Sample records for science additional science

  1. 76 FR 9054 - National Science Board; Sunshine Act Meetings; Impromptu Notice of Change (Addition of Agenda Item)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Impromptu Notice of Change (Addition of Agenda Item) The National Science Board's (NSB) Audit & Oversight (A&O) Committee..., National Science Foundation, 4201 Wilson Blvd., Arlington, VA 22230. Telephone: (703) 292-7000. Daniel A...

  2. 76 FR 49757 - Fusion Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-11

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Office of Science... Services Administration, notice is hereby given that the Fusion Energy Sciences Advisory Committee will be... science, fusion science, and fusion technology related to the Fusion Energy Sciences program. Additionally...

  3. An Investigation of the Effects of Authentic Science Experiences Among Urban High School Students

    NASA Astrophysics Data System (ADS)

    Chapman, Angela

    Providing equitable learning opportunities for all students has been a persistent issue for some time. This is evident by the science achievement gap that still exists between male and female students as well as between White and many non-White student populations (NCES, 2007, 2009, 2009b) and an underrepresentation of female, African-American, Hispanic, and Native Americans in many science, technology, engineering, and mathematics (STEM) related careers (NCES, 2009b). In addition to gender and ethnicity, socioeconomic status and linguistic differences are also factors that can marginalize students in the science classroom. One factor attributed to the achievement gap and low participation in STEM career is equitable access to resources including textbooks, laboratory equipment, qualified science teachers, and type of instruction. Extensive literature supports authentic science as one way of improving science learning. However, the majority of students do not have access to this type of resource. Additionally, extensive literature posits that culturally relevant pedagogy is one way of improving education. This study examines students' participation in an authentic science experience and argues that this is one way of providing culturally relevant pedagogy in science classrooms. The purpose of this study was to better understand how marginalized students were affected by their participation in an authentic science experience, within the context of an algae biofuel project. Accordingly, an interpretivist approach was taken. Data were collected from pre/post surveys and tests, semi-structured interviews, student journals, and classroom observations. Data analysis used a mixed methods approach. The data from this study were analyzed to better understand whether students perceived the experience to be one of authentic science, as well as how students science identities, perceptions about who can do science, attitudes toward science, and learning of science practices were affected by participation in an authentic science experience. Findings indicated that participation in an authentic science experience has a positive effect on science identities, scientist perceptions, science attitudes, and learning of science and is one approach to mitigating the effects of marginalization in the science classroom. Additional findings indicated that a relationship between the authenticity of the experience and the outcomes (science identity, perceptions about who can do science, science attitudes, and learning of science). This study provides empirical evidence to support authentic science learning as a means of improving students' learning, attitudes, and identities with respect to science. This study endorses authentic science experiences for all students, marginalized included. This has implications for how we prepare future and support current science teachers. In addition, this study shows how this model can be used to effectively implement science, technology, engineering, and mathematics (STEM) education.

  4. Space Science Projects. LC Science Tracer Bullet. TB 06-3

    ERIC Educational Resources Information Center

    Shaw, Loretta, Comp.

    2006-01-01

    Space science, or the space sciences, are fields of science that are concerned with the study or utilization of outer space. There are several major fields of space science including astronomy, exobiology, space transport, and space exploration and colonization. In addition, space sciences impact or are related to many other fields, from the…

  5. People behind the Science

    ERIC Educational Resources Information Center

    Kruse, Jerrid; Borzo, Sarah

    2010-01-01

    In addition to meeting National Science Education Standards (NSES) related to the history and nature of science (NOS), reading or hearing about real scientists helps students connect with science emotionally. The authors have even noticed increased student interest in science concepts during history of science discussions. Toward these efforts,…

  6. The effects of a science intervention program on the attitudes and achievement of high school girls in science

    NASA Astrophysics Data System (ADS)

    Steakley, Carrie Capers

    This study investigated the effects of a high school science intervention program that included hands-on activities, science-related career information and exposure, and real-world experiences on girls' attitudes and achievement in science. Eighty-four girls, 44 ninth-graders and 40 tenth-graders, and 105 parents participated in the study. Survey data was collected to assess the girls' attitudes toward science in seven distinct areas: social implications of science, normality of scientists, attitude toward scientific inquiry, adoption of scientific attitudes, enjoyment of science lessons, leisure interest in science, and career interest in science. Additional questionnaires were used to determine the extent of the girls' participation in sports and the attitudes of their parents toward science. The girls' cumulative science semester grade point averages since the seventh grade were used to assess academic science achievement. This study found no evidence that participation in the program improved the girls' attitudes or achievement in science. Parent attitudes and years of participation in sports were not accurate predictors of science achievement. Additionally, no significant relationship was detected between the girls' and their parents' perceptions of science. However, the study did suggest that extended participation in sports may positively affect science achievement for girls. This study holds implications for educational stakeholders who seek to implement intervention methods and programs that may improve student attitudes and achievement in science and attract more youth to future science-related careers.

  7. 76 FR 6829 - National Science Board; Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... the National Science Board website www.nsf.gov/nsb for additional information and schedule updates... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Notice The National Science Board's Committee on Programs and Plans, pursuant to NSF regulations (45 CFR part 614), the...

  8. Microblogging as an extension of science reporting.

    PubMed

    Büchi, Moritz

    2017-11-01

    Mass media have long provided general publics with science news. New media such as Twitter have entered this system and provide an additional platform for the dissemination of science information. Based on automated collection and analysis of >900 news articles and 70,000 tweets, this study explores the online communication of current science news. Topic modeling (latent Dirichlet allocation) was used to extract five broad themes of science reporting: space missions, the US government shutdown, cancer research, Nobel Prizes, and climate change. Using content and network analysis, Twitter was found to extend public science communication by providing additional voices and contextualizations of science issues. It serves a recommender role by linking to web resources, connecting users, and directing users' attention. This article suggests that microblogging adds a new and relevant layer to the public communication of science.

  9. Science Teaching Efficacy of Preservice Elementary Teachers: Examination of the Multiple Factors Reported as Influential

    NASA Astrophysics Data System (ADS)

    Taştan Kırık, Özgecan

    2013-12-01

    This study explores the science teaching efficacy beliefs of pr-service elementary teachers and the relationship between efficacy beliefs and multiple factors such as antecedent factors (participation in extracurricular activities and number of science and science teaching methods courses taken), conceptual understanding, classroom management beliefs and science teaching attitudes. Science education majors ( n = 71) and elementary education majors ( n = 262) were compared with respect to these variables. Finally, the predictors of two constructs of science teaching efficacy beliefs, personal science teaching efficacy (PSTE) and science teaching outcome expectancy (STOE), were examined by multiple linear regression analysis. According to the results, participation in extracurricular activities has a significant but low correlation with science concept knowledge, science teaching attitudes, PSTE and STOE. In addition, there is a small but significant correlation between science concept knowledge and outcome expectancy, which leads the idea that preservice elementary teachers' conceptual understanding in science contributes to their science teaching self-efficacy. This study reveals a moderate correlation between science teaching attitudes and STOE and a high correlation between science teaching attitudes and PSTE. Additionally, although the correlation coefficient is low, the number of methodology courses was found to be one of the correlates of science teaching attitudes. Furthermore, students of both majors generally had positive self-efficacy beliefs on both the STOE and PSTE. Specifically, science education majors had higher science teaching self-efficacy than elementary education majors. Regression results showed that science teaching attitude is the major factor in predicting both PSTE and STOE for both groups.

  10. Transforming Science Learning and Student Participation in Sixth Grade Science: A Case Study of a Low-Income, Urban, Racial Minority Classroom

    ERIC Educational Resources Information Center

    Tan, Edna; Calabrese Barton, Angela

    2010-01-01

    Recent criticisms of the goal of "science for all" with regard to minority students have alluded to the onerous culture of school science characterized by white, middle-class values that eschew personal everyday science experiences and nontraditional funds of knowledge, in addition to alienating science instruction. Using critically-oriented,…

  11. Are Students More Engaged When Schools Offer Extracurricular Activities? PISA in Focus. No. 18

    ERIC Educational Resources Information Center

    OECD Publishing (NJ1), 2012

    2012-01-01

    Are students more engaged and do they perform better in science if their school encourages them to work on science projects, participate in science fairs, belong to a science-related club or go on science-related field trips--in addition to teaching them the mandatory science curriculum? To find out, PISA (Programme for International Student…

  12. Science engagement and science achievement in the context of science instruction: a multilevel analysis of U.S. students and schools

    NASA Astrophysics Data System (ADS)

    Grabau, Larry J.; Ma, Xin

    2017-05-01

    Using data from the 2006 Program for International Student Assessment (PISA), we explored nine aspects of science engagement (science self-efficacy, science self-concept, enjoyment of science, general interest in learning science, instrumental motivation for science, future-oriented science motivation, general value of science, personal value of science, and science-related activities) as outcomes and predictors of science achievement. Based on results from multilevel modelling with 4456 students nested within 132 schools, we found that all aspects of science engagement were statistically significantly and positively related to science achievement, and nearly all showed medium or large effect sizes. Each aspect was positively associated with one of the (four) practices (strategies) of science teaching. Focus on applications or models was positively related to the most aspects of science engagement (science self-concept, enjoyment of science, instrumental motivation for science, general value of science, and personal value of science). Hands-on activities were positively related to additional aspects of science engagement (science self-efficacy and general interest in learning science) and also showed a positive relationship with science achievement.

  13. Three, Two, One ... Blast Off!

    ERIC Educational Resources Information Center

    Hawkins, Susan; Rogers, Meredith Park

    2014-01-01

    This lesson addresses the three dimensions of science learning as laid out in the "Next Generation Science Standards"--science and engineering process skills, crosscutting concepts, and disciplinary core ideas--in addition to embedding practical exposure to NOS tenets in an inquiry-based activity. In addition to the efficiency component,…

  14. Structural equation model of the relationships among inquiry-based instruction, attitudes toward science, achievement in science, and gender

    NASA Astrophysics Data System (ADS)

    Wallace, Stephen R.

    The purpose of this study was to clarify the muddled state of the magnitude and direction of the relationships among inquiry-based instruction, attitudes toward science, and science achievement, as students progressed from middle school into high school. The problem under investigation was two-fold. The first was to create and test a structural equation model describing the direction and magnitude of the relationships. The second was to determine gender differences in the relationships. Data collected from the Longitudinal Study of American Youth (LSAY) over a three-year period were used to create and test the structural equation model. Results of this study indicate inquiry-based instruction is effective in positively influencing 7th- and 8th-grade students' understandings of science concepts. Additionally, inquiry-based instruction does not have an adverse influence on science achievement in 9th grade. If the primary goal is science achievement, then an inquiry-based approach to instruction is effective. On the other hand, if the primary goal of science instruction is to positively influence students' attitudes toward science (in particular, perceptions of the usefulness of science) then inquiry-based approaches may not be the most effective method of instruction. Inquiry-based instruction adversely influences 7th-grade males' attitudes toward science and has no significant influence on 7th-grade females' attitudes toward science. In 8th grade, inquiry-based instruction has no significant influence on either genders' attitudes toward science. Not until the 9th grade does inquiry-based instruction have a significantly positive influence on males' and females' perceptions of the usefulness of science. Additionally, prior attitudes toward science significantly influences science achievement only in 8th grade and science achievement influences attitudes toward science only in 9th grade. Recommendations for further research are based on the findings and limitations of this study. Methodological concerns and recommendations focus primarily on limitations in the design of this study and the use of large-scale databases. Theoretical concerns focus on recommendations for areas of additional research; principally, they are based on theoretical questions arising out of this study.

  15. Science Teaching and Learning Activities and Students' Engagement in Science

    ERIC Educational Resources Information Center

    Hampden-Thompson, Gillian; Bennett, Judith

    2013-01-01

    The purpose of this analysis is to describe the variation in students' reports of engagement in science across science teaching and learning activities. In addition, this study examines student and school characteristics that may be associated with students' levels of engagement in science. Data are drawn from the Programme for International…

  16. Helping Students Write about Science without Plagiarizing

    ERIC Educational Resources Information Center

    Wheeler-Toppen, Jodi

    2006-01-01

    Writing is an integral part of science. The growth of scientific knowledge depends on scientists' ability to record their thoughts and discoveries for future scientists to build on. Everyday literacy is the basis of scientific literacy. In addition, writing about science helps students learn science. In order to transfer science concepts from what…

  17. Study for Teaching Behavioral Sciences in Schools of Medicine, Volume III: Behavioral Science Perspectives in Medical Education.

    ERIC Educational Resources Information Center

    American Sociological Association, Washington, DC. Medical Sociology Council.

    Volume III of a study of teaching behavioral sciences in medical school presents perspectives on medical behavioral science from the viewpoints of the several behavioral disciplines (anthropology, psychology, sociology, political science, economics, behavioral biology and medical education). In addition, there is a discussion of translating…

  18. Investigating Teachers' Beliefs in the Implementation of Science Inquiry and Science Fair in Three Boston High Schools

    NASA Astrophysics Data System (ADS)

    De Barros Miller, Anne Marie

    In previous decades, inquiry has been the focus of science education reform in the United States. This study sought to investigate how teachers' beliefs affect their implementation of inquiry science and science fair. It was hypothesized that science teachers' beliefs about inquiry science and science fair are predictive of their implementation of such strategies. A case study approach and semi-structured interviews were employed to collect the data, and an original thematic approach was created to analyze the data. Findings seem to suggest that science teachers who embrace science inquiry and science fair believe these practices enhance students' performance, facilitate their learning experience, and allow them to take ownership of their learning. However, results also suggest that teachers who do not fully embrace inquiry science as a central teaching strategy tend to believe that it is not aligned with standardized tests and requires higher cognitive skills from students. Overall, the study seems to indicate that when inquiry is presented as a prescribed teaching approach, this elicits strong negative feelings/attitudes amongst science teachers, leading them not only to resist inquiry as a teaching tool, but also dissuading them from participating in science fair. Additionally, the findings suggest that such feelings among teachers could place the school at risk of not implementing inquiry science and science fair. In conclusion, the study reveals that science inquiry and science fair should not be prescribed to teachers as a top-down, mandatory approach for teaching science. In addition, the findings suggest that adequate teacher training in content knowledge and pedagogy in science inquiry and science fair should be encouraged, as this could help build a culture of science inquiry and implementation amongst teachers. This should go hand-in-hand with offering mentoring to science teachers new to inquiry and science fair for 2-5 years.

  19. Science Symposia to Reassess the Science of Hypoxia

    EPA Pesticide Factsheets

    Four symposia were conducted as part of the Reassessment with the purpose of assessing the current state of the science of hypoxia. An additional workshop on the science of nutrients in the Mississippi River Basin contributed to the reassessment.

  20. 34 CFR 645.13 - What additional services do Upward Bound Math and Science Centers provide and how are they...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What additional services do Upward Bound Math and... Program? § 645.13 What additional services do Upward Bound Math and Science Centers provide and how are... provided under § 645.11(b), an Upward Bound Math and Science Center must provide— (1) Intensive instruction...

  1. 34 CFR 645.14 - What additional services do Upward Bound Math and Science Centers provide and how are they...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What additional services do Upward Bound Math and... Program? § 645.14 What additional services do Upward Bound Math and Science Centers provide and how are... provided under § 645.11(b), an Upward Bound Math and Science Center must provide— (1) Intensive instruction...

  2. 34 CFR 645.14 - What additional services do Upward Bound Math and Science Centers provide and how are they...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false What additional services do Upward Bound Math and... Program? § 645.14 What additional services do Upward Bound Math and Science Centers provide and how are... provided under § 645.11(b), an Upward Bound Math and Science Center must provide— (1) Intensive instruction...

  3. 34 CFR 645.14 - What additional services do Upward Bound Math and Science Centers provide and how are they...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What additional services do Upward Bound Math and... Program? § 645.14 What additional services do Upward Bound Math and Science Centers provide and how are... provided under § 645.11(b), an Upward Bound Math and Science Center must provide— (1) Intensive instruction...

  4. 34 CFR 645.14 - What additional services do Upward Bound Math and Science Centers provide and how are they...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false What additional services do Upward Bound Math and... Program? § 645.14 What additional services do Upward Bound Math and Science Centers provide and how are... provided under § 645.11(b), an Upward Bound Math and Science Center must provide— (1) Intensive instruction...

  5. Come Fly with Me! Exploring Science 7-9 through Aviation/Aerospace Concepts.

    ERIC Educational Resources Information Center

    Housel, David C.; Housel, Doreen K. M.

    This guide contains 67 activities dealing with various aerospace/aviation education concepts. The activities are presented in units related to physical science, earth science, and life science. In addition, there is a section related to student involvement in the space shuttle programs. The physical science unit (activities 1-23) focuses on the…

  6. Investigating Human Impact in the Environment with Faded Scaffolded Inquiry Supported by Technologies

    ERIC Educational Resources Information Center

    Campbell, Todd; Longhurst, Max; Duffy, Aaron M.; Wolf, Paul G.; Nagy, Robin

    2012-01-01

    Teaching science as inquiry is advocated in all national science education documents and by leading science and science teaching organizations. In addition to teaching science as inquiry, we recognize that learning experiences need to connect to students' lives. This article details how we use a sequence of faded scaffolded inquiry supported by…

  7. The Role of School Technicians in Promoting Science through Practical Work

    ERIC Educational Resources Information Center

    Helliar, Anne T.; Harrison, Timothy G.

    2011-01-01

    This is a review of the role of practical work in UK's secondary school science lessons, the impact that practical work has in the promotion of science, the challenges created through use of non-specialist science teachers and a possible additional role for science technicians. The paper considers how improved deployment of suitably experienced…

  8. High-School Students' Epistemic Knowledge of Science and Its Relation to Learner Factors in Science Learning

    ERIC Educational Resources Information Center

    Yang, Fang-Ying; Liu, Shiang-Yao; Hsu, Chung-Yuan; Chiou, Guo-Li; Wu, Hsin-Kai; Wu, Ying-Tien; Chen, Sufen; Liang, Jyh-Chong; Tsai, Meng-Jung; Lee, Silvia W.-Y.; Lee, Min-Hsien; Lin, Che-Li; Chu, Regina Juchun; Tsai, Chin-Chung

    2018-01-01

    The purpose of this study was to develop and validate an online contextualized test for assessing students' understanding of epistemic knowledge of science. In addition, how students' understanding of epistemic knowledge of science interacts with learner factors, including time spent on science learning, interest, self-efficacy, and gender, was…

  9. Investigating the Relationship between Teachers' Nature of Science Conceptions and Their Practice of Inquiry Science

    ERIC Educational Resources Information Center

    Atar, Hakan Yavuz; Gallard, Alejandro

    2011-01-01

    In addition to recommending inquiry as the primary approach to teaching science, developers of recent reform efforts in science education have also strongly suggested that teachers develop a sound understanding of the nature of science. Most studies on teachers' NOS conceptions and inquiry beliefs investigated these concepts of teachers' NOS…

  10. Summary of the Science Performed Onboard the International Space Station within the United States Orbital Segment during Increments 16 and 17

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Istasse, Eric; Stenuit, Hilde; Murakami, Jeiji; Yoshizaki, Izumi; Johnson-Green, Perry

    2008-01-01

    With the launch of the STS-122 on February 7, 2008, which delivered the European Columbus science module and the upcoming STS-124 flight, which will deliver the Japanese Kibo science module in May 2008, the International Space Station will become truly International with Europe and Japan joining the United States of America and Russia to perform science on a continuous basis in a wide spectrum of science disciplines. The last science module, Kibo, of the United States Orbital Segment (USOS) will be mated to the station on time to celebrate its first decade in low Earth orbit in October 2008 (end of Increment 17), thus ushering in the second decade of the station with all the USOS science modules mated and performing science. The arrival of the Kibo science module will also mark continuous human presence on the station for eighty eight (88) months, and, with the addition of the ESA science module during the STS-122 flight, the USOS will be made up of four space agencies: CSA, ESA, JAXA and NASA, spanning three continents. With the additional partners coming onboard with different research needs, every effort is being made to coordinate science across the USOS segment in an integrated manner for the benefit of all parties. One of the objectives of this paper is to discuss the integrated manner in which science planning/replanning and prioritization during the execution phase of an increment is being done. The main focus, though, of this paper is to summarize and to discuss the science performed during Increments 16 and 17 (October 2007 to October 2008). The discussion will focus mainly on the primary objectives of each investigation and their associated hypotheses that were investigated during these two Increments. Also, preliminary science results will be discussed for each of the investigation as science results availability permit. Additionally, the paper will briefly touch on what the science complement for these two increments was and what was actually accomplished due to real time science implementation and constraints. Finally, the paper will briefly discuss the science research complements for the next three Increments: Increments 18 to 20, in order to preview how much science might be accomplished during these three upcoming Increments of the station next decade.

  11. An International Workshop on Primary Science. Report on the Primary Science Workshop Held after the Conference in Science and Technology Education and Future Human Needs (Bangalore, India, August 1985).

    ERIC Educational Resources Information Center

    Harlen, Wynne, Comp.

    A conference on science and technology and future human needs was attended by over 300 science educators from 64 countries. Educators with particular interest in primary science and technology education extended their stay for an additional seminar. This report highlights the events of that seminar. Contents include: (1) recent and on-going work…

  12. Sandia National Labs: Manufacturing Science and Technology

    Science.gov Websites

    Additional Resources R&D Projects Current Partnerships Creating Partnerships Welcome to the Manufacturing Science and Technology home page Manufacturing Science and Technology Showcase The Manufacturing Science & Technology Center develops and applies advanced manufacturing processes for realization of

  13. Infusing Culturally Responsive Science Curriculum into Early Childhood Teacher Preparation

    NASA Astrophysics Data System (ADS)

    Yoon, Jiyoon; Martin, Leisa A.

    2017-08-01

    Previous research studies in early childhood teacher education have indicated that teacher candidates are not adequately prepared to demonstrate the knowledge and skills needed to teach science to all children including culturally and linguistically diverse students. To address this issue, the researchers provided 31 early childhood teacher candidates with instructions through a culturally responsive science education curriculum that integrates American and Korean science curriculum corresponding to the American and Korean standards for teacher education. The results showed a statistically significant increase in their Personal Science Teaching Efficacy (PSTE). In addition, the teacher candidates were able to create a multicultural/diverse lesson in the developing and proficiency levels based on Ambrosio's lesson matrix. This study provides teacher candidates' knowledge as well as an additional resource for developing their self-efficacy and understanding the role of multicultural/diverse lesson planning for science instruction. Also, teacher candidates could be better prepared by understanding how other countries approach science education and integrating this knowledge to enrich their own science instruction.

  14. Understanding the (inter)disciplinary and institutional diversity of citizen science: A survey of current practice in Germany and Austria.

    PubMed

    Pettibone, Lisa; Vohland, Katrin; Ziegler, David

    2017-01-01

    Citizen science has become more popular in recent years, quickly taking on a variety of potentially conflicting characteristics: a way to collect massive data sets at relatively low cost, a way to break science out of the ivory tower and better engage the public, an approach to educate lay people in scientific methods. But the extent of current citizen science practice-the types of actors and scientific disciplines who take part-is still poorly understood. This article builds on recent surveys of citizen science in PLOS One by analyzing citizen science practice in Germany and Austria through the projects on two online platforms. We find evidence supporting previous findings that citizen science is a phenomenon strongest in biodiversity and environmental monitoring research, but at home in a number of scientific fields, such as history and geography. In addition, our survey method yields new insights into citizen science projects initiated by non-scientific actors. We close by discussing additional methodological considerations in attempting to present a cross-disciplinary overview of citizen science.

  15. Understanding the (inter)disciplinary and institutional diversity of citizen science: A survey of current practice in Germany and Austria

    PubMed Central

    Vohland, Katrin; Ziegler, David

    2017-01-01

    Citizen science has become more popular in recent years, quickly taking on a variety of potentially conflicting characteristics: a way to collect massive data sets at relatively low cost, a way to break science out of the ivory tower and better engage the public, an approach to educate lay people in scientific methods. But the extent of current citizen science practice—the types of actors and scientific disciplines who take part—is still poorly understood. This article builds on recent surveys of citizen science in PLOS One by analyzing citizen science practice in Germany and Austria through the projects on two online platforms. We find evidence supporting previous findings that citizen science is a phenomenon strongest in biodiversity and environmental monitoring research, but at home in a number of scientific fields, such as history and geography. In addition, our survey method yields new insights into citizen science projects initiated by non-scientific actors. We close by discussing additional methodological considerations in attempting to present a cross-disciplinary overview of citizen science. PMID:28654930

  16. Science as a Learner and as a Teacher: Measuring Science Self-Efficacy of Elementary Preservice Teachers

    ERIC Educational Resources Information Center

    Knaggs, Christine M.; Sondergeld, Toni A.

    2015-01-01

    Academic science achievement of U.S. students has raised concerns regarding our ability as a nation to compete in a global economy. Additionally, research has shown that many elementary teachers have weak science content backgrounds and had poor/negative experiences as students of science, resulting in a lack of confidence regarding teaching…

  17. Advancing the fundamental sciences: proceedings of the Forest Service National Earth Sciences Conference, San Diego, CA, 18-22 October 2004.

    Treesearch

    Michael J. Furniss; Catherine F. Clifton; Kathryn L. Ronnenberg

    2007-01-01

    This conference was attended by nearly 450 Forest Service earth scientists representing hydrology, soil science, geology, and air. In addition to active members of the earth science professions, many retired scientists also attended and participated. These 60 peer-reviewed papers represent a wide spectrum of earth science investigation, experience, research, and...

  18. Climate Science across the Liberal Arts Curriculum at Gustavus Adolphus College

    NASA Astrophysics Data System (ADS)

    Bartley, J. K.; Triplett, L.; Dontje, J.; Huber, T.; Koomen, M.; Jeremiason, J.; La Frenierre, J.; Niederriter, C.; Versluis, A.

    2014-12-01

    The human and social dimensions of climate change are addressed in courses in humanities, social sciences, and arts disciplines. However, faculty members in these disciplines are not climate science experts and thus may feel uncomfortable discussing the science that underpins our understanding of climate change. In addition, many students are interested in the connections between climate change and their program of study, but not all students take courses that address climate science as a principal goal. At Gustavus Adolphus College, the Climate Science Project aims to help non-geoscience faculty introduce climate science content in their courses in order to increase climate science literacy among students and inform discussions of the implications of climate change. We assembled an interdisciplinary team of faculty with climate science expertise to develop climate science modules for use in non-geoscience courses. Faculty from the social sciences, humanities, arts, education, and natural sciences attended workshops in which they developed plans to include climate science in their courses. Based on these workshops, members of the development team created short modules for use by participating faculty that introduce climate science concepts to a non-specialist audience. Each module was tested and modified prior to classroom implementation by a team of faculty and geoscience students. Faculty and student learning are assessed throughout the process, and participating faculty members are interviewed to improve the module development process. The Climate Science Project at Gustavus Adolphus College aims to increase climate science literacy in both faculty members and students by creating accessible climate science content and supporting non-specialist faculty in learning key climate science concepts. In this way, climate science becomes embedded in current course offerings, including non-science courses, reaching many more students than new courses or enhanced content in the geosciences can reach. In addition, this model can be adopted by institutions with limited geoscience course offerings to increase geoscience literacy among a broad cross-section of students.

  19. The Need for Computer Science

    ERIC Educational Resources Information Center

    Margolis, Jane; Goode, Joanna; Bernier, David

    2011-01-01

    Broadening computer science learning to include more students is a crucial item on the United States' education agenda, these authors say. Although policymakers advocate more computer science expertise, computer science offerings in high schools are few--and actually shrinking. In addition, poorly resourced schools with a high percentage of…

  20. 77 FR 35430 - National Science Board; Sunshine Act Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... Board's Committee on Science and Engineering Indicators, pursuant to NSF regulations (45 CFR part 614... policy Companion to Science and Engineering Indicators 2012 on the topic of state funding of public... refer to the National Science Board Web site www.nsf.gov/nsb for additional information and schedule...

  1. 77 FR 35430 - National Science Board; Sunshine Act Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... Board's Committee on Science and Engineering Indicators, pursuant to NSF regulations (45 CFR part 614... policy Companion to Science and Engineering Indicators 2012 on the topic of state funding of public... National Science Board Web site www.nsf.gov/nsb for additional information and schedule updates (time...

  2. Research-Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment

    ERIC Educational Resources Information Center

    Lorden, Joan F., Ed.; Kuh, Charlotte V., Ed.; Voytuk, James A., Ed.

    2011-01-01

    "Research Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment" examines data on the biomedical sciences programs to gather additional insight about the talent, training environment, outcomes, diversity, and international participation in the biomedical sciences workforce. This report supports an…

  3. Children's Literature and the Science Curriculum

    ERIC Educational Resources Information Center

    Ediger, Marlow

    2010-01-01

    A quality children's literature program needs to be correlated with ongoing science lessons and units of study. It can enhance and enrich the science curriculum. Pupils tend to enjoy reading library books and the the literature may assist pupils to explore topics in greater depth. In addition to science experiments, demonstrations, and…

  4. Exploring Prospective Teachers' Worldviews and Conceptions of Nature of Science

    ERIC Educational Resources Information Center

    Liu, Shiang-Yao; Lederman, Norman G.

    2007-01-01

    This study explores the relationship, if any, between an individual's culturally based worldviews and conceptions of nature of science. In addition, the implications of this relationship (or lack of relationship) for science teaching and learning are discussed. Participants were 54 Taiwanese prospective science teachers. Their conceptions of…

  5. The Nation's Report Card: Science in Action--Hands-On and Interactive Computer Tasks from the 2009 Science Assessment. NCES 2012-468

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2012

    2012-01-01

    Science education is not just about learning facts in a classroom--it's about doing activities where students put their understanding of science principles into action. That's why two unique types of activity-based tasks were administered as part of the 2009 National Assessment of Educational Progress (NAEP) science assessment. In addition to the…

  6. The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA);Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. This photo shows the completed center with the additional arnex (right of building) that added an additional 80,000 square feet (7,432 square meters) to the already existent NSSTC, nearly doubling the size of the core facility. At full capacity, the NSSTC tops 200,000 square feet (18,580 square meters) and houses approximately 550 employees.

  7. Science teachers' knowledge, beliefs, values, and concerns of teaching through inquiry

    NASA Astrophysics Data System (ADS)

    Assiri, Yahya Ibrahim

    This study investigated elementary science teachers' knowledge, beliefs, values, and concerns of teaching through inquiry. A mixed-methods research design was utilized to address the research questions. Since this study was designed as a mixed-methods research approach, the researcher gathered two type of data: quantitative and qualitative. The study was conducted in Mohayel School District, Saudi Arabia. The information was collected from 51 participants using a questionnaire with multiple choice questions; also, 11 participants were interviewed. After collecting the data, descriptive and comparative approaches were used. In addition, themes and codes were used to obtain the results. The results indicated that the mean of elementary science teachers' knowledge was 51.23%, which was less than 60% which was the acceptable score. Also, the qualitative results showed that science teachers had a limited background of teaching through inquiry. In addition, the elementary science teachers had a high level of belief to teach science through inquiry since the mean was 3.99 out of 5.00. These quantitative results were confirmed by the qualitative data. Moreover, the overall mean of elementary science teachers was 4.01, which indicated that they believed in the importance of teaching science through inquiry which was also confirmed by the responses of teachers in the interviews. Also, the findings indicated that elementary school science teachers had concerns about teaching science through inquiry since the overall mean was 3.53. In addition, the interviewees mentioned that they faced some obstacles when they teach by inquiry, such as time, resources, class size, and the teachers' background. Generally, the results did not show any significant differences among elementary science teachers' knowledge, beliefs, values, and concerns depending on gender, level of education, and teaching experience. However, the findings indicated there was one significant difference which was the level of teaching experience between groups: (6-10) years and (11-15) years, and (16- more) and (11-15) years. In addition, the implications and suggestions for future research were provided to enhance teaching science through inquiry.

  8. Final science results: Spacelab J

    NASA Technical Reports Server (NTRS)

    Leslie, Fred (Editor)

    1995-01-01

    This report contains a brief summary of the mission science conducted aboard Spacelab J (SL-J), a joint venture between the National Aeronautics and Space Administration (NASA) and the National Space Development Agency (NASDA) of Japan. The scientific objectives of the mission were to conduct a variety of material and life science experiments utilizing the weightlessness and radiation environment of an orbiting Spacelab. All 43 experiments were activated; 24 in microgravity sciences (material processing, crystal growth, fluid physics, and acceleration measurement) and 19 in life sciences (physiology, developmental biology, radiation effects, separation processes, and enzyme crystal growth). In addition, more than a dozen experiments benefited from the extra day through either additional experiment runs or extended growth time.

  9. Investigation of Inquiry-based Science Pedagogy among Middle Level Science Teachers: A Qualitative Study

    NASA Astrophysics Data System (ADS)

    Weiland, Sunny Minelli

    This study implemented a qualitative approach to examine the phenomenon of "inquiry-based science pedagogy or inquiry instruction" as it has been experienced by individuals. Data was collected through online open-ended surveys, focus groups, and teacher reported self-reflections to answer the research questions: 1) How do middle level science teachers conceptualize "inquiry-based instruction?" 2) What are preferred instructional strategies for implementation in middle level science classrooms? And 3) How do middle level science teachers perceive the connection between science instruction and student learning? The participants within this research study represent 33 percent of teachers in grades 5 through 9 within six school districts in northeastern Pennsylvania. Of the 12 consent forms originally obtained, 10 teachers completed all three phases of the data collection, including the online survey, participation in focus groups, and teacher self-reflection. 60 percent of the participants taught only science, and 40 percent taught all content areas. Of the ten participants, 50 percent were certified teachers of science and 50 percent were certified as teachers of elementary education. 70 percent of the research participants reflected having obtained a master's, with 60 percent of these degrees being received in areas of education, and 10 percent in the area of science. The research participants have a total of 85 collective years of experience as professional educators, with the average years of experience being 8.5 years. Analysis of data revealed three themes related to research question #1) How do middle-level science teachers conceptualize inquiry-based instruction? and sub-question #1) How do middle-level science teachers characterize effective instruction? The themes that capture the essence of teachers' formulation of inquiry-based instruction that emerged in this study were student centered, problem solving, and hands-on . Analysis of data revealed one theme related to research question #2) What are preferred instructional strategies for implementation in middle level science classrooms? and topical sub-question #2) How do middle level science teachers structure instruction. The theme that emerged was needs of students. Analysis of the data revealed one theme related to research question #3) How do middle level science teachers perceive the relationship between science instruction and student learning? and topical sub-question #3) How do middle level science teachers view their role in relation to student learning? This theme is meaning making. Analysis of the data related to meaning making revealed two sub-themes of application and relationships. It is clear that middle level science teachers have a vision for inquiry-based science instruction, but implementation is inhibited by a variety of factors including curricular programming that is very broad and lacks depth, the scheduling of time and resources for science, and the absence of a clear model of inquiry-based instruction. In addition, only one participant referenced students investigating their own authentic questions and no participants reflected on the importance of students using evidence in their explanations of scientific phenomenon. Additionally, participants continually reflected on the needs of their students informing instructional practices, and it is wondered if there is a clear understanding among middle level teachers of how students learn science. Real world applications were recognized as important within science learning and the researcher questions whether teachers of science have adequate opportunities to explore real world application of science concepts throughout their careers in order to foster connections within the classroom. These findings support the need for strong, job-embedded professional development, the cultivation of learning communities dedicated to the investigation and implementation of inquiry-based science, the focusing of curricular programming to allow for in depth investigation of scientific concepts, and the commitment of time and resources to support effective science instruction. In addition, it is recommended that additional support be provided to teachers of science to engage in job shadowing, field experiences and internships to allow for the uncovering of applications of science beyond the classroom. Throughout the United States, there continues to be a clear call for reform in the area of science education. These research findings must inform the work of the educational reformers, professional developers, teacher preparation programmers, and researchers as they aspire to improve the quality of student learning and science instruction. In addition, this research supports the need for ongoing reform efforts to science curriculum, instruction and assessment and the need for more effective teacher preparation programs and professional development programs for teachers of science.

  10. Science, Worldviews and Education: An Introduction

    NASA Astrophysics Data System (ADS)

    Matthews, Michael R.

    2009-06-01

    This special issue of Science & Education deals with the theme of ‘Science, Worldviews and Education’. The theme is of particular importance at the present time as many national and provincial education authorities are requiring that students learn about the Nature of Science (NOS) as well as learning science content knowledge and process skills. NOS topics are being written into national and provincial curricula. Such NOS matters give rise to questions about science and worldviews: What is a worldview? Does science have a worldview? Are there specific ontological, epistemological and ethical prerequisites for the conduct of science? Does science lack a worldview but nevertheless have implications for worldviews? How can scientific worldviews be reconciled with seemingly discordant religious and cultural worldviews? In addition to this major curricular impetus for refining understanding of science and worldviews, there are also pressing cultural and social forces that give prominence to questions about science, worldviews and education. There is something of an avalanche of popular literature on the subject that teachers and students are variously engaged by. Additionally the modernisation and science-based industrialisation of huge non-Western populations whose traditional religions and beliefs are different from those that have been associated with orthodox science, make very pressing the questions of whether, and how, science is committed to particular worldviews. Hugh Gauch Jr. provides a long and extensive lead essay in the volume, and 12 philosophers, educators, scientists and theologians having read his paper, then engage with the theme. Hopefully the special issue will contribute to a more informed understanding of the relationship between science, worldviews and education, and provide assistance to teachers who are routinely engaged with the subject.

  11. 75 FR 55617 - National Science Board; Sunshine Act Meetings Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ... to the National Science Board Web site http://www.nsf.gov/nsb for additional information and schedule... of Deep Underground Science and Engineering Laboratory (DUSEL) on South Dakota Graduate Education in...

  12. Science Learning for ALL: Celebrating Cultural Diversity. An NSTA Press Journals Collection.

    ERIC Educational Resources Information Center

    Green, Jessica, Ed.

    This publication includes 17 of the best articles from recent additions of The Science Teacher, the National Science Teachers Association's (NSTA) journal for secondary educators. The articles are written by science educators who offer ideas and strategies for bringing multicultural education into the classroom and providing opportunities for all…

  13. Implementing Science Notebooks in the Primary Grades

    ERIC Educational Resources Information Center

    Nesbit, Catherine R.; Hargrove, Tracy Y.; Harrelson, Linda; Maxey, Bob

    2004-01-01

    In this article, the author details the process teachers can use to teach primary-age children how to use science notebooks. To lay the foundation for using notebooks, the author describes important elements of science notebooks and makes a distinction between science note-books and journals. In addition, the article highlights the benefits…

  14. Helping Your Child in Reading in Science.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    Parents can help students learn science in a variety of ways. Taking advantage of children's natural curiosity, parents can take short walks with their child to notice interesting things in the environment. Parents can also help students perform science experiments at home that are related to school science experiments. In addition, parents can…

  15. Hidden Treasures for Science Teaching: United States Patents.

    ERIC Educational Resources Information Center

    Anderson, Norman D.

    United States patents are a source of historical information with many implications for science teaching. Using patents as science teaching devices has been largely ignored by science educators. Some of these devices can be easily modified for use in today's classrooms; in addition, patents serve as great examples of how our knowledge of science…

  16. Development and Evaluation of Food Safety Modules for K-12 Science Education

    ERIC Educational Resources Information Center

    Chapin, Travis K.; Pfuntner, Rachel C.; Stasiewicz, Matthew J.; Wiedmann, Martin; Orta-Ramirez, Alicia

    2015-01-01

    Career and educational opportunities in food science and food safety are underrecognized by K-12 students and educators. Additionally, misperceptions regarding nature of science understanding persist in K-12 students despite being emphasized as an important component of science education for over 100 y. In an effort to increase awareness…

  17. The Extra Strand of the Maori Science Curriculum

    ERIC Educational Resources Information Center

    Stewart, Georgina

    2011-01-01

    This paper comments on the process of re-development of the Maori-medium Science (Putaiao) curriculum, as part of overall curriculum development in Aotearoa New Zealand. A significant difference from the English Science curriculum was the addition of an "extra strand" covering the history and philosophy of science. It is recommended that…

  18. Primary Science Curriculum Guide, A. Beginning Science.

    ERIC Educational Resources Information Center

    Victoria Education Dept. (Australia).

    Suggestions for providing science experiences for children in kindergarten and grades one and two are given in this first part of the Victorian Education Department (Australia) guide to the elementary school science curriculum. (See SE 012 720 and SE 012 721 for additional guides to this curriculum.) The suggestions are illustrated by brief case…

  19. Science Teachers' Conceptions of Nature of Science: The Case of Bangladesh

    ERIC Educational Resources Information Center

    Sarkar, Md. Mahbub Alam; Gomes, Jui Judith

    2010-01-01

    This study explored Bangladeshi science teachers' conceptions of nature of science (NOS) with a particular focus on the nature of (a) scientific knowledge, (b) scientific inquiry and (c) scientific enterprise. The tentative, inferential, subjective and creative NOS, in addition to the myths of the scientific method and experimentation, the nature…

  20. Appraisal, Children's Science Books, Vol. 10, No. 1.

    ERIC Educational Resources Information Center

    Holzheimer, Diane, Ed.

    A variety of science books for children are reviewed and rated by a librarian and by a science specialist. In addition to usual bibliographic information, recommended age level for each book is given. (RH)

  1. The 2010 Desert Rats Science Operations Test: Outcomes and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Eppler, D. B.

    2011-01-01

    The Desert RATS 2010 Team tested a variety of science operations management techniques, applying experience gained during the manned Apollo missions and the robotic Mars missions. This test assessed integrated science operations management of human planetary exploration using real-time, tactical science operations to oversee daily crew science activities, and a night shift strategic science operations team to conduct strategic level assessment of science data and daily traverse results. In addition, an attempt was made to collect numerical metric data on the outcome of the science operations to assist test evaluation. The two most important outcomes were 1) the production of significant (almost overwhelming) volume of data produced during daily traverse operations with two rovers, advanced imaging systems and well trained, scientifically proficient crew-members, and 2) the degree to which the tactical team s interaction with the surface crew enhanced science return. This interaction depended on continuous real-time voice and data communications, and the quality of science return from any human planetary exploration mission will be based strongly on the aggregate interaction between a well trained surface crew and a dedicated science operations support team using voice and imaging data from a planet s surface. In addition, the scientific insight developed by both the science operations team and the crews could not be measurable by simple numerical quantities, and its value will be missed by a purely metric-based evaluation of test outcome. In particular, failure to recognize the critical importance of this qualitative type interaction may result in mission architecture choices that will reduce science return.

  2. Tanzania post-colonial educational system and perspectives on secondary science education, pedagogy, and curriculum: A qualitative study

    NASA Astrophysics Data System (ADS)

    Wandela, Eugenia L.

    The development of technology and innovation in any country depends on a strong investment in science education from the lower to the upper levels of education. In most of the Sub-Saharan African nations, science education curriculum and teaching still faces many issues and problems that are inhibiting the growth of technology and innovation in these nations. In order to address these issues, an interpretive qualitative study that aims to examine how Tanzanian secondary science educators perceive secondary science education was conducted in the summer of 2013. The purpose of this study is to investigate problems and educational issues that might be limiting the growth of science, technology, and innovation in the Tanzanian society. Additionally, this research investigates the impacts of the colonial legacy that relates to language, politics, and economics, as they affect science education in Tanzania secondary schools. This study focuses on the governmental four-year ordinary level secondary science education; it took place in Dar-es-Salaam, Tanzania. The researcher interviewed nine secondary science educators: three secondary science teachers and six secondary science education administrators. The researcher also conducted classroom observations. The data results from both interview and classroom observations were contextualized with data from existing documentation on Tanzanian secondary science education and data from previous research. The emergent themes from the study indicate that most of the problems and issues that are currently facing secondary science education are historically connected to the impact of the colonization period in 19th and 20th centuries. This study suggests that in order to improve science education in Tanzanian society, the people, especially the elites, need to break away from an "Orientalist" mindset and start integrating the Tanzanian culture and science into the still existing Eurocentric science curriculum. In addition, the Tanzanian government needs to invest in industries and economic initiatives that will support strong science education at all levels of education, as well as the graduates produced through this system.

  3. Digital science games' impact on sixth and eighth graders' perceptions of science

    NASA Astrophysics Data System (ADS)

    Peng, Li-Wei

    2009-12-01

    The quasi-experimental study investigated sixth and eighth graders' perceptions of science with gender, grade levels, and educational experiences as the variables. The Theory of Planned Behavior (Ajzen, 1985) claims that attitude toward the behavior, subjective norm, and perceived behavioral control play a major role in people's intentions, and these intentions ultimately impact their behavior. The study adopted a quantitative research approach by conducting a science perceptions survey for examining students' self-efficacy in learning science (i.e., perceived behavioral control), value of science (i.e., attitude toward the behavior), motivation in science (i.e., attitude toward the behavior), and perceptions of digital science games in science classes (i.e., perceived behavioral control). A total of 255 participants' responses from four rural Appalachian middle school science classrooms in southeastern Ohio were analyzed through a three-way ANCOVA factorial pre-test and post-test data analysis with experimental and comparison groups. Additionally, the study applied a semi-structured, in-depth interview as a qualitative research approach to further examine STEAM digital science games' and Fellows' impact on students' perceptions of science. Eight students in the experimental group were interviewed. Interview data were analyzed with an inductive method. The results found in the three-way ANCOVA data analysis indicated that the diversity of educational experiences was a significant factor that impacted sixth and eighth graders' perceptions of science. Additionally, the interaction of gender and educational experiences was another significant factor that impacted sixth and eighth graders' perceptions of science. The findings of the two short-answer questions identified the reasons why the participants liked or disliked science, as well as why the participants would or would not choose a career in science. The conclusions of the semi-structured, in-depth interview supported that the interviewees' perceptions of the STEAM digital science games and Fellows ranged from neutral to positive. Seven out of eight of the interviewees commented that the STEAM digital science games and Fellows enhanced the interviewees' perceptions of science and their choice of careers. Five out of eight of the interviewees intended to have careers in science.

  4. Medical Total Force Management

    DTIC Science & Technology

    2014-05-01

    additional officer corps (e.g., Veterinarians for the Army and Biomedical Sciences for the Air Force)—these are included in a composite medical...the Services have additional officer corps (e.g., Veterinarians for the Army and Biomedical Sciences for the Air Force)—these are included in a...the Uniformed Services University of Health Sciences (USUHS)), during postgraduate education at military GME programs (through the Armed Forces

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document comprises Pacific Northwest National Laboratory`s report for Fiscal Year 1996 on research and development programs. The document contains 161 project summaries in 16 areas of research and development. The 16 areas of research and development reported on are: atmospheric sciences, biotechnology, chemical instrumentation and analysis, computer and information science, ecological science, electronics and sensors, health protection and dosimetry, hydrological and geologic sciences, marine sciences, materials science and engineering, molecular science, process science and engineering, risk and safety analysis, socio-technical systems analysis, statistics and applied mathematics, and thermal and energy systems. In addition, this report provides an overview ofmore » the research and development program, program management, program funding, and Fiscal Year 1997 projects.« less

  6. Around Marshall

    NASA Image and Video Library

    2003-04-09

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA);Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. This photo shows the completed center with the additional arnex (right of building) that added an additional 80,000 square feet (7,432 square meters) to the already existent NSSTC, nearly doubling the size of the core facility. At full capacity, the NSSTC tops 200,000 square feet (18,580 square meters) and houses approximately 550 employees.

  7. Trends in Practical Work in German Science Education

    ERIC Educational Resources Information Center

    di Fuccia, David; Witteck, Torsten; Markic, Silvija; Eilks, Ingo

    2012-01-01

    By the 1970s a fundamental shift had taken place in German science education. This was a shift away from the learning of more-or-less isolated facts and facets in Biology, Chemistry, and Physics towards a restructuring of science teaching along the general principles of the respective science domains. The changes included also the addition of…

  8. An Analysis of Data Activities and Instructional Supports in Middle School Science Textbooks

    ERIC Educational Resources Information Center

    Morris, Bradley J.; Masnick, Amy M.; Baker, Katie; Junglen, Angela

    2015-01-01

    A critical component of science and math education is reasoning with data. Science textbooks are instructional tools that provide opportunities for learning science content (e.g. facts about force and motion) and process skills (e.g. data recording) that support and augment reasoning with data. In addition, the construction and design of textbooks…

  9. The Way up, down under: Innovations Shape Learning at Science and Math School

    ERIC Educational Resources Information Center

    Bissaker, Kerry; Davies, Jim; Heath, Jayne

    2011-01-01

    Professor John Rice, a pioneer of the Australian Science and Mathematics School (ASMS), recognized that schools' curricula were at odds with the kind of science and mathematics driving the new economy. In addition to curriculum that lacked relevance to contemporary life, negative student attitudes and a shortage of qualified science and…

  10. Models in Science Education: Applications of Models in Learning and Teaching Science

    ERIC Educational Resources Information Center

    Ornek, Funda

    2008-01-01

    In this paper, I discuss different types of models in science education and applications of them in learning and teaching science, in particular physics. Based on the literature, I categorize models as conceptual and mental models according to their characteristics. In addition to these models, there is another model called "physics model" by the…

  11. More than a Read-Aloud: Preparing and Inspiring Early Childhood Teachers to Develop Our Future Scientists

    ERIC Educational Resources Information Center

    Atiles, Julia T.; Jones, Jennifer L.; Anderson, James A.

    2013-01-01

    The purpose of this study was to examine the impact of professional development on teachers' knowledge of teaching science and sense of efficacy regarding the teaching of science. In addition, the study explores the association between knowledge of teaching science and efficacy regarding the teaching of science. Participants included 28 early…

  12. Citizen Science and Emerging Technologies

    EPA Science Inventory

    This session will discuss challenges and opportunities associated with citizen science and how emerging technologies can support citizen science activities. In addition, the session will provide an overview of low-cost environmental monitors and sensors and introduce the Citizen...

  13. Semantic Web Data Discovery of Earth Science Data at NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Hegde, Mahabaleshwara; Strub, Richard F.; Lynnes, Christopher S.; Fang, Hongliang; Teng, William

    2008-01-01

    Mirador is a web interface for searching Earth Science data archived at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Mirador provides keyword-based search and guided navigation for providing efficient search and access to Earth Science data. Mirador employs the power of Google's universal search technology for fast metadata keyword searches, augmented by additional capabilities such as event searches (e.g., hurricanes), searches based on location gazetteer, and data services like format converters and data sub-setters. The objective of guided data navigation is to present users with multiple guided navigation in Mirador is an ontology based on the Global Change Master directory (GCMD) Directory Interchange Format (DIF). Current implementation includes the project ontology covering various instruments and model data. Additional capabilities in the pipeline include Earth Science parameter and applications ontologies.

  14. Advances in the NASA Earth Science Division Applied Science Program

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Bonniksen, C. K.; Escobar, V. M.

    2016-12-01

    The NASA Earth Science Division's Applied Science Program advances the understanding of and ability to used remote sensing data in support of socio-economic needs. The integration of socio-economic considerations in to NASA Earth Science projects has advanced significantly. The large variety of acquisition methods used has required innovative implementation options. The integration of application themes and the implementation of application science activities in flight project is continuing to evolve. The creation of the recently released Earth Science Division, Directive on Project Applications Program and the addition of an application science requirement in the recent EVM-2 solicitation document NASA's current intent. Continuing improvement in the Earth Science Applications Science Program are expected in the areas of thematic integration, Project Applications Program tailoring for Class D missions and transfer of knowledge between scientists and projects.

  15. Climate Science Centers: Growing Federal and Academic Expertise in the Nation's Interests

    NASA Astrophysics Data System (ADS)

    Ryker, S. J.

    2014-12-01

    The U.S. Department of the Interior's (Interior) natural and cultural resource managers face increasingly complex challenges exacerbated by climate change. In 2009, under Secretarial Order 3289, Interior created eight regional Climate Science Centers managed by the U.S. Geological Survey's (USGS) National Climate Change and Wildlife Science Center and in partnership with universities. Secretarial Order 3289 provides a framework to coordinate climate change science and adaptation efforts across Interior and to integrate science and resource management expertise from Federal, State, Tribal, private, non-profit, and academic partners. In addition to broad research expertise, these Federal/university partnerships provide opportunities to develop a next generation of climate science professionals. These include opportunities to increase the climate science knowledge base of students and practicing professionals; build students' skills in working across the boundary between research and implementation; facilitate networking among researchers, students, and professionals for the application of research to on-the-ground issues; and support the science pipeline in climate-related fields through structured, intensive professional development. In 2013, Climate Science Centers supported approximately 10 undergraduates, 60 graduate students, and 26 postdoctoral researchers. Additional students trained by Climate Science Center-affiliated faculty also contribute valuable time and expertise, and are effectively part of the Climate Science Center network. The Climate Science Centers' education and training efforts have also reached a number of high school students interested in STEM careers, and professionals in natural and cultural resource management. The Climate Science Centers are coordinating to build on each other's successful education and training efforts. Early successes include several intensive education experiences, such as the Alaska Climate Science Center's Girls on Ice, the Northeast's Consortium Retreat, the Northwest's Climate Science Boot Camp; the whole-network Early Career Climate Forum; the South Central Climate Science Center's Minority Internship; and a growing curriculum through Interior's National Conservation Training Center.

  16. FNAL Discovers New Physics

    Science.gov Websites

    particles Fermilabyrinth - Law 'n Order - Online games (Fermilab's Lederman Science Center exhibits of accelerator design Fermilabyrinth - Warp Speed - Online games (Fermilab's Lederman Science Center ' - Online games (Fermilab's Lederman Science Center exhibits) Additional Resources Fermilab's YouTube

  17. 75 FR 61779 - National Science Board: Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ...:30 p.m. to 3 p.m. SUBJECT MATTER: Review of NSB Action Item (NSB/CPP-10-63) (Deep Underground Science... National Science Board Web site http://www.nsf.gov/nsb for additional information and schedule updates...

  18. NASA science communications strategy

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In 1994, the Clinton Administration issued a report, 'Science in the National Interest', which identified new national science goals. Two of the five goals are related to science communications: produce the finest scientists and engineers for the 21st century, and raise scientific and technological literacy of all Americans. In addition to the guidance and goals set forth by the Administration, NASA has been mandated by Congress under the 1958 Space Act to 'provide for the widest practicable and appropriate dissemination concerning its activities and the results thereof'. In addition to addressing eight Goals and Plans which resulted from a January 1994 meeting between NASA and members of the broader scientific, education, and communications community on the Public Communication of NASA's Science, the Science Communications Working Group (SCWG) took a comprehensive look at the way the Agency communicates its science to ensure that any changes the Agency made were long-term improvements. The SCWG developed a Science Communications Strategy for NASA and a plan to implement the Strategy. This report outlines a strategy from which effective science communications programs can be developed and implemented across the agency. Guiding principles and strategic themes for the strategy are provided, with numerous recommendations for improvement discussed within the respective themes of leadership, coordination, integration, participation, leveraging, and evaluation.

  19. Science inquiry learning environments created by National Board Certified Teachers

    NASA Astrophysics Data System (ADS)

    Saderholm, Jon

    The purpose of this study was to discern what differences exist between the science inquiry learning environments created by National Board Certified Teachers (NBCTs) and non-NBCTs. Four research questions organized the data collection and analysis: (a) How do National Board Certified science teachers' knowledge of the nature of science differ from that of their non-NBCT counterparts? (b) How do the frequencies of student science inquiry behaviors supported by in middle/secondary learning environments created by NBCTs differ from those created by their non-NBCT counterparts? (c) What is the relationship between the frequency of students' science inquiry behaviors and their science reasoning and understanding of the nature of science? (d) What is the impact of teacher perceptions factors impacting curriculum and limiting inquiry on the existence of inquiry learning environments? The setting in which this study was conducted was middle and high schools in Kentucky during the period between October 2006 and January 2007. The population sampled for the study was middle and secondary science teachers certified to teach in Kentucky. Of importance among those were the approximately 70 National Board Certified middle and high school science teachers. The teacher sample consisted of 50 teachers, of whom 19 were NBCTs and 31 were non-NBCTs. This study compared the science inquiry teaching environments created by NBCTs and non-NBCTs along with their consequent effect on the science reasoning and nature of science (NOS) understanding of their students. In addition, it examined the relationship with these science inquiry environments of other teacher characteristics along with teacher perception of factors influencing curriculum and factors limiting inquiry. This study used a multi-level mixed methodology study incorporating both quantitative and qualitative measures of both teachers and their students. It was a quasi-experimental design using non-random assignment of participants to treatment and control groups and dependent pre- and post-tests (Shadish, Cook, & Campbell, 2002). Teacher and student NOS understanding was measured using the Student Understanding of Science and Science Inquiry (SUSSI) instrument (Liang, et. al, 2006). Science inquiry environment was measured with the Elementary Science Inquiry Survey (ESIS) (Dunbar, 2002) which was given both to teachers and their students. Science inquiry environment measurements were triangulated with observations of a stratified random sub-sample of participating teachers. Observations were structured using the low-inference Collaboratives for Excellence in Teaching Practice (CETP) Classroom Observation Protocol (COP) (Lawrenz, Huffman, & Appleldoorn 2002), and the high-inference Reform Teaching Observation Protocol (RTOP) (Piburn & Sawada, 2000). NBCTs possessed more informed view of NOS than did non-NBCTs. Additionally, high school science teachers possessed more informed views regarding NOS than did middle school science teachers, with the most informed views belonging to high school science NBCTs. High school science NBCTs created learning environments in which students engaged in science inquiry behaviors significantly more frequently than did high school science non-NBCTs. Middle school science NBCTs, on the other hand, did not create learning environments that differed in significant ways from those of middle school science non-NBCTs. Students of high school science NBCTs possessed significantly higher science reasoning than did students of high school science non-NBCTs. Middle school students of science NBCTs possessed no more science reasoning ability than did middle school students of science non-NBCTs. NOS understanding displayed by students of both middle school and high school science NBCTs was not distinguished from students of non-NBCTs. Classroom science inquiry environment created by non-NBCTs were correlated with science teachers' perceptions of factors determining the curriculum, and the factors limiting inquiry. NBCT classroom science inquiry environment were not correlated with science teacher perceptions. They were, however, strongly correlated with science teacher attendance at science workshops and negatively correlated with teacher perception that experience limits inquiry. The results of this study have implications for policy, practice, and research. Having a science teacher who is an NBCT appears to benefit high school students; however, the benefit for students of middle school science NBCTs appears only when the teacher is also experienced. Additionally, science NBCTs appear to be able to create more controlled science inquiry learning environments than do science non-NBCTs. At the high school level the practice of using data to explain patterns appears to positively affect student science reasoning. Implications results of this study have for further research include examining the differences of the NBPTS certification process for middle and high school teachers; deeper investigation of the causes of the differences in science reasoning between students of NBCTs and non-NBCTs; and studies of the relationship between the NBPTS certification process and teacher efficacy and personal agency.

  20. Change over a service learning experience in science undergraduates' beliefs expressed about elementary school students' ability to learn science

    NASA Astrophysics Data System (ADS)

    Goebel, Camille A.

    This longitudinal investigation explores the change in four (3 female, 1 male) science undergraduates' beliefs expressed about low-income elementary school students' ability to learn science. The study sought to identify how the undergraduates in year-long public school science-teaching partnerships perceived the social, cultural, and economic factors affecting student learning. Previous service-learning research infrequently focused on science undergraduates relative to science and society or detailed expressions of their beliefs and field practices over the experience. Qualitative methodology was used to guide the implementation and analysis of this study. A sample of an additional 20 science undergraduates likewise involved in intensive reflection in the service learning in science teaching (SLST) course called Elementary Science Education Partners (ESEP) was used to examine the typicality of the case participants. The findings show two major changes in science undergraduates' belief expressions: (1) a reduction in statements of beliefs from a deficit thinking perspective about the elementary school students' ability to learn science, and (2) a shift in the attribution of students, underlying problems in science learning from individual-oriented to systemic-oriented influences. Additional findings reveal that the science undergraduates perceived they had personally and profoundly changed as a result of the SLST experience. Changes include: (1) the gain of a new understanding of others' situations different from their own; (2) the realization of and appreciation for their relative positions of privilege due to their educational background and family support; (3) the gain in ability to communicate, teach, and work with others; (4) the idea that they were more socially and culturally connected to their community outside the university and their college classrooms; and (5) a broadening of the way they understood or thought about science. Women participants stated that the experience validated their science and science-related career choices. Results imply that these changes have the potential to strengthen the undergraduate pursuit of science-related careers and will contribute positive influences to our education system and society at large.

  1. Discovery Bottles: A Unique Inexpensive Tool for the K-2 Science Classroom

    ERIC Educational Resources Information Center

    Watson, Sandy

    2008-01-01

    Discover discovery bottles! These wide-mouth plastic containers of any size filled with objects of different kinds can be terrific tools for science explorations and a great way to cultivate science minds in a K-2 science classroom. In addition, the author has found them to be a useful, inexpensive, and engaging way to help students develop skills…

  2. Language in Science Classrooms: An Analysis of Physics Teachers' Use of and Beliefs about Language

    ERIC Educational Resources Information Center

    Oyoo, Samuel Ouma

    2012-01-01

    The world over, secondary school science is viewed mainly as a practical subject. This may be one reason why effectiveness of teaching approaches in science education has often been judged on the kinds of practical activity with which teachers and students engage. In addition to practical work, language--often written (as in science texts) or oral…

  3. Realism, functions, and the a priori: Ernst Cassirer's philosophy of science.

    PubMed

    Heis, Jeremy

    2014-12-01

    This paper presents the main ideas of Cassirer's general philosophy of science, focusing on the two aspects of his thought that--in addition to being the most central ideas in his philosophy of science--have received the most attention from contemporary philosophers of science: his theory of the a priori aspects of physical theory, and his relation to scientific realism.

  4. Physical Science Activities for Elementary and Middle School. CESI Sourcebook V. An Occasional Sourcebook of the Council for Elementary Science International.

    ERIC Educational Resources Information Center

    Malone, Mark R., Comp.

    Mounting research evidence has shown that an activity centered approach to elementary and middle school science education can be quite effective. This sourcebook, developed for teachers by teachers, presents many activity oriented science lessons that could be done in any elementary or middle school classroom with minimal additional experience.…

  5. Primary and Secondary Teachers' Ideas on School Visits to Science Centres in the Basque Country

    ERIC Educational Resources Information Center

    Morentin, Maite; Guisasola, Jenaro

    2015-01-01

    In recent decades, research has shown the challenge posed to teachers by science education in informal contexts such as science museums or centres. In addition, there is consensus that in the case of pupils visiting a science centre, learning improves when the visit is connected to the classroom curriculum, so the teachers' involvement in…

  6. Preservice Teachers' Memories of Their Secondary Science Education Experiences

    NASA Astrophysics Data System (ADS)

    Hudson, Peter; Usak, Muhammet; Fančovičová, Jana; Erdoğan, Mehmet; Prokop, Pavol

    2010-12-01

    Understanding preservice teachers' memories of their education may aid towards articulating high-impact teaching practices. This study describes 246 preservice teachers' perceptions of their secondary science education experiences through a questionnaire and 28-item survey. ANOVA was statistically significant about participants' memories of science with 15 of the 28 survey items. Descriptive statistics through SPSS further showed that a teacher's enthusiastic nature (87%) and positive attitude towards science (87%) were regarded as highly memorable. In addition, explaining abstract concepts well (79%), and guiding the students' conceptual development with practical science activities (73%) may be considered as memorable secondary science teaching strategies. Implementing science lessons with one or more of these memorable science teaching practices may "make a difference" towards influencing high school students' positive long-term memories about science and their science education. Further research in other key learning areas may provide a clearer picture of high-impact teaching and a way to enhance pedagogical practices.

  7. Measuring adolescent science motivation

    NASA Astrophysics Data System (ADS)

    Schumm, Maximiliane F.; Bogner, Franz X.

    2016-02-01

    To monitor science motivation, 232 tenth graders of the college preparatory level ('Gymnasium') completed the Science Motivation Questionnaire II (SMQ-II). Additionally, personality data were collected using a 10-item version of the Big Five Inventory. A subsequent exploratory factor analysis based on the eigenvalue-greater-than-one criterion, extracted a loading pattern, which in principle, followed the SMQ-II frame. Two items were dropped due to inappropriate loadings. The remaining SMQ-II seems to provide a consistent scale matching the findings in literature. Nevertheless, also possible shortcomings of the scale are discussed. Data showed a higher perceived self-determination in girls which seems compensated by their lower self-efficacy beliefs leading to equality of females and males in overall science motivation scores. Additionally, the Big Five personality traits and science motivation components show little relationship.

  8. Urban school leadership for elementary science education: Meeting the needs of English Language Learners

    NASA Astrophysics Data System (ADS)

    Alarcon, Maricela H.

    Science education reform and state testing accountability call upon principals to become instructional leaders in science. Specifically, elementary school principals must take an active role in science instruction to effectively improve science education for all students including English Language Learners. As such, the research questioned posed in this study centered on How are elementary school principals addressing the academic needs of Latino Spanish-speaking English language learners within science education? This study employed a qualitative research design to identify the factors contributing to the exemplary performance in science, as measured by the Texas Assessment of Knowledge and Skills (TAKS), for English Language Learner students in three high poverty bilingual elementary schools based on a multiple case study. As part of the data collection process, interviews were conducted with three school principals, three science academic support teachers, and two 5th grade bilingual teachers. Additionally, observations were acquired through school principal shadowing. The findings revealed four attributes necessary for effective instructional leadership in science education. First, Positive School Culture was defined as the core that linked the other three instructional leadership attributes and thus increased their effectiveness. Second, Clear Goals and Expectations were set by making science a priority and ensuring that English language learners were transitioning from Spanish to English instruction by the fifth grade. Third, Critical Resourcing involved hiring a science academic support teacher, securing a science classroom on campus, and purchasing bilingual instructional materials. Fourth, principal led and supported Collaboration in which teachers met to discuss student performance based data in addition to curriculum and instruction. These research findings are vital because by implementing these best practices of elementary school principals, educators are positioned to lay the foundation for science needed for ELLs to continue their educational career with the tools needed to succeed in future science classes and in turn college, answering the call to effectively improve science within the educational system.

  9. Where Non-Science Majors Get Information about Science and How They Rate that Information

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; Impey, Chris; Nieberding, Megan; Romine, James

    2014-11-01

    College non-science major courses represent one of the last science courses many students will ever take. We report on a study of 400 undergraduate non-majors students enrolled in introductory astronomy courses at the University of Arizona to gain insight into where they get their information about science and their perception of that information. Students completed an online survey during the 2013-2014 school year. In addition to demographic information, students reported where they obtained information about science when they want to know something both for their own knowledge as well as information for a course assignment. They reported their interest in different science topics, rated the reliability of different sources of information, and reported how important science was to their life, including their future career choice.Overall, students reported getting information from a variety of online sources when looking up a topic for their own knowledge, including internet searches (71%), Wikipedia (46%), and online science sites (e.g. NASA) (45%). When asked where they got information for course assignments, most reported from assigned readings (82%) but a large percentage still reported getting information from online sources such as internet searches (60%), Wikipedia (30%) and online science sites (e.g. NASA) (20%). Overall, students rated professors/teachers and textbooks at the most reliable sources of scientific information and rated social media sites, blogs and Wikipedia as the least reliable sources of scientific information. Additionally, friends and family members were rated as less reliable sources of scientific information than similar information found on multiple websites. Students’ interest in science and self-reported knowledge in science was positively correlated. There was a significant positive correlation between those who reported that they liked science and felt that science was important to their future career. Overall, our results are giving us insights into how our non-science majors get and evaluate scientific information.

  10. National differences in gender–science stereotypes predict national sex differences in science and math achievement

    PubMed Central

    Nosek, Brian A.; Smyth, Frederick L.; Sriram, N.; Lindner, Nicole M.; Devos, Thierry; Ayala, Alfonso; Bar-Anan, Yoav; Bergh, Robin; Cai, Huajian; Gonsalkorale, Karen; Kesebir, Selin; Maliszewski, Norbert; Neto, Félix; Olli, Eero; Park, Jaihyun; Schnabel, Konrad; Shiomura, Kimihiro; Tulbure, Bogdan Tudor; Wiers, Reinout W.; Somogyi, Mónika; Akrami, Nazar; Ekehammar, Bo; Vianello, Michelangelo; Banaji, Mahzarin R.; Greenwald, Anthony G.

    2009-01-01

    About 70% of more than half a million Implicit Association Tests completed by citizens of 34 countries revealed expected implicit stereotypes associating science with males more than with females. We discovered that nation-level implicit stereotypes predicted nation-level sex differences in 8th-grade science and mathematics achievement. Self-reported stereotypes did not provide additional predictive validity of the achievement gap. We suggest that implicit stereotypes and sex differences in science participation and performance are mutually reinforcing, contributing to the persistent gender gap in science engagement. PMID:19549876

  11. Science Alert Demonstration with a Rover Traverse Science Data Analysis System

    NASA Technical Reports Server (NTRS)

    Castano, R.; Estlin, T.; Gaines, D.; Castano, A.; Bornstein, B.; Anderson, R. C.; Judd, M.; Stough, T.; Wagstaff, K.

    2005-01-01

    The Onboard Autonomous Science Investigation System (OASIS) evaluates geologic data gathered by a planetary rover. This analysis is used to prioritize the data for transmission, so that the data with the highest science value is transmitted to Earth. In addition, the onboard analysis results are used to identify science opportunities. A planning and scheduling component of the system enables the rover to take advantage of the identified science opportunity. OASIS is a NASA-funded research project that is currently being tested on the FIDO rover at JPL for the use on future missions.

  12. Students' awareness of science teachers' leadership, attitudes toward science, and positive thinking

    NASA Astrophysics Data System (ADS)

    Lu, Ying-Yan; Chen, Hsiang-Ting; Hong, Zuway-R.; Yore, Larry D.

    2016-09-01

    There appears to be a complex network of cognitive and affective factors that influence students' decisions to study science and motivate their choices to engage in science-oriented careers. This study explored 330 Taiwanese senior high school students' awareness of their science teacher's learning leadership and how it relates to the students' attitudes toward science and positive thinking. Initial results revealed that the optimism of positive thinking is highly and positively correlated with the future participation in science and learning science in school attitudes toward science and self-concept in science. Moreover, structural equation modelling (SEM) results indicated that the subscale of teachers' leadership with idealised influence was the most predictive of students' attitudes toward science (β = .37), and the leadership with laissez-faire was predictive of students' positive thinking (β = .21). In addition, the interview results were consistent with the quantitative findings. The correlation and SEM results indicate some of the associations and potential relationships amongst the motivational and affective factors studied and students' attitudes toward and intentions to study science, which will increase their likelihood of future involvement in science careers.

  13. Family science: What is it?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitlow, B.

    Family science is an informal science education program designed to teach science skills by having children and parents learn and enjoy science together. Aimed at addressing the underrepresentation of women and ethnic and racial minorities in science-based careers, FAMILY SCIENCE involves parents and children in kindergarten through eighth grade in science activities that demonstrate the role science plays in their daily life and future. Family involvement is the key to the program`s effectiveness. Family classes are usually offered in a series of one- to two-hour class meetings for parents and their children after school, evenings, and weekends. During classes, parentsmore » and children work in pairs and small groups to solve problems, work cooperatively, and talk science. The activities provide experiences for the entire family that build skills, confidence, and interest in science. In addition, guest speakers and career activities illustrate for parents in the workforce the significance of math and science in their own jobs, and for kids, it highlights the diversity of jobs and the relevance of math and science.« less

  14. Development of preservice elementary teachers' science self- efficacy beliefs and its relation to science conceptual understanding

    NASA Astrophysics Data System (ADS)

    Menon, Deepika

    Self-efficacy beliefs that relate to teachers' motivation and performance have been an important area of concern for preservice teacher education. This study used a mixed-methods approach to investigate the changes in preservice elementary teachers' science self-efficacy beliefs and the factors associated in a specialized elementary physics content course. In addition, the study is one of few to investigate the relationship between the changes in science self-efficacy beliefs and changes in physical science conceptual understanding. Participants included fifty-one preservice elementary teachers enrolled in two term of the physical science content course. Data collection and analysis procedures included both qualitative and quantitative measures. Data collection included implementation of Science Teaching Efficacy Belief Instrument-B (STEBI-B) (Bleicher, 2004) and Physical Science Concept Test as pre- and post-test, two semi-structured interviews with 18 participants (nine each semester), classroom observations and artifacts. A pre-post, repeated measures multivariate analysis of variance (MANOVA) design was used to test the significance of differences between the pre- and post-surveys across time. Results indicated statistically significant gains in participants' science self-efficacy beliefs on both scales of STEBI-B - personal science teaching beliefs and outcome expectancy beliefs. Additionally, a positive moderate relationship between science conceptual understandings and personal science teaching efficacy beliefs was found. Post-hoc analysis of the STEBI-B data was used to select 18 participants for interviews. The participants belonged to each group representing the low, medium and high initial levels of self-efficacy beliefs. Participants' responses indicated positive shifts in their science teacher self-image and confidence to teach science in future. Four categories that represented the course-related factors contributing towards science self-efficacy beliefs included: (1) enhanced science conceptual understandings, (2) active learning experiences, (3) teaching strategies, and (4) instructor as a role-model. Findings suggest that despite of the nature of prior science experiences preservice elementary teachers previously had, an exposure to a course that integrates relevant science content along with modeled instructional strategies can positively impact science self-efficacy beliefs. While some course elements such as active learning experiences and teaching models seemed to impact all groups positively, the low group participants were particularly influenced by the multiple representations of the content and the course instructor as a role model. These findings have important implications for preservice science teacher preparation programs.

  15. In science communication, why does the idea of the public deficit always return? Exploring key influences.

    PubMed

    Suldovsky, Brianne

    2016-05-01

    Despite mounting criticism, the deficit model remains an integral part of science communication research and practice. In this article, I advance three key factors that contribute to the idea of the public deficit in science communication, including the purpose of science communication, how communication processes and outcomes are conceptualized, and how science and scientific knowledge are defined. Affording science absolute epistemic privilege, I argue, is the most compelling factor contributing to the continued use of the deficit model. In addition, I contend that the deficit model plays a necessary, though not sufficient, role in science communication research and practice. Areas for future research are discussed. © The Author(s) 2016.

  16. Engaging Students in Modeling as an Epistemic Practice of Science: An Introduction to the Special Issue of the "Journal of Science Education and Technology"

    ERIC Educational Resources Information Center

    Campbell, Todd; Oh, Phil Seok

    2015-01-01

    This article provides an introduction for the special issue of the "Journal of Science Education and Technology" focused on science teaching and learning with models. The article provides initial framing for questions that guided the special issue. Additionally, based on our careful review of each of these articles, some discussion of…

  17. Robert J. Genco: Pioneer in Oral Science Advancement.

    PubMed

    Taubman, M A

    2018-07-01

    Professor Robert J. Genco made extraordinary research advances in immunology, periodontology, and microbiology research, pioneering major advances in oral science. In addition to his extraordinary research advancements in oral biology, his pioneering advances in oral science leadership at the local/university, national, and international levels are recognized worldwide, as are his educational advancements. In his era, he is truly the "father" of oral science.

  18. The Role Biomedical Science Laboratories Can Play in Improving Science Knowledge and Promoting First-Year Nursing Academic Success

    ERIC Educational Resources Information Center

    Arneson, Pam

    2011-01-01

    The need for additional nursing and health care professionals is expected to increase dramatically over the next 20 years. With this in mind, students must have strong biomedical science knowledge to be competent in their field. Some studies have shown that participation in bioscience laboratories can enhance science knowledge. If this is true, an…

  19. National Science Resources Center Project to Improve Science Teaching in Elementary Schools. Appendix C. Elementary Science Information Database

    DTIC Science & Technology

    1988-12-01

    individual particles. They mix the powders with water and perform tests with heat, iodine, and vinegar in order to gain additional information about the...illusions ; light ; fermentation ; chromatography ; moon ; astronomy AN SCIENCE - A PROCESS APPROACH, PART G focuses on experimentation, incorporating all...skills ; flowers plants astronomy ; animals ; sensory perception ; vision ; optical illusions ; eyes ; density ; viscosity ; fermentation ; moon

  20. Early Science Instruction and Academic Language Development Can Go Hand in Hand. The Promising Effects of a Low-Intensity Teacher-Focused Intervention

    ERIC Educational Resources Information Center

    Henrichs, Lotte F.; Leseman, Paul P. M.

    2014-01-01

    Early science instruction is important in order to lay a firm basis for learning scientific concepts and scientific thinking. In addition, young children enjoy science. However, science plays only a minor role in the kindergarten curriculum. It has been reported that teachers feel they need to prioritize language and literacy practices over…

  1. Evaluating Junior Secondary Science Textbook Usage in Australian Schools

    NASA Astrophysics Data System (ADS)

    McDonald, Christine V.

    2016-08-01

    A large body of research has drawn attention to the importance of providing engaging learning experiences in junior secondary science classes, in an attempt to attract more students into post-compulsory science courses. The reality of time and resource constraints, and the high proportion of non-specialist science teachers teaching science, has resulted in an overreliance on more transmissive pedagogical tools, such as textbooks. This study sought to evaluate the usage of junior secondary science textbooks in Australian schools. Data were collected via surveys from 486 schools teaching junior secondary (years 7-10), representing all Australian states and territories. Results indicated that most Australian schools use a science textbook in the junior secondary years, and textbooks are used in the majority of science lessons. The most highly cited reason influencing choice of textbook was layout/colour/illustrations, and electronic technologies were found to be the dominant curricula material utilised, in addition to textbooks, in junior secondary science classes. Interestingly, the majority of respondents expressed high levels of satisfaction with their textbooks, although many were keen to stress the subsidiary role of textbooks in the classroom, emphasising the textbook was `one' component of their teaching repertoire. Importantly, respondents were also keen to stress the benefits of textbooks in supporting substitute teachers, beginning teachers, and non-specialist science teachers; in addition to facilitating continuity of programming and staff support in schools with high staff turnover. Implications from this study highlight the need for high quality textbooks to support teaching and learning in Australian junior secondary science classes.

  2. CosmoQuest: Training Educators and Engaging Classrooms in Citizen Science through a Virtual Research Facility

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; Bracey, Georgia; Summer, Theresa; Cobb, Whitney; Gay, Pamela L.; Finkelstein, Keely D.; Gurton, Suzanne; Felix-Strishock, Lisa; Kruse, Brian; Lebofsky, Larry A.; Jones, Andrea J.; Tweed, Ann; Graff, Paige; Runco, Susan; Noel-Storr, Jacob; CosmoQuest Team

    2016-10-01

    CosmoQuest is a Citizen Science Virtual Research Facility that engages scientists, educators, students, and the public in analyzing NASA images. Often, these types of citizen science activities target enthusiastic members of the public, and additionally engage students in K-12 and college classrooms. To support educational engagement, we are developing a pipeline in which formal and informal educators and facilitators use the virtual research facility to engage students in real image analysis that is framed to provide meaningful science learning. This work also contributes to the larger project to produce publishable results. Community scientists are being solicited to propose CosmoQuest Science Projects take advantage of the virtual research facility capabilities. Each CosmoQuest Science Project will result in formal education materials, aligned with Next Generation Science Standards including the 3-dimensions of science learning; core ideas, crosscutting concepts, and science and engineering practices. Participating scientists will contribute to companion educational materials with support from the CosmoQuest staff of data specialists and education specialists. Educators will be trained through in person and virtual workshops, and classrooms will have the opportunity to not only work with NASA data, but interface with NASA scientists. Through this project, we are bringing together subject matter experts, classrooms, and informal science organizations to share the excitement of NASA SMD science with future citizen scientists. CosmoQuest is funded through individual donations, through NASA Cooperative Agreement NNX16AC68A, and through additional grants and contracts that are listed on our website, cosmoquest.org.

  3. Bringing Up Girls in Science (BUGS): The Effectiveness of an Afterschool Environmental Science Program for Increasing Female Students' Interest in Science Careers

    NASA Astrophysics Data System (ADS)

    Tyler-Wood, Tandra; Ellison, Amber; Lim, Okyoung; Periathiruvadi, Sita

    2012-02-01

    Bringing Up Girls in Science (BUGS) was an afterschool program for 4th and 5th grade girls that provided authentic learning experiences in environmental science as well as valuable female mentoring opportunities in an effort to increase participants' academic achievement in science. BUGS participants demonstrated significantly greater amounts of gain in science knowledge as measured by the Iowa Test of Basic Skills in Science (ITBS-S). The original BUGS participants and contrasts have now completed high school and entered college, allowing researchers to assess the long-term impact of the BUGS program. Fourteen former BUGS participants completed two instruments to assess their perceptions of science and science, technology, engineering, and mathematics (STEM) careers. Their results were compared to four contrast groups composed entirely of females: 12 former BUGS contrasts, 10 college science majors, 10 non-science majors, and 9 current STEM professionals. Results indicate that BUGS participants have higher perceptions of science careers than BUGS contrasts. There were no significant differences between BUGS participants, Science Majors, and STEM professionals in their perceptions of science and STEM careers, whereas the BUGS contrast group was significantly lower than BUGS participants, Science Majors, and STEM Professionals. Additional results and implications are discussed within.

  4. Measuring Adolescent Science Motivation

    ERIC Educational Resources Information Center

    Schumm, Maximiliane F.; Bogner, Franz X.

    2016-01-01

    To monitor science motivation, 232 tenth graders of the college preparatory level ("Gymnasium") completed the Science Motivation Questionnaire II (SMQ-II). Additionally, personality data were collected using a 10-item version of the Big Five Inventory. A subsequent exploratory factor analysis based on the eigenvalue-greater-than-one…

  5. 50 CFR 300.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Definitions. 300.2 Section 300.2 Wildlife... § 300.2 Definitions. In addition to the definitions in each act, agreement, convention, or treaty... Science Center, means Director, Science and Research, Southeast Fisheries Science Center, NMFS, 75...

  6. Towson University's Professional Science Master's Program in Applied Physics: The first 5 years

    NASA Astrophysics Data System (ADS)

    Kolagani, Rajeswari

    It is a well-established fact that the scientific knowledge and skills acquired in the process of obtaining a degree in physics meet the needs of a variety of positions in multiple science and technology sectors. However, in addition to scientific competence, challenging careers often call for skills in advanced communication, leadership and team functions. The professional science master's degree, which has been nick-named as the `Science MBA', aims at providing science graduates an edge both in terms of employability and earning levels by imparting such skills. Our Professional Science Master's Program in Applied Physics is designed to develop these `plus' skills through multiple avenues. In addition to advanced courses in Applied Physics, the curriculum includes graduate courses in project management, business and technical writing, together with research and internship components. I will discuss our experience and lessons learned over the 5 years since the inception of the program in 2010. The author acknowledges support from the Elkins Professorship of the University System of Maryland.

  7. Facilitating interest and out-of-school engagement in science in secondary school girls: Increasing the effectiveness of the teaching for transformative experience in science model through parental involvement

    NASA Astrophysics Data System (ADS)

    Heddy, Benjamin Charles

    This study investigated the impact of adding a parental involvement intervention to the Teaching for Transformative Experience in Science (TTES) model in science courses (biology and chemistry) in an all-girl middle and high school (N = 89). Specifically, the goal was to increase out-of-school engagement, interest, parental involvement, and achievement. Analysis showed that TTES with the addition of a parent intervention (TTES+PI) facilitated more out-of-school engagement and parent involvement than a comparison. Furthermore, a high initial level of situational and individual interest was maintained in the TTES+PI condition; whereas both forms of interest decreased in the comparison. A content analysis of transformative experience journal entries suggested that when parents showed value for science concepts, students' experiential value increased. The results provide evidence that the addition of a parent intervention may increase the effectiveness of TTES and maintain girl's interest in science, which has theoretical and practical implications.

  8. Making science accessible through collaborative science teacher action research on feminist pedagogy

    NASA Astrophysics Data System (ADS)

    Capobianco, Brenda M.

    The underrepresentation of women and minorities in science is an extensively studied yet persistent concern of our society. Major reform movements in science education suggest that better teaching, higher standards, and sensitivity to student differences can overcome long-standing obstacles to participation among women and minorities. In response to these major reform movements, researchers have suggested teachers transform their goals, science content, and instructional practices to make science more attractive and inviting to all students, particularly young women and minorities (Barton, 1998; Brickhouse, 1994; Mayberry & Rees, 1999; Rodriguez, 1999; Roychoudhury, Tippins, & Nichols, 1995). One of the more dominant approaches currently heralded is the use of feminist pedagogy in science education. The purpose of this study was to examine the ways eleven middle and high school science teachers worked collaboratively to engage in systematic, self-critical inquiry of their own practice and join with other science teachers to engage in collaborative conversations in effort to transform their practice for a more equitable science education. Data were gathered via semi-structured interviews, whole group discussions, classroom observations, and review of supporting documents. Data analysis was based on grounded theory (Strauss & Corbin, 1990) and open coding (Miles and Huberman, 1994). This study described the collective processes the science teachers and university researcher employed to facilitate regular collaborative action research meetings over the course of six months. Findings indicated that engaging in collaborative action research allowed teachers to gain new knowledge about feminist science teaching, generate a cluster of pedagogical possibilities for inclusive pedagogy, and enhance their understanding for science teaching. Additional findings indicated dilemmas teachers experienced including resistance to a feminist agenda and concerns for validity in action research. This study revealed that there are no uniform solutions or standard methods to address issues of equity and accessibility in science education. This study recommends teachers be given time, support, and freedom to collaborate with other teacher-researchers, enact decisions for change, and reflect on and make public the results of their work. Additional implications suggest science teacher educators collaborate with practicing science teachers to devise practical applications and feasible resources for a wider audience.

  9. Teacher talk about science: An examination of the constructed understanding of science held by four elementary school teachers

    NASA Astrophysics Data System (ADS)

    Price, Robert John

    The elementary school teacher's personal understanding of science has not been a primary focus of consideration in educational reform discussions. This study examines how four elementary school teachers have constructed their personal understanding of science. The purpose of this study is to explore core understandings about science held by these teachers, and to examine the origins of these ideas. This study assumes that a teacher's understanding of science is unique and constructed on personal experiences affected by influences. This study further explores the relationship of the teachers understanding to the school's stated curriculum. The theoretical framework of this research recognizes three guiding assumptions: science exists as a set of ideas that have developed over time through competing discourses; the teacher plays an important role in the implementation of the science curriculum; and the guiding influences of a teacher's understanding of science are associated with power that emerges from discourse. The methodology in this qualitative study is closely associated with narrative inquiry. Data collection methods include a questionnaire, focus group sessions, and individual interviews. Teachers' stories were collected through collaborative interview opportunities between the researcher and the participants. The findings are presented through the narratives of the four teachers, and are organized through the guiding influences, and talk related to the stated science curriculum. The teachers' talk can be categorized by three broad guiding influences: family, education, and an image of science. The talk related to the stated curriculum illustrates both conflicts, and a relationship between the teachers' understanding of science and the curriculum. The finding of this study provides evidence that each teacher's understanding of science is unique and developed over time. Additionally, this understanding plays a role in how the stated curriculum is discussed and understood. This investigation recommends that teachers' personal understanding of science, as revealed through narrative inquiry, becomes a focus in developing new educational opportunities for elementary school teachers. This study further recommends challenging a hegemony related to positivism that exists in science curricula, and the addition of the valued voice of elementary teachers to the discourse of science education.

  10. A Review of Forensic Science Management Literature.

    PubMed

    Houck, M M; McAndrew, W P; Porter, M; Davies, B

    2015-01-01

    The science in forensic science has received increased scrutiny in recent years, but interest in how forensic science is managed is a relatively new line of research. This paper summarizes the literature in forensic science management generally from 2009 to 2013, with some recent additions, to provide an overview of the growth of topics, results, and improvements in the management of forensic services in the public and private sectors. This review covers only the last three years or so and a version of this paper was originally produced for the 2013 Interpol Forensic Science Managers Symposium and is available at interpol.int. Copyright © 2015 Central Police University.

  11. Life Sciences Program Tasks and Bibliography

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1995. Additionally, this inaugural edition of the Task Book includes information for FY 1994 programs. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web page

  12. Conceptualizing Science Learning as a Collective Social Practice: Changing the Social Pedagogical Compass for a Child with Visual Impairment

    ERIC Educational Resources Information Center

    Fleer, Marilyn; March, Sue

    2015-01-01

    The international literature on science learning in inclusive settings has a long history, but it is generally very limited in scope. Few studies have been undertaken that draw upon a cultural-historical reading of inclusive pedagogy, and even less in the area of science education. In addition, we know next to nothing about the science learning of…

  13. Connecting Science and Society: Basic Research in the Service of Social Objectives

    NASA Astrophysics Data System (ADS)

    Sonnert, Gerhard

    2007-03-01

    A flawed dichotomy of basic versus applied science (or of ``curiosity-driven'' vs. ``mission-oriented'' science) pervades today's thinking about science policy. This talk argues for the addition of a third mode of scientific research, called Jeffersonian science. Whereas basic science, as traditionally understood, is a quest for the unknown regardless of societal needs, and applied science is known science applied to known needs, Jeffersonian science is the quest for the unknown in the service of a known social need. It is research in an identified area of basic scientific ignorance that lies at the heart of a social problem. The talk discusses the conceptual foundations and then provides some case examples of Jeffersonian-type science initiatives, such as the Lewis and Clark Expedition, initiated by Thomas Jefferson (which led us to call this mode of research Jeffersonian), research conducted under the auspices of the National Institutes of Health, and a science policy project by President Jimmy Carter and his Science Adviser, Frank Press, in the late 1970s. Because the concept of Jeffersonian science explicitly ties basic research to the social good, one of the potential benefits of adding a Jeffersonian dimension to our thinking about science is that it might make science careers more attractive to women and underrepresented minorities.

  14. Astrobiology: A pathway to adult science literacy?

    NASA Astrophysics Data System (ADS)

    Oliver, C. A.; Fergusson, J.

    2007-10-01

    Adult science illiteracy is widespread. This is concerning for astrobiology, or indeed any other area of science in the communication of science to public audiences. Where and how does this scientific illiteracy arise in the journey to adulthood? Two astrobiology education projects have hinted that science illiteracy may begin in high school. This relationship between high school science education and the public understanding of science is poorly understood. Do adults forget their science education, or did they never grasp it in the first place? A 2003 science education project raised these questions when 24 16-year-olds from 10 Sydney high schools were brought into contact with real science. The unexpected results suggested that even good high school science students have a poor understanding of how science is really undertaken in the field and in the laboratory. This concept is being further tested in a new high school science education project, aimed at the same age group, using authentic astrobiology cutting-edge data, NASA Learning Technologies tools, a purpose-built research Information and Communication Technology-aided learning facility and a collaboration that spans three continents. In addition, a first year university class will be tested for evidence of science illiteracy immediately after high school among non-science oriented but well-educated students.

  15. The Intersection of Information and Science Literacy

    ERIC Educational Resources Information Center

    Klucevsek, Kristin

    2017-01-01

    To achieve higher science literacy, both students and the public require discipline-specific information literacy in the sciences. Scientific information literacy is a core component of the scientific process. In addition to teaching how to find and evaluate resources, scientific information literacy should include teaching the process of…

  16. Beyond Flash Gordon and "Star Wars": Science Fiction and History Instruction

    ERIC Educational Resources Information Center

    Cooper, B. Lee

    1978-01-01

    Historical concepts can be taught through analysis of science fiction. Offers a class outline with science fiction resources to examine the boundaries of historical inquiry; six themes for student investigation based on specific resources; and a bibliography of 44 additional anthologies and books. (AV)

  17. Open Science and the Monitoring of Aquatic Ecosystems

    EPA Science Inventory

    Open science represents both a philosophy and a set of tools that can be leveraged for more effective scientific analysis. At the core of the open science movement is the concept that research should be reproducible and transparent, in addition to having long-term provenance thro...

  18. 78 FR 68040 - President's Council of Advisors on Science and Technology Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ... provide updates on its studies of education information technology and cyber- security. Additional... DEPARTMENT OF ENERGY President's Council of Advisors on Science and Technology Meeting AGENCY... Science and Technology (PCAST), and describes the functions of the Council. Notice of this meeting is...

  19. Defining Computational Thinking for Mathematics and Science Classrooms

    ERIC Educational Resources Information Center

    Weintrop, David; Beheshti, Elham; Horn, Michael; Orton, Kai; Jona, Kemi; Trouille, Laura; Wilensky, Uri

    2016-01-01

    Science and mathematics are becoming computational endeavors. This fact is reflected in the recently released Next Generation Science Standards and the decision to include "computational thinking" as a core scientific practice. With this addition, and the increased presence of computation in mathematics and scientific contexts, a new…

  20. 78 FR 62609 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... Secretariat, General Services Administration, notice is hereby given that the DOE/NSF Nuclear Science Advisory Committee (NSAC) will be renewed for a two-year period. The Committee will provide advice and... research. Additionally, the renewal of the DOE/NSF Nuclear Science Advisory Committee has been determined...

  1. Program on Public Conceptions of Science, Newsletter 12.

    ERIC Educational Resources Information Center

    Shelanski, Vivien, Ed.; Blanpied, William A., Ed.

    This newsletter presents a summary of important, but little publicized, issues involving the National Science Foundation. In addition, it also contains a timetable of impending actions to be taken by congressional committees, and a list of documents and articles where additional information can be found. In addition to the regular sections, News…

  2. Generation of Graphite Particles by Abrasion and Their Characterization

    NASA Astrophysics Data System (ADS)

    Troy, Raymond Steven

    Self-efficacy beliefs that relate to teachers' motivation and performance have been an important area of concern for preservice teacher education. This study used a mixed-methods approach to investigate the changes in preservice elementary teachers' science self-efficacy beliefs and the factors associated in a specialized elementary physics content course. In addition, the study is one of few to investigate the relationship between the changes in science self-efficacy beliefs and changes in physical science conceptual understanding. Participants included fifty-one preservice elementary teachers enrolled in two term of the physical science content course. Data collection and analysis procedures included both qualitative and quantitative measures. Data collection included implementation of Science Teaching Efficacy Belief Instrument-B (STEBI-B) (Bleicher, 2004) and Physical Science Concept Test as pre- and post-test, two semi-structured interviews with 18 participants (nine each semester), classroom observations and artifacts. A pre-post, repeated measures multivariate analysis of variance (MANOVA) design was used to test the significance of differences between the pre- and post-surveys across time. Results indicated statistically significant gains in participants' science self-efficacy beliefs on both scales of STEBI-B - personal science teaching beliefs and outcome expectancy beliefs. Additionally, a positive moderate relationship between science conceptual understandings and personal science teaching efficacy beliefs was found. Post-hoc analysis of the STEBI-B data was used to select 18 participants for interviews. The participants belonged to each group representing the low, medium and high initial levels of self-efficacy beliefs. Participants' responses indicated positive shifts in their science teacher self-image and confidence to teach science in future. Four categories that represented the course-related factors contributing towards science self-efficacy beliefs included: (1) enhanced science conceptual understandings, (2) active learning experiences, (3) teaching strategies, and (4) instructor as a role-model. Findings suggest that despite of the nature of prior science experiences preservice elementary teachers previously had, an exposure to a course that integrates relevant science content along with modeled instructional strategies can positively impact science self-efficacy beliefs. While some course elements such as active learning experiences and teaching models seemed to impact all groups positively, the low group participants were particularly influenced by the multiple representations of the content and the course instructor as a role model. These findings have important implications for preservice science teacher preparation programs.

  3. Systems biology: the case for a systems science approach to diabetes.

    PubMed

    Petrasek, Danny

    2008-01-01

    The unprecedented accumulation of biological data in recent decades has underscored the need to organize and integrate the massive collection of information. In addition, there is rising agreement among biologists that a complete understanding of a single cell will not lead directly to a complete understanding of a system of cells. The success of a systems science approach in engineering and physics may be of great value in the evolution of biological science. This article reviews some examples that suggest the importance of a systems biology approach and, in addition, advance one specific systems science principle, the conservation of uncertainty, which may give insight into the emergent behavior of numerous biological and physiological phenomena.

  4. Journals Supporting Terrorism Research: Identification and Investigation into Their Impact on the Social Sciences

    ERIC Educational Resources Information Center

    Bullis, Daryl R.; Irving, Richard D.

    2013-01-01

    A citation analysis of two preeminent terrorism journals ("Terrorism and Political Violence" and "Studies in Conflict and Terrorism") was used to identify 37 additional social science journals of significant importance to terrorism research. Citation data extracted from the "Web of Science" database was used to…

  5. Student Initiatives in Urban Elementary Science Classrooms

    ERIC Educational Resources Information Center

    Lewis, Scott; Lee, Okhee; Santau, Alexandra; Cone, Neporcha

    2010-01-01

    Student initiatives play an important role in inquiry-based science with all students, including English language learning (ELL) students. This study examined initiatives that elementary students made as they participated in an intervention to promote science learning and English language development over a three-year period. In addition, the…

  6. Soundsational Science

    ERIC Educational Resources Information Center

    Carrier, Sarah J.; Scott, Catherine Marie; Hall, Debra T.

    2012-01-01

    The science of sound helps students learn that sound is energy traveling in waves as vibrations transfer the energy through various media: solids, liquids, and gases. In addition to learning about the physical science of sound, students can learn about the sounds of different animal species: how sounds contribute to animals' survival, and how…

  7. Careers in Science and Technical Communication

    ERIC Educational Resources Information Center

    Kastens, Kim

    2007-01-01

    This article provides practical guidance for science teachers to help students who love both science and writing, and are struggling to find a career that will allow them to combine these disparate talents and interests. It includes descriptions of career paths, suggestions for exploratory steps, and links to sources of additional information. The…

  8. Vectors on the Basketball Court

    ERIC Educational Resources Information Center

    Bergman, Daniel

    2010-01-01

    An Idea Bank published in the April/May 2009 issue of "The Science Teacher" describes an experiential physics lesson on vectors and vector addition (Brown 2009). Like its football predecessor, the basketball-based investigation presented in this Idea Bank addresses National Science Education Standards Content B, Physical Science, 9-12 (NRC 1996)…

  9. Introducing Undergraduate Students to Science

    ERIC Educational Resources Information Center

    De Avila, Paulo, Jr.; Torres, Bayardo B.

    2010-01-01

    Understanding the scientific method fosters the development of critical thinking and logical analysis of information. Additionally, proposing and testing a hypothesis is applicable not only to science, but also to ordinary facts of daily life. Knowing the way science is done and how its results are published is useful for all citizens and…

  10. Gender Digital Divide and Challenges in Undergraduate Computer Science Programs

    ERIC Educational Resources Information Center

    Stoilescu, Dorian; McDougall, Douglas

    2011-01-01

    Previous research revealed a reduced number of female students registered in computer science studies. In addition, the female students feel isolated, have reduced confidence, and underperform. This article explores differences between female and male students in undergraduate computer science programs in a mid-size university in Ontario. Based on…

  11. 76 FR 66312 - Agency Information Collection Activities: Submission for Review; Information Collection Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... collection of Life Sciences Subject Matter Experts (SMEs) information with the Office of the Director of... review of life science programs. In addition, the directory makes it easier to identify scientific... life science programs. The directory makes it easier to identify scientific specialty areas for which...

  12. 77 FR 41185 - Notification of Public Teleconferences of the Science Advisory Board Animal Feeding Operations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9699-7] Notification of Public Teleconferences of the Science...). ACTION: Notice. SUMMARY: The Environmental Protection Agency (EPA or Agency) Science Advisory Board (SAB... Panel (AFO Panel) to discuss additional EPA data and the Panel's draft advisory report regarding EPA...

  13. Turkish Students' Science Performance and Related Factors in PISA 2006 and 2009

    ERIC Educational Resources Information Center

    Topçu, Mustafa Sami; Arikan, Serkan; Erbilgin, Evrim

    2015-01-01

    The OECD's Programme for International Student Assessment (PISA) enables participating countries to monitor 15-year old students' progress in reading, mathematics, and science literacy. The present study investigates persistent factors that contribute to science performance of Turkish students in PISA 2006 and PISA 2009. Additionally, the study…

  14. Attitudes and Beliefs of Prekindergarten Teachers toward Teaching Science to Young Children

    ERIC Educational Resources Information Center

    Pendergast, Evelaine; Lieberman-Betz, Rebecca G.; Vail, Cynthia O.

    2017-01-01

    This study explored infield prekindergarten teachers' attitudes and beliefs toward teaching science to young children. In addition, prekindergarten teachers' previous and future interests in science-related professional development were assessed. Data were collected through a self-report measure, the preschool teacher attitudes and beliefs toward…

  15. An Academic/Vocational Curriculum Partnership: Home Economics and Science.

    ERIC Educational Resources Information Center

    Smith, Frances M.; Hausafus, Cheryl O.

    1993-01-01

    Proposes middle-school curriculum integrating two diverse disciplines (home economics and science), incorporates social issues, and deals with fundamental concerns of young adolescents. Three major areas are included in framework: food additives for appeal, science of textile fibers, and chemistry of household cleaning. All should be taught by…

  16. High School Science Technology Additions, Midland Public Schools.

    ERIC Educational Resources Information Center

    Design Cost Data, 2001

    2001-01-01

    Discusses design goals, space requirements, and need for mobile furniture and "imagination stations" at Michigan's Midland Public High School science technology addition. Describes the architectural design, costs, and specifications. Includes floor plans, general description, photos and a list of consultants, manufacturers, and suppliers…

  17. Secondary School Students' Understanding of Science and Their Socioscientific Reasoning

    NASA Astrophysics Data System (ADS)

    Karahan, Engin; Roehrig, Gillian

    2017-08-01

    Research in socioscientific issue (SSI)-based interventions is relatively new (Sadler in Journal of Research in Science Teaching 41:513-536, 2004; Zeidler et al. in Journal of Research in Science Teaching 46:74-101, 2009), and there is a need for understanding more about the effects of SSI-based learning environments (Sadler in Journal of Research in Science Teaching 41:513-536, 2004). Lee and Witz (International Journal of Science Education 31:931-960, 2009) highlighted the need for detailed case studies that would focus on how students respond to teachers' practices of teaching SSI. This study presents case studies that investigated the development of secondary school students' science understanding and their socioscientific reasoning within SSI-based learning environments. A multiple case study with embedded units of analysis was implemented for this research because of the contextual differences for each case. The findings of the study revealed that students' understanding of science, including scientific method, social and cultural influences on science, and scientific bias, was strongly influenced by their experiences in SSI-based learning environments. Furthermore, multidimensional SSI-based science classes resulted in students having multiple reasoning modes, such as ethical and economic reasoning, compared to data-driven SSI-based science classes. In addition to portraying how participants presented complexity, perspectives, inquiry, and skepticism as aspects of socioscientific reasoning (Sadler et al. in Research in Science Education 37:371-391, 2007), this study proposes the inclusion of three additional aspects for the socioscientific reasoning theoretical construct: (1) identification of social domains affecting the SSI, (2) using cost and benefit analysis for evaluation of claims, and (3) understanding that SSIs and scientific studies around them are context-bound.

  18. The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA); Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. An arnex, scheduled for completion by summer 2002, will add an additional 80,000 square feet (7,432 square meters) to NSSTC nearly doubling the size of the core facility. At full capacity, the completed NSSTC will top 200,000 square feet (18,580 square meters) and house approximately 550 employees.

  19. Enhancing Public Participation to Improve Natural Resources Science and its Use in Decision Making

    NASA Astrophysics Data System (ADS)

    Glynn, P. D.; Shapiro, C. D.; Liu, S. B.

    2015-12-01

    The need for broader understanding and involvement in science coupled with social technology advances enabling crowdsourcing and citizen science have created greater opportunities for public participation in the gathering, interpretation, and use of geospatial information. The U.S. Geological Survey (USGS) is developing guidance for USGS scientists, partners, and interested members of the public on when and how public participation can most effectively be used in the conduct of scientific activities. Public participation can provide important perspectives and knowledge that cannot be obtained through traditional scientific methods alone. Citizen engagement can also provide increased efficiencies to USGS science and additional benefits to society including enhanced understanding, appreciation, and interest in geospatial information and its use in decision making.The USGS guidance addresses several fundamental issues by:1. Developing an operational definition of citizen or participatory science.2. Identifying the circumstances under which citizen science is appropriate for use and when its use is not recommended. 3. Describing structured processes for effective use of citizen science. 4. Defining the successful application of citizen science and identifying useful success metrics.The guidance is coordinated by the USGS Science and Decisions Center and developed by a multidisciplinary team of USGS scientists and managers. External perspectives will also be incorporated, as appropriate to align with other efforts such as the White House Office of Science and Technology Policy (OSTP) Citizen Science and Crowdsourcing Toolkit for the Federal government. The guidance will include the development of an economic framework to assess the benefits and costs of geospatial information developed through participatory processes. This economic framework considers tradeoffs between obtaining additional perspectives through enhanced participation with costs associated from obtaining geospatial information from multiple sources.

  20. Inquiry-Based Instruction and High Stakes Testing

    NASA Astrophysics Data System (ADS)

    Cothern, Rebecca L.

    Science education is a key to economic success for a country in terms of promoting advances in national industry and technology and maximizing competitive advantage in a global marketplace. The December 2010 Program for International Student Assessment (PISA) ranked the United States 23rd of 65 countries in science. That dismal standing in science proficiency impedes the ability of American school graduates to compete in the global market place. Furthermore, the implementation of high stakes testing in science mandated by the 2007 No Child Left Behind (NCLB) Act has created an additional need for educators to find effective science pedagogy. Research has shown that inquiry-based science instruction is one of the predominant science instructional methods. Inquiry-based instruction is a multifaceted teaching method with its theoretical foundation in constructivism. A correlational survey research design was used to determine the relationship between levels of inquiry-based science instruction and student performance on a standardized state science test. A self-report survey, using a Likert-type scale, was completed by 26 fifth grade teachers. Participants' responses were analyzed and grouped as high, medium, or low level inquiry instruction. The unit of analysis for the achievement variable was the student scale score average from the state science test. Spearman's Rho correlation data showed a positive relationship between the level of inquiry-based instruction and student achievement on the state assessment. The findings can assist teachers and administrators by providing additional research on the benefits of the inquiry-based instructional method. Implications for positive social change include increases in student proficiency and decision-making skills related to science policy issues which can help make them more competitive in the global marketplace.

  1. Differentiating the Sources of Taiwanese High School Students' Multidimensional Science Learning Self-Efficacy: An Examination of Gender Differences

    NASA Astrophysics Data System (ADS)

    Lin, Tzung-Jin; Tsai, Chin-Chung

    2017-04-01

    The main purpose of this study was to investigate Taiwanese high school students' multi-dimensional self-efficacy and its sources in the domain of science. Two instruments, Sources of Science Learning Self-Efficacy (SSLSE) and Science Learning Self-Efficacy (SLSE), were used. By means of correlation and regression analyses, the relationships between students' science learning self-efficacy and the sources of their science learning self-efficacy were examined. The findings revealed that the four sources of the students' self-efficacy were found to play significant roles in their science learning self-efficacy. By and large, Mastery Experience and Vicarious Experience were found to be the two salient influencing sources. Several gender differences were also revealed. For example, the female students regarded Social Persuasion as the most influential source in the "Science Communication" dimension, while the male students considered Vicarious Experience as the main efficacy source. Physiological and Affective States, in particular, was a crucial antecedent of the female students' various SLSE dimensions, including "Conceptual Understanding," "Higher-Order Cognitive Skills," and "Science Communication." In addition, the variations between male and female students' responses to both instruments were also unraveled. The results suggest that, first, the male students perceived themselves as having more mastery experience, vicarious experience and social persuasion than their female counterparts. Meanwhile, the female students experienced more negative emotional arousal than the male students. Additionally, the male students were more self-efficacious than the females in the five SLSE dimensions of "Conceptual Understanding," "Higher-Order Cognitive Skills," "Practical Work," "Everyday Application," and "Science Communication."

  2. Differentiating the Sources of Taiwanese High School Students' Multidimensional Science Learning Self-Efficacy: An Examination of Gender Differences

    NASA Astrophysics Data System (ADS)

    Lin, Tzung-Jin; Tsai, Chin-Chung

    2018-06-01

    The main purpose of this study was to investigate Taiwanese high school students' multi-dimensional self-efficacy and its sources in the domain of science. Two instruments, Sources of Science Learning Self-Efficacy (SSLSE) and Science Learning Self-Efficacy (SLSE), were used. By means of correlation and regression analyses, the relationships between students' science learning self-efficacy and the sources of their science learning self-efficacy were examined. The findings revealed that the four sources of the students' self-efficacy were found to play significant roles in their science learning self-efficacy. By and large, Mastery Experience and Vicarious Experience were found to be the two salient influencing sources. Several gender differences were also revealed. For example, the female students regarded Social Persuasion as the most influential source in the "Science Communication" dimension, while the male students considered Vicarious Experience as the main efficacy source. Physiological and Affective States, in particular, was a crucial antecedent of the female students' various SLSE dimensions, including "Conceptual Understanding," "Higher-Order Cognitive Skills," and "Science Communication." In addition, the variations between male and female students' responses to both instruments were also unraveled. The results suggest that, first, the male students perceived themselves as having more mastery experience, vicarious experience and social persuasion than their female counterparts. Meanwhile, the female students experienced more negative emotional arousal than the male students. Additionally, the male students were more self-efficacious than the females in the five SLSE dimensions of "Conceptual Understanding," "Higher-Order Cognitive Skills," "Practical Work," "Everyday Application," and "Science Communication."

  3. The Number of Scholarly Documents on the Public Web

    PubMed Central

    Khabsa, Madian; Giles, C. Lee

    2014-01-01

    The number of scholarly documents available on the web is estimated using capture/recapture methods by studying the coverage of two major academic search engines: Google Scholar and Microsoft Academic Search. Our estimates show that at least 114 million English-language scholarly documents are accessible on the web, of which Google Scholar has nearly 100 million. Of these, we estimate that at least 27 million (24%) are freely available since they do not require a subscription or payment of any kind. In addition, at a finer scale, we also estimate the number of scholarly documents on the web for fifteen fields: Agricultural Science, Arts and Humanities, Biology, Chemistry, Computer Science, Economics and Business, Engineering, Environmental Sciences, Geosciences, Material Science, Mathematics, Medicine, Physics, Social Sciences, and Multidisciplinary, as defined by Microsoft Academic Search. In addition, we show that among these fields the percentage of documents defined as freely available varies significantly, i.e., from 12 to 50%. PMID:24817403

  4. The number of scholarly documents on the public web.

    PubMed

    Khabsa, Madian; Giles, C Lee

    2014-01-01

    The number of scholarly documents available on the web is estimated using capture/recapture methods by studying the coverage of two major academic search engines: Google Scholar and Microsoft Academic Search. Our estimates show that at least 114 million English-language scholarly documents are accessible on the web, of which Google Scholar has nearly 100 million. Of these, we estimate that at least 27 million (24%) are freely available since they do not require a subscription or payment of any kind. In addition, at a finer scale, we also estimate the number of scholarly documents on the web for fifteen fields: Agricultural Science, Arts and Humanities, Biology, Chemistry, Computer Science, Economics and Business, Engineering, Environmental Sciences, Geosciences, Material Science, Mathematics, Medicine, Physics, Social Sciences, and Multidisciplinary, as defined by Microsoft Academic Search. In addition, we show that among these fields the percentage of documents defined as freely available varies significantly, i.e., from 12 to 50%.

  5. An investigation of gender and grade-level differences in middle school students' attitudes about science, in science process skills ability, and in parental expectations of their children's science performance

    NASA Astrophysics Data System (ADS)

    White, Terri Renee'

    The primary purpose of the study was to examine different variables (i.e. science process skill ability, science attitudes, and parents' levels of expectation for their children in science, which may impinge on science education differently for males and females in grades five, seven, and nine. The research question addressed by the study was: What are the differences between science process skill ability, science attitudes, and parents' levels of expectation in science on the academic success of fifth, seventh, and ninth graders in science and do effects differ according to gender and grade level? The subjects included fifth, seven, and ninth grade students ( n = 543) and their parents (n = 474) from six rural, public elementary schools and two rural, public middle schools in Southern Mississippi. A two-way (grade x gender) multivariate analysis of variance (MANOVA) was used to determine the differences in science process skill abilities of females and males in grade five, seven, and nine. An additional separate two-way multivariate analysis of variance (grade x gender) was also used to determine the differences in science attitudes of males and females in grade five, seven, and nine. A separate analysis of variance (PPSEX [parent's gender]) with the effects being parents' gender was used to determine differences in parents' levels of expectation for their childrens' performance in science. An additional separate analysis of variance (SSEX [student's gender]) with the effects being the gender of the student was also used to determine differences in parents' levels of expectation for their childrens' performance in science. Results of the analyses indicated significant main effects for grade level (p < .001) and gender (p < .001) on the TIPS II. There was no significant grade by gender interaction on the TIPS II. Results for the TOSRA also indicated a significant main effect for grade (p < .001) and the interaction of grade by sex ( p < .001). On variable ATT 5 (enjoyment of science lessons), males' attitudes toward science decreased across the grade levels; whereas, females decreased from grade five to seven, but showed a significant increase from grade seven to nine. Results from the analysis of variance with the parent's gender as the main effect showed no significant difference. The analysis of variance with student's gender as the main effect showed no significant difference.

  6. Teachers' perceptions on primary science teaching

    NASA Astrophysics Data System (ADS)

    Kijkuakul, Sirinapa

    2018-01-01

    This qualitative research aimed to review what primary teachers think about how to teach science in rural school contexts. Three primary schools in Thailand were purposively chosen for this study. Eleven primary science teachers of these schools were the research participants. Questionnaires, interviews, and observations were implemented to reveal the primary school teachers' educational backgrounds, science teaching context, and need for self-driven professional development. Content and discourse analysis indicated that the non-science educational background and the science teaching context implied a need for self-driven professional development. The non-science educational background teachers were generally unfamiliar with the current national science curriculum, and that they would not be comfortable when the researcher observed their science teaching practice. They also believed that experimentation was the only one strategy for teaching science, and that the priority for their teaching support was teaching media rather than their understanding of scientific concepts or teaching strategies. As implication of this research, subsequent developments on science teacher profession in rural context, therefore, need to promote teachers' understandings of nature of science and technological and pedagogical content knowledge. In addition, they should be challenged to practice on critically participatory action research for academic growth and professional learning community.

  7. A 20-Year Survey of Scientific Literacy and Attitudes Toward Science_An Overview

    NASA Astrophysics Data System (ADS)

    Impey, Chris David; Antonellis, J.; Johnson, E.; King, C.; CATS

    2009-01-01

    This poster presents the results of a long-term investigation into the science literacy and attitudes toward science of University of Arizona non-science major undergraduates. The survey instrument utilized in this study was derived from measures of adults’ science literacy, as defined and assessed by the National Science Foundation in its biannual Science and Engineering Indicators reports to the National Science Board. In addition, the survey instrument measures attitudes toward science and technology and toward pseudoscience. Quantitative data from over 9000 questionnaires have been into a database, and qualitative data from four open-ended questions has been coded thematically (see Antonellis et al., this meeting). The data will be used to address a number of research questions in the area of science education and science policy, including (1) how the level of science literacy of undergraduates compares to the adult population; (2) how science literacy and attitudes towards science have changed since 1987; (3) the relationship between science knowledge and attitudes towards science; and (4) the extent to which General Education science requirements at a large State university affect science knowledge and attitudes. The data will also be used to critically examine the concept of science literacy. The results of this study are being used by CATS to develop a survey instrument designed specifically for use with Astro 101 students to diagnose the effect our instruction has on their scientific attitudes and beliefs. We acknowledge the NSF for funding under Award No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS).

  8. Leveraging High Resolution Topography for Education and Outreach: Updates to OpenTopography to make EarthScope and Other Lidar Datasets more Prominent in Geoscience Education

    NASA Astrophysics Data System (ADS)

    Kleber, E.; Crosby, C. J.; Arrowsmith, R.; Robinson, S.; Haddad, D. E.

    2013-12-01

    The use of Light Detection and Ranging (lidar) derived topography has become an indispensable tool in Earth science research. The collection of high-resolution lidar topography from an airborne or terrestrial platform allows landscapes and landforms to be represented at sub-meter resolution and in three dimensions. In addition to its high value for scientific research, lidar derived topography has tremendous potential as a tool for Earth science education. Recent science education initiatives and a community call for access to research-level data make the time ripe to expose lidar data and derived data products as a teaching tool. High resolution topographic data fosters several Disciplinary Core Ideas (DCIs) of the Next Generation Science Standards (NGS, 2013), presents respective Big Ideas of the new community-driven Earth Science Literacy Initiative (ESLI, 2009), teaches to a number National Science Education Standards (NSES, 1996), and Benchmarks for Science Literacy (AAAS, 1993) for science education for undergraduate physical and environmental earth science classes. The spatial context of lidar data complements concepts like visualization, place-based learning, inquiry based teaching and active learning essential to teaching in the geosciences. As official host to EarthScope lidar datasets for tectonically active areas in the western United States, the NSF-funded OpenTopography facility provides user-friendly access to a wealth of data that is easily incorporated into Earth science educational materials. OpenTopography (www.opentopography.org), in collaboration with EarthScope, has developed education and outreach activities to foster teacher, student and researcher utilization of lidar data. These educational resources use lidar data coupled with free tools such as Google Earth to provide a means for students and the interested public to visualize and explore Earth's surface in an interactive manner not possible with most other remotely sensed imagery. The education section of the OpenTopography portal has recently been strengthened with the addition of several new resources and the re-organization of existing content for easy discovery. New resources include a detailed frequently asked questions (FAQ) section, updated 'How-to' videos for downloading data from OpenTopography and additional webpages aimed at students, educators and researchers leveraging existing and updated resources from OpenTopography, EarthScope and other organizations. In addition, the OpenLandform catalog, an online collection of classic geologic landforms depicted in lidar, has been updated to include additional tectonic landforms from EarthScope lidar datasets.

  9. Conceptual change in pre-service science teachers' views on nature of science when learning a unit on the physics of waves

    NASA Astrophysics Data System (ADS)

    Kattoula, Ehsan Habib

    Recent reform efforts in science education have culminated in National Science Education Standards (NSES), which include the nature of science and science inquiry themes across all grade levels. Consideration must be given to pre-service science teachers' nature of science conceptions and their perceived roles in implementing the nature of science in the science classroom. This qualitative study investigates how pre-service science teachers' views about the nature of science develop and change when learning a college physics unit on waves in an urban university. The study uses case study methodology with four pre-service science teachers as individual units of analysis. Data regarding the participants' views about the nature of science were collected before and after the instruction on the physics of waves unit. The research design used 'The Views of Nature of Science/Views of Scientific Inquiry-Physics Questionnaire' followed by structured interviews throughout the wave unit. In addition, the participants responded to daily questions that incorporated nature of science themes and constructed concept maps regarding the physics content and their nature of science understanding. After completing the VNOS/VOSI-PHYS questionnaire the pre-service science teachers' views of the nature of science were found to be mainly naive and transitional before the instruction. At the end of the wave unit instruction, the data indicated that conceptual change occurred in participants' nature of science views, shifting toward informed views. The findings of this study provide evidence that using explicit instruction with specific activities, such as experiments and concept mapping, shifted the pre-service science teachers' views away from naive and toward informed.

  10. Congressional Science Fellow tackles science policy for U.K.

    NASA Astrophysics Data System (ADS)

    Moses, Julie J.

    After an AGU Congressional Science Fellowship in 1997-1998,I decided to pursue science policy further. I spied an ad in the Sunday Washington Post advertising for someone with a science degree, who also had knowledge of the United Kingdom, and science policy experience on Capitol Hill. In addition to my Ph.D. from the University of California at Los Angeles and the Congressional Science Fellowship, I had spent two years in the U.K. as a post-doc at Queen Mary and Westfield College in London.I applied for the job, which was at the British Embassy in Washington, D.C., and was hired. The UK Foreign Office has a tradition of hiring many of its embassy staff locally; they consider knowledge of local politics and issues very use ful for their interests. Now I cover hard science issues, including space and the Internet for Her Majesty's Government.

  11. Experience the natural sciences: Programs for teachers at the University of Hawaii at Hilo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hapai, M.N.

    1994-12-31

    Since 1988, the University of Hawaii at Hilo Science and Education faculty have jointly created programs for pre- and in-service teachers, and to improve science teaching, to increase the number of science teachers, and to improve scientific literacy in the general population. The National Sciences major, approved in 1991, with both elementary and secondary teaching options, has gone from three degree seeking candidates in the fall of 1991 to fifty-nine in the spring of 1994. The major provides elementary teachers with a general science degree and teaching certification; and secondary teachers with a more intense general science degree, a specializedmore » minor, and teaching certification. Additionally, a new 18 credit Natural Sciences Certificate for in-service elementary teachers, designed to enhance their scientific background and classroom methodology, has already attracted over 250 teachers within the last year.« less

  12. Utilizing Remote Sensing Data to Ascertain Soil Moisture Applications and Air Quality Conditions

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory; Kempler, Steve; Teng, William; Friedl, Lawrence; Lynnes, Chris

    2009-01-01

    Recognizing the significance of NASA remote sensing Earth science data in monitoring and better understanding our planet's natural environment, NASA Earth Applied Sciences has implemented the 'Decision Support Through Earth Science Research Results' program. Several applications support systems through collaborations with benefiting organizations have been implemented. The Goddard Earth Sciences Data and Information Services Center (GES DISC) has participated in this program on two projects (one complete, one ongoing), and has had opportune ad hoc collaborations utilizing NASA Earth science data. GES DISC's understanding of Earth science missions and resulting data and information enables the GES DISC to identify challenges that come with bringing science data to research applications. In this presentation we describe applications research projects utilizing NASA Earth science data and a variety of resulting GES DISC applications support system project experiences. In addition, defining metrics that really evaluate success will be exemplified.

  13. ‘The kind of mildly curious sort of science interested person like me’: Science bloggers’ practices relating to audience recruitment

    PubMed Central

    Ranger, Mathieu; Bultitude, Karen

    2014-01-01

    With at least 150 million professional and amateur blogs on the Internet, blogging offers a potentially powerful tool for engaging large and diverse audiences with science. This article investigates science blogging practices to uncover key trends, including bloggers’ self-perceptions of their role. Interviews with seven of the most popular science bloggers revealed them to be driven by intrinsic personal motivations. Wishing to pursue their love of writing and share their passion for science, they produce content suitable for niche audiences of science enthusiasts, although they do not assume background scientific knowledge. A content analysis of 1000 blog posts and comparison with the most popular blogs on the Internet further confirmed this result and additionally identified key factors that affect science blog popularity, including update frequency, topic diversity and the inclusion of non-text elements (especially images and video). PMID:25361791

  14. 'The kind of mildly curious sort of science interested person like me': Science bloggers' practices relating to audience recruitment.

    PubMed

    Ranger, Mathieu; Bultitude, Karen

    2016-04-01

    With at least 150 million professional and amateur blogs on the Internet, blogging offers a potentially powerful tool for engaging large and diverse audiences with science. This article investigates science blogging practices to uncover key trends, including bloggers' self-perceptions of their role. Interviews with seven of the most popular science bloggers revealed them to be driven by intrinsic personal motivations. Wishing to pursue their love of writing and share their passion for science, they produce content suitable for niche audiences of science enthusiasts, although they do not assume background scientific knowledge. A content analysis of 1000 blog posts and comparison with the most popular blogs on the Internet further confirmed this result and additionally identified key factors that affect science blog popularity, including update frequency, topic diversity and the inclusion of non-text elements (especially images and video). © The Author(s) 2014.

  15. 3D construction and repair from welding and material science perspectives

    NASA Astrophysics Data System (ADS)

    Marya, Surendar; Hascoet, Jean-Yves

    2016-10-01

    Additive manufacturing, based on layer-by-layer deposition of a feedstock material from a 3D data, can be mechanistically associated to welding. With feedstock fusion based processes, both additive manufacturing and welding implement similar heat sources, feedstock materials and translation mechanisms. From material science perspectives, additive manufacturing can take clue from lessons learned by millennium old welding technology to rapidly advance in its quest to generate fit for service metallic parts. This paper illustrates material science highlights extracted from the fabrication of a 316 L air vent and the functional repair of a Monel K500 (UNS N0500) with Inconel 625.

  16. Is cognitive science usefully cast as complexity science?

    PubMed

    Van Orden, Guy; Stephen, Damian G

    2012-01-01

    Readers of TopiCS are invited to join a debate about the utility of ideas and methods of complexity science. The topics of debate include empirical instances of qualitative change in cognitive activity and whether this empirical work demonstrates sufficiently the empirical flags of complexity. In addition, new phenomena discovered by complexity scientists, and motivated by complexity theory, call into question some basic assumptions of conventional cognitive science such as stable equilibria and homogeneous variance. The articles and commentaries that appear in this issue also illustrate a new debate style format for topiCS. Copyright © 2011 Cognitive Science Society, Inc.

  17. Participatory Action Research Experiences for Undergraduates

    NASA Astrophysics Data System (ADS)

    Sample McMeeking, L. B.; Weinberg, A. E.

    2013-12-01

    Research experiences for undergraduates (REU) have been shown to be effective in improving undergraduate students' personal/professional development, ability to synthesize knowledge, improvement in research skills, professional advancement, and career choice. Adding to the literature on REU programs, a new conceptual model situating REU within a context of participatory action research (PAR) is presented and compared with data from a PAR-based coastal climate research experience that took place in Summer 2012. The purpose of the interdisciplinary Participatory Action Research Experiences for Undergraduates (PAREU) model is to act as an additional year to traditional, lab-based REU where undergraduate science students, social science experts, and community members collaborate to develop research with the goal of enacting change. The benefits to traditional REU's are well established and include increased content knowledge, better research skills, changes in attitudes, and greater career awareness gained by students. Additional positive outcomes are expected from undergraduate researchers (UR) who participate in PAREU, including the ability to better communicate with non-scientists. With highly politicized aspects of science, such as climate change, this becomes especially important for future scientists. Further, they will be able to articulate the relevance of science research to society, which is an important skill, especially given the funding climate where agencies require broader impacts statements. Making science relevant may also benefit URs who wish to apply their science research. Finally, URs will gain social science research skills by apprenticing in a research project that includes science and social science research components, which enables them to participate in future education and outreach. The model also positively impacts community members by elevating their voices within and outside the community, particularly in areas severely underserved socially and politically. The PAREU model empowers the community to take action from the research they, themselves, conducted, and enables them to carry out future research. Finally, many of these communities (and the general public) lack the understanding of the nature of science, which leads to ignorance on the part of citizens in areas of science such as climate change. By participating in science/social science research, community members gain a better understanding of the nature of science, making them more informed citizens. The PAREU model is theoretically grounded in decades of research in social science and documented impacts of student research experiences. In addition to providing practical benefits for communities with needs solvable by scientific research, the model builds on and expands student skills gained from traditional REU programs Deep and sustained engagement among scientists, social scientists, and community leaders is expected to create better informed citizens and improve their ability to solve problems.

  18. The Nature of Science and the Role of Knowledge and Belief

    NASA Astrophysics Data System (ADS)

    Cobern, William W.

    In everyday language we tend to think of knowledge as reasoned belief that a proposition is true and the natural sciences provide the archetypal example of what it means to know. Religious and ideological propositions are the typical examples of believed propositions. Moreover, the radical empiricist worldview so often associated with modern science has eroded society's meaningful sense of life. Western history, however, shows that knowledge and belief have not always been constructed separately. In addition, modern developments in the philosophy and history of science have seriously undermined the radical empiricist's excessive confidence in scientific methods. Acknowledging in the science classroom the parallel structure of knowledge and belief, and recognizing that science requires a presuppositional foundation that is itself not empirically verifiable would re introduce a valuable discussion on the meaning of science and its impact on life. Science would less likely be taught as a `rhetoric of conclusions'. The discussion would also help students to gain a firmer integration of science with other important knowledge and beliefs that they hold.

  19. Influence of Psychosocial Classroom Environment on Students' Motivation and Self-Regulation in Science Learning: A Structural Equation Modeling Approach

    NASA Astrophysics Data System (ADS)

    Velayutham, Sunitadevi; Aldridge, Jill M.

    2013-04-01

    The primary aim of this study was two-fold: 1) to identify salient psychosocial features of the classroom environment that influence students' motivation and self-regulation in science learning; and 2) to examine the effect of the motivational constructs of learning goal orientation, science task value and self-efficacy in science learning on students' self-regulation in science classrooms. Data collected from 1360 science students in grades 8, 9 and 10 in five public schools in Perth, Western Australia were utilized to validate the questionnaires and to investigate the hypothesized relationships. Structural Equation Modeling analysis suggested that student cohesiveness, investigation and task orientation were the most influential predictors of student motivation and self-regulation in science learning. In addition, learning goal orientation, task value and self-efficacy significantly influenced students' self-regulation in science. The findings offer potential opportunities for educators to plan and implement effective pedagogical strategies aimed at increasing students' motivation and self-regulation in science learning.

  20. More Than Just Chemistry: The Impact of a Collaborative Participant Structure on Student Perceptions of Science

    NASA Astrophysics Data System (ADS)

    Patchen, Terri; Smithenry, Dennis W.

    2015-02-01

    Researchers have theorized that integrating authentic science activities into classrooms will help students learn how working scientists collaboratively construct knowledge, but few empirical studies have examined students' experiences with these types of activities. Utilizing data from a comparative, mixed-methods study, we considered how integrating a complex, collaborative participant structure into a secondary school chemistry curriculum shapes students' perceptions of what constitutes "science." We found that the implementation of this participant structure expanded student perceptions of chemistry learning beyond the typical focus on science content knowledge to include the acquisition of collaboration skills. This support for the collaborative construction of knowledge, in addition to the appropriation of scientific content, establishes the conditions for what science educators and scientists say they want: students who can work together to solve science problems. Radical shifts towards such collaborative participant structures are necessary if we are to modify student perceptions of science and science classrooms in ways that are aligned with recent calls for science education reform.

  1. Fueling Interest in Science: An After-School Program Model that Works

    ERIC Educational Resources Information Center

    Koenig, Kathleen; Hanson, Margaret

    2008-01-01

    As our society becomes more technologically advanced and jobs require additional related skills, it is important that all girls, not just those interested in science, technology, engineering, and math (commonly referred to as the STEM disciplines), take advanced levels of science and math in high school. Evidence suggests that intervention…

  2. Hypothetical Biotechnology Companies: A Role-Playing Student Centered Activity for Undergraduate Science Students

    ERIC Educational Resources Information Center

    Chuck, Jo-Anne

    2011-01-01

    Science students leaving undergraduate programs are entering the biotechnology industry where they are presented with issues which require integration of science content. Students find this difficult as through-out their studies, most content is limited to a single subdiscipline (e.g., biochemistry, immunology). In addition, students need…

  3. Science Books, Volume 9 Number 4.

    ERIC Educational Resources Information Center

    Wolff, Kathryn, Ed.

    This quarterly publication of the American Association for the Advancement of Science contains reviews of trade books, textbooks, and reference works in the pure and applied sciences which are intended for students in the elementary and secondary schools and in the first two years of college. In addition, books on scientific topics intended for…

  4. Science: Standard Course of Study and Grade Level Competencies, K-12. [Revision].

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh.

    This document was created to establish competency goals and objectives for teaching and learning science in North Carolina for grades K-12. It contains the concepts and theories, strands, skills, and processes upon which all science instruction should be based. In addition, the curriculum defines and illustrates the connections between the…

  5. Role of Islamic Science Textbooks and Teaching Methods in Arab Schools and Universities and Ideological Extremism

    ERIC Educational Resources Information Center

    Hammad, Hamza Abed Alkarim

    2014-01-01

    The study concludes that most Islamic sciences courses in schools and universities adopt a dogmatic or indoctrinatory approach combined with little room for dialogue and discussion. The study recommends reconsidering Islamic science textbooks through including additional higher-order thinking skills and reconsidering Sharia faculties' syllabi.

  6. 78 FR 37363 - Endangered and Threatened Wildlife and Plants; Listing Determination for the New Mexico Meadow...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ... available science and application of that science and to provide any additional scientific information to... areas of science are limited, some uncertainties are associated with this assessment. Where we have.... Within this short timeframe, it must breed, birth and raise young, and store up sufficient fat reserves...

  7. 78 FR 47582 - Endangered and Threatened Wildlife and Plants; Endangered Species Status for the Sharpnose Shiner...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... analysis of the best available science and application of that science and to provide any additional... in these areas of science are limited, some uncertainties are associated with this assessment. Where... in the foreseeable future (threatened species). Because of the fact-specific nature of listing...

  8. Valuing Little Steps toward Inquiry

    ERIC Educational Resources Information Center

    Grueber, David; Whitin, Phyllis

    2012-01-01

    In a climate of high-stakes testing that emphasizes content, it can be challenging to teach science from an inquiry perspective. In addition there is a widespread call for a new approach to science education that includes science practices, crosscutting concepts, and core ideas (NRC 2011). However, it is not imperative for teachers to implement…

  9. Differential Influences of Family Processes for Scientifically Talented Individuals' Academic Achievement along Developmental Stages

    ERIC Educational Resources Information Center

    Cho, Seokhee; Campbell, James Reed

    2011-01-01

    Differential influences of various family processes for students of science talent and students in general education from Grades 4 to 12 and Science Olympians in Korea were examined by administering Korean Inventory of Parental Influence. Korean Science Olympians were additionally interviewed about their family and school experiences. Family…

  10. 76 FR 44024 - Agency Information Collection Activities: Submission for Review; Information Collection Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... collection of Life Sciences Subject Matter Experts (SMEs) information with the Office of the Director of... review of life science programs. In addition, the directory makes it easier to identify scientific... provide scientific expertise for peer review of life science programs. The directory makes it easier to...

  11. Spacelab 3

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The primary purpose of the Spacelab 3 mission is to conduct materials science experiments in a stable low-gravity environment. In addition, the crew will do research in life sciences, fluid mechanics, atmospheric science, and astronomy. Spacelab 3 and a mission scenario are described. Mission development and management and the crew are described. Summaries of the scientific investigations are also included.

  12. Signing in Science

    ERIC Educational Resources Information Center

    Ashby, Rachael

    2013-01-01

    This article describes British Sign Language (BSL) as a viable option for teaching science. BSL is used by a vast number of people in Britain but is seldom taught in schools or included informally alongside lessons. With its new addition of a large scientific glossary, invented to modernise the way science is taught to deaf children, BSL breaks…

  13. Paper Cuts Don't Hurt at the Gerstein Library

    ERIC Educational Resources Information Center

    Cunningham, Heather; Feder, Elah; Muise, Isaac

    2010-01-01

    The Gerstein Science Information Centre (Gerstein Library) is one of 40 libraries within the University of Toronto (U of T) and is the largest academic science and health science library in Canada. It offers 109 computers and two networked printers for student, staff, and faculty use. In addition, the library provides patrons' laptops with…

  14. Networking Antarctic Research Discoveries to a Science Classroom

    ERIC Educational Resources Information Center

    Podoll, Andrew; Olson, Barry; Montplaisir, Lisa; Schwert, Donald; McVicar, Kim; Comez, Dogan; Martin, William

    2008-01-01

    In 2006, a unique scenario transported eighth-grade Earth science students from the classroom into the cold, dry, pristine surroundings of Antarctica. The mission was to expose the students to hands-on science using satellite telephones, Contact 3.0 software, and some very creative improvisation. In addition, a detailed, well-illustrated blog…

  15. 77 FR 20014 - President's Council of Advisors on Science and Technology (PCAST): Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... DEPARTMENT OF ENERGY President's Council of Advisors on Science and Technology (PCAST): Correction... call for the President's Council of Advisors on Science and Technology (PCAST). The notice is being corrected to change the time and to add an additional purpose. Correction In the Federal Register of March...

  16. A New Approach to Improving Science, Technology, Engineering, and Math Education. Backgrounder No. 2259

    ERIC Educational Resources Information Center

    Lips, Dan; McNeill, Jena Baker

    2009-01-01

    The authors express reservations about additional federal funding for the National Science Foundation, including new funding for science, technology, engineering, and math (STEM) education programs, provided by the American Recovery and Reinvestment Act of 2009. For more than 50 years, American political, business, military, and academic leaders…

  17. Engaging Elementary Students in Learning Science: An Analysis of Classroom Dialogue

    ERIC Educational Resources Information Center

    Watters, James J.; Diezmann, Carmel M.

    2016-01-01

    Research over a long period of time has continued to demonstrate problems in the teaching of science in school. In addition, declining levels of participation and interest in science and related fields have been reported from many particularly western countries. Among the strategies suggested is the recruitment of professional scientists and…

  18. Methodical Approaches to Teaching of Computer Modeling in Computer Science Course

    ERIC Educational Resources Information Center

    Rakhimzhanova, B. Lyazzat; Issabayeva, N. Darazha; Khakimova, Tiyshtik; Bolyskhanova, J. Madina

    2015-01-01

    The purpose of this study was to justify of the formation technique of representation of modeling methodology at computer science lessons. The necessity of studying computer modeling is that the current trends of strengthening of general education and worldview functions of computer science define the necessity of additional research of the…

  19. Impact of Science-Technology Learning Environment Characteristics on Learning Outcomes: Pupils' Perceptions and Gender Differences

    ERIC Educational Resources Information Center

    Doppelt, Yaron

    2004-01-01

    Science and technology are connected to each other and are mutually inspiring. The science-technology curriculum for junior-high school in Israel suggests that teachers integrate these subjects. In addition, this curriculum calls for infusing thinking competencies into the learning subjects and for implementing alternatives in assessment methods…

  20. Using a modified argument-driven inquiry to promote elementary school students' engagement in learning science and argumentation

    NASA Astrophysics Data System (ADS)

    Chen, Hsiang-Ting; Wang, Hsin-Hui; Lu, Ying-Yan; Lin, Huann-shyang; Hong, Zuway-R.

    2016-01-01

    This study explored the effects of a modified argument-driven inquiry approach on Grade 4 students' engagement in learning science and argumentation in Taiwan. The students were recruited as an experimental group (EG, n = 36) to join a 12-week study, while another 36 Grade 4 students from the same schools were randomly selected to be the comparison group (CG). All participants completed a questionnaire at the beginning and end of this study. In addition, four target students with the highest and the other four students with the lowest pretest engagement in learning science or argumentation to be observed weekly and interviewed following the posttest. Initial results revealed that the EG students' total engagement in learning science and argumentation and the claim and warrant components were significantly higher than the CG students. In addition, the EG students' anxiety in learning science significantly decreased during the study; and their posttest total engagement in learning science scores were positively associated with their argumentation scores. Interview and observation results were consistent with the quantitative findings. Instructional implications and research recommendations are discussed.

  1. Investigation of science faculty with education specialties within the largest university system in the United States.

    PubMed

    Bush, Seth D; Pelaez, Nancy J; Rudd, James A; Stevens, Michael T; Tanner, Kimberly D; Williams, Kathy S

    2011-01-01

    Efforts to improve science education include university science departments hiring Science Faculty with Education Specialties (SFES), scientists who take on specialized roles in science education within their discipline. Although these positions have existed for decades and may be growing more common, few reports have investigated the SFES approach to improving science education. We present comprehensive data on the SFES in the California State University (CSU) system, the largest university system in the United States. We found that CSU SFES were engaged in three key arenas including K-12 science education, undergraduate science education, and discipline-based science education research. As such, CSU SFES appeared to be well-positioned to have an impact on science education from within science departments. However, there appeared to be a lack of clarity and agreement about the purpose of these SFES positions. In addition, formal training in science education among CSU SFES was limited. Although over 75% of CSU SFES were fulfilled by their teaching, scholarship, and service, our results revealed that almost 40% of CSU SFES were seriously considering leaving their positions. Our data suggest that science departments would likely benefit from explicit discussions about the role of SFES and strategies for supporting their professional activities.

  2. Investigation of Science Faculty with Education Specialties within the Largest University System in the United States

    PubMed Central

    Bush, Seth D.; Pelaez, Nancy J.; Rudd, James A.; Stevens, Michael T.; Tanner, Kimberly D.; Williams, Kathy S.

    2011-01-01

    Efforts to improve science education include university science departments hiring Science Faculty with Education Specialties (SFES), scientists who take on specialized roles in science education within their discipline. Although these positions have existed for decades and may be growing more common, few reports have investigated the SFES approach to improving science education. We present comprehensive data on the SFES in the California State University (CSU) system, the largest university system in the United States. We found that CSU SFES were engaged in three key arenas including K–12 science education, undergraduate science education, and discipline-based science education research. As such, CSU SFES appeared to be well-positioned to have an impact on science education from within science departments. However, there appeared to be a lack of clarity and agreement about the purpose of these SFES positions. In addition, formal training in science education among CSU SFES was limited. Although over 75% of CSU SFES were fulfilled by their teaching, scholarship, and service, our results revealed that almost 40% of CSU SFES were seriously considering leaving their positions. Our data suggest that science departments would likely benefit from explicit discussions about the role of SFES and strategies for supporting their professional activities. PMID:21364098

  3. The ASP: Programs to Inspire Educators

    NASA Astrophysics Data System (ADS)

    Hurst, Anna; Gurton, S.; Bennett, M.; Berendson, M.; Gibbs, M.

    2006-12-01

    The Astronomical Society of the Pacific (ASP) provides educators with new approaches to hands-on astronomy and space science. Through interactive educational programs, our goal is to help more people understand, appreciate, and enjoy astronomy and science. Over the past several years, the ASP has re-dedicated itself to achieving this mission through an ever-expanding portfolio of programs. Our astronomy and education programs target educators of all descriptions classroom teachers, informal science educators (in science museums, planetariums, nature centers, etc.), college astronomy teachers, and amateur astronomers providing them with materials and training to capture the attention of their students and audiences and to introduce them to science via an initial engagement in astronomy. In this poster we provide an overview of current programs that include partnerships with the National Optical Astronomy Observatory, the Association of Science-Technology Centers, TERC, the Astronomical League, NASA, and the SETI Institute to address this broad range of formal and informal educators. Additionally, the poster will provide a summary of recently conducted research by the ASP regarding the Project ASTRO program, done in cooperation with our national partners, to gauge whether the program, as perceived by the teachers participating in Project ASTRO, a) assists in correcting common misconceptions in astronomy or science and b) improve students' attitudes towards science. Additional information regarding the ASP's educational programs can be found at: www.astrosociety.org/education.html

  4. Experiences in Bridging the Gap between Science and Decision Making at NASA's GSFC Earth Science Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Kempler, Steven; Teng, Bill; Friedl, Lawrence; Lynnes, Chris; Leptoukh, Gregory

    2008-01-01

    Recognizing the significance of NASA remote sensing Earth science data in monitoring and better understanding our planet s natural environment, NASA has implemented the Decision Support Through Earth Science Research Results program (NASA ROSES solicitations). a) This successful program has yielded several monitoring, surveillance, and decision support systems through collaborations with benefiting organizations. b) The Goddard Space Flight Center (GSFC) Earth Sciences Data and Information Services Center (GES DISC) has participated in this program on two projects (one complete, one ongoing), and has had opportune ad hoc collaborations gaining much experience in the formulation, management, development, and implementation of decision support systems utilizing NASA Earth science data. c) In addition, GES DISC s understanding of Earth science missions and resulting data and information, including data structures, data usability and interpretation, data interoperability, and information management systems, enables the GES DISC to identify challenges that come with bringing science data to decision makers. d) The purpose of this presentation is to share GES DISC decision support system project experiences in regards to system sustainability, required data quality (versus timeliness), data provider understanding of how decisions are made, and the data receivers willingness to use new types of information to make decisions, as well as other topics. In addition, defining metrics that really evaluate success will be exemplified.

  5. Uncovering the lived experiences of junior and senior undergraduate female science majors

    NASA Astrophysics Data System (ADS)

    Adornato, Philip

    The following dissertation focuses on a case study that uses critical theory, social learning theory, identity theory, liberal feminine theory, and motivation theory to conduct a narrative describing the lived experience of females and their performance in two highly selective private university, where students can cross-register between school, while majoring in science, technology, engineering and mathematics (STEM). Through the use of narratives, the research attempts to shed additional light on the informal and formal science learning experiences that motivates young females to major in STEM in order to help increase the number of women entering STEM careers and retaining women in STEM majors. In the addition to the narratives, surveys were performed to encompass a larger audience while looking for themes and phenomena which explore what captivates and motivates young females' interests in science and continues to nurture and facilitate their growth throughout high school and college, and propel them into a major in STEM in college. The purpose of this study was to uncover the lived experiences of junior and senior undergraduate female science majors during their formal and informal education, their science motivation to learn science, their science identities, and any experiences in gender inequity they may have encountered. The findings have implications for young women deciding on future careers and majors through early exposure and guidance, understanding and recognizing what gender discrimination, and the positive effects of mentorships.

  6. Widespread distribution and unexpected variation among science faculty with education specialties (SFES) across the United States.

    PubMed

    Bush, Seth D; Pelaez, Nancy J; Rudd, James A; Stevens, Michael T; Tanner, Kimberly D; Williams, Kathy S

    2013-04-30

    College and university science departments are increasingly taking an active role in improving science education. Perhaps as a result, a new type of specialized science faculty position within science departments is emerging--referred to here as science faculty with education specialties (SFES)--where individual scientists focus their professional efforts on strengthening undergraduate science education, improving kindergarten-through-12th grade science education, and conducting discipline-based education research. Numerous assertions, assumptions, and questions about SFES exist, yet no national studies have been published. Here, we present findings from a large-scale study of US SFES, who are widespread and increasing in numbers. Contrary to many assumptions, SFES were indeed found across the nation, across science disciplines, and, most notably, across primarily undergraduate, master of science-granting, and PhD-granting institutions. Data also reveal unexpected variations among SFES by institution type. Among respondents, SFES at master of science-granting institutions were almost twice as likely to have formal training in science education compared with other SFES. In addition, SFES at PhD-granting institutions were much more likely to have obtained science education funding. Surprisingly, formal training in science education provided no advantage in obtaining science education funding. Our findings show that the SFES phenomenon is likely more complex and diverse than anticipated, with differences being more evident across institution types than across science disciplines. These findings raise questions about the origins of differences among SFES and are useful to science departments interested in hiring SFES, scientific trainees preparing for SFES careers, and agencies awarding science education funding.

  7. Preservice Elementary Teachers' Science Self-Efficacy Beliefs and Science Content Knowledge

    NASA Astrophysics Data System (ADS)

    Menon, Deepika; Sadler, Troy D.

    2016-10-01

    Self-efficacy beliefs that relate to teachers' motivation and performance have been an important area of concern for preservice teacher education. Research suggests high-quality science coursework has the potential to shape preservice teachers' science self-efficacy beliefs. However, there are few studies examining the relationship between science self-efficacy beliefs and science content knowledge. The purpose of this mixed methods study is to investigate changes in preservice teachers' science self-efficacy beliefs and science content knowledge and the relationship between the two variables as they co-evolve in a specialized science content course. Results from pre- and post-course administrations of the Science Teaching Efficacy Belief Instrument-B (Bleicher, 2004) and a physical science concept test along with semi-structured interviews, classroom observations and artifacts served as data sources for the study. The 18 participants belonged to three groups representing low, medium and high initial levels of self-efficacy beliefs. A repeated measures multivariate analysis of variance design was used to test the significance of differences between the pre- and post-surveys across time. Results indicated statistically significant gains in participants' science self-efficacy beliefs and science conceptual understandings. Additionally, a positive moderate relationship between gains in science conceptual understandings and gains in personal science teaching efficacy beliefs was found. Qualitative analysis of the participants' responses indicated positive shifts in their science teacher self-image and they credited their experiences in the course as sources of new levels of confidence to teach science. The study includes implications for preservice teacher education programs, science teacher education, and research.

  8. Widespread distribution and unexpected variation among science faculty with education specialties (SFES) across the United States

    PubMed Central

    Bush, Seth D.; Pelaez, Nancy J.; Rudd, James A.; Stevens, Michael T.; Tanner, Kimberly D.; Williams, Kathy S.

    2013-01-01

    College and university science departments are increasingly taking an active role in improving science education. Perhaps as a result, a new type of specialized science faculty position within science departments is emerging—referred to here as science faculty with education specialties (SFES)—where individual scientists focus their professional efforts on strengthening undergraduate science education, improving kindergarten-through-12th grade science education, and conducting discipline-based education research. Numerous assertions, assumptions, and questions about SFES exist, yet no national studies have been published. Here, we present findings from a large-scale study of US SFES, who are widespread and increasing in numbers. Contrary to many assumptions, SFES were indeed found across the nation, across science disciplines, and, most notably, across primarily undergraduate, master of science-granting, and PhD-granting institutions. Data also reveal unexpected variations among SFES by institution type. Among respondents, SFES at master of science-granting institutions were almost twice as likely to have formal training in science education compared with other SFES. In addition, SFES at PhD-granting institutions were much more likely to have obtained science education funding. Surprisingly, formal training in science education provided no advantage in obtaining science education funding. Our findings show that the SFES phenomenon is likely more complex and diverse than anticipated, with differences being more evident across institution types than across science disciplines. These findings raise questions about the origins of differences among SFES and are useful to science departments interested in hiring SFES, scientific trainees preparing for SFES careers, and agencies awarding science education funding. PMID:23589844

  9. Connecting Students and Policymakers through Science and Service-Learning

    NASA Astrophysics Data System (ADS)

    Szymanski, D. W.

    2017-12-01

    Successful collaborations in community science require the participation of non-scientists as advocates for the use of science in addressing complex problems. This is especially true, but particularly difficult, with respect to the wicked problems of sustainability. The complicated, unsolvable, and inherently political nature of challenges like climate change can provoke cynicism and apathy about the use of science. While science education is a critical part of preparing all students to address wicked problems, it is not sufficient. Non-scientists must also learn how to advocate for the role of science in policy solutions. Fortunately, the transdisciplinary nature of sustainability provides a venue for engaging all undergraduates in community science, regardless of major. I describe a model for involving non-science majors in a form of service-learning, where the pursuit of community science becomes a powerful pedagogical tool for civic engagement. Bentley University is one of the few stand-alone business schools in the United States and provides an ideal venue to test this model, given that 95% of Bentley's 4000 undergraduates major in a business discipline. The technology-focused business program is combined with an integrated arts & sciences curriculum and experiential learning opportunities though the nationally recognized Bentley Service-Learning and Civic Engagement Center. In addition to a required general education core that includes the natural sciences, students may opt to complete a second major in liberal studies with thematic concentrations like Earth, Environment, and Global Sustainability. In the course Science in Environmental Policy, students may apply to complete a service-learning project for an additional course credit. The smaller group of students then act as consultants, conducting research for a non-profit organization in the Washington, D.C. area involved in geoscience policy. At the end of the semester, students travel to D.C. and present their findings to the non-profit partner and make policy recommendations to legislators in Capitol Hill visits. The projects have been highly impactful as a form of community science, creating passionate science advocacy among non-majors, improving collaborations with community partners, and spurring action by federal policymakers.

  10. Exploring scientific creativity of eleventh-grade students in Taiwan

    NASA Astrophysics Data System (ADS)

    Liang, Jia-Chi

    2002-04-01

    Although most researchers focus on scientists' creativity, students' scientific creativity should be considered, especially for high school and college students. It is generally assumed that most professional creators in science emerge from amateur creators. Therefore, the purpose of this study is to investigate the relationship between students' scientific creativity and selected variables including creativity, problem finding, formulating hypotheses, science achievement, the nature of science, and attitudes toward science for finding significant predictors of eleventh grade students' scientific creativity. A total of 130 male eleventh-grade students in three biology classes participated in this study. The main instruments included the Test of Divergent Thinking (TDT) for creativity measurement, the Creativity Rating Scale (CRS) and the Creative Activities and Accomplishments Check Lists (CAACL ) for measurement of scientific creativity, the Nature of Scientific Knowledge Scale (NSKS) for measurement of the nature of science, and the Science Attitude Inventory II (SAI II) for measurement of attitudes toward science. In addition, two instruments on measuring students' abilities of problem finding and abilities of formulating hypotheses were developed by the researcher in this study. Data analysis involved descriptive statistics, Pearson product-moment correlations, and stepwise multiple regressions. The major findings suggested the following: (1) students' scientific creativity significantly correlated with some of selected variables such as attitudes toward science, problem finding, formulating hypotheses, the nature of science, resistance to closure, originality, and elaboration; (2) four significant predictors including attitudes toward science, problem finding, resistance to closure, and originality accounted for 48% of the variance of students' scientific creativity; (3) there were big differences between students with a higher and a lower degree of scientific creativity on the variables of family support, career images, and readings about science; and (4) many students were confused about the creative and moral levels on NSKS and the concept of "almighty of science" and purposes of science on SAI II. The results of this study may provide a more holistic and integrative interpretation of students' scientific creativity and propose better ways of evaluating students' scientific creativity. In addition, the research results may encourage teachers to view scientific creativity as an ability that can be enhanced through various means in classroom science teaching.

  11. Dimensions of science capital: exploring its potential for understanding students' science participation

    NASA Astrophysics Data System (ADS)

    DeWitt, Jennifer; Archer, Louise; Mau, Ada

    2016-11-01

    As concerns about participation rates in post-compulsory science continue unabated, considerable research efforts have been focused on understanding and addressing the issue, bringing various theoretical lenses to bear on the problem. One such conceptual lens is that of 'science capital' (science-related forms of social and cultural capital), which has begun to be explored as a tool for examining differential patterns of aspiration and participation in science. This paper continues this line of work, attempting to further refine our conceptualisation of science capital and to consider potential insights it might offer beyond existing, related constructs. We utilise data from two surveys conducted in England as part of the wider Enterprising Science project, a broader national survey and a more targeted survey, completed by students from schools generally serving more disadvantaged populations. Logistic regression analyses indicated that science capital was more closely related than cultural capital to science aspirations-related outcome variables. In addition, further analyses reflected that particular dimensions of science capital (science literacy, perceived transferability and utility of science, family influences) seem to be more closely related to anticipated future participation and identity in science than others. These patterns held for both data sets. While these findings are generally in alignment with previous research, we suggest that they highlight the potential value of science capital as a distinct conceptual lens, which also carries particular implications for the types of interventions that may prove valuable in considering ways to address disparities in science engagement and participation.

  12. The effects of a summer science camp teaching experience on preservice elementary teachers' science teaching efficacy, science content knowledge, and understanding of the nature of science

    NASA Astrophysics Data System (ADS)

    Logerwell, Mollianne G.

    The purpose of this study was to investigate the impact of a summer science camp teaching experience on preservice elementary teachers' science teaching efficacy, science content knowledge, and understanding of the nature of science. Master's degree students enrolled in the elementary Fairfax Partnership Schools (FPS, n = 21) cohort served as the treatment group, while those enrolled in the Loudoun Partnership Schools (LPS, n = 15) and Professional Development Schools (PDS, n = 24) cohorts at George Mason University served as the control groups. The treatment group planned for and taught a two-week inquiry- and problem-based summer science camp as part of their science methods course, while the control groups did not. The Science Teaching Efficacy Belief Instrument (STEBI), a science content assessment, a personal data questionnaire, and a modified version of the Views of Nature of Science Questionnaire (VNOS-C) were administered to the participants at the beginning and end of their science methods course. Analyses revealed significant increases for the FPS group in general science teaching efficacy, personal science teaching efficacy, science teaching outcome expectancy, general science knowledge, biology content knowledge, chemistry content knowledge, and understanding of NOS; the LPS group in general science teaching efficacy, personal science teaching efficacy, chemistry content knowledge, and understanding of NOS; and, the PDS group in general science teaching efficacy, personal science teaching efficacy, and chemistry content knowledge. Additionally, the FPS group had significantly higher general science teaching efficacy than both control groups, personal science teaching efficacy than the PDS group, and understanding of NOS than the LPS group. Overall, the findings indicate that course length is not as important for developing preservice teachers' teaching efficacy and understanding of content as having connected, authentic field-based teaching experiences that are based on best-practices research and coupled with methodological instruction.

  13. High-School Students' Epistemic Knowledge of Science and Its Relation to Learner Factors in Science Learning

    NASA Astrophysics Data System (ADS)

    Yang, Fang-Ying; Liu, Shiang-Yao; Hsu, Chung-Yuan; Chiou, Guo-Li; Wu, Hsin-Kai; Wu, Ying-Tien; Chen, Sufen; Liang, Jyh-Chong; Tsai, Meng-Jung; Lee, Silvia W.-Y.; Lee, Min-Hsien; Lin, Che-Li; Chu, Regina Juchun; Tsai, Chin-Chung

    2017-04-01

    The purpose of this study was to develop and validate an online contextualized test for assessing students' understanding of epistemic knowledge of science. In addition, how students' understanding of epistemic knowledge of science interacts with learner factors, including time spent on science learning, interest, self-efficacy, and gender, was also explored. The participants were 489 senior high school students (244 males and 245 females) from eight different schools in Taiwan. Based on the result of an extensive literature review, we first identified six factors of epistemic knowledge of science, such as status of scientific knowledge, the nature of scientific enterprise, measurement in science, and so on. An online test was then created for assessing students' understanding of the epistemic knowledge of science. Also, a learner-factor survey was developed by adopting previous PISA survey items to measure the abovementioned learner factors. The results of this study show that; (1) by factor analysis, the six factors of epistemic knowledge of science could be grouped into two dimensions which reflect the nature of scientific knowledge and knowing in science, respectively; (2) there was a gender difference in the participants' understanding of the epistemic knowledge of science; and (3) students' interest in science learning and the time spent on science learning were positively correlated to their understanding of the epistemic knowledge of science.

  14. Around Marshall

    NASA Image and Video Library

    2002-05-29

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA); Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. An arnex, scheduled for completion by summer 2002, will add an additional 80,000 square feet (7,432 square meters) to NSSTC nearly doubling the size of the core facility. At full capacity, the completed NSSTC will top 200,000 square feet (18,580 square meters) and house approximately 550 employees.

  15. New Mexico State Secondary School Science-Based Nutrition Curriculum.

    ERIC Educational Resources Information Center

    Ecklund, Susan, Ed.; Smalley, Katherine, Ed.

    This curriculum guide provides instructional materials for a 10-unit secondary-level science-based nutrition course. Each unit contains some or all of the following components: a summary sheet for each function, including generalizations with corresponding objectives, additional learning activities, and additional resources; unit outline; pretest;…

  16. 78 FR 70040 - Draft Integrated Science Assessment for Nitrogen Oxides-Health Criteria

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... (NO 2 ). The Integrated Science Assessment (ISA), in conjunction with additional technical and policy... the secondary (welfare-based) NAAQS for NO 2 , in conjunction with a review of the secondary NAAQS for... called an Air Quality Criteria Document). The ISA, in conjunction with additional technical and policy...

  17. 21 CFR 570.20 - General principles for evaluating the safety of food additives.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of Sciences-National Research Council. A petition will not be denied, however, by reason of the... of Sciences-National Research Council if, from available evidence, the Commissioner finds that the... purposes of this section, the principles for evaluating safety of additives set forth in the above...

  18. Affective Objectives in Community College Science.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    Science teachers need to stress several kinds of objectives in teaching and learning. One kind, cognitive, receives major emphasis by teachers. In addition to vital facts and concepts, pupils should also acquire major generalizations. And, in addition to facts, concepts, and generalizations, pupils also need to be able to think critically.…

  19. Unquestioned answers or unanswered questions: beliefs about science guide responses to uncertainty in climate change risk communication.

    PubMed

    Rabinovich, Anna; Morton, Thomas A

    2012-06-01

    In two experimental studies we investigated the effect of beliefs about the nature and purpose of science (classical vs. Kuhnian models of science) on responses to uncertainty in scientific messages about climate change risk. The results revealed a significant interaction between both measured (Study 1) and manipulated (Study 2) beliefs about science and the level of communicated uncertainty on willingness to act in line with the message. Specifically, messages that communicated high uncertainty were more persuasive for participants who shared an understanding of science as debate than for those who believed that science is a search for absolute truth. In addition, participants who had a concept of science as debate were more motivated by higher (rather than lower) uncertainty in climate change messages. The results suggest that achieving alignment between the general public's beliefs about science and the style of the scientific messages is crucial for successful risk communication in science. Accordingly, rather than uncertainty always undermining the effectiveness of science communication, uncertainty can enhance message effects when it fits the audience's understanding of what science is. © 2012 Society for Risk Analysis.

  20. The Role of Project Science in the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Weisskopf, Martin C.

    2006-01-01

    The Chandra X-Ray Observatory, one of NASA's Great Observatories, has an outstanding record of scientific and technical success. This success results from the efforts of a team comprising NASA, its contractors, the Smithsonian Astrophysical Observatory, the instrument groups, and other elements of the scientific community, including thousands of scientists who utilize this powerful facility for astrophysical research. We discuss the role of NASA Project Science in the formulation, development, calibration, and operation of the Chandra X-ray Observatory. In addition to representing the scientific community within the Project, Project Science performed what we term "science systems engineering". This activity encompasses translation of science requirements into technical requirements and assessment of the scientific impact of programmatic and technical trades. We briefly describe several examples of science systems engineering conducted by Chandra Project Science.

  1. [Re]considering queer theories and science education

    NASA Astrophysics Data System (ADS)

    Fifield, Steve; Letts, Will

    2014-06-01

    We take Mattias Lundin's Inviting queer ideas into the science classroom: studying sexual education from a queer perspective as a point of departure to explore some enduring issues related to the use of queer theories to interrogate science education and its practices. We consider the uneasy, polygamous relationship between gay and lesbian studies and queer theories; the border surveillance that characterizes so much of science [education]; the alluring call of binaries and binary thinking; the `all' within the catchcry `science for all'; and the need to better engage the fullness of science and the curriculum, in addition to noting silences around diverse sexes, sexualities, and desires. We catalogue some of the challenges that persist in this work, and offer thoughts about how to work with and against them to enact a more just and compelling science education.

  2. Overview of the Microgravity Science Glovebox (MSG)

    NASA Technical Reports Server (NTRS)

    Wright, Mary Etta

    1999-01-01

    MSG is a third generation glovebox for Microgravity Science investigations: SpaceLab Glovebox (GBX); Middeck/MIR Gloveboxes (M/MGBX); and GBX and M/MGBX developed by Bradford Engineering (NL). Previous flights have demonstrated utility of glovebox facilities: Contained environment enables broader range of science experiments; Affords better control of video and photographic imaging (a prime data source); Provides better environmental control than cabin atmosphere; and Useful for contingency operations. MSG developed in response to demands for increased work volume, increased capabilities and additional resources. MSG is multi-user facility to support a wide range of small science and technology investigations: Fluid physics; Combustion science; Material science; Biotechnology (cell culturing and protein crystal growth); Space processing; Fundamental physics; and Technology demonstrations. Topics included in this viewgraph are: MSG capabilities; MSG hardware items; MSG, GSE, and OSE items; MSG development approach; and Science utilization.

  3. Examining an online microbiology game as an effective tool for teaching the scientific process.

    PubMed

    Bowling, Kristi G; Klisch, Yvonne; Wang, Shu; Beier, Margaret

    2013-01-01

    This study investigates the effectiveness of the online Flash game Disease Defenders in producing knowledge gains for concepts related to the scientific process. Disease Defenders was specifically designed to model how the scientific process is central to a variety of disciplines and science careers. An additional question relates to the game's ability to shift attitudes toward science. Middle school classes from grades six to eight were assigned to the experimental group (n = 489) or control group (n = 367) and asked to participate in a three-session intervention. The sessions involved completing a pretest, a game play session, and taking a posttest. Students in the experimental group played Disease Defenders while students in the control group played an alternative science game. Results showed a significant increase in mean science knowledge scores for all grades in the experimental group, with sixth grade and seventh grade students gaining more knowledge than eighth grade students. Additionally, results showed a significant positive change in science attitudes only among sixth graders, who also rated their satisfaction with the game more favorably than students in higher grades. No differences in mean test scores were found between genders for science knowledge or science attitudes, suggesting that the game is equally effective for males and females.

  4. Computer Technology-Integrated Projects Should not Supplant Craft Projects in Science Education

    NASA Astrophysics Data System (ADS)

    Klopp, Tabatha J.; Rule, Audrey C.; Suchsland Schneider, Jean; Boody, Robert M.

    2014-03-01

    The current emphasis on computer technology integration and narrowing of the curriculum has displaced arts and crafts. However, the hands-on, concrete nature of craft work in science modeling enables students to understand difficult concepts and to be engaged and motivated while learning spatial, logical, and sequential thinking skills. Analogy use is also helpful in understanding unfamiliar, complex science concepts. This study of 28 academically advanced elementary to middle-school students examined student work and perceptions during a science unit focused on four fossil organisms: crinoid, brachiopod, horn coral and trilobite. The study compared: (1) analogy-focused instruction to independent Internet research and (2) computer technology-rich products to crafts-based products. Findings indicate student products were more creative after analogy-based instruction and when made using technology. However, students expressed a strong desire to engage in additional craft work after making craft products and enjoyed making crafts more after analogy-focused instruction. Additionally, more science content was found in the craft products than the technology-rich products. Students expressed a particular liking for two of the fossil organisms because they had been modeled with crafts. The authors recommend that room should be retained for crafts in the science curriculum to model science concepts.

  5. Examining an Online Microbiology Game as an Effective Tool for Teaching the Scientific Process†

    PubMed Central

    Bowling, Kristi G.; Klisch, Yvonne; Wang, Shu; Beier, Margaret

    2013-01-01

    This study investigates the effectiveness of the online Flash game Disease Defenders in producing knowledge gains for concepts related to the scientific process. Disease Defenders was specifically designed to model how the scientific process is central to a variety of disciplines and science careers. An additional question relates to the game’s ability to shift attitudes toward science. Middle school classes from grades six to eight were assigned to the experimental group (n = 489) or control group (n = 367) and asked to participate in a three-session intervention. The sessions involved completing a pretest, a game play session, and taking a posttest. Students in the experimental group played Disease Defenders while students in the control group played an alternative science game. Results showed a significant increase in mean science knowledge scores for all grades in the experimental group, with sixth grade and seventh grade students gaining more knowledge than eighth grade students. Additionally, results showed a significant positive change in science attitudes only among sixth graders, who also rated their satisfaction with the game more favorably than students in higher grades. No differences in mean test scores were found between genders for science knowledge or science attitudes, suggesting that the game is equally effective for males and females. PMID:23858354

  6. Los Alamos Neutron Science Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kippen, Karen Elizabeth

    For more than 30 years the Los Alamos Neutron Science Center (LANSCE) has provided the scientific underpinnings in nuclear physics and material science needed to ensure the safety and surety of the nuclear stockpile into the future. In addition to national security research, the LANSCE User Facility has a vibrant research program in fundamental science, providing the scientific community with intense sources of neutrons and protons to perform experiments supporting civilian research and the production of medical and research isotopes. Five major experimental facilities operate simultaneously. These facilities contribute to the stockpile stewardship program, produce radionuclides for medical testing, andmore » provide a venue for industrial users to irradiate and test electronics. In addition, they perform fundamental research in nuclear physics, nuclear astrophysics, materials science, and many other areas. The LANSCE User Program plays a key role in training the next generation of top scientists and in attracting the best graduate students, postdoctoral researchers, and early-career scientists. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) —the principal sponsor of LANSCE—works with the Office of Science and the Office of Nuclear Energy, which have synergistic long-term needs for the linear accelerator and the neutron science that is the heart of LANSCE.« less

  7. Adding "Missed" Science to Cassini's Ops Plan

    NASA Technical Reports Server (NTRS)

    Roy, Mou; Burton, Marcia E.; Edgington, Scott; Pitesky, Jo E.; Steadman, Kimberly B.; Ray, Trina L.; Evans, Mike

    2014-01-01

    The phenomenal success of the Cassini Mission at Saturn is largely due to flagship instruments, in a target rich environment, for a long period of time, executing almost error free complex mission operations. A smooth transition from cruise operations through the prime science mission and extended science (Equinox) mission culminating in the currently executing Solstice mission has folded in necessary procedural alterations due to improved understanding of the spacecraft, instruments, uplink and planning systems as well as additional science objectives. These have come with the maturation of the mission along with management of workforce reductions. One important set of operational changes has been initiated due to scientific findings highlighting "missed" science opportunities. This is the case for the Titan Meteorology Campaigns and Saturn Storm Watch Campaigns. These observations involve long term monitoring of the atmospheres of Titan and Saturn while the spacecraft and science teams are focused on other high priority targets of opportunity (like Enceladus). Our objective in this paper is to emphasize how a non-invasive strategy to get additional remarkable science was conceived and implemented in a mission with an already well defined operational plan. To illustrate this we will detail Titan Meteorology Campaign and Saturn Storm Watch Campaign integration and implementation strategies as well as the scientific goals and achievements of both.

  8. Marine Science Initiative at South Carolina State College: An Investigation of the Biosensing Parameters Regulating Bacterial and Larval Attachment on Substrata

    DTIC Science & Technology

    1993-08-12

    State College would provide the educational facilities and SCWMRD would provide the initial research facilities. Research and teaching would be conducted...by ti"lizing the 52 ft. R/V ALila as a teaching platform for short cruises in Charleston Harbor. In addition, a marine science career day would be...held to expose students to careers in marine science. 3. To have appropriate SCWMRD scientists teach courses in topics related to marine science for

  9. Microgravity Science Glovebox - Airlock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Once the Microgravity Science Glovebox (MSG) is sealed, additional experiment items can be inserted through a small airlock at the bottom right of the work volume. It is shown here with the door removed. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  10. Microgravity Science Glovebox - Working Volume

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Access ports, one on each side of the Microgravity Science Glovebox (MSG), will allow scientists to place large experiment items inside the MSG. The ports also provide additional glove ports (silver disk) for greater access to the interior. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  11. Microgravity Science Glovebox - Airlock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Once the Microgravity Science Glovebox (MSG) is sealed, additional experiment items can be inserted through a small airlock at the bottom right of the work volume. It is shown here with the door open. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  12. The Psychology of Physical Science

    NASA Astrophysics Data System (ADS)

    Feist, Gregory J.

    2006-12-01

    Who becomes a physical scientist is not completely a coincidence. People with spatial talent and who are thing-oriented are most likely to be attracted to physical science, including astronomy. Additional lessons from the psychology of science suggest that compared with non-scientists and social scientists, physical scientists are most likely to be introverted, independent, self-confident, and yet somewhat arrogant. Understanding the physical and inanimate world is part of what physical scientists do, and understanding those who understand the physical world is part of what psychologists of science do.

  13. NASA Global Hawk Overview

    NASA Technical Reports Server (NTRS)

    Naftel, Chris

    2014-01-01

    The NASA Global Hawk Project is supporting Earth Science research customers. These customers include: US Government agencies, civilian organizations, and universities. The combination of the Global Hawks range, endurance, altitude, payload power, payload volume and payload weight capabilities separates the Global Hawk platform from all other platforms available to the science community. This presentation includes an overview of the concept of operations and an overview of the completed science campaigns. In addition, the future science plans, using the NASA Global Hawk System, will be presented.

  14. An Analysis of Cognitive Style Profiles and Related Science Achievement Among Secondary School Students.

    ERIC Educational Resources Information Center

    Ogden, William R.; Brewster, Patricia M.

    The purpose of this study was to identify cognitive styles for successful and unsuccessful science students at the secondary level. Additional purposes were to identify common and unique elements in these composite cognitive styles and to substantiate the description of the groups of successful and unsuccessful science students according to the…

  15. Improving Student Science Achievement in Grades 4-6 through Hands-On Materials and Concept Verbalization.

    ERIC Educational Resources Information Center

    Brooks, Roger C.

    This report describes a program designed to improve science achievement among students in grades 4-6 in a New Hampshire school. The areas of improvement included physical, earth, and life sciences. Analysis of the problem indicated a need for improved teaching techniques and for additional materials related to the instructional strategies. The…

  16. Elementary Students' Self-Efficacy Beliefs in Science: Role of Grade Level, Gender, and Socio-Economic Status

    ERIC Educational Resources Information Center

    Karaarslan, Guliz; Sungur, Semra

    2011-01-01

    This study examined grade level and gender difference with respect to elementary students' science and technology self-efficacy. Additionally, relationship between socio-economic status (SES) and self-efficacy was examined. A total of 145 elementary students participated in the study. Self efficacy towards Science and Technology Scale was used to…

  17. Academic Commitment and Self-Efficacy as Predictors of Academic Achievement in Additional Materials Science

    ERIC Educational Resources Information Center

    Vogel, F. Ruric; Human-Vogel, Salomé

    2016-01-01

    A great deal of research within science and engineering education revolves around academic success and retention of science and engineering students. It is well known that South Africa is experiencing, for various reasons, an acute shortage of engineers. Therefore, we think it is important to understand the factors that contribute to attrition…

  18. Decision Making Associated with Selecting an Integrated or a Discipline Model for Middle School Science Instruction

    ERIC Educational Resources Information Center

    Brockbank, Brennan R.

    2017-01-01

    Purpose: This study sought to identify, understand, and describe the decision-making processes used by school districts to determine the middle school science course sequence as part of the adoption of the Next Generation Science Standards. Additionally, this study explored and described the expressed comments, feelings, and beliefs of…

  19. Differences in the Socio-Emotional Competency Profile in University Students from different Disciplinary Area

    ERIC Educational Resources Information Center

    Castejon, Juan Luis; Cantero, Ma. Pilar; Perez, Nelida

    2008-01-01

    Introduction: The main objective of this paper is to establish a profile of socio-emotional competencies characteristic of a sample of students from each of the big academic areas in higher education: legal sciences, social sciences, education, humanities, science and technology, and health. An additional objective was to analyse differences…

  20. The Science Teaching Self-Efficacy of Prospective Elementary Education Majors Enrolled in Introductory Geology Lab Sections

    ERIC Educational Resources Information Center

    Baldwin, Kathryn A.

    2014-01-01

    This study examined prospective elementary education majors' science teaching self-efficacy while they were enrolled in an introductory geology lab course for elementary education majors. The Science Teaching Efficacy Belief Instrument Form B (STEBI-B) was administered during the first and last lab class sessions. Additionally, students were…

  1. The Development and Validation of a Two-Tiered Multiple-Choice Instrument to Identify Alternative Conceptions in Earth Science

    ERIC Educational Resources Information Center

    Mangione, Katherine Anna

    2010-01-01

    This study was to determine reliability and validity for a two-tiered, multiple- choice instrument designed to identify alternative conceptions in earth science. Additionally, this study sought to identify alternative conceptions in earth science held by preservice teachers, to investigate relationships between self-reported confidence scores and…

  2. Focused Science Delivery makes science make sense.

    Treesearch

    Rachel W. Scheuering; Jamie Barbour

    2004-01-01

    Science does not exist in a vacuum, but reading scientific publications might make you think it does. Although the policy and management implications of their findings could often touch a much wider audience, many scientists write only for the few people in the world who share their area of expertise. In addition, most scientific publications provide information that...

  3. Pre-Service Secondary Science and Mathematics Teachers' Classroom Management Styles in Turkey

    ERIC Educational Resources Information Center

    Yilmaz, Kursad

    2009-01-01

    The aim of this study is to determine Pre-service secondary science and mathematics teachers' classroom management styles in Turkey. In addition, differences in pre-service secondary science and mathematics teachers' classroom management styles by gender, and field of study were examined. In the study, the survey model was employed. The research…

  4. An Added Layer of Support: Introducing a Heterarchical Peer Mentoring Intervention to a Preservice Science Teacher Education Cohort

    ERIC Educational Resources Information Center

    Neesemann, Lisa Ann

    2017-01-01

    In an effort to support preservice science teachers during their concurrent student teaching experiences and masters coursework, I created and implemented a Peer Mentoring Intervention to add an additional layer of support to those most traditionally curated. In this intervention, preservice secondary science teachers were paired into…

  5. Developing EAL Learners' Science Conceptual Understanding through Visualisation

    ERIC Educational Resources Information Center

    Hainsworth, Mark

    2017-01-01

    Science can be a difficult subject for EAL (English as an Additional Language) learners to master, mainly because of the prominent role that language plays in the acquisition of scientific concepts. Language is essential to science because it is the means by which we envisage and communicate new ideas. Teaching this new language to pupils involves…

  6. To Stay or Leave: Factors That Impact Undergraduate Women's Persistence in Science Majors

    ERIC Educational Resources Information Center

    Gayles, Joy Gaston; Ampaw, Frim

    2016-01-01

    This study examined factors that influenced undergraduates' decision to enter, leave, or stay within science majors. In addition, we sought to understand if such decisions differed by gender and type of science major. Using Beginning Postsecondary Students (BPS) longitudinal survey data, we found that women were less likely to select a science…

  7. Supplementary Activities for Enriching the Teaching of Earth Science: Astronomy, Geology, Meteorology, Oceanography.

    ERIC Educational Resources Information Center

    Exline, Joseph D., Ed.

    This publication is intended to be an aid for secondary school science teachers in providing some additional student-oriented activities to enrich the earth science program. These activities have been classroom tested by teachers and have been considered by these teachers to be educationally successful. This publication is a product of the Earth…

  8. To appreciate variation between scientists: A perspective for seeing science's vitality

    NASA Astrophysics Data System (ADS)

    Wong, E. David

    2002-05-01

    At the heart of theoretical and practical ideas about science education is an image of scientific work. This image draws attention to particular features of scientific work, which then guides scholarship and pedagogy in science education. In the field of science education, much discussion in this vein focuses on the question, What is the nature of science? Most images of science found in education, psychology, and philosophy emerge from conceptual and methodological perspectives that emphasize norms, conventions, and broad trends. Some groups are motivated to distinguish science from other activities while some groups work in the opposite direction and blur the lines between science and others ways of knowing. Underlying both perspectives is an implicit focus on general qualities common to groups or subgroups (e.g. believing that ideas are subject to change, explanations demand evidence, science is a complex social activities, etc.). I propose that the vital qualities of science are best illuminated by just the opposite process: by appreciating the uncommon, rather than common, features. By attending to individual variation, we are more likely to understand what makes science a creative, motivating, and deeply personal enterprise. In addition, appreciating these variations reveals judgment, creativity, adaptation - the hallmark of scientific work. Implications of this perspective for science education are discussed.

  9. K-5 mentor teachers' journeys toward reform-oriented science within a professional development school context

    NASA Astrophysics Data System (ADS)

    Manno, Jacqueline L.

    Reform-oriented science teaching with a specific focus on evidence and explanation provides a student-centered learning environment which encourages children to question, seek answers to those questions, experience phenomena, share ideas, and develop explanations of science concepts based on evidence. One of the ways schools have risen to meet the challenge of ever-increasing demands for success in science and all other curricular areas has been in the development of professional development schools (PDSs). Dedicated to the simultaneous renewal of schools and teacher education programs, the structure of a PDS plays a significant role in the change process. The purpose of this research study was to investigate the nature of change in mentor teachers' beliefs and pedagogical practices toward science teaching in the elementary school as conveyed through their own "stories of practice". The major research questions that guided the study were: (1) How do mentor teachers describe their science teaching practices and how have they changed as a result of participation in PDS? (a) In what ways do PDS mentor teachers' descriptions of practice reflect contemporary reform ideas and practices in science education? (b) To what extent do their stories emphasize technical aspects of teaching versus epistemological changes in their thinking and knowledge? (c) How is student learning in science reflected in teachers' stories of practice? (2) What is the relationship between the levels and types of involvement in PDS to change in thinking about and practices of teaching science? (3) What is the depth of commitment that mentors convey about changes in science teaching practices? Using case study design, the research explored the ways experienced teachers, working within the context of a PDS community, described changes in the ways they think about and teach science. The connection to the issue of change in teaching practices grew out of interest in understanding the relationship between mentor teachers' engagement in PDS activities and their thinking about classroom practice. The main focus of this research study was on change in science teaching within the context of a professional development school. PDS literature and current literature on the learning and teaching of science in grades K-8 provided a theoretical orientation to guide the research. Additionally, literature on the process of change in schools helped to narrow the focus of the study while using a lens of situated learning provided additional insight. Analysis of the interview data generated seven assertions that captured the nature of the change process of mentor teachers. Science-specific professional development as well as strong support and encouragement within an active community of learners played significant roles in the transformation of mentor teachers from traditional or activity-based science teachers into educators who use reform-oriented methods and a lens of evidence and explanation to guide their science teaching. Mentor teachers acknowledged an increase in student interest and excitement toward science as a result of these changes in science teaching practices. In addition, data revealed that mentor teachers remained committed to their changed practice after several years. By examining the change process of mentor teachers in a PDS environment, findings from this study are discussed based on implications regarding the factors that contribute to and affect change as reform-oriented practices are implemented in science, a curricular area that is often neglected by elementary teachers.

  10. Blogging the Stories of Citizen Science to Inspire Participation, Build Community, and Increase Public Understanding of Science

    NASA Astrophysics Data System (ADS)

    Gardiner, L. S.; Cavalier, D.; Ohab, J.; Taylor, L.

    2011-12-01

    Sharing citizen science projects and the experiences that people have with science through blogs provides avenues to foster public understanding of science and showcase ways that people can get involved. Blogs, combined with other social media such as Twitter and Facebook, make science social - adding a human element to the process of scientific discovery. We have been sharing stories of citizen science through two blogs. Intended for a general public audience. The Science for Citizens blog (http://scienceforcitizens.net/blog/) was started in 2010 and links blog posts to a growing network of citizen science projects. Citizen Science Buzz (http://www.talkingscience.org/category/citizen-science-buzz/) was started in 2011 on the TalkingScience blog network, a project of the Science Friday Initiative. Both blogs aim to increase the exposure of citizen science projects, inspire people to do citizen science, and connect people with projects that interest them. The timeliness of blogs also provides a good platform for sharing information about one-time citizen science events and short-lived projects. Utilizing Facebook and Twitter increases traffic to blog posts about citizen science events in a timely manner and can help build community around events. Additionally, the timeliness of blogs provides the opportunity to connect citizen science and current events, helping to form geoscience teachable moments out of recent news. For example, highlighting citizen scientists near Birmingham, Alabama who collect weather data after the April 2011 tornado outbreak ravaged that area offers a positive note on how people are volunteering their time to help us all better understand the planet despite a catastrophic event.

  11. Status of teaching elementary science for English learners in science, mathematics and technology centered magnet schools

    NASA Astrophysics Data System (ADS)

    Han, Alyson Kim

    According to the California Commission on Teacher Credentialing (2001), one in three students speaks a language other than English. Additionally, the Commission stated that a student is considered to be an English learner if the second language acquisition is English. In California more than 1.4 million English learners enter school speaking a variety of languages, and this number continues to rise. There is an imminent need to promote instructional strategies that support this group of diverse learners. Although this was not a California study, the results derived from the nationwide participants' responses provided a congruent assessment of the basic need to provide effective science teaching strategies to all English learners. The purpose of this study was to examine the status of elementary science teaching practices used with English learners in kindergarten through fifth grade in public mathematics, science, and technology-centered elementary magnet schools throughout the country. This descriptive research was designed to provide current information and to identify trends in the areas of curriculum and instruction for English learners in science themed magnet schools. This report described the status of elementary (grades K-5) school science instruction for English learners based on the responses of 116 elementary school teachers: 59 grade K-2, and 57 grade 3-5 teachers. Current research-based approaches support incorporating self-directed learning strategy, expository teaching strategy, active listening strategies, questioning strategies, wait time strategy, small group strategy, peer tutoring strategy, large group learning strategy, demonstrations strategy, formal debates strategy, review sessions strategy, mediated conversation strategy, cooperative learning strategy, and theme-based instruction into the curriculum to assist English learners in science education. Science Technology Society (STS) strategy, problem-based learning strategy, discovery learning strategy, constructivist learning strategy, learning cycle strategy, SCALE technique strategy, conceptual change strategy, inquiry-based strategy, cognitive academic language learning approach (CALLA) strategy, and learning from text strategy provide effective science teaching instruction to English learners. These science instructional strategies assist elementary science teachers by providing additional support to make science instruction more comprehensible for English learners.

  12. Laboratory directed research and development annual report 2004.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2004. In addition to a programmatic and financial overview, the report includes progress reports from 352 individual R and D projects in 15 categories. The 15 categories are: (1) Advanced Concepts; (2) Advanced Manufacturing; (3) Biotechnology; (4) Chemical and Earth Sciences; (5) Computational and Information Sciences; (6) Differentiating Technologies; (7) Electronics and Photonics; (8) Emerging Threats; (9) Energy and Critical Infrastructures; (10) Engineering Sciences; (11) Grand Challenges; (12) Materials Science and Technology; (13) Nonproliferation and Materials Control; (14) Pulsed Power and High Energy Densitymore » Sciences; and (15) Corporate Objectives.« less

  13. Recent Science and Engineering Results with the Laser Guidestar Adaptive Optics System at Lick Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavel, D T; Gates, E; Max, C

    2002-10-17

    The Lick Observatory laser guide star adaptive optics system has undergone continual improvement and testing as it is being integrated as a facility science instrument on the Shane 3 meter telescope. Both Natural Guide Star (NGS) and Laser Guide Star (LGS) modes are now used in science observing programs. We report on system performance results as derived from data taken on both science and engineering nights and also describe the newly developed on-line techniques for seeing and system performance characterization. We also describe the future enhancements to the Lick system that will enable additional science goals such as long-exposure spectroscopy.

  14. The Nature of Science and Science Education: A Bibliography

    NASA Astrophysics Data System (ADS)

    Bell, Randy; Abd-El-Khalick, Fouad; Lederman, Norman G.; Mccomas, William F.; Matthews, Michael R.

    Research on the nature of science and science education enjoys a long history, with its origins in Ernst Mach's work in the late nineteenth century and John Dewey's at the beginning of the twentieth century. As early as 1909 the Central Association for Science and Mathematics Teachers published an article - A Consideration of the Principles that Should Determine the Courses in Biology in Secondary Schools - in School Science and Mathematics that reflected foundational concerns about science and how school curricula should be informed by them. Since then a large body of literature has developed related to the teaching and learning about nature of science - see, for example, the Lederman (1992)and Meichtry (1993) reviews cited below. As well there has been intense philosophical, historical and philosophical debate about the nature of science itself, culminating in the much-publicised Science Wars of recent time. Thereferences listed here primarily focus on the empirical research related to the nature of science as an educational goal; along with a few influential philosophical works by such authors as Kuhn, Popper, Laudan, Lakatos, and others. While not exhaustive, the list should prove useful to educators, and scholars in other fields, interested in the nature of science and how its understanding can be realised as a goal of science instruction. The authors welcome correspondence regarding omissions from the list, and on-going additions that can be made to it.

  15. The effect of teacher education level, teaching experience, and teaching behaviors on student science achievement

    NASA Astrophysics Data System (ADS)

    Zhang, Danhui

    Previous literature leaves us unanswered questions about whether teaching behaviors mediate the relationship between teacher education level and experience with student science achievement. This study examined this question with 655 students from sixth to eighth grade and their 12 science teachers. Student science achievements were measured at the beginning and end of 2006-2007 school year. Given the cluster sampling of students nested in classrooms, which are nested in teachers, a two-level multilevel model was employed to disentangle the effects from teacher-level and student-level factors. Several findings were discovered in this study. Science teachers possessing of advanced degrees in science or education significantly and positively influenced student science achievement. However, years of teaching experience in science did not directly influence student science achievement. A significant interaction was detected between teachers possessing an advanced degree in science or education and years of teaching science, which was inversely associated to student science achievement. Better teaching behaviors were also positively related to student achievement in science directly, as well as mediated the relationship between student science achievement and both teacher education and experience. Additionally, when examined separately, each teaching behavior variable (teacher engagement, classroom management, and teaching strategies) served as a significant intermediary between both teacher education and experience and student science achievement. The findings of this study are intended to provide insights into the importance of hiring and developing qualified teachers who are better able to help students achieve in science, as well as to direct the emphases of ongoing teacher inservice training.

  16. 78 FR 56944 - Sunshine Act Meetings; National Science Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... Web site ( http://www.nsf.gov/nsb/notices/ ) for additional information and schedule updates, or...: ``The Future of Advanced Cyberinfrastructure for Science and Engineering, Research and Education...

  17. Drugged Driving

    MedlinePlus

    ... ctrl+c to copy Additional Drug Facts NIDA Science Spotlight- Cannabis Effects on Driving Performance View the ... to First FDA-Approved Medication for Opioid Withdrawal Science Highlight Scientists discover path to better pain medicines ...

  18. Novartis School Lab: bringing young people closer to the world of research and discovering the excitement of science.

    PubMed

    Michel, Christiane Röckl; Standke, Gesche; Naef, Reto

    2012-01-01

    The Novartis School Lab (http://www.novartis.ch/schullabor) is an institution with an old tradition. The School Lab reaches about 5000 students through internal courses and an additional 5000 children at public science events where they can enjoy hands-on science in disciplines of biomedical research. The subjects range from chemistry, physics, molecular biology and genetics to toxicology and medical topics. The Novartis School Lab offers a variety of activities for youngsters aged 10-20 ranging from lab courses for school classes, continuing education for teachers and development of teaching kits, support for individual research projects to outreach for public science events. Innovation and adaptation to changes of current needs are essential aspects for the Novartis School Lab. Ongoing activities to shape the Novartis Biomedical Learning Lab include design of new teaching experiments, exploration into additional disciplines of biomedical science and the creation of a fascinating School Lab of the future.

  19. Can participation in a school science fair improve middle school students' attitudes toward science and interest in science careers?

    NASA Astrophysics Data System (ADS)

    Finnerty, Valerie

    The purpose of this study was to investigate whether participation in a school-based science fair affects middle school students' attitudes toward science and interest in science and engineering careers. A quasi-experimental design was used to compare students' pre- and posttest attitudes toward and interest in science. Forty-eight of the 258 participants completed a school-based science fair during the study. In addition, twelve middle school science teachers completed an online survey. Both the Survey of Science Attitudes and Interest I and II (SSAI-I and II) measured students' attitudes toward and interest in science and science and mathematics self-efficacy, asked about classroom inquiry experiences and gathered demographic information. An online survey gathered qualitative data about science teachers' perceptions of school science fairs. The results showed no significant interactions among completion of a science fair project and attitudes toward and interest in science, science and mathematics self-efficacy or gender. There were significant differences at both pre- and posttest in attitudes between the students who did and did not complete a science fair project. All participating teachers believed that participation in science fairs could have a positive effect on students' attitudes and interest, but cited lack of time as a major impediment. There was significant interaction between level of classroom inquiry and attitudes and interest in science; students who reported more experiences had higher scores on these measures. Classroom inquiry also interacted with the effects of a science fair and participants' pre- and posttest attitude scores. Finally, the amount and source of assistance on a science fair project had a significant impact on students' posttest measures. Major limitations which affect the generalization of these findings include the timing of the administration of the pretest, the number of participants in the experimental group and differences in the science fair procedures at the participating schools. Embedded in a curriculum that includes the teaching of inquiry practices, science fairs may play a role in the inspiration of future scientists, but more research needs to be done on the quality of students' experiences, including amount and type of classroom instruction before and during the science fair process.

  20. Building community partnerships to implement the new Science and Engineering component of the NGSS

    NASA Astrophysics Data System (ADS)

    Burke, M. P.; Linn, F.

    2013-12-01

    Partnerships between science professionals in the community and professional educators can help facilitate the adoption of the Next Generation Science Standards (NGSS). Classroom teachers have been trained in content areas but may be less familiar with the new required Science and Engineering component of the NGSS. This presentation will offer a successful model for building classroom and community partnerships and highlight the particulars of a collaborative lesson taught to Rapid City High School students. Local environmental issues provided a framework for learning activities that encompassed several Crosscutting Concepts and Science and Engineering Practices for a lesson focused on Life Science Ecosystems: Interactions, Energy, and Dynamics. Specifically, students studied local water quality impairments, collected and measured stream samples, and analyzed their data. A visiting hydrologist supplied additional water quality data from ongoing studies to extend the students' datasets both temporally and spatially, helping students to identify patterns and draw conclusions based on their findings. Context was provided through discussions of how science professionals collect and analyze data and communicate results to the public, using an example of a recent bacterial contamination of a local stream. Working with Rapid City High School students added additional challenges due to their high truancy and poverty rates. Creating a relevant classroom experience was especially critical for engaging these at-risk youth and demonstrating that science is a viable career path for them. Connecting science in the community with the problem-solving nature of engineering is a critical component of NGSS, and this presentation will elucidate strategies to help prospective partners maneuver through the challenges that we've encountered. We recognize that the successful implementation of the NGSS is a challenge that requires the support of the scientific community. This partnership represents one model of science and education professionals collaborating to incorporate science and engineering activities into the curriculum.

  1. Inquiry-based science in the middle grades: Assessment of learning in urban systemic reform

    NASA Astrophysics Data System (ADS)

    Marx, Ronald W.; Blumenfeld, Phyllis C.; Krajcik, Joseph S.; Fishman, Barry; Soloway, Elliot; Geier, Robert; Tali Tal, Revital

    2004-12-01

    Science education standards established by American Association for the Advancement of Science (AAAS) and the National Research Council (NRC) urge less emphasis on memorizing scientific facts and more emphasis on students investigating the everyday world and developing deep understanding from their inquiries. These approaches to instruction challenge teachers and students, particularly urban students who often have additional challenges related to poverty. We report data on student learning spanning 3 years from a science education reform collaboration with the Detroit Public Schools. Data were collected from nearly 8,000 students who participated in inquiry-based and technology-infused curriculum units that were collaboratively developed by district personnel and staff from the University of Michigan as part of a larger, district-wide systemic reform effort in science education. The results show statistically significant increases on curriculum-based test scores for each year of participation. Moreover, the strength of the effects grew over the years, as evidenced by increasing effect size estimates across the years. The findings indicate that students who historically are low achievers in science can succeed in standards-based, inquiry science when curriculum is carefully developed and aligned with professional development and district policies. Additional longitudinal research on the development of student understanding over multiple inquiry projects, the progress of teacher enactment over time, and the effect of changes in the policy and administrative environment would further contribute to the intellectual and practical tools necessary to implement meaningful standards-based systemic reform in science.

  2. Students' Perceptions of the Long-Term Impact of Attending a "CSI Science Camp"

    NASA Astrophysics Data System (ADS)

    Yanowitz, Karen L.

    2016-12-01

    A science summer camp is a popular type of informal science experience for youth. While there is no one model of a science camp, these experiences typically allow for more focused and in-depth exploration of different science domains and are usually hands-on and participatory. The goal of this research was to examine the impact of a short science camp program approximately 1 year after students attended the camp. Overall, the results revealed that attending a 2-day forensic science camp had a positive and continuing influence on the participants. Students' science self-efficacy increased immediately after attending the camp and remained higher than pre-camp levels approximately 1 year later. Students were able to articulate why they believed the camp had a long-term impact on their lives. Furthermore, participants attributed a higher level of engaging in additional informal STEM-related activities during the academic year as a result of attending the camp.

  3. NASA Earth Science Research and Applications Using UAVs

    NASA Technical Reports Server (NTRS)

    Guillory, Anthony R.

    2003-01-01

    The NASA Earth Science Enterprise sponsored the UAV Science Demonstration Project, which funded two projects: the Altus Cumulus Electrification Study (ACES) and the UAV Coffee Harvest Optimization experiment. These projects were intended to begin a process of integrating UAVs into the mainstream of NASA s airborne Earth Science Research and Applications programs. The Earth Science Enterprise is moving forward given the positive science results of these demonstration projects to incorporate more platforms with additional scientific utility into the program and to look toward a horizon where the current piloted aircraft may not be able to carry out the science objectives of a mission. Longer duration, extended range, slower aircraft speed, etc. all have scientific advantages in many of the disciplines within Earth Science. The challenge we now face are identifying those capabilities that exist and exploiting them while identifying the gaps. This challenge has two facets: the engineering aspects of redesigning or modifying sensors and a paradigm shift by the scientists.

  4. Inquiry Science: The Gateway to English Language Proficiency

    NASA Astrophysics Data System (ADS)

    Zwiep, Susan Gomez; Straits, William J.

    2013-12-01

    This paper presents findings from a 4-year project that developed and implemented a blended inquiry science and English Language Development (ELD) program in a large urban California school district. The sample included over 2,000 students in Kindergarten through 5th grade. Participating students' English and science achievement was compared to a similar group of students who were using the district's established English language development curriculum. Student performance on statemandated English and science assessments were analyzed using Mann-Whitney U tests for overall performance and by number of years of treatment. Modest but statistically significant improvement was found for students who participated in the blended program. Results from this study suggest that restricting instructional minutes for science to provide additional time for ELD and English language arts may be unnecessary. Rather, allowing consistent time for science instruction that incorporates ELD instruction along with inquiry science experiences may provide the authentic and purposeful context students need to develop new language without restricting access to science content.

  5. Poetry for physicists

    NASA Astrophysics Data System (ADS)

    Tobias, Sheila; Abel, Lynne S.

    1990-09-01

    In an effort to discover what makes the humanities difficult and unpopular with some science and engineering students, 14 Cornell faculty from the disciplines of chemistry, physics, applied mathematics, geology, materials science, and engineering were invited to become ``surrogate learners'' in a junior/senior level poetry seminar designed expressly for them. Their encounter with humanistic pedagogy and scholarship was meant to be an extension of ``Peer Perspectives on Science'' [see S. Tobias and R. R. Hake, ``Professors as physics students: What can they teach us?'' Am. J. Phys. 56, 786 (1988)]. The results challenge certain assumptions about differences between scholarship and pedagogy in the humanities and science (as regards ``certainty'' and models). But the experiment uncovered other problems that affect ``marketing'' the humanities to science and engineering students. Results are some additional insights into what makes science ``hard'' for humanities students and why physical science and engineering students have difficulty with and tend to avoid courses in literature, as well as into what can make humanities courses valuable for science students.

  6. DES Science Portal: II- Creating Science-Ready Catalogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fausti Neto, Angelo; et al.

    We present a novel approach for creating science-ready catalogs through a software infrastructure developed for the Dark Energy Survey (DES). We integrate the data products released by the DES Data Management and additional products created by the DES collaboration in an environment known as DES Science Portal. Each step involved in the creation of a science-ready catalog is recorded in a relational database and can be recovered at any time. We describe how the DES Science Portal automates the creation and characterization of lightweight catalogs for DES Year 1 Annual Release, and show its flexibility in creating multiple catalogs withmore » different inputs and configurations. Finally, we discuss the advantages of this infrastructure for large surveys such as DES and the Large Synoptic Survey Telescope. The capability of creating science-ready catalogs efficiently and with full control of the inputs and configurations used is an important asset for supporting science analysis using data from large astronomical surveys.« less

  7. Attitudes toward science: measurement and psychometric properties of the Test of Science-Related Attitudes for its use in Spanish-speaking classrooms

    NASA Astrophysics Data System (ADS)

    Navarro, Marianela; Förster, Carla; González, Caterina; González-Pose, Paulina

    2016-06-01

    Understanding attitudes toward science and measuring them remain two major challenges for science teaching. This article reviews the concept of attitudes toward science and their measurement. It subsequently analyzes the psychometric properties of the Test of Science-Related Attitudes (TOSRA), such as its construct validity, its discriminant and concurrent validity, and its reliability. The evidence presented suggests that TOSRA, in its Spanish-adapted version, has adequate construct validity regarding its theoretical referents, as well as good indexes of reliability. In addition, it determines the attitudes toward science of secondary school students in Santiago de Chile (n = 664) and analyzes the sex variable as a differentiating factor in such attitudes. The analysis by sex revealed low-relevance gender difference. The results are contrasted with those obtained in English-speaking countries. This TOSRA sample showed good psychometric parameters for measuring and evaluating attitudes toward science, which can be used in classrooms of Spanish-speaking countries or with immigrant populations with limited English proficiency.

  8. Effects of a Collaborative Science Intervention on High Achieving Students' Learning Anxiety and Attitudes toward Science

    NASA Astrophysics Data System (ADS)

    Hong, Zuway-R.

    2010-10-01

    This study investigated the effects of a collaborative science intervention on high achieving students' learning anxiety and attitudes toward science. Thirty-seven eighth-grade high achieving students (16 boys and 21 girls) were selected as an experimental group who joined a 20-week collaborative science intervention, which integrated and utilized an innovative teaching strategy. Fifty-eight eighth-grade high achieving students were selected as the comparison group. The Secondary School Student Questionnaire was conducted to measure all participants' learning anxiety and attitudes toward science. In addition, 12 target students from the experimental group (i.e., six active and six passive students) were recruited for weekly classroom observations and follow-up interviews during the intervention. Both quantitative and qualitative findings revealed that experimental group students experienced significant impact as seen through increased attitudes and decreased anxiety of learning science. Implications for practice and research are provided.

  9. The Rise of Political Interference in Science Policy

    NASA Astrophysics Data System (ADS)

    Carter, J. M.; Goldman, G. T.; Barry, J.

    2017-12-01

    The United States federal government has long relied on independent science to inform policy decisions that impact public health and safety, and the environment. Yet, losses of scientific integrity in federal decisionmaking have persisted, politicizing science and undermining science-based public health protections the government is charged with overseeing. However, politicization of science has accelerated in recent months. Focusing on a series of recent case studies, we investigated different tactics used by political actors to undermine the use of independent science in the policy making process. In this talk, we will highlight and discuss many of these tactics used in the current political era including the delay of science-based decisions, disbanding scientific advisory boards, and the dismissal of scientific evidence. Additionally, this talk will be followed by a discussion of what we might expect for federal scientific integrity in the next few years.

  10. NASA's Elementary and Secondary Education Program: Review and Critique

    NASA Technical Reports Server (NTRS)

    Quinn, Helen R. (Editor); Schweingruber, Heidi A. (Editor); Feder, Michael A. (Editor)

    2008-01-01

    The federal role in precollege science, technology, engineering, and mathematics (STEM) education is receiving increasing attention in light of the need to support public understanding of science and to develop a strong scientific and technical workforce in a competitive global economy. Federal science agencies, such as the National Aeronautics and Space Administration (NASA), are being looked to as a resource for enhancing precollege STEM education and bringing more young people to scientific and technical careers. For NASA and other federal science agencies, concerns about workforce and public understanding of science also have an immediate local dimension. The agency faces an aerospace workforce skewed toward those close to retirement and job recruitment competition for those with science and engineering degrees. In addition, public support for the agency s missions stems in part from public understanding of the importance of the agency s contributions in science, engineering, and space exploration.

  11. Creationism & Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Newton, S.

    2009-12-01

    Although creationists focus on the biological sciences, recently creationists have also expanded their attacks to include the earth sciences, especially on the topic of climate change. The creationist effort to deny climate change, in addition to evolution and radiometric dating, is part of a broader denial of the methodology and validity of science itself. Creationist misinformation can pose a serious problem for science educators, who are further hindered by the poor treatment of the earth sciences and climate change in state science standards. Recent changes to Texas’ science standards, for example, require that students learn “different views on the existence of global warming.” Because of Texas’ large influence on the national textbook market, textbooks presenting non-scientific “different views” about climate change—or simply omitting the subject entirely because of the alleged “controversy”—could become part of K-12 classrooms across the country.

  12. Next-generation Strategies for Human Lunar Sorties

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.

    2013-01-01

    The science community has had success in remote field experiences using two distinctly different models for humans-in-the-loop: the Apollo Science Support team (science backroom), and the robotic exploration of Mars. In the Apollo experience, the science team helped train the crew, designed geologic traverses, and made real-time decisions by reviewing audio and video transmissions and providing recommendations for geologic sampling. In contrast, the Mars Exploration Rover (MER) and Mars Science Lab (MSL) missions have been conducted entirely robotically, with significant time delays between science- driven decisions and remote field activities. Distinctive operations methods and field methodologies were developed for MER/MSL [1,2] because of the reliance on the "backroom" science team (rather than astronaut crew members) to understand the surroundings. Additionally, data are relayed to the team once per day, giving the team many hours or even days to assimilate the data and decide on a plan of action.

  13. Expanding your Horizons: a Program for Engaging Middle School Girls in Science and Mathematics

    NASA Astrophysics Data System (ADS)

    Jahnke, Tamera S.; Level, Allison V.

    Gender equity in science, mathematics, and technology is an issue that has generated the creation of a number of programs. Young women need to be aware that there are a variety of careers in science, mathematics, and technology that they can actively pursue. This article highlights one example of a successful middle school science program in Southwest Missouri. Expanding Your Horizons in Science, Mathematics, and Technology (EYH) integrates keynote speakers, role model mentoring sessions, and small group experiments into a hands-on learning environment. Initial survey results of parents and teachers show support for the conference and indicate that the program helps motivate students to consider careers in science, mathematics, and technology. In addition to the goal of increasing awareness for these young people, there is a need for increased scientific literacy of the general public and an increased application of science to "real world" circumstances. This program addresses these issues.

  14. Scientific Communication and the Nature of Science

    NASA Astrophysics Data System (ADS)

    Nielsen, Kristian H.

    2013-09-01

    Communication is an important part of scientific practice and, arguably, may be seen as constitutive to scientific knowledge. Yet, often scientific communication gets cursory treatment in science studies as well as in science education. In Nature of Science (NOS), for example, communication is rarely mentioned explicitly, even though, as will be argued in this paper, scientific communication could be treated as a central component of NOS. Like other forms of communication, scientific communication is socially and symbolically differentiated. Among other things, it encompasses technical language and grammar, lab communications, and peer reviews, all of which will be treated in this paper in an attempt to engage on an empirical and theoretical level with science as communication. Seeing science as a form of communicative action supplements the epistemological view of science that is standard to both NOS and the philosophy of science. Additions to the seven NOS aspects on Lederman's (Handbook of research on science education. Lawrence Erlbaum, Mahwah, pp. 831-879, 2007) list are put forward as well as preliminary thoughts on the inclusion of scientific communication into NOS instruction.

  15. [The democratic side of science-fiction].

    PubMed

    Lecellier, Charles-Henri

    2011-04-01

    Suspicion towards technological advances has progressively grown during the xx(th) century. However, in the XXI(st) century, reading the NBIC (nanotechnology, biotechnology, information technology and cognitive science) report of the National Science Foundation, we can note that science has caught up with science fiction. These changes in public mentality on one side and in scientific capacities on the other argue for an evolution of the debate on sciences. The recent example of the national debate on nanotechnology in France has clearly shown that the public is no longer waiting for additional sources of scientific knowledge but rather waiting for the recognition of its authority to participate in the definition of the national R&D priority and associated scientific strategies. This is all the more legitimate that these strategies will have profound impact on the future of our societies and therefore cannot be decided only by scientists. Hence, it is crucial to identify innovative tools promoting debate on sciences and their technological spin-off. Here, we contend that science fiction has major assets that could face this challenge and facilitate the dialogue between sciences and society.

  16. A Pharmacology-Based Enrichment Program for Undergraduates Promotes Interest in Science

    PubMed Central

    Godin, Elizabeth A.; Wormington, Stephanie V.; Perez, Tony; Barger, Michael M.; Snyder, Kate E.; Richman, Laura Smart; Schwartz-Bloom, Rochelle; Linnenbrink-Garcia, Lisa

    2015-01-01

    There is a strong need to increase the number of undergraduate students who pursue careers in science to provide the “fuel” that will power a science and technology–driven U.S. economy. Prior research suggests that both evidence-based teaching methods and early undergraduate research experiences may help to increase retention rates in the sciences. In this study, we examined the effect of a program that included 1) a Summer enrichment 2-wk minicourse and 2) an authentic Fall research course, both of which were designed specifically to support students' science motivation. Undergraduates who participated in the pharmacology-based enrichment program significantly improved their knowledge of basic biology and chemistry concepts; reported high levels of science motivation; and were likely to major in a biological, chemical, or biomedical field. Additionally, program participants who decided to major in biology or chemistry were significantly more likely to choose a pharmacology concentration than those majoring in biology or chemistry who did not participate in the enrichment program. Thus, by supporting students' science motivation, we can increase the number of students who are interested in science and science careers. PMID:26538389

  17. Enhanced science capability on the International Space Station

    NASA Astrophysics Data System (ADS)

    Felice, Ronald R.; Kienlen, Mike

    2002-12-01

    It is inevitable that the International Space Station (ISS) will play a significant role in the conduct of science in space. However, in order to provide this service to a wide and broad community and to perform it cost effectively, alternative concepts must be considered to complement NASA"s Institutional capability. Currently science payload forward and return data services must compete for higher priority ISS infrastructure support requirements. Furthermore, initial astronaut crews will be limited to a single shift. Much of their time and activities will be required to meet their physical needs (exercise, recreation, etc.), station maintenance, and station operations, leaving precious little time to actively conduct science payload operations. ISS construction plans include the provisioning of several truss mounted, space-hardened pallets, both zenith and nadir facing. The ISS pallets will provide a platform to conduct both earth and space sciences. Additionally, the same pallets can be used for life and material sciences, as astronauts could place and retrieve sealed canisters for long-term micro-gravity exposure. Thus the pallets provide great potential for enhancing ISS science return. This significant addition to ISS payload capacity has the potential to exacerbate priorities and service contention factors within the exiting institution. In order to have it all, i.e., more science and less contention, the pallets must be data smart and operate autonomously so that NASA institutional services are not additionally taxed. Specifically, the "Enhanced Science Capability on the International Space Station" concept involves placing data handling and spread spectrum X-band communications capabilities directly on ISS pallets. Spread spectrum techniques are considered as a means of discriminating between different pallets as well as to eliminate RFI. The data and RF systems, similar to that of "free flyers", include a fully functional command and data handling system, providing, in part, science solid state recorders and instrument command management sub-systems. This, together with just one direct-to-ground based X-Band station co-located with a science payload operations center provides for a direct data path to ground, bypassing NASA institutions. The science center exists to receive user service requests, perform required constraint checks necessary for safe instrument operations, and to disseminate user science data. Payload commands can be up-linked directly or, if required, relayed through the existing NASA institution. The concept is modular for the downlink Earth terminals; in that multiple downlink X-band ground stations can be utilized throughout the world. This has applications for Earth science data direct to regional centers similar to those services provided by the EOS Terra spacecraft. However, for the purposes of this concept, just one downlink site was selected in order to define the worst-case data acquisition scenario necessary to ascertain concept feasibility. The paper demonstrates that the concept is feasible and can lead to a design that significantly reduces operational dependency on the NASA institutions and astronauts while significantly increasing ISS science operational efficiency and access.

  18. A Case Study Exploring the Identity of an In-Service Elementary Science Teacher: a Language Teacher First

    NASA Astrophysics Data System (ADS)

    Marco-Bujosa, Lisa; Levy, Abigail Jurist; McNeill, Katherine

    2018-01-01

    Teachers are central to providing high-quality science learning experiences called for in recent reform efforts, as their understanding of science impacts both what they teach and how they teach it. Yet, most elementary teachers do not enter the profession with a particular interest in science or expertise in science teaching. Research also indicates elementary schools present unique barriers that may inhibit science teaching. This case study utilizes the framework of identity to explore how one elementary classroom teacher's understandings of herself as a science specialist were shaped by the bilingual elementary school context as she planned for and provided reform-based science instruction. Utilizing Gee's (2000) sociocultural framework, identity was defined as consisting of four interrelated dimensions that served as analytic frames for examining how this teacher understood her new role through social positioning within her school. Findings describe the ways in which this teacher's identity as a science teacher was influenced by the school context. The case study reveals two important implications for teacher identity. First, collaboration for science teaching is essential for elementary teachers to change their practice. It can be challenging for teachers to form an identity as a science teacher in isolation. In addition, elementary teachers new to science teaching negotiate their emerging science practice with their prior experiences and the school context. For example, in the context of a bilingual school, this teacher adapted the reform-based science curriculum to better meet the unique linguistic needs of her students.

  19. Elucidating elementary science teachers' conceptions of the nature of science: A view to beliefs about both science and teaching

    NASA Astrophysics Data System (ADS)

    Keske, Kristina Palmer

    The purpose of this interpretive case study was to elucidate the conceptions of the nature of science held by seven elementary science teachers. The constructivist paradigm provided the philosophical and methodological foundation for the study. Interviews were employed to collect data from the participants about their formal and informal experiences with science. In addition, the participants contributed their perspectives on four aspects of the nature of science: what is science; who is a scientist; what are the methods of science; and how is scientific knowledge constructed. Data analysis not only revealed these teachers' views of science, but also provided insights into how they viewed science teaching. Four themes emerged from the data. The first theme developed around the participants' portrayals of the content of science, with participant views falling on a continuum of limited to universal application of science as procedure. The second theme dealt with the participants' views of the absolute nature of scientific knowledge. Participants' perceptions of the tentative nature of science teaching provided the basis for the third theme concerning the need for absolutes in practice. The fourth theme drew parallels between participants' views of science and science teaching, with two participants demonstrating a consistency in beliefs about knowledge construction across contexts. This study revealed both personal and contextual factors which impacted how the participants saw science and science teaching. Many of the participants' memories of formal science revolved around the memorization of content and were viewed negatively. All the participants had limited formal training in science. Of the seven participants, only two had chosen to be science teachers at the beginning of their careers. The participants' limited formal experiences with science provided little time for exploration into historical, philosophical, and sociological studies of science, a necessary requirement for understanding the scientific enterprise. This study also offered support for the elucidation of teachers' conceptions of the nature of science through in-depth conversations rather than convergent types of assessment. Data analysis of participant responses to isolated aspects of the nature of science yielded incomplete or inconsistent pictures of how the participants saw science. A more consistent picture of science emerged as the participants' beliefs about science and knowledge construction merged. This study proposed that all science teachers need to address their beliefs about knowledge construction across contexts.

  20. Understanding the Influence of Learners' Forethought on Their Use of Science Study Strategies in Postsecondary Science Learning

    NASA Astrophysics Data System (ADS)

    Dunn, Karee E.; Lo, Wen-Juo

    2015-11-01

    Understanding self-regulation in science learning is important for theorists and practitioners alike. However, very little has been done to explore and understand students' self-regulatory processes in postsecondary science courses. In this study, the influence of science efficacy, learning value, and goal orientation on the perceived use of science study strategies was explored using structural equation modeling. In addition, the study served to validate the first two stages of Zimmerman's cyclical model of self-regulation and to address the common methodological weakness in self-regulation research in which data are all collected at one point after the learning cycle is complete. Thus, data were collected across the learning cycle rather than asking students to reflect upon each construct after the learning cycle was complete. The findings supported the hypothesized model in which it was predicted that self-efficacy would significantly and positively influence students' perceived science strategy use, and the influence of students' valuation of science learning on science study strategies would be mediated by their learning goal orientation. The findings of the study are discussed and implications for undergraduate science instructors are proposed.

  1. Quality Teaching in Science: an Emergent Conceptual Framework

    NASA Astrophysics Data System (ADS)

    Jordens, J. Zoe; Zepke, Nick

    2017-09-01

    Achieving quality in higher education is a complex task involving the interrelationship of many factors. The influence of the teacher is well established and has led to some general principles of good teaching. However, less is known about the extent that specific disciplines influence quality teaching. The purposes of the paper are to investigate how quality teaching is perceived in the sciences and from these perceptions to develop for discussion a framework for teaching practice in the sciences. A New Zealand study explored the views of national teaching excellence award winners in science on quality teaching in undergraduate science. To capture all possible views from this expert panel, a dissensus-recognising Delphi method was used together with sensitising concepts based on complexity and wickedity. The emergent conceptual framework for quality teaching in undergraduate science highlighted areas of consensus and areas where there were a variety of views. About the purposes of science and its knowledge base, there was relative consensus, but there was more variable support for values underpinning science teaching. This highlighted the complex nature of quality teaching in science. The findings suggest that, in addition to general and discipline-specific influences, individual teacher values contribute to an understanding of quality in undergraduate science teaching.

  2. News clippings for introductory astronomy

    NASA Astrophysics Data System (ADS)

    Bobrowsky, Matthew

    1999-09-01

    Most students entering our introductory astronomy course for nonscience majors arrive not merely lacking scientific facts-they also have misconceptions about the nature of science, and many have a handicapping ``science anxiety'' (in addition to math anxiety). So I have added a ``current science'' requirement to our introductory course. Each student must compile a file of five astronomy news articles taken from readily available sources.

  3. Marvels of Science: 50 Fascinating 5-minute Reads.

    ERIC Educational Resources Information Center

    Haven, Kendall

    This book is a collection of 50 stories of the people, events, and processes that give us our rich scientific heritage with the goal of fostering an appreciation for the process of science and for the great variety of personalities that have graced the world of science. In addition to the actual text, each story in this book contains focusing and…

  4. Technical Writing for Software Engineers

    DTIC Science & Technology

    1990-05-01

    Writing models 3. Analogies: Software Development and Composing 3.1 Art / Science /Design 3.2 General Correspondence Between the Disciplines 3.3...The first subsection describes a dialogue common to both fields, one that considers these disciplines as art , science , and design. The second notes...find additional similarities between software development and composing in these and other sources. 3.1 Art / Science /Design Ongoing discussions about

  5. Technical Writing for Software Engineers

    DTIC Science & Technology

    1991-11-01

    3 Analogies: Software Development and Composing 3.1 Art / Science /Design 3.2 General Correspondences Between the Disciplines 3.3 Specific Analogies...domains. The first subsection describes a dialogue common to both fields, one that considers these disciplines as art , science , and design. The second...will find additional similarities between software development and composing in these and other sources. 3.1 Art / Science /Design Ongoing discussions

  6. Health sciences library building projects, 1998 survey.

    PubMed Central

    Bowden, V M

    1999-01-01

    Twenty-eight health sciences library building projects are briefly described, including twelve new buildings and sixteen additions, remodelings, and renovations. The libraries range in size from 2,144 square feet to 190,000 gross square feet. Twelve libraries are described in detail. These include three hospital libraries, one information center sponsored by ten institutions, and eight academic health sciences libraries. Images PMID:10550027

  7. Janice VanCleave's Electricity: Mind-Boggling Experiments You Can Turn into Science Fair Projects.

    ERIC Educational Resources Information Center

    VanCleave, Janice

    This book is designed to provide guidance and ideas for science projects to help students learn more about science as they search for answers to specific problems. The 20 topics on electricity in this book suggest many possible problems to solve. Each topic has one detailed experiment followed by a section that provides additional questions about…

  8. Engagement in Science Lessons and Achievement Test Scores of Eighth-Grade Students in Korea: Findings from the TIMSS 2011 Assessment

    ERIC Educational Resources Information Center

    House, J. Daniel; Telese, James A.

    2015-01-01

    Scientific literacy and student engagement in science are important components of the school curriculum in Korea. In addition, several studies from the Trends in International Mathematics and Science Study (TIMSS) assessments have identified factors associated with the learning outcomes of students in Korea. The purpose of this study was to…

  9. Self-Report and Academic Factors in Relation to High School Students' Success in an Innovative Biotechnology Program

    ERIC Educational Resources Information Center

    Peterman, Karen; Pan, Yi; Robertson, Jane; Lee, Shelley Glenn

    2014-01-01

    Biotechnology constitutes one of the most challenging, cutting-edge, and rapidly growing fields in science today. Both the practical implications and the hands-on nature of this "modern science" make the topic of biotechnology an attractive addition to the high school science curriculum. The current study is the first of its kind to…

  10. Understanding a Pakistani Science Teacher's Practice through a Life History Study

    ERIC Educational Resources Information Center

    Halai, Nelofer

    2011-01-01

    The purpose of the single case life history study was to understand a female science teacher's conceptions of the nature of science as explicit in her practice. While this paper highlights these understandings, an additional purpose is to give a detailed account of the process of creating a life history account through more than 13 in-depth…

  11. Women and Minorities in the Science, Mathematics and Engineering Pipeline. ERIC Digest.

    ERIC Educational Resources Information Center

    Chang, June C.

    Over the next ten years, the United States will need to train an additional 1.9 million workers in the sciences. Increased participation of women and minorities is essential in meeting the projected need for Science, Mathematics, and Engineering (SME) workers. Women, who received 56% of B.A.'s overall, comprised 37% of the SME bachelor degrees…

  12. International Rules for Pre-College Science Research: Guidelines for Science and Engineering Fairs, 2010-2011

    ERIC Educational Resources Information Center

    Society for Science & the Public, 2011

    2011-01-01

    This paper presents the rules and guidelines of the Intel International Science and Engineering Fair 2011 to be held in Los Angeles, California in May 8-13, 2011. In addition to providing the rules of competition, these rules and guidelines for conducting research were developed to facilitate the following: (1) protect the rights and welfare of…

  13. Matrix evaluation of science objectives

    NASA Technical Reports Server (NTRS)

    Wessen, Randii R.

    1994-01-01

    The most fundamental objective of all robotic planetary spacecraft is to return science data. To accomplish this, a spacecraft is fabricated and built, software is planned and coded, and a ground system is designed and implemented. However, the quantitative analysis required to determine how the collection of science data drives ground system capabilities has received very little attention. This paper defines a process by which science objectives can be quantitatively evaluated. By applying it to the Cassini Mission to Saturn, this paper further illustrates the power of this technique. The results show which science objectives drive specific ground system capabilities. In addition, this process can assist system engineers and scientists in the selection of the science payload during pre-project mission planning; ground system designers during ground system development and implementation; and operations personnel during mission operations.

  14. Learning Pedagogy in Physics

    NASA Astrophysics Data System (ADS)

    Harlow, Danielle B.; Swanson, Lauren H.; Dwyer, Hilary A.; Bianchini, Julie A.

    2010-10-01

    We report on an adapted version of the Physics and Everyday Thinking (PET) curriculum. A unique aspect of PET is its inclusion of special activities that focus on Learning about Learning (LAL) in which undergraduates analyze videos of children talking about science and explicitly consider the nature of science. To create a course that intentionally linked science content, children's ideas, and strategies for science instruction, we augmented the existing LAL activities with discussions about teaching, and added activities focused on LAL from companion curricula such as Physical Science and Everyday Thinking (PSET) and Learning Physical Science (LEPS). To compensate for the additional time on LAL, we reduced the content activities to only those that directly supported LAL activities. We found that students made significant gains on the CLASS and expressed beliefs about teaching consistent with the PET pedagogy.

  15. Preservice elementary teachers' actual and designated identities as teachers of science and teachers of students

    NASA Astrophysics Data System (ADS)

    Canipe, Martha Murray

    Preservice elementary teachers often have concerns about teaching science that may stem from a lack of confidence as teachers or their own negative experiences as learners of science. These concerns may lead preservice teachers to avoid teaching science or to teach it in a way that focuses on facts and vocabulary rather than engaging students in the doing of science. Research on teacher identity has suggested that being able to envision oneself as a teacher of science is an important part of becoming a teacher of science. Elementary teachers are generalists and as such rather than identifying themselves as teachers of particular content areas, they may identify more generally as teachers of students. This study examines three preservice teachers' identities as teachers of science and teachers of students and how these identities are enacted in their student teaching classrooms. Using a narrated identity framework, I explore stories told by preservice teachers, mentor teachers, student teaching supervisors, and science methods course instructors about who preservice teachers are as teachers of science and teachers of students. Identities are the stories that are told about who someone is or will become in relation to a particular context. Identities that are enacted are performances of the stories that are an identity. Stories were collected through interviews with each storyteller and in an unmoderated focus group with the three preservice teachers. In addition to sorting stories as being about teachers of science or students, the stories were categorized as being about preservice teachers in the present (actual identities) or in the future (designated identities). The preservice teachers were also observed teaching science lessons in their student teaching placements. These enactments of identities were analyzed in order to identify which aspects of the identity stories were reflected in the way preservice teachers taught their science lessons. I also analyzed the stories and enactments in order to determine which storytellers were significant narrators for the preservice teachers' identities. The findings from this study show that significant narrators vary among the preservice teachers and include artifacts such as curriculum materials and instructional models in addition to people who are expected to be significant narrators. Furthermore, differences between preservice teachers' actual and designated identities influence opportunities to learn about what it means to be a teacher of science and students. This took different forms with each preservice teacher. In one case the preservice teacher worked to enact aspects of her designated identity and reflected about how she was not quite able to be the teacher of science she wanted to be as a novice teacher. Another case showed how the gap between actual and designated identities could limit opportunities to learn when the preservice teacher's strong actual identity as a novice led her to consider certain aspects of her designated identity as things which could not even be tried at this point. Finally, in the third case the preservice teacher's strong actual identity limited opportunities to develop a designated identity because she did not see herself as being a different kind of teacher of science in the future than she was right now as a student teacher. These findings suggest that supporting preservice elementary teacher identity development as teachers of science is an important part of preparing them to teach science in ways that engage students in scientific practices. Additionally, it is essential to examine identity stories and enactments in concert with each other in order to gain deeper understandings of how identities are developed and put into practice in classrooms.

  16. African-American males in computer science---Examining the pipeline for clogs

    NASA Astrophysics Data System (ADS)

    Stone, Daryl Bryant

    The literature on African-American males (AAM) begins with a statement to the effect that "Today young Black men are more likely to be killed or sent to prison than to graduate from college." Why are the numbers of African-American male college graduates decreasing? Why are those enrolled in college not majoring in the science, technology, engineering, and mathematics (STEM) disciplines? This research explored why African-American males are not filling the well-recognized industry need for Computer Scientist/Technologists by choosing college tracks to these careers. The literature on STEM disciplines focuses largely on women in STEM, as opposed to minorities, and within minorities, there is a noticeable research gap in addressing the needs and opportunities available to African-American males. The primary goal of this study was therefore to examine the computer science "pipeline" from the African-American male perspective. The method included a "Computer Science Degree Self-Efficacy Scale" be distributed to five groups of African-American male students, to include: (1) fourth graders, (2) eighth graders, (3) eleventh graders, (4) underclass undergraduate computer science majors, and (5) upperclass undergraduate computer science majors. In addition to a 30-question self-efficacy test, subjects from each group were asked to participate in a group discussion about "African-American males in computer science." The audio record of each group meeting provides qualitative data for the study. The hypotheses include the following: (1) There is no significant difference in "Computer Science Degree" self-efficacy between fourth and eighth graders. (2) There is no significant difference in "Computer Science Degree" self-efficacy between eighth and eleventh graders. (3) There is no significant difference in "Computer Science Degree" self-efficacy between eleventh graders and lower-level computer science majors. (4) There is no significant difference in "Computer Science Degree" self-efficacy between lower-level computer science majors and upper-level computer science majors. (5) There is no significant difference in "Computer Science Degree" self-efficacy between each of the five groups of students. Finally, the researcher selected African-American male students attending six primary schools, including the predominately African-American elementary, middle and high school that the researcher attended during his own academic career. Additionally, a racially mixed elementary, middle and high school was selected from the same county in Maryland. Bowie State University provided both the underclass and upperclass computer science majors surveyed in this study. Of the five hypotheses, the sample provided enough evidence to support the claim that there are significant differences in the "Computer Science Degree" self-efficacy between each of the five groups of students. ANOVA analysis by question and total self-efficacy scores provided more results of statistical significance. Additionally, factor analysis and review of the qualitative data provide more insightful results. Overall, the data suggest 'a clog' may exist in the middle school level and students attending racially mixed schools were more confident in their computer, math and science skills. African-American males admit to spending lots of time on social networking websites and emailing, but are 'dis-aware' of the skills and knowledge needed to study in the computing disciplines. The majority of the subjects knew little, if any, AAMs in the 'computing discipline pipeline'. The collegian African-American males, in this study, agree that computer programming is a difficult area and serves as a 'major clog in the pipeline'.

  17. Women, race, and science: The academic experiences of twenty women of color with a passion for science

    NASA Astrophysics Data System (ADS)

    Johnson, Angela C.

    Women of color drop out of science at higher rates than other students. This study is an ethnographic examination of why this occurs and how women of color can be supported in studying science. Through participant observation in science classes, labs, and a program supporting high-achieving students of color, as well as interviews with minority women science students, the student identities celebrated by science departments, as well as those embraced by my informants, were uncovered. Cultural norms of science classes often differed from those of the women in the study. Only one identity---apprentice research scientist---was celebrated in science settings, although others were tolerated. The women tended to either embrace the apprentice research scientist identity, form an alternative science-oriented identity, or never form a satisfying science student identity. Women who were more racially marked were more likely to fall into the second and third groups. This study uncovered difficulties which women students of color faced more than other science students. In addition, it uncovered several seemingly neutral institutional features of science lectures and labs which actually served to discourage or marginalize women students of color. It revealed values held in common by the women in the study and how those characteristics (especially altruism and pride and pleasure in academic challenge) led them to study science. It also revealed strategies used by the most successful women science students, as well as by professors and programs most successful at supporting women of color in the study of science. Based on this study, increasing the participation of women of color in science holds the possibility of altering the basic values of science; however, institutional features and personal interactions within science departments tend to resist those changes, primarily by encouraging women of color to abandon their study of science.

  18. Parents' Attitudes Towards Science and their Children's Science Achievement

    NASA Astrophysics Data System (ADS)

    Perera, Liyanage Devangi H.

    2014-12-01

    Although countries worldwide are emphasizing the importance of science education for technological development and global economic competition, comparative findings from standardized international student assessments reveal a huge gap in science scores between developed and developing countries. Certain developed economies too have made little progress in raising science achievement over the past decade. Despite school improvement being placed high on the policy agenda, the results of such actions have been poor. Therefore, there is a need to explore additional ways in which science achievement can be enhanced. This study focuses on the family and examines whether parents' attitudes towards science (how much they value science and the importance they place on it) can influence their children's science achievement. Individual- and school-level data are obtained from the Program for International Student Assessment 2006 survey for 15 Organisation for Economic Co-operation and Development (OECD) and non-OECD countries. Hierarchical linear modelling is employed to estimate the equations. The findings indicate that parents' attitudes towards science have a positive and statistically significant effect on science achievement, after controlling for other important student- and school-level variables. Moreover, students from poor backgrounds appear to benefit from more positive parental science attitudes as much as students from high socioeconomic status, such that equality of student achievement is not affected. This study recommends that schools and teachers encourage parents to play a more pro-active role in their children's science education, as well as educate parents about the importance of science and strategies that can be adopted to support their children's science learning.

  19. A study of assessment indicators for environmental sustainable development of science parks in Taiwan.

    PubMed

    Chen, Han-Shen; Chien, Li-Hsien; Hsieh, Tsuifang

    2013-08-01

    This study adopted the ecological footprint calculation structure to calculate the ecological footprints of the three major science parks in Taiwan from 2008 to 2010. The result shows that the ecological footprints of the Hsinchu Science Park, the Central Taiwan Science Park, and the Southern Taiwan Science Park were about 3.964, 2.970, and 4.165 ha per capita. The ecological footprint (EF) of the Central Taiwan Science Park was the lowest, meaning that the influence of the daily operations in the Central Taiwan Science Park on the environment was rather low. Secondly, the population density was relatively high, and the EF was not the highest of the Hsinchu Science Park, meaning that, while consuming ecological resources, the environmental management done was effective. In addition, the population density in Southern Taiwan Science Park is 82.8 units, lower than that of Hsinchu Science Park, but its ecological footprint per capita is 0.201 units, higher than Hsinchu, implying its indicator management has space for improvement. According to the analysis result above, in the science parks, the percentages of high-energy-consuming industries were rather high. It was necessary to encourage development of green industries with low energy consumption and low pollution through industry transformation.

  20. Early Science Instruction and Academic Language Development Can Go Hand in Hand. The Promising Effects of a Low-Intensity Teacher-Focused Intervention

    NASA Astrophysics Data System (ADS)

    Henrichs, Lotte F.; Leseman, Paul P. M.

    2014-11-01

    Early science instruction is important in order to lay a firm basis for learning scientific concepts and scientific thinking. In addition, young children enjoy science. However, science plays only a minor role in the kindergarten curriculum. It has been reported that teachers feel they need to prioritize language and literacy practices over science. In this paper, we investigate whether science lessons might be integrated with learning the language functional for school: academic language. The occurrence of scientific reasoning and sophisticated vocabulary in brief science lessons with 5-year-olds is evaluated. The aim of the study was twofold: first, to explore the nature of kindergarten science discourse without any researcher directions (pre-intervention observation). Second, in a randomized control trial, we evaluated the effect on science discourse of a brief teacher training session focused on academic language awareness. The science lessons focussed on air pressure and mirror reflection. Analyses showed that teachers from the intervention group increased their use of scientific reasoning and of domain-specific academic words in their science discourse, compared to the control group. For the use of general academic words and for lexical diversity, the effect was task-specific: these dependent measures only increased during the air pressure task. Implications of the study include the need to increase teachers' awareness of possibilities to combine early science instruction and academic language learning.

  1. Bridging the Gap? A Comparative, Retrospective Analysis of Science Literacy and Interest in Science for Indigenous and Non-Indigenous Australian Students

    NASA Astrophysics Data System (ADS)

    McConney, Andrew; Oliver, Mary; Woods-McConney, Amanda; Schibeci, Renato

    2011-09-01

    Previous research has shown that indigenous students in Australia do not enjoy equal educational outcomes with other Australians. This secondary analysis of PISA 2006 confirmed that this continues to be the case in science literacy for secondary students. However, the analysis also revealed that indigenous Australian students held interest in science equal to that of their non-indigenous peers, and that observed variations in science literacy performance were most strongly explained by variations in reading literacy. These findings hold important implications for teachers, teacher educators, policy-makers, and researchers. Firstly, acknowledging and publicly valuing indigenous Australian science knowledge through rethinking school science curriculum seems an important approach to engaging indigenous students and improving their literacy in science. Secondly, appropriate professional learning for practising teachers and the incorporation of indigenous knowing in science methods training in teacher preparation seems warranted. Additionally, we offer a number of questions for further reflection and research that would benefit our understanding of ways forward in closing the science literacy gap for indigenous students. Whilst this research remains firmly situated within the Australian educational context, we at the same time believe that the findings and implications offered here hold value for science education practitioners and researchers in other countries with similar populations striving to achieve science literacy for all.

  2. Lessons from NASA Applied Sciences Program: Success Factors in Applying Earth Science in Decision Making

    NASA Astrophysics Data System (ADS)

    Friedl, L. A.; Cox, L.

    2008-12-01

    The NASA Applied Sciences Program collaborates with organizations to discover and demonstrate applications of NASA Earth science research and technology to decision making. The desired outcome is for public and private organizations to use NASA Earth science products in innovative applications for sustained, operational uses to enhance their decisions. In addition, the program facilitates the end-user feedback to Earth science to improve products and demands for research. The Program thus serves as a bridge between Earth science research and technology and the applied organizations and end-users with management, policy, and business responsibilities. Since 2002, the Applied Sciences Program has sponsored over 115 applications-oriented projects to apply Earth observations and model products to decision making activities. Projects have spanned numerous topics - agriculture, air quality, water resources, disasters, public health, aviation, etc. The projects have involved government agencies, private companies, universities, non-governmental organizations, and foreign entities in multiple types of teaming arrangements. The paper will examine this set of applications projects and present specific examples of successful use of Earth science in decision making. The paper will discuss scientific, organizational, and management factors that contribute to or impede the integration of the Earth science research in policy and management. The paper will also present new methods the Applied Sciences Program plans to implement to improve linkages between science and end users.

  3. 1996 Laboratory directed research and development annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.

  4. Measuring student engagement in science classrooms: An investigation of the contextual factors and longitudinal outcomes

    NASA Astrophysics Data System (ADS)

    Spicer, Justina Judy

    This dissertation includes three separate but related studies that examine the different dimensions of student experiences in science using data from two different datasets: the High School Longitudinal Study of 2009 (HSLS:09), and a dataset constructed using the Experience Sampling Method (ESM). This mixed-dataset approach provides a unique perspective on student engagement and the contexts in which it exists. Engagement is operationalized across the three studies using aspects of flow theory to evaluate how the challenges in science classes are experienced at the student level. The data provides information on a student's skill-level and efficacy during the challenge, as well as their interest level and persistence. The data additionally track how situations contribute to optimal learning moments, along with longitudinal attitudes and behaviors towards science. In the first part of this study, the construct of optimal moments is explored using in the moment data from the ESM dataset. Several different measures of engagement are tested and validated to uncover relationships between various affective states and optimal learning experiences with a focus on science classrooms. Additional analyses include investigating the links between in the moment engagement (situational), and cross-situational (stable) measures of engagement in science. The second part of this dissertation analyzes the ESM data in greater depth by examining how engagement varies across students and their contextual environment. The contextual characteristics associated with higher engagement levels are evaluated to see if these conditions hold across different types of students. Chapter three more thoroughly analyzes what contributes to students persisting through challenging learning moments, and the variation in levels of effort put forth when facing difficulty while learning in science. In chapter four, this dissertation explores additional outcomes associated with student engagement in science using the results for chapters two and three to identify aspects of engagement and learning in science. These findings motivate a set of variables and analytic approach that is undertaken in chapter four. Specifically, the questions how engagement influences experiences in ninth grade science and students' interest in pursuing a career in STEM using the HSLS:09 data. This multifaceted study contributes to the conceptualization of student engagement, and will help bring clarity to the relationship among engagement, context, and long-term outcomes in science. Engagement is more than being on-task or paying attention, but is a condition influenced by many factors including student background, the learning context of the classroom, teacher characteristics, and the features of instruction. Understanding this relationship between engagement and contextual factors is helpful in uncovering teacher actions and instructional activities that may elicit higher engagement in science classes. These findings highlight the importance of science instruction using more cognitively-demanding activities, such as problem-based learning.

  5. Confirmation and investigation of higher science curiosity in Juarez Middle School students compared to their peers in El Paso, Texas

    NASA Astrophysics Data System (ADS)

    Carmona Miranda, Karla

    In the last 20 years attitudes towards science and science classes in K-12 education have been an important topic of investigation due to the decreasing number of students choosing Science, Technology, Engineering and Math (STEM) related careers, and the increasing need for STEM prepared workers to cover the job demands of the future. The purpose of this study is to confirm a previously measured difference in scientific curiosity between middle school students in El Paso and in Ciudad Juarez, and to collect additional data that might tell us what the possible factors or reasons for this difference are. Our sample consists of 156 middle school students from Juarez public schools, and 448 middle school students from El Paso public middle schools. The Children's Science Curiosity Scale of Harty & Beall (1984) will be used to measure the curiosity level. Additionally, the students will be asked to respond to "Why do you like or dislike science?" Our results show that those obtained by Ortiz (2006) in a similar study persist but with a reduction of standard deviations. The percentage of students that state that they do not like science in Ciudad Juarez and El Paso are 9% and 14%, respectively. The most common reason to like science among students in Ciudad Juarez was related to the topics covered in class, and among students in El Paso was related to the experiments and hands-on activities done in class. After analyzing contingency tables with chi-squared tests and calculating the respective contingency coefficients, it is safe to say that even though relationships between the reasons to like or dislike science and country exist, these relationships are not strong. Other results, limitations, and future research also are discussed.

  6. Social Science Collaboration with Environmental Health.

    PubMed

    Hoover, Elizabeth; Renauld, Mia; Edelstein, Michael R; Brown, Phil

    2015-11-01

    Social science research has been central in documenting and analyzing community discovery of environmental exposure and consequential processes. Collaboration with environmental health science through team projects has advanced and improved our understanding of environmental health and justice. We sought to identify diverse methods and topics in which social scientists have expanded environmental health understandings at multiple levels, to examine how transdisciplinary environmental health research fosters better science, and to learn how these partnerships have been able to flourish because of the support from National Institute of Environmental Health Sciences (NIEHS). We analyzed various types of social science research to investigate how social science contributes to environmental health. We also examined NIEHS programs that foster social science. In addition, we developed a case study of a community-based participation research project in Akwesasne in order to demonstrate how social science has enhanced environmental health science. Social science has informed environmental health science through ethnographic studies of contaminated communities, analysis of spatial distribution of environmental injustice, psychological experience of contamination, social construction of risk and risk perception, and social impacts of disasters. Social science-environmental health team science has altered the way scientists traditionally explore exposure by pressing for cumulative exposure approaches and providing research data for policy applications. A transdisciplinary approach for environmental health practice has emerged that engages the social sciences to paint a full picture of the consequences of contamination so that policy makers, regulators, public health officials, and other stakeholders can better ameliorate impacts and prevent future exposure. Hoover E, Renauld M, Edelstein MR, Brown P. 2015. Social science collaboration with environmental health. Environ Health Perspect 123:1100-1106; http://dx.doi.org/10.1289/ehp.1409283.

  7. The efficacy beliefs of preservice science teachers in professional development school and traditional school settings

    NASA Astrophysics Data System (ADS)

    Newsome, Demetria Lynn

    Teachers' efficacy beliefs have been shown to correlate positively with to the successful implementation of science reform measures (National Research Council, 1996) and are context specific (Koul & Rubba, 1999). Studies on teacher efficacy in specific contexts have been conducted including the availability of resources and parent support (Tschannen-Moran & Hoy, 2002), classroom management (Emmer & Hickman, 1990; Raudenbush, Rowen, & Cheong, 1992); and institutional climate and behavior of the principal (Hoy & Woolfolk, 1993). The purpose of this study was to compare the science teaching efficacy beliefs of teacher interns prepared in professional development schools with those of student teachers prepared in traditional school settings. Other variables examined included academic level, academic major, and area of science concentration. Preservice science teacher efficacy beliefs were measured using the Science Teaching Efficacy Beliefs Instrument for Preservice Science Teachers, STEBI Form B (Enoch & Riggs, 1990) with demographic information being collected by an accompanying questionnaire. Analyses included scoring the surveys on two scales, Personal Science Teaching Efficacy Beliefs Scale and the Outcome Expectancy Scale, calculating descriptive statistics, as well as performing MANOVAS and correlations. Results indicate that preservice science teachers working in professional development schools exhibit higher personal science teaching efficacy beliefs. This finding corroborates previous studies on the efficacy beliefs of preservice teachers working in PDS schools (Long, 1996; Sandholtz & Dadlez, 2000). Results also show a strong correlation between the personal science teaching efficacy beliefs and the setting where student teaching takes place. In addition, significant differences were found in the personal science teaching efficacy beliefs between elementary education majors and science majors, science education majors, and secondary education majors. Findings of the study have implications for the design of preservice science teacher clinical experiences including providing longer, organized clinical experiences and preferential selection of preservice science teachers for PDS practicum assignments.

  8. Revolutionizing Climate Science: Using Teachers as Communicators

    NASA Astrophysics Data System (ADS)

    Warburton, J.; Crowley, S.; Wood, J.

    2012-12-01

    PolarTREC (Teachers and Researchers Exploring and Collaborating) is a National Science Foundation (NSF) funded program in which K-12 teachers participate in hands-on field research experiences in the Polar Regions. Teachers are the dynamic conduits for communicating climate science. In the PolarTREC final report, researchers found that teachers were vital in refining the language of their science and have shaped the goals of the scientific project. Program data demonstrates that science in classrooms is better understood when teachers have a full-spectrum grasp of project intricacies from defining the project, to field data collection, encountering situations for creativity and critical thinking, as well as participating in data and project analysis. Teachers' translating the authentic scientific process is integral in communicating climate science to the broader public. Teachers playing a major role in polar science revolutionize the old paradigm of "in-school learning". Through daily online journaling and forums, social media communication, live webinars with public, and professional development events, these teachers are moving beyond classrooms to communicate with society. Through teachers, climate policy can be shaped for the future by having scientifically literate students as well as assessable science. New paradigms come as teachers attain proficient levels of scientific understanding paired with the expert abilities for communication with years of experience. PolarTREC teachers are a model for new interactions peer-to-peer learning and mentorship for young scientists. Our programmatic goal is to expand the opportunities for PolarTREC teachers to share their involvement in science with additional formal and informal educators. 'Teaching the teachers' will reach exponential audiences in media, policy, and classrooms. Modeling this program, we designed and conducted a teacher training on climate science in Denali National Park. Utilizing expert university faculty in climate science and a PolarTREC alumni teacher the program was touted as 'the best professional opportunity to date". This program gave new teachers the tools to adequately communicate climate science with a new generation of scientifically literate students. Additionally, teachers possess the skills to inform young professional scientists on effective outreach and communication beyond peer-reviewed papers and scientific circles.

  9. Advancing regulatory science to bring novel medical devices for use in emergency care to market: the role of the Food and Drug Administration.

    PubMed

    Scully, Christopher G; Forrest, Shawn; Galeotti, Loriano; Schwartz, Suzanne B; Strauss, David G

    2015-04-01

    The Food and Drug Administration (FDA) performs regulatory science to provide science-based medical product regulatory decisions. This article describes the types of scientific research the FDA's Center for Devices and Radiological Health performs and highlights specific projects related to medical devices for emergency medicine. In addition, this article discusses how results from regulatory science are used by the FDA to support the regulatory process as well as how the results are communicated to the public. Regulatory science supports the FDA's mission to assure safe, effective, and high-quality medical products are available to patients. Published by Elsevier Inc.

  10. Mars Science Laboratory Rover Taking Shape

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image taken in August 2008 in a clean room at NASA's Jet Propulsion Laboratory, Pasadena, Calif., shows NASA's next Mars rover, the Mars Science Laboratory, in the course of its assembly, before additions of its arm, mast, laboratory instruments and other equipment.

    The rover is about 9 feet wide and 10 feet long.

    Viewing progress on the assembly are, from left: NASA Associate Administrator for Science Ed Weiler, California Institute of Technology President Jean-Lou Chameau, JPL Director Charles Elachi, and JPL Associate Director for Flight Projects and Mission Success Tom Gavin.

    JPL, a division of Caltech, manages the Mars Science Laboratory project for the NASA Science Mission Directorate, Washington.

  11. Profile of science process skills of Preservice Biology Teacher in General Biology Course

    NASA Astrophysics Data System (ADS)

    Susanti, R.; Anwar, Y.; Ermayanti

    2018-04-01

    This study aims to obtain portrayal images of science process skills among preservice biology teacher. This research took place in Sriwijaya University and involved 41 participants. To collect the data, this study used multiple choice test comprising 40 items to measure the mastery of science process skills. The data were then analyzed in descriptive manner. The results showed that communication aspect outperfomed the other skills with that 81%; while the lowest one was identifying variables and predicting (59%). In addition, basic science process skills was 72%; whereas for integrated skills was a bit lower, 67%. In general, the capability of doing science process skills varies among preservice biology teachers.

  12. I'll Tell You What You Think: An Exercise in Pseudoscience Debunking in an Introductory Astronomy Course

    NASA Astrophysics Data System (ADS)

    Caton, Dan

    2013-11-01

    At Appalachian State University students have to take just two semesters of a physical or biological science to satisfy the general education requirements. Most non-science major students have little time in their crowded schedules to take additional science courses, whether they want to or not, and in fact face a surcharge when taking more courses than needed to graduate. Given this environment, it is essential that we cover more than just the basics of one particular discipline, like astronomy in my case. We should teach something about the overall philosophy of science, the scientific method, and the importance of science in our lives.

  13. Science Engagement and Literacy: A retrospective analysis for students in Canada and Australia

    NASA Astrophysics Data System (ADS)

    Woods-McConney, Amanda; Colette Oliver, Mary; McConney, Andrew; Schibeci, Renato; Maor, Dorit

    2014-07-01

    Given international concerns about students' pursuit (or more correctly, non-pursuit) of courses and careers in science, technology, engineering and mathematics, this study is about achieving a better understanding of factors related to high school students' engagement in science. The study builds on previous secondary analyses of Programme for International Student Assessment (PISA) datasets for New Zealand and Australia. For the current study, we compared patterns of science engagement and science literacy for male and female students in Canada and Australia. The study's secondary analysis revealed that for all PISA measures included under the conceptual umbrella of engagement in science (i.e. interest, enjoyment, valuing, self-efficacy, self-concept and motivation), 15-year-old students in Australia lagged their Canadian counterparts to varying, albeit modest, degrees. Our retrospective analysis further shows, however, that gender equity in science engagement and science literacy is evident in both Canadian and Australian contexts. Additionally, and consistent with our previous findings for indigenous and non-indigenous students in New Zealand and Australia, we found that for male and female students in both countries, the factor most strongly associated with variations in engagement in science was the extent to which students participate in science activities outside of school. In contrast, and again for both Canadian and Australian students, the factors most strongly associated with science literacy were students' socioeconomic backgrounds, and the amount of formal time spent doing science. The implications of these results for science educators and researchers are discussed.

  14. `Am I Like a Scientist?': Primary children's images of doing science in school

    NASA Astrophysics Data System (ADS)

    Zhai, Junqing; Jocz, Jennifer Ann; Tan, Aik-Ling

    2014-03-01

    A considerable body of evidence highlights how inquiry-based science can enhance students' epistemic and conceptual understanding of scientific concepts, principles, and theories. However, little is known about how students view themselves as learners of science. In this paper, we explore primary children's images of doing science in school and how they compare themselves with 'real' scientists. Data were collected through the use of a questionnaire, drawing activity, and interviews from 161 Grade 4 (ages 9-10) students in Singapore. Results indicate that 'doing science as conducting hands-on investigations', 'doing science as learning from the teacher', 'doing science as completing the workbook', and 'doing science as a social process' are the images of learning science in school that most of the students held. In addition, students reported that they need to be well behaved first and foremost, while scientists are more likely to work alone and do things that are dangerous. Moreover, students often viewed themselves as 'acting like a scientist' in class, especially when they were doing experiments. Nevertheless, some students reported that they were unlike a scientist because they believed that scientists work alone with dangerous experiments and do not need to listen to the teacher and complete the workbook. These research findings further confirm the earlier argument that young children can make distinctions between school science and 'real' science. This study suggests that the teaching of science as inquiry and by inquiry will shape how students view their classroom experiences and their attitudes towards science.

  15. Inquiry Learning in the Singaporean Context: Factors affecting student interest in school science

    NASA Astrophysics Data System (ADS)

    Jocz, Jennifer Ann; Zhai, Junqing; Tan, Aik Ling

    2014-10-01

    Recent research reveals that students' interest in school science begins to decline at an early age. As this lack of interest could result in fewer individuals qualified for scientific careers and a population unprepared to engage with scientific societal issues, it is imperative to investigate ways in which interest in school science can be increased. Studies have suggested that inquiry learning is one way to increase interest in science. Inquiry learning forms the core of the primary syllabus in Singapore; as such, we examine how inquiry practices may shape students' perceptions of science and school science. This study investigates how classroom inquiry activities relate to students' interest in school science. Data were collected from 425 grade 4 students who responded to a questionnaire and 27 students who participated in follow-up focus group interviews conducted in 14 classrooms in Singapore. Results indicate that students have a high interest in science class. Additionally, self-efficacy and leisure-time science activities, but not gender, were significantly associated with an increased interest in school science. Interestingly, while hands-on activities are viewed as fun and interesting, connecting learning to real-life and discussing ideas with their peers had a greater relation to student interest in school science. These findings suggest that inquiry learning can increase Singaporean students' interest in school science; however, simply engaging students in hands-on activities is insufficient. Instead, student interest may be increased by ensuring that classroom activities emphasize the everyday applications of science and allow for peer discussion.

  16. The Effects of Aesthetic Science Activities on Improving At-Risk Families Children's Anxiety About Learning Science and Positive Thinking

    NASA Astrophysics Data System (ADS)

    Hong, Zuway-R.; Lin, Huann-shyang; Chen, Hsiang-Ting; Wang, Hsin-Hui; Lin, Chia-Jung

    2014-01-01

    The purpose of this study was to explore the effects of aesthetic science activities on improving elementary school at-risk families' children's positive thinking, attitudes toward science, and decreasing their anxiety about learning science. Thirty-six 4th-grade children from at-risk families volunteered to participate in a 12-week intervention and formed the experimental group; another 97 typical 4th graders were randomly selected to participant in the assessment and were used as the comparison group. The treatment for experimental group children emphasized scaffolding aesthetic science activities and inquiry strategies. The Elementary School Student Questionnaire was administered to assess all children's positive thinking, attitudes toward science, and anxiety about learning science. In addition, nine target children from the experimental group with the lowest scores on either positive thinking, or attitudes toward science, or with the highest scores on anxiety about learning science in the pre-test were recruited to be interviewed at the end of the intervention and observed weekly. Confirmatory factor analyses, analyses of covariance, and content theme analysis assessed the similarities and differences between groups. It was found that the at-risk families' children were motivated by the treatment and made significant progress on positive thinking and attitudes toward science, and also decreased their anxiety about learning science. The findings from interviews and classroom observations also revealed that the intervention made differences in children's affective perceptions of learning science. Implication and research recommendation are discussed.

  17. Ross Ice Shelf

    Atmospheric Science Data Center

    2013-04-16

    ... Larger Image According to researchers funded by the National Science Foundation, several penguin colonies near the Ross Ice Shelf, ... Hut Point Peninsula. For a press release from the National Science Foundation containing additional details and MISR imagery ...

  18. Forensic Science

    ERIC Educational Resources Information Center

    Cobb, P. G. W.

    1973-01-01

    Summarizes the type of work carried out by forensic chemists and the minimum qualification needed for appointment. Indicates that there are eight Home Office regional forensic science laboratories in addition to the Central Research Establishment at Aldermaston. (CC)

  19. A content analysis of sixth-grade, seventh-grade, and eighth-grade science textbooks with regard to the nature of science

    NASA Astrophysics Data System (ADS)

    Phillips, Marianne C.

    Science teachers rely heavily on their textbooks; for many, it is the only curriculum they use (Weiss, 1993). Therefore, it is important these materials convey an accurate conception of the nature of science. Science for All Americans (AAAS, 1990) and the National Science Education Standards (NRC, 1996) call for teaching students about the nature of science. Including the nature of science throughout science textbooks will produce scientifically literate citizens (Driver and others, 1993) with an improved ability to make informed decisions (McComas, 1998). Teaching the nature of science supports the successful learning of science content and process (Driver and others, 1996), and bridges the gap between the two cultures of practicing scientists and school science (Sorsby, 2000). Do middle school science textbooks provide a balanced presentation of the nature of science throughout their text? To determine the answer, this investigation used a content analysis technique to analyze a random sample from the introduction chapter and the rest of the textbook chapters from twelve middle school science textbooks for the four aspects of the nature of science (Chiappetta, Fillman, & Sethna, 2004). Scoring procedures were used to determine interrater agreement using both Cohen's kappa (kappa) and Krippendorff's alpha (alpha). Kappa values were determined to be fair to excellent beyond chance among the three coders. The resulting values for Krippendorff's alpha ranged from acceptable (alpha > .80) to unacceptable (alpha < .67). The results from this content analysis indicated little change from previous studies in the balance for the themes of the nature of science. This investigation found the sixth-grade, seventh-grade, and eighth-grade science textbooks adopted by Texas to have unbalanced presentations for the four aspects of the nature of science. In addition, it found these middle school science textbooks are not balanced across programs. This imbalance is providing students with a rudimentary and fragmented view of how science works, despite the fact that science impacts every aspect of life (McComas, 1998). Given the impact of textbooks on learning, it is recommended that teachers be informed of these shortcomings to enable them to supplement content where it is lacking.

  20. I'll Tell You What You Think: An Exercise in Pseudoscience Debunking in an Introductory Astronomy Course

    ERIC Educational Resources Information Center

    Caton, Dan

    2013-01-01

    At Appalachian State University students have to take just two semesters of a physical or biological science to satisfy the general education requirements. Most non-science major students have little time in their crowded schedules to take additional science courses, whether they want to or not, and in fact face a surcharge when taking more…

  1. Investigating Science Student Teachers' Ideas about Function and Anatomical Form of Two Human Sensory Organs, the Eye and the Ear

    ERIC Educational Resources Information Center

    Kunt, Halil

    2016-01-01

    The purpose of this research was to determine science student teachers' level of knowledge about the anatomical structure of two sensory organs, the eye and the ear, in addition to vision and hearing processes. Conducted with 86 science student teachers, research utilized drawing methods and open-ended questions as data collection instruments. The…

  2. A Study of Secondary Science Teacher Efficacy and Level of Constructivist Instructional Practice Implementation in West Virginia Science Classrooms

    ERIC Educational Resources Information Center

    Knapp, Amanda Kristen

    2013-01-01

    The purpose of this study was to investigate the level of use of selected constructivist instructional practices and level of teacher efficacy in West Virginia secondary science classrooms. The study next sought to determine if a relationship existed between level of use of the constructivist practices and teacher efficacy. In addition the study…

  3. Toward Understanding the Nature of a Partnership between an Elementary Classroom Teacher and an Informal Science Educator

    ERIC Educational Resources Information Center

    Weiland, Ingrid S.; Akerson, Valarie L.

    2013-01-01

    This study explored the nature of the relationship between a fifth-grade teacher and an informal science educator as they planned and implemented a life science unit in the classroom, and sought to define this relationship in order to gain insight into the roles of each educator. In addition, student learning as a result of instruction was…

  4. Trends in Mathematics and Science Performance in 18 Countries: Multiple Regression Analysis of the Cohort Effects of TIMSS 1995-2007

    ERIC Educational Resources Information Center

    Hong, Hee Kyung

    2012-01-01

    The purpose of this study was to simultaneously examine relationships between teacher quality and instructional time and mathematics and science achievement of 8th grade cohorts in 18 advanced and developing economies. In addition, the study examined changes in mathematics and science performance across the two groups of economies over time using…

  5. The Retention of Women in Science, Technology, Engineering, and Mathematics: A Framework for Persistence

    ERIC Educational Resources Information Center

    White, Jeffry L.; Massiha, G. H.

    2016-01-01

    Women make up 47% of the total U.S. workforce, but are less represented in engineering, computer sciences, and the physical sciences. In addition, race and ethnicity are salient factors and minority women comprise fewer than 1 in 10 scientist or engineer. In this paper, a review of the literature is under taken that explores the many challenges…

  6. Integrating technology, curriculum, and online resources: A multilevel model study of impacts on science teachers and students

    NASA Astrophysics Data System (ADS)

    Ye, Lei

    This scale-up study investigated the impact of a teacher technology tool (Curriculum Customization Service, CCS), curriculum, and online resources on earth science teachers' attitudes, beliefs, and practices and on students' achievement and engagement with science learning. Participants included 73 teachers and over 2,000 ninth-grade students within five public school districts in the western U.S. To assess the impact on teachers, changes between pre- and postsurveys were examined. Results suggest that the CCS tool appeared to significantly increase both teachers' awareness of other earth science teachers' practices and teachers' frequency of using interactive resources in their lesson planning and classroom teaching. A standard multiple regression model was developed. In addition to "District," "Training condition" (whether or not teachers received CCS training) appeared to predict teachers' attitudes, beliefs, and practices. Teachers who received CCS training tended to have lower postsurvey scores than their peers who had no CCS training. Overall, usage of the CCS tool tended to be low, and there were differences among school districts. To assess the impact on students, changes were examined between pre- and postsurveys of (1) knowledge assessment and (2) students' engagement with science learning. Students showed pre- to postsurvey improvements in knowledge assessment, with small to medium effect sizes. A nesting effect (students clustered within teachers) in the Earth's Dynamic Geosphere (EDG) knowledge assessment was identified and addressed by fitting a two-level hierarchical linear model (HLM). In addition, significant school district differences existed for student post-knowledge assessment scores. On the student engagement questionnaire, students tended to be neutral or to slightly disagree that science learning was important in terms of using science in daily life, stimulating their thinking, discovering science concepts, and satisfying their own curiosity. Students did not appear to change their self-reported engagement level after the intervention. Additionally, three multiple regression models were developed. Factors from the district, teacher, and student levels were identified to predict student post-knowledge assessments and their engagement with science learning. The results provide information to both the research community and practitioners.

  7. Historical short stories as nature of science instruction in secondary science classrooms: Science teachers' implementation and students' reactions

    NASA Astrophysics Data System (ADS)

    Reid-Smith, Jennifer Ann

    This study explores the use of historical short stories as nature of science (NOS) instruction in thirteen secondary science classes. The stories focus on the development of science ideas and include statements and questions to draw students' and teachers' attention to key NOS ideas and misconceptions. This study used mixed methods to examine how teachers implement the stories, factors influencing teachers' implementation, the impact on students' NOS understanding, students' interest in the stories and factors correlated with their interest. Teachers' implementation decisions were influenced by their NOS understanding, curricula, time constraints, perceptions of student ability and resistance, and student goals. Teachers implementing stories at a high-level of effectiveness were more likely to make instructional decisions to mitigate constraints from the school environment and students. High-level implementers frequently referred to their learning goals for students as a rationale for implementing the stories even when facing constraints. Teachers implementing at a low-level of effectiveness were more likely to express that constraints inhibited effective implementation. Teachers at all levels of implementation expressed concern regarding the length of the stories and time required to fully implement the stories. Additionally, teachers at all levels of implementation expressed a desire for additional resources regarding effective story implementation and reading strategies. Evidence exists that the stories can be used to improve students' NOS understanding. However, under what conditions the stories are effective is still unclear. Students reported finding the stories more interesting than textbook readings and many students enjoyed learning about scientists and the development of science idea. Students' interest in the stories is correlated with their attitudes towards reading, views of effective science learning, attributions of academic success, and interest in a science-related career. If NOS instructional materials are to be used effectively, designers must take into account the needs of classroom teachers by limiting the length of the materials and providing additional teacher support resources. Many teachers will likely require professional development opportunities to build their NOS understanding, develop a compelling rationale for teaching NOS and using the stories, observe modeling of effective implementation, and collaborate with other teachers regarding how to mitigate constraints.

  8. Crude Life: The Art-Science Engagement Work of Brandon Ballengee

    NASA Astrophysics Data System (ADS)

    Ballengee, B.; Kirn, M.

    2017-12-01

    Crude Life is an interdisciplinary art, science and outreach project focused on raising public awareness of Gulf of Mexico species, ecosystems, and regional environmental challenges through community "citizen science" surveys and a portable art-science museum of Gulf coastal biodiversity. A primary research focus is gathering data on endemic fishes affected by the 2010 Gulf of Mexico Oil Spill and attempting to locate 14 species that have been `missing' following the spill. Programming emphasis has been given to rural coastal communities that due to changing climate and alteration of geophysical systems (mostly from the oil and gas industry) are populations particularly at risk to tidal inundation. In addition these communities generally lack access to science literacy (as Louisiana ranks as among the worst in the nation for science education) and have little access to contemporary art.

  9. Investigation of effective strategies for developing creative science thinking

    NASA Astrophysics Data System (ADS)

    Yang, Kuay-Keng; Lee, Ling; Hong, Zuway-R.; Lin, Huann-shyang

    2016-09-01

    The purpose of this study was to explore the effectiveness of the creative inquiry-based science teaching on students' creative science thinking and science inquiry performance. A quasi-experimental design consisting one experimental group (N = 20) and one comparison group (N = 24) with pretest and post-test was conducted. The framework of the intervention focused on potential strategies such as promoting divergent and convergent thinking and providing an open, inquiry-based learning environment that are recommended by the literature. Results revealed that the experimental group students outperformed their counterparts in the comparison group on the performances of science inquiry and convergent thinking. Additional qualitative data analyses from classroom observations and case teacher interviews identified supportive teaching strategies (e.g. facilitating associative thinking, sharing impressive ideas, encouraging evidence-based conclusions, and reviewing and commenting on group presentations) for developing students' creative science thinking.

  10. What Is and Who Can Do Science? Supporting Youth of Colors' Identities as Learners, Doers, and Change Agents in Science

    NASA Astrophysics Data System (ADS)

    Visintainer, Tammie Ann

    This research explores trajectories of developing the practices of and identification with science for high school students of color as they participate in summer science research programs. This study examines students' incoming ideas of what science is (i.e. science practices) and who does/can do science and how these ideas shift following program participation. In addition, this study explores the aspects of students' identities that are most salient in the science programs and how these aspects are supported or reimagined based on the program resources made available. This research utilizes four main data sources: 1) pre and post program student surveys, 2) pre and post program focal student interviews, 3) scientist instructor interviews, and 4) program observations. Findings show that students' ideas about what science is (i.e. science practices) and who can do science shifted together through participation in the practices of science. Findings illustrate the emergence of an identity generative process: that engaging in science practices (e.g. collecting data) and the accompanying program resources generated new possibilities for students (e.g. capable science learner). Findings show that the program resources made available for science practices determined how the practices "functioned" for students. Furthermore, findings document links between an instructor's vision, the design of program resources that engage students in science practices, and students' learning and identity construction. For example, a mentor that employed a politically relevant and racially conscious lens made unique resources available that allowed students to identify as capable science learners and agents of change in their community. This research shows that youth of color can imagine and take up new possibilities for who they can be in science when their science and racial identities are supported in science programs. Findings highlight the need to re-center race in research involving science identity construction for youth of color. Findings from this research inform the design of learning environments that create multiple pathways for learning and identity construction in science. Findings can be applied to the creation of opportunities in science programs, classrooms and teacher education that foster successful and meaningful engagement with science practices and empower youth of color as capable learners, doers, and changes agents in science.

  11. Constructing "Authentic" Science: Results from a University/High School Collaboration Integrating Digital Storytelling and Social Networking

    NASA Astrophysics Data System (ADS)

    Olitsky, Stacy; Becker, Elizabeth A.; Jayo, Ignacio; Vinogradov, Philip; Montcalmo, Joseph

    2018-02-01

    This study explores the implications of a redesign of a college course that entailed a new partnership between a college neuroscience classroom and a high school. In this course, the college students engaged in original research projects which included conducting brain surgery and behavioural tests on rats. They used digital storytelling and social networking to communicate with high school students and were visited by the students during the semester. The aims of the redesign were to align the course with science conducted in the field and to provide opportunities to disseminate scientific knowledge through emerging technologies. This study investigates the impact of these innovations on the college and high school students' perceptions of authentic science, including their relationship with science-centred communities. We found that these collaborative tools increased college students' perceptions that authentic science entailed communication with the general public, in addition to supporting prior perceptions of the importance of conducting experiments and presenting results to experts. In addition, the view of science as high-status knowledge was attenuated as students integrated non-formal communication practices into presentations, showing the backstage process of learning, incorporating music and youth discourse styles, and displaying emotional engagement. An impact of these hybrid presentation approaches was an increase in the high school students' perceptions of the accessibility of laboratory science. We discuss how the use of technologies that are familiar to youth, such as iPads, social networking sites, and multimedia presentations, has the potential to prioritize students' voices and promote a more inclusive view of science.

  12. Science Identity's Influence on Community College Students' Engagement, Persistence, and Performance in Biology

    NASA Astrophysics Data System (ADS)

    Riccitelli, Melinda

    In the United States (U.S.), student engagement, persistence, and academic performance levels in college science, technology, engineering, and mathematics (STEM) programs have been unsatisfactory over the last decade. Low student engagement, persistence, and academic performance in STEM disciplines have been identified as major obstacles to U.S. economic goals and U.S. science education objectives. The central and salient science identity a college student claims can influence his engagement, persistence, and academic achievement in college science. While science identity studies have been conducted on four-year college populations there is a gap in the literature concerning community college students' science identity and science performance. The purpose of this quantitative correlational study was to examine the relationship between community college students claimed science identities and engagement, persistence, and academic performance. A census sample of 264 community college students enrolled in biology during the summer of 2015 was used to study this relationship. Science identity and engagement levels were calculated using the Science Identity Centrality Scale and the Biology Motivation Questionnaire II, respectively. Persistence and final grade data were collected from institutional and instructor records. Engagement significantly correlated to, r =.534, p = .01, and varied by science identity, p < .001. Percent final grade also varied by science identity (p < .005), but this relationship was weaker (r = .208, p = .01). Results for science identity and engagement and final grade were consistent with the identity literature. Persistence did not vary by science identity in this student sample (chi2 =2.815, p = .421). This result was inconsistent with the literature on science identity and persistence. Quantitative results from this study present a mixed picture of science identity status at the community college level. It is suggested, based on the findings, that community college curriculum workers in biology consider student's science identity in terms of improving engagement and final grade, but not persistence. Additionally, as results were mixed, it is recommended that this study be repeated to examine these relationships further.

  13. The effect of classroom instruction, attitudes towards science and motivation on students' views of uncertainty in science

    NASA Astrophysics Data System (ADS)

    Schroeder, Meadow

    This study examined developmental and gender differences in Grade 5 and 9 students' views of uncertainty in science and the effect of classroom instruction on attitudes towards science, and motivation. Study 1 examined views of uncertainty in science when students were taught science using constructivist pedagogy. A total of 33 Grade 5 (n = 17, 12 boys, 5 girls) and Grade 9 (n = 16, 8 boys, 8 girls) students were interviewed about the ideas they had about uncertainty in their own experiments (i.e., practical science) and in professional science activities (i.e., formal science). Analysis found an interaction between grade and gender in the number of categories of uncertainty identified for both practical and formal science. Additionally, in formal science, there was a developmental shift from dualism (i.e., science is a collection of basic facts that are the result of straightforward procedures) to multiplism (i.e., there is more than one answer or perspective on scientific knowledge) from Grade 5 to Grade 9. Finally, there was a positive correlation between the understanding uncertainty in practical and formal science. Study 2 compared the attitudes and motivation towards science and motivation of students in constructivist and traditional classrooms. Scores on the measures were also compared to students' views of uncertainty for constructivist-taught students. A total of 28 students in Grade 5 (n = 13, 11 boys, 2 girls) and Grade 9 (n = 15, 6 boys, 9 girls), from traditional science classrooms and the 33 constructivist students from Study 1 participated. Regardless of classroom instruction, fifth graders reported more positive attitudes towards science than ninth graders. Students from the constructivist classrooms reported more intrinsic motivation than students from the traditional classrooms. Constructivist students' views of uncertainty in formal and practical science did not correlate with their attitudes towards science and motivation.

  14. Social Science Collaboration with Environmental Health

    PubMed Central

    Hoover, Elizabeth; Renauld, Mia; Edelstein, Michael R.

    2015-01-01

    Background Social science research has been central in documenting and analyzing community discovery of environmental exposure and consequential processes. Collaboration with environmental health science through team projects has advanced and improved our understanding of environmental health and justice. Objective We sought to identify diverse methods and topics in which social scientists have expanded environmental health understandings at multiple levels, to examine how transdisciplinary environmental health research fosters better science, and to learn how these partnerships have been able to flourish because of the support from National Institute of Environmental Health Sciences (NIEHS). Methods We analyzed various types of social science research to investigate how social science contributes to environmental health. We also examined NIEHS programs that foster social science. In addition, we developed a case study of a community-based participation research project in Akwesasne in order to demonstrate how social science has enhanced environmental health science. Results Social science has informed environmental health science through ethnographic studies of contaminated communities, analysis of spatial distribution of environmental injustice, psychological experience of contamination, social construction of risk and risk perception, and social impacts of disasters. Social science–environmental health team science has altered the way scientists traditionally explore exposure by pressing for cumulative exposure approaches and providing research data for policy applications. Conclusions A transdisciplinary approach for environmental health practice has emerged that engages the social sciences to paint a full picture of the consequences of contamination so that policy makers, regulators, public health officials, and other stakeholders can better ameliorate impacts and prevent future exposure. Citation Hoover E, Renauld M, Edelstein MR, Brown P. 2015. Social science collaboration with environmental health. Environ Health Perspect 123:1100–1106; http://dx.doi.org/10.1289/ehp.1409283 PMID:25966491

  15. Learning the 'grammar of science': The influence of a physical science content course on teachers' understanding of the nature of science

    NASA Astrophysics Data System (ADS)

    Hanuscin, Deborah L.

    This research examined the development of practicing K--8 teachers' views of the nature of science (NOS) within a physical science content course. Reforms in science education have called for the teaching of science as inquiry. In order to achieve the vision of the reforms, teachers must understand science, both a body of knowledge and as a process, but also the very nature of science itself-or the values and assumptions inherent in the construction of scientific knowledge. NOS has been deemed a critical component of scientific literacy, with implications for making informed decisions about scientific claims. Research has indicated that despite the emphasis of reforms, teachers generally do not possess accurate views of NOS. Recent work in science education has led to the recommendation that efforts undertaken within teacher education programs to improve teachers' understanding of NOS can be enhanced through relevant coursework in other academic areas, including the sciences. The purpose of this dissertation was to provide an empirical basis for this recommendation, by examining the development of teachers' views of NOS within a physical science content course. To this end, the researcher employed qualitative methodology including participant observation, interview, document analysis, and questionnaire to assess teacher participants' views of the nature of science and the impact of their experience in the content course on these views. As a result of this research, implications for both the course design and science teacher education have been described. In addition, various aspects of the community of practice that characterizes the classroom that inhibit the development of understandings about the nature of science are identified. It is argued that instruction in NOS should be approached from the perspective that builds bridges between the communities of practice of learners and of scientists.

  16. Incorporating Hot Topics in Ocean Sciences to Outreach Activities in Marine and Environmental Science Education

    NASA Astrophysics Data System (ADS)

    Bergondo, D. L.; Mrakovcich, K. L.; Vlietstra, L.; Tebeau, P.; Verlinden, C.; Allen, L. A.; James, R.

    2016-02-01

    The US Coast Guard Academy, an undergraduate military Academy, in New London CT, provides STEM education programs to the local community that engage the public on hot topics in ocean sciences. Outreach efforts include classroom, lab, and field-based activities at the Academy as well as at local schools. In one course, we partner with a STEM high school collecting fish and environmental data on board a research vessel and subsequently students present the results of their project. In another course, cadets develop and present interactive demonstrations of marine science to local school groups. In addition, the Academy develops In another course, cadets develop and present interactive demonstrations of marine science to local school groups. In addition, the Academy develops and/or participates in outreach programs including Science Partnership for Innovation in Learning (SPIL), Women in Science, Physics of the Sea, and the Ocean Exploration Trust Honors Research Program. As part of the programs, instructors and cadets create interactive and collaborative activities that focus on hot topics in ocean sciences such as oil spill clean-up, ocean exploration, tsunamis, marine biodiversity, and conservation of aquatic habitats. Innovative science demonstrations such as real-time interactions with the Exploration Vessel (E/V) Nautilus, rotating tank simulations of ocean circulation, wave tank demonstrations, and determining what materials work best to contain and clean-up oil, are used to enhance ocean literacy. Children's books, posters and videos are some creative ways students summarize their understanding of ocean sciences and marine conservation. Despite time limitations of students and faculty, and challenges associated with securing funding to keep these programs sustainable, the impact of the programs is overwhelmingly positive. We have built stronger relationships with local community, enhanced ocean literacy, facilitated communication and mentorship between young students and scientists, and encouraged interest of underrepresented minorities in STEM education.

  17. Challenges of the NGSS for Future Geoscience Education

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.; Colson, M.; Duschl, R. A.; Lopez, R. E.; Messina, P.; Speranza, P.

    2013-12-01

    The new Next Generation Science Standards (NGSS), which spell out a set of K-12 performance expectations for life science, physical science, and Earth and space science (ESS), pose a variety of opportunities and challenges for geoscience education. Among the changes recommended by the NGSS include establishing ESS on an equal footing with both life science and physical sciences, at the full K-12 level. This represents a departure from the traditional high school curriculum in most states. In addition, ESS is presented as a complex, integrated, interdisciplinary, quantitative Earth Systems-oriented set of sciences that includes complex and politically controversial topics such as climate change and human impacts. The geoscience communities will need to mobilize in order to assist and aid in the full implementation of ESS aspects of the NGSS in as many states as possible. In this context, the NGSS highlight Earth and space science to an unprecedented degree. If the NGSS are implemented in an optimal manner, a year of ESS will be taught in both middle and high school. In addition, because of the complexity and interconnectedness of the ESS content (with material such as climate change and human sustainability), it is recommended (Appendix K of the NGSS release) that much of it be taught following physics, chemistry, and biology. However, there are considerable challenges to a full adoption of the NGSS. A sufficient work force of high school geoscientists qualified in modern Earth Systems Science does not exist and will need to be trained. Many colleges do not credit high school geoscience as a lab science with respect to college admission. The NGSS demand curricular practices that include analyzing and interpreting real geoscience data, and these curricular modules do not yet exist. However, a concerted effort on the part of geoscience research and education organizations can help resolve these challenges.

  18. Budget boost offers stability to US science

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2011-02-01

    US President Barack Obama has signed into law the COMPETES Re-authorization Act that will provide an additional 43bn for science, technology and education during the next three years and help to commercialize emerging technologies.

  19. Everyday objects of learning about health and healing and implications for science education

    NASA Astrophysics Data System (ADS)

    Gitari, Wanja

    2006-02-01

    The role of science education in rural development is of great interest to science educators. In this study I investigated how residents of rural Kirumi, Kenya, approach health and healing, through discussions and semistructured and in-depth interviews with 150 residents, 3 local herbalists, and 2 medical researchers over a period of 6 months. I constructed objects of learning by looking for similarities and differences within interpretive themes. Objects of learning found comprise four types of personal learning tools, three types of relational learning tools, three genres of moral obligation, and five genres of knowledge guarding. Findings show that rural people use (among other learning tools) inner sensing to engage thought processes that lead to health and healing knowledge. The sociocultural context is also an important component in learning. Inner sensing and residents' sociocultural context are not presently emphasized in Kenyan science teaching. I discuss the potential use of rural objects of learning in school science, with specific reference to a health topic in the Kenyan science curriculum. In addition, the findings add to the literature in the Science, Technology, Society, and Environment (STSE) approach to science education, and cross-cultural and global science education.

  20. I Have a Degree in Geosciences. Now What? How to Make a Career Out of Science Writing

    NASA Astrophysics Data System (ADS)

    Sever, M.

    2013-12-01

    Many geoscience students pursue their degrees thinking that they will remain in academia or will become researchers at other public or private ventures. By the time they graduate, however, some students have re-evaluated their initial career ideas and are looking for alternatives that meld their scientific backgrounds with other interests. When those interests include communicating the novelty, excitement and value of a wide scope of modern science to the public, science writing can be an extremely rewarding path for geoscience graduates. But how does one become a science writer? What skills does someone need to possess or develop to be an effective writer, reporter and editor? Does someone need a graduate degree in journalism, in science, both, or neither to get a job in science writing? And what kinds of jobs are even available for those interested in science writing? This talk will primarily discuss how to incorporate one's skills, interests and training to land a job in science writing. Additionally, it will touch on what someone entering the important field of science writing can expect to encounter, coming from the perspective of an editor and writer at EARTH Magazine.

  1. NASA Science Institutes Plan. Report of the NASA Science Institutes Team: Final Publication (Incorporating Public Comments and Revisions)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This NASA Science Institute Plan has been produced in response to direction from the NASA Administrator for the benefit of NASA Senior Management, science enterprise leaders, and Center Directors. It is intended to provide a conceptual framework for organizing and planning the conduct of science in support of NASA's mission through the creation of a limited number of science Institutes. This plan is the product of the NASA Science Institute Planning Integration Team (see Figure A). The team worked intensively over a three-month period to review proposed Institutes and produce findings for NASA senior management. The team's activities included visits to current NASA Institutes and associated Centers, as well as approximately a dozen non-NASA research Institutes. In addition to producing this plan, the team published a "Benchmarks" report. The Benchmarks report provides a basis for comparing NASA's proposed activities with those sponsored by other national science agencies, and identifies best practices to be considered in the establishment of NASA Science Institutes. Throughout the team's activities, a Board of Advisors comprised of senior NASA officials (augmented as necessary with other government employees) provided overall advice and counsel.

  2. Talking about science: An interpretation of the effects of teacher talk in a high school science classroom

    NASA Astrophysics Data System (ADS)

    Moje, Elizabeth B.

    This paper builds on research in science education, secondary education, and sociolinguistics by arguing that high school classrooms can be considered speech communities in which language may be selectively used and imposed on students as a means of fostering academic speech community identification. To demonstrate the ways in which a high school teacher's language use may encourage subject area identification, the results of an interactionist analysis of data from a 2-year ethnographic study of one high school chemistry classroom are presented. Findings indicate that this teacher's uses of language fell into three related categories. These uses of language served to foster identification with the academic speech community of science. As a result of the teacher's talk about science according to these three patterns, students developed or reinforced particular views of science. In addition, talking about science in ways that fostered identity with the discipline promoted the teacher as expert and built classroom solidarity or community. These results are discussed in light of sociolinguistic research on classroom competence and of the assertions of science educators regarding social and ideologic implications of language use in science instruction.Received: 23 September 1993; Revised: 15 September 1994;

  3. Students' science attitudes, beliefs, and context: associations with science and chemistry aspirations

    NASA Astrophysics Data System (ADS)

    Mujtaba, Tamjid; Sheldrake, Richard; Reiss, Michael J.; Simon, Shirley

    2018-04-01

    There is a widespread concern that relatively few students, especially those from disadvantaged backgrounds, continue to study chemistry and other science subjects after compulsory education. Yet it remains unclear how different aspects of students' background and home context, their own attitudes and beliefs, and their experiences of particular teaching approaches in school might limit or facilitate their studying aspirations; concurrently, less research has specifically focused on and surveyed disadvantaged students. In order to gain more insight, 4780 students were surveyed, covering those in Year 7 (age 11-12 years) and in Year 8 (age 12-13) from schools in England with high proportions of those from disadvantaged backgrounds. Predictive modelling highlighted that the students' aspirations to study non-compulsory science in the future, and to study the particular subject of chemistry, were strongly associated with their extrinsic motivation towards science (their perceived utility of science, considered as a means to gain particular careers or skills), their intrinsic interest in science, and their engagement in extra-curricular activities. Additionally, their self-concept beliefs (their confidence in their own abilities in science), some teaching approaches, and encouragement from teachers and family alongside family science capital had smaller but still relevant associations.

  4. An investigation of teachers' reported use of scientific practices in elementary instruction: Implications for student outcomes and principals' self-efficacy

    NASA Astrophysics Data System (ADS)

    Rangasammy, Godfrey

    Innovative and ambitious efforts are taking place to implement the new vision for science education--the Next Generation of Science Standards (NGSS) in the United States. To implement this new vision, teachers must reconsider how they use their science content knowledge (SCK) and pedagogical content knowledge (PCK) in new ways that require teachers to use the three dimensions, of the NGSS to deliver phenomena -based science instruction. The use of the science and engineering practices for students to make sense of the world will be at the core of this shift. This study was conducted in a mid-Atlantic state that is one of the leaders in the adoption and implementation of NGSS. All of the local education agencies (LEAs) are expected to implement these standards by revising their science curriculum and providing professional development to their teachers. Additionally, students in grades 5, 8, and 10 will be assessed using a new and more rigorous state science assessment based on the NGSS that will be used for school and district accountability by 2020. If students will be expected to demonstrate their knowledge of the new standards, science instruction aligned with the new standards needs to begin early. Therefore, the purpose of this study was to document the extent to which grade 1-5 teachers in one district within the state report using one of the eight NGSS science and engineering practices, specifically the development and use of models in their science instruction. Selection of this practice was supported by research that supports the development and use of models in elementary science instruction as an anchor for all the other NGSS seven science and engineering practices. This exploratory study utilized an online survey to document the frequency, barriers, and relationships and differences between teacher characteristics and demographics on the use of models to support students' learning outcomes. Findings suggest that grade 1-5 teachers have a low frequency of use of models in their science instruction. Several barriers were identified and ranked. Of significance were the inequity of resources and inadequate administrator support. Several relationships and differences were also discerned. Additionally, several implications for improvement and reform in District Q were discussed.

  5. Student science enrichment training program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhu, S.S.

    1994-08-01

    This is a report on the Student Science Enrichment Training Program, with special emphasis on chemical and computer science fields. The residential summer session was held at the campus of Claflin College, Orangeburg, SC, for six weeks during 1993 summer, to run concomitantly with the college`s summer school. Fifty participants selected for this program, included high school sophomores, juniors and seniors. The students came from rural South Carolina and adjoining states which, presently, have limited science and computer science facilities. The program focused on high ability minority students, with high potential for science engineering and mathematical careers. The major objectivemore » was to increase the pool of well qualified college entering minority students who would elect to go into science, engineering and mathematical careers. The Division of Natural Sciences and Mathematics and engineering at Claflin College received major benefits from this program as it helped them to expand the Departments of Chemistry, Engineering, Mathematics and Computer Science as a result of additional enrollment. It also established an expanded pool of well qualified minority science and mathematics graduates, which were recruited by the federal agencies and private corporations, visiting Claflin College Campus. Department of Energy`s relationship with Claflin College increased the public awareness of energy related job opportunities in the public and private sectors.« less

  6. Comparison of pharmacy students' perceived and actual knowledge using the Pharmacy Curricular Outcomes Assessment.

    PubMed

    Naughton, Cynthia A; Friesner, Daniel L

    2012-05-10

    To determine whether a correlation exists between third-year PharmD students' perceived pharmacy knowledge and actual pharmacy knowledge as assessed by the Pharmacy Curricular Outcomes Assessment (PCOA). In 2010 and 2011, the PCOA was administered in a low-stakes environment to third-year pharmacy students at North Dakota State University College of Pharmacy, Nursing, and Allied Sciences (COPNAS). A survey instrument was also administered on which students self-assessed their perceived competencies in each of the core areas covered by the PCOA examination. The pharmacy students rated their competencies slightly higher than average. Performance on the PCOA was similar to but slightly higher than national averages. Correlations between each of the 4 content areas (basic biomedical sciences, pharmaceutical sciences, social/administrative sciences, and clinical sciences) mirrored those reported nationally by the National Association of Boards of Pharmacy (NABP). Student performance on the basic biomedical sciences portion of the PCOA was significantly correlated with students' perceived competencies in the biomedical sciences. No other correlations between actual and perceived competencies were significant. A lack of correlation exists between what students perceive they know and what they actually know in the areas of pharmaceutical science; social, behavioral, and administrative science; and clinical science. Therefore, additional standardized measures are needed to assess curricular effectiveness and provide comparisons among pharmacy programs.

  7. Collaboration in teacher workshops and citizen science

    NASA Astrophysics Data System (ADS)

    Gibbs, M. G.; Buxner, S.; Gay, P.; Crown, D. A.; Bracey, G.; Gugliucci, N.; Costello, K.; Reilly, E.

    2013-12-01

    The Moon and Earth system is an important topic for elementary and middle school science classrooms. Elementary and middle school teachers are challenged to keep current in science. The Planetary Science Institute created a program titled Workshops in Science Education and Resources (WISER): Planetary Perspectives to assist in-service K-12 teachers with their knowledge in earth and space science, using up-to-date science and inquiry activities to assist them in engaging their students. To augment the science and add a new aspect for teacher professional development, PSI is working in a new partnership collaborating with the Cosmoquest project in engaging teachers in authentic inquiry of the Moon. Teachers now learn about the Moon from PSI scientists and education staff and then engage in inquiry of the Moon using CosmoQuest's online citizen science project MoonMappers and its accompanying classroom curriculum TerraLuna. Through MoonMappers, teachers and students explore the lunar surface by viewing high-resolution pictures from the Lunar Reconnaissance Orbiter and marking craters and other interesting features. In addition, TerraLuna provides a unit of inquiry-based activities that bring MoonMappers and its science content into the classroom. This program addresses standards teachers need to teach and helps them not only teach about the Moon but also engage their students in authentic inquiry of the lunar surface.

  8. Science Data Preservation: Implementation and Why It Is Important

    NASA Technical Reports Server (NTRS)

    Kempler, Steven J.; Moses, John F.; Gerasimov, Irina V.; Johnson, James E.; Vollmer, Bruce E.; Theobald, Michael L.; Ostrenga, Dana M.; Ahmad, Suraiya; Ramapriyan, Hampapuram K.; Khayat, Mohammad G.

    2013-01-01

    Remote Sensing data generation by NASA to study Earth s geophysical processes was initiated in 1960 with the launch of the first Television Infrared Observation Satellite Program (TIROS), to develop a meteorological satellite information system. What would be deemed as a primitive data set by today s standards, early Earth science missions were the foundation upon which today s remote sensing instruments have built their scientific success, and tomorrow s instruments will yield science not yet imagined. NASA Scientific Data Stewardship requirements have been documented to ensure the long term preservation and usability of remote sensing science data. In recent years, the Federation of Earth Science Information Partners and NASA s Earth Science Data System Working Groups have organized committees that specifically examine standards, processes, and ontologies that can best be employed for the preservation of remote sensing data, supporting documentation, and data provenance information. This presentation describes the activities, issues, and implementations, guided by the NASA Earth Science Data Preservation Content Specification (423-SPEC-001), for preserving instrument characteristics, and data processing and science information generated for 20 Earth science instruments, spanning 40 years of geophysical measurements, at the NASA s Goddard Earth Sciences Data and Information Services Center (GES DISC). In addition, unanticipated preservation/implementation questions and issues in the implementation process are presented.

  9. Fort Collins Science Center: Fiscal Year 2007 Accomplishments

    USGS Publications Warehouse

    Wilson, J.T.

    2008-01-01

    In Fiscal Year 2007 (FY07), the U.S. Geological Survey (USGS) Fort Collins Science Center (FORT) continued research vital to U.S. Department of the Interior science and management needs and associated USGS programmatic goals. FORT work also supported the science needs of other government agencies as well as private cooperators. Specifically, FORT scientific research and technical assistance focused on client and partner needs and goals in the areas of biological information management, fisheries and aquatic systems, invasive species, status and trends of biological resources, terrestrial ecosystems, and wildlife resources. In addition, FORT's 5-year strategic plan was refined to incorporate focus areas identified in the USGS strategic science plan, including ecosystem-landscape analysis, global climate change, and energy and mineral resource development. As a consequence, several science projects initiated in FY07 were either entirely new research dor amplifications of existing work. Highlights of FORT project accomplishments are described below under the USGS science program with which each task is most closely associated. The work of FORT's 6 branches (Aquatic Systems and Technology Applications, Ecosystem Dynamics, Information Science, Invasive Species Science, Policy Analysis and Science Assistance, and Species and Habitats of Federal Interest) often involves major partnerships with other agencies or cooperation with other USGS disciplines (Geology, Geography, Water Resources) and the Geospatial Information Office.

  10. Building Science Identity in Disadvantaged Teenage Girls using an Apprenticeship Model

    NASA Astrophysics Data System (ADS)

    Pettit, E. C.; Conner, L.; Tzou, C.

    2015-12-01

    Expeditionary science differs from laboratory science in that expeditionary science teams conduct investigations in conditions that are often physically and socially, as well as intellectually, challenging. Team members live in close quarters for extended periods of time, team building and leadership affect the scientific process, and research tools are limited to what is available on site. Girls on Ice is an expeditionary science experience primarily for disadvantaged girls; it fully immerses girls in a mini scientific expedition to study alpine, glacierized environments. In addition to mentoring the girls through conducting their own scientific research, we encourage awareness and discussion of different sociocultural perspectives on the relation between the natural world, science, and society. The experience aligns closely with the apprenticeship model of learning, which can be effective in enhancing identification with science. Using a mixed-methods approach, we show that the Girls on Ice model helps girls (1) increase their interest and engagement in science and build a stronger science identity, (2) develop confidence, importantly they develop a combined physical and intellectual confidence; (3) engage in authentic scientific thinking, including critical thinking and problem solving; and (4) enhance leadership self-confidence. We discuss these results in a learning sciences framework, which posits that learning is inseparable from the social and physical contexts in which it takes place.

  11. An implementation study: An analysis of elementary students' and teachers' attitudes toward science in process-approach vs. traditional science classes

    NASA Astrophysics Data System (ADS)

    Kyle, William C., Jr.; Bonnstetter, Ronald J.; Gadsden, Thomas, Jr.

    In 1983, the Richardson Independent School District conducted an internal audit to assess the status of science education. The audit was in anticipation of Texas Administrative Code Chapter 75 which requires an inquiry-oriented, process-approach to the teaching of science. In response to the data, and to national reports advocating a broadening of the science education curriculum to address the needs of all students, the district established a committee to implement and evaluate their new K-6 SCIENCE THROUGH DISCOVERY curriculum. The Science Curriculum Improvement Study (SCIIS) was adopted as the focal component of the overall curriculum with subsequent, planned innovations to occur in accordance with the Concerns-Based Adoption Model.The purpose of this study was to assess the attitudes toward science of students who had completed one year of SCIIS compared to students in non-SCIIS classes. In addition, the attitudes of teachers who received inservice education and who had instructed SCIIS were compared to non-SCIIS teachers. While SCIIS and non-SCIIS teachers possess similar perceptions of science, drastic attitudinal differences were observed between SCIIS and non-SCIIS students. The results indicate that the nature of the curriculum, in conjunction with the necessary implementation support including inservice education, greatly enhances students perceptions of science.

  12. Earth Science Europe "Is Earth Science Europe an interesting and useful construct?"

    NASA Astrophysics Data System (ADS)

    Ludden, John

    2015-04-01

    In 2014 we managed to have a group of earth scientists from across the spectrum: from academic, survey, industry and government, pull together to create the first output for Earth Science Europe http://www.bgs.ac.uk/earthScienceEurope/downloads/EarthScienceEuropeBrochure.pdf In this document we stated that Earth scientists need a united, authoritative voice to enhance the status and impact of Earth science across Europe. The feeling was that there were many diverse infrastructure and research initiatives spanning the terrestrial and oceanic realms and science ranged from historical geology to active dynamics on Earth, and that a level of coordination and mutual knowledge sharing was necessary. In addition to a better understanding of the Earth in general, we thought there was a need to have Earth Science Europe develop a strategic research capacity in geohazards, georesources and environmental earth sciences, through a roadmap addressing fundamental and societal challenges. This would involve a robust research infrastructure to deliver strategic goals, enabling inspirational research and promoting solutions to societal challenges. In this talk I will propose some next steps and discuss what this "authoritative voice" could look like and ask the question - "is Earth Science Europe and interesting and useful concept?"

  13. Students' motivational beliefs in science learning, school motivational contexts, and science achievement in Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-Lung; Liou, Pey-Yan

    2017-05-01

    Taiwanese students are featured as having high academic achievement but low motivational beliefs according to the serial results of the Trends in Mathematics and Science Study (TIMSS). Moreover, given that the role of context has become more important in the development of academic motivation theory, this study aimed to examine the relationship between motivational beliefs and science achievement at both the student and school levels. Based on the Expectancy-Value Theory, the three motivational beliefs, namely self-concept, intrinsic value, and utility value, were the focuses of this study. The two-level hierarchical linear model was used to analyse the Taiwanese TIMSS 2011 eighth-grade student data. The results indicated that each motivational belief had a positive predictive effect on science achievement. Additionally, a positive school contextual effect of self-concept on science achievement was identified. Furthermore, school-mean utility value had a negative moderating effect on the relationship between utility value and science achievement. In conclusion, this study sheds light on the functioning of motivational beliefs in science learning among Taiwanese adolescents with consideration of the school motivational contexts.

  14. General Atomics Sciences Education Foundation Outreach Programs

    NASA Astrophysics Data System (ADS)

    Winter, Patricia S.

    1997-11-01

    Scientific literacy for all students is a national goal. The General Atomics (GA) Foundation Outreach Program is committed to playing a major role in enhancing pre-college education in science, engineering and new technologies. GA has received wide recognition for its Sciences Education Program, a volunteer effort of GA employees and San Diego science teachers. GA teacher/scientist teams have developed inquiry-based education modules and associated workshops based on areas of core competency at GA: Fusion -- Energy of the Stars; Explorations in Materials Science; Portrait of an Atom; DNA Technology. [http://www.sci-ed-ga.org]. Workshops [teachers receive printed materials and laboratory kits for ``hands-on" modules] have been presented for 700+ teachers from 200+ area schools. Additional workshops include: University of Denver for Denver Public Schools; National Educators Workshop; Standard Experiments in Engineering Materials; Update '96 in Los Alamos; Newspapers in Education Workshop (LA Times); American Chemical Society Regional/National meetings, and California Science Teachers Association Conference. Other outreach includes High School Science Day, school partnerships, teacher and student mentoring and the San Diego Science Alliance [http://www.sdsa.org].

  15. Project Clarion: Three Years of Science Instruction in Title I Schools among K-Third Grade Students

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Hee; VanTassel-Baska, Joyce; Bracken, Bruce A.; Feng, Annie; Stambaugh, Tamra; Bland, Lori

    2012-10-01

    The purpose of the study was to measure the effects of higher level, inquiry-based science curricula on students at primary level in Title I schools. Approximately 3,300 K-3 students from six schools were assigned to experimental or control classes ( N = 115 total) on a random basis according to class. Experimental students were exposed to concept-based science curriculum that emphasized `deep learning' though concept mastery and investigation, whereas control classes learned science from traditional school-based curricula. Two ability measures, the Bracken Basic Concept Scale-Revised (BBCS-R, Bracken 1998) and the Naglieri Nonverbal Intelligence Test (NNAT, Naglieri 1991), were used for baseline information. Additionally, a standardized measure of student achievement in science (the MAT-8 science subtest), a standardized measure of critical thinking, and a measure for observing teachers' classroom behaviors were used to assess learning outcomes. Results indicated that all ability groups of students benefited from the science inquiry-based approach to learning that emphasized science concepts, and that there was a positive achievement effect for low socio-economic young children who were exposed to such a curriculum.

  16. Investigating the Impact of NGSS-Aligned Professional Development on PreK-3 Teachers' Science Content Knowledge and Pedagogy

    NASA Astrophysics Data System (ADS)

    Tuttle, Nicole; Kaderavek, Joan N.; Molitor, Scott; Czerniak, Charlene M.; Johnson-Whitt, Eugenia; Bloomquist, Debra; Namatovu, Winnifred; Wilson, Grant

    2016-11-01

    This pilot study investigates the impact of a 2-week professional development Summer Institute on PK-3 teachers' knowledge and practices. This Summer Institute is a component of [program], a large-scale early-childhood science project that aims to transform PK-3 science teaching. The mixed-methods study examined concept maps, lesson plans, and classroom observations to measure possible changes in PK-3 teachers' science content knowledge and classroom practice from 11 teachers who attended the 2014 Summer Institute. Analysis of the concept maps demonstrated statistically significant growth in teachers' science content knowledge. Analysis of teachers' lesson plans demonstrated that the teachers could design high quality science inquiry lessons aligned to the Next Generation Science Standards following the professional development. Finally, examination of teachers' pre- and post-Summer Institute videotaped inquiry lessons showed evidence that teachers were incorporating new inquiry practices into their teaching, especially regarding classroom discourse. Our results suggest that an immersive inquiry experience is effective at beginning a shift towards reform-aligned science and engineering instruction but that early elementary educators require additional support for full mastery.

  17. Complementary competencies: public health and health sciences librarianship

    PubMed Central

    Banks, Marcus A.; Cogdill, Keith W.; Selden, Catherine R.; Cahn, Marjorie A.

    2005-01-01

    Objectives: The authors sought to identify opportunities for partnership between the communities of public health workers and health sciences librarians. Methods: The authors review competencies in public health and health sciences librarianship. They highlight previously identified public health informatics competencies and the Medical Library Association's essential areas of knowledge. Based on points of correspondence between the two domains, the authors identify specific opportunities for partnership. Results: The points of correspondence between public health and health sciences librarianship are reflected in several past projects involving both communities. These previous collaborations and the services provided by health sciences librarians at many public health organizations suggest that some health sciences librarians may be considered full members of the public health workforce. Opportunities remain for productive collaboration between public health workers and health sciences librarians. Conclusions: Drawing on historical and contemporary experience, this paper presents an initial framework for forming collaborations between health sciences librarians and members of the public health workforce. This framework may stimulate thinking about how to form additional partnerships between members of these two communities. PMID:16059423

  18. The influence of role-specific self-concept and sex-role identity on career choices in science

    NASA Astrophysics Data System (ADS)

    Baker, Dale R.

    Despite much effort on the part of educators the number of females who choose science careers remains low. This research focuses on two factors which may be influencing females in their choice of careers. These factors are role-specific self-concept in science and self perception in terms of stereotypical masculine and feminine characteristics. In addition logical ability and mathematics and science courses were also examined as factors in career choice. Females preferring science related careers and females preferring nontraditional careers such as police, military and trades were found to have a positive role-specific self-concept and a masculine perception of themselves. Females preferring traditional careers such as teacher or hairdresser had a poor role-specific self-concept and a more feminine perception of themselves. Males as a group were found to have a more positive role-specific self-concept than females. Logical ability was also related to a science career preference for both males and females. Males expected to take more higher level math courses than females, while females preferring science careers expected to take the most higher level science courses.

  19. Integrating Science Content and Pedagogy in the Earth, Life, and Physical Sciences: A K-8 Pre-Service Teacher Preparation Continuum at the University of Delaware

    NASA Astrophysics Data System (ADS)

    Madsen, J.; Allen, D.; Donham, R.; Fifield, S.; Ford, D.; Shipman, H.; Dagher, Z.

    2007-12-01

    University of Delaware faculty in the geological sciences, biological sciences, and the physics and astronomy departments have partnered with faculty and researchers from the school of education to form a continuum for K- 8 pre-service teacher preparation in science. The goal of the continuum is to develop integrated understandings of content and pedagogy so that these future teachers can effectively use inquiry-based approaches in teaching science in their classrooms. Throughout the continuum where earth science content appears an earth system science approach, with emphasis on inquiry-based activities, is employed. The continuum for K-8 pre-service teachers includes a gateway content course in the earth, life, or physical sciences taken during the freshman year followed by integrated science content and methods courses taken during the sophomore year. These integrated courses, called the Science Semester, were designed and implemented with funding from the National Science Foundation. During the Science Semester, traditional content and pedagogy subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based science. Students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. They also critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning during the Science Semester. The PBL activities that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in a PBL investigation that focuses on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. Those students seeking secondary certification in science will enroll, as a bridge toward their student teaching experience, in an additional content course within a science discipline that is concurrently taught with a science methods course. Emphasizing inquiry-based activities, these bridge courses also focus on developing integrated understandings of the sciences. The continuum extends beyond the student teaching experience by tracking cohorts of science teachers during their in-service years. With funding from the National Science Foundation's Teacher Professional Continuum program, we are conducting research on this inquiry-based professional development approach for K-8 teachers across this continuum.

  20. Investigating the Self-Perceived Science Teaching Needs of Local Elementary Educators

    NASA Astrophysics Data System (ADS)

    Carver, Cynthia G.

    Elementary teachers in one school system have expressed low self-efficacy teaching science and desire more support teaching science. However, little research has been conducted on how best to meet these teachers' needs. The theories of perceived self-efficacy, social cognition, and behaviorism make up the conceptual framework of this study. The focus of this qualitative project study was on the needs of local elementary educators. These teachers were asked what they felt they needed most to be more effective science educators. The methodology of phenomenology was used in this study in which local elementary teachers were questioned in focus groups regarding their own science teaching efficacy and perceived needs. Using inductive analysis, data were coded for links to discussion questions as well as any additional patterns that emerged. Findings indicated that local elementary teachers desire improved communication among administrators and teachers as well as better science content support and training. Focus group participants agreed that teacher self-efficacy affects the time spent, effort toward, and quality of elementary science education. Using the results of the study, a science mentor program was developed to support the needs of elementary teachers and increase teacher self-efficacy, thus improving local elementary science education. Implications for positive social change include the development and support of elementary science programs in other school systems with the goal of improving science education for elementary students.

  1. Perspectives of best Practices for Learning Gender-Inclusive Science: Influences of Extracurricular Science for Gifted Girls and Electrical Engineering for Women

    NASA Astrophysics Data System (ADS)

    Wood, Shaunda L.

    Gifted girls in elementary school must follow the set curriculum, but their choices of extracurricular activities may indicate future subject preferences. This study attempted to explore the perceptions of gifted girls regarding how the family, home, and school environments influenced their choices to take extracurricular science classes. A mixed methodology was adopted: qualitative, to understand the girls' perceptions of influence, and quantitative, to measure their attitudes toward science. Influential factors identified in this study highlight fun as occurring with the highest frequency and four emergent factors: doubt, traditional sex roles, boredom, and group work. In addition, findings from a focused case study of a graduate electrical engineer are interwoven with the girls' perspectives of science. The varying ages and experiences with science of the participants provide interesting views. This study adds knowledge to the field of science education, specifically on withingender differences of gifted girls and women in engineering.

  2. Understanding Male Underachievement in Middle School Science: Challenging the Assumptions

    NASA Astrophysics Data System (ADS)

    Holbrooks, Marilyn Jane

    The overall purpose of this collaborative action research study was to explore the experiences of eight middle school science teachers. This collaborative action research study concerned itself with male student underachievement in science at the middle school level. The study was conducted at Sherwood Forest Middle School (a pseudonym) with sixth through eighth grade science teachers with more than three years of experience, various teaching backgrounds within academic subjects as well as special education, and different grade levels. The interviews probed the teachers' personal experiences and insights regarding male underachievement in science. This collaborative action research study relied on qualitative data from interviews and other pieces of evidence that might support the teachers' observations, specifically standardized test data and class grades. In addition, four of the seven teachers participated in a focus group, developing strategies for more effective teaching in science for all students. Understanding the experiences of science educators for sixth through eighth grade students can assist local, state, and federal policymakers in educational decision-making processes for the future.

  3. Implementation of small group discussion as a teaching method in earth and space science subject

    NASA Astrophysics Data System (ADS)

    Aryani, N. P.; Supriyadi

    2018-03-01

    In Physics Department Universitas Negeri Semarang, Earth and Space Science subject is included in the curriculum of the third year of physics education students. There are various models of teaching earth and space science subject such as textbook method, lecturer, demonstrations, study tours, problem-solving method, etc. Lectures method is the most commonly used of teaching earth and space science subject. The disadvantage of this method is the lack of two ways interaction between lecturers and students. This research used small group discussion as a teaching method in Earth and Space science. The purpose of this study is to identify the conditions under which an efficient discussion may be initiated and maintained while students are investigating properties of earth and space science subjects. The results of this research show that there is an increase in student’s understanding of earth and space science subject proven through the evaluation results. In addition, during the learning process, student’s activeness also increase.

  4. Study of Turkish Preschool Teachers' Attitudes toward Science Teaching

    NASA Astrophysics Data System (ADS)

    Erden, Feyza T.; Sönmez, Sema

    2011-05-01

    This study aims to explore preschool teachers' attitudes toward science teaching and its impact on classroom practices through the frequency of science activities provided in the classroom. In addition, the study investigates if their attitudes are related to factors such as educational level, years of teaching experience, and the school type they work in. The present research was conducted with 292 preschool teachers who work in public and private schools in different districts of Ankara, Turkey. The data were collected by administering the Early Childhood Teachers' Attitudes toward Science Teaching Scale. Our analyses indicate that there is a significant but weak link between preschool teachers' attitudes toward science teaching and the frequency of science activities that they provide in the classroom. Further, while teachers' characteristics such as educational level and experience are found to play an insignificant role on the overall measures of the scale, type of school appears to be a major factor in explaining the attitudes toward science teaching.

  5. Science as a Web of Trails: Redesigning Science Education with the Tools of the Present to Meet the Needs of the Future

    NASA Astrophysics Data System (ADS)

    Karno, Donna; Glassman, Michael

    2013-12-01

    Science education has experienced significant changes since the mid-20th century, most recently with the creation of STEM curricula (DeBoer 1991; Yager 2000). The emergence of the World Wide Web as a tool in research and discovery offers Pre-K-12 science education an opportunity to share information and perspectives which engage students with the scientific community (Zoller 2011). Students are able to access open, transparent sites creating common resources pools and autonomous working groups which can be used for shared problem solving. Science teachers should carefully build web 2.0 technology into their practice based on a changing pedagogy. Instead of focusing on teaching rule-based concepts and processes in which the teacher's role is that of expert, education should be focusing on possibilities of the web both in scientific research and understanding. In addition, web-focused education can also help remake scientific product as a public good in the lives of both science researchers and science consumers.

  6. More than a Museum: Natural History is Relevant in 21st Century Environmental Science

    NASA Astrophysics Data System (ADS)

    Hernandez, R. R.; Murphy-Mariscal, M. L.; Barrows, C. W.

    2015-12-01

    In the Anthropocene, the relevancy of natural history in environmental science is challenged and marginalized today more than ever. We tested the hypothesis that natural history is relevant to the fields of environmental science and ecology by assessing the values, needs, and decisions related to natural history of graduate students and environmental science professionals across 31 universities and various employers, respectively, in California. Graduate students surveyed (93.3%) agreed that natural history was relevant to science, approximately 70% believed it "essential" for conducting field-based research; however, 54.2% felt inadequately trained to teach a natural history course and would benefit from additional training in natural history (> 80%). Of the 185 professionals surveyed, all felt that natural history was relevant to science and "essential" or "desirable" in their vocation (93%). Our results indicate a disconnect between the value and relevancy of natural history in 21st century ecological science and opportunities for gaining those skills and knowledge through education and training.

  7. A surfeit of science: The "CSI effect" and the media appropriation of the public understanding of science.

    PubMed

    Cole, Simon A

    2015-02-01

    Over the past decade, popular media has promulgated claims that the television program CSI and its spinoffs and imitators have had a pernicious effect on the public understanding of forensic science, the so-called "CSI effect." This paper analyzes those media claims by documenting the ways in which the media claims that CSI "distorts" an imagined "reality." It shows that the media appropriated the analytic stance usually adopted by science advocates, portraying the CSI effect as a social problem in science communication. This appropriation was idiosyncratic in that it posited, as a social problem, a "surfeit" of knowledge and positive imagery about science, rather than the more familiar "deficits." In addition, the media simultaneously appropriated both "traditional" and "critical" PUS discourses. Despite this apparent contradiction, the paper concludes that, in both discourses, the media and its expert informants insist upon their hegemony over "the public" to articulate the "reality" of forensic science. © The Author(s) 2013.

  8. Virginia Earth Science Collaborative: Developing Highly Qualified Teachers

    NASA Astrophysics Data System (ADS)

    Cothron, J.

    2007-12-01

    A collaborative of nine institutes of higher education and non-profits and seventy-one school divisions developed and implemented courses that will enable teachers to acquire an Add-On Earth Science endorsement and to improve their skills in teaching Earth Science. For the Earth Science Endorsement, the five courses and associated credits are Physical Geology (4), Geology of Virginia (4), Oceanography (4), Astronomy (3) and Meteorology (3). The courses include rigorous academic content, research-based instructional strategies, laboratory experiences, and intense field experiences. In addition, courses were offered on integrating new technologies into the earth sciences, developing virtual field trips, and teaching special education students. To date, 39 courses have been offered statewide, with over 560 teachers participating. Teachers showed increased conceptual understanding of earth science topics as measured by pre-post tests. Other outcomes include a project website, a collaborative of over 60 IHE and K-12 educators, pilot instruments, and a statewide committee focused on policy in the earth sciences.

  9. Fort Collins Science Center- Policy Analysis and Science Assistance Branch : Integrating social, behavioral, economic and biological sciences

    USGS Publications Warehouse

    2010-01-01

    The Fort Collins Science Center's Policy Analysis and Science Assistance (PASA) Branch is a team of approximately 22 scientists, technicians, and graduate student researchers. PASA provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and biological analyses in the context of human-natural resource interactions. Resource planners, managers, and policymakers in the U.S. Departments of the Interior (DOI) and Agriculture (USDA), State and local agencies, as well as international agencies use information from PASA studies to make informed natural resource management and policy decisions. PASA scientists' primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to advance performance in policy relevant research areas. Management and research issues associated with human-resource interactions typically occur in a unique context, involve difficult to access populations, require knowledge of both natural/biological science in addition to social science, and require the skill to integrate multiple science disciplines. In response to these difficult contexts, PASA researchers apply traditional and state-of-the-art social science methods drawing from the fields of sociology, demography, economics, political science, communications, social-psychology, and applied industrial organization psychology. Social science methods work in concert with our rangeland/agricultural management, wildlife, ecology, and biology capabilities. The goal of PASA's research is to enhance natural resource management, agency functions, policies, and decision-making. Our research is organized into four broad areas of study.

  10. Aliens are us. An innovative course in astrobiology

    NASA Astrophysics Data System (ADS)

    Oliveira, Carlos F.; Barufaldi, James P.

    2009-01-01

    We live in a scientific world; paradoxically, the scientific literacy of the population is minimal at best. Science is an ongoing process, a human endeavour; paradoxically, students tend to believe that science is a finished enterprise. Many non-science major students are not motivated in science classes; paradoxically, there is a public fascination with the possibility of life in the Universe, which is nowadays a scientific endeavour. An astrobiology course was developed at the Center for Science and Mathematics Education at The University of Texas at Austin to address these paradoxes and includes the following objectives: (a) to improve scientific literacy; (b) to demonstrate that science is a work in progress; (c) to enhance the inherent interdisciplinary aspect of science; (d) to demonstrate that science is embedded in society and relates with several social sciences; (e) to improve the content knowledge about the nature of science; (f) to illustrate how engaging learning science can be; and (g) to draw from the intrinsic motivation already incorporated in the general population. The course has been offered, taught and revised for the past three years. The informal course student feedback has been very positive and encouraging. The purpose of this paper is to provide a general overview of the course. In addition, the course's background, content, themes and mode of delivery are outlined, discussed and analysed in this paper. This paper subscribes to an educational philosophy that focuses on the multidisciplinary nature of science and includes critical thinking-based teaching strategies using the dynamic discipline of astrobiology.

  11. Virtual school teacher's science efficacy beliefs: The effects of community of practice on science-teaching efficacy beliefs

    NASA Astrophysics Data System (ADS)

    Uzoff, Phuong Pham

    The purpose of this study was to examine how much K-12 science teachers working in a virtual school experience a community of practice and how that experience affects personal science-teaching efficacy and science-teaching outcome expectancy. The study was rooted in theoretical frameworks from Lave and Wenger's (1991) community of practice and Bandura's (1977) self-efficacy beliefs. The researcher used three surveys to examine schoolteachers' experiences of a community of practice and science-teaching efficacy beliefs. The instrument combined Mangieri's (2008) virtual teacher demographic survey, Riggs and Enochs (1990) Science-teaching efficacy Beliefs Instrument-A (STEBI-A), and Cadiz, Sawyer, and Griffith's (2009) Experienced Community of Practice (eCoP) instrument. The results showed a significant linear statistical relationship between the science teachers' experiences of community of practice and personal science-teaching efficacy. In addition, the study found that there was also a significant linear statistical relationship between teachers' community of practice experiences and science-teaching outcome expectancy. The results from this study were in line with numerous studies that have found teachers who are involved in a community of practice report higher science-teaching efficacy beliefs (Akerson, Cullen, & Hanson, 2009; Fazio, 2009; Lakshmanan, Heath, Perlmutter, & Elder, 2011; Liu, Lee, & Lin, 2010; Sinclair, Naizer, & Ledbetter, 2010). The researcher concluded that school leaders, policymakers, and researchers should increase professional learning opportunities that are grounded in social constructivist theoretical frameworks in order to increase teachers' science efficacy.

  12. Marine Science Training Program for Alaska Native Students

    DTIC Science & Technology

    1991-08-01

    Seward Marine Center or Kasitsna Bay. In 1989 we decided that a more intensive internship with direct faculty involvement would be more effective ...at UAF provides orientation activities for prospective Native students from the states rural high schools. In addition RSS provides the Alaska Native...opportunity to explore the effects of science upon their daily lives will attract student to careers into oceanic and related sciences and further

  13. A SCIENCE PROGRAM FOR THE ELEMENTARY SCHOOLS OF LOWER MERION SCHOOL DISTRICT.

    ERIC Educational Resources Information Center

    Lower Merion Township School District, Ardmore, PA.

    AFTER AN EVALUATION MADE BY THE TEACHERS OF KINDERGARTEN THROUGH GRADE 6, THE FOLLOWING AREAS OF CLARIFICATION, REWRITING, OR ADDITIONS WERE INDICATED--THE PURPOSE AND USE OF THE SCIENCE GUIDE, EVALUATION OF THE UNITS BY GRADES, ADDITIONAL MATERIALS FOR THE UNITS, A REWRITING OF PARTICULAR UNITS, HEALTH UNITS FOR GRADES 1 THROUGH 5, THE USE OF…

  14. The Proposal Auto-Categorizer and Manager for Time Allocation Review at the Space Telescope Science Institute

    NASA Astrophysics Data System (ADS)

    Strolger, Louis-Gregory; Porter, Sophia; Lagerstrom, Jill; Weissman, Sarah; Reid, I. Neill; Garcia, Michael

    2017-04-01

    The Proposal Auto-Categorizer and Manager (PACMan) tool was written to respond to concerns about subjective flaws and potential biases in some aspects of the proposal review process for time allocation for the Hubble Space Telescope (HST), and to partially alleviate some of the anticipated additional workload from the James Webb Space Telescope (JWST) proposal review. PACMan is essentially a mixed-method Naive Bayesian spam filtering routine, with multiple pools representing scientific categories, that utilizes the Robinson method for combining token (or word) probabilities. PACMan was trained to make similar programmatic decisions in science category sorting, panelist selection, and proposal-to-panelists assignments to those made by individuals and committees in the Science Policies Group (SPG) at the Space Telescope Science Institute. Based on training from the previous cycle’s proposals, at an average of 87%, PACMan made the same science category assignments for proposals in Cycle 24 as the SPG. Tests for similar science categorizations, based on training using proposals from additional cycles, show that this accuracy can be further improved, to the > 95 % level. This tool will be used to augment or replace key functions in the Time Allocation Committee review processes in future HST and JWST cycles.

  15. Centre for Research Infrastructure of Polish GNSS Data - response and possible contribution to EPOS

    NASA Astrophysics Data System (ADS)

    Araszkiewicz, Andrzej; Rohm, Witold; Bosy, Jaroslaw; Szolucha, Marcin; Kaplon, Jan; Kroszczynski, Krzysztof

    2017-04-01

    In the frame of the first call under Action 4.2: Development of modern research infrastructure of the science sector in the Smart Growth Operational Programme 2014-2020 in the late of 2016 the "EPOS-PL" project has launched. Following institutes are responsible for the implementation of this project: Institute of Geophysics, Polish Academy of Sciences - Project Leader, Academic Computer Centre Cyfronet AGH University of Science and Technology, Central Mining Institute, the Institute of Geodesy and Cartography, Wrocław University of Environmental and Life Sciences, Military University of Technology. In addition, resources constituting entrepreneur's own contribution will come from the Polish Mining Group. Research Infrastructure EPOS-PL will integrate both existing and newly built National Research Infrastructures (Theme Centre for Research Infrastructures), which, under the premise of the program EPOS, are financed exclusively by the national founds. In addition, the e-science platform will be developed. The Centre for Research Infrastructure of GNSS Data (CIBDG - Task 5) will be built based on the experience and facilities of two institutions: Military University of Technology and Wrocław University of Environmental and Life Sciences. The project includes the construction of the National GNNS Repository with data QC procedures and adaptation of two Regional GNNS Analysis Centres for rapid and long-term geodynamical monitoring.

  16. Cognitive knowledge, attitude toward science, and skill development in virtual science laboratories

    NASA Astrophysics Data System (ADS)

    Babaie, Mahya

    The purpose of this quantitative, descriptive, single group, pretest posttest design study was to explore the influence of a Virtual Science Laboratory (VSL) on middle school students' cognitive knowledge, skill development, and attitudes toward science. This study involved 2 eighth grade Physical Science classrooms at a large urban charter middle school located in Southern California. The Buoyancy and Density Test (BDT), a computer generated test, assessed students' scientific knowledge in areas of Buoyancy and Density. The Attitude Toward Science Inventory (ATSI), a multidimensional survey assessment, measured students' attitudes toward science in the areas of value of science in society, motivation in science, enjoyment of science, self-concept regarding science, and anxiety toward science. A Virtual Laboratory Packet (VLP), generated by the researcher, captured students' mathematical and scientific skills. Data collection was conducted over a period of five days. BDT and ATSI assessments were administered twice: once before the Buoyancy and Density VSL to serve as baseline data (pre) and also after the VSL (post). The findings of this study revealed that students' cognitive knowledge and attitudes toward science were positively changed as expected, however, the results from paired sample t-tests found no statistical significance. Analyses indicated that VSLs were effective in supporting students' scientific knowledge and attitude toward science. The attitudes most changed were value of science in society and enjoyment of science with mean differences of 1.71 and 0.88, respectively. Researchers and educational practitioners are urged to further examine VSLs, covering a variety of topics, with more middle school students to assess their learning outcomes. Additionally, it is recommended that publishers in charge of designing the VSLs communicate with science instructors and research practitioners to further improve the design and analytic components of these virtual learning environments. The results of this study contribute to the existing body of knowledge in an effort to raise awareness about the inclusion of VSLs in secondary science classrooms. With the advancement of technological tools in secondary science classrooms, instructional practices should consider including VSLs especially if providing real science laboratories is a challenge.

  17. Learning to teach science in a professional development school program

    NASA Astrophysics Data System (ADS)

    Hildreth, David P.

    1997-09-01

    The purpose of this study was to determine the effects of learning to teach science in a Professional Development School (PDS) program on university elementary education preservice teachers' (1) attitudes toward science, (2) science process skills achievement, and (3) sense of science teaching efficacy. Data were collected and analyzed using both quantitative and qualitative methods. Quantitative data were collected using the Science Attitude Inventory (North Carolina Math and Science Education Network (1994), the Test of Integrated Process Skills, TIPS, (Dillashaw & Okey, 1980), and the Science Teaching Efficacy Belief Instrument, STEBI, form B (Enochs & Riggs, 1990). A pretest posttest research design was used for the attitude and process skills constructs. These results were analyzed using paired t test procedures. A pre-experimental group comparison group research design was used for the efficacy construct. Results from this comparison were analyzed using unpaired t test procedures. Qualitative data were collected through students' responses to open-ended questionnaires, narrative interviews, journal entries, small messages, and unsolicited conversations. These data were analyzed via pattern analysis. Posttest scores were significantly higher than pretests scores on both the Science Attitude Inventory and the TIPS. This indicated that students had improved attitudes toward science and science teaching and higher process skills achievement after three semesters in the science-focused PDS program. Scores on the STEBI were significantly higher for students in the pre-experimental group when compared to students in the comparison group. This indicates that students in the science-focused PDS program possessed more efficacious beliefs about science teaching than did the comparison group. Quantitative data were supported by analysis of qualitative data. Implications from this study point to the effectiveness of learning to teach science in a science-focused PDS program with respect to attitudes toward science, science process skills achievement, and sense of science teaching efficacy. In addition, qualitative data indicated that the most effective components of the science-focused PDS program rests largely on the fact that students learned to teach in a collaborative cohort team and that students spent extended periods of time in clinical internships and student teaching.

  18. Engaging a Rural Community with Science through a Science Café

    NASA Astrophysics Data System (ADS)

    Adams, P. E.

    2012-12-01

    Public awareness about science and science issues is often lacking in the general community; in a rural community there are even fewer options for an interested person to engage with others on science topics. One approach to address this issue is through the use of the Science Café model of citizen science at the local level. The Science Café concept, for the United States, originated in Boston (http://www.sciencecafes.org/). Science Café events are held in informal settings, such as restaurants, pubs, or coffee houses with presentations being provided by experts on the subject. The format is designed to promote discussion and questions. Fort Hays State University Science and Mathematics Institute (SMEI), located in Hays, KS, is now in its fifth year of hosting a science café in a community of 20,000 people. The program in Hays started as a grassroots effort from an area high school teacher asking SMEI to organize and support the program. Attendance at the Science Café has range from 14 to 75 people (fire code capacity!), with an average attendance of 30 people. The audience for our Science Café has been citizens, college students, high school students, and university faculty. The presenters at the Hays Science Café have ranged from scientists to engineers, high school students to hobbyists. Our topics have ranged from searching for life in the universe, wind energy, paleo-life in Kansas, climate change, honey bees, and planetary science. The program has developed a strong following in the community and has led to the formation of additional Science Café programs in Kansas. Selection of topics is based on community interest and timeliness. Publicity occurs through posters, e-mail, and social media outlets. Participants have found the sessions to be of interest and a place to learn more about the world and become informed about issues in the news. The Science Café in Hays has had a positive impact on the community.

  19. Life sciences space station planning document: A reference payload for the exobiology research facilities

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Cosmic Dust Collection and Gas Grain Simulation Facilities represent collaborative efforts between the Life Sciences and Solar System Exploration Divisions designed to strengthen a natural exobiology/Planetary Sciences connection. The Cosmic Dust Collection Facility is a Planetary Science facility, with Exobiology a primary user. Conversely, the Gas Grain Facility is an exobiology facility, with Planetary Science a primary user. Requirements for the construction and operation of the two facilities, contained herein, were developed through joint workshops between the two disciplines, as were representative experiments comprising the reference payloads. In the case of the Gas Grain Simulation Facility, the astrophysics Division is an additional potential user, having participated in the workshop to select experiments and define requirements.

  20. Current Approaches in Implementing Citizen Science in the Classroom

    PubMed Central

    Shah, Harsh R.; Martinez, Luis R.

    2016-01-01

    Citizen science involves a partnership between inexperienced volunteers and trained scientists engaging in research. In addition to its obvious benefit of accelerating data collection, citizen science has an unexplored role in the classroom, from K–12 schools to higher education. With recent studies showing a weakening in scientific competency of American students, incorporating citizen science initiatives in the curriculum provides a means to address deficiencies in a fragmented educational system. The integration of traditional and innovative pedagogical methods to reform our educational system is therefore imperative in order to provide practical experiences in scientific inquiry, critical thinking, and problem solving for school-age individuals. Citizen science can be used to emphasize the recognition and use of systematic approaches to solve problems affecting the community. PMID:27047583

  1. Current Approaches in Implementing Citizen Science in the Classroom.

    PubMed

    Shah, Harsh R; Martinez, Luis R

    2016-03-01

    Citizen science involves a partnership between inexperienced volunteers and trained scientists engaging in research. In addition to its obvious benefit of accelerating data collection, citizen science has an unexplored role in the classroom, from K-12 schools to higher education. With recent studies showing a weakening in scientific competency of American students, incorporating citizen science initiatives in the curriculum provides a means to address deficiencies in a fragmented educational system. The integration of traditional and innovative pedagogical methods to reform our educational system is therefore imperative in order to provide practical experiences in scientific inquiry, critical thinking, and problem solving for school-age individuals. Citizen science can be used to emphasize the recognition and use of systematic approaches to solve problems affecting the community.

  2. A colorful approach to teaching optics

    NASA Astrophysics Data System (ADS)

    Magnani, Nancy J.; Donnelly, Judith

    2014-09-01

    In a traditional Connecticut elementary school setting, the classroom teacher will teach language arts, social studies and science curriculum. For 5th grade, the science curriculum includes learning about the senses and moon phases, in addition to the fundamentals of light. For art, music and physical education, students are sent to teachers who have certifications in teaching these subjects. In support of the science curriculum, we have traditionally provided workshops to enhance and supplement existing science curriculum. This method of instruction has become a routine. What if we invigorate the curriculum by using visual art to teach science? Will the students achieve a greater understanding of the principals of light? In this paper, we will explore the use of art to enhance the understanding of color and light phenomena.

  3. The Gender Differences: Hispanic Females and Males Majoring in Science or Engineering

    NASA Astrophysics Data System (ADS)

    Brown, Susan Wightman

    Documented by national statistics, female Hispanic students are not eagerly rushing to major in science or engineering. Using Seidman's in-depth interviewing method, 22 Hispanic students, 12 female and 10 male, majoring in science or engineering were interviewed. Besides the themes that emerged with all 22 Hispanic students, there were definite differences between the female and male Hispanic students: role and ethnic identity confusion, greater college preparation, mentoring needed, and the increased participation in enriched additional education programs by the female Hispanic students. Listening to these stories from successful female Hispanic students majoring in science and engineering, educators can make changes in our school learning environments that will encourage and enable more female Hispanic students to choose science or engineering careers.

  4. Advanced technology needs for a global change science program: Perspective of the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rowell, Lawrence F.; Swissler, Thomas J.

    1991-01-01

    The focus of the NASA program in remote sensing is primarily the Earth system science and the monitoring of the Earth global changes. One of NASA's roles is the identification and development of advanced sensing techniques, operational spacecraft, and the many supporting technologies necessary to meet the stringent science requirements. Langley Research Center has identified the elements of its current and proposed advanced technology development program that are relevant to global change science according to three categories: sensors, spacecraft, and information system technologies. These technology proposals are presented as one-page synopses covering scope, objective, approach, readiness timeline, deliverables, and estimated funding. In addition, the global change science requirements and their measurement histories are briefly discussed.

  5. Citation analysis of faculty publication: beyond Science Citation Index and Social Science Citation Index.

    PubMed Central

    Reed, K L

    1995-01-01

    When evaluated for promotion or tenure, faculty members are increasingly judged more on the quality than on the quantity of their scholarly publications. As a result, they want help from librarians in locating all citations to their published works for documentation in their curriculum vitae. Citation analysis using Science Citation Index and Social Science Citation Index provides a logical starting point in measuring quality, but the limitations of these sources leave a void in coverage of citations to an author's work. This article discusses alternative and additional methods of locating citations to published works. PMID:8547915

  6. Citation analysis of faculty publication: beyond Science Citation Index and Social Science Citation Index.

    PubMed

    Reed, K L

    1995-10-01

    When evaluated for promotion or tenure, faculty members are increasingly judged more on the quality than on the quantity of their scholarly publications. As a result, they want help from librarians in locating all citations to their published works for documentation in their curriculum vitae. Citation analysis using Science Citation Index and Social Science Citation Index provides a logical starting point in measuring quality, but the limitations of these sources leave a void in coverage of citations to an author's work. This article discusses alternative and additional methods of locating citations to published works.

  7. Science opportunity analyzer - a multi-mission approach to science planning

    NASA Technical Reports Server (NTRS)

    Streiffert, B. A.; Polanskey, C. A.; O'Reilly, T.; Colwell, J.

    2003-01-01

    In the past Science Planning for space missions has been comprised of using ad-hoc software toolscollected or reconstructed from previous missions, tools used by other groups who often speak a different 'technical' language or even 'the backs of envelopes'. In addition to the tools being rough, the work done with these tools often has had to be redone or at least re-entered when it came time to determine actual observations. Science Opportunity Analyzer (SOA), a Java-based application, has been built for scientists to enable them to identify/analyze observation opportunities and then, to create corresponding observation designs.

  8. Planning and Execution for an Autonomous Aerobot

    NASA Technical Reports Server (NTRS)

    Gaines, Daniel M.; Estlin, Tara A.; Schaffer, Steven R.; Chouinard, Caroline M.

    2010-01-01

    The Aerial Onboard Autonomous Science Investigation System (AerOASIS) system provides autonomous planning and execution capabilities for aerial vehicles (see figure). The system is capable of generating high-quality operations plans that integrate observation requests from ground planning teams, as well as opportunistic science events detected onboard the vehicle while respecting mission and resource constraints. AerOASIS allows an airborne planetary exploration vehicle to summarize and prioritize the most scientifically relevant data; identify and select high-value science sites for additional investigation; and dynamically plan, schedule, and monitor the various science activities being performed, even during extended communications blackout periods with Earth.

  9. Multimodal Semiosis in Science Read-Alouds: Extending Beyond Text Delivery

    NASA Astrophysics Data System (ADS)

    Oliveira, Alandeom W.; Rivera, Seema; Glass, Rory; Mastroianni, Michael; Wizner, Francine; Amodeo, Vincent

    2014-10-01

    This study examines elementary teachers reading children's science books aloud to students in the US. Our findings show that science read-aloud semiosis (meaning-making) extends beyond text delivery. In addition to making a written text orally available to students, teachers also deploy different types of gestures (pointing and iconic gesticulation) and pictorial representations (narrative and conceptual) as they scaffold students' understandings. Further, teachers are shown to engage in two distinct forms of meaning-making: multimodal description and multimodal explanation. A conceptual framework is proposed that elementary science educators can use to systematically incorporate multimodality into aloud reading practices.

  10. 75 FR 63865 - National Science Board; Sunshine Act Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... the National Science Board Web site http:[sol][sol]www.nsf.gov/nsb for additional information and schedule updates (time, place, subject matter or status of meeting) may be found at http:[sol][sol]www.nsf...

  11. A study of the long term impact of an inquiry-based science program on student's attitudes towards science and interest in science careers

    NASA Astrophysics Data System (ADS)

    Gibson, Helen Lussier

    One reason science enrichment programs were created was to address the underrepresentation of women and minorities in science. These programs were designed to increase underrepresented groups' interest in science and science careers. One attempt to increase students' interest in science was the Summer Science Exploration Program (SSEP). The SSEP was a two week, inquiry-based summer science camp offered by Hampshire College for students entering grades seven and eight. Students who participated were from three neighboring school districts in Western Massachusetts. The goal of the program was to stimulate greater interest in science and scientific careers among middle school students, in particular among females and students of color. A review of the literature of inquiry-based science programs revealed that the effect of inquiry-based programs on students' attitudes towards science is typically investigated shortly after the end of the treatment period. The findings from this study contribute to our understanding of the long-term impact of inquiry-based science enrichment programs on students' attitude towards science and their interest in science careers. The data collected consisted of quantitative survey data as well as qualitative data through case studies of selected participants from the sample population. This study was guided by the following questions: (1) What was the nature and extent of the impact of the Summer Science Exploration Program (SSEP) on students' attitudes towards science and interest in science careers, in particular among females and students of color? (2) What factors, if any, other than participation in SSEP impacted students' attitude towards science and interest in scientific careers? (3) In what other ways, if any, did the participants benefit from the program? Conclusions drawn from the data indicate that SSEP helped participants maintain a high level of interest in science. In contrast, students who applied but were not accepted showed a decrease in their attitude towards science and their interest in science careers over time, compared to the participants. The interviews suggested that students enjoyed the inquiry-based approach that was used at camp. In addition, students said they found the hands-on inquiry-based approach used at camp more interesting than traditional methods of instruction (lectures and note taking) used at school. Recommendations for future research are presented.

  12. The Sciences: An Integrated Approach, 2nd Edition (by James Trefil and Robert M. Hazen)

    NASA Astrophysics Data System (ADS)

    Hoffman, Reviewed By Megan M.

    2000-01-01

    "You're going to teach the organic chemistry section of the Natural Science class?" - one of my biology colleagues asked me last semester - "Better you than me!" "You are?" added a chemistry professor, with interest. Yet these same people ardently believe that all our students should have a basic understanding of carbon's remarkable bonding capabilities and how they relate to life on Earth. If our art or economics majors can learn about organic chemistry and genetics and astronomy, our faculty should be able to teach those same topics, regardless of their acknowledged specialties. The basis of a scientifically literate society is not expertise in specific arcane subfields of science. Scientific literacy is a general understanding of what science is, what science can and cannot do, and what scientific accomplishments have occurred over the centuries. If you subscribe to this definition of scientific literacy, James Trefil and Robert M. Hazen's The Sciences: An Integrated Approach can help you and your general science students. The self-avowed purpose of this text is to address science illiteracy in America. Trefil and Hazen propose that the best way to combat scientific illiteracy is to provide integrated science courses that focus on a broad understanding of science, rather than the specialized knowledge available to a science major. The new edition of The Sciences has been influenced by the 1996 publication of the National Research Council's National Science Education Standards. While the first edition of Trefil and Hazen's book admirably addressed the integration of the natural and physical sciences, in this second edition, the authors have increased the connections between science and real-world situations and have made a more conscious effort to emphasize the process of science and the overlapping nature of scientific disciplines. The text is based on 25 "scientific concepts", one per chapter. These concepts are clearly explained in relatively jargon-free language and are then tied explicitly to familiar situations and life experiences. For instance, a power outage at a baseball game helps set the scene for quantum mechanics and Heisenberg's uncertainty principle, while jump-starting a car illustrates the conversion of energy from potential through kinetic to chemical. Most of the fine pedagogical features of the first edition have been continued, including descriptions of relevant technologies, historical aspects of various discoveries, and clear descriptions of mathematical approaches to the topics. The second edition of The Sciences has increased the accessibility of science and scientific concepts by adding several new features to the successful features of the first edition: "The Ongoing Process of Science" addresses current scientific questions; "Stop and Think" encourages students to consider further implications of the topic at hand; and "Science News" provides excerpts from the periodical of the same name. In addition, previous features that highlighted connections to human physiology have been broadened to include all living things, thus allowing students to make connections between the familiar and the more abstract, for instance magnetic navigation in birds (Electricity and Magnetism), upright human posture (Plate Tectonics) and blood clotting (The Chemical Bond). A final addition to each chapter is "Great Ideas Across the Sciences", which ties the Great Idea on which the chapter is based to each of the natural sciences. This latter addition is one that students might easily overlook, but it has great potential for opening class discussion on how, for instance, the science of entropy relates to weather, arthritis, volcanoes, and gasoline use (Chapter 4). Trefil and Hazen offer a basis for understanding physics, chemistry, biology, earth science, and cosmology. While the text and figures provide a basic description of these topics, this book will not produce physicists, chemists, etc. Keep the general-science purpose of the text in mind when you begin to feel that the chapters on your favorite topic are leaving out details or ideas that you consider crucial to scientific literacy in your area. My first impression of the chapter on Classical and Modern Genetics was that it did not spend enough time on Mendel and his foundational contributions to biology. Consequently, I went well beyond the text material in my lecture on Mendelian genetics. To my regret, I learned that this extra, "crucial" material was more intimidating than enlightening. While there are sure to be critics who will wish that certain topics were covered in more depth or who will want topics added or deleted, my conclusion after teaching from this book is that Trefil and Hazen have provided a clear, well-considered, and extremely useful text for a general science course.

  13. Silkworm: A Promising Model Organism in Life Science.

    PubMed

    Meng, Xu; Zhu, Feifei; Chen, Keping

    2017-09-01

    As an important economic insect, silkworm Bombyx mori (L.) (Lepidoptera: Bombycidae) has numerous advantages in life science, such as low breeding cost, large progeny size, short generation time, and clear genetic background. Additionally, there are rich genetic resources associated with silkworms. The completion of the silkworm genome has further accelerated it to be a modern model organism in life science. Genomic studies showed that some silkworm genes are highly homologous to certain genes related to human hereditary disease and, therefore, are a candidate model for studying human disease. In this article, we provided a review of silkworm as an important model in various research areas, including human disease, screening of antimicrobial agents, environmental safety monitoring, and antitumor studies. In addition, the application potentiality of silkworm model in life sciences was discussed. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  14. Scientists Reflect on Why They Chose to Study Science

    NASA Astrophysics Data System (ADS)

    Venville, Grady; Rennie, Léonie; Hanbury, Colin; Longnecker, Nancy

    2013-12-01

    A concern commonly raised in literature and in media relates to the declining proportions of students who enter and remain in the `science pipeline', and whether many countries, including Australia and New Zealand, have enough budding scientists to fill research and industry positions in the coming years. In addition, there is concern that insufficient numbers of students continue in science to ensure an informed, scientifically literate citizenry. The aim of the research presented in this paper was to survey current Australian and New Zealand scientists to explore their reasons for choosing to study science. An online survey was conducted via a link to SurveyGizmo. The data presented are from 726 respondents who answered 22 forced-choice items and an open-ended question about the reasons they chose to study science. The quantitative data were analysed using t tests and analyses of variance followed by Duncan's multiple range tests, and the qualitative data were analysed thematically. The quantitative data showed that the main reasons scientists reported choosing to study science were because they were interested in science and because they were good at science. Secondary school science classes and one particular science teacher also were found to be important factors. Of much less importance were the prestige of science and financial considerations. The qualitative data expanded on these findings and showed that passion for science and/or curiosity about the world were important factors and also highlighted the importance of recreational pursuits, such as camping when a child. In the words of one respondent, `People don't go into science for the money and glory. It's passion for knowledge and science that always attracted me to the field'.

  15. Integrating the New Generation Science Standards (NGSS) into K- 6 teacher training and curricula

    NASA Astrophysics Data System (ADS)

    Pinter, S.; Carlson, S. J.

    2017-12-01

    The Next Generation Science Standards is an initiative, adopted by 26 states, to set national education standards that are "rich in content and practice, arranged in a coherent manner across disciplines and grades to provide all students an internationally benchmarked science education." Educators now must integrate these standards into existing curricula. Many grade-school (K-6) teachers face a particularly daunting task, as they were traditionally not required to teach science or only at a rudimentary level. The majority of K-6 teachers enter teaching from non-science disciplines, making this transition even more difficult. Since the NGSS emphasizes integrated and coherent progression of knowledge from grade to grade, prospective K-6 teachers must be able to deliver science with confidence and enthusiasm to their students. CalTeach/MAST (Mathematics and Science Teaching Program) at the University of California Davis, has created a two-quarter sequence of integrated science courses for undergraduate students majoring in non-STEM disciplines and intending to pursue multiple-subject K-6 credentials. The UCD integrated science course provides future primary school teachers with a basic, but comprehensive background in the physical and earth/space sciences. Key tools are taught for improving teaching methods, investigating complex science ideas, and solving problems relevant to students' life experiences that require scientific or technological knowledge. This approach allows prospective K-6 teachers to explore more effectively the connections between the disciplinary core ideas, crosscutting concepts, and scientific and engineering practices, as outlined in the NGSS. In addition, they develop a core set of science teaching skills based on inquiry activities and guided lab discussions. With this course, we deliver a solid science background to prospective K-6 teachers and facilitate their ability to teach science following the standards as articulated in the NGSS.

  16. Electronic Materials Science

    NASA Astrophysics Data System (ADS)

    Irene, Eugene A.

    2005-02-01

    A thorough introduction to fundamental principles and applications From its beginnings in metallurgy and ceramics, materials science now encompasses such high- tech fields as microelectronics, polymers, biomaterials, and nanotechnology. Electronic Materials Science presents the fundamentals of the subject in a detailed fashion for a multidisciplinary audience. Offering a higher-level treatment than an undergraduate textbook provides, this text benefits students and practitioners not only in electronics and optical materials science, but also in additional cutting-edge fields like polymers and biomaterials. Readers with a basic understanding of physical chemistry or physics will appreciate the text's sophisticated presentation of today's materials science. Instructive derivations of important formulae, usually omitted in an introductory text, are included here. This feature offers a useful glimpse into the foundations of how the discipline understands such topics as defects, phase equilibria, and mechanical properties. Additionally, concepts such as reciprocal space, electron energy band theory, and thermodynamics enter the discussion earlier and in a more robust fashion than in other texts. Electronic Materials Science also features: An orientation towards industry and academia drawn from the author's experience in both arenas Information on applications in semiconductors, optoelectronics, photocells, and nanoelectronics Problem sets and important references throughout Flexibility for various pedagogical needs Treating the subject with more depth than any other introductory text, Electronic Materials Science prepares graduate and upper-level undergraduate students for advanced topics in the discipline and gives scientists in associated disciplines a clear review of the field and its leading technologies.

  17. Relationships Between the Way Students Are Assessed in Science Classrooms and Science Achievement Across Canada

    NASA Astrophysics Data System (ADS)

    Chu, Man-Wai; Fung, Karen

    2018-04-01

    Canadian students experience many different assessments throughout their schooling (O'Connor 2011). There are many benefits to using a variety of assessment types, item formats, and science-based performance tasks in the classroom to measure the many dimensions of science education. Although using a variety of assessments is beneficial, it is unclear exactly what types, format, and tasks are used in Canadian science classrooms. Additionally, since assessments are often administered to help improve student learning, this study identified assessments that may improve student learning as measured using achievement scores on a standardized test. Secondary analyses of the students' and teachers' responses to the questionnaire items asked in the Pan-Canadian Assessment Program were performed. The results of the hierarchical linear modeling analyses indicated that both students and teachers identified teacher-developed classroom tests or quizzes as the most common types of assessments used. Although this ranking was similar across the country, statistically significant differences in terms of the assessments that are used in science classrooms among the provinces were also identified. The investigation of which assessment best predicted student achievement scores indicated that minds-on science performance-based tasks significantly explained 4.21% of the variance in student scores. However, mixed results were observed between the student and teacher responses towards tasks that required students to choose their own investigation and design their own experience or investigation. Additionally, teachers that indicated that they conducted more demonstrations of an experiment or investigation resulted in students with lower scores.

  18. Science Planning Implementation and Challenges for the ExoMars Trace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    Ashman, Mike; Cardesin Moinelo, Alejandro; Frew, David; Garcia Beteta, Juan Jose; Geiger, Bernhard; Metcalfe, Leo; Muñoz, Michela; Nespoli, Federico

    2018-05-01

    The ExoMars Science Operations Centre (SOC) is located at ESA's European Space Astronomy Centre (ESAC) in Madrid, Spain and is responsible for coordinating the science planning activities for TGO in order to optimize the scientific return of the mission. The SOC constructs, in accordance with Science Working Team (SWT) science priorities, and in coordination with the PI science teams and ESA's Mission Operations Centre (MOC), a plan of scientific observations and delivers conflict free operational products for uplink and execution on-board. To achieve this, the SOC employs a planning concept based on Long, Medium and Short Term planning cycles. Long Term planning covers mission segments of several months and is conducted many months prior to execution. Its goal is to establish a feasible science observation strategy given the science priorities and the expected mission profile. Medium Term planning covers a 1 month mission segment and is conducted from 3 to 2 months prior to execution whilst Short Term planning covers a 1 week segment and is conducted from 2 weeks to 1 week prior to execution. The goals of Medium and Short Term planning are to operationally instantiate and validate the Long Term plan such that the SOC may deliver to MOC a conflict free spacecraft pointing profile request (a Medium Term planning deliverable), and the final instrument telecommanding products (a Short Term planning deliverable) such that the science plan is achieved and all operational constraints are met. With a 2 hour-400km science orbit, the vast number of solar occultation, nadir measurement, and surface imaging opportunities, combined with additional mission constraints such as the necessary provision of TGO communication slots to support the ExoMars 2020 Rover & Surface Platform mission and NASA surface assets, creates a science planning task of considerable magnitude and complexity. In this paper, we detail how the SOC is developing and implementing the necessary planning infrastructure, processes and automation in order to support science planning of this scale throughout the TGO mission. We also detail how the re-use and further development of ESA's multi-mission planning software tool is being implemented in order to provide the necessary additional functionality for the SOC's planning team to exploit, and to therefore ensure the optimum scientific return of the TGO mission. Finally, we provide an overview and status of the real science planning activities taking place in the first weeks of the nominal science phase in the first half of 2018.

  19. Effects of an Integrated Science and Societal Implication Intervention on Promoting Adolescents' Positive Thinking and Emotional Perceptions in Learning Science

    NASA Astrophysics Data System (ADS)

    Hong, Zuway R.; Lin, Huann-Shyang; Lawrenz, Frances P.

    2012-02-01

    The goal of this study was to test the effectiveness of integrating science and societal implication on adolescents' positive thinking and emotional perceptions about learning science. Twenty-five eighth-grade Taiwanese adolescents (9 boys and 16 girls) volunteered to participate in a 12-week intervention and formed the experimental group. Fifty-seven eighth-grade Taiwanese adolescents (30 boys and 27 girls) volunteered to participate in the assessments and were used as the comparison group. Additionally, 15 experimental students were recruited to be observed and interviewed. Paired t-tests, correlations, and analyses of covariance assessed the similarity and differences between groups. The findings were that the experimental group significantly outperformed its counterpart on positive thinking and emotional perceptions, and all participants' positive thinking scores were significantly related to their emotional perceptions about learning science. Recommendations for integrating science and societal implication for adolescents are provided.

  20. Changes needed in U.S. science education

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2006-10-01

    Improvements in U.S. science education require a coordinated curriculum from kindergarten through grade eight (K-8), with standards focused on several core ideas, according to a 21 September report from the National Research Council of the U.S. National Academies. The committee that authored the report recommended that K-8 science education offer students the opportunity to become versed in knowing, using, and interpreting scientific explanations of the natural world, and in other `strandsrsquo that comprise proficiency in science. Students also should receive a variety of learning experiences, including conducting investigations, sharing ideas with their peers, and using models. The report urges policymakers,researchers, and leaders in education to tackle gaps in science achievement that persist between white students and non-Asian minority students, and between economically advantaged and disadvantaged children. In addition, the committee found that although studies show that children can think in sophisticated ways, science education usually assumes that children are simplistic thinkers.

  1. The economics of academic health sciences libraries: cost recovery in the era of big science.

    PubMed Central

    Williams, T L; Lemkau, H L; Burrows, S

    1988-01-01

    With launching of Sputnik by the Soviet Union in the late 1950s, science and technology became a high priority in the United States. During the two decades since, health sciences libraries have experienced changes in almost all aspects of their operations. Additionally, recent developments in medical care and in medical education have had major influences on the mission of health science libraries. In the unending struggle to keep up with new technologies and services, libraries have had to support increasing demands while they receive a decreasing share of the health care dollar. This paper explores the economic challenges faced by academic health sciences libraries and suggests measures for augmenting traditional sources of funding. The development of marketing efforts, institutional memberships, and fee-based services by the Louis Calder Memorial Library, University of Miami School of Medicine, is presented as a case study. PMID:3224223

  2. Basic science research and education: a priority for training and capacity building in developing countries.

    PubMed

    Deckelbaum, Richard J; Ntambi, James M; Wolgemuth, Debra J

    2011-09-01

    This article provides evidence that basic science research and education should be key priorities for global health training, capacity building, and practice. Currently, there are tremendous gaps between strong science education and research in developed countries (the North) as compared to developing countries (the South). In addition, science research and education appear as low priorities in many developing countries. The need to stress basic science research beyond the typical investment of infectious disease basic service and research laboratories in developing areas is significant in terms of the benefits, not only to education, but also for economic strengthening and development of human resources. There are some indications that appreciation of basic science research education and training is increasing, but this still needs to be applied more rigorously and strengthened systematically in developing countries. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. The economics of academic health sciences libraries: cost recovery in the era of big science.

    PubMed

    Williams, T L; Lemkau, H L; Burrows, S

    1988-10-01

    With launching of Sputnik by the Soviet Union in the late 1950s, science and technology became a high priority in the United States. During the two decades since, health sciences libraries have experienced changes in almost all aspects of their operations. Additionally, recent developments in medical care and in medical education have had major influences on the mission of health science libraries. In the unending struggle to keep up with new technologies and services, libraries have had to support increasing demands while they receive a decreasing share of the health care dollar. This paper explores the economic challenges faced by academic health sciences libraries and suggests measures for augmenting traditional sources of funding. The development of marketing efforts, institutional memberships, and fee-based services by the Louis Calder Memorial Library, University of Miami School of Medicine, is presented as a case study.

  4. Lessons from Communicating Space Science Over the Web

    NASA Technical Reports Server (NTRS)

    Dooling, David, Jr.; Triese, D.

    2000-01-01

    The Science Directorate at NASA's Marshall Space Flight Center uses the web in an aggressive manner to expand communications beyond the traditional "public affairs" or "media relations" routines. The key to success has been developing a balanced process that A) involves laboratory personnel and the NASA center community through a weekly Science Communications Roundtable, B) vests ownership and development of the product (i.e., the story) in the scientist a writer resident in the laboratory, and C) seeks taps the talents of the outside communications community through the Research/Roadmap Communications activity. The process is flexible and responsive, allowing Science@NASA to provide daily coverage for events, such as two materials science missions managed by NASA/Marshall. In addition to developing materials for the web, Science@NASA has conducted extensive research to determine what subjects people seek on the web, and the best methods to position stories so they will be found and read.

  5. Attitude measurement: Judging the emotional intensity of likert-type science attitude statements

    NASA Astrophysics Data System (ADS)

    Shrigley, Robert L.; Koballa, Thomas R., Jr.

    Emotional intensity, that readiness of a teacher to respond favorably or unfavorably toward such psychological objects as science or the teaching of science, is the quality that distinguishes the attitude concept from other related psychological concepts. It would seem, then, that valid attitude statements, if they are to reflect the definition of attitude, would evoke emotional intensity, responses in both a favorable and unfavorable direction by a group of teachers on each item on a science attitude scale. Science educators who design or modify science attitude scales should continue using item-total correlations and other quantitative techniques to test for emotional intensity, but qualitative judgments are necessary, too. In addition, the frequency distribution of data generated by each statement should be examined for skewness and high percentages of neutral responses, both of which can impair the emotional intensity of an item.

  6. [The diversity of science in Carnap's, Lewin's and Fleck's philosophy. The development of a pluralistic scientific concept].

    PubMed

    Köchy, Kristian

    2010-03-01

    In the 1920s and 1930s three different but simultaneous approaches of philosophy of science can be distinguished: the logical approach of the physicist Rudolf Carnap, the logico-historical approach of the psychologist Kurt Lewin and the socio-historical approach of the medical scientist Ludwik Fleck. While the philosophies of Lewin and Fleck can be characterized as contextual appraisals which account for the interactions between particular sciences and their historical, socio-cultural or intellectual environments, Carnap's philosohy is narrowed to an internal methodology centered on scientific propositions and ogical structures in general. In addition to these differences in aim and practice of methodological analysis the estimation of the real disunity and diversity of the special branches of science differs. Instead of Carnap's ideal of a unified science from the new pluralistic point of view the evaluation of the empirical multiplicity of particular sciences obtains philosophical acceptance.

  7. Using a motivation-based instructional model for teacher development and students' learning of science

    NASA Astrophysics Data System (ADS)

    Bae, Min-Jung

    2009-10-01

    Science teachers often have difficulty helping students participate in scientific practices and understand scientific ideas. In addition, they do not frequently help students value their science learning. As one way to address these problems, I designed and examined the effects of professional development using a motivation-based instructional model with teachers and students. This motivation-based inquiry and application instructional model (MIAIM) consists of four steps of activities and identifies instructional and motivational functions that teachers can use to engage their students in scientific inquiry and application and to help them value their science learning. In order to conduct this study, I worked with three teachers (4 th, 8th, and 8th) in both suburban and urban environments. This study consisted of three parts-an initial observation of teachers' classrooms, professional development with MIAIM, and an observation of teachers' classrooms after the professional development. Data analysis of class observations, interviews, and class artifacts shows that there was a moderate change in teachers' teaching approach after the intervention. The three teachers designed and enacted some inquiry and application lessons that fit the intent of MIAIM. They also used some instructional and motivational practices more frequently after the intervention than they did before the intervention. In particular, they more frequently established central questions for investigations, helped students find patterns in data by themselves, provided opportunities for application, related science to students' everyday lives, and created students' interests in scientific investigation by using interesting stories. However, there was no substantial change in teachers' use of some practices such as providing explanations, supporting students' autonomy, and using knowledge about students in designing and enacting science lessons. In addition, data analysis of students' surveys, class observations, and tests indicates that some students from each class became more motivated to learn science when their teachers taught MIAIM based science lessons. They became more interested in science class and more appreciative of how science is related and important to their lives. In addition, students from all classes significantly increased their knowledge about scientific topics. Several factors might have influenced the teachers' use of MIAIM: their initial teaching approaches and practices; experiences with using MIAIM in their class; the content area; and school and classroom contexts. Those aspects of MIAIM that teachers did not use may have been more difficult for the teachers to understand or may have been inconsistent with other some of their other beliefs. In addition, the changes in students' motivation and understanding of scientific ideas seemed to be closely associated with what kinds of practices of MIAIM the teachers used. This study indicates that teachers can help students participate in scientific practices, learn important ideas, and value learning science with the help of MIAIM as a conceptual tool and contextualized support from professional development activities and curriculum materials such as worksheets and lesson plans.

  8. Case study of science teaching in an elementary school: Characteristics of an exemplary science teacher

    NASA Astrophysics Data System (ADS)

    Kao, Huey-Lien

    Improving the quality of science teaching is one of the greatest concerns in recent science education reform efforts. Many science educators suggest that case studies of exemplary science teachers may provide guidance for these reform efforts. For this reason, the characteristics of exemplary science teaching practices have been identified in recent years. However, the literature lacks research exploring exemplary teacher beliefs about the nature of science and science pedagogy, the relationships between their beliefs and practices, or how outstanding teachers overcome difficulties in order to facilitate their students' science learning. In this study, Sam-Yu, an identified exemplary science teacher who teaches in an elementary school in Pintung, Taiwan, was the subject. An interpretative research design (Erickson, 1986) based on principles of naturalistic inquiry (Lincoln & Guba, 1985) was used. Both qualitative and quantitative methods were employed in this case study. The qualitative method involved conducting interviews with the teacher and students, observing classroom activities and analyzing the structure of the learning materials. The quantitative methods involved using the Learning Climate Inventory (LCI) (Lin, 1997) instrument to assess the learning environment of the exemplary science classroom. This study found that Sam-Yu had a blend of views on the nature of science and a varied knowledge about science pedagogy. Personal preferences, past experiences, and the national science curriculum all played important roles in the development and refinement of Sam-Yu's beliefs about science and pedagogy. Regarding his teaching practices, Sam-Yu provided the best learning experiences, as evidenced in both classroom observations and the survey results, for his students by using a variety of strategies. In addition, his classroom behaviors were highly associated with his beliefs about science and pedagogy. However, due to school-based and socio-cultural constraints, Sam-Yu could not always translate his beliefs about science and pedagogy into practice. Nevertheless, Sam-Yu's personal traits, support from colleagues and his school, and research played an influential role in helping him overcome constraints and evolve into an exemplary science teacher.

  9. Planetary Balloon-Based Science Platform Evaluation and Program Implementation

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Kremic, Tibor; Hibbitts, Karl; Young, Eliot F.; Landis, Rob

    2016-01-01

    This report describes a study evaluating the potential for a balloon-based optical telescope as a planetary science asset to achieve decadal class science. The study considered potential science achievable and science traceability relative to the most recent planetary science decadal survey, potential platform features, and demonstration flights in the evaluation process. Science Potential and Benefits: This study confirms the cost the-benefit value for planetary science purposes. Forty-four (44) important questions of the decadal survey are at least partially addressable through balloon based capabilities. Planetary science through balloon observations can provide significant science through observations in the 300 nm to 5 m range and at longer wavelengths as well. Additionally, balloon missions have demonstrated the ability to progress from concept to observation to publication much faster than a space mission increasing the speed of science return. Planetary science from a balloon-borne platform is a relatively low-cost approach to new science measurements. This is particularly relevant within a cost-constrained planetary science budget. Repeated flights further reduce the cost of the per unit science data. Such flights offer observing time at a very competitive cost. Another advantage for planetary scientists is that a dedicated asset could provide significant new viewing opportunities not possible from the ground and allow unprecedented access to observations that cannot be realized with the time allocation pressures faced by current observing assets. In addition, flight systems that have a relatively short life cycle and where hardware is generally recovered, are excellent opportunities to train early career scientists, engineers, and project managers. The fact that balloon-borne payloads, unlike space missions, are generally recovered offers an excellent tool to test and mature instruments and other space craft systems. Desired Gondola Features: Potential gondola characteristics are assessed in this study and a concept is recommended, the Gondola for High-Altitude Planetary Science (GHAPS). This first generation platform is designed around a 1 m or larger aperture, narrow-field telescope with pointing accuracies better than one arc-second. A classical Cassegrain, or variant like Ritchey-Chretien, telescope is recommended for the primary telescope. The gondola should be designed for multiple flights so it must be robust and readily processed at recovery. It must be light-weighted to the extent possible to allow for long-duration flights on super-pressure balloons. Demonstration Flights: Recent demonstration flights achieved several significant accomplishments that can feed forward to a GHAPS gondola project. Science results included the first ever Earth-based measurements for CO2 in a comet, first measurements for CO2 and H2O in an Oort cloud comet, and the first measurement of 1 Ceres at 2.73 m to refine the shape of the infrared water absorption feature. The performance of the Fine Steering Mirror (FSM) was also demonstrated. The BOPPS platform can continue to be leveraged on future flights even as GHAPS is being developed. The study affirms the planetary decadal recommendations, and shows that a number of Top Priority science questions can be achieved. A combination GHAPS and BOPPS would provide the best value for PSD for realizing that science.

  10. Student conceptions of the nature of science

    NASA Astrophysics Data System (ADS)

    Talbot, Amanda L.

    Research has shown that students from elementary school to college have major misconceptions about the nature of science. While an appropriate understanding of the nature of science has been an objective of science education for a century, researchers using a variety of instruments, continue to document students' inadequate conceptions of what science is and how it operates as an enterprise. Current research involves methods to improve student understanding of the nature of science. Students often misunderstand the creative, subjective, empirical, and tentative nature of science. They do not realize the relationship between laws and theories, nor do they understand that science does not follow a prescribed method. Many do not appreciate the influence culture, society, and politics; nor do they have an accurate understanding of the types of questions addressed by science. This study looks at student understanding of key nature of science (NOS) concepts in order to examine the impact of implementing activities intended to help students better understand the process of science and to see if discussion of key NOS concepts following those activities will result in greater gains in NOS understanding. One class received an "activities only" treatment, while the other participated in the same activities followed by explicit discussion of key NOS themes relating to the activity. The interventions were implemented for one school year in two high school anatomy and physiology courses composed of juniors and seniors. Student views of the nature of science were measured using the Views of the Nature of Science-Form C (VNOS-C). Students in both classes demonstrated significant gains in NOS understanding. However, contrary to current research, the addition of explicit discussion did not result in significantly greater gains in NOS understanding. This suggests that perhaps students in higher-level science classes can draw the correlations between NOS related activities and important aspects of "real" science. Or perhaps that a curriculum with a varied approach my expose students to more aspects of science thus improving their NOS understanding.

  11. Effects of Web based inquiry on physical science teachers and students in an urban school district

    NASA Astrophysics Data System (ADS)

    Stephens, Joanne

    An inquiry approach in teaching science has been advocated by many science educators for the past few decades. Due to insufficient district funding for science teaching, inadequate science laboratory facilities, and outdated science materials, inquiry teaching has been difficult for many science teachers, particularly science teachers in urban settings. However, research shows that the availability of computers with high speed Internet access has increased in all school districts. This study focused on the effects of inservice training on teachers and using web based science inquiry activities with ninth grade physical science students. Participants were 16 science teachers and 474 physical science students in an urban school district of a large southern U.S. city. Students were divided into control and experimental groups. The students in the experimental group participated in web based inquiry activities. Students in the control group were taught using similar methods, but not web based science activities. Qualitative and quantitative data were collected over a nine-week period using instruments and focus group interviews of students' and teachers' perceptions of the classroom learning environment, students' achievement, lesson design and classroom implementation, science content of lesson, and classroom culture. The findings reported that there were no significant differences in teachers' perception of the learning environment before and after implementing web based inquiry activities. The findings also reported that there were no overall significant differences in students' perceptions of the learning environment and achievement, pre-survey to post-survey, pre-test to post-test, between the control group and experimental group. Additional findings disclosed that students in the experimental group learned in a collaborative environment. The students confirmed that collaborating with others contributed to a deeper understanding of the science content. This study provides insights about utilizing technology to promote science inquiry teaching and learning. This study describes students' and teachers' perceptions of using web based inquiry to support scientific inquiry.

  12. Five male preservice elementary teachers: Their understandings, beliefs and practice regarding science teaching

    NASA Astrophysics Data System (ADS)

    Hoover, Barbara Grambo

    Many factors influence teacher choices concerning the frequency, instructional methods, and content of science teaching. Although the role of gender in science learning has been studied extensively, the gender of elementary teachers as it intersects their teaching of science has not been investigated. In this ethnographic study, I focused on five male preservice elementary teachers as they experienced their student teaching internship, aiming to understand their underlying beliefs about science and science teaching and how those beliefs influenced their practice. In an attempt to illuminate the complex interplay of personality, experience, interests, and gender in the professional lives of these men, this study emphasized the importance of context in the formation and expression of their science beliefs and pedagogy. For this reason, I collected data from a number of sources. From September, 2001 to May, 2002, I observed my participants in their science methods courses and on multiple occasions as they taught science in elementary classrooms in a suburban school district. I reviewed journal entries required for the science methods class and examined documents such as handouts, readings and teacher guides from their elementary teaching experience. I conducted semi-structured and informal interviews. I analyzed data from these sources using grounded theory methodology. Although these five men had many similarities, they differed in their love of science, their exposure to science, their avocational interests, and their views of science pedagogy. This study, however, revealed a unifying theme: each participant had his own set of personal and academic resources that he carried into the classroom and used to construct a distinctive science learning environment. Some of these resources intersect with gender. For example, several men had science-related avocational interests. There was a common emphasis on creating a relaxed, enjoyable, hands-on teaching environment as reported in other studies of male elementary teachers. These findings have implications for elementary school science teaching and recruitment goals for elementary teachers that should be further explored in additional studies.

  13. ECONOMICS AND DECISION SCIENCES MULTI-YEAR PLAN

    EPA Science Inventory

    As long as environmental policy is designed to change behaviors that cause environmental problems, economics and decision sciences research will be essential to understanding these behaviors. In addition, this research informs state and federal environmental agencies on how best ...

  14. New Science Opportunities on COSMIC-2/FORMOSAT-7

    NASA Technical Reports Server (NTRS)

    Mannucci, Anthony J.; Meehan, Thomas K.; Lowe, Stephen T.; Ao, Chi O; Franklin, Garth; Pi, Xiaoqing; Young, Lawrence E.; Kuo, Ying-Hwa (Bill); Schreiner, William S.

    2013-01-01

    COSMIC-2 Polar (second launch) is an excellent opportunity to extend SSAEM capabilities to global coverage. Enhanced ionospheric remote sensing via oceanic TEC and DORIS. Science: lower-upper atmosphere coupling. Additional payloads are being considered by NSPO/Taiwan.

  15. Middle School Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Demonstrations, experiments, and classroom activities/materials for middle school science are presented. These include: additive color mixing demonstration; electricity activity and worksheet; atmospheric pressure "magic" demonstration; homemade microbalance; energy from soap bubbles; and a model used to demonstrate muscle pairs and how…

  16. Mars Science Laboratory Rover Taking Shape

    NASA Image and Video Library

    2008-11-19

    This image taken in August 2008 in a clean room at NASA JPL, Pasadena, Calif., shows NASA next Mars rover, the Mars Science Laboratory, in the course of its assembly, before additions of its arm, mast, laboratory instruments and other equipment.

  17. Canopy in the Clouds: Integrating Science and Media to Inspire a New Generation of Scientists

    NASA Astrophysics Data System (ADS)

    Goldsmith, G. R.; Fulton, A. D.; Witherill, C. D.

    2008-12-01

    Innovative approaches to science education are critical for inspiring a new generation of scientists. In a world where students are inundated with digital media inviting them to explore exciting, emerging disciplines, science often lags behind in using progressive media techniques. Additionally, science education media often neglects to include the scientists conducting research, thereby disconnecting students from the excitement, adventure, and beauty of conducting research in the field. Here we present initial work from a science education media project entitled Canopy in the Clouds. In particular, we address the goals and approach of the project, the logistics associated with generating educational material at a foreign field site, and the challenges associated with effectively integrating science and media. Canopy in the Clouds is designed to engage students in research, motivate a new generation of young scientists, and promote conservation from the perspective of a current research project being conducted in the canopy of a tropical montane cloud forest located in Monteverde, Costa Rica. The project seeks to generate curriculum based on multiple, immersive forms of novel digital media that attract and maintain student attention. By doing so from the perspective of an adventurous research project in a beautiful and highly biodiverse region, we hope to engage students in science and enhance bioliteracy. However, there are considerable logistic considerations associated with such an approach, including safety, travel, permitting, and equipment maintenance. Additionally, the goals of both the scientific research and the educational media project must be balanced in order to meet objectives in a timely fashion. Finally, materials generated in the field must be translated to viable final products and distributed. Work associated with Canopy in the Clouds will thus provide insight into this process and can serve to inform future science education and outreach efforts.

  18. Commentary on the contributions and future role of occupational exposure science in a vision and strategy for the discipline of exposure science.

    PubMed

    Harper, Martin; Weis, Christopher; Pleil, Joachim D; Blount, Benjamin C; Miller, Aubrey; Hoover, Mark D; Jahn, Steven

    2015-01-01

    Exposure science is a holistic concept without prejudice to exposure source. Traditionally, measurements aimed at mitigating environmental exposures have not included exposures in the workplace, instead considering such exposures to be an internal affair between workers and their employers. Similarly, occupational (or industrial) hygiene has not typically accounted for environmental contributions to poor health at work. Many persons spend a significant amount of their lifetime in the workplace, where they maybe exposed to more numerous chemicals at higher levels than elsewhere in their environment. In addition, workplace chemical exposures and other exogenous stressors may increase epigenetic and germline modifications that are passed on to future generations. We provide a brief history of the development of exposure science from its roots in the assessment of workplace exposures, including an appendix where we detail current resources for education and training in exposure science offered through occupational hygiene organizations. We describe existing successful collaborations between occupational and environmental practitioners in the field of exposure science, which may serve as a model for future interactions. Finally, we provide an integrated vision for the field of exposure science, emphasizing interagency collaboration, the need for complete exposure information in epidemiological studies, and the importance of integrating occupational, environmental, and residential assessments. Our goal is to encourage communication and spur additional collaboration between the fields of occupational and environmental exposure assessment. Providing a more comprehensive approach to exposure science is critical to the study of the "exposome", which conceptualizes the totality of exposures throughout a person's life, not only chemical, but also from diet, stress, drugs, infection, and so on, and the individual response.

  19. NASA Extends Chandra Science and Operations Support Contract

    NASA Astrophysics Data System (ADS)

    2010-01-01

    NASA has extended a contract with the Smithsonian Astrophysical Observatory in Cambridge, Mass., to provide science and operational support for the Chandra X-ray Observatory, a powerful tool used to better understand the structure and evolution of the universe. The contract extension with the Smithsonian Astrophysical Observatory provides continued science and operations support to Chandra. This approximately 172 million modification brings the total value of the contract to approximately 545 million for the base effort. The base effort period of performance will continue through Sept. 30, 2013, except for the work associated with the administration of scientific research grants, which will extend through Feb. 28, 2016. The contract type is cost reimbursement with no fee. In addition to the base effort, the contract includes two options for three years each to extend the period of performance for an additional six years. Option 1 is priced at approximately 177 million and Option 2 at approximately 191 million, for a total possible contract value of about $913 million. The contract covers mission operations and data analysis, which includes observatory operations, science data processing and astronomer support. The operations tasks include monitoring the health and status of the observatory and developing and uplinking the observation sequences during Chandra's communication coverage periods. The science data processing tasks include the competitive selection, planning and coordination of science observations and processing and delivery of the resulting scientific data. NASA's Marshall Space Flight Center in Huntsville, Ala, manages the Chandra program for the agency's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations. For more information about the Chandra X-ray Observatory visit: http://chandra.nasa.gov

  20. System Design and Performance of the Two-Gyro Science Mode For the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Prior, Michael; Dunham, Larry

    2005-01-01

    For fifteen years, the science mission of the Hubble Space Telescope (HST) required using at least three of the six on-board rate gyros for attitude control. Failed gyros were eventually replaced through Space Shuttle Servicing Missions. The tragic loss of the Space Shuttle Columbia has resulted in the cancellation of all planned Shuttle based missions to HST. While a robotic servicing mission is currently being planned instead, controlling with alternate sensors to replace failed gyros can extend the HST science gathering until a servicing mission can be performed, and also extend science at HST's end of life. Additionally, sufficient performance may allow a permanent transition to operations with less than 3 gyros (by intentionally turning off working gyros saving them for later use) allowing for an even greater science mission extension. To meet this need, a Two Gyro Science (TGS) mode has been designed and implemented using magnetometers (Magnetic Sensing System - MSS), Fixed Head Star Trackers (FHSTs), and Fine Guidance Sensors (FGSs) to control vehicle rate about the missing gyro input axis. The development of the TGS capability is the largest re-design of HST operations undertaken, since it affects several major spacecraft subsystems, the most heavily being the Pointing Control System (PCS) and Flight Software (FSW). Additionally, and equally important, are the extensive modifications and enhancements of the Planning and Scheduling system which must now be capable of scheduling science observations while taking into account several new constraints imposed by the TGS operational modes (such as FHST availability and magnetic field geometry) that will impact science gathering efficiency and target availability. This paper discusses the systems engineering design, development, and performance of the TGS mode, now in its final stages of completion.

  1. System Design and Performance of the Two-Gyro Science Mode For the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Prior, Michael; Dunham, Larry

    2005-01-01

    For fifteen years, the science mission of the Hubble Space Telescope (HST) required using at least three of the six on-board rate gyros for attitude control. Failed gyros were eventually replaced through Space Shuttle Servicing Missions. The tragic loss of the Space Shuttle Columbia has resulted in the cancellation of all planned Shuttle based missions to HST. While a robotic servicing mission is currently being planned instead, controlling with alternate sensors to replace failed gyros can extend the HST science gathering until a servicing mission can be performed, and also extend science at HST s end of life. Additionally, sufficient performance may allow a permanent transition to operations with less than 3 gyros (by intentionally turning off working gyros saving them for later use) allowing for an even greater science mission extension. To meet this need, a Two Gyro Science (TGS) mode has been designed and implemented using magnetometers (Magnetic Sensing System - MSS), Fixed Head Star Trackers (FHSTs), and Fine Guidance Sensors (FGSs) to control vehicle rate about the missing gyro input axis. The development of the TGS capability is the largest re-design of HST operations undertaken, since it affects several major spacecraft subsystems, the most heavily being the Pointing Control System (PCS) and Flight Software (FSW). Additionally, and equally important, are the extensive modifications and enhancements of the Planning and Scheduling system which must now be capable of scheduling science observations while taking into account several new constraints imposed by the TGS operational modes (such as FHST availability and magnetic field geometry) that will impact science gathering efficiency and target availability. This paper discusses the systems engineering design, development, and performance of the TGS mode, now in its final stages of completion.

  2. An examination of the factors related to women's degree attainment and career goals in science, technology, and mathematics

    NASA Astrophysics Data System (ADS)

    Nitopi, Marie

    During the last 30 years, women have made tremendous advances in educational attainment especially in post-secondary education. Despite these advances, recent researchers have revealed that women continue to remain underrepresented in attainment of graduate degrees in the sciences. The researcher's purpose in this study was to extend previous research and to develop a model of variables that significantly contribute to persistence in and attainment of a graduate degree and an eventual career in the science, mathematics, or technology professions. Data were collected from the Baccalaureate and Beyond Longitudinal Study (B&B:93/03). Variables in the categories of demographics, academics, finances, values and attitudes toward educational experiences, and future employment were analyzed by t tests and logistic regressions to determine gender differences in graduate degree attainment and career goals by male and female who majored in science, technology and mathematics. Findings supported significant gender differences in expectations for a graduate degree, age at baccalaureate degree attainment, number of science and engineering credits taken, and the value of faculty interactions. Father's education had a significant effect on degree attainment. Women and men had similar expectations at the beginning of their educational career, but women tended to fall short of their degree expectations ten years later. A large proportion of women dropped out of the science pipeline by choosing different occupations after degree completion. Additionally, women earned fewer science and math credits than men. The professions of science and technology are crucial for the nation's economic growth and competitiveness; therefore, additional researchers should focus on retaining both men and women in the STEM professions.

  3. Commentary on the contributions and future role of occupational exposure science in a vision and strategy for the discipline of exposure science

    PubMed Central

    Harper, Martin; Weis, Christopher; Pleil, Joachim D.; Blount, Benjamin C.; Miller, Aubrey; Hoover, Mark D.; Jahn, Steven

    2015-01-01

    Exposure science is a holistic concept without prejudice to exposure source. Traditionally, measurements aimed at mitigating environmental exposures have not included exposures in the workplace, instead considering such exposures to be an internal affair between workers and their employers. Similarly, occupational (or industrial) hygiene has not typically accounted for environmental contributions to poor health at work. Many persons spend a significant amount of their lifetime in the workplace, where they maybe exposed to more numerous chemicals at higher levels than elsewhere in their environment. In addition, workplace chemical exposures and other exogenous stressors may increase epigenetic and germline modifications that are passed on to future generations. We provide a brief history of the development of exposure science from its roots in the assessment of workplace exposures, including an appendix where we detail current resources for education and training in exposure science offered through occupational hygiene organizations. We describe existing successful collaborations between occupational and environmental practitioners in the field of exposure science, which may serve as a model for future interactions. Finally, we provide an integrated vision for the field of exposure science, emphasizing interagency collaboration, the need for complete exposure information in epidemiological studies, and the importance of integrating occupational, environmental, and residential assessments. Our goal is to encourage communication and spur additional collaboration between the fields of occupational and environmental exposure assessment. Providing a more comprehensive approach to exposure science is critical to the study of the “exposome”, which conceptualizes the totality of exposures throughout a person’s life, not only chemical, but also from diet, stress, drugs, infection, and so on, and the individual response. PMID:25670022

  4. Does Taking an Introductory Astronomy Course Increase Student Understanding of the Nature of Science?

    NASA Astrophysics Data System (ADS)

    Duncan, Douglas K.; Arthurs, L.; CATS

    2009-01-01

    Surveys of those who teach Astro 101 say that increasing students’ understanding of the nature and process of science is an important goal. It is also one of the justifications for the "breadth requirement” that supports most of the Astro 101 enterprise in the US. However, little work has been done to measure if this goal is achieved. We interviewed 60 students drawn from two introductory astronomy classes at the beginning and end of the course. Each student was asked 9 questions concerning the nature of science and how it is applied. One of the two introductory classes made a special point of explicitly discussing the nature of science and "science vs. pseudoscience.” Otherwise the two classes were similar. We are investigating how students changed in 4 areas: 1. Do they understand what science is? 2. Do they have the ability to think scientifically themselves? 3. Can they distinguish believable scientific results from bogus ones? 4. Do students develop "basic science literacy?" In addition to the interviews we gave the Epistemological Beliefs Assessment for Physical Science (EBAPS, Elby et al. 2001; www.flaguide.org) to approximately 300 students. Initial results will be reported in our poster, and full results in a publication expected in early 2009. In addition, the results of this study are being used to develop a survey instrument designed specifically for use with Astro 101 students to evaluate the effectiveness of instruction on their scientific attitudes and beliefs as a Collaboration of Astronomy Teaching Scholars (CATS) research project. We would like to thank the NSF for funding under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.

  5. Study of the Decision-Making Procedures for the Acquisition of Science Library Materials and the Relation of These Procedures to the Requirements of College and University Library Patrons.

    ERIC Educational Resources Information Center

    Lane, David O.

    The idea that there was a need for formal study of the methods by which titles are selected for addition to the collections of academic science libraries resulted in this investigation of the selection processes of these libraries. Specifically, the study concentrates on the selection procedures in three sciences: biology, chemistry, and physics.…

  6. The ICTJA-CSIC Science Week 2016: an open door to Earth Sciences for secondary education students

    NASA Astrophysics Data System (ADS)

    Cortes-Picas, Jordi; Diaz, Jordi; Fernandez-Turiel, Jose-Luis; Garcia-Castellanos, Daniel; Geyer, Adelina; Jurado, Maria-Jose; Montoya, Encarni; Rejas Alejos, Marta; Sánchez-Pastor, Pilar; Valverde-Perez, Angel

    2017-04-01

    The Science Week is one of the main scientific outreach events every year in Spain. The Institute of Earth Sciences Jaume Almera of CSIC (ICTJA-CSIC) participates in it since many years ago, opening its doors and proposing several activities in which it is shown what kind of multidisciplinary research is being developed at the Institute and in Geosciences. The activities,developed as workshops, are designed and conducted by scientific and technical personnel of the centre, who participates in the Science Week voluntarily. The activities proposed by the ICTJA-CSIC staff are designed for a target audience composed by secondary school students (12-18 years). The ICTJA-CSIC joined Science Week 2016 in the framework of the activity entitled "What we investigate in Earth Sciences?". The aim is to show to the society what is being investigated in the ICTJA-CSIC. In addition, it is intended, with the contact and interaction between the public and the institute researchers, to increase the interest in scientific activity and, if possible, to generate new vocations in the field of the Earth Sciences among secondary school pupils. We show in this communication the experience of the Science Week 2016 at the ICTJA-CSIC, carried out with the effort and commitment of the of the Institute's personnel with the outreach of Earth Sciences research. Between November 14th and 19th 2016, more than 100 students from four secondary schools from Barcelona area visited the Institute and took part in the Science Week. A total of six interactive workshops were prepared showing different features of seismology, geophysical borehole logging, analog and digital modelling, paleoecology, volcanology and geochemistry. As a novelty, this year a new workshop based on an augmented reality sandbox was offered to show and to simulate the processes of creation and evolution of the topographic relief. In addition, within the workshop dedicated to geophysical borehole logging, six exact replicates of sediment cores from outstanding expeditions of the Ocean Drilling Program (ODP) and the International Ocean Discovery Program IODP (IODP) were shown to the visitors. We acknowledge the collaboration of ODP and IODP programs and the FECYT in the development of the Science Week 2016 at ICTJA-CSIC.

  7. Soil Science Education for Primary and Secondary Students

    NASA Astrophysics Data System (ADS)

    Sparrow, Elena; Yoshikawa, Kenji; Kopplin, Martha

    2013-04-01

    Soils is one of the science investigation areas in the Global learning and Observations to Benefit the Environment (GLOBE), an international science and education program (112 countries) that teaches primary and secondary students to learn science by doing science. For each area of investigation GLOBE provides background information, measurement protocols and learning activities compiled as a chapter in the GLOBE Teacher's Guide. Also provided are data sheets and field guides to assist in the accurate collection of data as well as suggestions of scientific instruments and calibration methods. Teachers learn GLOBE scientific measurement protocols at professional development workshops led by scientists and educators, who then engage their students in soil studies that also contribute to ongoing science investigations. Students enter their data on the GLOBE website and can access their data as well as other data contributed by students from other parts of the world. Soil characterization measurements carried out in the field include site description, horizon depths, soil structure, soil color, soil consistence, soil texture, roots, rocks and carbonates. Other field measurements are soil temperature and soil moisture monitoring while the following measurements are carried out in the classroom or laboratory: gravimetric soil moisture, bulk density, particle density, particle size distribution, pH and soil fertility (nitrogen, phosphorus and potassium). Learning activities provide support for preparing students to do the measurements and for better understanding of science concepts. Many countries in GLOBE have adopted standards for education including science education with commonalities among them. For the Teacher's Guide, the National Science Education Standards published by the US National Academy of Sciences, selected additional content standards that GLOBE scientists and educators feel are appropriate and the National Geography Standards prepared by the (US) National Education Standards Project, are being used. Educational objectives for students include gaining scientific inquiry abilities in addition to understanding scientific concepts. The Soils chapter also includes some suggestions for managing students in the field and classroom. A new protocol has also been developed by the Seasons and Biomes project, one of the GLOBE earth system science projects. Active Layer monitoring uses a Frost Tube that measures when and how deeply soil freezes and is currently being used in more than 200 sites in Alaska. Teachers have successfully implemented soil studies in their curriculum and have used it to teach about the science process.

  8. Teaching students ideas-about-science: Five dimensions of effective practice

    NASA Astrophysics Data System (ADS)

    Bartholomew, Hannah; Osborne, Jonathan; Ratcliffe, Mary

    2004-09-01

    In this paper, we report work undertaken with a group of 11 UK teachers over a period of a year to teach aspects of the nature of science, its process, and its practices. The teachers, who taught science in a mix of elementary, junior high, and high schools, were asked to teach a set of ideas-about-scienc for which consensual support had been established using a Delphi study in the first phase of the project. Data were collected through field notes, videos of the teachers' lessons, teachers' reflective diaries, and instruments that measured their understanding of the nature of science and their views on the role and value of discussion in the classroom. In this paper, drawing on a sample of the data we explore the factors that afforded or inhibited the teachers' pedagogic performance in this domain. Using these data, we argue that there are five critical dimensions that distinguish and determine a teacher's ability to teach effectively about science. Whilst these dimensions are neither mutually independent nor equally important, they serve as a valuable analytical tool for evaluating and explaining the success, or otherwise, that individual teachers of science have when confronted with teaching aspects about science. In addition, we argue that they are an important means of identifying salient aspects of pedagogy for initial and in-service training of science teachers for curricula that incorporate elements of ideas-about-science

  9. Comparison of Pharmacy Students’ Perceived and Actual Knowledge Using the Pharmacy Curricular Outcomes Assessment

    PubMed Central

    Friesner, Daniel L.

    2012-01-01

    Objective. To determine whether a correlation exists between third-year PharmD students’ perceived pharmacy knowledge and actual pharmacy knowledge as assessed by the Pharmacy Curricular Outcomes Assessment (PCOA). Methods. In 2010 and 2011, the PCOA was administered in a low-stakes environment to third-year pharmacy students at North Dakota State University College of Pharmacy, Nursing, and Allied Sciences (COPNAS). A survey instrument was also administered on which students self-assessed their perceived competencies in each of the core areas covered by the PCOA examination. Results. The pharmacy students rated their competencies slightly higher than average. Performance on the PCOA was similar to but slightly higher than national averages. Correlations between each of the 4 content areas (basic biomedical sciences, pharmaceutical sciences, social/administrative sciences, and clinical sciences) mirrored those reported nationally by the National Association of Boards of Pharmacy (NABP). Student performance on the basic biomedical sciences portion of the PCOA was significantly correlated with students’ perceived competencies in the biomedical sciences. No other correlations between actual and perceived competencies were significant. Conclusion. A lack of correlation exists between what students perceive they know and what they actually know in the areas of pharmaceutical science; social, behavioral, and administrative science; and clinical science. Therefore, additional standardized measures are needed to assess curricular effectiveness and provide comparisons among pharmacy programs. PMID:22611272

  10. Undergraduate Biotechnology Students' Views of Science Communication

    NASA Astrophysics Data System (ADS)

    Edmondston, Joanne Elisabeth; Dawson, Vaille; Schibeci, Renato

    2010-12-01

    Despite rapid growth of the biotechnology industry worldwide, a number of public concerns about the application of biotechnology and its regulation remain. In response to these concerns, greater emphasis has been placed on promoting biotechnologists' public engagement. As tertiary science degree programmes form the foundation of the biotechnology sector by providing a pipeline of university graduates entering into the profession, it has been proposed that formal science communication training be introduced at this early stage of career development. The aim of the present study was to examine the views of biotechnology students towards science communication and science communication training. Using an Australian biotechnology degree programme as a case study, 69 undergraduates from all three years of the programme were administered a questionnaire that asked them to rank the importance of 12 components of a biotechnology curriculum, including two science communication items. The results were compared to the responses of 274 students enrolled in other science programmes. Additional questions were provided to the second year biotechnology undergraduates and semi-structured interviews were undertaken with 13 of these students to further examine their views of this area. The results of this study suggest that the biotechnology students surveyed do not value communication with non-scientists nor science communication training. The implications of these findings for the reform of undergraduate biotechnology courses yet to integrate science communication training into their science curriculum are discussed.

  11. Changing the Culture of Science Communication Training for Junior Scientists

    PubMed Central

    Bankston, Adriana; McDowell, Gary S.

    2018-01-01

    Being successful in an academic environment places many demands on junior scientists. Science communication currently may not be adequately valued and rewarded, and yet communication to multiple audiences is critical for ensuring that it remains a priority in today’s society. Due to the potential for science communication to produce better scientists, facilitate scientific progress, and influence decision-making at multiple levels, training junior scientists in both effective and ethical science communication practices is imperative, and can benefit scientists regardless of their chosen career path. However, many challenges exist in addressing specific aspects of this training. Principally, science communication training and resources should be made readily available to junior scientists at institutions, and there is a need to scale up existing science communication training programs and standardize core aspects of these programs across universities, while also allowing for experimentation with training. We propose a comprehensive core training program be adopted by universities, utilizing a centralized online resource with science communication information from multiple stakeholders. In addition, the culture of science must shift toward greater acceptance of science communication as an essential part of training. For this purpose, the science communication field itself needs to be developed, researched and better understood at multiple levels. Ultimately, this may result in a larger cultural change toward acceptance of professional development activities as valuable for training scientists. PMID:29904538

  12. Using an Interdisciplinary Approach to Enhance Climate Literacy for K-12 Teachers

    NASA Astrophysics Data System (ADS)

    Hanselman, J. A.; Oches, E. A.; Sliko, J.; Wright, L.

    2014-12-01

    The Next Generation Science Standards (2014) will begin to change how K-12 teachers teach science. Using a scaffolding approach, the standards focus on a depth of knowledge across multiple content areas. This philosophy should encourage inquiry-based teaching methods, provided the teacher has both the knowledge and the confidence to teach the content. Although confidence to teach science is high among secondary science (biology, general science, chemistry) teachers, depth of knowledge may be lacking in certain areas, including climate science. To address this issue, a graduate course in climate science (Massachusetts Colleges Online Course of Distinction award winner) was developed to include inquiry-based instruction, connections to current research, and interdisciplinary approaches to teaching science. With the support of the InTeGrate program (SERC) at Carleton College, a module was developed to utilize cli-fi (climate science present in fictional literature) and related climate data. Graduate students gain an appreciation of scientific communication and an understanding of climate data and its connection to societal issues. In addition, the graduate students also gain the ability to connect interdisciplinary concepts for a deeper understanding of climate science and have the opportunity. By the end of the course, the graduate students use the content learned and the examples of pedagogical tools to develop their own activities in his or her classroom.

  13. Changing the Culture of Science Communication Training for Junior Scientists.

    PubMed

    Bankston, Adriana; McDowell, Gary S

    2018-01-01

    Being successful in an academic environment places many demands on junior scientists. Science communication currently may not be adequately valued and rewarded, and yet communication to multiple audiences is critical for ensuring that it remains a priority in today's society. Due to the potential for science communication to produce better scientists, facilitate scientific progress, and influence decision-making at multiple levels, training junior scientists in both effective and ethical science communication practices is imperative, and can benefit scientists regardless of their chosen career path. However, many challenges exist in addressing specific aspects of this training. Principally, science communication training and resources should be made readily available to junior scientists at institutions, and there is a need to scale up existing science communication training programs and standardize core aspects of these programs across universities, while also allowing for experimentation with training. We propose a comprehensive core training program be adopted by universities, utilizing a centralized online resource with science communication information from multiple stakeholders. In addition, the culture of science must shift toward greater acceptance of science communication as an essential part of training. For this purpose, the science communication field itself needs to be developed, researched and better understood at multiple levels. Ultimately, this may result in a larger cultural change toward acceptance of professional development activities as valuable for training scientists.

  14. The relationships of gender, ethnicity, past performance, pedagogy, and access to a role model/mentor with college student attitudes toward science

    NASA Astrophysics Data System (ADS)

    Kennedy-Hagan, Karla Jean

    The purpose of this study was to explore the relationships of gender, ethnicity, past performance in science, experience with teaching pedagogy, and access to a role model/mentor with freshmen college student attitudes toward science. Specifically, the researcher wanted to know the relationship between these variables and incoming attitudes toward science at the beginning of the semester. The sample for this study consisted of 316 freshmen students enrolled in an entry-level chemistry course at a large midwestern university. The results indicate that students who received higher grades in previous science courses possessed more positive attitudes regarding their ability to perform in science compared to less successful students. Similarly, students who had previous exposure to interactive teaching pedagogy possessed more positive attitudes toward the use of interactive teaching pedagogy; felt supported by various people, including their teachers; and had more positive attitudes toward their personal world view of science compared to students that had not been exposed to interactive teaching pedagogy. Finally, the results indicated that attitudes toward science are multidimensional, meaning there is more than one attitude toward science. The results of this study add to the literature regarding attitudes toward science in freshmen students at a large midwestern university. Additional discussion and research is warranted. Specific recommendations for practice and future research are included in the document.

  15. Science Teacher Leaders: Exploring Practices and Potential

    NASA Astrophysics Data System (ADS)

    Stinson, John Kevin

    It has become standard practice for teachers to step into the role of "teacher leaders" and perform a variety of curriculum, instruction and assessment tasks for schools and school districts. The literature regarding these Ohio K-12 teacher leaders, who may perform these tasks in addition to or in lieu of regular teaching assignments, rarely includes a disciplinary focus. In this exploratory, descriptive study the results of a web-based survey containing both closed and open-ended items were used in an inquiry into teacher leaders working with the discipline of science. Data from Ohio teachers responding to the survey were used first to create a standard profile for science teacher leaders. Descriptive statistics and correlations were then performed on quantitative survey data to explore science teacher leader tasks and factors that influence task performance. Analysis of data included descriptions of sense of purpose for their role held by these science teacher leaders. Results indicate that science teacher leaders appear to embrace their role as advocates for science and have great potential for implementing science education reform as well as other science-related school initiatives. Aligning performance, administrative oversight, impact on student achievement and teacher training concerning tasks science teacher leaders are expected to perform would enhance this potential. However, science teacher leaders face challenges to realizing that potential due to ambiguity of their leadership role, the breadth of tasks they tend to perform and lack of alignment between task and outcomes.

  16. The relationship of parental influence on student career choice of biology and non-biology majors enrolled in a freshman biology course

    NASA Astrophysics Data System (ADS)

    Sowell, Mitzie Leigh

    Recent declines in science literacy and inadequate numbers of individuals entering science careers has heightened the importance of determining why students major in science or do not major in science and then choose a science-related career. Therefore, the purpose of this study was to examine the relationship between parental influences and student career choices of both males and females majoring and not majoring in science. This study specifically examined the constructs of parental occupation, parental involvement, and parental education levels. Aspects indicated by the participants as being influencers were also examined. In addition, differences between males and females were examined. A total of 282 students participated in the study; 122 were science majors and 160 were non-science majors. The data was collected through the use of a student information survey and the Modified Fennema-Sherman Attitude Scale. The findings suggest that students indicated the desire to help others, peers, salary, and skills as influencing their career choice. In regard to the various parental influences, mother's occupation was the only construct found as a statistically significant influencer on a student's decision to major in science. The results of this study can help educators, administrators, and policy makers understand what influences students to pursue science-related careers and possibly increase the number of students entering science-related careers. The results of the study specifically provide information that may prove useful to administrators and educators in the health science fields, particularly nursing fields. The findings provide insight into why students may choose to become nurses.

  17. Are UK undergraduate Forensic Science degrees fit for purpose?

    PubMed

    Welsh, Charles; Hannis, Marc

    2011-09-01

    In October 2009 Skills for Justice published the social research paper 'Fit for purpose?: Research into the provision of Forensic Science degree programmes in UK Higher Education Institutions.' The research engaged employers representing 95% of UK Forensic Science providers and 79% of UK universities offering Forensic Science or Crime Scene degree programmes. In addition to this, the research collected the views of 430 students studying these degrees. In 2008 there were approximately 9000 people working in the Forensic Science sector in the UK. The research found that the numbers of students studying Forensic Science or Crime Scene degrees in the UK have more than doubled since 2002-03, from 2191 in to 5664 in 2007-08. Over the same period there were twice as many females as males studying for these degrees. The research concluded that Forensic Science degree programmes offered by UK universities were of a good quality and they provided the student with a positive learning experience but the content was not relevant for Forensic Science employers. This echoed similar research by the former Government Department for Innovation, Universities and Skills on graduates from wider science, technology, engineering and mathematics degree programmes. The research also found that 75% of students studying Forensic Science or Crime Scene degrees expected to have a career in the Forensic Science sector, meaning that ensuring these courses are relevant for employers is a key challenge for universities. This paper reflects on the original research and discusses the implications in light of recent government policy. Copyright © 2011 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  18. A Black Feminist Book Club as a Multicultural Professional Development Model for Inservice Secondary Science Teachers

    NASA Astrophysics Data System (ADS)

    Hoard, Althea B.

    According to science teacher educators, science teachers often struggle to embrace and implement multicultural teaching practices due to limited awareness of the biases, assumptions, and oppressive structures that hinder the success of Students of Color in science classrooms. At its core, teachers lack this awareness due to incomplete understanding of the ways identity markers, such as race, gender, and socioeconomic status, work together to shape one's coming into, understanding of, and success in the sciences. To this end, this case study features four science teachers of diverse backgrounds who engaged in a book club structured to support their understanding of their intersectionality and their identity development. These four science teachers met as a science department to engage with the text Black Feminist Thought (BFT) (Collins, 2009) and other critical texts over a six-month period at a New York City, charter high school. The findings revealed the ways racial stereotypes, propagated by many factors--including images of scientists, relationships with teachers, and expectations of peers and family--influenced their coming into and understanding of science. Additionally, the findings show the ways teachers discovered their intersectionality--particularly the interplay of their race and gender--influenced their approaches to teaching science. As teachers learned about the multidimensionality of their positional identities, they became aware of discriminatory structures of power that disadvantage their Black female science students and reported implementing more student-centered pedagogical practices. Altogether, this study offers a professional development model for building critical consciousness with inservice secondary science teachers.

  19. At the Elbows of Scientists: Shaping Science Teachers' Conceptions and Enactment of Inquiry-Based Instruction

    NASA Astrophysics Data System (ADS)

    McLaughlin, Cheryl A.; MacFadden, Bruce J.

    2014-12-01

    This study stemmed from concerns among researchers that reform efforts grounded in promoting inquiry as the basis for teaching science have not achieved the desired changes in American science classrooms. Many science teachers assume that they are employing inquiry-based strategies when they use cookbook investigations with highly structured step-by-step instructions. Additionally, most science teachers equate hands-on activities with classroom inquiry and, as such, repeatedly use prepackaged, disconnected activities to break the monotony of direct instruction. Despite participation in numerous professional development activities, many science teachers continue to hold misconceptions about inquiry that influence the way they design and enact instruction. To date, there is very limited research exploring the role of inquiry-based professional development in facilitating desired changes in science teachers' conceptions of inquiry. This qualitative study of five high school science teachers explores the ways in which authentic inquiry experiences with a team of scientists in Panama shaped their conceptions and reported enactments of inquiry-based instruction. Our findings suggest that professional development experiences engaging science teachers in authentic research with scientists have the potential to change teachers' naïve conceptions of inquiry, provided that necessary supports are provided for reflection and lesson design.

  20. Soil science and geology: Connects, disconnects and new opportunities in geoscience education

    USGS Publications Warehouse

    Landa, E.R.

    2004-01-01

    Despite historical linkages, the fields of geology and soil science have developed along largely divergent paths in the United States during much of the mid- to late- twentieth century. The shift in recent decades within both disciplines to greater emphasis on environmental quality issues and a systems approach has created new opportunities for collaboration and cross-training. Because of the importance of the soil as a dynamic interface between the hydrosphere, biosphere, atmosphere, and lithosphere, introductory and advanced soil science classes are now being taught in a number of earth and environmental science departments. The National Research Council's recent report, Basic Research Opportunities in Earth Science, highlights the soil zone as part of the land surface-to-groundwater "critical zone" requiring additional investigation. To better prepare geology undergraduates to deal with complex environmental problems, their training should include a fundamental understanding of the nature and properties of soils. Those undergraduate geology students with an interest in this area should be encouraged to view soil science as a viable earth science specialty area for graduate study. Summer internships such as those offered by the National Science Foundation-funded Integrative Graduate Education, Research, and Training (IGERT) programs offer geology undergraduates the opportunity to explore research and career opportunities in soil science.

  1. Fort Collins Science Center-Fiscal year 2009 science accomplishments

    USGS Publications Warehouse

    Wilson, Juliette T.

    2010-01-01

    Public land and natural resource managers in the United States are confronted with increasingly complex decisions that have important ramifications for both ecological and human systems. The scientists and technical professionals at the U.S. Geological Survey Fort Collins Science Center?many of whom are at the forefront of their fields?possess a unique blend of ecological, socioeconomic, and technological expertise. Because of this diverse talent, Fort Collins Science Center staff are able to apply a systems approach to investigating complicated ecological problems in a way that helps answer critical management questions. In addition, the Fort Collins Science Center has a long record of working closely with the academic community through cooperative agreements and other collaborations. The Fort Collins Science Center is deeply engaged with other U.S. Geological Survey science centers and partners throughout the Department of the Interior. As a regular practice, we incorporate the expertise of these partners in providing a full complement of ?the right people? to effectively tackle the multifaceted research problems of today's resource-management world. In Fiscal Year 2009, the Fort Collins Science Center's scientific and technical professionals continued research vital to Department of the Interior's science and management needs. Fort Collins Science Center work also supported the science needs of other Federal and State agencies as well as non-government organizations. Specifically, Fort Collins Science Center research and technical assistance focused on client and partner needs and goals in the areas of biological information management and delivery, enterprise information, fisheries and aquatic systems, invasive species, status and trends of biological resources (including human dimensions), terrestrial ecosystems, and wildlife resources. In the process, Fort Collins Science Center science addressed natural-science information needs identified in the U.S. Geological Survey Science Strategy (http://www.usgs.gov/science_strategy), including understanding and predicting change in ecosystems, climate variability and change, energy development and land management, the role of the environment and wildlife in human health, freshwater ecosystems, data integration, and evolving technologies. Several science projects were expanded in Fiscal Year 2009 to meet these evolving needs.

  2. Science Express: Out-of-Home-Media to Communicate Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Lustick, D. S.; Lohmeier, J.; Chen, R.

    2013-12-01

    Science Express is an initiative to explore, develop, and test various approaches to using Out-of-Home-Media (OHM) to engage adults riding mass transit. To date, three projects represent this work: 1) Carbon Smarts Conference, 2) Cool Science, and 3) ScienceToGo.org. While the aim of each project is different, together they serve an immediate need to understand how OHM can be leveraged as an informal science learning medium. Using Climate Change as the content focus, each project is a variation on the theme of understanding mass transit as a form of mobile classroom for riders. The basic idea behind these initiatives is to engage individuals who do not necessarily read the science magazines, listen to science radio shows, or watch science programming on television. Science Express is about bringing the science learning opportunity to the audience during their daily routines. Mass Transit provides an ideal opportunity for engaging the disengaged in science learning since they represent a ';captive' audience while waiting at the bus stop, standing on the platform, riding inside the bus or train. These ';downtimes' present informal science educators with the opportunity to foster some science learning. With the advent of smartphone technology and its explosion in popularity among consumers, OHM is poised to offer riders a new kind of real time learning experience. The Science Express projects aim to understand the strengths and weaknesses of this new model for informal science learning so as to refine and improve its effectiveness at achieving desired goals. While the Science Express model for informal science learning could be used to foster understanding about any relevant scientific content, the research team chose to use Climate Change as the focus. Climate Change seemed like an obvious because of its timeliness, complexity, robust scientific foundation, and presence in popular media. Nearly all our riders have heard of 'Climate Change' or 'Global Warming', but a much smaller percentage actually understand the underlying science. In addition, riders appear to be very curious and want to know more about these issues.

  3. Scientifically speaking: Identifying, analyzing, and promoting science talk in small groups

    NASA Astrophysics Data System (ADS)

    Holthuis, Nicole Inamine

    In this dissertation I define, document, and analyze the nature of students' science talk as they work in cooperative learning groups. Three questions form the basis of this research. First, what is science talk? Second, how much and what kind of science talk did students do? And, third, what conditions help promote or inhibit students' science talk? This study was conducted in a total of six classrooms in three high schools. I videotaped and audiotaped students as they worked in small groups during the course of an ecology unit. I analyzed this videotape data and field notes using both quantitative and qualitative methods. I define science talk as talk that serves to move students along in terms of the science (both content and process) required or suggested by the activity. More specifically, I identified five epistemological characteristics that delineate what counts as scientific knowledge and, subsequently, science talk. From this definition, I developed an analytic framework and science talk observation instrument to document the quantity and level of student and teacher talk during groupwork. Analysis of the data from this instrument indicates that the overall level of students' science talk is considerable and students do significantly more science talk than school talk. I also found that while the overall level and type of science talk does not vary by class or by school, it does vary by activity type. Finally, my analysis suggests that science talk does not vary by gender composition of the group. I explored the classroom conditions that promote or inhibit science talk during groupwork. My findings suggest that, among other things, teachers can promote science talk by delegating authority to students, by emphasizing content and the big idea, by implementing open-ended tasks, and by modeling science talk. In conclusion, the findings described in this dissertation point teachers and researchers toward ways in which they may improve practice in order to foster more science talk. In addition, my Science Talk Instrument and analytic framework provides teachers, teacher educators, and researchers a means of understanding and evaluating student talk in small groups.

  4. Defining the Relationship of Student Achievement Between STEM Subjects Through Canonical Correlation Analysis of 2011 Trends in International Mathematics and Science Study (TIMSS) Data

    NASA Astrophysics Data System (ADS)

    O'Neal, Melissa Jean

    Canonical correlation analysis was used to analyze data from Trends in International Mathematics and Science Study (TIMSS) 2011 achievement databases encompassing information from fourth/eighth grades. Student achievement in life science/biology was correlated with achievement in mathematics and other sciences across three analytical areas: mathematics and science student performance, achievement in cognitive domains, and achievement in content domains. Strong correlations between student achievement in life science/biology with achievement in mathematics and overall science occurred for both high- and low-performing education systems. Hence, partial emphases on the inter-subject connections did not always lead to a better student learning outcome in STEM education. In addition, student achievement in life science/biology was positively correlated with achievement in mathematics and science cognitive domains; these patterns held true for correlations of life science/biology with mathematics as well as other sciences. The importance of linking student learning experiences between and within STEM domains to support high performance on TIMSS assessments was indicated by correlations of moderate strength (57 TIMSS assessments was indicated by correlations of moderate strength (57 < r < 85) stronger correlations (73 < r < 97) between life science/biology and other science domains. Results demonstrated the foundational nature of STEM knowledge at the fourth grade level, and established the importance of strong interconnections among life science/biology, mathematics, and other sciences. At the eighth grade level, students who built increasing levels of cognitive complexity upon firm foundations were prepared for successful learning throughout their educational careers. The results from this investigation promote a holistic design of school learning opportunities to improve student achievement in life science/biology and other science, technology, engineering, and mathematics (STEM) subjects at the elementary and middle school levels. While the curriculum can vary from combined STEM subjects to separated mathematics or science courses, both professional learning communities (PLC) for teachers and problem-based learning (PBL) for learners can be strengthened through new knowledge construction beyond the traditional boundaries of each subject. It is the knowledge transfer across subjects that breaks barriers of future STEM discoveries to improve STEM education outcomes.

  5. The effect of concept mapping on preservice elementary teachers' knowledge of science inquiry teaching

    NASA Astrophysics Data System (ADS)

    Jackson, Diann Carol

    This study examined the effect of concept mapping as a method of stimulating reflection on preservice elementary teachers' knowledge of science inquiry instruction methods. Three intact classes of science education preservice teachers participated in a non-randomized comparison group with a pretest and posttest design to measure the influence of mapping on participants' knowledge of inquiry science instruction. All groups followed the same course syllabus, in class activities, readings, assignments and assessment tasks. The manner in which they presented their ideas about inquiry science teaching varied. Groups constructed pre-lesson, post-lesson, and homework lists or maps across three inquiry based instruction modules (ecosystems, food chains, and electricity). Equivalent forms of the Teaching Science Inventory (TSI) were used to investigate changes in preservice teachers' propositional knowledge about how to teach using inquiry science instruction methods. Equivalent forms of the Science Lesson Planning (SLP) test were used to investigate changes in preservice teachers' application knowledge about how to teach using inquiry science instruction methods. Data analysis included intrarater reliability, ANOVAs, ANCOVAs, and correlations between lists and maps and examination responses. SLP and TSI scores improved from the pretest to the posttest in each of the three study groups. The results indicate that, in general, there were basically no relationships between the treatment and outcome measures. In addition, there were no significant differences between the three groups in their knowledge about how to teach science. Conclusions drawn from this study include, first, the learners did learn how to teach science using inquiry. Second, in this study there is little evidence to support that concept mapping was more successful than the listing strategy in improving preservice elementary teachers' knowledge of teaching science using inquiry science instruction methods.

  6. A phenomenological analysis of the essence of the science education experience as perceived by female high school physics and advanced chemistry students

    NASA Astrophysics Data System (ADS)

    Papadimitriou, Michael

    The purpose of this phenomenological study was to describe the essential elements of the current science education experience as constructed by twelve female high school physics and advanced chemistry students. The expressed desired outcome was a description of the phenomenon from a participant point of view. Student recollections and interpretations of experiences were assessed for a twelve-week period. Data sources were student journals, autobiographies, interviews, focus group interviews and researcher observations. In addition, each participant completed the Test of Science Related Attitudes (Fraser, 1981) in order to create attitude profiles for triangulation with other data. While a wide range of aspects of the science education experience emerged, results showed that female students describe and interpret their science education experiences on the basis of actual interest in science, early science experiences, perception of ability, self-confidence, teacher attributes, parental and peer interaction, societal expectations, the nature of science, and gender. Of these factors, specifically, interest and curiosity, societal influence, the nature of science, lack of in-school experiences, the desire to help others, and general parent support were most impacting upon experience and the desire to continue science study. Moreover, the interaction of these factors is relevant. Very simply, early experiences are crucial to interest development. In general, parents can enhance this interest by providing science-related experiences. In the absence of early in-school experiences (i.e., which the participants reported), these out-of-school experiences become crucial. More importantly, quality instruction and parent and peer support are needed to foster science interest and to overcome the powerfully negative influence of society, the discriminatory nature of science, and the lack of experiences.

  7. Organizational health and the achievement level of students in science at the secondary-level schools in Sri Lanka

    NASA Astrophysics Data System (ADS)

    Pakkeer-Jaufar, Pakkeer Cadermohideen

    This study sought to identify those organizational health factors that might have overriding influence on the achievement level of students in science in Sri Lankan secondary schools. This study involved 752 students, 33 science teachers, and 10 principals from two different districts, Ampara and Colombo, in Sri Lanka. Ten Tamil medium, secondary level, public schools were selected to participate in this study. Data were collected using four types of instruments: a questionnaire for pupils; interview schedules for science teachers and principals; checklists for classroom/school facilities, science laboratory facilities, and science practicals; and a science achievement test. The analysis focused on the collective perceptions of students, science teachers, and principals. Regression and path analyses were used as major analysis techniques, and the qualitative data provided by science teachers and principals were considered for a crosschecking of the quantitative inferences. The researcher found teacher affiliation, academic emphasis, and instructional leadership of the principal, in descending order, were the overriding influential factors on the achievement level of students in science in Sri Lankan secondary schools. At the same time a similar descending order was found in their mean values and qualities. The researcher concluded that increasing the quality of the organizational health factors in Sri Lankan secondary schools would result in improved better achievement in science. The findings further indicate that instructional leadership of the principal had both direct and indirect effects on students' achievement in science when academic emphasis and teacher affiliation were taken into account. In addition, the resource support of the principal did not make any difference in students' science achievement and the findings stress the availability of the resources for individual students instead of assuming the general facilities of the school are available to all students of the school.

  8. Leveraging complex understandings of urban education for transformative science pedagogy

    NASA Astrophysics Data System (ADS)

    Davis, Natalie R.; Ingber, Jenny; McLaughlin, Cheryl A.

    2014-12-01

    Despite the abundance of literature that attests to a myriad of complex and entrenched problems within urban education, the authors of this forum maintain that in addition to shedding light on oppressive structures and ideologies, critical pedagogues must remain steadfastly engaged in solution-oriented endeavors. Using Cheryl McLaughlin's analysis as a worthy starting point, we consider both old paradigms and new ideas regarding the transformation of public science education. Topics for discussion include theoretical framing, urban teacher preparation, science education reform approaches, and the role of scholarship. While it is evident that securing rigorous and empowering science education for diverse learners will require arduous, collective effort on many fronts, this text upholds a sense of optimism in the potential of activist-teacher-researchers to overcome barriers to liberatory science teaching and learning.

  9. Aurorasaurus: A citizen science platform for viewing and reporting the aurora

    NASA Astrophysics Data System (ADS)

    MacDonald, E. A.; Case, N. A.; Clayton, J. H.; Hall, M. K.; Heavner, M.; Lalone, N.; Patel, K. G.; Tapia, A.

    2015-09-01

    A new, citizen science-based, aurora observing and reporting platform has been developed with the primary aim of collecting auroral observations made by the general public to further improve the modeling of the aurora. In addition, the real-time ability of this platform facilitates the combination of citizen science observations with auroral oval models to improve auroral visibility nowcasting. Aurorasaurus provides easily understandable aurora information, basic gamification, and real-time location-based notification of verified aurora activity to engage citizen scientists. The Aurorasaurus project is one of only a handful of space weather citizen science projects and can provide useful results for the space weather and citizen science communities. Early results are promising with over 2000 registered users submitting over 1000 aurora observations and verifying over 1700 aurora sightings posted on Twitter.

  10. U.S. Materials Science on the International Space Station: Status and Plans

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis P.; Kelton, Kenneth F.; Matson, Douglas M.; Poirier, David R.; Trivedi, Rohit K.; Su, Ching-Hua; Volz, Martin P.; Voorhees, Peter W.

    2010-01-01

    This viewgraph presentation reviews the current status and NASA plans for materials science on the International Space Station. The contents include: 1) Investigations Launched in 2009; 2) DECLIC in an EXPRESS rack; 3) Dynamical Selection of Three-Dimensional Interface Patterns in Directional Solidification (DSIP); 4) Materials Science Research Rack (MSRR); 5) Materials Science Laboratory; 6) Comparison of Structure and Segregation in Alloys Directionally Solidified in Terrestrial and Microgravity Environments (MICAST/CETSOL); 7) Coarsening in Solid Liquid Mixtures 2 Reflight (CSLM 2R); 8) Crystal Growth Investigations; 9) Levitator Investigations; 10) Quasi Crystalline Undercooled Alloys for Space Investigation (QUASI); 11) The Role of Convection and Growth Competition in Phase Selection in Microgravity (LODESTARS); 12) Planned Additional Investigations; 13) SETA; 14) METCOMP; and 15) Materials Science NRA.

  11. 46 CFR 310.59 - Courses of instruction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... science courses prescribed by the Department of the Navy. All curriculums include general education... Academy. Three major curriculums are offered: Nautical Science, for the preparation of deck officers... addition to practical shipboard assignments, midshipmen are required to complete written study assignments...

  12. The relationship between vertical teaming in science and student achievement as reported in the Academic Excellence Indicator System (AEIS) at selected public schools in Bexar County, Texas

    NASA Astrophysics Data System (ADS)

    Arteaga, Veronica Hernandez

    The purpose of this study was to examine the relationship between vertical teaming in science and student achievement. This study compared student achievement of campuses implementing vertical teaming with schools that do not practice vertical teaming. In addition, this study explored the relationship between selected demographic variables and vertical teaming using Grade 5 Science TAKS results in the Academic Excellence Indicator System (AEIS). Campus demographic variables such as economically disadvantaged, minority students, English language learners, student mobility, and experienced teachers were researched. A call-out yielded 168 responses. With the exclusion of the 12 campuses, a total of 156 participating campuses from 18 traditional school districts remained. Campuses employing vertical teaming were self-identified on the basis of having implemented the process for two or more years. The gain in percent mastered for Science TAKS scores from 2004 to 2007 was used as the Science TAKS score variable. Results indicated that there was no significant difference in student achievement in science for campuses practicing vertical teaming and campuses that did not. The two-way ANOVA was used to measure the relationship between the independent variables (vertical teaming and campus demographic variables) on the dependent variable (student achievement on Science TAKS). The results suggested that campuses having low percentages of economically disadvantaged students statistically gained more on the Science TAKS than campuses that have high percentages of economically disadvantaged students irrespective of vertical teaming practices. In addition, campuses that have low percentages of minority students statistically gained more on the Science TAKS than campuses that have high percentages of minority students despite vertical teaming participation. Recommendations include districts, state, and federal agencies providing campuses with a high percent of economically disadvantaged students with more resources and more flexibility in using those resources. Recommendations for further study included a replication of the study that takes into account the degree of implementation of vertical teaming.

  13. Optimizing biomedical science learning in a veterinary curriculum: a review.

    PubMed

    Warren, Amy L; Donnon, Tyrone

    2013-01-01

    As veterinary medical curricula evolve, the time dedicated to biomedical science teaching, as well as the role of biomedical science knowledge in veterinary education, has been scrutinized. Aside from being mandated by accrediting bodies, biomedical science knowledge plays an important role in developing clinical, diagnostic, and therapeutic reasoning skills in the application of clinical skills, in supporting evidence-based veterinary practice and life-long learning, and in advancing biomedical knowledge and comparative medicine. With an increasing volume and fast pace of change in biomedical knowledge, as well as increased demands on curricular time, there has been pressure to make biomedical science education efficient and relevant for veterinary medicine. This has lead to a shift in biomedical education from fact-based, teacher-centered and discipline-based teaching to applicable, student-centered, integrated teaching. This movement is supported by adult learning theories and is thought to enhance students' transference of biomedical science into their clinical practice. The importance of biomedical science in veterinary education and the theories of biomedical science learning will be discussed in this article. In addition, we will explore current advances in biomedical teaching methodologies that are aimed to maximize knowledge retention and application for clinical veterinary training and practice.

  14. Promoting and Scaffolding Elementary School Students' Attitudes Toward Science and Argumentation Through a Science and Society Intervention

    NASA Astrophysics Data System (ADS)

    Hong, Zuway-R.; Lin, Huann-shyang; Wang, Hsin-Hui; Chen, Hsiang-Ting; Yang, Kuay-Keng

    2013-07-01

    This study investigated the effects of a science and society intervention on elementary school students' argumentation skills and their attitudes toward science. One hundred and eleven fifth grade students volunteered as an experimental group to join a 12-week intervention; another 107 sixth grade students volunteered to be the comparison group. All participants completed the Student Questionnaire at the beginning and end of this study. Observation and interview results were used to triangulate and consolidate the quantitative findings. The data showed that after the intervention, the quality of the experimental group students' arguments and their attitudes toward science were significantly higher than their comparison group counterparts. In addition, the experimental group boys made significantly greater progress in the quality of their argumentation from the pretest to posttest than the girls; and low achievers made the most significant progress in their attitudes toward science and quality of argumentation. Interviews and observations indicated that their understandings of explanation and argumentation changed over the intervention. This indicated that a science and society intervention can enhance both the ability of students to develop strong arguments and their attitudes toward science.

  15. Engaging Science Faculty in Teacher Professional Development: Renewable Energy

    NASA Astrophysics Data System (ADS)

    Czajkowski, K. P.; Czerniak, C.; Struble, J.; Mentzer, G.; Brooks, L.; Hedley, M.

    2011-12-01

    The LEADERS Program (Leadership for Educators: Academy for Driving Economic Revitalization in Science) is an NSF funded Math and Science Partnership program that aims to link economic revitalization in the Great Lakes region with K-12 education through renewable energy technology using a project-based learning approach. The LEADERS Program brings teacher leaders together with science and education faculty from the University of Toledo. Teacher leaders, from Toledo Public and Catholic Schools, attended a six week long institute in the summers of 2010 and 2011 and offered professional development for their colleagues during the school year. The teacher leaders took two science courses during the summer of 2010 in Physics and Chemistry of Renewable Energy as well as classes in Project-Based Science and Leadership and three courses in the summer of 2011, Earth Technologies, Climate Change and Biofuels. In addition, teachers were introduced to industry leaders in renewable energies as well as conservation. This presentation will discuss the implementation of the program and focus on the involvement of science faculty. We will discuss the challenges and successes in bringing together science faculty with teachers including how the experience has changed the teaching style of the scientists.

  16. Cool Science: Using Children's Art to Communicate Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Lustick, D. S.; Lohmeier, J.; Chen, R. F.

    2013-12-01

    Cool Science is a K-12 Climate Change Science Art Competition. Working with teachers, parents, and students, the project aims to identify outstanding works of art by students about climate change and display the art throughout public mass transit. Cool Science has three distinct goals: 1) provide a convenient means for art and science teachers to incorporate climate change into their curriculum, 2) support teacher/student learning about climate change science, and 3) foster informal learning about climate change among people riding mass transit. By efficiently connecting formal and informal learning with one project, Cool Science is an innovative project that expands the way we engage and evaluate students. Using children's artwork to communicate complex scientific issues such as climate change is a powerful learning experience for the artist, teacher, and audience. Last year, Cool Science received nearly 600 entries from students representing 36 teachers from 32 school districts. Six winning entries went on public display with one highlighted each month from January through June. In addition, there were 6 Runner Ups and 12 Honorable Mentions. For the winning students, it is an unforgettable experience to see a nine-foot version of their artwork traveling around the streets on the side of a bus!

  17. Collaborative Science Work in the Elementary Classroom

    NASA Astrophysics Data System (ADS)

    Kersey, Denise A.

    Not all students with disabilities receive special education accommodations in science class. Without special education support, students with disabilities are unable to comprehend and apply science concepts. Implementing a co-teaching model could be a remedy for this lack of supports. Framed by constructivist theory, this study sought to determine if there was a difference in science assessment scores between students in a co-taught science class and those in a regular education science class. Following a pretest-posttest control group design, this study examined the relation between two teaching models and achievement in science. Using a convenience sample of 84 students drawn from a population of 144 fourth grade special education students in a public school district located in the Southeastern United States, analysis of variance was used to compare the mean growth of the two groups. The data revealed no statistically significant difference in mean gain scores between the two groups. Additional studies using a larger sample and longer trial are needed. Implications for social change include understanding instructional strategies that allow educators to differentiate for diverse learners in mainstreamed classrooms as well as removing barriers for underrepresented groups, thereby allowing equal access to science related professions.

  18. Scientific Participation at the Poles: K-12 Teachers in Polar Science for Careers and Classrooms

    NASA Astrophysics Data System (ADS)

    Crowley, S.; Warburton, J.

    2012-12-01

    PolarTREC (Teachers and Researchers Exploring and Collaborating) is a National Science Foundation (NSF) funded program in which K-12 teachers participate in hands-on field research experiences in the polar regions. PolarTREC highlights the importance of involving teachers in scientific research in regards to their careers as educators and their ability to engage students in the direct experience of science. To date, PolarTREC has placed over 90 teachers with research teams in the Arctic and Antarctic. Published results of our program evaluation quantify the effect of the field experience on the teachers' use of the real scientific process in the classroom, the improvement in science content taught in classrooms, and the use of non-fiction texts (real data and science papers) as primary learning tools for students. Teachers and students both report an increase of STEM literacy in the classroom content, confidence in science education, as well as a markedly broadened outlook of science as essential to their future. Research conducted with science teams affirms that they are achieving broader impacts when PolarTREC teachers are involved in their expeditions. Additionally, they reported that these teachers making vital contributions to the success of the scientific project.

  19. Integrating art into science education: a survey of science teachers' practices

    NASA Astrophysics Data System (ADS)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-07-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science teachers (n = 66). A pedagogical model for science teachers' art integration emerged from a qualitative content analysis conducted on examples of art integration. In the model, art integration is characterised as integration through content and activities. Whilst the links in the content were facilitated either directly between concepts and ideas or indirectly through themes or artefacts, the integration through activity often connected an activity in one domain and a concept, idea or artefact in the other domain with the exception of some activities that could belong to both domains. Moreover, the examples of art integration in everyday classroom did not include expression of emotions often associated with art. In addition, quantitative part of the survey confirmed that integration is infrequent in all mapped areas. The findings of this study have implications for science teacher education that should offer opportunities for more consistent art integration.

  20. NASA faked the moon landing--therefore, (climate) science is a hoax: an anatomy of the motivated rejection of science.

    PubMed

    Lewandowsky, Stephan; Oberauer, Klaus; Gignac, Gilles E

    2013-05-01

    Although nearly all domain experts agree that carbon dioxide emissions are altering the world's climate, segments of the public remain unconvinced by the scientific evidence. Internet blogs have become a platform for denial of climate change, and bloggers have taken a prominent role in questioning climate science. We report a survey of climate-blog visitors to identify the variables underlying acceptance and rejection of climate science. Our findings parallel those of previous work and show that endorsement of free-market economics predicted rejection of climate science. Endorsement of free markets also predicted the rejection of other established scientific findings, such as the facts that HIV causes AIDS and that smoking causes lung cancer. We additionally show that, above and beyond endorsement of free markets, endorsement of a cluster of conspiracy theories (e.g., that the Federal Bureau of Investigation killed Martin Luther King, Jr.) predicted rejection of climate science as well as other scientific findings. Our results provide empirical support for previous suggestions that conspiratorial thinking contributes to the rejection of science. Acceptance of science, by contrast, was strongly associated with the perception of a consensus among scientists.

  1. Exploring students' conceptions of science learning via drawing: a cross-sectional analysis

    NASA Astrophysics Data System (ADS)

    Hsieh, Wen-Min; Tsai, Chin-Chung

    2017-02-01

    This cross-sectional study explored students' conceptions of science learning via drawing analysis. A total of 906 Taiwanese students in 4th, 6th, 8th, 10th, and 12th grade were asked to use drawing to illustrate how they conceptualise science learning. Students' drawings were analysed using a coding checklist to determine the presence or absence of specified attributes. Data analysis showed that the majority of students pictured science learning as school-based, involving certain types of experiment or teacher lecturing. In addition, notable cross-sectional differences were found in the 'Activity' and 'Emotions and attitudes' categories in students' drawings. Three major findings were made: (1) lower grade level students conceptualised science learning with a didactic approach, while higher graders might possess a quantitative view of science learning (i.e. how much is learned, not how well it is learned), (2) students' positive and negative emotions and attitudes toward science learning reversed around middle school, and (3) female students expressed significantly more positive emotions and attitudes than their male counterparts. In conclusion, higher graders' unfruitful conceptions of science learning warrant educators' attention. Moreover, further investigation of girls' more positive emotions and attitudes found in this study is needed.

  2. Opportunities-to-Learn at Home: Profiles of Students With and Without Reaching Science Proficiency

    NASA Astrophysics Data System (ADS)

    Liu, Xiufeng; Whitford, Melinda

    2011-08-01

    This study examines the relationship between opportunity-to-learn (OTL) at home and students' attainment of science proficiency. The data set used was the 2006 PISA science US national sample. Data mining was used to create patterns of association between home OTL variables and student attainment of science proficiency. It was found that students who failed to reach science proficiency are characterized by having fewer than 100 books at home; these students are also found to take out-of-school individual or group lessons with their teachers or with other teachers. On the other hands, students who reached science proficiency are characterized by having more than 100 books at home, not taking any out-of-school lessons, and having a highest parent level of graduate education. In addition to the above common characteristics, other home characteristics (e.g. computer and internet at home and language spoke at home) are also identified in profiles of students who have reached science proficiency. We explain the above findings in terms of current social-cultural theories. We finally discuss implications of the above findings for future studies and for improving science education policy and practice.

  3. Economic value analysis of the return from the Korean astronaut program and the science culture diffusion activity in Korea

    NASA Astrophysics Data System (ADS)

    Yi, Soyeon; Jang, Hyun-Jin; Lee, Hyo Suk; Yu, Jong-Phil; Kim, Soyeon; Lee, Joohee; Hur, Hee-Young

    2013-06-01

    In this study, we analyze the economic effects from the Korean Astronaut Program (KAP) and the subsequent Science Culture Diffusion Activity (SCDA). Korea has had a huge practical effect on the development of science and technology and has increased international awareness of Korea by producing Korea's first astronaut. There has also been a large, ripple effect on space related industries. In addition, the KAP has exercised a far-reaching influence on Korean society and culture by boosting all science and engineering and inspiring national pride. After the KAP, astronauts' outreach activities, such as lectures for the general public; interviews on television, newspapers and magazines; participating in children's science camps; and distributing publications and DVDs about astronaut program for general public, were instituted for diffusing science culture. Thus, positive effects such as the promotion of Korea's level of technology, student interest in science and engineering fields, and the expansion of the industrial base were reinforced after the KAP. This study is aimed at evaluating the economic significance and the value of return through analyzing the effects of the KAP and the subsequent Science Culture Diffusion Activity.

  4. [Philosophy of science for psychiatric practice].

    PubMed

    Ralston, A S G

    2010-01-01

    The prevailing view is that psychiatry has its roots in two separate methodologies: the natural sciences and the social sciences. It is assumed that these are separate domains, each with its own way of knowing. Psychiatric and psychological theories are based mainly on one or other of these two types of science; this leads to a ongoing dualism in psychiatry, which some people regard as problematical. This article aims to make a methodological contribution to the scientific and philosophical foundations of psychiatry. This philosophical and theoretical dichotomy is criticized in this article in the light of recent developments in the philosophy of science, and two methods are introduced which offer an alternative analysis: values-based practice and actor-network theory. Brief examples are given which demonstrate that a combination of these two methods can be productive for psychiatry. Values-based practice and actor-network theory provide a way of resolving the stalemate in the conflict between the physical sciences and the sciences of the mind, a conflict that is dominated by professionals. In addition these two new methods empower the professionals by not deriving legitimacy from the false image of a dichotomous science, but from a normative sense of professionalism.

  5. Academic writing in a corpus of 4th grade science notebooks: An analysis of student language use and adult expectations of the genres of school science

    NASA Astrophysics Data System (ADS)

    Esquinca, Alberto

    This is a study of language use in the context of an inquiry-based science curriculum in which conceptual understanding ratings are used split texts into groups of "successful" and "unsuccessful" texts. "Successful" texts could include known features of science language. 420 texts generated by students in 14 classrooms from three school districts, culled from a prior study on the effectiveness of science notebooks to assess understanding, in addition to the aforementioned ratings are the data sources. In science notebooks, students write in the process of learning (here, a unit on electricity). The analytical framework is systemic functional linguistics (Halliday and Matthiessen, 2004; Eggins, 2004), specifically the concepts of genre, register and nominalization. Genre classification involves an analysis of the purpose and register features in the text (Schleppegrell, 2004). The use of features of the scientific academic register, namely the use relational processes and nominalization (Halliday and Martin, 1993), requires transitivity analysis and noun analysis. Transitivity analysis, consisting of the identification of the process type, is conducted on 4737 ranking clauses. A manual count of each noun used in the corpus allows for a typology of nouns. Four school science genres, procedures, procedural recounts reports and explanations, are found. Most texts (85.4%) are factual, and 14.1% are classified as explanations, the analytical genre. Logistic regression analysis indicates that there is no significant probability that the texts classified as explanation are placed in the group of "successful" texts. In addition, material process clauses predominate in the corpus, followed by relational process clauses. Results of a logistic regression analysis indicate that there is a significant probability (Chi square = 15.23, p < .0001) that texts with a high rate of relational processes are placed in the group of "successful" texts. In addition, 59.5% of 6511 nouns are references to physical materials, followed by references to abstract concepts (35.54%). Only two of the concept nouns were found to be nominalized referents in definition model sentences. In sum, the corpus has recognizable genres and features science language, and relational processes are more prevalent in "successful" texts. However, the pervasive feature of science language, nominalization, is scarce.

  6. Ocean research plan reviewed

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    A draft plan setting out priorities for U.S. ocean research generally was lauded for its clear and well-articulated view in a recent report from a committee of the U.S. National Research Council (NRC) of the US. National Academies. However, the committee advised that the plan would benefit from a bold vision for the future of ocean science research, additional details, and a reorganization to include cross-cutting research.The draft "Charting the Course for Ocean Science in the United States: Research Priorities for the Next Decade" was made available for public comment in September 2006 by the U.S. National Science and Technology Council's Joint Subcommittee on Ocean Science and Technology.

  7. Science with society in the anthropocene.

    PubMed

    Seidl, Roman; Brand, Fridolin Simon; Stauffacher, Michael; Krütli, Pius; Le, Quang Bao; Spörri, Andy; Meylan, Grégoire; Moser, Corinne; González, Monica Berger; Scholz, Roland Werner

    2013-02-01

    Interdisciplinary scientific knowledge is necessary but not sufficient when it comes to addressing sustainable transformations, as science increasingly has to deal with normative and value-related issues. A systems perspective on coupled human-environmental systems (HES) helps to address the inherent complexities. Additionally, a thorough interaction between science and society (i.e., transdisciplinarity = TD) is necessary, as sustainable transitions are sometimes contested and can cause conflicts. In order to navigate complexities regarding the delicate interaction of scientific research with societal decisions these processes must proceed in a structured and functional way. We thus propose HES-based TD processes to provide a basis for reorganizing science in coming decades.

  8. Digital chat reference in health science libraries: challenges in initiating a new service.

    PubMed

    Dee, Cheryl R; Newhouse, Joshua D

    2005-01-01

    Digital reference service adds a valuable new dimension to health science reference services, but the road to implementation can present questions that require carefully considered decisions. This article incorporates suggestions from the published literature, provides tips from interviews with practicing academic health science librarians, and reports on data from students' exploration of academic health science library Web sites' digital reference services. The goal of this study is to provide guidelines to plan new services, assess user needs, and select software, and to showcase potential benefits of collaboration and proactive and user-friendly marketing. In addition, tips for successful operation and evaluation of services are discussed.

  9. Perceptions of psychology as a science among university students: the influence of psychology courses and major of study.

    PubMed

    Bartels, Jared M; Hinds, Ryan M; Glass, Laura A; Ryan, Joseph J

    2009-10-01

    The goal was to examine the relationship between the number of psychology courses students have taken and their perceptions of psychology as a science. Additionally, differences in perceptions of psychology among psychology, education, and natural science majors were examined. Results indicated that students who had taken four or more psychology courses had more favorable perceptions of psychology as a science compared to those who had taken no courses or one course and those who had taken two to three courses. No significant differences in overall perceptions of psychology emerged among students in the three majors.

  10. A New Approach to Teaching Science to Elementary Education Majors in Response to the NGSS

    NASA Astrophysics Data System (ADS)

    Brevik, C.; Daniels, L.; McCoy, C.

    2015-12-01

    The Next Generation Science Standards (NGSS) place an equal emphasis on science process skills and science content. The goal is to have K-12 students "doing" science, not just "learning about" science. However, most traditional college science classes for elementary education majors place a much stronger emphasis on science content knowledge with the hands-on portion limited to a once-a-week lab. The two models of instruction are not aligned. The result is that many elementary school teachers are unprepared to offer interactive science with their students. Without additional coaching, many teachers fall back on the format they learned in college - lecture, handouts, homework. If we want teachers to use more hands-on methods in the classroom, these techniques should be taught to elementary education majors when they are in college. Dickinson State University has begun a collaboration between the Teacher Education Department and the Department of Natural Sciences. The physical science course for elementary education majors has been completely redesigned to focus equally on the needed science content and the science process skills emphasized by the NGSS. The format of the course has been adjusted to more closely mirror a traditional K-5 classroom; the course meets for 50 minutes five days a week. A flipped-classroom model has been adopted to ensure no content is lost, and hands-on activities are done almost every day as new concepts are discussed. In order to judge the effectiveness of these changes, a survey tool was administered to determine if there was a shift in the students' perception of science as an active instead of a passive field of study. The survey also measured the students' comfort-level in offering a hands-on learning environment in their future classrooms and their confidence in their ability to effectively teach science concepts to elementary students. Results from the first year of the study will be presented.

  11. Middle school science teachers' teaching self-efficacy and students' science self-efficacy

    NASA Astrophysics Data System (ADS)

    Pisa, Danielle

    Project 2061, initiated by the American Association for the Advancement of Science (AAAS), developed recommendations for what is essential in education to produce scientifically literate citizens. Furthermore, they suggest that teachers teach effectively. There is an abundance of literature that focuses on the effects of a teacher's science teaching self-efficacy and a student's science self-efficacy. However, there is no literature on the relationship between the two self-efficacies. This study investigated if there is a differential change in students' science self-efficacy over an academic term after instruction from a teacher with high science teaching self-efficacy. Quantitative analysis of STEBI scores for teachers showed that mean STEBI scores did not change over one academic term. A t test indicated that there was no statistically significant difference in mean SMTSL scores for students' science self-efficacy over the course of one academic term for a) the entire sample, b) each science class, and c) each grade level. In addition, ANOVA indicated that there was no statistically significant difference in mean gain factor of students rated as low, medium, and high on science self-efficacy as measured by the SMTSL, when students received instruction from a teacher with a high science teaching self-efficacy value as measured by the STEBI. Finally, there was no statistically significant association between the pre- and post-instructional rankings of SMTSL by grade level when students received instruction from a teacher with a high science teaching self-efficacy value as measured by the STEBI. This is the first study of its kind. Studies indicated that teaching strategies typically practiced by teachers with high science teaching were beneficial to physics self-efficacy (Fencl & Scheel, 2005). Although it was unsuccessful at determining whether or not a teacher with high science teaching self-efficacy has a differential affect on students' science self-efficacy, it is worth repeating on a more diverse sample of teacher and students over a longer period of time.

  12. The academic and nonacademic characteristics of science and nonscience majors in Yemeni high schools

    NASA Astrophysics Data System (ADS)

    Anaam, Mahyoub Ali

    The purposes of this study were: (a) to identify the variables associated with selection of majors; (b) to determine the differences between science and nonscience majors in general, and high and low achievers in particular, with respect to attitudes toward science, integrated science process skills, and logical thinking abilities; and (c) to determine if a significant relationship exists between students' majors and their personality types and learning styles. Data were gathered from 188 twelfth grade male and female high school students in Yemen, who enrolled in science (45 males and 47 females) and art and literature (47 males and 49 females) tracks. Data were collected by the following instruments: Past math and science achievement (data source taken from school records), Kolb's Learning Styles Inventory (1985), Integrated Science Process Skills Test, Myers-Briggs Type Indicator, Attitude Toward Science in School Assessment, Group Assessment of Logical Thinking, Yemeni High School Students Questionnaire. The Logistic Regression Model and the Linear Discriminant Analysis identified several variables that are associated with selection of majors. Moreover, some of the characteristics of science and nonscience majors that were revealed by these models include the following: Science majors seem to have higher degrees of curiosity in science, high interest in science at high school level, high tendency to believe that their majors will help them to find a potential job in the future, and have had higher achievement in science subjects, and have rated their math teachers higher than did nonscience majors. In contrast, nonscience majors seem to have higher degrees of curiosity in nonscience subjects, higher interest in science at elementary school, higher anxiety during science lessons than did science majors. In addition, General Linear Models allow that science majors generally demonstrate more positive attitudes towards science than do nonscience majors and they outperform nonscience majors on integrated science process skills and logical thinking abilities. High achievers in science majors have a significantly higher attitude toward science, higher integrated science process skills, and higher logical thinking abilities than high and low achievers in nonscience majors. No gender differences were found on these variables. Chi-Square tests indicate that no significant relationships exist between students' majors and their personality types and learning styles. However, it was found that majority of students prefer extroversion over introversion, sensing over intuition, thinking over feeling, and judging over perceiving. Moreover, the most common learning styles among science and nonscience majors were the divergent and the assimilative learning styles. Finally, the educational implication of these findings were discussed and future research that need to be conducted were proposed.

  13. School factors affecting postsecondary career pursuits of high-achieving girls in mathematics and science

    NASA Astrophysics Data System (ADS)

    Yoo, Hyunsil

    This study examined the influences of secondary school experiences of high-achieving girls in math and science on their postsecondary career pursuits in science fields. Specifically, using the National Education Longitudinal Study of 1988 (NELS:88), the study investigated how science class experiences in high school affect science career persistence of high-achieving girls over and above personal and family factors. Selecting the top 10% on the 8 th grade math and science achievement tests from two panel samples of 1988--1994 and 1988--2000, this study examined which science instructional experiences (i.e., lecture-oriented, experiment-oriented, and student-oriented) best predicted college major choices and postsecondary degree attainments in the fields of science after controlling for personal and family factors. A two-stage test was employed for the analysis of each panel sample. The first test examined the dichotomous career pursuits between science careers and non-science careers and the second test examined the dichotomous pursuits within science careers: "hard" science and "soft" science. Logistic regression procedures were used with consideration of panel weights and design effects. This study identified that experiment-oriented and student-oriented instructional practices seem to positively affect science career pursuits of high-achieving females, while lecture-oriented instruction negatively affected their science career pursuits, and that the longitudinal effects of the two positive instructional contributors to science career pursuits appear to be differential between major choice and degree attainment. This study also found that the influences of instructional practices seem to be slight for general females, while those for high-achieving females were highly considerable, regardless of whether negative or positive. Another result of the study found that only student-oriented instruction seemed to have positive effects for high-achieving males. In addition, this study found that the lecture-oriented and experiment-oriented instructional practices were more likely to contribute to the choice of soft sciences for general and high-achieving females, while student-oriented instructional practices were more likely to contribute to the degree attainment in hard sciences for high-achieving females in science. The results should provide information for educational policies regarding school instruction and curriculum and career development targeted towards improving gender equity in science career pursuits.

  14. Examining science achievement of African American females in suburban middle schools: A mixed methods study

    NASA Astrophysics Data System (ADS)

    Topping, Kecia C.

    This dissertation examined factors that affected the science achievement of African American females in suburban middle schools. The research literature informed that African American females are facing the barriers of race, gender, socioeconomic status, and cultural learning style preferences. Nationally used measurements of science achievement such as the Standardized Achievement Test, Tenth edition (SAT-10), National Assessment for Educational Progress, and National Center for Educational Statistics showed that African American females are continuing to falter in the areas of science when compared to other ethnic groups. This study used a transformative sequential explanatory mixed methods design. In the first, quantitative, phase, the relationships among the dependent variables, science subscale SAT-10 NCE scores, yearly averages, and the independent variables, attitude toward science scores obtained from the Modified Fennema-Sherman Attitudes toward Science Scale, socioeconomics, and caregiver status were tested. The participants were 150 African American females in grades 6 through 8 in four suburban middle schools located in the Southeastern United States. The results showed a positive, significant linear relationship between the females' attitude and their science subscale SAT-10 NCE scores and a positive, significant linear relationship between the females' attitudes and their yearly averages in science. The results also confirmed that attitude was a significant predictor of science subscale SAT-10 NCE scores for these females and that attitude and socioeconomics were significant predictors of the females' yearly averages in science. In the second, qualitative, phase, nine females purposefully selected from those who had high and low attitude towards science scores on the scale in the quantitative phase were interviewed. The themes that emerged revealed seven additional factors that impacted the females' science achievement. They were usefulness of science, exposure to science, parent influence, peer influence, teacher expectations, strategies for academic success in science, and perception of self in a predominantly Caucasian population. This information should be used to create interactive suburban middle school science classrooms that encourage the participation of African American females. These females should experience increased involvement with activities that expose them to science that is relevant to their lives. As a result, these females will be inspired to excel in science and one day enter into science careers.

  15. Seeding science success: Relations of secondary students' science self-concepts and motivation with aspirations and achievement

    NASA Astrophysics Data System (ADS)

    Chandrasena, Wanasinghe Durayalage

    This research comprises three inter-related synergistic studies. Study 1 aims to develop a psychometrically sound tool to measure secondary students' science self-concepts, motivation, and aspirations in biology, chemistry, earth and environmental methodology to explicate students' and teachers' views, practices, and personal experiences, to identify the barriers to undertaking science for secondary students and to provide rich insights into the relations of secondary students' science self-concepts and motivation with their aspirations and achievement. Study 3 will detect additional issues that may not necessarily be identifiable from the quantitative findings of Study 2. The psychometric properties of the newly developed instrument demonstrated that students' science self-concepts were domain specific, while science motivation and science aspirations were not. Students' self-concepts in general science, chemistry, and physics were stronger for males than females. Students' self-concepts in general science and biology became stronger for students in higher years of secondary schooling. Students' science motivation did not vary across gender and year levels. Though students' science aspirations did not vary across gender, they became stronger with age. In general, students' science self-concepts and science motivation were positively related to science aspirations and science achievement. Specifically, students' year level, biology self-concept, and physics self concept predicted their science and career aspirations. Biology self-concept predicted teacher ratings of students' achievement, and students' general science self-concepts predicted their achievement according to students' ratings. Students' year level and intrinsic motivation in science were predictors of their science aspirations, and intrinsic motivation was a greater significant predictor of students' achievement, according to student ratings. Based upon students' and teachers' perceptions, the identified barriers to promoting science in schools were: the difficulty of the subject matter, lack of student interest, the large amount of subject content, lack of perceived relevance of the subject matter to day-to-day life, ineffective teacher characteristics, lack of aspirations to pursue science as a career, inadequate teaching methods, lack of adequate teacher training, lack of proper policies to reward science teachers, and inadequate support for science from the media. Overall, the results from this study provide a greater understanding of the relations of secondary students' science self-concepts and motivation with aspirations and achievement in different science domains across gender and age levels. Hence, this research makes a valuable contribution to the literature by providing new insight. The findings will be useful for science educators in planning and developing science curriculum and policies with regard to student self-concepts and motivation. Equally, science teachers may find implications for classroom practices, for the planning and conducting of science lessons, for conveying scientific concepts and principles to students more effectively, and in considering the need to generate enthusiasm about the subject in young science students. Thus, the findings may offer the necessary strategies to assist in reducing the decline of students' enrolments in science through efficacious attention to student self-concepts and motivation. The newly developed instrument provides a new opportunity for future research to confidently interrogate the psychosocial issues central to science education and promotion. (Abstract shortened by ProQuest.).

  16. Microgravity

    NASA Image and Video Library

    1997-03-11

    Once the Microgravity Science Glovebox (MSG) is sealed, additional experiment items can be inserted through a small airlock at the bottom right of the work volume. It is shown here with the door open. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  17. Status of Mars Global Surveyor Science Data Archives

    NASA Technical Reports Server (NTRS)

    Slavney, S.; Arvidson, R. E.; Guinness, E. A.; Springer, R. J.

    2001-01-01

    The Mars Global Surveyor has been in orbit around Mars since September 1997, completing its primary mission on January 31, 2001. As of that date the spacecraft had completed more than 8000 mapping orbits. Data from its science instruments, radio science experiment, and SPICE files have been released regularly to the NASA Planetary Data System (PDS) as described in the MGS Archive Plan and Addendum and are available online. Additional information is contained in the original extended abstract.

  18. Music Education and the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Beauregard, J. L.

    2011-12-01

    Capturing the interest of non-science majors in science classes can be very difficult, no matter what type of science course it is. At Berklee College of Music, this challenge is especially daunting, as all students are majoring in some type of music program. To engage the Berklee students, I am trying to link the material in Earth science courses to music. The connection between Earth science and music is made in several different ways within the curriculum of each class, with the main connection via a final project. For their projects, students can use any creative outlet (or a standard presentation) to illustrate a point related to the course. Many students have chosen to compose original music and perform it for the class. Some examples of their work will be presented. These original compositions allow students to relate course material to their own lives. Additionally, since many of these students will enter professional careers in the performance and recording industries, the potential exists for them to expose large audiences to the issues of Earth sciences through music.

  19. Scientific Literacy and Student Attitudes: Perspectives from PISA 2006 science

    NASA Astrophysics Data System (ADS)

    Bybee, Rodger; McCrae, Barry

    2011-01-01

    International assessments provide important knowledge about science education and help inform decisions about policies, programmes, and practices in participating countries. In 2006, science was the primary domain for the Programme for International Student Assessment (PISA), supported by the Organisation for Economic Cooperation and Development (OECD) and conducted by the Australian Council for Educational Research (ACER). Compared to the school curriculum orientation of Trends in International Math and Science Study (TIMSS), PISA provides a perspective that emphasises the application of knowledge to science and technology-related life situations. The orientation of PISA includes both knowledge and attitudes as these contribute to students' competencies that are central to scientific literacy. In addition to students' knowledge and competencies, the 2006 PISA survey gathered data on students' interest in science, support for scientific enquiry, and responsibility towards resources and environments. The survey used both a non-contextualised student questionnaire and contextualised questions. The latter is an innovative approach which embedded attitudinal questions at the conclusion of about two-thirds of the test units. The results presented in this article make connections between students' attitudes and interests in science and scientific literacy.

  20. High school computer science education paves the way for higher education: the Israeli case

    NASA Astrophysics Data System (ADS)

    Armoni, Michal; Gal-Ezer, Judith

    2014-07-01

    The gap between enrollments in higher education computing programs and the high-tech industry's demands is widely reported, and is especially prominent for women. Increasing the availability of computer science education in high school is one of the strategies suggested in order to address this gap. We look at the connection between exposure to computer science in high school and pursuing computing in higher education. We also examine the gender gap, in the context of high school computer science education. We show that in Israel, students who took the high-level computer science matriculation exam were more likely to pursue computing in higher education. Regarding the issue of gender, we will show that, in general, in Israel the difference between males and females who take computer science in high school is relatively small, and a larger, though still not very large difference exists only for the highest exam level. In addition, exposing females to high-level computer science in high school has more relative impact on pursuing higher education in computing.

  1. Developing tools and strategies for communicating climate change

    NASA Astrophysics Data System (ADS)

    Bader, D.; Yam, E. M.; Perkins, L.

    2011-12-01

    Research indicates that the public views zoos and aquariums as reliable and trusted sources for information on conservation. Additionally, visiting zoos and aquariums helps people reconsider their connections to conservation issues and solutions. The Aquarium of the Pacific, an AZA-accredited institution that serves the most ethnically diverse population of all aquariums in the nation, is using exhibit space, technology, public programming, and staff professional development to present a model for how aquariums can promote climate literacy. Our newest galleries and programs are designed to immerse our visitors in experiences that connect our live animal collection to larger themes on ocean change. The Aquarium is supporting our new programming with a multifaceted staff professional development that exposes our interpretive staff to current climate science and researchers as well as current social science on public perception of climate science. Our staff also leads workshops for scientists; these sessions allow us to examine learning theory and develop tools to communicate science and controversial subjects effectively. Through our partnerships in the science, social science, and informal science education communities, we are working to innovate and develop best practices in climate communication.

  2. Results of Studying Astronomy Students’ Science Literacy, Quantitative Literacy, and Information Literacy

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; Impey, Chris David; Follette, Katherine B.; Dokter, Erin F.; McCarthy, Don; Vezino, Beau; Formanek, Martin; Romine, James M.; Brock, Laci; Neiberding, Megan; Prather, Edward E.

    2017-01-01

    Introductory astronomy courses often serve as terminal science courses for non-science majors and present an opportunity to assess non future scientists’ attitudes towards science as well as basic scientific knowledge and scientific analysis skills that may remain unchanged after college. Through a series of studies, we have been able to evaluate students’ basic science knowledge, attitudes towards science, quantitative literacy, and informational literacy. In the Fall of 2015, we conducted a case study of a single class administering all relevant surveys to an undergraduate class of 20 students. We will present our analysis of trends of each of these studies as well as the comparison case study. In general we have found that students basic scientific knowledge has remained stable over the past quarter century. In all of our studies, there is a strong relationship between student attitudes and their science and quantitative knowledge and skills. Additionally, students’ information literacy is strongly connected to their attitudes and basic scientific knowledge. We are currently expanding these studies to include new audiences and will discuss the implications of our findings for instructors.

  3. An Analysis of Earth Science Data Analytics Use Cases

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Kempler, Steve

    2014-01-01

    The increase in the number and volume, and sources, of globally available Earth science data measurements and datasets have afforded Earth scientists and applications researchers unprecedented opportunities to study our Earth in ever more sophisticated ways. In fact, the NASA Earth Observing System Data Information System (EOSDIS) archives have doubled from 2007 to 2014, to 9.1 PB (Ramapriyan, 2009; and https:earthdata.nasa.govaboutsystem-- performance). In addition, other US agency, international programs, field experiments, ground stations, and citizen scientists provide a plethora of additional sources for studying Earth. Co--analyzing huge amounts of heterogeneous data to glean out unobvious information is a daunting task. Earth science data analytics (ESDA) is the process of examining large amounts of data of a variety of types to uncover hidden patterns, unknown correlations and other useful information. It can include Data Preparation, Data Reduction, and Data Analysis. Through work associated with the Earth Science Information Partners (ESIP) Federation, a collection of Earth science data analytics use cases have been collected and analyzed for the purpose of extracting the types of Earth science data analytics employed, and requirements for data analytics tools and techniques yet to be implemented, based on use case needs. ESIP generated use case template, ESDA use cases, use case types, and preliminary use case analysis (this is a work in progress) will be presented.

  4. An Integrative Approach to Improving an Introductory Weather & Climate Course and Developing an Allied NASA Earth & Space Science Certificate Program for Pre-service Secondary Teachers (Invited)

    NASA Astrophysics Data System (ADS)

    Morrow, C. A.; Martin-Hansen, L.; Diem, J.; Elliott, W.

    2009-12-01

    An Atlanta-based partnership made up of leaders in science, education, and Georgia’s state-wide STEM Education Initiative are creating an enduring legacy of climate science education for pre-service and in-service teachers in Georgia as well as for underrepresented high school students who participate in an "Early College" program with Georgia State University (GSU). The core elements of our NASA-funded program are to infuse NASA global climate change resources and best pedagogical practice into a popular 4-credit lecture/lab course called “Introduction to Weather & Climate” (GEOG 1112) at GSU, and to establish a sustainable academic program for pre-service teachers in the College of Education called the NASA Earth & Space Science (ESS) Teacher Certificate. The NASA ESS Certificate will require candidates to accomplish the following as part of (or in addition to) standard degree and licensure requirements: 1. successfully complete a graduate section of “Introduction to Weather and Climate” (GEOG 7112), which requires lesson planning related to course content and engagement with GSU's new CO2 monitoring station whose research-quality data will provide unique hands-on opportunities for Metro Atlanta students and teachers; 2) complete an additional advanced course in climate change (GEOG 6784) plus elective hours in physical science disciplines (e.g. astronomy and physics); 3) serve as a lab teaching assistant for GEOG 1112 and a coach for a cadre of Carver Early College students who are taking the course; 4) make at least one of two teaching practica at a Georgia-based NASA Explorer School; and 5) participate or co-present in a week-long, residential, field-based, Summer Institute in Earth & Space Science intended to increase the interest, knowledge, and ability of in-service secondary science educators to fulfill climate-related standards in Earth Science and Earth Systems Science. We will evaluate, document, and disseminate (to the University System of Georgia and beyond) our model for the NASA-enhancement of an introductory science course as a focal point for teacher preparation and professional development.

  5. Epistemological beliefs and epistemological practices in elementary science

    NASA Astrophysics Data System (ADS)

    Kittleson, Julie M.

    In this study, I examined the reciprocal relationship between third graders' epistemological beliefs and practices in the context of science instruction. Epistemological beliefs describe students' ideas about the nature of knowledge. Epistemological practices describe how students interact with dimensions of scientific knowledge. Examining the intersection between beliefs and practices involves describing how participating in science learning activities influences and is influenced by ideas about science. To examine beliefs and practices, I used interviews and classroom observations. Interview data were analyzed to ascertain students' ideas about the purpose of science and the justification, certainty, and structure/coherence of scientific knowledge. Additionally, lessons in the FOSS Human Body unit and the STC Chemical Tests unit were video taped. These data were analyzed to examine epistemological practices. Interview and classroom data were used in combination to explore the intersection between beliefs and practices. Students held multifaceted ideas about science. They indicated that science involves description, but they also indicated that science involves generating evidence and drawing conclusions. Students indicated that ideas can change in relation to new evidence. Epistemological practices, in contrast, revealed that the investigation strategies invoked in these units underestimated students' ideas about science. Students used matching strategies to complete investigations. In the Chemical Tests unit, the teacher helped students move beyond matching by introducing the idea of molecules. Students discussed molecules in relation to their empirical investigations, indicating that when elementary students are provided with appropriate scaffolds they can expand their range of practices which also potentially expands their beliefs. Students approached science as a repertoire of tests. They recalled ideas about the purpose of a test in one context and applied those ideas to another context. Additionally, they suggested that certain tests are appropriate for certain situations. Although students understood the purpose of the tests, they did not seem to recognize the full range of purposes underlying scientific investigations. This study highlights the challenge of designing learning environments that scaffold productive epistemological beliefs. This study also highlights the complexity of the relationship between beliefs and practices, particularly in terms of understanding the role instruction might play in mediating this relationship.

  6. Middle School Students' Science Self-Efficacy and Its Sources: Examination of Gender Difference

    NASA Astrophysics Data System (ADS)

    Kıran, Dekant; Sungur, Semra

    2012-10-01

    The main purpose of the present study is to investigate middle school students' science self-efficacy as well as its sources and outcomes as a function of gender. Bandura's hypothesized sources of self-efficacy (i.e., mastery experience, vicarious experience, verbal persuasion, and emotional arousal) in addition to being inviting with self and inviting with others were examined as sources of self-efficacy, while cognitive and metacognitive strategy use was examined as an outcome of self-efficacy. A total of 1,932 students participated in the study and were administered self-report instruments. Results showed that the relationship between science self-efficacy and its proposed sources does not change as a function of gender. All proposed sources, except for vicarious experience, were found to be significantly related to students' scientific self-efficacy. Moreover, girls were found to experience significantly more emotional arousal and to send positive messages to others more than boys. On the other hand, no gender difference was found concerning science self-efficacy and strategy use. The findings also revealed a positive association between science self-efficacy and strategy use. Overall, findings supported Bandura's conception of self-efficacy and suggested invitations as additional sources of self-efficacy.

  7. Health sciences libraries building survey, 1999-2009.

    PubMed

    Ludwig, Logan

    2010-04-01

    A survey was conducted of health sciences libraries to obtain information about newer buildings, additions, remodeling, and renovations. An online survey was developed, and announcements of survey availability posted to three major email discussion lists: Medical Library Association (MLA), Association of Academic Health Sciences Libraries (AAHSL), and MEDLIB-L. Previous discussions of library building projects on email discussion lists, a literature review, personal communications, and the author's consulting experiences identified additional projects. Seventy-eight health sciences library building projects at seventy-three institutions are reported. Twenty-two are newer facilities built within the last ten years; two are space expansions; forty-five are renovation projects; and nine are combinations of new and renovated space. Six institutions report multiple or ongoing renovation projects during the last ten years. The survey results confirm a continuing migration from print-based to digitally based collections and reveal trends in library space design. Some health sciences libraries report loss of space as they move toward creating space for "community" building. Libraries are becoming more proactive in using or retooling space for concentration, collaboration, contemplation, communication, and socialization. All are moving toward a clearer operational vision of the library as the institution's information nexus and not merely as a physical location with print collections.

  8. Learning and teaching about the nature of science through process skills

    NASA Astrophysics Data System (ADS)

    Mulvey, Bridget K.

    This dissertation, a three-paper set, explored whether the process skills-based approach to nature of science instruction improves teachers' understandings, intentions to teach, and instructional practice related to the nature of science. The first paper examined the nature of science views of 53 preservice science teachers before and after a year of secondary science methods instruction that incorporated the process skills-based approach. Data consisted of each participant's written and interview responses to the Views of the Nature of Science (VNOS) questionnaire. Systematic data analysis led to the conclusion that participants exhibited statistically significant and practically meaningful improvements in their nature of science views and viewed teaching the nature of science as essential to their future instruction. The second and third papers assessed the outcomes of the process skills-based approach with 25 inservice middle school science teachers. For the second paper, she collected and analyzed participants' VNOS and interview responses before, after, and 10 months after a 6-day summer professional development. Long-term retention of more aligned nature of science views underpins teachers' ability to teach aligned conceptions to their students yet it is rarely examined. Participants substantially improved their nature of science views after the professional development, retained those views over 10 months, and attributed their more aligned understandings to the course. The third paper addressed these participants' instructional practices based on participant-created video reflections of their nature of science and inquiry instruction. Two participant interviews and class notes also were analyzed via a constant comparative approach to ascertain if, how, and why the teachers explicitly integrated the nature of science into their instruction. The participants recognized the process skills-based approach as instrumental in the facilitation of their improved views. Additionally, the participants saw the nature of science as an important way to help students to access core science content such as the theory of evolution by natural selection. Most impressively, participants taught the nature of science explicitly and regularly. This instruction was student-centered, involving high levels of student engagement in ways that represented applying, adapting, and innovating on what they learned in the summer professional development.

  9. Energy matters: An investigation of drama pedagogy in the science classroom

    NASA Astrophysics Data System (ADS)

    Alrutz, Megan

    The purpose of this study is to explore and document how informal and improvisational drama techniques affect student learning in the science classroom. While implementing a drama-based science unit, I examined multiple notions of learning, including, but not limited to, traditional notions of achievement, student understanding, student participation in the science classroom, and student engagement with, and knowledge of, science content. Employing an interpretivist research methodology, as outlined by Fredrick Erickson for qualitative analysis in the classroom, I collected data through personal observations; student and teacher interviews; written, artistic and performed class work; video-recorded class work; written tests; and questionnaires. In analyzing the data, I found strong support for student engagement during drama-based science instruction. The drama-based lessons provided structures that drew students into lessons, created enthusiasm for the science curriculum, and encouraged meaningful engagement with, and connections to, the science content, including the application and synthesis of science concepts and skills. By making student contributions essential to each of the lessons, and by challenging students to justify, explain, and clarify their understandings within a dramatic scenario, the classroom facilitators created a conducive learning environment that included both support for student ideas and intellectual rigor. The integration of drama-based pedagogy most affected student access to science learning and content. Students' participation levels, as well as their interest in both science and drama, increased during this drama-based science unit. In addition, the drama-based lessons accommodated multiple learning styles and interests, improving students' access to science content and perceptions of their learning experience and abilities. Finally, while the drama-based science lessons provided multiple opportunities for solidifying understanding of the science content, the data also revealed missed opportunities for sense-making within the delivery of several drama-based science lessons. In conclusion, this study demonstrates how the integration of drama and science prepares students for seeking, accessing, and organizing information in different ways, providing multiple means for students to build knowledge and understanding for actively participating in the changing world around us.

  10. Hidden student voice: A curriculum of a middle school science class heard through currere

    NASA Astrophysics Data System (ADS)

    Crooks, Kathleen Schwartz

    Students have their own lenses through which they view school science and the students' views are often left out of educational conversations which directly affect the students themselves. Pinar's (2004) definition of curriculum as a 'complicated conversation' implies that the class' voice is important, as important as the teacher's voice, to the classroom conversation. If the class' voice is vital to classroom conversations, then the class, consisting of all its students, must be allowed to both speak and be heard. Through a qualitative case study, whereby the case is defined as a particular middle school science class, this research attempts to hear the 'complicated conversation' of this middle school science class, using currere as a framework. Currere suggests that one's personal relationship to the world, including one's memories, hopes, and dreams, should be the crux of education, rather than education being primarily the study of facts, concepts, and needs determined by an 'other'. Focus group interviews were used to access the class' currere: the class' lived experiences of science, future dreams of science, and present experiences of science, which was synthesized into a new understanding of the present which offered the class the opportunity to be fully educated. The interview data was enriched through long-term observation in this middle school science classroom. Analysis of the data collected suggests that a middle school science class has rich science stories which may provide insights into ways to engage more students in science. Also, listening to the voice of a science class may provide insight into discussions about science education and understandings into the decline in student interest in science during secondary school. Implications from this research suggest that school science may be more engaging for this middle school class if it offers inquiry-based activities and allows opportunities for student-led research. In addition, specialized academic and career advice in early middle school may be able to capitalize on this class' positive perspective toward science. Further research may include using currere to hear the voices of middle school science classes with more diverse demographic qualities.

  11. Doing Better: Illuminating a Framework of Equitable Science Pedagogy through a Cross- Case Analysis of Urban High School Science Teachers

    NASA Astrophysics Data System (ADS)

    Sheth, Manali J.

    Students of color are routinely asked to participate in science education that is less intellectually rich and self-affirming. Additionally, teachers have trouble embarking on professional growth related to issues of equity and diversity in science. The purpose of this dissertation research is to develop a multi-dimensional framework for equitable science pedagogy (ESP) through analyzing the efforts and struggles of high school science teachers. This study is grounded in a conceptual framework derived from scholarship in science education, multicultural education, critical science studies, and teacher learning. The following questions guide this research: 1) What visions and enactments emerge in teachers' practices towards equitable science pedagogy? 2) How are teachers' practice decisions towards ESP influenced by their personal theories of race/culture, science, and learning and sociocultural contexts? 3) Why are there consistencies and variances across teachers' practices? This study employs a qualitative multiple case study design with ethnographic data collection to explore the practices of three urban high school science teachers who were identified as being committed to nurturing the science learning of students of color. Data include over 120 hours of classroom observation, 60 hours of teacher interviews, and 500 teacher- and student-generated artifacts. Data analysis included coding teachers' practices using theory- and participant generated codes, construction of themes based on emergent patterns, and cross-case analysis. The affordances and limitations of the participants' pedagogical approaches inform the following framework for equitable science pedagogy: 1) Seeing race and culture and sharing responsibility for learning form foundational dimensions. Practices from the other three dimensions--- nurturing students' identities, re-centering students' epistemologies, and critiquing structural inequities---emerge from the foundation. As emergent practices, they are constituted by but not reduced to practices in the initial dimensions. 2) Ideas from the foundational dimensions are filtered through teachers' stances on science. Thus, teachers' practices in the emergent dimensions and the foundational dimensions are mediated by teachers' pedagogical ideas about science and school science. 3) Teachers' articulations of practice influence the possibility of on-going work towards equitable science pedagogy.

  12. We Engage, Therefore They Trust? A Study of Social Media Engagement and Public Trust in Science

    NASA Astrophysics Data System (ADS)

    Hwong, Y. L.; Oliver, C.; Van Kranendonk, M. J.

    2017-12-01

    Our society relies heavily on the trust that the public places in science to work. Given science's importance, the growing distrust in science is a cause for concern. Thanks to their participatory nature, social media have been touted as the promising tool for public engagement to restore public trust in science. These digital platforms have transformed the landscape of science communication yet little is known about their impact on public trust in science. This study probed several aspects of public trust in science as expressed on Twitter, focusing on two related science issues: space science and climate change. Our datasets comprised of 10,000 randomly sampled tweets over a month's period in 2016. We used human annotation and machine learning as our approach. Results indicated that the perceived contentiousness of a science issue has a significant impact on public trust. The level of distrust is higher in the climate change tweets than in the space science tweets, despite climate scientists being almost four times as active as space scientists in engaging with sceptics. However, people who engaged with scientists in the climate change network displayed a higher level of trust in science compared with those who did not. This effect was not observed in the space science network - in this network, there is no significant difference in trust levels between people who engaged with scientists and those who did not. Additionally, our machine learning study revealed that trust in science (as conveyed by tweets) can be predicted. The supervised learning algorithm that we developed was able to predict the trust labels of tweets in our sample with an accuracy of 84%. A further feature analysis indicated that similarity, presence of URL and authenticity are the properties of trust-inspiring tweets. Based on these findings, we argue that social media science communication is not as straightforward as `we engage, therefore they trust'. Public attitude towards science is often issue-dependent, and the way scientists communicate on social media has a significant impact on public perception.

  13. Capturing and portraying science student teachers' pedagogical content knowledge through CoRe construction

    NASA Astrophysics Data System (ADS)

    Thongnoppakun, Warangkana; Yuenyong, Chokchai

    2018-01-01

    Pedagogical content knowledge (PCK) is an essential kind of knowledge that teacher have for teaching particular content to particular students for enhance students' understanding, therefore, teachers with adequate PCK can give content to their students in an understandable way rather than transfer subject matter knowledge to learner. This study explored science student teachers' PCK for teaching science using Content representation base methodology. Research participants were 68 4th year science student teachers from department of General Science, faculty of Education, Phuket Rajabhat University. PCK conceptualization for teaching science by Magnusson et al. (1999) was applied as a theoretical framework in this study. In this study, Content representation (CoRe) by Loughran et al. (2004) was employed as research methodology in the lesson preparation process. In addition, CoRe consisted of eight questions (CoRe prompts) that designed to elicit and portray teacher's PCK for teaching science. Data were collected from science student teachers' CoRes design for teaching a given topic and student grade. Science student teachers asked to create CoRes design for teaching in topic `Motion in one direction' for 7th grade student and further class discussion. Science student teachers mostly created a same group of science concepts according to subunits of school science textbook rather than planned and arranged content to support students' understanding. Furthermore, they described about the effect of student's prior knowledge and learning difficulties such as students' knowledge of Scalar and Vector quantity; and calculating skill. These responses portrayed science student teacher's knowledge of students' understanding of science and their content knowledge. However, they still have inadequate knowledge of instructional strategies and activities for enhance student learning. In summary, CoRes design can represented holistic overviews of science student teachers' PCK related to the teaching of a particular topic and also support them to gain more understanding about how to teach for understanding. Research implications are given for teacher education and educational research to offer a potential way to enhance science student teachers' PCK for teaching science and support their professional learning.

  14. Florence Bascom and the Exclusion of Women From Earth Science Curriculum Materials

    ERIC Educational Resources Information Center

    Arnold, Lois

    1975-01-01

    Numerous excerpts from present day earth science curriculum materials reveal sexual discrimination. In addition, studies of photographs included in the materials reveal a high male dominance. The significant contributions of one earth scientist, Florence Bascom, are remembered. (CP)

  15. Make Science Matter. Hands on Science.

    ERIC Educational Resources Information Center

    Kepler, Lynne

    1992-01-01

    Presents class activities to help elementary students learn about changes in the state of matter by making ice cream. In addition to making observations on the changes of state, students can practice measuring and identifying the properties (e.g., color, size, and shape). (SM)

  16. A Philosophical Review of Science and Society within Agricultural Education

    ERIC Educational Resources Information Center

    McKim, Aaron J.; Velez, Jonathan J.; Lambert, Misty D.; Balschweid, Mark A.

    2017-01-01

    We utilized philosophical and historical perspectives to analyze the interconnectedness between agricultural education, science, and society. Using historical evidence, the adaptive role of agricultural education was discussed and recommendations for future adaptability were described. Additionally, connections between agricultural education,…

  17. A Course for Engineering and Science Students

    ERIC Educational Resources Information Center

    Companion, A.; Schug, K.

    1973-01-01

    Discusses the features of a course which emphasizes training of scientists and engineers with broad interdisciplinary knowledge in addition to those with a highly specialized professional preparation. Included is a list of books relating to applications of materials science concepts in general chemistry. (CC)

  18. Astrobiology Science and Technology: A Path to Future Discovery

    NASA Technical Reports Server (NTRS)

    Meyer, M. A.; Lavaery, D. B.

    2001-01-01

    The Astrobiology Program is described. However, science-driven robotic exploration of extreme environments is needed for a new era of planetary exploration requiring biologically relevant instrumentation and extensive, autonomous operations on planetary surfaces. Additional information is contained in the original extended abstract.

  19. Science at Your Fingertips.

    ERIC Educational Resources Information Center

    Gillespie, D. Craig

    1984-01-01

    Offers various strategies in which students use fingerprints to help sharpen their science process skills. Includes directions for making fingerprints using just ink and paper and suggestions for additional activities. These include making "prints" from other body parts and from such objects as automobile tires. (JN)

  20. Designs on a National Research Network.

    ERIC Educational Resources Information Center

    Walsh, John

    1988-01-01

    Discusses the addition of the National Aeronautics and Space Administration database to the National Science Foundation's NSFnet data communication network. Outlines the history of databases in the United States and enumerates proposed upgrades from a new Office of Science and Technology policy report. (TW)

  1. Energy in Our Society.

    ERIC Educational Resources Information Center

    Philadelphia Electric Co., PA. Energy Education Advisory Council.

    This publication is a series of 13 original classroom instructional packets and an additional 4 units adapted from National Science Teachers Association units. Each packet is designed to supplement specific existing subject curricula. Units have been designed for physics, chemistry, English, mathematics, general science and studies. Packets…

  2. SET Careers: An interactive science, engineering, and technology career education exhibit. Final report to the United States Department of Energy Science Museum Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, P.R.

    1994-04-01

    The New York Hall of Science in collaboration with the Educational Film Center and the Consortium for Mathematics and its Applications developed and pilot tested a unique interactive, video-based/hypermedia series on energy related and other science and engineering careers for middle and junior high school students. The United States Department of Energy Science Museum Program supported the development of one energy-related career profile (Susan Fancy--mechanical engineer) and the development and printing of 100 copies of a career-related workbook. Additional funding from the National Science Foundation and the Sloan Foundation resulted in the development of 3 additional career profiles, a relatedmore » Data Base and Career Match Self Assessment for 16 careers, available both on screen and in print in this pilot phase. The SET CAREERS Exhibit is a video-based/hypermedia series which contains profiles of people working in Science, Engineering and Technology fields, interactive opportunities for users including interviews with profiled persons, opportunities to attempt work-related tasks through animated simulations, a Data Base of career-related information available both on-screen and in print, and a Career Match Self Assessment. The screen is in an attract loop mode, inviting visitors to interact with the exhibit. A menu of choices is provided so that users may begin by selecting a profiled person, choosing the Career Match Self Assessment or the Data Base. The Data Base is available in print if the user chooses that mode.« less

  3. The effects of a professional development geoscience education institute upon secondary school science teachers in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Llerandi Roman, Pablo Antonio

    The geographic and geologic settings of Puerto Rico served as the context to develop a mixed methods investigation on: (1) the effects of a five-day long constructivist and field-based earth science education professional development institute upon 26 secondary school science teachers' earth science conceptual knowledge, perceptions of fieldwork, and beliefs about teaching earth science; and (2) the implementation of participants' newly acquired knowledge and experience in their science lessons at school. Qualitative data included questionnaires, semi-structured interviews, reflective journals, pre-post concept maps, and pre-post lesson plans. The Geoscience Concept Inventory and the Science Outdoor Learning Environment Inventory were translated into Spanish and culturally validated to collect quantitative data. Data was analyzed through a constructivist grounded theory methodology, descriptive statistics, and non-parametric methods. Participants came to the institute with serious deficiencies in earth science conceptual understanding, negative earth science teaching perspectives, and inadequate earth science teaching methodologies. The institute helped participants to improve their understanding of earth science concepts, content, and processes mostly related to the study of rocks, the Earth's structure, plate tectonics, maps, and the geology of Puerto Rico. Participants also improved their earth science teaching beliefs, perceptions on field-based education, and reflected on their environmental awareness and social responsibility. Participants greatly benefited from the field-based learning environment, inquiry-based teaching approaches modeled, the attention given to their affective domain, and reflections on their teaching practice as part of the institute's activities. The constructivist learning environment and the institute's contextualized and meaningful learning conceptual model were effective in generating interest and confidence in earth science teaching. Some participants successfully integrated inquiry-based lessons on the nature of science and earth science at their schools, but were unsuccessful in integrating field trips. The lack of teacher education programs and the inadequacy of earth science conceptual and pedagogical understanding held by in-service teachers are the main barriers for effective earth science teaching in Puerto Rico. This study established a foundation for future earth science education projects for Latino teachers. Additionally, as a result of this investigation various recommendations were made to effectively implement earth science teacher education programs in Puerto Rico and internationally.

  4. Communicating the Benefits of a Full Sequence of High School Science Courses

    NASA Astrophysics Data System (ADS)

    Nicholas, Catherine Marie

    High school students are generally uninformed about the benefits of enrolling in a full sequence of science courses, therefore only about a third of our nation's high school graduates have completed the science sequence of Biology, Chemistry and Physics. The lack of students completing a full sequence of science courses contributes to the deficit in the STEM degree production rate needed to fill the demand of the current job market and remain competitive as a nation. The purpose of the study was to make a difference in the number of students who have access to information about the benefits of completing a full sequence of science courses. This dissertation study employed qualitative research methodology to gain a broad perspective of staff through a questionnaire and document review and then a deeper understanding through semi-structured interview protocol. The data revealed that a universal sequence of science courses in the high school district did not exist. It also showed that not all students had access to all science courses; students were sorted and tracked according to prerequisites that did not necessarily match the skill set needed for the courses. In addition, the study showed a desire for more support and direction from the district office. It was also apparent that there was a disconnect that existed between who staff members believed should enroll in a full sequence of science courses and who actually enrolled. Finally, communication about science was shown to occur mainly through counseling and peers. A common science sequence, detracking of science courses, increased communication about the postsecondary and academic benefits of a science education, increased district direction and realistic mathematics alignment were all discussed as solutions to the problem.

  5. Science Classroom Inquiry (SCI) Simulations: A Novel Method to Scaffold Science Learning

    PubMed Central

    Peffer, Melanie E.; Beckler, Matthew L.; Schunn, Christian; Renken, Maggie; Revak, Amanda

    2015-01-01

    Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students’ self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study. PMID:25786245

  6. Predictors of cultural capital on science academic achievement at the 8th grade level

    NASA Astrophysics Data System (ADS)

    Misner, Johnathan Scott

    The purpose of the study was to determine if students' cultural capital is a significant predictor of 8th grade science achievement test scores in urban locales. Cultural capital refers to the knowledge used and gained by the dominant class, which allows social and economic mobility. Cultural capital variables include magazines at home and parental education level. Other variables analyzed include socioeconomic status (SES), gender, and English language learners (ELL). This non-experimental study analyzed the results of the 2011 Eighth Grade Science National Assessment of Educational Progress (NAEP). The researcher analyzed the data using a multivariate stepwise regression analysis. The researcher concluded that the addition of cultural capital factors significantly increased the predictive power of the model where magazines in home, gender, student classified as ELL, parental education level, and SES were the independent variables and science achievement was the dependent variable. For alpha=0.05, the overall test for the model produced a R2 value of 0.232; therefore the model predicted 23.2% of variance in science achievement results. Other major findings include: higher measures of home resources predicted higher 2011 NAEP eighth grade science achievement; males were predicted to have higher 2011 NAEP 8 th grade science achievement; classified ELL students were predicted to score lower on the NAEP eight grade science achievement; higher parent education predicted higher NAEP eighth grade science achievement; lower measures of SES predicted lower 2011 NAEP eighth grade science achievement. This study contributed to the research in this field by identifying cultural capital factors that have been found to have statistical significance on predicting eighth grade science achievement results, which can lead to strategies to help improve science academic achievement among underserved populations.

  7. Science classroom inquiry (SCI) simulations: a novel method to scaffold science learning.

    PubMed

    Peffer, Melanie E; Beckler, Matthew L; Schunn, Christian; Renken, Maggie; Revak, Amanda

    2015-01-01

    Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.

  8. Nursing students' attitudes toward science in the nursing curricula

    NASA Astrophysics Data System (ADS)

    Maroo, Jill Deanne

    The nursing profession combines the art of caregiving with scientific concepts. Nursing students need to learn science in order to start in a nursing program. However, previous research showed that students left the nursing program, stating it included too much science (Andrew et al., 2008). Research has shown a correlation between students' attitudes and their performance in a subject (Osborne, Simon, & Collins, 2003). However, little research exists on the overall attitude of nursing students toward science. At the time of my study there existed no large scale quantitative study on my topic. The purpose of my study was to identify potential obstacles nursing students face, specifically, attitude and motivation toward learning science. According to research the nation will soon face a nursing shortage and students cite the science content as a reason for not completing the nursing program. My study explored nursing students' attitudes toward science and reasons these students are motivated to learn science. I ran a nationwide mixed methods approach with 1,402 participants for the quantitative portion and 4 participants for the qualitative portion. I validated a questionnaire in order to explore nursing students' attitudes toward science, discovered five different attitude scales in that questionnaire and determined what demographic factors provided a statistically significant prediction of a student's score. In addition, I discovered no statistical difference in attitude exists between students who have the option of taking nursing specific courses and those who do not have that option. I discovered in the qualitative interviews that students feel science is necessary in nursing but do not feel nurses are scientists. My study gives a baseline of the current attitude of nursing students toward science and why these students feel the need to learn the science.

  9. Preparing students for higher education and careers in agriculture and related fields: An ethnography of an urban charter school

    NASA Astrophysics Data System (ADS)

    Henry, Kesha Atasha

    This study explored the preparation of students for higher education and careers in agriculturally-related fields at an urban charter high school. The data were collected through interviews, observations, and field notes. The data were analyzed by qualitative methodology with phenomenology as the theoretical framework. Findings indicated that administrators thought it was important to incorporate agricultural science courses into urban school curricula. They stated that agricultural science courses gave urban students a different way of looking at science and helped to enhance the science and technology focus of the school. Further, agricultural science courses helped to break urban students' stereotypes about agriculture and helped to bring in more state funding for educational programs. However they thought that it was more challenging to teach agricultural science in urban versus rural schools and they focused more on Science, Technology, Engineering, and Mathematics (STEM) related careers. The students had mixed views about higher education and careers in agriculture. This was based on their limited knowledge and stereotypes about agricultural majors and career options. The students highlighted several key reasons why they chose to enroll in agricultural science courses. This included the benefits of dual science credits and the ability to earn an associate degree upon successful completion of their program. Students also loved science and appreciated the science intensive nature of the agricultural courses. Additionally, they thought that the agricultural science courses were better than the other optional courses. The results also showed that electronic media such as radio and TV had a negative impact on students' perceptions about higher education and careers in agriculturally-related fields. Conclusions and recommendations are presented.

  10. Sex, Class, and Physical Science Educational Attainment: Portions due to Achievement Versus Recruitment

    NASA Astrophysics Data System (ADS)

    Simon, Richard M.; Farkas, George

    Nationally representative data from the National Education Longitudinal Study are used to investigate why males (rather than females) and children of parents with advanced degrees (rather than those from less-educated parents) are more highly represented among physical science bachelor's degrees and graduate students. Parental education is measured by three categories: neither parent has a bachelor's degree, at least one parent has a bachelor's degree, or at least one parent has a degree beyond the bachelor's. Physical science is defined as students majoring in physics, engineering, mathematics, or computer science. The effects of mathematics achievement and effects not accounted for by mathematics achievement (what the authors call "recruitment" effects) are isolated for parental education categories and for sex, allowing inequality in physical science degree attainment to be decomposed into portions due to achievement and portions due to recruitment. Additionally, the results from logistic regressions predicting the attainment of a bachelor's degree in physical science as well as the pursuit of a graduate degree in physical science are presented. It is found that for parental education categories, the gaps in physical science educational attainment are nearly entirely accounted for by differences in mathematics achievement, suggesting that if achievement could be equalized, physical science educational attainment differences among parental education categories would disappear. However, the sex gap in physical science educational attainment operates almost entirely independent of achievement effects, suggesting that if the mathematics achievement distributions of males and females were identical, the sex gap in physical science educational attainment would be unchanged from what it is today.

  11. Characteristics of physicians engaged in basic science: a questionnaire survey of physicians in basic science departments of a medical school in Japan.

    PubMed

    Yamazaki, Yuka; Uka, Takanori; Shimizu, Haruhiko; Miyahira, Akira; Sakai, Tatsuo; Marui, Eiji

    2012-09-01

    The number of physicians engaged in basic science and teaching is sharply decreasing in Japan. To alleviate this shortage, central government has increased the quota of medical students entering the field. This study aimed to determine the characteristics of physicians who are engaged in basic science in efforts to recruit talent. A questionnaire was distributed to all 30 physicians in the basic science departments of Juntendo University School of Medicine. Question items inquired about sex, years since graduation, years between graduation and time entering basic science, clinical experience, recommending the career to medical students, expected obstacles to students entering basic science, efforts to inspire students in research, increased number of lectures and practical training sessions on research, and career choice satisfaction. Correlations between the variables were examined using χ(2) tests. Overall, 26 physicians, including 7 female physicians, returned the questionnaire (response rate 86.7%). Most physicians were satisfied with their career choice. Medical students were deemed not to choose basic science as their future career, because they aimed to become clinicians and because they were concerned about salary. Women physicians in basic science departments were younger than men. Women physicians also considered themselves to make more efforts in inspiring medical students to be interested in research. Moreover, physicians who became basic scientists earlier in their career wanted more research-related lectures in medical education. Improving physicians' salaries in basic science is important to securing talent. In addition, basic science may be a good career path for women physicians to follow.

  12. Experiences with Transitioning Science Data Production from a Symmetric Multiprocessor Platform to a Linux Cluster Environment

    NASA Astrophysics Data System (ADS)

    Walter, R. J.; Protack, S. P.; Harris, C. J.; Caruthers, C.; Kusterer, J. M.

    2008-12-01

    NASA's Atmospheric Science Data Center at the NASA Langley Research Center performs all of the science data processing for the Multi-angle Imaging SpectroRadiometer (MISR) instrument. MISR is one of the five remote sensing instruments flying aboard NASA's Terra spacecraft. From the time of Terra launch in December 1999 until February 2008, all MISR science data processing was performed on a Silicon Graphics, Inc. (SGI) platform. However, dramatic improvements in commodity computing technology coupled with steadily declining project budgets during that period eventually made transitioning MISR processing to a commodity computing environment both feasible and necessary. The Atmospheric Science Data Center has successfully ported the MISR science data processing environment from the SGI platform to a Linux cluster environment. There were a multitude of technical challenges associated with this transition. Even though the core architecture of the production system did not change, the manner in which it interacted with underlying hardware was fundamentally different. In addition, there are more potential throughput bottlenecks in a cluster environment than there are in a symmetric multiprocessor environment like the SGI platform and each of these had to be addressed. Once all the technical issues associated with the transition were resolved, the Atmospheric Science Data Center had a MISR science data processing system with significantly higher throughput than the SGI platform at a fraction of the cost. In addition to the commodity hardware, free and open source software such as S4PM, Sun Grid Engine, PostgreSQL and Ganglia play a significant role in the new system. Details of the technical challenges and resolutions, software systems, performance improvements, and cost savings associated with the transition will be discussed. The Atmospheric Science Data Center in Langley's Science Directorate leads NASA's program for the processing, archival and distribution of Earth science data in the areas of radiation budget, clouds, aerosols, and tropospheric chemistry. The Data Center was established in 1991 to support NASA's Earth Observing System and the U.S. Global Change Research Program. It is unique among NASA data centers in the size of its archive, cutting edge computing technology, and full range of data services. For more information regarding ASDC data holdings, documentation, tools and services, visit http://eosweb.larc.nasa.gov

  13. The REVEL Project: Long-Term Investment in K-12 Education at a RIDGE 2000 Integrated Study Site

    NASA Astrophysics Data System (ADS)

    Robigou, V.

    2005-12-01

    The REVEL Project has provided dozens of science teachers from throughout the U.S. an opportunity to explore the links between mid-ocean ridge processes and life along the RIDGE 2000 Juan de Fuca Ridge Integrated Study Site. In turn, these educators have facilitated deep-sea, research-based teaching and learning in hundreds of classrooms, contributed to mid-ocean ridge curriculum and programs development ranging from IMAX movies and museum exhibits to the R2K-SEAS (Student Experiment At Sea) program. In addition, the REVEL educators take on the mission to champion the importance of science in education and to bring ocean sciences into their local and regional communities. For the scientific community, research in an environment as large, dynamic and remote as the ocean intrinsically requires long-term investment to advance the understanding of the interactions between the processes shaping our planet. Similarly, research-based education requires long-term investment to incrementally change the way science is taught in schools, informal settings or even at home. It takes even longer to perceptibly measure the result of new teaching methods on students' learning and the impact of these methods on citizens' scientific literacy. Research-based education involving teachers practicing research in the field, and collaborating with scientists to experience and understand the process of science is still in its infancy - despite 20 years of NSF's efforts in teachers' professional development. This poster reports on strategies that the REVEL Project has designed over 9 years to help teachers that adopt research-based education transform their way of teaching in the classroom and bring cutting-edge, exciting science into schools through rigorous science learning. Their teaching approaches encourage students' interest in science, and engage students in the life-long skills of reasoning and decision making through the practice of science. Evaluation results of how the research-based teacher development program REVEL contributes to changing the way teachers view the scientific process once they have 'done' science and how the program supports teachers to change their teaching methods will be presented. The REVEL Project is funded by the National Science Foundation and receives additional support from the University of Washington and private donors. REVEL - Research and Education: Volcanoes-Exploration-Life.

  14. Promotion of scientific literacy: Bangladeshi teachers' perspectives and practices

    NASA Astrophysics Data System (ADS)

    Sarkar, Mahbub; Corrigan, Deborah

    2014-05-01

    Background: In Bangladesh, a common science curriculum caters for all students at the junior secondary level. Since this curriculum is for all students, its aims are both to build a strong foundation in science while still providing students with the opportunities to use science in everyday life - an aim consistent with the notion of scientific literacy. Purpose: This paper reports Bangladeshi science teachers' perspectives and practices in regard to the promotion of scientific literacy. Sample: Six science teachers representing a range of geographical locations, school types with different class sizes, lengths of teaching experience and educational qualifications. Design and method: This study employed a case study approach. The six teachers and their associated science classes (including students) were considered as six cases. Data were gathered through observing the teachers' science lessons, interviewing them twice - once before and once after the lesson observation, and interviewing their students in focus groups. Results: This study reveals that participating teachers held a range of perspectives on scientific literacy, including some naïve perspectives. In addition, their perspectives were often not seen to be realised in the classroom as for teachers the emphasis of learning science was more traditional in nature. Many of their teaching practices promoted a culture of academic science that resulted in students' difficulty in finding connections between the science they study in school and their everyday lives. This research also identified the tension which teachers encountered between their religious values and science values while they were teaching science in a culture with a religious tradition. Conclusions: The professional development practice for science teachers in Bangladesh with its emphasis on developing science content knowledge may limit the scope for promoting the concepts of scientific literacy. Opportunities for developing pedagogic knowledge is also limited and consequently impacts on teachers' ability to develop the concepts of scientific literacy and learn how to teach for its promotion.

  15. Science experiences of citizen scientists in entomology research

    NASA Astrophysics Data System (ADS)

    Lynch, Louise I.

    Citizen science is an increasingly popular collaboration between members of the public and the scientific community to pursue current research questions. In addition to providing researchers with much needed volunteer support, it is a unique and promising form of informal science education that can counter declining public science literacy, including attitudes towards and understanding of science. However, the impacts of citizen science programs on participants' science literacy remains elusive. The purpose of this study was to balance the top-down approach to citizen science research by exploring how adult citizen scientists participate in entomology research based on their perceptions and pioneer mixed methods research to investigate and explain the impacts of citizen science programs. Transference, in which citizen scientists transfer program impacts to people around them, was uncovered in a grounded theory study focused on adults in a collaborative bumble bee research program. Most of the citizen scientists involved in entomology research shared their science experiences and knowledge with people around them. In certain cases, expertise was attributed to the individual by others. Citizen scientists then have the opportunity to acquire the role of expert to those around them and influence knowledge, attitudinal and behavioral changes in others. An intervention explanatory sequential mixed methods design assessed how entomology-based contributory citizen science affects science self-efficacy, self-efficacy for environmental action, nature relatedness and attitude towards insects in adults. However, no statistically significant impacts were evident. A qualitative follow-up uncovered a discrepancy between statistically measured changes and perceived influences reported by citizen scientists. The results have important implications for understanding how citizen scientists learn, the role of citizen scientists in entomology research, the broader program impacts and the value of qualitative methodologies in citizen science research. Citizen science is championed for its ability to extend the geographic, temporal and spatial reach of a research team. It can also extend the educational reach through citizen scientists that have acquired the role of expert.

  16. Mario Bunge: Physicist and Philosopher

    NASA Astrophysics Data System (ADS)

    Matthews, Michael R.

    Mario Bunge was born in Argentina in the final year of the First World War.He learnt atomic physics and quantum mechanics from an Austrian refugee who had been a student of Heisenberg. Additionally he taught himself modern philosophy in an environment that was a philosophical backwater. He was the first South American philosopher of science to be trained in science. His publications in physics, philosophy, psychology, sociology and the foundations of biology, are staggering in number, and include a massive 8-volume Treatise on Philosophy. The unifying thread of his scholarship is the constant and vigorous advancement of the Enlightenment Project, and criticism of cultural and academic movements that deny or devalue the core planks of the project: namely its naturalism, the search for truth, the universality of science, rationality, and respect for individuals. At a time when specialisation is widely decried, and its deleterious effects on science, philosophy of science, educational research and science teaching are recognised - it is salutary to see the fruits of one person's pursuit of the Big'' scientific and philosophical picture.

  17. Dispatches from the Dirt Lab: The Art of Science Communication

    NASA Astrophysics Data System (ADS)

    Kutcha, Matt

    2014-05-01

    The variety of media currently available provides more opportunities to science communicators than ever before. However, this variety can also work against the goals of science communication by diluting an individual message with thousands of others, limiting the communicator's ability to focus on an effective method, and fragmenting an already distracted audience. In addition, the technology used for content delivery may not be accessible to everyone. "Dispatches from the Dirt Lab" is a series of short (ca. 6 minutes) Internet videos centered on earth and soil science concepts. The initial goal was to condense several topics worth of classroom demonstrations into one video segment to serve as an example for educators to use in their own classrooms. As a method of science communication in their own right, they integrate best practices from classrooms and laboratories, science visualization, and even improvisational theater. This presentation will include a short example of the style and content found in the videos, and also discuss the rationale behind them.

  18. Equitable science education in urban middle schools: Do reform efforts make a difference?

    NASA Astrophysics Data System (ADS)

    Hewson, Peter W.; Butler Kahle, Jane; Scantlebury, Kathryn; Davies, Darleen

    2001-12-01

    A central commitment of current reforms in science education is that all students, regardless of culture, gender, race, and/ or socioeconomic status, are capable of understanding and doing science. The study Bridging the Gap: Equity in Systemic Reform assessed equity in systemic reform using a nested research design that drew on both qualitative and quantitative methodologies. As part of the study, case studies were conducted in two urban middle schools in large Ohio cities. The purpose of the case studies was to identify factors affecting equity in urban science education reform. Data were analyzed using Kahle's (1998) equity metric. That model allowed us to assess progress toward equity using a range of research-based indicators grouped into three categories critical for equitable education: access to, retention in, and achievement in quality science education. In addition, a fourth category was defined for systemic indicators of equity. Analyses indicated that the culture and climate of the case study schools differentially affected their progress toward equitable reform in science education.

  19. Urban science education: examining current issues through a historical lens

    NASA Astrophysics Data System (ADS)

    McLaughlin, Cheryl A.

    2014-12-01

    This paper reviews and synthesizes urban science education studies published between 2000 and 2013 with a view to identifying current challenges faced by both teachers and students in urban classrooms. Additionally, this paper considers the historical events that have shaped the conditions, bureaucracies, and interactions of urban institutions. When the findings from these urban science education studies were consolidated with the historical overview provided, it was revealed that the basic design and regulatory policies of urban schools have not substantively changed since their establishment in the nineteenth century. Teachers in urban science classrooms continue to face issues of inequality, poverty, and social injustice as they struggle to meet the needs of an increasingly diverse student population. Furthermore, persistent concerns of conflicting Discourses, cultural dissonance, and oppression create formidable barriers to science learning. Despite the many modifications in structure and organization, urban students are still subjugated and marginalized in systems that emphasize control and order over high-quality science education.

  20. The role of social support in students' perceived abilities and attitudes toward math and science.

    PubMed

    Rice, Lindsay; Barth, Joan M; Guadagno, Rosanna E; Smith, Gabrielle P A; McCallum, Debra M

    2013-07-01

    Social cognitive models examining academic and career outcomes emphasize constructs such as attitude, interest, and self-efficacy as key factors affecting students' pursuit of STEM (science, technology, engineering and math) courses and careers. The current research examines another under-researched component of social cognitive models: social support, and the relationship between this component and attitude and self-efficacy in math and science. A large cross-sectional design was used gathering data from 1,552 participants in four adolescent school settings from 5th grade to early college (41 % female, 80 % white). Students completed measures of perceived social support from parents, teachers and friends as well as their perceived ability and attitudes toward math and science. Fifth grade and college students reported higher levels of support from teachers and friends when compared to students at other grade levels. In addition, students who perceived greater social support for math and science from parents, teachers, and friends reported better attitudes and had higher perceptions of their abilities in math and science. Lastly, structural equation modeling revealed that social support had both a direct effect on math and science perceived abilities and an indirect effect mediated through math and science attitudes. Findings suggest that students who perceive greater social support for math and science from parents, teachers, and friends have more positive attitudes toward math and science and a higher sense of their own competence in these subjects.

Top