results with Open Court Reading.

    ERIC Educational Resources Information Center

    McGraw-Hill Companies, New York, NY. Educational and Professional Publishing Group.

    This publication tells the stories of eight schools from around the nation that have used the Open Court Reading program, describing the history of the schools, the challenges they faced, and their attempts to meet those challenges. The schools are located in California, Florida, Texas, and New York. Each of the school stories includes a focus on…

  4. Influenza Vaccinations, Fall 2009: Model School-Located Vaccination Clinics

    ERIC Educational Resources Information Center

    Herl Jenlink, Carolyn; Kuehnert, Paul; Mazyck, Donna

    2010-01-01

    The 2009 H1N1 influenza virus presented a major challenge to health departments, schools, and other community partners to effectively vaccinate large numbers of Americans, primarily children. The use of school-located vaccination (SLV) programs to address this challenge led health departments and schools to become creative in developing models for…

  5. Frontier Schools in Montana: Challenges and Sustainability Practices. A Research Report

    ERIC Educational Resources Information Center

    Harmon, Hobart L.; Morton, Claudette

    2010-01-01

    This study reveals the challenges confronting small, rural "frontier" schools in Montana and the practices that contribute to their sustainability. A Montana frontier school is defined as a school district with 200 or fewer students and its attendant community in a county with five or fewer people per square mile. The researcher…

  6. Ahead of the Curve: Implementation Challenges in Personalized Learning School Models

    ERIC Educational Resources Information Center

    Bingham, Andrea J.; Pane, John F.; Steiner, Elizabeth D.; Hamilton, Laura S.

    2018-01-01

    In the current educational context, school models that leverage technology to personalize instruction have proliferated, as has student enrollment in, and funding of, such school models. However, even the best laid plans are subject to challenges in design and practice, particularly in the dynamic context of a school. In this collective case…

  7. Creating Safe Schools: Roles and Challenges, a Federal Perspective.

    ERIC Educational Resources Information Center

    Modzeleski, William

    1996-01-01

    Presents an overview of the Safe and Drug-Free Schools and Communities Act, a key federal program that provides funding directly to states and local educational agencies to facilitate drug and violence prevention programs. The Gun-Free Schools Act is also examined, and the major challenges communities face in correcting school safety problems are…

  8. School Leadership and Ethnic Diversity: Approaching the Challenge

    ERIC Educational Resources Information Center

    Andersen, Fred Carlo; Ottesen, Eli

    2011-01-01

    In this article we explore school leaders' responses to challenges of inclusion in two Norwegian upper secondary schools. The empirical data are interviews with principals, deputies and social advisers in the two schools. We use multicultural education and inclusive leadership as theoretical lenses in the analysis. The results show that while the…

  9. Leading Remotely: Exploring the Experiences of Principals in Rural and Remote School Communities in Jamaica

    ERIC Educational Resources Information Center

    Miller, Paul

    2015-01-01

    School leadership is an exciting although challenging job. Principals of schools located in rural and remote communities, particular small schools, experience and encounter many challenges that their counterparts in suburban and urban areas do not experience. Concerns over staffing, the quality and availability of materials, facilities,…

  10. Maintaining Global Citizenship Education in Schools: A Challenge for Australian Educators and Schools

    ERIC Educational Resources Information Center

    Buchanan, John; Burridge, Nina; Andrew Chodkiewicz

    2018-01-01

    Teaching students about global citizenship remains a critical challenge for schools and communities, especially in a developed country like Australia. With increasingly difficult national and international contexts and its marginal place in the school curriculum, there is an urgent need to help maintain support for global citizenship education.…

  11. A Case Study of the Strategic Staffing Initiative Used in Charlotte-Mecklenburg Schools

    ERIC Educational Resources Information Center

    March, Kendra D.

    2013-01-01

    Accountability standards challenge schools to provide quality education for all students and to ensure that all students are on grade level by the end of the school year. If schools fall short of this challenge failing to make at least one year of progress, schools are at risk of being identified as low performing. In this age of accountability,…

  12. Keeping an Eye on the Prize

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazi, A U

    2007-02-06

    Setting performance goals is part of the business plan for almost every company. The same is true in the world of supercomputers. Ten years ago, the Department of Energy (DOE) launched the Accelerated Strategic Computing Initiative (ASCI) to help ensure the safety and reliability of the nation's nuclear weapons stockpile without nuclear testing. ASCI, which is now called the Advanced Simulation and Computing (ASC) Program and is managed by DOE's National Nuclear Security Administration (NNSA), set an initial 10-year goal to obtain computers that could process up to 100 trillion floating-point operations per second (teraflops). Many computer experts thought themore » goal was overly ambitious, but the program's results have proved them wrong. Last November, a Livermore-IBM team received the 2005 Gordon Bell Prize for achieving more than 100 teraflops while modeling the pressure-induced solidification of molten metal. The prestigious prize, which is named for a founding father of supercomputing, is awarded each year at the Supercomputing Conference to innovators who advance high-performance computing. Recipients for the 2005 prize included six Livermore scientists--physicists Fred Streitz, James Glosli, and Mehul Patel and computer scientists Bor Chan, Robert Yates, and Bronis de Supinski--as well as IBM researchers James Sexton and John Gunnels. This team produced the first atomic-scale model of metal solidification from the liquid phase with results that were independent of system size. The record-setting calculation used Livermore's domain decomposition molecular-dynamics (ddcMD) code running on BlueGene/L, a supercomputer developed by IBM in partnership with the ASC Program. BlueGene/L reached 280.6 teraflops on the Linpack benchmark, the industry standard used to measure computing speed. As a result, it ranks first on the list of Top500 Supercomputer Sites released in November 2005. To evaluate the performance of nuclear weapons systems, scientists must understand how materials behave under extreme conditions. Because experiments at high pressures and temperatures are often difficult or impossible to conduct, scientists rely on computer models that have been validated with obtainable data. Of particular interest to weapons scientists is the solidification of metals. ''To predict the performance of aging nuclear weapons, we need detailed information on a material's phase transitions'', says Streitz, who leads the Livermore-IBM team. For example, scientists want to know what happens to a metal as it changes from molten liquid to a solid and how that transition affects the material's characteristics, such as its strength.« less

  13. Next Generation Seismic Imaging; High Fidelity Algorithms and High-End Computing

    NASA Astrophysics Data System (ADS)

    Bevc, D.; Ortigosa, F.; Guitton, A.; Kaelin, B.

    2007-05-01

    The rich oil reserves of the Gulf of Mexico are buried in deep and ultra-deep waters up to 30,000 feet from the surface. Minerals Management Service (MMS), the federal agency in the U.S. Department of the Interior that manages the nation's oil, natural gas and other mineral resources on the outer continental shelf in federal offshore waters, estimates that the Gulf of Mexico holds 37 billion barrels of "undiscovered, conventionally recoverable" oil, which, at 50/barrel, would be worth approximately 1.85 trillion. These reserves are very difficult to find and reach due to the extreme depths. Technological advances in seismic imaging represent an opportunity to overcome this obstacle by providing more accurate models of the subsurface. Among these technological advances, Reverse Time Migration (RTM) yields the best possible images. RTM is based on the solution of the two-way acoustic wave-equation. This technique relies on the velocity model to image turning waves. These turning waves are particularly important to unravel subsalt reservoirs and delineate salt-flanks, a natural trap for oil and gas. Because it relies on an accurate velocity model, RTM opens new frontier in designing better velocity estimation algorithms. RTM has been widely recognized as the next chapter in seismic exploration, as it can overcome the limitations of current migration methods in imaging complex geologic structures that exist in the Gulf of Mexico. The chief impediment to the large-scale, routine deployment of RTM has been a lack of sufficient computer power. RTM needs thirty times the computing power used in exploration today to be commercially viable and widely usable. Therefore, advancing seismic imaging to the next level of precision poses a multi-disciplinary challenge. To overcome these challenges, the Kaleidoscope project, a partnership between Repsol YPF, Barcelona Supercomputing Center, 3DGeo Inc., and IBM brings together the necessary components of modeling, algorithms and the uniquely powerful computing power of the MareNostrum supercomputer in Barcelona to realize the promise of RTM, incorporate it into daily processing flows, and to help solve exploration problems in a highly cost-effective way. Uniquely, the Kaleidoscope Project is simultaneously integrating software (algorithms) and hardware (Cell BE), steps that are traditionally taken sequentially. This unique integration of software and hardware will accelerate seismic imaging by several orders of magnitude compared to conventional solutions running on standard Linux Clusters.

  14. The Challenges Facing School Governing Bodies in England: A "Perfect Storm"?

    ERIC Educational Resources Information Center

    James, Chris; Brammer, Steve; Connolly, Michael; Spicer, David Eddy; James, Jane; Jones, Jeff

    2013-01-01

    The governing bodies of publicly funded schools in England are currently facing a number of substantive challenges of various kinds. Many of the challenges are long-standing, while others relate to the current context for governing wrought by recent education policy developments initiated by central government. A number of the challenges are…

  15. The Small Rural School Principalship: Key Challenges and Cross-School Responses

    ERIC Educational Resources Information Center

    Starr, Karen; White, Simone

    2008-01-01

    This article explores the responses of school principals of small rural schools in Victoria, Australia to leadership challenges they identify as characteristic of these contexts. The research is an exercise in grounded theory building, with the focus on the principalship as it is enacted in small rural settings. The article also seeks to trace the…

  16. The Challenges for New Principals in the 21st Century. International Research on School Leadership Series

    ERIC Educational Resources Information Center

    Shoho, Alan R., Ed.; Barnett, Bruce, Ed.; Tooms, Autumn K., Ed.

    2010-01-01

    This book series, "International Research on School Leadership," focuses on how present-day issues affect the theory and practice of school leadership. For this inaugural book, the editors focused on the challenges facing new principals and headteachers. Because the professional lives of school leaders have increasingly impinged on their…

  17. Service Delivery for High School Students with High Incidence Disabilities: Issues and Challenges

    ERIC Educational Resources Information Center

    Schultz, Edward; Simpson, Cynthia; Owen, Jane C.; McIntyre, Christina Janise

    2015-01-01

    High schools throughout this country are as heterogeneous as the students they serve in size, location, tax base, student make-up, and teacher quality. However, they must all follow the mandates of NCLB and IDEA. While these policies affect all schools, high schools continue to face many challenges implementing these laws effectively for students…

  18. Design Challenges: Connecting the Classroom to the Real World

    ERIC Educational Resources Information Center

    Brookes, Tori

    2017-01-01

    School lockers are an essential part of secondary school life and students have been using them for decades. It is unlikely the design has changed since they were used by their grandparents. Although lockers have not changed, school definitely has. Are school lockers something that also need to be changed? A design challenge is an open-ended…

  19. Challenges Balancing Collaboration and Independence in Home-School Relationships: Analysis of Parents' Perceptions in One District

    ERIC Educational Resources Information Center

    Wanat, Carolyn L.

    2010-01-01

    Research has documented the important role that parental involvement plays in children's learning. Yet, it can be challenging for schools to establish appropriate relationships with parents. Is there an optimal balance of collaborative and separate relationships between parents and schools? Twenty parents in one K-12 public school district in the…

  20. Constructing the Ideal Muslim Sexual Subject: Problematics of School-Based Sex Education in Iran

    ERIC Educational Resources Information Center

    Tabatabaie, Alireza

    2015-01-01

    School-based sex education is an underdeveloped and challenging issue to address in Iran. This paper provides insights into the main challenges in developing and implementing school-based sex education in Iran. Through an investigation of one Iranian boys' school that, in contrast to the majority of Iranian educational institutions, has an…

  1. Stress, Coping and Wellbeing in Kindergarten: Children's Perspectives on Personal, Interpersonal and Institutional Challenges of School

    ERIC Educational Resources Information Center

    Harrison, Linda J.; Murray, Elizabeth

    2015-01-01

    Starting school requires children to manage a wide range of personal, interpersonal and institutional expectations and challenges, yet few child-report measures have captured the diversity of these experiences. In this paper, the Pictorial Measure of School Stress and Wellbeing (PMSSW) interview was used with 101 school entrants at the beginning…

  2. A Qualitative Examination of School Counselors' Training to Recognize and Respond to Adolescent Mental Health Issues

    ERIC Educational Resources Information Center

    Walley, Cynthia T.; Grothaus, Tim

    2013-01-01

    Given the prevalence of adolescent mental health issues and the impact they have on adolescent development and school success, school counselors are challenged to provide appropriate prevention and intervention services. Yet the sufficiency of school counselor training for these challenges is unclear. Qualitative procedures were used to examine…

  3. Great Minds Don't Always Think Alike: The Challenges of Conducting Substance Abuse Prevention Research in Public Schools

    ERIC Educational Resources Information Center

    Renes, Susan L.; Ringwalt, Chris; Clark, Heddy Kovach; Hanley, Sean

    2007-01-01

    Prevention researchers and school personnel lack a common understanding concerning the opportunities and burdens of school-based drug prevention research. In this article, we review issues related to researching substance abuse prevention programs in school settings, and assess challenges related to recruitment, communication, research design,…

  4. Addressing the Challenges and Needs of English-Speaking Caribbean Immigrant Students: Guidelines for School Counselors

    ERIC Educational Resources Information Center

    Morrison, Stephaney; Bryan, Julia

    2014-01-01

    Caribbean students are among the distinct immigrant groups in U.S. public schools with particular needs to be addressed by school counselors. This article discusses the challenges Caribbean immigrant students face that create obstacles to their academic and personal/social success. Guidelines for school counselors are outlined, which can be used…

  5. Working Together to Improve Urban Secondary Schools: A Study of Practice in One City

    ERIC Educational Resources Information Center

    Ainscow, Mel; Howes, Andy

    2007-01-01

    Bringing about school improvement in economically poor urban contexts remains a major challenge. In England the emphasis on competition between schools has further complicated this agenda. At the same time, there is evidence of the emergence of a new policy emphasis that involves support and challenge to school-led improvement efforts through…

  6. Crossing the Boundary from Music outside to inside of School: Contemporary Pedagogical Challenges

    ERIC Educational Resources Information Center

    Wallerstedt, Cecilia; Lindgren, Monica

    2016-01-01

    Music education in formal settings has the last decades been characterised by informal methods borrowed from outside school. In this study we analyse situations in Swedish secondary school where pupils' experience of music outside school becomes visible in music class. Pedagogical challenges in these situations are identified that concern how to…

  7. Challenging Racism through Schools: Teacher Attitudes to Cultural Diversity and Multicultural Education in Sydney, Australia

    ERIC Educational Resources Information Center

    Forrest, James; Lean, Garth; Dunn, Kevin

    2016-01-01

    How school teachers act to challenge racism in schools is a vital concern in an immigrant society like Australia. A 10% response from a self-administered online survey of government (public) primary and secondary school teachers across Sydney, Australia's largest EthniCity, examines attitudes of classroom teachers towards cultural diversity, goals…

  8. Challenges and Opportunities for School Improvement: Recommendations for Urban School Principals

    ERIC Educational Resources Information Center

    Dolph, David

    2017-01-01

    Insofar as urban school systems that are often identified as ineffective include such a large segment of U.S. P-12 students, it is vital to improve academic success. To provide context, the article first discusses key challenges facing urban schools. Second, the article identifies and briefly reviews a variety of approaches to reform models often…

  9. Building an Integrated Student Information System in a K-12 School System

    ERIC Educational Resources Information Center

    Steenkamp, Annette Lerine; Basal, Abdelraheem

    2010-01-01

    The task of managing an IT system in a school environment poses unique challenges. For example, one of the greatest challenges facing individual schools is the lack of integration between various information systems. The present situation in many schools is that there are many disconnected systems managing many different tasks. Systems with…

  10. Early College High Schools: A Proposed Solution to Secondary Transition Services

    ERIC Educational Resources Information Center

    Bridges, Jeanne M.; Maxwell, Gerri M.

    2015-01-01

    This qualitative case study examines the challenges facing rural secondary schools in transitioning youth from high school to post-secondary education and careers, and whether the interventions, strategies and support built into the Early College High School could offer a solution to this long-standing challenge to better meet the needs of special…

  11. Factors Influencing Provision of Play and Learning Materials among Children with Physical Challenges. A Case Study of Joytown Special School, Kiambu County

    ERIC Educational Resources Information Center

    Muthoni, Kamau Joyce

    2016-01-01

    In Kenya there is still a high population of children either born with or who develop physical challenges. These children are often neglected and most do not join school at the expected age. In joining school they encounter several difficulties in their play and learning activities. These children with physical challenges have developmental needs…

  12. Curriculum Reform and Supporting Structures at Schools: Challenges for Life Skills Planning for Secondary School Students in China (with Particular Reference to Hong Kong)

    ERIC Educational Resources Information Center

    Lee, John Chi-Kin

    2017-01-01

    Demand has risen for the introduction of career education in senior secondary schooling to enhance students' transition from study to work. Against such a background, this paper aims to discuss the curriculum reforms and supporting structures in schools and to explore the challenges of life skills planning for secondary school students in China…

  13. Perceptions of Beginning Public School Principals.

    ERIC Educational Resources Information Center

    Lyons, James E.

    1993-01-01

    Summarizes a study to determine principal's perceptions of their competency in primary responsibility areas and their greatest challenges and frustrations. Beginning principals are challenged by delegating responsibilities and becoming familiar with the principal's role, the local school, and school operations. Their major frustrations are role…

  14. Vector computer memory bank contention

    NASA Technical Reports Server (NTRS)

    Bailey, D. H.

    1985-01-01

    A number of vector supercomputers feature very large memories. Unfortunately the large capacity memory chips that are used in these computers are much slower than the fast central processing unit (CPU) circuitry. As a result, memory bank reservation times (in CPU ticks) are much longer than on previous generations of computers. A consequence of these long reservation times is that memory bank contention is sharply increased, resulting in significantly lowered performance rates. The phenomenon of memory bank contention in vector computers is analyzed using both a Markov chain model and a Monte Carlo simulation program. The results of this analysis indicate that future generations of supercomputers must either employ much faster memory chips or else feature very large numbers of independent memory banks.

  15. Will Your Next Supercomputer Come from Costco?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farber, Rob

    2007-04-15

    A fun topic for April, one that is not an April fool’s joke, is that you can purchase a commodity 200+ Gflop (single-precision) Linux supercomputer for around $600 from your favorite electronic vendor. Yes, it’s true. Just walk in and ask for a Sony Playstation 3 (PS3), take it home and install Linux on it. IBM has provided an excellent tutorial for installing Linux and building applications at http://www-128.ibm.com/developerworks/power/library/pa-linuxps3-1. If you want to raise some eyebrows at work, then submit a purchase request for a Sony PS3 game console and watch the reactions as your paperwork wends its way throughmore » the procurement process.« less

  16. Interactive 3D visualization speeds well, reservoir planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petzet, G.A.

    1997-11-24

    Texaco Exploration and Production has begun making expeditious analyses and drilling decisions that result from interactive, large screen visualization of seismic and other three dimensional data. A pumpkin shaped room or pod inside a 3,500 sq ft, state-of-the-art facility in Southwest Houston houses a supercomputer and projection equipment Texaco said will help its people sharply reduce 3D seismic project cycle time, boost production from existing fields, and find more reserves. Oil and gas related applications of the visualization center include reservoir engineering, plant walkthrough simulation for facilities/piping design, and new field exploration. The center houses a Silicon Graphics Onyx2 infinitemore » reality supercomputer configured with 8 processors, 3 graphics pipelines, and 6 gigabytes of main memory.« less

  17. Affordable and accurate large-scale hybrid-functional calculations on GPU-accelerated supercomputers

    NASA Astrophysics Data System (ADS)

    Ratcliff, Laura E.; Degomme, A.; Flores-Livas, José A.; Goedecker, Stefan; Genovese, Luigi

    2018-03-01

    Performing high accuracy hybrid functional calculations for condensed matter systems containing a large number of atoms is at present computationally very demanding or even out of reach if high quality basis sets are used. We present a highly optimized multiple graphics processing unit implementation of the exact exchange operator which allows one to perform fast hybrid functional density-functional theory (DFT) calculations with systematic basis sets without additional approximations for up to a thousand atoms. With this method hybrid DFT calculations of high quality become accessible on state-of-the-art supercomputers within a time-to-solution that is of the same order of magnitude as traditional semilocal-GGA functionals. The method is implemented in a portable open-source library.

  18. Ab initio molecular dynamics simulations for the role of hydrogen in catalytic reactions of furfural on Pd(111)

    NASA Astrophysics Data System (ADS)

    Xue, Wenhua; Dang, Hongli; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu

    2014-03-01

    In the study of catalytic reactions of biomass, furfural conversion over metal catalysts with the presence of hydrogen has attracted wide attention. We report ab initio molecular dynamics simulations for furfural and hydrogen on the Pd(111) surface at finite temperatures. The simulations demonstrate that the presence of hydrogen is important in promoting furfural conversion. In particular, hydrogen molecules dissociate rapidly on the Pd(111) surface. As a result of such dissociation, atomic hydrogen participates in the reactions with furfural. The simulations also provide detailed information about the possible reactions of hydrogen with furfural. Supported by DOE (DE-SC0004600). This research used the supercomputer resources of the XSEDE, the NERSC Center, and the Tandy Supercomputing Center.

  19. First-principles quantum-mechanical investigations of biomass conversion at the liquid-solid interfaces

    NASA Astrophysics Data System (ADS)

    Dang, Hongli; Xue, Wenhua; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu

    2014-03-01

    We report first-principles density-functional calculations and ab initio molecular dynamics (MD) simulations for the reactions involving furfural, which is an important intermediate in biomass conversion, at the catalytic liquid-solid interfaces. The different dynamic processes of furfural at the water-Cu(111) and water-Pd(111) interfaces suggest different catalytic reaction mechanisms for the conversion of furfural. Simulations for the dynamic processes with and without hydrogen demonstrate the importance of the liquid-solid interface as well as the presence of hydrogen in possible catalytic reactions including hydrogenation and decarbonylation of furfural. Supported by DOE (DE-SC0004600). This research used the supercomputer resources of the XSEDE, the NERSC Center, and the Tandy Supercomputing Center.

  20. The TESS Science Processing Operations Center

    NASA Technical Reports Server (NTRS)

    Jenkins, Jon M.; Twicken, Joseph D.; McCauliff, Sean; Campbell, Jennifer; Sanderfer, Dwight; Lung, David; Mansouri-Samani, Masoud; Girouard, Forrest; Tenenbaum, Peter; Klaus, Todd; hide

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will conduct a search for Earth's closest cousins starting in early 2018 and is expected to discover approximately 1,000 small planets with R(sub p) less than 4 (solar radius) and measure the masses of at least 50 of these small worlds. The Science Processing Operations Center (SPOC) is being developed at NASA Ames Research Center based on the Kepler science pipeline and will generate calibrated pixels and light curves on the NASA Advanced Supercomputing Division's Pleiades supercomputer. The SPOC will also search for periodic transit events and generate validation products for the transit-like features in the light curves. All TESS SPOC data products will be archived to the Mikulski Archive for Space Telescopes (MAST).

  1. Vector computer memory bank contention

    NASA Technical Reports Server (NTRS)

    Bailey, David H.

    1987-01-01

    A number of vector supercomputers feature very large memories. Unfortunately the large capacity memory chips that are used in these computers are much slower than the fast central processing unit (CPU) circuitry. As a result, memory bank reservation times (in CPU ticks) are much longer than on previous generations of computers. A consequence of these long reservation times is that memory bank contention is sharply increased, resulting in significantly lowered performance rates. The phenomenon of memory bank contention in vector computers is analyzed using both a Markov chain model and a Monte Carlo simulation program. The results of this analysis indicate that future generations of supercomputers must either employ much faster memory chips or else feature very large numbers of independent memory banks.

  2. An analysis of file migration in a UNIX supercomputing environment

    NASA Technical Reports Server (NTRS)

    Miller, Ethan L.; Katz, Randy H.

    1992-01-01

    The super computer center at the National Center for Atmospheric Research (NCAR) migrates large numbers of files to and from its mass storage system (MSS) because there is insufficient space to store them on the Cray supercomputer's local disks. This paper presents an analysis of file migration data collected over two years. The analysis shows that requests to the MSS are periodic, with one day and one week periods. Read requests to the MSS account for the majority of the periodicity; as write requests are relatively constant over the course of a week. Additionally, reads show a far greater fluctuation than writes over a day and week since reads are driven by human users while writes are machine-driven.

  3. School Supplies on a Budget

    ERIC Educational Resources Information Center

    Dyrli, Kurt O.

    2008-01-01

    This article reports on the challenge that parents, teachers, and district administrators face in continuing to provide essential school supplies to their students despite budget cuts. At the Verona Area (Wisconsin) School District, administrators, teachers, and parents have recently faced this common challenge. Increasingly dependent on funding…

  4. Social Skills Assessment and Intervention for Children and Youth

    ERIC Educational Resources Information Center

    Gresham, Frank M.

    2016-01-01

    Children and youth with deficits in social competence present substantial challenges for schools, teachers, parents and peers. These challenges cut across disciplinary, instructional and interpersonal domains and they frequently create chaotic home, school and classroom environments. Schools are charged with teaching an increasingly diverse…

  5. School Psychologists and Ethical Challenges

    ERIC Educational Resources Information Center

    Kapoulitsas, Maryanne; Corcoran, Tim

    2017-01-01

    This research explored how psychologists working in the Victorian secondary state school system construct meaning around ethical practice. The specific aims of the research were to examine psychologists understanding of ethics in practice within schools and to explore challenges they faced regarding professional ethics when working in the…

  6. 2014 Annual Report - Argonne Leadership Computing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, James R.; Papka, Michael E.; Cerny, Beth A.

    The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines.

  7. 2015 Annual Report - Argonne Leadership Computing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, James R.; Papka, Michael E.; Cerny, Beth A.

    The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines.

  8. Different Systems--Similar Challenges? Factors Impacting the Motivation of German and U.S. Teachers to become School Leaders

    ERIC Educational Resources Information Center

    Hancock, Dawson R.; Muller, Ulrich

    2009-01-01

    In the United States and Germany, effective school leadership is pivotal to a school's success. Yet in each country, attracting and retaining qualified school leaders is a formidable challenge. This study compares the influence of possible motivators and inhibitors that impact teachers' decisions to become principals in the two countries. Survey…

  9. An Analysis of the Supports and Constraints for Scientific Discussion in High School Project-Based Science

    ERIC Educational Resources Information Center

    Alozie, Nonye M.; Moje, Elizabeth Birr; Krajcik, Joseph S.

    2010-01-01

    One goal of project-based science is to promote the development of scientific discourse communities in classrooms. Holding rich high school scientific discussions is challenging, especially when the demands of content and norms of high school science pose challenges to their enactment. There is little research on how high school teachers enact…

  10. Capital High Academy for Ninth Graders Exceeding Standards (CHANGES): Description and Evaluation of the 2004-2005 Implementation

    ERIC Educational Resources Information Center

    Hughes, Georgia K.; Copley, Lisa D.; Baker, Aaron A.

    2005-01-01

    Although transitioning from school to school can be challenging at any level, the transition to high school may be particularly fraught with challenge because students are experiencing a change in schools as well as the physical, emotional, and psychological changes inherent to adolescence. Educators and researchers agree that ninth grade is a…

  11. Challenges to Successful Total Quality Management Implementation in Public Secondary Schools: A Case Study of Kohat District, Pakistan

    ERIC Educational Resources Information Center

    Suleman, Qaiser; Gul, Rizwana

    2015-01-01

    The current study explores the challenges faced by public secondary schools in successful implementation of total quality management (TQM) in Kohat District. A sample of 25 heads and 75 secondary school teachers selected from 25 public secondary schools through simple random sampling technique was used. Descriptive research designed was used and a…

  12. Challenges for Teachers of Religious Education in Catholic and State Schools in Poland: A Comparative Study

    ERIC Educational Resources Information Center

    Makosa, Pawel

    2016-01-01

    The present work aims at presenting and comparing challenges faced by religion teachers in Catholic and state schools in Poland. For that purpose, 10 religion teachers from Catholic and 10 from state high schools were interviewed. First of all, the concept of teaching religion was discussed, followed by an analysis of the Catholic schools'…

  13. Philosophical Differences. The Open-mindedness of Publicly Funded Catholic Schools in Canada Challenges American Preconceptions

    ERIC Educational Resources Information Center

    McCloskey, Patrick J.

    2005-01-01

    In this article, the author reports how the open-mindedness of publicly-funded Catholic schools in Canada has challenged American preconceptions on funding of parochial schools. In Canada, parochial education has been publicly funded since 1867. On the other hand, parochial schools in America must charge tuition fees and engage in extensive fund…

  14. Building a Foundation for School Leadership: An Evaluation of the Annenberg Distributed Leadership Project, 2006-2010. Research Report # RR-73

    ERIC Educational Resources Information Center

    Supovitz, Jonathan; Riggan, Matthew

    2012-01-01

    Leading school change is a challenging endeavor. Successful leadership requires strategic and sustained effort, particularly in the shifting and uncertain environment of urban public schools. The concept of distributed leadership--in which multiple actors tackle the challenges of school leadership in concert--is a promising way to strengthen…

  15. A Case Study of the Perceptions of School Principals Regarding the Micropolitics of Consolidating Public Schools

    ERIC Educational Resources Information Center

    Slade, Darrin Andre

    2012-01-01

    The continued decline of many of America's urban centers has created a myriad of challenges for struggling inner city school systems. As the ills of society drive magnitudes of inner city residents into the suburbs many urban school districts must deal with the challenges of decreasing student enrollment and underused facilities. Many states…

  16. Challenges Pre-School Teachers Face in the Implementation of the Early Childhood Curriculum in the Cape Coast Metropolis

    ERIC Educational Resources Information Center

    Ntumi, Simon

    2016-01-01

    The study examined the challenges that pre-school teachers encounter in the implementation of the early childhood curriculum; exploring teaching methods employed by pre-schools teachers in the Cape Coast Metropolis. The study employed descriptive survey as the research design. A convenient sample of 62 pre-school teachers were selected from a…

  17. A School-University Math and Science P-16 Partnership: Lessons Learned in Promoting College and Career Readiness

    ERIC Educational Resources Information Center

    Alford, Betty; Rudolph, Amanda; Beal, Heather Olson; Hill, Brenda

    2014-01-01

    Increasing rigor in secondary school classrooms for college and career readiness is a priority throughout the nation with the adoption of more challenging standards for student performance and is an important role for school leaders in creating conditions in schools to meet this challenge (Young, 2012). P-16 partnerships can assist by aligning the…

  18. Challenges in developing health promoting schools' project: application of global traits in local realm.

    PubMed

    Fathi, Behrouz; Allahverdipour, Hamid; Shaghaghi, Abdolreza; Kousha, Ahmad; Jannati, Ali

    2014-01-01

    Despite the importance of student health and school hygiene as an aspect of the infrastructure of community health, few feasibility studies have been conducted on school health programs in developing countries. This study examined possible barriers to and challenges of such programs from the executive perspective in East Azerbaijan Province in Iran. This qualitative study used the content analysis approach to recognize barriers to and challenges of health promoting school program from the executive perspective. Fourteen experts were selected in the areas of children and adolescents and school health, physical education and school headmasters. Data were collected using semi-structured interviews and analyzed using the content analysis method. Five themes were extracted as major barriers and challenges: 1. Intraand inter-sectorial collaboration; 2. Policy and rule formulation; 3. Infrastructure and capacity; 4. Human resources; 5. Community involvement. The localized version of the current health promoting school program had major faults. If this program is considered to be a healthcare system priority, it should be revised to set effective policies for implementation and to sustain school health programs based on the capacities and objectives of each country.

  19. Perspectives on "Choice and Challenge" in Primary Schools

    ERIC Educational Resources Information Center

    Bragg, Sara

    2016-01-01

    This article discusses "Choice and Challenge" as a tool for school improvement and as a "practicable pedagogy" that attempts to embody the principles of "learning without limits," rejecting ability grouping and labelling. As considered here, "Choice and Challenge" emerges specifically from practice at the…

  20. Designing Learning

    ERIC Educational Resources Information Center

    Balasubramanian, Nathan; Frieler, Jana L.; Asp, Elliott

    2008-01-01

    It is a challenge for schools with large populations of students from low-income, migrant, and international families to ensure that every student reaches proficiency on challenging state academic achievement standards and state academic assessments. Traditionally, schools across the country have tended to cope with this challenge by offering a…

  1. School of nursing sponsorship of a school-based health center: challenges and barriers.

    PubMed

    Scully, Judith; Hackbarth, Diana

    2005-12-01

    School-based health centers (SBHCs) are a growing phenomenon in the United States and appear to be an ideal fit for school of nursing (SON) sponsorship. However, nationally only about 6% of existing SBHCs are sponsored by either an SON or a school of medicine. Sponsorship of health care in schools is consistent with the mission of university-based SONs, but also presents many challenges. Despite these challenges, the authors believe that the benefit to nursing students, faculty, and the profession far outweigh constraints. This article describes the many benefits that can occur when SONs create and maintain a SBHC in their own community. Extensive practical suggestions for how to overcome the barriers that constrain university faculty from developing service-oriented programs in the community are also emphasized.

  2. Identifying Challenges in Supervising School Psychologists

    ERIC Educational Resources Information Center

    Harvey, Virginia Smith; Pearrow, Melissa

    2010-01-01

    Previous studies suggest that the majority of school psychologists do not believe they receive sufficient supervision, despite a growing body of research providing empirical support for supervision to maintain and improve skills. This study explores the dynamics underlying the challenges of providing adequate supervision to school psychologists.…

  3. Challenges in adopting evidence-based school drug education programmes.

    PubMed

    Cahill, Helen W

    2007-11-01

    The paper discusses the school-based challenges that may moderate the implementation of evidence-based drug education in schools. Knowledge about what constitutes an effective evidence-based drug education programme is discussed in relation to the challenge of delivery in the school setting. Research demonstrates that drug education should be engaging, incorporate interactive learning strategies, stimulate higher-order thinking, promote learning and be transferable to real life circumstances. This may difficult to accomplish in practice, as a range of contextual challenges and ideological assumptions may moderate the teacher's capacity to deliver a programme of this nature. Collaborative learning strategies are not the norm in schools and therefore teachers may find interactive drug education programmes difficult to adopt. Conflicting ideological assumptions about effective epistemological approaches to drug education may also direct the way in which teachers modify programmes in the local context. Teachers need professional training and support if they are to adopt successfully evidence-based school drug education programmes. This support may be enhanced if it includes whole school approaches to effective pedagogy and the development of pro-social classroom environments. Drug education research should take account of the complexities of implementation in the school setting and investigate further the professional and organisational support that teachers require in order to maintain high-quality provision in the school context.

  4. Computation Directorate 2008 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, D L

    2009-03-25

    Whether a computer is simulating the aging and performance of a nuclear weapon, the folding of a protein, or the probability of rainfall over a particular mountain range, the necessary calculations can be enormous. Our computers help researchers answer these and other complex problems, and each new generation of system hardware and software widens the realm of possibilities. Building on Livermore's historical excellence and leadership in high-performance computing, Computation added more than 331 trillion floating-point operations per second (teraFLOPS) of power to LLNL's computer room floors in 2008. In addition, Livermore's next big supercomputer, Sequoia, advanced ever closer to itsmore » 2011-2012 delivery date, as architecture plans and the procurement contract were finalized. Hyperion, an advanced technology cluster test bed that teams Livermore with 10 industry leaders, made a big splash when it was announced during Michael Dell's keynote speech at the 2008 Supercomputing Conference. The Wall Street Journal touted Hyperion as a 'bright spot amid turmoil' in the computer industry. Computation continues to measure and improve the costs of operating LLNL's high-performance computing systems by moving hardware support in-house, by measuring causes of outages to apply resources asymmetrically, and by automating most of the account and access authorization and management processes. These improvements enable more dollars to go toward fielding the best supercomputers for science, while operating them at less cost and greater responsiveness to the customers.« less

  5. Towards Scalable Deep Learning via I/O Analysis and Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pumma, Sarunya; Si, Min; Feng, Wu-Chun

    Deep learning systems have been growing in prominence as a way to automatically characterize objects, trends, and anomalies. Given the importance of deep learning systems, researchers have been investigating techniques to optimize such systems. An area of particular interest has been using large supercomputing systems to quickly generate effective deep learning networks: a phase often referred to as “training” of the deep learning neural network. As we scale existing deep learning frameworks—such as Caffe—on these large supercomputing systems, we notice that the parallelism can help improve the computation tremendously, leaving data I/O as the major bottleneck limiting the overall systemmore » scalability. In this paper, we first present a detailed analysis of the performance bottlenecks of Caffe on large supercomputing systems. Our analysis shows that the I/O subsystem of Caffe—LMDB—relies on memory-mapped I/O to access its database, which can be highly inefficient on large-scale systems because of its interaction with the process scheduling system and the network-based parallel filesystem. Based on this analysis, we then present LMDBIO, our optimized I/O plugin for Caffe that takes into account the data access pattern of Caffe in order to vastly improve I/O performance. Our experimental results show that LMDBIO can improve the overall execution time of Caffe by nearly 20-fold in some cases.« less

  6. Visualization at Supercomputing Centers: The Tale of Little Big Iron and the Three Skinny Guys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethel, E. Wes; van Rosendale, John; Southard, Dale

    2010-12-01

    Supercomputing Centers (SC's) are unique resources that aim to enable scientific knowledge discovery through the use of large computational resources, the Big Iron. Design, acquisition, installation, and management of the Big Iron are activities that are carefully planned and monitored. Since these Big Iron systems produce a tsunami of data, it is natural to co-locate visualization and analysis infrastructure as part of the same facility. This infrastructure consists of hardware (Little Iron) and staff (Skinny Guys). Our collective experience suggests that design, acquisition, installation, and management of the Little Iron and Skinny Guys does not receive the same level ofmore » treatment as that of the Big Iron. The main focus of this article is to explore different aspects of planning, designing, fielding, and maintaining the visualization and analysis infrastructure at supercomputing centers. Some of the questions we explore in this article include:"How should the Little Iron be sized to adequately support visualization and analysis of data coming off the Big Iron?" What sort of capabilities does it need to have?" Related questions concern the size of visualization support staff:"How big should a visualization program be (number of persons) and what should the staff do?" and"How much of the visualization should be provided as a support service, and how much should applications scientists be expected to do on their own?"« less

  7. Understanding Lustre Internals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Feiyi; Oral, H Sarp; Shipman, Galen M

    2009-04-01

    Lustre was initiated and funded, almost a decade ago, by the U.S. Department of Energy (DoE) Office of Science and National Nuclear Security Administration laboratories to address the need for an open source, highly-scalable, high-performance parallel filesystem on by then present and future supercomputing platforms. Throughout the last decade, it was deployed over numerous medium-to-large-scale supercomputing platforms and clusters, and it performed and met the expectations of the Lustre user community. As it stands at the time of writing this document, according to the Top500 list, 15 of the top 30 supercomputers in the world use Lustre filesystem. This reportmore » aims to present a streamlined overview on how Lustre works internally at reasonable details including relevant data structures, APIs, protocols and algorithms involved for Lustre version 1.6 source code base. More importantly, it tries to explain how various components interconnect with each other and function as a system. Portions of this report are based on discussions with Oak Ridge National Laboratory Lustre Center of Excellence team members and portions of it are based on our own understanding of how the code works. We, as the authors team bare all responsibilities for all errors and omissions in this document. We can only hope it helps current and future Lustre users and Lustre code developers as much as it helped us understanding the Lustre source code and its internal workings.« less

  8. PREFACE: HITES 2012: 'Horizons of Innovative Theories, Experiments, and Supercomputing in Nuclear Physics'

    NASA Astrophysics Data System (ADS)

    Hecht, K. T.

    2012-12-01

    This volume contains the contributions of the speakers of an international conference in honor of Jerry Draayer's 70th birthday, entitled 'Horizons of Innovative Theories, Experiments and Supercomputing in Nuclear Physics'. The list of contributors includes not only international experts in these fields, but also many former collaborators, former graduate students, and former postdoctoral fellows of Jerry Draayer, stressing innovative theories such as special symmetries and supercomputing, both of particular interest to Jerry. The organizers of the conference intended to honor Jerry Draayer not only for his seminal contributions in these fields, but also for his administrative skills at departmental, university, national and international level. Signed: Ted Hecht University of Michigan Conference photograph Scientific Advisory Committee Ani AprahamianUniversity of Notre Dame Baha BalantekinUniversity of Wisconsin Bruce BarrettUniversity of Arizona Umit CatalyurekOhio State Unversity David DeanOak Ridge National Laboratory Jutta Escher (Chair)Lawrence Livermore National Laboratory Jorge HirschUNAM, Mexico David RoweUniversity of Toronto Brad Sherill & Michigan State University Joel TohlineLouisiana State University Edward ZganjarLousiana State University Organizing Committee Jeff BlackmonLouisiana State University Mark CaprioUniversity of Notre Dame Tomas DytrychLouisiana State University Ana GeorgievaINRNE, Bulgaria Kristina Launey (Co-chair)Louisiana State University Gabriella PopaOhio University Zanesville James Vary (Co-chair)Iowa State University Local Organizing Committee Laura LinhardtLouisiana State University Charlie RascoLouisiana State University Karen Richard (Coordinator)Louisiana State University

  9. The use of supercomputer modelling of high-temperature failure in pipe weldments to optimize weld and heat affected zone materials property selection

    NASA Astrophysics Data System (ADS)

    Wang, Z. P.; Hayhurst, D. R.

    1994-07-01

    The creep deformation and damage evolution in a pipe weldment has been modeled by using the finite-element continuum damage mechanics (CDM) method. The finite-element CDM computer program DAMAGE XX has been adapted to run with increased speed on a Cray XMP/416 supercomputer. Run times are sufficiently short (20 min) to permit many parametric studies to be carried out on vessel lifetimes for different weld and heat affected zone (HAZ) materials. Finite-element mesh sensitivity was studied first in order to select a mesh capable of correctly predicting experimentally observed results using at least possible computer time. A study was then made of the effect on the lifetime of a butt welded vessel of each of the commomly measured material parameters for the weld and HAZ materials. Forty different ferritic steel welded vessels were analyzed for a constant internal pressure of 45.5 MPa at a temperature of 565 C; each vessel having the same parent pipe material but different weld and HAZ materials. A lifetime improvement has been demonstrated of 30% over that obtained for the initial materials property data. A methodology for weldment design has been established which uses supercomputer-based CDM analysis techniques; it is quick to use, provides accurate results, and is a viable design tool.

  10. Treat All Students like the "Best" Students

    ERIC Educational Resources Information Center

    Bottoms, Gene

    2007-01-01

    What would happen if schools offered all students the same challenges and opportunities that some schools now offer only their "best" students? The Southern Regional Education Board addressed that question in 1987, when it developed the High Schools That Work Model. Blending challenging college-preparatory content with modern vocational and…

  11. Collaboration Challenges and Opportunities: A Survey of School Foodservice Directors and Community Health Coalition Members

    ERIC Educational Resources Information Center

    Mansfield, Jennifer L.; Savaiano, Dennis A.

    2018-01-01

    Background: The Healthy, Hunger-Free Kids Act (HHFKA) presents challenges for foodservice directors (FSDs) in sourcing and preparing foods that meet nutrition standards. Concurrently, community health coalition members (CHCs) are engaging schools through community and school nutrition initiatives. We hypothesized significant differences in…

  12. An Ethics Challenge for School Counselors

    ERIC Educational Resources Information Center

    Froeschle, Janet G.; Crews, Charles

    2010-01-01

    Ethical issues arise more often for school counselors than for those who work in other settings (Remley, 2002). The challenge of working not only with minors but also with other stakeholders including parents, teachers, school administrators, and community members sets the stage for potential legal and ethical dilemmas. Awareness and adherence to…

  13. Disciplinary Exclusion: The Influence of School Ethos

    ERIC Educational Resources Information Center

    Hatton, Lucy Ann

    2013-01-01

    Disciplinary exclusion is a strategy used by some schools in response to challenging behaviour. While some studies have explored interventions that can be implemented to reduce the exclusion of "at risk" pupils, others have considered how the underlying school ethos influences how challenging behaviour is understood and managed. The…

  14. A Grounded Theory of School of Education Futures

    ERIC Educational Resources Information Center

    Doiron, Joseph A.

    2017-01-01

    The purpose of this grounded theory study was to explore the futures that school of education leaders envision for their institutions. American higher education institutions broadly, and schools of education specifically, face a complex of challenges to their traditional structures, processes, practices, value, and values. These challenges create…

  15. The Challenges of Beginning Teachers in Urban Primary Schools

    ERIC Educational Resources Information Center

    Gaikhorst, Lisa; Beishuizen, Jos; Roosenboom, Bart; Volman, Monique

    2017-01-01

    This study provides insight in the variety of urban-related challenges that beginning teachers experience in urban schools. Literature on urban teaching focuses on teaching children from low socio-economic status (SES) and/or culturally diverse backgrounds. In many European cities, however, schools are populated by both children from relatively…

  16. The Challenges of Distributing Leadership in Irish Post-Primary Schools

    ERIC Educational Resources Information Center

    O'Donovan, Margaret

    2015-01-01

    This study explores the challenges and opportunities in relation to developing distributed leadership practice in Irish post-primary schools. It considers school leadership within the context of contemporary distributed leadership theory. Associated concepts such as distributed cognition and activity theory are used to frame the study. The study…

  17. The Coach's Learning Community: Standards-Based Program Develops School Wide Capacity

    ERIC Educational Resources Information Center

    Reitz, Diane; Hall, Gene E.

    2017-01-01

    Challenges inherent to increasing student literacy are well-documented particularly in under performing schools. Those challenges increase in schools experiencing high staff turnover, high populations of English language learners, and greater poverty. In order to improve student learning in these communities there needs to be a comprehensive…

  18. Cyberbullying: An Increasing Challenge for Schools

    ERIC Educational Resources Information Center

    von Marees, Nandoli; Petermann, Franz

    2012-01-01

    The use of information and communication technology (ICT) has not only brought advantages to mankind. One downside is the emergence and increase of cyberbullying in schools. Affecting students of all ages, teachers, parents, and other educators, this special form of bullying is an increasing challenge for schools. This article offers an overview…

  19. Internationalizing Business Education in Latin America: Issues and Challenges

    ERIC Educational Resources Information Center

    Elahee, Mohammad; Norbis, Mario

    2009-01-01

    This article examines the extent of internationalization of business education in Latin America and identifies the key challenges facing the Latin American business schools. Based on a survey of the business schools that are members of CLADEA (Consejo Latinoamericano de Escuelas de Administracion--Latin American Council of Management Schools), and…

  20. Learning to Lead Together: The Promise and Challenge of Sharing Leadership

    ERIC Educational Resources Information Center

    Chrispeels, Janet H., Ed.

    2004-01-01

    "Learning to Lead Together: The Promise and Challenge of Sharing Leadership" examines the dilemmas for school leaders and administrators, and the benefits for schools and students, when principals work with teachers (and their communities) to share leadership. Most schools function within existing hierarchical structures that contradict…

Top