Microgravity science and applications. Program tasks and bibliography for FY 1994
NASA Technical Reports Server (NTRS)
1995-01-01
This annual report includes research projects funded by the Office of Life and Microgravity Sciences and Applications, Microgravity Science and Applications Division, during FY 1994. It is a compilation of program tasks (objective, description, significance, progress, students funded under research, and bibliographic citations) for flight research and ground-based research in five major scientific disciplines: benchmark science, biotechnology, combustion science, fluid physics, and materials science. ATD (Advanced Technology Development) program task descriptions are also included. The bibliography cites the related PI (Principal Investigator) publications and presentations for these program tasks in FY 1994. Three appendices include Table of Acronyms, Guest Investigator Index, and Principal Investigator Index.
Microgravity science & applications. Program tasks and bibliography for FY 1995
NASA Technical Reports Server (NTRS)
1996-01-01
This annual report includes research projects funded by the Office of Life and Microgravity Sciences and Applications, Microgravity Science and Applications Division, during FY 1994. It is a compilation of program tasks (objective, description, significance, progress, students funded under research, and bibliographic citations) for flight research and ground based research in five major scientific disciplines: benchmark science, biotechnology, combustion science, fluid physics, and materials science. Advanced technology development (ATD) program task descriptions are also included. The bibliography cites the related principle investigator (PI) publications and presentations for these program tasks in FY 1994. Three appendices include a Table of Acronyms, a Guest Investigator index and a Principle Investigator index.
76 FR 69246 - Application for New Awards; High School Equivalency Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-08
... could include, for example, participation in training on intensive science teaching techniques presented...)). The third priority is an invitational priority for applications that promote science, technology... preference over other applications. These priorities are: Invitational Priority 1--Science, Technology...
NASA Technical Reports Server (NTRS)
Russell, Yvonne; Falsetti, Christine M.
1991-01-01
Customer requirements are presented through three viewgraphs. One graph presents the range of services, which include requirements management, network engineering, operations, and applications support. Another viewgraph presents the project planning process. The third viewgraph presents the programs and/or projects actively supported including life sciences, earth science and applications, solar system exploration, shuttle flight engineering, microgravity science, space physics, and astrophysics.
ME science as mobile learning based on virtual reality
NASA Astrophysics Data System (ADS)
Fradika, H. D.; Surjono, H. D.
2018-04-01
The purpose of this article described about ME Science (Mobile Education Science) as mobile learning application learning of Fisika Inti. ME Science is a product of research and development (R&D) that was using Alessi and Trollip model. Alessi and Trollip model consists three stages that are: (a) planning include analysis of problems, goals, need, and idea of development product, (b) designing includes collecting of materials, designing of material content, creating of story board, evaluating and review product, (c) developing includes development of product, alpha testing, revision of product, validation of product, beta testing, and evaluation of product. The article describes ME Science only to development of product which include development stages. The result of development product has been generates mobile learning application based on virtual reality that can be run on android-based smartphone. These application consist a brief description of learning material, quizzes, video of material summery, and learning material based on virtual reality.
Hydrology Applications of the GRACE missions
NASA Astrophysics Data System (ADS)
Srinivasan, M. M.; Ivins, E. R.; Jasinski, M. F.
2014-12-01
NASA and their German space agency partners have a rich history of global gravity observations beginning with the launch of the Gravity Recovery And Climate Experiment (GRACE) in 2002. The science goals of the mission include providing monthly maps of variations in the gravity field, where the major time-varying signal is due to water motion in the Earth system. GRACE has a unique ability to observe the mass flux of water movement at monthly time scales. The hydrology applications of the GRACE mission include measurements of seasonal storage of surface and subsurface water and evapotranspiration at the land-ocean-atmosphere boundary. These variables are invaluable for improved modeling and prediction of Earth system processes. Other mission-critical science objectives include measurements that are a key component of NASA's ongoing climate measuring capabilities. Successful strategies to enhance science and practical applications of the proposed GRACE-Follow On (GRACE-FO) mission, scheduled to launch in 2017, will require engaging with and facilitating between representatives in the science, societal applications, and mission planning communities. NASA's Applied Sciences Program is supporting collaboration on an applied approach to identifying communities of potential and of practice in order to identify and promote the societal benefits of these and future gravity missions. The objective is to engage applications-oriented users and organizations and enable them to envision possible applications and end-user needs as a way to increase the benefits of these missions to the nations. The focus of activities for this applications program include; engaging the science community in order to identify applications and current and potential data users, developing a written Applications Plan, conducting workshops and user tutorials, providing ready access to information via web pages, developing databases of key and interested users/scientists, creating printed materials (posters, brochures) that identify key capabilities and applications of the missions and data, and participation in key science meetings and decision support processes.
Factors influencing exemplary science teachers' levels of computer use
NASA Astrophysics Data System (ADS)
Hakverdi, Meral
This study examines exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their students' use of computer applications/tools in or for their science class. After a relevant review of the literature certain variables were selected for analysis. These variables included personal self-efficacy in teaching with computers, outcome expectancy, pupil-control ideology, level of computer use, age, gender, teaching experience, personal computer use, professional computer use and science teachers' level of knowledge/skills in using specific computer applications for science instruction. The sample for this study includes middle and high school science teachers who received the Presidential Award for Excellence in Science Teaching Award (sponsored by the White House and the National Science Foundation) between the years 1997 and 2003 from all 50 states and U.S. territories. Award-winning science teachers were contacted about the survey via e-mail or letter with an enclosed return envelope. Of the 334 award-winning science teachers, usable responses were received from 92 science teachers, which made a response rate of 27.5%. Analysis of the survey responses indicated that exemplary science teachers have a variety of knowledge/skills in using computer related applications/tools. The most commonly used computer applications/tools are information retrieval via the Internet, presentation tools, online communication, digital cameras, and data collection probes. Results of the study revealed that students' use of technology in their science classroom is highly correlated with the frequency of their science teachers' use of computer applications/tools. The results of the multiple regression analysis revealed that personal self-efficacy related to the exemplary science teachers' level of computer use suggesting that computer use is dependent on perceived abilities at using computers. The teachers' use of computer-related applications/tools during class, and their personal self-efficacy, age, and gender are highly related with their level of knowledge/skills in using specific computer applications for science instruction. The teachers' level of knowledge/skills in using specific computer applications for science instruction and gender related to their use of computer-related applications/tools during class and the students' use of computer-related applications/tools in or for their science class. In conclusion, exemplary science teachers need assistance in learning and using computer-related applications/tool in their science class.
NASA Astrophysics Data System (ADS)
Musilek, L.; Dunn, W. L.
2017-08-01
The selected proceedings of the 13th International Symposium on Radiation Physics (ISRP-13) are presented here across a broad range of important topics including: Fundamental processes in radiation physics, Theoretical investigations, New radiation sources, techniques & detectors, Absorption and fluorescence spectroscopy (XAFS, XANES, XRF Spectroscopy, Raman, Infrared …), Applications of radiation in material science, nano-science & nanotechnology, Applications of radiation in biology & medical science, Applications of radiation in space, earth, energy & environmental sciences, Applications of radiation in cultural heritage & art and Applications of radiation in industry. In total, 48 papers have been accepted for these proceedings.
Poppenga, Sandra K.; Evans, Gayla; Gesch, Dean; Stoker, Jason M.; Queija, Vivian R.; Worstell, Bruce; Tyler, Dean J.; Danielson, Jeff; Bliss, Norman; Greenlee, Susan
2010-01-01
The mission of U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center Topographic Science is to establish partnerships and conduct research and applications that facilitate the development and use of integrated national and global topographic datasets. Topographic Science includes a wide range of research and applications that result in improved seamless topographic datasets, advanced elevation technology, data integration and terrain visualization, new and improved elevation derivatives, and development of Web-based tools. In cooperation with our partners, Topographic Science is developing integrated-science applications for mapping, national natural resource initiatives, hazards, and global change science. http://topotools.cr.usgs.gov/.
Laser applications to atmospheric sciences: A bibliography
NASA Technical Reports Server (NTRS)
Harris, F. S., Jr.
1975-01-01
A bibliography is given of 1460 references of the applications of lasers to atmospheric sciences. The subjects covered include: aerosols; clouds; the distribution and motion of atmospheric natural and man-made constituents; winds; temperature; turbulence; scintillation; elastic, Raman and resonance scattering; fluorescence; absorption and transmission; the application of the Doppler effect and visibility. Instrumentation, in particular lidar, is included, also data handling, and interpretation of the data for meteorological processes. Communications, geodesy and rangefinding are not included as distinct areas. The application to the atmosphere is covered, but not the ocean or its surface.
Grid Technology as a Cyber Infrastructure for Earth Science Applications
NASA Technical Reports Server (NTRS)
Hinke, Thomas H.
2004-01-01
This paper describes how grids and grid service technologies can be used to develop an infrastructure for the Earth Science community. This cyberinfrastructure would be populated with a hierarchy of services, including discipline specific services such those needed by the Earth Science community as well as a set of core services that are needed by most applications. This core would include data-oriented services used for accessing and moving data as well as computer-oriented services used to broker access to resources and control the execution of tasks on the grid. The availability of such an Earth Science cyberinfrastructure would ease the development of Earth Science applications. With such a cyberinfrastructure, application work flows could be created to extract data from one or more of the Earth Science archives and then process it by passing it through various persistent services that are part of the persistent cyberinfrastructure, such as services to perform subsetting, reformatting, data mining and map projections.
Code of Federal Regulations, 2014 CFR
2014-07-01
... knowledge and understanding in science and engineering, rather than the practical application of that... part, basic research includes: (1) Research-related, science and engineering education, including... to enhance the infrastructure for science and engineering research. Claim. A written demand or...
Code of Federal Regulations, 2012 CFR
2012-07-01
... knowledge and understanding in science and engineering, rather than the practical application of that... part, basic research includes: (1) Research-related, science and engineering education, including... to enhance the infrastructure for science and engineering research. Claim. A written demand or...
Code of Federal Regulations, 2011 CFR
2011-07-01
... knowledge and understanding in science and engineering, rather than the practical application of that... part, basic research includes: (1) Research-related, science and engineering education, including... to enhance the infrastructure for science and engineering research. Claim. A written demand or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... knowledge and understanding in science and engineering, rather than the practical application of that... part, basic research includes: (1) Research-related, science and engineering education, including... to enhance the infrastructure for science and engineering research. Claim. A written demand or...
SERVIR Science Applications for Capacity Building
NASA Technical Reports Server (NTRS)
Limaye, Ashutosh; Searby, Nancy D.; Irwin, Daniel
2012-01-01
SERVIR is a regional visualization and monitoring system using Earth observations to support environmental management, climate adaptation, and disaster response in developing countries. SERVIR is jointly sponsored by NASA and the U.S. Agency for International Development (USAID). SERVIR has been instrumental in development of science applications to support the decision-making and capacity building in the developing countries with the help of SERVIR Hubs. In 2011, NASA Research Opportunities in Space and Earth Sciences (ROSES) included a call for proposals to form SERVIR Applied Sciences Team (SERVIR AST) under Applied Sciences Capacity Building Program. Eleven proposals were selected, the Principal Investigators of which comprise the core of the SERVIR AST. The expertise on the Team span several societal benefit areas including agriculture, disasters, public health and air quality, water, climate and terrestrial carbon assessments. This presentation will cover the existing SERVIR science applications, capacity building components, overview of SERVIR AST projects, and anticipated impacts.
Applied Science and Research Applications: Recent Research Reports.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC. Directorate for Applied Science and Research Applications.
This report contains abstracts of new technical reports and other documents resulting from research supported by the directorate for Applied Science and Research Applications of the National Science Foundation. Research reports from current programs include work in the areas of public policy and regulation; public service delivery and urban…
Agricultural Science--Striving for Excellence.
ERIC Educational Resources Information Center
Budke, Wesley E.; And Others
1991-01-01
Six articles examine several of the critical components of program and personnel development in agricultural science including linkages between agriscience and natural resources teachers and high school science teachers, science in agriculture, biological science applications, and hydroponics. (JOW)
NASA Technical Reports Server (NTRS)
1993-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics and computer science during the period April 1, 1993 through September 30, 1993. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustic and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.
ERIC Educational Resources Information Center
Cocking, Rodney R.; Mestre, Jose P.
The focus of this paper is on cognitive science as a model for understanding the application of human skills toward effective problem-solving. Sections include: (1) "Introduction" (discussing information processing framework, expert-novice distinctions, schema theory, and learning process); (2) "Application: The Expert-Novice…
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Science and Technology.
Congressional hearings held on October 8-10, 1985, were meant to characterize the attributes of past successes of the United States' efforts in the space sciences, and to project the direction of future research in that area. This report prepared by the subcommittee on space science and application includes recommendations of expert panels on…
A brief history of the most remarkable numbers e, i and γ in mathematical sciences with applications
NASA Astrophysics Data System (ADS)
Debnath, Lokenath
2015-08-01
This paper deals with a brief history of the most remarkable Euler numbers e, i and γ in mathematical sciences. Included are many properties of the constants e, i and γ and their applications in algebra, geometry, physics, chemistry, ecology, business and industry. Special attention is given to the growth and decay phenomena in many real-world problems including stability and instability of their solutions. Some specific and modern applications of logarithms, complex numbers and complex exponential functions to electrical circuits and mechanical systems are presented with examples. Included are the use of complex numbers and complex functions in the description and analysis of chaos and fractals with the aid of modern computer technology. In addition, the phasor method is described with examples of applications in engineering science. The major focus of this paper is to provide basic information through historical approach to mathematics teaching and learning of the fundamental knowledge and skills required for students and teachers at all levels so that they can understand the concepts of mathematics, and mathematics education in science and technology.
NASA Astrophysics Data System (ADS)
Goldberg, M.; Sjoberg, W.; Layns, A. L.
2017-12-01
Applications of satellite data are paramount to transform science and technology to product and services which are used in critical decision making. For the satellite community, good representations of technology are the satellite sensors, while science provides the instrument calibration and derived geophysical parameters. Weather forecasting is an application of the science and technology provided by remote sensing satellites. The Joint Polar Satellite System, which includes the Suomi National Polar-orbiting Partnership (S-NPP) provides formidable science and technology to support many applications and includes support to 1) weather forecasting - data from the JPSS Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS) are used to forecast weather events out to 7 days - nearly 85% of all data used in weather forecasting are from polar orbiting satellites; 2) environmental monitoring -data from the JPSS Visible Infrared Imager Radiometer Suite (VIIRS) are used to monitor the environment including the health of coastal ecosystems, drought conditions, fire, smoke, dust, snow and ice, and the state of oceans, including sea surface temperature and ocean color; and 3) climate monitoring - data from JPSS instruments, including OMPS and CERES will provide continuity to climate data records established using NOAA POES and NASA Earth Observing System (EOS) satellite observations. To bridge the gap between products and applications, the JPSS Program has established the Proving Ground and Risk Reduction (PGRR) Program to identify opportunities to maximize the operational application of current JPSS capabilities. The PGRR Program also helps identify and evaluate the use of JPSS capabilities for new operational missions. New PGRR initiatives focus on hydrological, Arctic, data assimilation, atmospheric chemistry, ocean ecosystem applications. At the conference, the benefits of JPSS data on societal benefits will be presented along with results from the PGRR initiatives.
Nanotechnology research: applications in nutritional sciences.
Srinivas, Pothur R; Philbert, Martin; Vu, Tania Q; Huang, Qingrong; Kokini, Josef L; Saltos, Etta; Saos, Etta; Chen, Hongda; Peterson, Charles M; Friedl, Karl E; McDade-Ngutter, Crystal; Hubbard, Van; Starke-Reed, Pamela; Miller, Nancy; Betz, Joseph M; Dwyer, Johanna; Milner, John; Ross, Sharon A
2010-01-01
The tantalizing potential of nanotechnology is to fabricate and combine nanoscale approaches and building blocks to make useful tools and, ultimately, interventions for medical science, including nutritional science, at the scale of approximately 1-100 nm. In the past few years, tools and techniques that facilitate studies and interventions in the nanoscale range have become widely available and have drawn widespread attention. Recently, investigators in the food and nutrition sciences have been applying the tools of nanotechnology in their research. The Experimental Biology 2009 symposium entitled "Nanotechnology Research: Applications in Nutritional Sciences" was organized to highlight emerging applications of nanotechnology to the food and nutrition sciences, as well as to suggest ways for further integration of these emerging technologies into nutrition research. Speakers focused on topics that included the problems and possibilities of introducing nanoparticles in clinical or nutrition settings, nanotechnology applications for increasing bioavailability of bioactive food components in new food products, nanotechnology opportunities in food science, as well as emerging safety and regulatory issues in this area, and the basic research applications such as the use of quantum dots to visualize cellular processes and protein-protein interactions. The session highlighted several emerging areas of potential utility in nutrition research. Nutrition scientists are encouraged to leverage ongoing efforts in nanomedicine through collaborations. These efforts could facilitate exploration of previously inaccessible cellular compartments and intracellular pathways and thus uncover strategies for new prevention and therapeutic modalities.
[Application and progress of RNA in forensic science].
Gao, Lin-Lin; Li, You-Ying; Yan, Jiang-Wei; Liu, Ya-Cheng
2011-12-01
With the development of molecular biology, the evidences of genetics has been used widely in forensic sciences. DNA technology has played an important role in individual identification and paternity testing, RNA technology is showing more and more wide application in prospect. This article reviews the application and progress of RNA in forensic science including estimation of postmortem interval, bloodstain age, wound age, as well as determination of cause of death and the source of body fluids.
Scientific Inquiry and Real-Life Applications Bring Middle School Students up to Standard
ERIC Educational Resources Information Center
Dass, Pradeep M.; Kilby, Diana; Chappell, Alicia
2005-01-01
The emphasis in both the National Science Education Standards (NSES) and "Science for All Americans" is on "science as inquiry" and inquiry-based science instruction as a way to accomplish the goals of science literacy. The NSES considers science as inquiry as a part of the content of science and include science as inquiry…
NASA Technical Reports Server (NTRS)
Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.
1973-01-01
The management concepts and operating procedures are documented as they apply to the planning of shuttle spacelab operations. Areas discussed include: airborne missions; formulation of missions; management procedures; experimenter involvement; experiment development and performance; data handling; safety procedures; and applications to shuttle spacelab planning. Characteristics of the airborne science experience are listed, and references and figures are included.
The Heritage of Earth Science Applications in Policy, Business, and Management of Natural Resources
NASA Astrophysics Data System (ADS)
Macauley, M.
2012-12-01
From the first hand-held cameras on the Gemini space missions to present day satellite instruments, Earth observations have enhanced the management of natural resources including water, land, and air. Applications include the development of new methodology (for example, developing and testing algorithms or demonstrating how data can be used) and the direct use of data in decisionmaking and policy implementation. Using well-defined bibliographic search indices to systematically survey a broad social science literature, this project enables identification of a host of well-documented, practical and direct applications of Earth science data in resource management. This literature has not previously been well surveyed, aggregated, or analyzed for the heritage of lessons learned in practical application of Earth science data. In the absence of such a survey, the usefulness of Earth science data is underestimated and the factors that make people want to use -- and able to use -- the data are poorly understood. The project extends and updates previous analysis of social science applications of Landsat data to show their contemporary, direct use in new policy, business, and management activities and decisionmaking. The previous surveys (for example, Blumberg and Jacobson 1997; National Research Council 1998) find that the earliest attempts to use data are almost exclusively testing of methodology rather than direct use in resource management. Examples of methodology prototyping include Green et al. (1997) who demonstrate use of remote sensing to detect and monitor changes in land cover and use, Cowen et al. (1995) who demonstrate design and integration of GIS for environmental applications, Hutchinson (1991) who shows uses of data for famine early warning, and Brondizio et al. (1996) who show the link of thematic mapper data with botanical data. Blumberg and Jacobson (in Acevedo et al. 1996) show use of data in a study of urban development in the San Francisco Bay and the Baltimore-Washington metropolitan regions. The earliest direct application of Earth science information to actual decisionmaking began with the use of Landsat data in large-scale government demonstration programs and later, in smaller state and local agency projects. Many of these applications served as experiments to show how to use the data and to test their limitations. These activities served as precursors to more recent applications. Among the newest applications are the use of data to provide essential information to underpin monetary estimates of ecosystem services and the development of "credit" programs for these services. Another example is participatory (citizen science) resource management. This project also identifies the heritage of adoption factors - that is, determinants of the decision to use Earth science data. These factors include previous experience with Earth science data, reliable and transparent validation and verification techniques for new data, the availability and thoroughness of metadata, the ease of access and use of the data products, and technological innovation in computing and software (factors largely outside of the Earth science enterprise but influential in ease of direct use of Earth science data).
NASA Astrophysics Data System (ADS)
Brassard, D.; Clime, L.; Daoud, J.; Geissler, M.; Malic, L.; Charlebois, D.; Buckley, N.; Veres, T.
2018-02-01
An innovative centrifugal microfluidic universal platform for remote bio-analytical assays automation required in life-sciences research and medical applications, including purification and analysis from body fluids of cellular and circulating markers.
42 CFR 65a.6 - How will applications be evaluated?
Code of Federal Regulations, 2011 CFR
2011-10-01
..., INTERNSHIPS, TRAINING NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES HAZARDOUS SUBSTANCES BASIC RESEARCH... that purpose, including review by the National Advisory Environmental Health Sciences Council in... Environmental Health Sciences Council. ...
42 CFR 65a.6 - How will applications be evaluated?
Code of Federal Regulations, 2014 CFR
2014-10-01
..., INTERNSHIPS, TRAINING NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES HAZARDOUS SUBSTANCES BASIC RESEARCH... that purpose, including review by the National Advisory Environmental Health Sciences Council in... Environmental Health Sciences Council. ...
42 CFR 65a.6 - How will applications be evaluated?
Code of Federal Regulations, 2012 CFR
2012-10-01
..., INTERNSHIPS, TRAINING NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES HAZARDOUS SUBSTANCES BASIC RESEARCH... that purpose, including review by the National Advisory Environmental Health Sciences Council in... Environmental Health Sciences Council. ...
42 CFR 65a.6 - How will applications be evaluated?
Code of Federal Regulations, 2013 CFR
2013-10-01
..., INTERNSHIPS, TRAINING NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES HAZARDOUS SUBSTANCES BASIC RESEARCH... that purpose, including review by the National Advisory Environmental Health Sciences Council in... Environmental Health Sciences Council. ...
42 CFR 65a.6 - How will applications be evaluated?
Code of Federal Regulations, 2010 CFR
2010-10-01
... that purpose, including review by the National Advisory Environmental Health Sciences Council in..., INTERNSHIPS, TRAINING NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES HAZARDOUS SUBSTANCES BASIC RESEARCH... Environmental Health Sciences Council. ...
Joint Interdisciplinary Earth Science Information Center
NASA Technical Reports Server (NTRS)
Kafatos, Menas
2004-01-01
The report spans the three year period beginning in June of 2001 and ending June of 2004. Joint Interdisciplinary Earth Science Information Center's (JIESIC) primary purpose has been to carry out research in support of the Global Change Data Center and other Earth science laboratories at Goddard involved in Earth science, remote sensing and applications data and information services. The purpose is to extend the usage of NASA Earth Observing System data, microwave data and other Earth observing data. JIESIC projects fall within the following categories: research and development; STW and WW prototyping; science data, information products and services; and science algorithm support. JIESIC facilitates extending the utility of NASA's Earth System Enterprise (ESE) data, information products and services to better meet the science data and information needs of a number of science and applications user communities, including domain users such as discipline Earth scientists, interdisciplinary Earth scientists, Earth science applications users and educators.
Physical Sciences Research Priorities and Plans in OBPR
NASA Technical Reports Server (NTRS)
Trinh, Eugene
2002-01-01
This paper presents viewgraphs of physical sciences research priorities and plans at the Office of Biological and Physical Sciences Research (OBPR). The topics include: 1) Sixth Microgravity Fluid Physics and Transport Phenomena Conference; 2) Beneficial Characteristics of the Space Environment; 3) Windows of Opportunity for Research Derived from Microgravity; 4) Physical Sciences Research Program; 5) Fundamental Research: Space-based Results and Ground-based Applications; 6) Nonlinear Oscillations; and 7) Fundamental Research: Applications to Mission-Oriented Research.
Applications of artificial neural networks (ANNs) in food science.
Huang, Yiqun; Kangas, Lars J; Rasco, Barbara A
2007-01-01
Artificial neural networks (ANNs) have been applied in almost every aspect of food science over the past two decades, although most applications are in the development stage. ANNs are useful tools for food safety and quality analyses, which include modeling of microbial growth and from this predicting food safety, interpreting spectroscopic data, and predicting physical, chemical, functional and sensory properties of various food products during processing and distribution. ANNs hold a great deal of promise for modeling complex tasks in process control and simulation and in applications of machine perception including machine vision and electronic nose for food safety and quality control. This review discusses the basic theory of the ANN technology and its applications in food science, providing food scientists and the research community an overview of the current research and future trend of the applications of ANN technology in the field.
Improving Societal Benefit Areas from Applications Enhanced by the Joint Polar Satellite System
NASA Astrophysics Data System (ADS)
Goldberg, M.
2016-12-01
Applications of satellite data are paramount to transform science and technology to product and services which are used in critical decision making for societal benefits. For the satellite community, good representations of technology are the satellite sensors, while science provides the instrument calibration and derived geophysical parameters. Weather forecasting is an application of the science and technology provided by remote sensing satellites. The Joint Polar Satellite System, which includes the Suomi National Polar-orbiting Partnership (S-NPP) provides formidable science and technology to support many applications and includes support to 1) weather forecasting - data from the JPSS Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS) are used to forecast weather events out to 7 days - nearly 85% of all data used in weather forecasting are from polar orbiting satellites; 2) environmental monitoring -data from the JPSS Visible Infrared Imager Radiometer Suite (VIIRS) are used to monitor the environment including the health of coastal ecosystems, drought conditions, fire, smoke, dust, snow and ice, and the state of oceans, including sea surface temperature and ocean color; and 3) climate monitoring - data from JPSS instruments, including OMPS and CERES will provide continuity to climate data records established using NOAA POES and NASA Earth Observing System (EOS) satellite observations. To bridge the gap between products and applications, the JPSS Program has established a proving ground program to optimize the use of JPSS data with other data sources to improve key products and services. A number of operational and research applications will be presented along with how the data and applications support a large number of societal benefit areas of the Global Earth Observation Systems of Systems (GEOSS).
Applications of Tethers in Space, Volume 2
NASA Technical Reports Server (NTRS)
Cron, A. C. (Compiler)
1985-01-01
Topics discussed include tethered satellites, tether deployment, satellite systems, science applications, electrodynamic interactions, transportation applications, artificial gravity, constellations, and technology and testing.
DNA, RNA and the Physical Basis of Life
ERIC Educational Resources Information Center
Fong, Peter
1969-01-01
Presents the application of knowledge in the physical sciences to biological science problems, including those in the behavioral sciences, social sciences, and the humanities. Examples are presented in the areas of molecular psychology and theoretical biology, besides the principal genetic discussion. (RR)
NASA Technical Reports Server (NTRS)
1988-01-01
The research activities of the Lewis Research Center for 1988 are summarized. The projects included are within basic and applied technical disciplines essential to aeropropulsion, space propulsion, space power, and space science/applications. These disciplines are materials science and technology, structural mechanics, life prediction, internal computational fluid mechanics, heat transfer, instruments and controls, and space electronics.
Applications of Tethers in Space: Workshop Proceedings, Volume 1
NASA Technical Reports Server (NTRS)
Baracat, W. A. (Compiler)
1986-01-01
The complete documentation of the workshop including all addresses, panel reports, charts, and summaries are presented. This volume presents all the reports on the fundamentals of applications of tethers in space. These applications include electrodynamic interactions, transportation, gravity utilization, constellations, technology and test, and science applications.
Mission Applications Support at NASA: The Proposal Surface Water and Ocean Topography Mission
NASA Astrophysics Data System (ADS)
Srinivasan, Margaret; Peterson, Craig; Callahan, Phil
2013-09-01
The NASA Applied Sciences Program is actively supporting an agency-wide effort to formalize a mission-level data applications approach. The program goal is to engage early-phase NASA Earth satellite mission project teams with applied science representation in the flight mission planning process. The end objective is to "to engage applications-oriented users and organizations early in the satellite mission lifecycle to enable them to envision possible applications and integrate end-user needs into satellite mission planning as a way to increase the benefits to the nation."Two mission applications representatives have been selected for each early phase Tier 2 mission, including the Surface Water and Ocean Topography (SWOT) mission concept. These representatives are tasked with identifying and organizing the applications communities and developing and promoting a process for the mission to optimize the reach of existing applications efforts in order to enhance the applications value of the missions. An early project-level awareness of mission planning decisions that may increase or decrease the utility of data products to diverse user and potential user communities (communities of practice and communities of potential, respectively) has high value and potential return to the mission and to the users.Successful strategies to enhance science and practical applications of projected SWOT data streams will require engaging with and facilitating between representatives in the science, societal applications, and mission planning communities.Some of the elements of this program include:• Identify early adopters of data products• Coordinate applications team, including;Project Scientist, Payload Scientist, ProjectManager, data processing lead• Describe mission and products sufficiently inearly stage of development to effectively incorporate all potential usersProducts and activities resulting from this effort will include (but are not limited to); workshops, workshop summaries, web pages, email lists of interested users/scientists, an Applications Plan, printed materials (posters, brochures) and participation in key meetings.
Life Sciences Program Tasks and Bibliography
NASA Technical Reports Server (NTRS)
1996-01-01
This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1995. Additionally, this inaugural edition of the Task Book includes information for FY 1994 programs. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web page
Microgravity science and applications bibliography, 1986 revision
NASA Technical Reports Server (NTRS)
1987-01-01
This edition of the Microgravity Science and Applications (MSA) Bibliography is a compilation of Government reports, contractor reports, conference proceedings, and journal articles dealing with flight experiments utilizing a low-gravity environment to elucidate and control various processes or ground-based activities providing supporting research. It encompasses literature published in FY-86 and part of FY-87 but not cited in the 1985 Revision, pending publications, and those submitted for publication during this time period. Subdivisions of the bibliography include six major categories: Electronic Materials, Metals, Alloys, and Combustion Science. Other categories include Experimental Technology and General Studies. Included are publications from the European and Soviet programs. In addition, there is a list of patents and a cross reference index.
Supercomputer networking for space science applications
NASA Technical Reports Server (NTRS)
Edelson, B. I.
1992-01-01
The initial design of a supercomputer network topology including the design of the communications nodes along with the communications interface hardware and software is covered. Several space science applications that are proposed experiments by GSFC and JPL for a supercomputer network using the NASA ACTS satellite are also reported.
Proceedings of the Second Annual NASA Science Internet User Working Group Conference
NASA Technical Reports Server (NTRS)
Jackson, Lenore A. (Editor); Gary, J. Patrick (Editor)
1991-01-01
Copies of the agenda, list of attendees, meeting summaries, and all presentations and exhibit material are contained. Included are plenary sessions, exhibits of advanced networking applications, and user subgroup meetings on NASA Science Internet policy, networking, security, and user services and applications topics.
NASA Astrophysics Data System (ADS)
Tilley, Richard J. D.
2003-05-01
Colour is an important and integral part of everyday life, and an understanding and knowledge of the scientific principles behind colour, with its many applications and uses, is becoming increasingly important to a wide range of academic disciplines, from physical, medical and biological sciences through to the arts. Colour and the Optical Properties of Materials carefully introduces the science behind the subject, along with many modern and cutting-edge applications, chose to appeal to today's students. For science students, it provides a broad introduction to the subject and the many applications of colour. To more applied students, such as engineering and arts students, it provides the essential scientific background to colour and the many applications. Features: * Introduces the science behind the subject whilst closely connecting it to modern applications, such as colour displays, optical amplifiers and colour centre lasers * Richly illustrated with full-colour plates * Includes many worked examples, along with problems and exercises at the end of each chapter and selected answers at the back of the book * A Web site, including additional problems and full solutions to all the problems, which may be accessed at: www.cardiff.ac.uk/uwcc/engin/staff/rdjt/colour Written for students taking an introductory course in colour in a wide range of disciplines such as physics, chemistry, engineering, materials science, computer science, design, photography, architecture and textiles.
Nanotechnology Research: Applications in Nutritional Sciences12
Srinivas, Pothur R.; Philbert, Martin; Vu, Tania Q.; Huang, Qingrong; Kokini, Josef L.; Saos, Etta; Chen, Hongda; Peterson, Charles M.; Friedl, Karl E.; McDade-Ngutter, Crystal; Hubbard, Van; Starke-Reed, Pamela; Miller, Nancy; Betz, Joseph M.; Dwyer, Johanna; Milner, John; Ross, Sharon A.
2010-01-01
The tantalizing potential of nanotechnology is to fabricate and combine nanoscale approaches and building blocks to make useful tools and, ultimately, interventions for medical science, including nutritional science, at the scale of ∼1–100 nm. In the past few years, tools and techniques that facilitate studies and interventions in the nanoscale range have become widely available and have drawn widespread attention. Recently, investigators in the food and nutrition sciences have been applying the tools of nanotechnology in their research. The Experimental Biology 2009 symposium entitled “Nanotechnology Research: Applications in Nutritional Sciences” was organized to highlight emerging applications of nanotechnology to the food and nutrition sciences, as well as to suggest ways for further integration of these emerging technologies into nutrition research. Speakers focused on topics that included the problems and possibilities of introducing nanoparticles in clinical or nutrition settings, nanotechnology applications for increasing bioavailability of bioactive food components in new food products, nanotechnology opportunities in food science, as well as emerging safety and regulatory issues in this area, and the basic research applications such as the use of quantum dots to visualize cellular processes and protein-protein interactions. The session highlighted several emerging areas of potential utility in nutrition research. Nutrition scientists are encouraged to leverage ongoing efforts in nanomedicine through collaborations. These efforts could facilitate exploration of previously inaccessible cellular compartments and intracellular pathways and thus uncover strategies for new prevention and therapeutic modalities. PMID:19939997
NASA Technical Reports Server (NTRS)
Ng, Carolyn; Stonesifer, G. Richard
1989-01-01
The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets from meteorological and terrestrial applications spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.
International Symposium on Grids and Clouds (ISGC) 2014
NASA Astrophysics Data System (ADS)
The International Symposium on Grids and Clouds (ISGC) 2014 will be held at Academia Sinica in Taipei, Taiwan from 23-28 March 2014, with co-located events and workshops. The conference is hosted by the Academia Sinica Grid Computing Centre (ASGC).“Bringing the data scientist to global e-Infrastructures” is the theme of ISGC 2014. The last decade has seen the phenomenal growth in the production of data in all forms by all research communities to produce a deluge of data from which information and knowledge need to be extracted. Key to this success will be the data scientist - educated to use advanced algorithms, applications and infrastructures - collaborating internationally to tackle society’s challenges. ISGC 2014 will bring together researchers working in all aspects of data science from different disciplines around the world to collaborate and educate themselves in the latest achievements and techniques being used to tackle the data deluge. In addition to the regular workshops, technical presentations and plenary keynotes, ISGC this year will focus on how to grow the data science community by considering the educational foundation needed for tomorrow’s data scientist. Topics of discussion include Physics (including HEP) and Engineering Applications, Biomedicine & Life Sciences Applications, Earth & Environmental Sciences & Biodiversity Applications, Humanities & Social Sciences Application, Virtual Research Environment (including Middleware, tools, services, workflow, ... etc.), Data Management, Big Data, Infrastructure & Operations Management, Infrastructure Clouds and Virtualisation, Interoperability, Business Models & Sustainability, Highly Distributed Computing Systems, and High Performance & Technical Computing (HPTC).
NASA's computer science research program
NASA Technical Reports Server (NTRS)
Larsen, R. L.
1983-01-01
Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.
ERIC Educational Resources Information Center
Newby, Gregory B.
1993-01-01
Discusses the current state of the art in virtual reality (VR), its historical background, and future possibilities. Highlights include applications in medicine, art and entertainment, science, business, and telerobotics; and VR for information science, including graphical display of bibliographic data, libraries and books, and cyberspace.…
[The application of radiological image in forensic medicine].
Zhang, Ji-Zong; Che, Hong-Min; Xu, Li-Xiang
2006-04-01
Personal identification is an important work in forensic investigation included sex discrimination, age and stature estimation. Human identification depended on radiological image technique analysis is a practice and proper method in forensic science field. This paper intended to understand the advantage and defect by reviewed the employing of forensic radiology in forensic science field broadly and provide a reference to perfect the application of forensic radiology in forensic science field.
ERIC Educational Resources Information Center
Debnath, Lokenath
2015-01-01
This paper deals with a brief history of the most remarkable Euler numbers "e,"?"i"?and?"?" in mathematical sciences. Included are many properties of the constants "e,"?"i"?and?"?" and their applications in algebra, geometry, physics, chemistry, ecology, business and industry. Special…
Meteorological and Remote Sensing Applications of High Altitude Unmanned Aerial Vehicles
NASA Technical Reports Server (NTRS)
Schoenung, S. M.; Wegener, S. S.
1999-01-01
Unmanned aerial vehicles (UAVs) are maturing in performance and becoming available for routine use in environmental applications including weather reconnaissance and remote sensing. This paper presents a discussion of UAV characteristics and unique features compared with other measurement platforms. A summary of potential remote sensing applications is provided, along with details for four types of tropical cyclone missions. Capabilities of platforms developed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program are reviewed, including the Altus, Perseus, and solar- powered Pathfinder, all of which have flown to over 57,000 ft (17 km). In many scientific missions, the science objectives drive the experimental design, thus defining the sensor payload, aircraft performance, and operational requirements. Some examples of science missions and the requisite UAV / payload system are given. A discussion of technology developments needed to fully mature UAV systems for routine operational use is included, along with remarks on future science and commercial UAV business opportunities.
Science Learning: Processes and Applications.
ERIC Educational Resources Information Center
Santa, Carol Minnick, Ed.; Alvermann, Donna E., Ed.
Reflecting a collaboration in terms of content areas, levels, and audience, this volume represents the efforts of science teachers and reading teachers to understand and help one another fine tune their craft. Chapters in the volume include: (1) "Metacognition, Reading and Science Education" (Linda Baker); (2) "Science and Reading:…
FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samara, G.A.
1997-05-01
The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfacesmore » for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.« less
Internet 2 Health Sciences Initiative.
ERIC Educational Resources Information Center
Simco, Greg
2003-01-01
The Internet 2 (I2) health sciences initiative (I2HSI) involves the formulation of applications and supporting technologies, and guidelines for their use in the health sciences. Key elements of I2HSI include use of visualization, collaboration, medical informatics, telemedicine, and educational tools that support the health sciences. Specific…
Project LEO Studies of Science Learning Environments and Outcomes, 1968-1981.
ERIC Educational Resources Information Center
Matthews, Charles; And Others
Presented is a summary of the 1977-80 Project LEO studies, which focused on science teaching strategies and learning outcomes for disruptive elementary school children and on more refined application of the "student-structured learning in science" (SSLS) teacher behavioral pattern in secondary school science classrooms. Included within…
Recent Challenges Facing US Government Climate Science Access and Application
NASA Astrophysics Data System (ADS)
Goldman, G. T.; Carter, J. M.; Licker, R.
2017-12-01
Climate scientists have long faced politicization of their work, especially those working within the US federal government. However, political interference in federal government climate change science has escalated in the current political era with efforts by political actors to undermine and disrupt infrastructure supporting climate science. This has included funding changes, decreased access to climate science information on federal agency websites, restrictions on media access to scientific experts within the government, and rolling back of science-based policies designed to incorporate and respond to climate science findings. What are the impacts of such changes for both the climate science community and the broader public? What can be done to ensure that access to and application of climate change-related research to policy decisions continues? We will summarize and analyze the state of climate change research and application in the US government. The impacts of political interference in climate change science as well as opportunities the scientific community has to support climate science in the US government, will be discussed.
Science during crisis: the application of social science during major environmental crises
Machlis, Gary; Ludwig, Kris; Manfredo, Michael J.; Vaske, Jerry J.; Rechkemmer, Andreas; Duke, Esther
2014-01-01
Historical and contemporary experience suggests that science plays an increasingly critical role in governmental and institutional responses to major environmental crises. Recent examples include major western wildfires (2009), the Deepwater Horizon oil spill (2010), the Fukushima nuclear accident (2011), and Hurricane Sandy (2012). The application of science during such crises has several distinctive characteristics, as well as essential requirements if it is to be useful to decision makers. these include scope conditions that include coupled natural/human systems, clear statement of uncertainties and limitations, description of cascading consequences, accurate sense of place, estimates of magnitude of impacts, identification of beneficiaries and those adversely affected, clarity and conciseness, compelling visualization and presentation, capacity to speak "truth to power", and direct access to decision makers. In this chapter, we explore the role and significance of science – including all relevant disciplines and focusing attention on the social sciences – in responding to major environmental crises. We explore several important questions: How is science during crisis distinctive? What social science is most useful during crises? What distinctive characteristics are necessary for social science to make meaningful contributions to emergency response and recovery? How might the social sciences be integrated into the strategic science needed to respond to future crises? The authors, both members of the Department of the Interior's innovative Strategic Sciences Group, describe broad principles of engagement as well as specific examples drawn from history, contemporary efforts (such as during the Deepwater Horizon oil spill), and predictions of environmental crises still to be confronted.
PREPARING FOR EXASCALE: ORNL Leadership Computing Application Requirements and Strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joubert, Wayne; Kothe, Douglas B; Nam, Hai Ah
2009-12-01
In 2009 the Oak Ridge Leadership Computing Facility (OLCF), a U.S. Department of Energy (DOE) facility at the Oak Ridge National Laboratory (ORNL) National Center for Computational Sciences (NCCS), elicited petascale computational science requirements from leading computational scientists in the international science community. This effort targeted science teams whose projects received large computer allocation awards on OLCF systems. A clear finding of this process was that in order to reach their science goals over the next several years, multiple projects will require computational resources in excess of an order of magnitude more powerful than those currently available. Additionally, for themore » longer term, next-generation science will require computing platforms of exascale capability in order to reach DOE science objectives over the next decade. It is generally recognized that achieving exascale in the proposed time frame will require disruptive changes in computer hardware and software. Processor hardware will become necessarily heterogeneous and will include accelerator technologies. Software must undergo the concomitant changes needed to extract the available performance from this heterogeneous hardware. This disruption portends to be substantial, not unlike the change to the message passing paradigm in the computational science community over 20 years ago. Since technological disruptions take time to assimilate, we must aggressively embark on this course of change now, to insure that science applications and their underlying programming models are mature and ready when exascale computing arrives. This includes initiation of application readiness efforts to adapt existing codes to heterogeneous architectures, support of relevant software tools, and procurement of next-generation hardware testbeds for porting and testing codes. The 2009 OLCF requirements process identified numerous actions necessary to meet this challenge: (1) Hardware capabilities must be advanced on multiple fronts, including peak flops, node memory capacity, interconnect latency, interconnect bandwidth, and memory bandwidth. (2) Effective parallel programming interfaces must be developed to exploit the power of emerging hardware. (3) Science application teams must now begin to adapt and reformulate application codes to the new hardware and software, typified by hierarchical and disparate layers of compute, memory and concurrency. (4) Algorithm research must be realigned to exploit this hierarchy. (5) When possible, mathematical libraries must be used to encapsulate the required operations in an efficient and useful way. (6) Software tools must be developed to make the new hardware more usable. (7) Science application software must be improved to cope with the increasing complexity of computing systems. (8) Data management efforts must be readied for the larger quantities of data generated by larger, more accurate science models. Requirements elicitation, analysis, validation, and management comprise a difficult and inexact process, particularly in periods of technological change. Nonetheless, the OLCF requirements modeling process is becoming increasingly quantitative and actionable, as the process becomes more developed and mature, and the process this year has identified clear and concrete steps to be taken. This report discloses (1) the fundamental science case driving the need for the next generation of computer hardware, (2) application usage trends that illustrate the science need, (3) application performance characteristics that drive the need for increased hardware capabilities, (4) resource and process requirements that make the development and deployment of science applications on next-generation hardware successful, and (5) summary recommendations for the required next steps within the computer and computational science communities.« less
NASA Astrophysics Data System (ADS)
Borne, K. D.
2009-12-01
The emergence of e-Science over the past decade as a paradigm for Internet-based science was an inevitable evolution of science that built upon the web protocols and access patterns that were prevalent at that time, including Web Services, XML-based information exchange, machine-to-machine communication, service registries, the Grid, and distributed data. We now see a major shift in web behavior patterns to social networks, user-provided content (e.g., tags and annotations), ubiquitous devices, user-centric experiences, and user-led activities. The inevitable accrual of these social networking patterns and protocols by scientists and science projects leads to U-Science as a new paradigm for online scientific research (i.e., ubiquitous, user-led, untethered, You-centered science). U-Science applications include components from semantic e-science (ontologies, taxonomies, folksonomies, tagging, annotations, and classification systems), which is much more than Web 2.0-based science (Wikis, blogs, and online environments like Second Life). Among the best examples of U-Science are Citizen Science projects, including Galaxy Zoo, Stardust@Home, Project Budburst, Volksdata, CoCoRaHS (the Community Collaborative Rain, Hail and Snow network), and projects utilizing Volunteer Geographic Information (VGI). There are also scientist-led projects for scientists that engage a wider community in building knowledge through user-provided content. Among the semantic-based U-Science projects for scientists are those that specifically enable user-based annotation of scientific results in databases. These include the Heliophysics Knowledgebase, BioDAS, WikiProteins, The Entity Describer, and eventually AstroDAS. Such collaborative tagging of scientific data addresses several petascale data challenges for scientists: how to find the most relevant data, how to reuse those data, how to integrate data from multiple sources, how to mine and discover new knowledge in large databases, how to represent and encode the new knowledge, and how to curate the discovered knowledge. This talk will address the emergence of U-Science as a type of Semantic e-Science, and will explore challenges, implementations, and results. Semantic e-Science and U-Science applications and concepts will be discussed within the context of one particular implementation (AstroDAS: Astronomy Distributed Annotation System) and its applicability to petascale science projects such as the LSST (Large Synoptic Survey Telescope), coming online within the next few years.
32 CFR 242a.1 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES... University of the Health Sciences (USUHS), including committees of the Board of Regents. ...
32 CFR 242a.1 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES... University of the Health Sciences (USUHS), including committees of the Board of Regents. ...
32 CFR 242a.1 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES... University of the Health Sciences (USUHS), including committees of the Board of Regents. ...
32 CFR 242a.1 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES... University of the Health Sciences (USUHS), including committees of the Board of Regents. ...
32 CFR 242a.1 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES... University of the Health Sciences (USUHS), including committees of the Board of Regents. ...
The application of geography markup language (GML) to the geological sciences
NASA Astrophysics Data System (ADS)
Lake, Ron
2005-11-01
GML 3.0 became an adopted specification of the Open Geospatial Consortium (OGC) in January 2003, and is rapidly emerging as the world standard for the encoding, transport and storage of all forms of geographic information. This paper looks at the application of GML to one of the more challenging areas of automated geography, namely the geological sciences. Specific features of GML of interest to geologists are discussed and then illustrated through a series of geological case studies. We conclude the paper with a discussion of anticipated geological web services that GML will enable. GML is written in XML and makes use of XML Schema for extensibility. It can be used both to represent or model geographic objects and to transport them across the Internet. In this way it serves as the foundation for all manner of geographic web services. Unlike vertical application grammars such as LandXML, GML was intended to define geographic application languages, and hence is applicable to any geographic domain including forestry, environmental sciences, geology and oceanography. This paper provides a review of the basic features of GML that are fundamental to the geological sciences including geometry, coverages, observations, reference systems and temporality. These constructs are then employed in a series of simple geological case studies including structural geological description, surficial geology, representation of geological time scales, mineral occurrences, geohazards and geochemical reconnaissance.
Microgravity science and applications bibliography, 1989 revision
NASA Technical Reports Server (NTRS)
1990-01-01
This edition of the Microgravity Science and Applications (MSA) Bibliography is a compilation of government reports, contractor reports, conference proceedings, and journal articles dealing with flight experiments utilizing a low gravity environment to elucidate and control various processes, or with ground based activities that provide supported research. It encompasses literature published but not cited in the 1988 Revision and that literature which has been published in the past year. Subdivisions of the Bibliography include: electronic materials, metals, alloys, and composites; fluids, interfaces, and transport; glasses and ceramics; biotechnology; combustion science; experimental technology, facilities, and instrumentation. Also included are publications from the European, Soviet, and Japanese programs.
Microgravity science and applications bibliography, 1990 revision
NASA Technical Reports Server (NTRS)
1991-01-01
This edition of the Microgravity Science and Applications (MSA) Bibliography is a compilation of government reports, contractor reports, conference proceedings, and journal articles dealing with flight experiments utilizing a low gravity environment to elucidate and control various processes, or with ground based activities that provide supporting research. It encompasses literature published but not cited in the 1989 Revision and that literature which has been published in the past year. Subdivisions of the bibliography include: electronic materials; metals, alloys, and composites; fluids, interfaces, and transport; glasses and ceramics; biotechnology; combustion science; and experimental technology, facilities, and instrumentation. Also included are publications from the European, Soviet, and Japanese programs.
Microgravity science and applications bibliography, 1991 revision
NASA Technical Reports Server (NTRS)
1992-01-01
This edition of the Microgravity Science and Applications (MSA) Bibliography is a compilation of government reports, contractor reports, conference proceedings, and journal articles dealing with flight experiments using a low gravity environment to elucidate and control various processes, or with ground based activities that provide supporting research. It encompasses literature published but not cited in the 1990 Revision and that literature which has been published in the past year. Subdivisions of the bibliography include: Electronic materials; Metals, alloys, and composites; Fluids, interfaces and transport; Glasses and ceramics; Biotechnology; Combustion science; and Experimental technology, instrumentation, and facilities. Also included are a limited number of publications from the European, Soviet, and Japanese programs.
Research and technology report, 1981
NASA Technical Reports Server (NTRS)
1981-01-01
The Marshall Space Flight Center programs of research and technology for 1981 in various areas of aerospace science are reviewed. Each activity reviewed has a high probability of application to current or future programs or is an application of the results of current programs. Projects in atmospheric and magnetospheric science, solar physics, astronomy, and space technology are included.
ERIC Educational Resources Information Center
Watson, Bernardine H.; Leibbrand, Jane A.
2010-01-01
This brief is a summary of "Increasing the Application of Developmental Sciences Knowledge in Educator Preparation: Policy Issues and Recommendations" by Robert C. Pianta, Randy Hitz and Blake West. It includes highlights and policy recommendations contained in that paper. This brief argues that teachers and education administrators need…
DOE R&D Accomplishments Database
1998-07-01
This publication contains stories that illustrate how the Office of Basic Energy Sciences (BES) research and major user facilities have impacted the medical sciences in the selected topical areas of disease diagnosis, treatment (including drug development, radiation therapy, and surgery), understanding, and prevention.
NASA Astrophysics Data System (ADS)
Wendel, JoAnna
2014-04-01
The L'Oréal For Women in Science program is calling for women postdoctoral scientists to submit applications for the L'Oréal USA Women in Science Fellowship. Five women scientists in a variety of fields, including life and physical/material sciences, technology, engineering, and mathematics, will receive grants of up to $60,000 each. Since the program began in 1998, more than 2000 women scientists worldwide have been awarded fellowships. Application materials are available at https://lorealfwis.aaas.org/login/indexA.cfm; the deadline to apply is 19 May 2014.
Guidelines for NASA Missions to Engage the User Community as a Part of the Mission Life Cycle
NASA Astrophysics Data System (ADS)
Escobar, V. M.; Friedl, L.; Bonniksen, C. K.
2017-12-01
NASA continues to improve the Earth Science Directorate in the areas of thematic integration, stakeholder feedback and Project Applications Program tailoring for missions to transfer knowledge between scientists and projects. The integration of application themes and the implementation of application science activities in flight projects have evolved to formally include user feedback and stakeholder integration. NASA's new Flight Applied Science Program Guidelines are designed to bridge NASA Earth Science Directorates in Flight, Applied Sciences and Research and Development by agreeing to integrate the user community into mission life cycles. Thus science development and science applications will guide all new instruments launched by NASAs ESD. The continued integration with the user community has enabled socio-economic considerations into NASA Earth Science projects to advance significantly. Making users a natural part of mission science leverages future socio-economic impact research and provides a platform for innovative and more actionable product to be used in decision support systems by society. This presentation will give an overview of the new NASA Guidelines and provide samples that demonstrate how the user community can be a part of NASA mission designs.
Applications of Tethers in Space, Volume 1
NASA Technical Reports Server (NTRS)
Cron, A. C. (Compiler)
1985-01-01
The tethered satellite system is described including tether fundamentals. Applications of very long tethers in space to a broad spectrum of future space missions are explored. Topics covered include: science, transportation, constellations, artificial gravity, technology and test, and electrodynamic interactions. Recommendations to NASA are included.
First-Year, Full-Time Graduate Science Enrollment Continues to Decline.
ERIC Educational Resources Information Center
Science Resources Studies Highlights, 1972
1972-01-01
Findings from a study of departmental data derived from traineeship applications in the sciences (including mathematical sciences) are presented in this paper. Data on full-time graduate enrollments from 1969 to 1971 are analyzed by type of institution, with results showing a continuing decline in first-year, full-time graduate science enrollment.…
ERIC Educational Resources Information Center
Unger, Daniel; Schwab, Sarah; Jacques, Ryan; Zhang, Yanli; Hung, I-Kuai; Kulhavy, David
2016-01-01
Undergraduate students pursuing a Bachelor of Science in Spatial Science degree at Stephen F. Austin State University (SFASU) receive instruction in the spatial sciences with a focus on hands-on applications. All undergraduate students take the course Introduction to Spatial Science which includes a comprehensive overview of spatial science…
The Earth Science Research Network as Seen Through Network Analysis of the AGU
NASA Astrophysics Data System (ADS)
Narock, T.; Hasnain, S.; Stephan, R.
2017-12-01
Scientometrics is the science of science. Scientometric research includes measurements of impact, mapping of scientific fields, and the production of indicators for use in policy and management. We have leveraged network analysis in a scientometric study of the American Geophysical Union (AGU). Data from the AGU's Linked Data Abstract Browser was used to create a visualization and analytics tools to explore the Earth science's research network. Our application applies network theory to look at network structure within the various AGU sections, identify key individuals and communities related to Earth science topics, and examine multi-disciplinary collaboration across sections. Opportunities to optimize Earth science output, as well as policy and outreach applications, are discussed.
Advances in engineering science, volume 2
NASA Technical Reports Server (NTRS)
1976-01-01
Papers are presented dealing with structural dynamics; structural synthesis; and the nonlinear analysis of structures, structural members, and composite structures and materials. Applications of mathematics and computer science are included.
The Fifteenth International Conference on the Science and Application of Nanotubes (NT14)
DOE Office of Scientific and Technical Information (OSTI.GOV)
cronin, stephen
The Fifteenth International Conference on the Science and Application of Nanotubes (NT14) was held at the University of Southern California in Los Angeles, California on June 2-6, 2014. NT14 upheld the NT tradition of presenting the latest results in the science and applications of nanotubes and related materials in plenary sessions. Emphasis was given to convivial poster sessions and student participation. Over 225 participants attended the conference, including students, post-docs, faculty, and members from industry. A total of 45 talks were presented, as well as 157 posters.
Welcome to health information science and systems.
Zhang, Yanchun
2013-01-01
Health Information Science and Systems is an exciting, new, multidisciplinary journal that aims to use technologies in computer science to assist in disease diagnoses, treatment, prediction and monitoring through the modeling, design, development, visualization, integration and management of health related information. These computer-science technologies include such as information systems, web technologies, data mining, image processing, user interaction and interface, sensors and wireless networking and are applicable to a wide range of health related information including medical data, biomedical data, bioinformatics data, public health data.
NASA Technical Reports Server (NTRS)
Kempler, Steve; Leptoukh, Greg; Lynnes, Chris
2010-01-01
The presentation purpose is to describe multi-instrument tools and services that facilitate access and usability of NASA Earth science data at Goddard Space Flight Center (GSFC). NASA's Earth observing system includes 14 satellites. Topics include EOSDIS facilities and system architecture, and overview of GSFC Earth Science Data and Information Services Center (GES DISC) mission, Mirador data search, Giovanni, multi-instrument data exploration, Google Earth[TM], data merging, and applications.
77 FR 8887 - Office of the Director Notice of Establishment
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-15
... (Board), in the National Center for Advancing Translation Sciences (NCATS). The Council will advise... barriers to successful translation of basic science into clinical application (including issues under the...
NASA Astrophysics Data System (ADS)
Vollmer, B.; Ostrenga, D.; Johnson, J. E.; Savtchenko, A. K.; Shen, S.; Teng, W. L.; Wei, J. C.
2013-12-01
Digital Object Identifiers (DOIs) are applied to selected data sets at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). The DOI system provides an Internet resolution service for unique and persistent identifiers of digital objects. Products assigned DOIs include data from the NASA MEaSUREs Program, the Earth Observing System (EOS) Aqua Atmospheric Infrared Sounder (AIRS) and EOS Aura High Resolution Dynamics Limb Sounder (HIRDLS). DOIs are acquired and registered through EZID, California Digital Library and DataCite. GES DISC hosts a data set landing page associated with each DOI containing information on and access to the data including a recommended data citation when using the product in research or applications. This work includes participation with the earth science community (e.g., Earth Science Information Partners (ESIP) Federation) and the NASA Earth Science Data and Information System (ESDIS) Project to identify, establish and implement best practices for assigning DOIs and managing supporting information, including metadata, for earth science data sets. Future work includes (1) coordination with NASA mission Science Teams and other data providers on the assignment of DOIs for other GES DISC data holdings, particularly for future missions such as Orbiting Carbon Observatory -2 and -3 (OCO-2, OCO-3) and projects (MEaSUREs 2012), (2) construction of landing pages that are both human and machine readable, and (3) pursuing the linking of data and publications with tools such as the Thomson Reuters Data Citation Index.
Microgravity science and applications program tasks, 1991 revision
NASA Technical Reports Server (NTRS)
1992-01-01
Presented here is a compilation of the active research tasks for FY 1991 sponsored by the Microgravity Science and Applications Division of the NASA Office of Space Science and Applications. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. Included is an introductory description of the program, the strategy and overall goal, identification of the organizational structures and the people involved, and a description of each. The tasks are grouped into several categories: electronic materials; solidification of metals, alloys, and composites; fluids, interfaces, and transport; biotechnology; combustion science; glasses and ceramics; experimental technology, instrumentation, and facilities; and Physical and Chemistry Experiments (PACE). The tasks cover both the ground based and flight programs.
ERIC Educational Resources Information Center
Labianca, Dominick A.
2007-01-01
This article describes an approach to minimizing the "fear factor" in a chemistry course for the nonscience major, and also addresses relevant applications to other science courses, including biology, geology, and physics. The approach emphasizes forensic science and affords students the opportunity to hone their analytical skills in an…
Life Sciences Program Tasks and Bibliography for FY 1996
NASA Technical Reports Server (NTRS)
Nelson, John C. (Editor)
1997-01-01
This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1996. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web page.
Life Sciences Program Tasks and Bibliography for FY 1997
NASA Technical Reports Server (NTRS)
Nelson, John C. (Editor)
1998-01-01
This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1997. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive internet web page.
Why Understanding Science Matters: The IES Research Guidelines as a Case in Point
ERIC Educational Resources Information Center
Rudolph, John L.
2014-01-01
The author outlines the rise of a hard-science model advocated by the Institute for Education Sciences, including the application of research and development approaches to education following the Second World War, and describes the attraction of these hard-science approaches for education policymakers. He notes that in the face of complex and…
Earth benefits from NASA research and technology. Life sciences applications
NASA Technical Reports Server (NTRS)
1991-01-01
This document provides a representative sampling of examples of Earth benefits in life-sciences-related applications, primarily in the area of medicine and health care, but also in agricultural productivity, environmental monitoring and safety, and the environment. This brochure is not intended as an exhaustive listing, but as an overview to acquaint the reader with the breadth of areas in which the space life sciences have, in one way or another, contributed a unique perspective to the solution of problems on Earth. Most of the examples cited were derived directly from space life sciences research and technology. Some examples resulted from other space technologies, but have found important life sciences applications on Earth. And, finally, we have included several areas in which Earth benefits are anticipated from biomedical and biological research conducted in support of future human exploration missions.
Earth Science Informatics - Overview
NASA Technical Reports Server (NTRS)
Ramapriyan, H. K.
2015-01-01
Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes nearly 150 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies. Remote Sensing; Earth Science Informatics, Data Systems; Data Services; Metadata
Student perceptions of secondary science: A performance technology application
NASA Astrophysics Data System (ADS)
Small, Belinda Rusnak
The primary purpose of this study was to identify influences blocking or promoting science performance from the lived K-12 classroom experience. Human Performance Technology protocols were used to understand factors promoting or hindering science performance. The goal was to gain information from the individual students' perspective to enhance opportunities for stakeholders to improve the current state of performance in science education. Individual perspectives of 10 secondary science students were examined using grounded theory protocols. Findings include students' science learning behaviors are influenced by two major themes, environmental supports and individual learning behaviors. The three environmental support factors identified include the methods students receive instruction, students' opportunities to access informal help apart from formal instruction, and students' feelings of teacher likability. Additionally, findings include three major factors causing individual learners to generate knowledge in science. Factors reported include personalizing information to transform data into knowledge, customizing learning opportunities to maximize peak performance, and tapping motivational opportunities to persevere through complex concepts. The emergent theory postulated is that if a performance problem exists in an educational setting, then integrating student perspectives into the cause analysis opens opportunity to align interventions for influencing student performance outcomes. An adapted version of Gilbert's Behavioral Engineering Model is presented as an organizational tool to display the findings. The boundaries of this Performance Technology application do not extend to the identification, selection, design, or implementation of solutions to improved science performance. However, as stakeholders begin to understand learner perspectives then aligned decisions may be created to support learners of science in a direct, cost effective manner.
Teacher Self-Efficacy during the Implementation of a Problem-Based Science Curriculum
ERIC Educational Resources Information Center
Hodges, Charles B.; Gale, Jessica; Meng, Alicia
2016-01-01
This study was conducted to investigate eighth-grade science teachers' self-efficacy during the implementation of a new, problem-based science curriculum. The curriculum included applications of LEGO® robotics, a new technology for these teachers. Teachers' responded to structured journaling activities designed to collect information about their…
ERIC Educational Resources Information Center
McCrank, Lawrence J.
1992-01-01
Discusses trends in the fields of knowledge engineering and historical sciences to speculate about possibilities of converging interests and applications. Topics addressed include artificial intelligence and expert systems; the history of information science; history as a related field; historians as information scientists; multidisciplinary…
NASA Technical Reports Server (NTRS)
1992-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.
Connecting Climate Science to Policy: from Global Food Production to the US Supreme Court
NASA Astrophysics Data System (ADS)
Battisti, D. S.
2016-12-01
There are myriad ways climate science has been used to inform on global food security, and to affect law and policy. In this talk, I will summarize examples that include the application of the El Nino - Southern Oscillation science to improve food security in Indonesia and provide water forecasts for agriculture in northwest Mexico, as well as the application of climate change science to project changes in global grain production. In the latter case, reliable information on the impact of increasing greenhouse gases on growing season temperature is applied to assess the impact of climate change on average crop yields, on the volatility in crop yields, and on the loss of yield due to increasing pest pressure - all of which have acute implications for agricultural policy. In the US, climate change science was of paramount importance for the Supreme Court decision in the case "Massachusetts vs. EPA," which to this day greatly shapes US policy related to climate change - most notably in setting emission standards for vehicles. My colleagues and I have learned several lessons from our experiences in these applications of climate science that I will share, including some thoughts on the nature of interdisciplinary teams for producing reliable and effective products, and the on the professional pros and cons of pursuing applied work.
Microgravity research in NASA ground-based facilities
NASA Technical Reports Server (NTRS)
Lekan, Jack
1989-01-01
An overview of reduced gravity research performed in NASA ground-based facilities sponsored by the Microgravity Science and Applications Program of the NASA Office of Space Science and Applications is presented. A brief description and summary of the operations and capabilities of each of these facilities along with an overview of the historical usage of them is included. The goals and program elements of the Microgravity Science and Applications programs are described and the specific programs that utilize the low gravity facilities are identified. Results from two particular investigations in combustion (flame spread over solid fuels) and fluid physics (gas-liquid flows at microgravity conditions) are presented.
Life and Biomedical Sciences and Applications Advisory Subcommittee Meeting
NASA Technical Reports Server (NTRS)
1996-01-01
The proceedings of the August 1995 meeting of the Life and Biomedical Sciences and Applications Advisory Subcommittee (LBSAAS) are summarized. The following topics were addressed by the Subcommittee members: the activities and status of the LBSA Division; program activities of the Office of Life and Microgravity Sciences and Applications (OLMSA); the medical Countermeasures Program; and the Fettman Report on animal research activities at ARC. Also presented were a history and overview of the activities of the Space Station Utilization Advisory Committee and the Advanced Life Support Program (ALSP). The meeting agenda and a list of the Subcommittee members and meeting attendees are included as appendices.
Microgravity Science and Applications. Program Tasks and Bibliography for FY 1993
NASA Technical Reports Server (NTRS)
1994-01-01
An annual report published by the Microgravity Science and Applications Division (MSAD) of NASA is presented. It represents a compilation of the Division's currently-funded ground, flight and Advanced Technology Development tasks. An overview and progress report for these tasks, including progress reports by principal investigators selected from the academic, industry and government communities, are provided. The document includes a listing of new bibliographic data provided by the principal investigators to reflect the dissemination of research data during FY 1993 via publications and presentations. The document also includes division research metrics and an index of the funded investigators. The document contains three sections and three appendices: Section 1 includes an introduction and metrics data, Section 2 is a compilation of the task reports in an order representative of its ground, flight or ATD status and the science discipline it represents, and Section 3 is the bibliography. The three appendices, in the order of presentation, are: Appendix A - a microgravity science acronym list, Appendix B - a list of guest investigators associated with a biotechnology task, and Appendix C - an index of the currently funded principal investigators.
The Role of Semantics in Open-World, Integrative, Collaborative Science Data Platforms
NASA Astrophysics Data System (ADS)
Fox, Peter; Chen, Yanning; Wang, Han; West, Patrick; Erickson, John; Ma, Marshall
2014-05-01
As collaborative science spreads into more and more Earth and space science fields, both participants and funders are expressing stronger needs for highly functional data and information capabilities. Characteristics include a) easy to use, b) highly integrated, c) leverage investments, d) accommodate rapid technical change, and e) do not incur undue expense or time to build or maintain - these are not a small set of requirements. Based on our accumulated experience over the last ~ decade and several key technical approaches, we adapt, extend, and integrate several open source applications and frameworks to handle major portions of functionality for these platforms. This includes: an object-type repository, collaboration tools, identity management, all within a portal managing diverse content and applications. In this contribution, we present our methods and results of information models, adaptation, integration and evolution of a networked data science architecture based on several open source technologies (Drupal, VIVO, the Comprehensive Knowledge Archive Network; CKAN, and the Global Handle System; GHS). In particular we present the Deep Carbon Observatory - a platform for international science collaboration. We present and discuss key functional and non-functional attributes, and discuss the general applicability of the platform.
Microgravity Science and Applications Program tasks, 1988 revision
NASA Technical Reports Server (NTRS)
1989-01-01
The active research tasks as of the end of the fiscal year 1988 of the Microgravity Science and Applications Program, NASA-Office of Space Science and Applications, involving several NASA centers and other organizations are compiled. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. Also included are an introductory description of the program, the strategy and overall goal, identification of the organizational structures and people involved, and a description of each task. A list of recent publications is provided. The tasks are grouped into six major categories: electronic materials; solidification of metals, alloys, and composites; fluid dynamics and transport phenomena; biotechnology; glasses and ceramics; and combustion. Other categories include experimental technology, general studies and surveys; foreign government affiliations; industrial affiliations; and Physics And Chemistry Experiments (PACE). The tasks are divided into ground-based and flight experiments.
Mobile Phone Application Development for the Classroom
NASA Astrophysics Data System (ADS)
Lewis, P.; Oostra, D.; Crecelius, S.; Chambers, L. H.
2012-08-01
With smartphone sales currently surpassing laptop sales, it is hard not to think that these devices will have a place in the classroom. More specifically, with little to no monetary investment, classroom-centric mobile applications have the ability to suit the needs of teachers. Previously, programming such an item was a daunting task to the classroom teacher. But now, through the use of online visual tools, anyone has the ability to generate a mobile application to suit individual classroom needs. The "MY NASA DATA" (MND) project has begun work on such an application. Using online tools that are directed at the non-programmer, the team has developed two usable mobile applications ("apps") that fit right into the science classroom. The two apps generated include a cloud dichotomous key for cloud identification in the field, and an atmospheric science glossary to help with standardized testing key vocabulary and classroom assignments. Through the use of free online tools, teachers and students now have the ability to customize mobile applications to meet their individual needs. As an extension of the mobile applications, the MND team is planning web-based application programming interfaces (API's) that will be generated from data that is currently included in the MND Live Access Server. This will allow teachers and students to choose data sets that they want to include in the mobile application without having to populate the API themselves. Through the use of easy to understand online mobile app tutorials and MND data sets, teachers will have the ability to generate unit-specific mobile applications to further engage and empower students in the science classroom.
Telemedicine: history, applications, and impact on librarianship.
Zundel, K M
1996-01-01
This paper traces the uses of telecommunications in health care from the Civil War era to the present. Topics include the National Aeronautics and Space Administration's involvement in the origins of current telemedicine systems and the impact of television. Applications of telemedicine discussed include remote consultation and diagnosis, specialty clinical care (including examples from anesthesia, dermatology, cardiology, psychiatry, radiology, critical care, and oncology), and others (including examples of patient education, home monitoring, and continuing education). The concluding section highlights how telemedicine affects health sciences librarianship, beginning with the development of online computerized literature searching. This section also discusses the medical resources available to health sciences librarians as a result of the Internet. PMID:8938332
Fulbrights for Soviet Lectures
NASA Astrophysics Data System (ADS)
Packard, Craig
The Council for International Exchange of Scholars is still accepting applications for Fulbright awards to lecture in the sciences in the Soviet Union for academic year 1989-1990. Because the original deadline, September 15, has passed, applications will be processed immediately, and the 1989-1990 Fulbright Scholar Program Faculty Grants close when an adequate number of applicants is approved for nomination.Applications can be in the “Any Field” category or in the more specific categories sought by the Soviet Union, including geophysics at Tashkent; geology at the Gubkin Institute of Oil, Chemical, and Gas Industry; environmental sciences (cultivation of microalgae in sewage; continental shelf development, water resources protection, and economic aspects); and forest restoration technology. Awards are also available in chemistry, life sciences, and physics and astronomy.
Scientific Ethics: A New Approach.
Menapace, Marcello
2018-06-04
Science is an activity of the human intellect and as such has ethical implications that should be reviewed and taken into account. Although science and ethics have conventionally been considered different, it is herewith proposed that they are essentially similar. The proposal set henceforth is to create a new ethics rooted in science: scientific ethics. Science has firm axiological foundations and searches for truth (as a value, axiology) and knowledge (epistemology). Hence, science cannot be value neutral. Looking at standard scientific principles, it is possible to construct a scientific ethic (that is, an ethical framework based on scientific methods and rules), which can be applied to all sciences. These intellectual standards include the search for truth (honesty and its derivatives), human dignity (and by reflection the dignity of all animals) and respect for life. Through these it is thence achievable to draft a foundation of a ethics based purely on science and applicable beyond the confines of science. A few applications of these will be presented. Scientific ethics can have vast applications in other fields even in non scientific ones.
2003-01-16
KENNEDY SPACE CENTER, FLA. - STS-107 Payload Commander Michael Anderson is happy to being suiting up for launch on mission STS-107. The mission is devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
Proceedings: Computer Science and Data Systems Technical Symposium, volume 1
NASA Technical Reports Server (NTRS)
Larsen, Ronald L.; Wallgren, Kenneth
1985-01-01
Progress reports and technical updates of programs being performed by NASA centers are covered. Presentations in viewgraph form are included for topics in three categories: computer science, data systems and space station applications.
NASA Astrophysics Data System (ADS)
Blair, J. B.; Rabine, D.; Hofton, M. A.; Citrin, E.; Luthcke, S. B.; Misakonis, A.; Wake, S.
2015-12-01
Full waveform laser altimetry has demonstrated its ability to capture highly-accurate surface topography and vertical structure (e.g. vegetation height and structure) even in the most challenging conditions. NASA's high-altitude airborne laser altimeter, LVIS (the Land Vegetation, and Ice Sensor) has produced high-accuracy surface maps over a wide variety of science targets for the last 2 decades. Recently NASA has funded the transition of LVIS into a full-time NASA airborne Facility instrument to increase the amount and quality of the data and to decrease the end-user costs, to expand the utilization and application of this unique sensor capability. Based heavily on the existing LVIS sensor design, the Facility LVIS instrument includes numerous improvements for reliability, resolution, real-time performance monitoring and science products, decreased operational costs, and improved data turnaround time and consistency. The development of this Facility instrument is proceeding well and it is scheduled to begin operations testing in mid-2016. A comprehensive description of the LVIS Facility capability will be presented along with several mission scenarios and science applications examples. The sensor improvements included increased spatial resolution (footprints as small as 5 m), increased range precision (sub-cm single shot range precision), expanded dynamic range, improved detector sensitivity, operational autonomy, real-time flight line tracking, and overall increased reliability and sensor calibration stability. The science customer mission planning and data product interface will be discussed. Science applications of the LVIS Facility include: cryosphere, territorial ecology carbon cycle, hydrology, solid earth and natural hazards, and biodiversity.
State of the art in medical applications using non-thermal atmospheric pressure plasma
NASA Astrophysics Data System (ADS)
Tanaka, Hiromasa; Ishikawa, Kenji; Mizuno, Masaaki; Toyokuni, Shinya; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Metelmann, Hans-Robert; Hori, Masaru
2017-12-01
Plasma medical science is a novel interdisciplinary field that combines studies on plasma science and medical science, with the anticipation that understanding the scientific principles governing plasma medical science will lead to innovations in the field. Non-thermal atmospheric pressure plasma has been used for medical treatments, such as for cancer, blood coagulation, and wound healing. The interactions that occur between plasma and cells/tissues have been analyzed extensively. Direct and indirect treatment of cells with plasma has broadened the applications of non-thermal atmospheric pressure plasma in medicine. Examples of indirect treatment include plasma-assisted immune-therapy and plasma-activated medium. Controlling intracellular redox balance may be key in plasma cancer treatment. Animal studies are required to test the effectiveness and safety of these treatments for future clinical applications.
Microgravity Science and Application Program tasks, 1989 revision
NASA Technical Reports Server (NTRS)
1990-01-01
The active research tasks, as of the fiscal year 1989, of the Microgravity Science and Applications Program, NASA Office of Space Science and Applications, involving several NASA Centers and other organizations are compiled. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The scientists in industry, university, and government communities. An introductory description of the program, the strategy and overall goal, identification of the organizational structures and people involved, and a description of each task are included. Also provided is a list of recent publications. The tasks are grouped into several major categories: electronic materials, solidification of metals, alloys, and composites; fluids, interfaces, and transport; biotechnology; glasses and ceramics; combustion science; physical and chemistry experiments (PACE); and experimental technology, facilities, and instrumentation.
Earth Science Informatics - Overview
NASA Technical Reports Server (NTRS)
Ramapriyan, H. K.
2017-01-01
Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.
Earth Science Informatics - Overview
NASA Technical Reports Server (NTRS)
Ramapriyan, H. K.
2017-01-01
Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss recent developments in data preservation and provenance.
International Symposium on Grids and Clouds (ISGC) 2016
NASA Astrophysics Data System (ADS)
The International Symposium on Grids and Clouds (ISGC) 2016 will be held at Academia Sinica in Taipei, Taiwan from 13-18 March 2016, with co-located events and workshops. The conference is hosted by the Academia Sinica Grid Computing Centre (ASGC). The theme of ISGC 2016 focuses on“Ubiquitous e-infrastructures and Applications”. Contemporary research is impossible without a strong IT component - researchers rely on the existence of stable and widely available e-infrastructures and their higher level functions and properties. As a result of these expectations, e-Infrastructures are becoming ubiquitous, providing an environment that supports large scale collaborations that deal with global challenges as well as smaller and temporal research communities focusing on particular scientific problems. To support those diversified communities and their needs, the e-Infrastructures themselves are becoming more layered and multifaceted, supporting larger groups of applications. Following the call for the last year conference, ISGC 2016 continues its aim to bring together users and application developers with those responsible for the development and operation of multi-purpose ubiquitous e-Infrastructures. Topics of discussion include Physics (including HEP) and Engineering Applications, Biomedicine & Life Sciences Applications, Earth & Environmental Sciences & Biodiversity Applications, Humanities, Arts, and Social Sciences (HASS) Applications, Virtual Research Environment (including Middleware, tools, services, workflow, etc.), Data Management, Big Data, Networking & Security, Infrastructure & Operations, Infrastructure Clouds and Virtualisation, Interoperability, Business Models & Sustainability, Highly Distributed Computing Systems, and High Performance & Technical Computing (HPTC), etc.
Life sciences space biology project planning
NASA Technical Reports Server (NTRS)
Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.
1988-01-01
The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.
NASA Astrophysics Data System (ADS)
Hubenthal, M.; Kelly, M.
2017-12-01
The Directorate for Geosciences (GEO) at the National Science Foundation (NSF) is currently funding 60 Research Experiences for Undergraduate (REU) sites. Each site offers opportunities for 8 to 12 undergraduates to participate in research within solid earth, oceans, atmospheric and cryosphere sciences. Because applicant data is collected at individual REU sites, the exact number of unique applicants to all REU sites, and the demographics of this national applicant pool has not been previously reported. While some sites do provide some of this information to NSF in annual reports, obtaining and combining such data is problematic because the percentage of individuals that apply to multiple programs is unknown and generally believed anecdotally to be high, especially for students traditionally underrepresented in the geosciences. Understanding both the scale and makeup of the national applicant pool is important for several reasons. First, very little is known about how the supply and geographic location of slots in REU programs compares to the demand from undergraduate STEM majors interested in research experiences. Second, research into internship programs and their role in the career development process are limited by a lack of baseline data that includes both successful and unsuccessful internship applicants across the various sub-disciplines of the Earth sciences. Finally, designing and refining efforts to engage underrepresented populations in STEM research, and measuring the impact of such efforts is difficult without baseline data for comparison. We will present aggregate application data from up to 20 GEO REU funded programs. These programs represent Oceans, Atmospheres and Earth Science research areas and includes over a thousand applicants. Preliminary analysis suggests the number of unique applicants in the pool is higher than anecdotally predicted. Similarly, unique applicants from underrepresented communities also appears higher than anticipated.
Space medicine research publications: 1983-1984
NASA Technical Reports Server (NTRS)
Solberg, J. L.; Pleasant, L. G.
1984-01-01
A list of publications supported by the Space Medicine Program, Office of Space Science and Applications is given. Included are publications entered into the Life Sciences Bibliographic Database by The George Washington University as of October 1, 1984.
Math + Science + Technology = Vocational Preparation for Girls: A Difficult Equation to Balance.
ERIC Educational Resources Information Center
Fear-Fenn, Marcia; Kapostasy, Kathy Karako
1992-01-01
Females are underrepresented in courses in mathematics, science, and computer and other high technology applications. Research in the last decade has identified a variety of factors that contribute to females' lack of participation in math, science, and technology. These factors include, but are not limited to, the following: stereotypic images…
NASA Astrophysics Data System (ADS)
Aleman, A.
2017-12-01
This presentation will provide an overview and discussion of the Global Change Master Directory (GCMD) Keywords and their applications in Earth science data discovery. The GCMD Keywords are a hierarchical set of controlled keywords covering the Earth science disciplines, including: science keywords, service keywords, data centers, projects, location, data resolution, instruments and platforms. Controlled vocabularies (keywords) help users accurately, consistently and comprehensively categorize their data and also allow for the precise search and subsequent retrieval of data. The GCMD Keywords are a community resource and are developed collaboratively with input from various stakeholders, including GCMD staff, keyword users and metadata providers. The GCMD Keyword Landing Page and GCMD Keyword Community Forum provide access to keyword resources and an area for discussion of topics related to the GCMD Keywords. See https://earthdata.nasa.gov/about/gcmd/global-change-master-directory-gcmd-keywords
ERIC Educational Resources Information Center
Heelan, Ann; Halligan, Phil; Quirke, Mary
2015-01-01
In 2013 Ireland's Association for Higher Education, Access and Disability (AHEAD), in partnership with the School of Nursing University College Dublin (UCD), hosted a summer school for professionals working in the Health Sciences sector who have responsibility for including students with disabilities in the health professions, including clinical…
NASA Technical Reports Server (NTRS)
1994-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in the areas of (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving Langley facilities and scientists; and (4) computer science.
Ultra-short wavelength x-ray system
Umstadter, Donald [Ann Arbor, MI; He, Fei [Ann Arbor, MI; Lau, Yue-Ying [Potomac, MD
2008-01-22
A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.
High pressure in bioscience and biotechnology: pure science encompassed in pursuit of value.
Hayashi, Rikimaru
2002-03-25
A fundamental factors, pressure (P), is indispensable to develop and support applications in the field of bioscience and biotechnology. This short sentence describes an example how high pressure bioscience and biotechnology, which started from applied science, stimulates challenges of basic science and pure science in the biology-related fields including not only food science, medicine, and pharmacology but also biochemistry, molecular biology, cell biology, physical chemistry, and engineering.
Computation, Mathematics and Logistics Department Report for Fiscal Year 1978.
1980-03-01
storage technology. A reference library on these and related areas is now composed of two thousand documents. The most comprehensive tool available...at DTNSRDC on the CDC 6000 Computer System for a variety of applications including Navy Logistics, Library Science, Ocean Science, Contract Manage... Library Science) Track technical documents on advanced ship design Univ. of Virginia at Charlottesville - (Ocean Science) Monitor research projects for
Advancing a Vision for Regulatory Science Training
Adamo, Joan E.; Wilhelm, Erin E.
2015-01-01
Abstract Regulatory science, a complex field which draws on science, law, and policy, is a growing discipline in medical‐related applications. Competencies help define both a discipline and the criteria to measure high‐quality learning experiences. This paper identifies competencies for regulatory science, how they were developed, and broader recommendations to enhance education and training in this burgeoning field, including a multifaceted training approach. PMID:26083660
NASA Astrophysics Data System (ADS)
Hu, X.; Zou, Z.
2017-12-01
For the next decades, comprehensive big data application environment is the dominant direction of cyberinfrastructure development on space science. To make the concept of such BIG cyberinfrastructure (e.g. Digital Space) a reality, these aspects of capability should be focused on and integrated, which includes science data system, digital space engine, big data application (tools and models) and the IT infrastructure. In the past few years, CAS Chinese Space Science Data Center (CSSDC) has made a helpful attempt in this direction. A cloud-enabled virtual research platform on space science, called Solar-Terrestrial and Astronomical Research Network (STAR-Network), has been developed to serve the full lifecycle of space science missions and research activities. It integrated a wide range of disciplinary and interdisciplinary resources, to provide science-problem-oriented data retrieval and query service, collaborative mission demonstration service, mission operation supporting service, space weather computing and Analysis service and other self-help service. This platform is supported by persistent infrastructure, including cloud storage, cloud computing, supercomputing and so on. Different variety of resource are interconnected: the science data can be displayed on the browser by visualization tools, the data analysis tools and physical models can be drived by the applicable science data, the computing results can be saved on the cloud, for example. So far, STAR-Network has served a series of space science mission in China, involving Strategic Pioneer Program on Space Science (this program has invested some space science satellite as DAMPE, HXMT, QUESS, and more satellite will be launched around 2020) and Meridian Space Weather Monitor Project. Scientists have obtained some new findings by using the science data from these missions with STAR-Network's contribution. We are confident that STAR-Network is an exciting practice of new cyberinfrastructure architecture on space science.
Earth Science Markup Language: Transitioning From Design to Application
NASA Technical Reports Server (NTRS)
Moe, Karen; Graves, Sara; Ramachandran, Rahul
2002-01-01
The primary objective of the proposed Earth Science Markup Language (ESML) research is to transition from design to application. The resulting schema and prototype software will foster community acceptance for the "define once, use anywhere" concept central to ESML. Supporting goals include: 1. Refinement of the ESML schema and software libraries in cooperation with the user community. 2. Application of the ESML schema and software libraries to a variety of Earth science data sets and analysis tools. 3. Development of supporting prototype software for enhanced ease of use. 4. Cooperation with standards bodies in order to assure ESML is aligned with related metadata standards as appropriate. 5. Widespread publication of the ESML approach, schema, and software.
NASA Technical Reports Server (NTRS)
Blackwell, Kim; Blasso, Len (Editor); Lipscomb, Ann (Editor)
1991-01-01
The proceedings of the National Space Science Data Center Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications held July 23 through 25, 1991 at the NASA/Goddard Space Flight Center are presented. The program includes a keynote address, invited technical papers, and selected technical presentations to provide a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.
Opportunities for Computational Discovery in Basic Energy Sciences
NASA Astrophysics Data System (ADS)
Pederson, Mark
2011-03-01
An overview of the broad-ranging support of computational physics and computational science within the Department of Energy Office of Science will be provided. Computation as the third branch of physics is supported by all six offices (Advanced Scientific Computing, Basic Energy, Biological and Environmental, Fusion Energy, High-Energy Physics, and Nuclear Physics). Support focuses on hardware, software and applications. Most opportunities within the fields of~condensed-matter physics, chemical-physics and materials sciences are supported by the Officeof Basic Energy Science (BES) or through partnerships between BES and the Office for Advanced Scientific Computing. Activities include radiation sciences, catalysis, combustion, materials in extreme environments, energy-storage materials, light-harvesting and photovoltaics, solid-state lighting and superconductivity.~ A summary of two recent reports by the computational materials and chemical communities on the role of computation during the next decade will be provided. ~In addition to materials and chemistry challenges specific to energy sciences, issues identified~include a focus on the role of the domain scientist in integrating, expanding and sustaining applications-oriented capabilities on evolving high-performance computing platforms and on the role of computation in accelerating the development of innovative technologies. ~~
Application of Solar-Electric Propulsion to Robotic Missions in Near-Earth Space
NASA Technical Reports Server (NTRS)
Woodcock, Gordon R.; Dankanich, John
2007-01-01
Interest in applications of solar electric propulsion (SEP) is increasing. Application of SEP technology is favored when: (1) the mission is compatible with low-thrust propulsion, (2) the mission needs high total delta V such that chemical propulsion is disadvantaged; and (3) performance enhancement is needed. If all such opportunities for future missions are considered, many uses of SEP are likely. Representative missions are surveyed and several SEP applications selected for analysis, including orbit raising, lunar science and robotic exploration, and planetary science. These missions span SEP power range from 10 kWe to about 100 kWe. A SEP design compatible with small inexpensive launch vehicles, and capable of lunar science missions, is presented. Modes of use and benefits are described, and potential SEP evolution is discussed.
Proceedings: Computer Science and Data Systems Technical Symposium, volume 2
NASA Technical Reports Server (NTRS)
Larsen, Ronald L.; Wallgren, Kenneth
1985-01-01
Progress reports and technical updates of programs being performed by NASA centers are covered. Presentations in viewgraph form, along with abstracts, are included for topics in three catagories: computer science, data systems, and space station applications.
A Course in Colloid and Surface Science.
ERIC Educational Resources Information Center
Scamehorn, John F.
1984-01-01
Describes a course for chemical engineers, chemists, and petroleum engineers that focuses on colloid and surface science. Major topic areas in the course include capillarity, surface thermodynamics, adsorption contact angle, micelle formation, solubilization in micelles, emulsions, foams, and applications. (JN)
Dielectrophoresis for Biomedical Sciences Applications: A Review
Abd Rahman, Nurhaslina; Ibrahim, Fatimah; Yafouz, Bashar
2017-01-01
Dielectrophoresis (DEP) is a label-free, accurate, fast, low-cost diagnostic technique that uses the principles of polarization and the motion of bioparticles in applied electric fields. This technique has been proven to be beneficial in various fields, including environmental research, polymer research, biosensors, microfluidics, medicine and diagnostics. Biomedical science research is one of the major research areas that could potentially benefit from DEP technology for diverse applications. Nevertheless, many medical science research investigations have yet to benefit from the possibilities offered by DEP. This paper critically reviews the fundamentals, recent progress, current challenges, future directions and potential applications of research investigations in the medical sciences utilizing DEP technique. This review will also act as a guide and reference for medical researchers and scientists to explore and utilize the DEP technique in their research fields. PMID:28245552
NASA Technical Reports Server (NTRS)
1994-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.
Space Processing Applications Rocket (SPAR) project: SPAR 10
NASA Technical Reports Server (NTRS)
Poorman, R. (Compiler)
1986-01-01
The Space Processing Applications Rocket Project (SPAR) X Final Report contains the compilation of the post-flight reports from each of the Principal Investigators (PIs) on the four selected science payloads, in addition to the engineering report as documented by the Marshall Space Flight Center (MSFC). This combined effort also describes pertinent portions of ground-based research leading to the ultimate selection of the flight sample composition, including design, fabrication and testing, all of which are expected to contribute to an improved comprehension of materials processing in space. The SPAR project was coordinated and managed by MSFC as part of the Microgravity Science and Applications (MSA) program of the Office of Space Science and Applications (OSSA) of NASA Headquarters. This technical memorandum is directed entirely to the payload manifest flown in the tenth of a series of SPAR flights conducted at the White Sands Missile Range (WSMR) and includes the experiments entitled, Containerless Processing Technology, SPAR Experiment 76-20/3; Directional Solidification of Magnetic Composites, SPAR Experiment 76-22/3; Comparative Alloy Solidification, SPAR Experiment 76-36/3; and Foam Copper, SPAR Experiment 77-9/1R.
The 1992 catalog of space science and applications education programs and activities
NASA Technical Reports Server (NTRS)
1992-01-01
This catalog provides information on current, ongoing and pilot programs conducted at precollege through postdoctoral levels which are primarily funded or managed by the Office of Space Science Applications (OSSA). The directory of programs section includes teacher and faculty preparation and enhancement, student enrichment opportunities, student research opportunities, postdoctoral and advanced research opportunities, initiatives to strengthen educational institution involvement in research and initiatives to strengthen research community involvement in education. The Educational Products appendices include tabular data of OSSA activities, NASA Spacelink, NASA education satellites videoconferences, the Teacher Resource Center Network, and a form for requesting further information.
ERIC Educational Resources Information Center
Friedman, Lawrence B.; Margolin, Jonathan; Swanlund, Andrew; Dhillon, Sonica; Liu, Feng
2017-01-01
Playground Physics is a technology-based application and accompanying curriculum designed by New York Hall of Science (NYSCI) to support middle school students' science engagement and learning of force, energy, and motion. The program includes professional development, the Playground Physics app, and a curriculum aligned with New York State…
Master in Oral Biology Program: A Path to Addressing the Need for Future Dental Educators
ERIC Educational Resources Information Center
Jergenson, Margaret A.; Barritt, Laura C.; O'Kane, Barbara J.; Norton, Neil S.
2017-01-01
In dental education, the anatomical sciences, which include gross anatomy, histology, embryology, and neuroanatomy, encompass an important component of the basic science curriculum. At Creighton University School of Dentistry, strength in anatomic science education has been coupled with a solid applicant pool to develop a novel Master of Science…
Proceedings of the Workshop on the Scientific Applications of Clocks in Space
NASA Technical Reports Server (NTRS)
Maleki, Lute (Editor)
1997-01-01
The Workshop on Scientific Applications of Clocks in space was held to bring together scientists and technologists interested in applications of ultrastable clocks for test of fundamental theories, and for other science investigations. Time and frequency are the most precisely determined of all physical parameters, and thus are the required tools for performing the most sensitive tests of physical theories. Space affords the opportunity to make measurement, parameters inaccessible on Earth, and enables some of the most original and sensitive tests of fundamental theories. In the past few years, new developments in clock technologies have pointed to the opportunity for flying ultrastable clocks in support of science investigations of space missions. This development coincides with the new NASA paradigm for space flights, which relies on frequent, low-cost missions in place of the traditional infrequent and high-cost missions. The heightened interest in clocks in space is further advanced by new theoretical developments in various fields. For example, recent developments in certain Grand Unified Theory formalisms have vastly increased interest in fundamental tests of gravitation physics with clocks. The workshop included sessions on all related science including relativity and gravitational physics, cosmology, orbital dynamics, radio science, geodynamics, and GPS science and others, as well as a session on advanced clock technology.
NASA Technical Reports Server (NTRS)
Kobler, Ben (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)
1992-01-01
This report contains copies of nearly all of the technical papers and viewgraphs presented at the National Space Science Data Center (NSSDC) Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990s.
NASA Experience with UAS Science Applications
NASA Technical Reports Server (NTRS)
Curry, Robert E.; Jennison, Chris
2007-01-01
Viewgraphs of NASA's Unmanned Aerial Systems (UAS) as it applies to Earth science missions is presented. The topics include: 1) Agenda; 2) Background; 3) NASA Science Aircraft Endurance; 4) Science UAS Development Challenges; 5) USCG Alaskan Maritime Surveillance; 6) NOAA/NASA UAV Demonstration Project; 7) Western States Fire Mission; 8) Esperanza Fire Emergency Response; 9) Ikhana (Predator B); 10) UAV Synthetic Aperture Radar (UAVSAR); 11) Global Hawk; and 12) Related Technologies
NSI customer service representatives and user support office: NASA Science Internet
NASA Technical Reports Server (NTRS)
1991-01-01
The NASA Science Internet, (NSI) was established in 1987 to provide NASA's Offices of Space Science and Applications (OSSA) missions with transparent wide-area data connectivity to NASA's researchers, computational resources, and databases. The NSI Office at NASA/Ames Research Center has the lead responsibility for implementing a total, open networking program to serve the OSSA community. NSI is a full-service communications provider whose services include science network planning, network engineering, applications development, network operations, and network information center/user support services. NSI's mission is to provide reliable high-speed communications to the NASA science community. To this end, the NSI Office manages and operates the NASA Science Internet, a multiprotocol network currently supporting both DECnet and TCP/IP protocols. NSI utilizes state-of-the-art network technology to meet its customers' requirements. THe NASA Science Internet interconnects with other national networks including the National Science Foundation's NSFNET, the Department of Energy's ESnet, and the Department of Defense's MILNET. NSI also has international connections to Japan, Australia, New Zealand, Chile, and several European countries. NSI cooperates with other government agencies as well as academic and commercial organizations to implement networking technologies which foster interoperability, improve reliability and performance, increase security and control, and expedite migration to the OSI protocols.
Overview of NASA communications infrastructure
NASA Technical Reports Server (NTRS)
Arnold, Ray J.; Fuechsel, Charles
1991-01-01
The infrastructure of NASA communications systems for effecting coordination across NASA offices and with the national and international research and technological communities is discussed. The offices and networks of the communication system include the Office of Space Science and Applications (OSSA), which manages all NASA missions, and the Office of Space Operations, which furnishes communication support through the NASCOM, the mission critical communications support network, and the Program Support Communications network. The NASA Science Internet was established by OSSA to centrally manage, develop, and operate an integrated computer network service dedicated to NASA's space science and application research. Planned for the future is the National Research and Education Network, which will provide communications infrastructure to enhance science resources at a national level.
Draft Plan for Characterizing Commercial Data Products in Support of Earth Science Research
NASA Technical Reports Server (NTRS)
Ryan, Robert E.; Terrie, Greg; Berglund, Judith
2006-01-01
This presentation introduces a draft plan for characterizing commercial data products for Earth science research. The general approach to the commercial product verification and validation includes focused selection of a readily available commercial remote sensing products that support Earth science research. Ongoing product verification and characterization will question whether the product meets specifications and will examine its fundamental properties, potential and limitations. Validation will encourage product evaluation for specific science research and applications. Specific commercial products included in the characterization plan include high-spatial-resolution multispectral (HSMS) imagery and LIDAR data products. Future efforts in this process will include briefing NASA headquarters and modifying plans based on feedback, increased engagement with the science community and refinement of details, coordination with commercial vendors and The Joint Agency Commercial Imagery Evaluation (JACIE) for HSMS satellite acquisitions, acquiring waveform LIDAR data and performing verification and validation.
NASA Astrophysics Data System (ADS)
Murr, L. E.
2006-07-01
Biological systems and processes have had, and continue to have, important implications and applications in materials extraction, processing, and performance. This paper illustrates some interdisciplinary, biological issues in materials science and engineering. These include metal extraction involving bacterial catalysis, galvanic couples, bacterial-assisted corrosion and degradation of materials, biosorption and bioremediation of toxic and other heavy metals, metal and material implants and prostheses and related dental and medical biomaterials developments and applications, nanomaterials health benefits and toxicity issue, and biomimetics and biologically inspired materials developments. These and other examples provide compelling evidence and arguments for emphasizing biological sicences in materials science and engineering curricula and the implementation of a bio-materials paradigm to facilitate the emergence of innovative interdisciplinarity involving the biological sciences and materials sciences and engineering.
Research and technology at the Lyndon B. Johnson Space Center
NASA Technical Reports Server (NTRS)
1983-01-01
Johnson Space Center accomplishments in new and advanced concepts during 1983 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Advanced Programs tasks funded by the Office of Space Flight; and Solar System Explorations, Life Sciences, and Earth Sciences and Applications research funded by the Office of Space Sciences and Applications. Summary sections describing the role of the Johnson Space Center in each program are followed by one-page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.
The Role of Ambulatory Assessment in Psychological Science.
Trull, Timothy J; Ebner-Priemer, Ulrich
2014-12-01
We describe the current use and future promise of an innovative methodology, ambulatory assessment (AA), that can be used to investigate psychological, emotional, behavioral, and biological processes of individuals in their daily life. The term AA encompasses a wide range of methods used to study people in their natural environment, including momentary self-report, observational, and physiological. We emphasize applications of AA that integrate two or more of these methods, discuss the smart phone as a hub or access point for AA, and discuss future applications of AA methodology to the science of psychology. We pay particular attention to the development and application of Wireless Body Area Networks (WBANs) that can be implemented with smart phones and wireless physiological monitoring devices, and we close by discussing future applications of this approach to matters relevant to psychological science.
A Course for Engineering and Science Students
ERIC Educational Resources Information Center
Companion, A.; Schug, K.
1973-01-01
Discusses the features of a course which emphasizes training of scientists and engineers with broad interdisciplinary knowledge in addition to those with a highly specialized professional preparation. Included is a list of books relating to applications of materials science concepts in general chemistry. (CC)
Promoting Ecohealth through Geography and Governmental Partnerships
Ecohealth is truly interdisciplinary and now includes the relatively new field of exposure science. In 2012, the National Research Council released Exposure Science in the 21st Century: A Vision and a Strategy, in which application of geospatial knowledge and technology such as r...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., education, or technology to give expert advice on the merit of grant applications in such fields, who... least one discipline or area of the food and agricultural sciences. The definition includes a research.... (k) Food and agricultural sciences means basic, applied, and developmental research, extension, and...
Intelligent Computational Systems. Opening Remarks: CFD Application Process Workshop
NASA Technical Reports Server (NTRS)
VanDalsem, William R.
1994-01-01
This discussion will include a short review of the challenges that must be overcome if computational physics technology is to have a larger impact on the design cycles of U.S. aerospace companies. Some of the potential solutions to these challenges may come from the information sciences fields. A few examples of potential computational physics/information sciences synergy will be presented, as motivation and inspiration for the Improving The CFD Applications Process Workshop.
NASA Technical Reports Server (NTRS)
Ng, C. Y. (Editor); Sheu, Y. T. P. (Editor)
1985-01-01
The National Space Science Data Center (NSSDC) provides data from and information about space science and applications flight investigations in support of additional studies beyond those performed as the principal part of any flight mission. The Earth-orbiting spacecraft for investigations of the earth and its atmosphere is discussed. Geodetic tracking data are included in this category. The principal subject areas presented are meteorology and earth resources survey, and the spacecraft selection is made according to those subjects. All experiments on board the spacecraft are described. No attempt is made to reference investigations that are related to the above disciplines, but that are described in other volumes of this series.
An introduction to metabolomics and its potential application in veterinary science.
Jones, Oliver A H; Cheung, Victoria L
2007-10-01
Metabolomics has been found to be applicable to a wide range of fields, including the study of gene function, toxicology, plant sciences, environmental analysis, clinical diagnostics, nutrition, and the discrimination of organism genotypes. This approach combines high-throughput sample analysis with computer-assisted multivariate pattern-recognition techniques. It is increasingly being deployed in toxico- and pharmacokinetic studies in the pharmaceutical industry, especially during the safety assessment of candidate drugs in human medicine. However, despite the potential of this technique to reduce both costs and the numbers of animals used for research, examples of the application of metabolomics in veterinary research are, thus far, rare. Here we give an introduction to metabolomics and discuss its potential in the field of veterinary science.
Assessing the continuum of applications and societal benefits of US CLIVAR science
NASA Astrophysics Data System (ADS)
Ray, A. J.; Garfin, G. M.
2015-12-01
The new US CLIVAR strategic plan seeks to address the challenges of communicating the climate knowledge generated through its activities and to collaborate with the research and operational communities that may use this knowledge for managing climate risks. This presentation provides results of an overview in progress of the continuum of potential applications of climate science organized and coordinated through US CLIVAR. We define applications more broadly than simply ready for operations or direct use, and find that there are several stages in a continuum of readiness for communication and collaboration with communities that use climate information. These stages include: 1) advancing scientific understanding to a readiness for the next research steps aimed at predictable signals; 2) application of understanding climate phenomena in collaboration with a boundary organization, such as NOAA RISAs DOI Climate Science Centers, and USDA Climate Hubs, to understand how predictable signals may be translated into useable products; 3) use of knowledge in risk framing for a decision process, or in a science synthesis, such as the National Climate Assessment, and 4) transitioning new science knowledge into operational products (e.g. R2O), such as intraseasonal climate prediction. In addition, US CLIVAR has sponsored efforts to build science-to-decisions capacity, e.g., the Postdocs Applying Climate Expertise (PACE) program, in its 7th cohort, which has embedded climate experts into decision-making institutions. We will spotlight accomplishments of US CLIVAR science that are ripe for application in communities that are managing climate risks -- such as drought outlooks, MJO forecasting, extremes, and ocean conditions -- for agricultural production, water use, and marine ecosystems. We will use these examples to demonstrate the usefulness of an "applications continuum framework" identifying pathways from research to applications.
NASA Astrophysics Data System (ADS)
Gaskin, J. A.; Smith, I. S.; Jones, W. V.
In 1783, the Montgolfier brothers ushered in a new era of transportation and exploration when they used hot air to drive an un-tethered balloon to an altitude of 2 km. Made of sackcloth and held together with cords, this balloon challenged the way we thought about human travel, and it has since evolved into a robust platform for performing novel science and testing new technologies. Today, high-altitude balloons regularly reach altitudes of 40 km, and they can support payloads that weigh more than 3000 kg. Long-duration balloons can currently support mission durations lasting 55 days, and developing balloon technologies (i.e. Super-Pressure Balloons) are expected to extend that duration to 100 days or longer; competing with satellite payloads. This relatively inexpensive platform supports a broad range of science payloads, spanning multiple disciplines (astrophysics, heliophysics, planetary and earth science). Applications extending beyond traditional science include testing new technologies for eventual space-based application and stratospheric airships for planetary applications.
Publications of the biospheric research program: 1981-1987
NASA Technical Reports Server (NTRS)
Wallace, Janice S. (Editor)
1988-01-01
Presented is a list of publications of investigators supported by the Biospheric Research Program of the Biological Systems Research Branch, Life Sciences Division, and the Office of Space Science and Applications. It includes publications dated as of December 31, 1987 and entered into the Life Sciences Bibliographic Database at the George Washington University. Publications are organized by the year published.
Application of the Reggio Emilia Approach to Early Childhood Science Curriculum.
ERIC Educational Resources Information Center
Stegelin, Dolores A.
2003-01-01
This article focuses on the relevance of the Reggio Emilia approach to early childhood education for science knowledge and content standards for the preK-12 student population. The article includes: (1) a summary of key concepts; (2) a description of the science curriculum standards for K-3 in the United States; and (3) an example of an in-depth…
Using the Learning Cycle To Teach Physical Science: A Hands-on Approach for the Middle Grades.
ERIC Educational Resources Information Center
Beisenherz, Paul; Dantonio, Marylou
The Learning Cycle Strategy enables students themselves to construct discrete science concepts and includes an exploration phase, introduction phase, and application phase. This book focuses on the use of the Learning Cycle to teach physical sciences and is divided into three sections. Section I develops a rationale for the Learning Cycle as an…
Implementation Science: Buzzword or Game Changer?
Douglas, Natalie F; Campbell, Wenonah N; Hinckley, Jacqueline J
2015-12-01
The purpose of this supplement article is to provide a resource of pertinent information concerning implementation science for immediate research application in communication sciences and disorders. Key terminology related to implementation science is reviewed. Practical suggestions for the application of implementation science theories and methodologies are provided, including an overview of hybrid research designs that simultaneously investigate clinical effectiveness and implementation as well as an introduction to approaches for engaging stakeholders in the research process. A detailed example from education is shared to show how implementation science was utilized to move an intervention program for autism into routine practice in the public school system. In particular, the example highlights the value of strong partnership among researchers, policy makers, and frontline practitioners in implementing and sustaining new evidence-based practices. Implementation science is not just a buzzword. This is a new field of study that can make a substantive contribution in communication sciences and disorders by informing research agendas, reducing health and education disparities, improving accountability and quality control, increasing clinician satisfaction and competence, and improving client outcomes.
Social Significance of Fundamental Science Common to all Mankind
NASA Astrophysics Data System (ADS)
Zel'Dovich, Ya. B.
It is a challenge of science to play a great role in solution of the problem of meeting material and spiritual human demands. The argument is known that science has become a productive force. When characterizing economy of one or another country or region, it is a practice to speak about science-intensive works, i.e., those where production and competitiveness are directly related to a science level. The science-intensive works include, for example, production of microelectronic circuits and their application in computer and information science or production of pharmaceutical preparations using gene engineering. This list could be continued indefinitely…
Information Science and the PSI Phenomenon.
ERIC Educational Resources Information Center
Levine, Emil H.
1985-01-01
Relates research in psychical occurrences (PSI) encompassing three types of phenomena--extrasensory perception, psychokinesis, and out-of-body survival after death--to the field of information science. Highlights include concepts facilitating acceptance of PSI, remote viewing, applications of PSI phenomena in the business field, and PSI and…
NASA Technical Reports Server (NTRS)
Cameron, W. S. (Editor); Vostreys, R. W. (Editor)
1982-01-01
Planetary and heliocentric spacecraft, including planetary flybys and probes, are described. Imaging, particles and fields, ultraviolet, infrared, radio science and celestial mechanics, atmospheres, surface chemistry, biology, and polarization are discussed.
PCK: How Teachers Transform Subject Matter Knowledge.
ERIC Educational Resources Information Center
Veal, William R.; van Driel, Jan; Hulshof, Hans
2001-01-01
Review of book on the concept of pedagogical content knowledge (PCK), including chapters reviewing an extensive body of research on the knowledge base for teaching, especially science, and the application of PCK to the design of elementary and secondary school science teacher-education programs. (PKP)
Nanomaterials and nanofabrication for biomedical applications
NASA Astrophysics Data System (ADS)
Cheng, Chao-Min; Chia-Wen Wu, Kevin
2013-08-01
Traditional boundaries between materials science and engineering and life sciences are rapidly disintegrating as interdisciplinary research teams develop new materials-science-based tools for exploring fundamental issues in both medicine and biology. With recent technological advances in multiple research fields such as materials science, cell and molecular biology and micro-/nano-technology, much attention is shifting toward evaluating the functional advantages of nanomaterials and nanofabrication, at the cellular and molecular levels, for specific, biomedically relevant applications. The pursuit of this direction enhances the understanding of the mechanisms of, and therapeutic potentials for, some of the most lethal diseases, including cardiovascular diseases, organ fibrosis and cancers. This interdisciplinary approach has generated great interest among researchers working in a wide variety of communities including industry, universities and research laboratories. The purpose of this focus issue in Science and Technology of Advanced Materials is to bridge nanotechnology and biology with medicine, focusing more on the applications of nanomaterials and nanofabrication in biomedically relevant issues. This focus issue, we believe, will provide a more comprehensive understanding of (i) the preparation of nanomaterials and the underlying mechanisms of nanofabrication, and (ii) the linkage of nanomaterials and nanofabrication with biomedical applications. The multidisciplinary focus issue that we have attempted to organize is of interest to various research fields including biomaterials and tissue engineering, bioengineering, nanotechnology and nanomaterials, i.e. chemistry, physics and engineering. Nanomaterials and nanofabrication topics addressed in this focus issue include sensing and diagnosis (e.g. immunosensing and diagnostic devices for diseases), cellular and molecular biology (e.g. probing cellular behaviors and stem cell differentiation) and drug delivery carriers (e.g. polymers, gold nanoparticles, Prussian blue nanoparticles, mesoporous silica nanoparticles and carbon-based nanomaterials). Here, we would like to show our deep appreciation to all authors and reviewers. Without their great help and contributions, this focus issue, including the review and original papers, would not have been published on schedule. This focus issue may not cover all issues in this emerging scientific field; however, we believe that our efforts have great potential 'to hurl a boulder to draw a jade' and ignite innovation and challenging discussion in the relevant scientific communities.
NASA Astrophysics Data System (ADS)
Weigel, A. M.; Griffin, R.; Bugbee, K.
2015-12-01
Various organizations such as the Group on Earth Observations (GEO) have developed a structure for general thematic areas in Earth science research, however the Climate Data Initiative (CDI) is addressing the challenging goal of organizing such datasets around core themes specifically related to climate change impacts. These thematic areas, which currently include coastal flooding, food resilience, ecosystem vulnerability, water, transportation, energy infrastructure, and human health, form the core of a new college course at the University of Alabama in Huntsville developed around real-world applications in the Earth sciences. The goal of this course is to educate students on the data available and scope of GIS applications in Earth science across the CDI climate themes. Real world applications and datasets serve as a pedagogical tool that provide a useful medium for instruction in scientific geospatial analysis and GIS software. With a wide range of potential research areas that fall under the rubric of "Earth science", thematic foci can help to structure a student's understanding of the potential uses of GIS across sub-disciplines, while communicating core data processing concepts. The learning modules and use-case scenarios for this course demonstrate the potential applications of CDI data to undergraduate and graduate Earth science students.
NASA'S Water Resources Element Within the Applied Sciences Program
NASA Technical Reports Server (NTRS)
Toll, David; Doorn, Bradley; Engman, Edwin
2011-01-01
The NASA Earth Systems Division has the primary responsibility for the Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the NASA Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses major problems facing water resources managers, including having timely and accurate data to drive their decision support tools. It then describes how NASA's science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA's Water Resources Applications Program are described.
Analysis of the Occurrence of "Applications/Replications" in Ten Published Papers
ERIC Educational Resources Information Center
Fahy, Patrick J.
2017-01-01
"Application" or "replication" research, already rare, is diminishing in both quantity and quality, for a variety of reasons ("How science goes wrong," 2013; "For my next trick," 2016). In this study of "replications" and "applications," 351 papers that included a reference to any one of…
Career education attitudes and practices of K-12 science educators
NASA Astrophysics Data System (ADS)
Smith, Walter S.
A random sample of 400 K-12 science educators who were members of the National Science Teachers Association were surveyed regarding their attitude toward and practice of career education in their science teaching. These science teachers rejected a narrowly vocational view, favoring instead a conception of career education which included self-perception, values analysis, and vocational skills objectives. The science educators affirmed the importance of career education for a student's education, asserted career education ought to be taught in their existing science courses, and expressed a willingness to do so. Fewer than one-third of the science teachers, however, reported incorporating career education at least on a weekly basis in their science lessons. The major impediment to including more career education in science teaching was seen to be their lack of knowledge of methods and materials relevant to science career education, rather than objections from students, parents, or administrators; their unwillingness; or their evaluation of career education as unimportant. Thus, in order to improve this aspect of science teaching, science teachers need more concrete information about science career education applications.
2004-09-01
required for a specific application. The list of applications is very extensive and includes: aircraft brakes, electrodes, high temperature molds, rocket...and includes: aircraft brakes, electrodes, high temperature molds, rocket nozzles and exit cones, tires, ink, nuclear reactors and fuel particles...produced. For example carbons can be hard (chars) or soft (blacks), strong (PAN fibers) or weak ( aerogel ), stiff (pitch fibers) or flexible
How We Make Energy Work: Grades 4, 5, 6 Science.
ERIC Educational Resources Information Center
National Science Teachers Association, Washington, DC.
This packet of units is designed to focus on the technological aspects of energy. Four units are presented, with from 1-4 lessons included in each unit. Units include: (1) basic concepts and applications of energy; (2) steps and processes of energy production and transmission; (3) fuel acquisition; and (4) energy futures and application of…
Marketing the Health Sciences Library.
ERIC Educational Resources Information Center
Norman, O. Gene
The basic activities of marketing are discussed, including gathering information and determining needs, designing a program around the elements of the marketing mix, and managing the marketing program. Following a general discussion, applications of the marketing concepts to a health sciences library are described. The administrator of the health…
Geospatial Data Science Research | Geospatial Data Science | NREL
, maps, and tools that determine which energy technologies are viable solutions across the globe ) to manipulate, manage, and analyze multidisciplinary geographic and energy data. The GIS includes of applications and visualizations. Analysis Renewable Energy Technical Potential Renewable Energy
7 CFR 3411.1 - Applicability of regulations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... amended by section 1615 of the Food, Agriculture, Conservation, and Trade Act of 1990 (FACT Act), (7 U.S.C... improve research capabilities in the agricultural, food, and environmental sciences in the following... sources including scientific societies; the National Research Council of the National Academy of Sciences...
Scientific Culture and School Culture: Epistemic and Procedural Components.
ERIC Educational Resources Information Center
Jimenez-Aleixandre, Maria Pilar; Diaz de Bustamante, Joaquin; Duschl, Richard A.
This paper discusses the elaboration and application of "scientific culture" categories to the analysis of students' discourse while solving problems in inquiry contexts. Scientific culture means the particular domain culture of science, the culture of science practitioners. The categories proposed include both epistemic operations and…
Penicillin for Education: How Cognitive Science Can Contribute to Education.
ERIC Educational Resources Information Center
Bruer, John T.
1995-01-01
Education can benefit from knowledge derived from cognitive and developmental psychology. Family demographics have actually improved between 1970 and 90 and so have NAEP scores. Three innovative programs demonstrating cognitive science applications include the Teaching Number Sense elementary math program, reciprocal teaching (reading strategy),…
Study of airborne science experiment management concepts for application to space shuttle, volume 2
NASA Technical Reports Server (NTRS)
Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.
1973-01-01
Airborne research management and shuttle sortie planning at the Ames Research Center are reported. Topics discussed include: basic criteria and procedures for the formulation and approval of airborne missions; ASO management structure and procedures; experiment design, development, and testing aircraft characteristics and experiment interfaces; information handling for airborne science missions; mission documentation requirements; and airborne science methods and shuttle sortie planning.
Expanding Role of Data Science and Bioinformatics in Drug Discovery and Development.
Fingert, Howard J
2018-01-01
Numerous barriers have been identified which detract from successful applications of clinical trial data and platforms. Despite the challenges, opportunities are growing to advance compliance, quality, and practical applications through top-down establishment of guiding principles, coupled with bottom-up approaches to promote data science competencies among data producers. Recent examples of successful applications include modern treatments for hematologic malignancies, developed with support from public-private partnerships, guiding principles for data-sharing, standards for protocol designs and data management, digital technologies, and quality analytics. © 2017 American Society for Clinical Pharmacology and Therapeutics.
Microgravity Science and Applications Program Tasks, 1984 Revision
NASA Technical Reports Server (NTRS)
Pentecost, E. (Compiler)
1985-01-01
This report is a compilation of the active research tasks as of the end of the fiscal year 1984 of the Microgravity Science and Applications Program, NASA-Office of Space Science and Applications, involving several NASA centers and other organizations. The purpose of the document is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The report is structured to include an introductory description of the program, strategy and overall goal; identification of the organizational structures and people involved; and a description of each research task, together with a list of recent publications. The tasks are grouped into six categories: (1) electronic materials; (2) solidification of metals, alloys, and composites; (3) fluid dynamics and transports; (4) biotechnology; (5) glasses and ceramics; and (6) combustion.
Microgravity Science and Applications Program tasks, 1990 revision
NASA Technical Reports Server (NTRS)
1991-01-01
The active research tasks as of the end of the fiscal year 1990 sponsored by the Microgravity Science and Applications Division of the NASA Office of Space Science and Applications are compiled. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The report includes an introductory description of the program, the strategy and overall goal; an index of principle investigators; and a description of each task. A list of recent publications is also provided. The tasks are grouped into six major categories: electronic materials; solidification of metals, alloys, and composites; fluid dynamics and transport phenomena; biotechnology; glasses and ceramics; combustion; experimental technology; facilities; and Physics And Chemistry Experiments (PACE). The tasks are divided into ground-based and flight experiments.
GASPRNG: GPU accelerated scalable parallel random number generator library
NASA Astrophysics Data System (ADS)
Gao, Shuang; Peterson, Gregory D.
2013-04-01
Graphics processors represent a promising technology for accelerating computational science applications. Many computational science applications require fast and scalable random number generation with good statistical properties, so they use the Scalable Parallel Random Number Generators library (SPRNG). We present the GPU Accelerated SPRNG library (GASPRNG) to accelerate SPRNG in GPU-based high performance computing systems. GASPRNG includes code for a host CPU and CUDA code for execution on NVIDIA graphics processing units (GPUs) along with a programming interface to support various usage models for pseudorandom numbers and computational science applications executing on the CPU, GPU, or both. This paper describes the implementation approach used to produce high performance and also describes how to use the programming interface. The programming interface allows a user to be able to use GASPRNG the same way as SPRNG on traditional serial or parallel computers as well as to develop tightly coupled programs executing primarily on the GPU. We also describe how to install GASPRNG and use it. To help illustrate linking with GASPRNG, various demonstration codes are included for the different usage models. GASPRNG on a single GPU shows up to 280x speedup over SPRNG on a single CPU core and is able to scale for larger systems in the same manner as SPRNG. Because GASPRNG generates identical streams of pseudorandom numbers as SPRNG, users can be confident about the quality of GASPRNG for scalable computational science applications. Catalogue identifier: AEOI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOI_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: UTK license. No. of lines in distributed program, including test data, etc.: 167900 No. of bytes in distributed program, including test data, etc.: 1422058 Distribution format: tar.gz Programming language: C and CUDA. Computer: Any PC or workstation with NVIDIA GPU (Tested on Fermi GTX480, Tesla C1060, Tesla M2070). Operating system: Linux with CUDA version 4.0 or later. Should also run on MacOS, Windows, or UNIX. Has the code been vectorized or parallelized?: Yes. Parallelized using MPI directives. RAM: 512 MB˜ 732 MB (main memory on host CPU, depending on the data type of random numbers.) / 512 MB (GPU global memory) Classification: 4.13, 6.5. Nature of problem: Many computational science applications are able to consume large numbers of random numbers. For example, Monte Carlo simulations are able to consume limitless random numbers for the computation as long as resources for the computing are supported. Moreover, parallel computational science applications require independent streams of random numbers to attain statistically significant results. The SPRNG library provides this capability, but at a significant computational cost. The GASPRNG library presented here accelerates the generators of independent streams of random numbers using graphical processing units (GPUs). Solution method: Multiple copies of random number generators in GPUs allow a computational science application to consume large numbers of random numbers from independent, parallel streams. GASPRNG is a random number generators library to allow a computational science application to employ multiple copies of random number generators to boost performance. Users can interface GASPRNG with software code executing on microprocessors and/or GPUs. Running time: The tests provided take a few minutes to run.
NASA Astrophysics Data System (ADS)
Hey, Tony
2002-08-01
After defining what is meant by the term 'e-Science', this talk will survey the activity on e-Science and Grids in Europe. The two largest initiatives in Europe are the European Commission's portfolio of Grid projects and the UK e-Science program. The EU under its R Framework Program are funding nearly twenty Grid projects in a wide variety of application areas. These projects are in varying stages of maturity and this talk will focus on a subset that have most significant progress. These include the EU DataGrid project led by CERN and two projects - EuroGrid and Grip - that evolved from the German national Unicore project. A summary of the other EU Grid projects will be included. The UK e-Science initiative is a 180M program entirely focused on e-Science applications requiring resource sharing, a virtual organization and a Grid infrastructure. The UK program is unique for three reasons: (1) the program covers all areas of science and engineering; (2) all of the funding is devoted to Grid application and middleware development and not to funding major hardware platforms; and (3) there is an explicit connection with industry to produce robust and secure industrial-strength versions of Grid middleware that could be used in business-critical applications. A part of the funding, around 50M, but requiring an additional 'matching' $30M from industry in collaborative projects, forms the UK e-Science 'Core Program'. It is the responsibility of the Core Program to identify and support a set of generic middleware requirements that have emerged from a requirements analysis of the e-Science application projects. This has led to a much more data-centric vision for 'the Grid' in the UK in which access to HPC facilities forms only one element. More important for the UK projects are issues such as enabling access and federation of scientific data held in files, relational databases and other archives. Automatic annotation of data generated by high throughput experiments with XML-based metadata is seen as a key step towards developing higher-level Grid services for information retrieval and knowledge discovery. The talk will conclude with a survey of other Grid initiatives across Europe and look at possible future European projects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykstra, Dave; Garzoglio, Gabriele; Kim, Hyunwoo
As of 2012, a number of US Department of Energy (DOE) National Laboratories have access to a 100 Gb/s wide-area network backbone. The ESnet Advanced Networking Initiative (ANI) project is intended to develop a prototype network, based on emerging 100 Gb/s Ethernet technology. The ANI network will support DOE's science research programs. A 100 Gb/s network test bed is a key component of the ANI project. The test bed offers the opportunity for early evaluation of 100Gb/s network infrastructure for supporting the high impact data movement typical of science collaborations and experiments. In order to make effective use of thismore » advanced infrastructure, the applications and middleware currently used by the distributed computing systems of large-scale science need to be adapted and tested within the new environment, with gaps in functionality identified and corrected. As a user of the ANI test bed, Fermilab aims to study the issues related to end-to-end integration and use of 100 Gb/s networks for the event simulation and analysis applications of physics experiments. In this paper we discuss our findings from evaluating existing HEP Physics middleware and application components, including GridFTP, Globus Online, etc. in the high-speed environment. These will include possible recommendations to the system administrators, application and middleware developers on changes that would make production use of the 100 Gb/s networks, including data storage, caching and wide area access.« less
The Computer's Debt to Science.
ERIC Educational Resources Information Center
Branscomb, Lewis M.
1984-01-01
Discusses discoveries and applications of science that have enabled the computer industry to introduce new technology each year and produce 25 percent more for the customer at constant cost. Potential limits to progress, disc storage technology, programming and end-user interface, and designing for ease of use are considered. Glossary is included.…
NASA Technical Reports Server (NTRS)
1983-01-01
User requirements for space station use are presented for the following areas: space environments, astrophysics, Earth observations, and life science. Also included are a summary of study tasks and final reports, a topical cross reference, key team members, and acronyms and abbreviations.
The Use of Web Search Engines in Information Science Research.
ERIC Educational Resources Information Center
Bar-Ilan, Judit
2004-01-01
Reviews the literature on the use of Web search engines in information science research, including: ways users interact with Web search engines; social aspects of searching; structure and dynamic nature of the Web; link analysis; other bibliometric applications; characterizing information on the Web; search engine evaluation and improvement; and…
Polymer Chemistry. An Activity-Oriented Instructional Module. Volume 1. Bulletin 1840.
ERIC Educational Resources Information Center
Jones, Aline; And Others
This teaching module was developed by the project "Recent Developments in Science and Technology with Applications for Secondary Science Teaching." Premises about students and their learning and generalizations about content are described. Chapters included are: (1) "Introduction"; (2) "Monomers into Polymers"; (3) "Natural Polymers"; (4)…
77 FR 12985 - Proposed Revised Habitat for the Spotted Owl: Minimizing Regulatory Burdens
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-05
... protect public health, welfare, safety, and our environment while promoting economic growth, innovation... applicable law and science; (3) develop clear direction, as part of the final rule, for evaluating logging... science and economics, including those comments that suggest potential methods for minimizing regulatory...
Dynamic Leadership, Character Education Form New FCS Class
ERIC Educational Resources Information Center
Watkins, Carol Ann
2007-01-01
In this article, the author describes the leadership class that she created for the family and consumer sciences (FCS) department. The class, "Family & Consumer Sciences Issues & Applications," focused on family and community action for improved quality of life. It included in-depth laboratory experiences, service learning activities, and the…
Strawman payload data for science and applications space platforms
NASA Technical Reports Server (NTRS)
1980-01-01
The need for a free flying science and applications space platform to host compatible long duration experiment groupings in Earth orbit is discussed. Experiment level information on strawman payload models is presented which serves to identify and quantify the requirements for the space platform system. A description data base on the strawman payload model is presented along with experiment level and group level summaries. Payloads identified in the strawman model include the disciplines of resources observations and environmental observations.
Why Astronomy Should BE Part of the School Curriculum
NASA Astrophysics Data System (ADS)
Percy, John
Why is astronomy useful? Why should it be supported by taxpayers? Why should it be part of the school curriculum? In this paper I will list 20 reasons. They include: cultural historical and philosophical reasons; practical technological and scientific reasons; environmental aesthetic and emotional reasons; and pedagogical reasons. Astronomy can attract young people to science and technology. It can promote public awareness understanding and appreciation of science. It can be done as an inexpensive hobby; ""the stars belong to everyone"". Finally: I will connect the 20 reasons to the expectations of the modern school curriculum: knowledge skills applications and attitudes. In the context of the science curriculum this includes science technology society and environment.
A critical narrative review of transfer of basic science knowledge in health professions education.
Castillo, Jean-Marie; Park, Yoon Soo; Harris, Ilene; Cheung, Jeffrey J H; Sood, Lonika; Clark, Maureen D; Kulasegaram, Kulamakan; Brydges, Ryan; Norman, Geoffrey; Woods, Nicole
2018-06-01
'Transfer' is the application of a previously learned concept to solve a new problem in another context. Transfer is essential for basic science education because, to be valuable, basic science knowledge must be transferred to clinical problem solving. Therefore, better understanding of interventions that enhance the transfer of basic science knowledge to clinical reasoning is essential. This review systematically identifies interventions described in the health professions education (HPE) literature that document the transfer of basic science knowledge to clinical reasoning, and considers teaching and assessment strategies. A systematic search of the literature was conducted. Articles related to basic science teaching at the undergraduate level in HPE were analysed using a 'transfer out'/'transfer in' conceptual framework. 'Transfer out' refers to the application of knowledge developed in one learning situation to the solving of a new problem. 'Transfer in' refers to the use of previously acquired knowledge to learn from new problems or learning situations. Of 9803 articles initially identified, 627 studies were retrieved for full text evaluation; 15 were included in the literature review. A total of 93% explored 'transfer out' to clinical reasoning and 7% (one article) explored 'transfer in'. Measures of 'transfer out' fostered by basic science knowledge included diagnostic accuracy over time and in new clinical cases. Basic science knowledge supported learning - 'transfer in' - of new related content and ultimately the 'transfer out' to diagnostic reasoning. Successful teaching strategies included the making of connections between basic and clinical sciences, the use of commonsense analogies, and the study of multiple clinical problems in multiple contexts. Performance on recall tests did not reflect the transfer of basic science knowledge to clinical reasoning. Transfer of basic science knowledge to clinical reasoning is an essential component of HPE that requires further development for implementation and scholarship. © 2018 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
Some Experiments with Biological Applications for the Elementary Laboratory
ERIC Educational Resources Information Center
Kammer, D. W.; Williams, J. A.
1975-01-01
Summarizes physics laboratory experiments with applications in the biological sciences. Includes the following topics: mechanics of the human arm, fluid flow in tubes, physics of learning, the electrocardiograph, nerve impulse conduction, and corrective lenses for eye defects. (Author/MLH)
Improving Care Teams' Functioning: Recommendations from Team Science.
Fiscella, Kevin; Mauksch, Larry; Bodenheimer, Thomas; Salas, Eduardo
2017-07-01
Team science has been applied to many sectors including health care. Yet there has been relatively little attention paid to the application of team science to developing and sustaining primary care teams. Application of team science to primary care requires adaptation of core team elements to different types of primary care teams. Six elements of teams are particularly relevant to primary care: practice conditions that support or hinder effective teamwork; team cognition, including shared understanding of team goals, roles, and how members will work together as a team; leadership and coaching, including mutual feedback among members that promotes teamwork and moves the team closer to achieving its goals; cooperation supported by an emotionally safe climate that supports expression and resolution of conflict and builds team trust and cohesion; coordination, including adoption of processes that optimize efficient performance of interdependent activities among team members; and communication, particularly regular, recursive team cycles involving planning, action, and debriefing. These six core elements are adapted to three prototypical primary care teams: teamlets, health coaching, and complex care coordination. Implementation of effective team-based models in primary care requires adaptation of core team science elements coupled with relevant, practical training and organizational support, including adequate time to train, plan, and debrief. Training should be based on assessment of needs and tasks and the use of simulations and feedback, and it should extend to live action. Teamlets represent a potential launch point for team development and diffusion of teamwork principles within primary care practices. Copyright © 2017 The Joint Commission. Published by Elsevier Inc. All rights reserved.
Donders, Yvonne
2011-11-01
After having received little attention over the past decades, one of the least known human rights--the right to enjoy the benefits of scientific progress and its applications--has had its dust blown off. Although included in the Universal Declaration of Human Rights (UDHR) and in the International Covenant on Economic, Social and Cultural Rights (ICESCR)--be it at the very end of both instruments -this right hardly received any attention from States, UN bodies and programmes and academics. The role of science in societies and its benefits and potential danger were discussed in various international fora, but hardly ever in a human rights context. Nowadays, within a world that is increasingly turning to science and technology for solutions to persistent socio-economic and development problems, the human dimension of science also receives increased attention, including the human right to enjoy the benefits of scientific progress and its applications. This contribution analyses the possible legal obligations of States in relation to the right to enjoy the benefits of scientific progress and its applications, in particular as regards health.
Silicon Carbide (SiC) MOSFET-based Full-Bridge for Fusion Science Applications
NASA Astrophysics Data System (ADS)
Ziemba, Timothy; Miller, Kenneth; Prager, James; Picard, Julian; Hashim, Akel
2014-10-01
Switching power amplifiers (SPAs) have a wide variety of applications within the fusion science community, including feedback and control systems for dynamic plasma stabilization in tokamaks, inductive and arc plasma sources, Radio Frequency (RF) helicity and flux injection, RF plasma heating and current drive schemes, ion beam generation, and RF pre-ionizer systems. SiC MOSFETs offer many advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities. When comparing SiC and traditional silicon-based MOSFETs, SiC MOSFETs provide higher current carrying capability allowing for smaller package weights and sizes and lower operating temperature. Eagle Harbor Technologies (EHT) is designing, constructing, and testing a SiC MOSFET-based full-bridge SPA. EHT will leverage the proprietary gate drive technology previously developed with the support of a DOE SBIR, which will enable fast, efficient switching in a small form factor. The primary goal is to develop a SiC MOSFET-based SPA for fusion science applications. Work supported in part by the DOE under Contract Number DE-SC0011907.
NASA Global Hawk Project Update and Future Plans: A New Tool for Earth Science Research
NASA Technical Reports Server (NTRS)
Naftel, Chris
2009-01-01
Science objectives include: First demonstration of the Global Hawk unmanned aircraft system (UAS) for NASA and NOAA Earth science research and applications; Validation of instruments on-board the Aura satellite; Exploration of trace gases, aerosols, and dynamics of remote upper Troposphere/lower Stratosphere regions; Sample polar vortex fragments and atmospheric rivers; Risk reduction for future missions that will study hurricanes and atmospheric rivers.
Optical Communications in Support of Science from the Moon, Mars, and Beyond
NASA Technical Reports Server (NTRS)
Edwards, Bernard L.
2005-01-01
Optical communications can provide high speed communications throughout the solar system. Enable new science missions and human exploration. The technology suitable for near-earth optical communications, including communications to and from the Moon, is different than for deep space optical. NASA could leverage DoD investments for near-earth applications, including the moon. NASA will have to develop its own technology for deep space. The Mars laser communication demonstration is a pathfinder. NASA,s science mission directorate, under the leadership of Dr. Barry Geldzahler, is developing a roadmap for the development of deep space optical communications.
Research and technology, 1993. Salute to Skylab and Spacelab: Two decades of discovery
NASA Technical Reports Server (NTRS)
1993-01-01
A summary description of Skylab and Spacelab is presented. The section on Advanced Studies includes projects in space science, space systems, commercial use of space, and transportation systems. Within the Research Programs area, programs are listed under earth systems science, space physics, astrophysics, and microgravity science and applications. Technology Programs include avionics, materials and manufacturing processes, mission operations, propellant and fluid management, structures and dynamics, and systems analysis and integration. Technology transfer opportunities and success are briefly described. A glossary of abbreviations and acronyms is appended as is a list of contract personnel within the program areas.
NASA Technical Reports Server (NTRS)
Horowitz, Richard; Ross, Patricia A.; King, Joseph H.
1989-01-01
The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA, and other U.S. government agencies. This volume contains the Master Index. The following spacecraft are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.
Application of Nanotechnology in Food Science: Perception and Overview.
Singh, Trepti; Shukla, Shruti; Kumar, Pradeep; Wahla, Verinder; Bajpai, Vivek K
2017-01-01
Recent innovations in nanotechnology have transformed a number of scientific and industrial areas including the food industry. Applications of nanotechnology have emerged with increasing need of nanoparticle uses in various fields of food science and food microbiology, including food processing, food packaging, functional food development, food safety, detection of foodborne pathogens, and shelf-life extension of food and/or food products. This review summarizes the potential of nanoparticles for their uses in the food industry in order to provide consumers a safe and contamination free food and to ensure the consumer acceptability of the food with enhanced functional properties. Aspects of application of nanotechnology in relation to increasing in food nutrition and organoleptic properties of foods have also been discussed briefly along with a few insights on safety issues and regulatory concerns on nano-processed food products.
The Third Annual NASA Science Internet User Working Group Conference
NASA Technical Reports Server (NTRS)
Lev, Brian S. (Editor); Gary, J. Patrick (Editor)
1993-01-01
The NASA Science Internet (NSI) User Support Office (USO) sponsored the Third Annual NSI User Working Group (NSIUWG) Conference March 30 through April 3, 1992, in Greenbelt, MD. Approximately 130 NSI users attended to learn more about the NSI, hear from projects which use NSI, and receive updates about new networking technologies and services. This report contains material relevant to the conference; copies of the agenda, meeting summaries, presentations, and descriptions of exhibitors. Plenary sessions featured a variety of speakers, including NSI project management, scientists, and NSI user project managers whose projects and applications effectively use NSI, and notable citizens of the larger Internet community. The conference also included exhibits of advanced networking applications; tutorials on internetworking, computer security, and networking technologies; and user subgroup meetings on the future direction of the conference, networking, and user services and applications.
Application of Nanotechnology in Food Science: Perception and Overview
Singh, Trepti; Shukla, Shruti; Kumar, Pradeep; Wahla, Verinder; Bajpai, Vivek K.; Rather, Irfan A.
2017-01-01
Recent innovations in nanotechnology have transformed a number of scientific and industrial areas including the food industry. Applications of nanotechnology have emerged with increasing need of nanoparticle uses in various fields of food science and food microbiology, including food processing, food packaging, functional food development, food safety, detection of foodborne pathogens, and shelf-life extension of food and/or food products. This review summarizes the potential of nanoparticles for their uses in the food industry in order to provide consumers a safe and contamination free food and to ensure the consumer acceptability of the food with enhanced functional properties. Aspects of application of nanotechnology in relation to increasing in food nutrition and organoleptic properties of foods have also been discussed briefly along with a few insights on safety issues and regulatory concerns on nano-processed food products. PMID:28824605
NASA Technical Reports Server (NTRS)
Cameron, Winifred Sawtell (Editor); Vostreys, Robert W. (Editor)
1988-01-01
The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of planetary and heliocentric spacecraft and associated experiments. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also included.
The Rise and Development of Physics in Cuba: An Interview with Hugo Pérez Rojas in May 2009
NASA Astrophysics Data System (ADS)
Baracca, Angelo
Hugo Celso Pérez Rojas was born in 1938, and works as a senior researcher at the Institute of Cybernetics, Mathematics and Physics, at the Ministry of Science and Technology, Cuba. Pérez Rojas is emeritus member of the Academy of Sciences of Cuba, member of the Latin American Academy of Sciences and Fellow TWAS since 1994. He was one of the founders of the School of Physics in the University of Havana in 1962, and moved in 1971 to the Cuban Academy of Sciences. His national awards include the Rafael Maria Mendive and Carlos J. Finlay Medals. He was awarded in 2011 the National Prize in Physics from the Cuban Physical Society. His interests include quantum field theory and its applications to finite temperature problems in high-energy physics and condensed matter. Among these, Pérez Rojas has devoted special attention to quantum electrodynamics in matter and in vacuum in the presence of external fields, phase transitions in electroweak theory, relativistic quantum Hall effect, Bose-Einstein condensation in magnetic fields, and applications of physics to social sciences. He is interviewed here by Angelo Baracca in May 2009.
Planetary Science Enabled by High Power Ion Propulsion Systems from NASA's Prometheus Program
NASA Astrophysics Data System (ADS)
Cooper, John
2004-11-01
NASA's Prometheus program seeks to develop new generations of spacecraft nuclear-power and ion propulsion systems for applications to future planetary missions. The Science Definition Team for the first mission in the Prometheus series, the Jupiter Icy Moons Orbiter (JIMO), has defined science objectives for in-situ orbital exploration of the icy Galilean moons (Europa, Ganymede, Callisto) and the Jovian magnetosphere along with remote observations of Jupiter's atmosphere and aurorae, the volcanic moon Io, and other elements of the Jovian system. Important to this forum is that JIMO power and propulsion systems will need to be designed to minimize magnetic, radio, neutral gas, and plasma backgrounds that might otherwise interfere with achievement of mission science objectives. Another potential Prometheus mission of high science interest would be an extended tour of primitive bodies in the solar system, including asteroids, Jupiter family comets, Centaurs, and Kuiper Belt Objects (KBO). The final landed phase of this mission might include an active keplerian experiment for detectable (via downlink radio doppler shift) acceleration of a small kilometer-size Centaur or KBO object, likely the satellite of a larger object observable from Earth. This would have obvious application to testing of mitigation techniques for Earth impact hazards.
NASA EOSDIS: Enabling Science by Improving User Knowledge
NASA Technical Reports Server (NTRS)
Lindsay, Francis; Brennan, Jennifer; Blumenfeld, Joshua
2016-01-01
Lessons learned and impacts of applying these newer methods are explained and include several examples from our current efforts such as the interactive, on-line webinars focusing on data discovery and access including tool usage, informal and informative data chats with data experts across our EOSDIS community, data user profile interviews with scientists actively using EOSDIS data in their research, and improved conference and meeting interactions via EOSDIS data interactively used during hyper-wall talks and Worldview application. The suite of internet-based, interactive capabilities and technologies has allowed our project to expand our user community by making the data and applications from numerous Earth science missions more engaging, approachable and meaningful.
Diverse Applications of Electronic-Nose Technologies in Agriculture and Forestry
Wilson, Alphus D.
2013-01-01
Electronic-nose (e-nose) instruments, derived from numerous types of aroma-sensor technologies, have been developed for a diversity of applications in the broad fields of agriculture and forestry. Recent advances in e-nose technologies within the plant sciences, including improvements in gas-sensor designs, innovations in data analysis and pattern-recognition algorithms, and progress in material science and systems integration methods, have led to significant benefits to both industries. Electronic noses have been used in a variety of commercial agricultural-related industries, including the agricultural sectors of agronomy, biochemical processing, botany, cell culture, plant cultivar selections, environmental monitoring, horticulture, pesticide detection, plant physiology and pathology. Applications in forestry include uses in chemotaxonomy, log tracking, wood and paper processing, forest management, forest health protection, and waste management. These aroma-detection applications have improved plant-based product attributes, quality, uniformity, and consistency in ways that have increased the efficiency and effectiveness of production and manufacturing processes. This paper provides a comprehensive review and summary of a broad range of electronic-nose technologies and applications, developed specifically for the agriculture and forestry industries over the past thirty years, which have offered solutions that have greatly improved worldwide agricultural and agroforestry production systems. PMID:23396191
Diverse applications of electronic-nose technologies in agriculture and forestry.
Wilson, Alphus D
2013-02-08
Electronic-nose (e-nose) instruments, derived from numerous types of aroma-sensor technologies, have been developed for a diversity of applications in the broad fields of agriculture and forestry. Recent advances in e-nose technologies within the plant sciences, including improvements in gas-sensor designs, innovations in data analysis and pattern-recognition algorithms, and progress in material science and systems integration methods, have led to significant benefits to both industries. Electronic noses have been used in a variety of commercial agricultural-related industries, including the agricultural sectors of agronomy, biochemical processing, botany, cell culture, plant cultivar selections, environmental monitoring, horticulture, pesticide detection, plant physiology and pathology. Applications in forestry include uses in chemotaxonomy, log tracking, wood and paper processing, forest management, forest health protection, and waste management. These aroma-detection applications have improved plant-based product attributes, quality, uniformity, and consistency in ways that have increased the efficiency and effectiveness of production and manufacturing processes. This paper provides a comprehensive review and summary of a broad range of electronic-nose technologies and applications, developed specifically for the agriculture and forestry industries over the past thirty years, which have offered solutions that have greatly improved worldwide agricultural and agroforestry production systems.
Introduction (Special Issue on Scientific Balloon Capabilities and Instrumentation)
NASA Technical Reports Server (NTRS)
Gaskin, Jessica A.; Smith, I. S.; Jones, W. V.
2014-01-01
In 1783, the Montgolfier brothers ushered in a new era of transportation and exploration when they used hot air to drive an un-tethered balloon to an altitude of 2 km. Made of sackcloth and held together with cords, this balloon challenged the way we thought about human travel, and it has since evolved into a robust platform for performing novel science and testing new technologies. Today, high-altitude balloons regularly reach altitudes of 40 km, and they can support payloads that weigh more than 3,000 kg. Long-duration balloons can currently support mission durations lasting 55 days, and developing balloon technologies (i.e. Super-Pressure Balloons) are expected to extend that duration to 100 days or longer; competing with satellite payloads. This relatively inexpensive platform supports a broad range of science payloads, spanning multiple disciplines (astrophysics, heliophysics, planetary and earth science.) Applications extending beyond traditional science include testing new technologies for eventual space-based application and stratospheric airships for planetary applications.
Cross section measurements at LANSCE for defense, science and applications
Nelson, Ronald O.; Schwengner, R.; Zuber, K.
2015-05-28
The Los Alamos Neutron Science Center (LANSCE) has three neutron sources that are used for nuclear science measurements. These sources are driven by an 800 MeV proton linear accelerator and cover an energy range from sub-thermal to hundreds of MeV. Research at the facilities is performed under the auspices of a US DOE user program under which research proposals are rated for merit by a program advisory committee and are scheduled based on merit and availability of beam time. A wide variety of instruments is operated at the neutron flight paths at LANSCE including neutron detector arrays, gamma-ray detector arrays,more » fission fragment detectors, and charged particle detectors. These instruments provide nuclear data for multiple uses that range from increasing knowledge in fundamental science to satisfying data needs for diverse applications such as nuclear energy, global security, and industrial applications. In addition, highlights of recent research related to cross sections measurements are presented, and future research initiatives are discussed.« less
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1988-01-01
The Office of Space Operation (OSO) tasks addressed include: Deep Space Network (DSN) advanced systems and systems implementation. The Office of Space Science and Applications (OSSA) tasks discussed include SETI data controllers and simulated performance for narrowband signal detection.
Nano-Science-Engineering-Technology Applications to Food and Nutrition.
Nakajima, Mitsutoshi; Wang, Zheng; Chaudhry, Qasim; Park, Hyun Jin; Juneja, Lekh R
2015-01-01
Nanoscale Science, Engineering and Technology are applied to Food and Nutrition. Various delivery systems include nanoemulsions, microemulsions, solid lipid nanoparticles, micelles, and liposomes. The nanoscale systems have advantages, such as higher bioavailabitity, and other physicochemical properties. The symposium will provide an overview of the formulation, characterization, and utilization of nanotechnology-based food and nutrition.
Fire science application and integration in support of decision making
Tom Zimmerman
2011-01-01
Wildland fire management in the United States has historically been a challenging and complex program governed by a multitude of factors including situational status, objectives, operational capability, science and technology, and changes and advances in all these factors. The improvement and advancement of risk-informed decision making has the potential to improve...
A Guide to Federal Funding in the Social Sciences.
ERIC Educational Resources Information Center
Ficklen, Myra
This guide is intended to help colleges and universities identify sources of federal funding in the social sciences. Brief summaries of federal program grants for institutions and for individuals are provided. Each summary includes a description of the grant, the amount of money available, and deadlines for applications. Grants for research and…
"Science in Society, Omnibus Pack, Readers M-P."
ERIC Educational Resources Information Center
Association for Science Education, Cambridge (England).
Four additional readers have been written for use in the Science in Society general studies project. Three of the readers discuss the applications and importance of engineering in the world. They include: Engineering 1 (Reader M), which discusses such topics as the role of engineering in society, structural design and engineering, the engineering…
Social Sciences in Forestry. A Current Selected Bibliography and Index. No. 69.
ERIC Educational Resources Information Center
Albrecht, Jean, Ed.
1986-01-01
This is the eighth issue of "Social Sciences in Forestry," which provides a current annotated bibliographic listing of references related to four major areas of forestry. The main categories include: (1) applications to forestry at large (containing citings on resources, history, legislation, policy, planning, appraisal and valuation,…
Science, Technology, and Society: A Perspective on the Enhancement of Scientific Education
ERIC Educational Resources Information Center
Courville, Keith
2009-01-01
(Purpose) This literature review discusses the history and application of science, technology, and society (STS) teaching methodologies. (Findings) Topics addressed in this paper include: (1) developmental history of STS; (2) fundamental beliefs of STS practitioners; (3) STS methodology in the classroom; (4) Difficulty in implementing STS; (5) STS…
Comparing Levels of School Performance to Science Teachers' Reports on Knowledge
ERIC Educational Resources Information Center
Kerr, Rebecca
2013-01-01
The purpose of this descriptive quantitative and basic qualitative study was to examine fifth and eighth grade science teachers' responses, perceptions of the role of technology in the classroom, and how they felt that computer applications, tools, and the Internet influence student understanding. The purposeful sample included survey and…
77 FR 31356 - Pesticide Products; Receipt of Applications To Register New Uses
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-25
... Number: EPA-HQ-OPP-2012- 0241. Company name and address: Bayer CropScience LP, 2 T. W. Alexander Drive.... Registration Number: 264-825. Docket Number: EPA-HQ-OPP-2012- 0325. Company name and address: Bayer CropScience... pesticide manufacturer. Potentially affected entities may include, but are not limited to: Crop production...
The Importance of Place: Advances in Science and Application
Linda E. Kruger; Pamela J. Jakes
2003-01-01
The concept of place is introduced and an orientation to place literature is provided. Following the introduction, an overview is given of the papers in this special issue of Forest Science. The papers included in this issue were presented at the 2000 International Symposium on Society and Resource Management in Bellingham, Washington.
The importance of place: advances in science and application.
Linda E. Kruger; Pamela J. Jakes
2003-01-01
The concept of place is introduced and an orientation to place literature is provided. Following the introduction, an overview is given of the papers in this special issue of Forest Science. The papers included in this issue were presented at the 2000 International Symposium on Society and Resource Management in Bellingham, Washington.
SAMS-II Requirements and Operations
NASA Technical Reports Server (NTRS)
Wald, Lawrence W.
1998-01-01
The Space Acceleration Measurements System (SAMS) II is the primary instrument for the measurement, storage, and communication of the microgravity environment aboard the International Space Station (ISS). SAMS-II is being developed by the NASA Lewis Research Center Microgravity Science Division to primarily support the Office of Life and Microgravity Science and Applications (OLMSA) Microgravity Science and Applications Division (MSAD) payloads aboard the ISS. The SAMS-II is currently in the test and verification phase at NASA LeRC, prior to its first hardware delivery scheduled for July 1998. This paper will provide an overview of the SAMS-II instrument, including the system requirements and topology, physical and electrical characteristics, and the Concept of Operations for SAMS-II aboard the ISS.
Supporting Energy-Related Societal Applications Using NASA's Satellite and Modeling Data
NASA Technical Reports Server (NTRS)
Stackhouse, Paul W., Jr.; Whitlock, C. H.; Chandler, W. S.; Hoell, J. M.; Zhang, T.; Mikovitz, J. C.; Leng, G. S.; Lilienthal, P.
2006-01-01
Improvements to NASA Surface Meteorology and Solar Energy (SSE) web site are now being made through the Prediction of Worldwide Energy Resource (POWER) project under NASA Science Mission Directorate Applied Science Energy Management Program. The purpose of this project is to tailor NASA Science Mission results for energy sector applications and decision support systems. The current status of SSE and research towards upgrading estimates of total, direct and diffuse solar irradiance from NASA satellite measurements and analysis are discussed. Part of this work involves collaborating with partners such as the National Renewable Energy Laboratory (NREL) and the Natural Resources Canada (NRCan). Energy Management and POWER plans including historic, near-term and forecast datasets are also overviewed.
NASA Technical Reports Server (NTRS)
Smith, Paul H.
1988-01-01
The Computer Science Program provides advanced concepts, techniques, system architectures, algorithms, and software for both space and aeronautics information sciences and computer systems. The overall goal is to provide the technical foundation within NASA for the advancement of computing technology in aerospace applications. The research program is improving the state of knowledge of fundamental aerospace computing principles and advancing computing technology in space applications such as software engineering and information extraction from data collected by scientific instruments in space. The program includes the development of special algorithms and techniques to exploit the computing power provided by high performance parallel processors and special purpose architectures. Research is being conducted in the fundamentals of data base logic and improvement techniques for producing reliable computing systems.
Click Chemistry, a Powerful Tool for Pharmaceutical Sciences
Hein, Christopher D.; Liu, Xin-Ming; Wang, Dong
2008-01-01
Click chemistry refers to a group of reactions that are fast, simple to use, easy to purify, versatile, regiospecific, and give high product yields. While there are a number of reactions that fulfill the criteria, the Huisgen 1,3-dipolar cycloaddition of azides and terminal alkynes has emerged as the frontrunner. It has found applications in a wide variety of research areas, including materials sciences, polymer chemistry, and pharmaceutical sciences. In this manuscript, important aspects of the Huisgen cycloaddition will be reviewed, along with some of its many pharmaceutical applications. Bioconjugation, nanoparticle surface modification, and pharmaceutical-related polymer chemistry will all be covered. Limitations of the reaction will also be discussed. PMID:18509602
Nuclear Science References Database
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pritychenko, B., E-mail: pritychenko@bnl.gov; Běták, E.; Singh, B.
2014-06-15
The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center (http://www.nndc.bnl.gov/nsr) and the International Atomic Energymore » Agency (http://www-nds.iaea.org/nsr)« less
Topological Insulators: A New Platform for Fundamental Science and Applications
NASA Astrophysics Data System (ADS)
Bansil, Arun
2013-03-01
Topological insulators constitute a new phase of quantum matter whose recent discovery has focused world-wide attention on wide-ranging phenomena in materials driven by spin-orbit coupling effects well beyond their traditional role in determining magnetic properties. I will discuss how by exploiting electronic structure techniques we have been able to predict and understand the characteristics of many new classes of binary, ternary and quaternary topologically interesting systems. The flexibility of chemical, structural and magnetic parameters so obtained is the key ingredient for exploring fundamental science questions, including novel spin-textures and exotic superconducting states, as well as for the realization of multi-functional topological devices for thermoelectric, spintronics, information processing and other applications. I will also highlight new insights that have been enabled through our material-specific modeling of angle-resolved photoemission (ARPES) and scanning tunneling (STS) spectroscopies of topological surface states, including effects of the photoemission and tunneling matrix element, which is well-known to be important for a robust interpretation of various highly resolved spectroscopies. Work supported by the Materials Science & Engineering Division, Basic Energy Sciences, U. S. D. O. E.
Presentation Stations of the General Atomics Fusion Educational Program
NASA Astrophysics Data System (ADS)
Lee, R. L.; Fusion Group Education Outreach Team
1996-11-01
The General Atomics Fusion Group's Educational Program has been actively promoting fusion science and applications throughout San Diego County's secondary school systems for over three years. The educational program allows many students to learn more about nuclear fusion science, its applications, and what it takes to become an active participant in an important field of study. It also helps educators to better understand how to teach fusion science in their classroom. Tours of the DIII--D facility are a centerpiece of the program. Over 1000 students visited the DIII--D research facility during the 1995--1996 school year for a half-day of presentations, discussions, and hands-on learning. Interactive presentations are provided at six different stations by GA scientists and engineers to small groups of students during the tours. Stations include topics on energy, plasma science, the electromagnetic spectrum, radiation and risk assessment, and data acquisition. Included also is a tour of the DIII--D machine hall and model where students can see and discuss many aspects of the tokamak. Portions of each station will be presented and discussed.
Exploring Science Applications for Unmanned Aircraft Systems Aboard UNOLS Ships
NASA Astrophysics Data System (ADS)
Bailey, R.; Lachenmeier, T.; Hatfield, M. C.
2014-12-01
The University of Alaska Fairbanks has been expanding the use of small Unmanned Aircraft Systems (UAS) for science support from a variety of ships for several years. The ease and safety of flying from research vessels offers the science community lower cost access to overhead surveys of marine mammals without impact on sensitive populations, monitoring of AUV operations and collection of transmitted data, extensive surveys of sea ice during formation, melt, and sea temperatures through multiple seasons. As FAA expands access to the Arctic airspace over the Chukchi, Beaufort, and Bering Seas, the opportunities to employ UAS in science applications will become easier to exploit. This presentation describes the changes coming through new FAA rules, through the Alaska FAA Test Site, the Pan-Pacific UAS Test Range Complex which includes Oregon and Hawaii, and even Iceland. Airspace access advances associated with recent operations including the NASA-sponsored MIZOPEX, whale detection, and forming sea ice work in October will be presented, as well as a glider UAS connected to very high altitude balloons collecting atmospheric data. Development of safety procedures for use of UAS on UNOLS ships will be discussed.
NASA Technical Reports Server (NTRS)
Hegde, Mahabaleshwara; Strub, Richard F.; Lynnes, Christopher S.; Fang, Hongliang; Teng, William
2008-01-01
Mirador is a web interface for searching Earth Science data archived at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Mirador provides keyword-based search and guided navigation for providing efficient search and access to Earth Science data. Mirador employs the power of Google's universal search technology for fast metadata keyword searches, augmented by additional capabilities such as event searches (e.g., hurricanes), searches based on location gazetteer, and data services like format converters and data sub-setters. The objective of guided data navigation is to present users with multiple guided navigation in Mirador is an ontology based on the Global Change Master directory (GCMD) Directory Interchange Format (DIF). Current implementation includes the project ontology covering various instruments and model data. Additional capabilities in the pipeline include Earth Science parameter and applications ontologies.
Microgravity Program strategic plan, 1991
NASA Technical Reports Server (NTRS)
1991-01-01
The all encompassing objective of the NASA Microgravity Program is the use of space as a lab to conduct research and development. The on-orbit microgravity environment, with its substantially reduced buoyancy forces, hydrostatic pressures, and sedimentation, enables the conduction of scientific studies not possible on Earth. This environment allows processes to be isolated and controlled with an accuracy that cannot be obtained in the terrestrial environment. The Microgravity Science and Applications Div. has defined three major science categories in order to develop a program structure: fundamental science, including the study of the behavior of fluids, transport phenomena, condensed matter physics, and combustion science; materials science, including electronic and photonic materials, metals and alloys, and glasses and ceramics; and biotechnology, focusing on macromolecular crystal growth as well as cell and molecular science. Experiments in these areas seek to provide observations of complex phenomena and measurements of physical attributes with a precision that is enabled by the microgravity environment.
Space medicine research publications: 1984-1986
NASA Technical Reports Server (NTRS)
Wallace, Janice S.
1988-01-01
A list is given of the publications of investigators supported by the Biomedical Research and Clinical Medicine Programs of the Space Medicine and Biology Branch, Life Sciences Division, Office of Space Science and Applications. It includes publications entered into the Life Sciences Bibliographic Database by the George Washington University as of December 31, 1986. Publications are organized into the following subject areas: Clinical Medicine, Space Human Factors, Musculoskeletal, Radiation and Environmental Health, Regulatory Physiology, Neuroscience, and Cardiopulmonary.
Cumulative reports and publications
NASA Technical Reports Server (NTRS)
1993-01-01
A complete list of Institute for Computer Applications in Science and Engineering (ICASE) reports are listed. Since ICASE reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available. The major categories of the current ICASE research program are: applied and numerical mathematics, including numerical analysis and algorithm development; theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and computer science.
Post-genomics nanotechnology is gaining momentum: nanoproteomics and applications in life sciences.
Kobeissy, Firas H; Gulbakan, Basri; Alawieh, Ali; Karam, Pierre; Zhang, Zhiqun; Guingab-Cagmat, Joy D; Mondello, Stefania; Tan, Weihong; Anagli, John; Wang, Kevin
2014-02-01
The post-genomics era has brought about new Omics biotechnologies, such as proteomics and metabolomics, as well as their novel applications to personal genomics and the quantified self. These advances are now also catalyzing other and newer post-genomics innovations, leading to convergences between Omics and nanotechnology. In this work, we systematically contextualize and exemplify an emerging strand of post-genomics life sciences, namely, nanoproteomics and its applications in health and integrative biological systems. Nanotechnology has been utilized as a complementary component to revolutionize proteomics through different kinds of nanotechnology applications, including nanoporous structures, functionalized nanoparticles, quantum dots, and polymeric nanostructures. Those applications, though still in their infancy, have led to several highly sensitive diagnostics and new methods of drug delivery and targeted therapy for clinical use. The present article differs from previous analyses of nanoproteomics in that it offers an in-depth and comparative evaluation of the attendant biotechnology portfolio and their applications as seen through the lens of post-genomics life sciences and biomedicine. These include: (1) immunosensors for inflammatory, pathogenic, and autoimmune markers for infectious and autoimmune diseases, (2) amplified immunoassays for detection of cancer biomarkers, and (3) methods for targeted therapy and automatically adjusted drug delivery such as in experimental stroke and brain injury studies. As nanoproteomics becomes available both to the clinician at the bedside and the citizens who are increasingly interested in access to novel post-genomics diagnostics through initiatives such as the quantified self, we anticipate further breakthroughs in personalized and targeted medicine.
Research Management--Of What Nature Is the Concept?
ERIC Educational Resources Information Center
Cook, Desmond L.
Research management is defined as the application of both management and management science to a particular field of research and development activities. Seven components of research management include theory and methodology; the planning, implementation, and evaluation of research programs; communications; utilization; and special applications.…
78 FR 64916 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-30
...., light to heat), crystallization, melting, phase transformations, fracture, and other dynamic events. The... Sciences University, 1120 15th Street, Augusta, GA 30912. Instrument: Imaging System/Digital Microscope... the instrument include fast wavelength change, a dichromotome system, and two different light sources...
Computer Series, 15: Bits and Pieces, 4.
ERIC Educational Resources Information Center
Moore, John W., Ed.
1981-01-01
Supplies short descriptions of several computer applications in the college science classroom and laboratory, including: applications; interfacing and data collection with the TRS-80; programs for activity corrections in acid/base and precipitation titration curve calculations; computer-assisted data analysis of enzyme kinetics; and microcomputer…
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - STS-107 David Brown chats with the Closeout Crew during final preparations of his launch and entry suit in the White Room. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. The hatch is seen in the background right. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
2003-01-16
KENNEDY SPACE CENTER, FLA. - STS-107 David Brown chats with the Closeout Crew during final preparations of his launch and entry suit in the White Room. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. The hatch is seen in the background right. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
2003-01-16
KENNEDY SPACE CENTER, FLA. - STS-107 Mission Specialist Laurel Clark waves to a camera out of view during final preparations of her launch and entry suit in the White Room. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. The hatch is seen in the background right. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- STS-107 Mission Specialist Kalpana Chawla gets help with her launch and entry suit from the Closeout Crew in the White Room. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. The hatch is seen in the background right. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- STS-107 Payload Commander Michael Anderson gets help with his launch and entry suit from the Closeout Crew in the White Room. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. Behind him is Pilot William "Willie" McCool. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
2003-01-16
KENNEDY SPACE CENTER, FLA. - STS-107 Pilot William "Willie" McCool (center) gets help with his launch and entry suit from the Closeout Crew in the White Room. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. In the foreground, left, is Mission Specialist David Brown. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
Application of Solar-Electric Propulsion to Robotic and Human Missions in Near-Earth Space
NASA Technical Reports Server (NTRS)
Woodcock, Gordon R.; Dankanich, John
2011-01-01
Interest in applications of solar electric propulsion (SEP) is increasing. Application of SEP technology is favored when: (1) the mission is compatible with low-thrust propulsion, (2) the mission needs high total delta V such that chemical propulsion is disadvantaged; and (3) performance enhancement is needed. If all such opportunities for future missions are considered, many uses of SEP are likely. Representative missions are surveyed and several SEP applications selected for analysis, including orbit raising, lunar science, lunar exploration, lunar exploitation, planetary science, and planetary exploration. These missions span SEP power range from 10s of kWe to several MWe. Modes of use and benefits are described, and potential SEP evolution is discussed.
Application of Solar-Electric Propulsion to Robotic and Human Missions in Near-Earth Space
NASA Technical Reports Server (NTRS)
Woodcock, Gordon R.; Dankanich, John
2006-01-01
Interest in applications of solar electric propulsion (SEP) is increasing. Application of SEP technology is favored when: (1) the mission is compatible with low-thrust propulsion, (2) the mission needs high total delta V such that chemical propulsion is disadvantaged; and (3) performance enhancement is needed. If all such opportunities for future missions are considered, many uses of SEP are likely. Representative missions are surveyed and several SEP applications selected for analysis, including orbit raising, lunar science, lunar exploration, lunar exploitation, planetary science, and planetary exploration. These missions span SEP power range from 10s of kWe to several MWe. Modes of use and benefits are described, and potential SEP evolution is discussed.
NASA Technical Reports Server (NTRS)
Green, Robert O.; Hook, Simon J.; Middleton, Elizabeth; Turner, Woody; Ungar, Stephen; Knox, Robert
2012-01-01
The NASA HyspIRI mission is planned to provide global solar reflected energy spectroscopic measurement of the terrestrial and shallow water regions of the Earth every 19 days will all measurements downlinked. In addition, HyspIRI will provide multi-spectral thermal measurements with a single band in the 4 micron region and seven bands in the 8 to 12 micron region with 5 day day/night coverage. A direct broadcast capability for measurement subsets is also planned. This HyspIRI mission is one of those designated in the 2007 National Research Council (NRC) Decadal Survey: Earth Science and Applications from Space. In the Decadal Survey, HyspIRI was recognized as relevant to a range of Earth science and science applications, including climate: "A hyperspectral sensor (e.g., FLORA) combined with a multispectral thermal sensor (e.g., SAVII) in low Earth orbit (LEO) is part of an integrated mission concept [described in Parts I and II] that is relevant to several panels, especially the climate variability panel." The HyspIRI science study group was formed in 2008 to evaluate and refine the mission concept. This group has developed a series of HyspIRI science objectives: (1) Climate: Ecosystem biochemistry, condition & feedback; spectral albedo; carbon/dust on snow/ice; biomass burning; evapotranspiration (2) Ecosystems: Global plant functional types, physiological condition, and biochemistry including agricultural lands (3) Fires: Fuel status, fire frequency, severity, emissions, and patterns of recovery globally (4) Coral reef and coastal habitats: Global composition and status (5) Volcanoes: Eruptions, emissions, regional and global impact (6) Geology and resources: Global distributions of surface mineral resources and improved understanding of geology and related hazards These objectives are achieved with the following measurement capabilities. The HyspIRI imaging spectrometer provides: full spectral coverage from 380 to 2500 at 10 nm sampling; 60 m spatial sampling with a 150 km swath; and fully downlinked coverage of the Earth's terrestrial and shallow water regions every 19 days to provide seasonal cloud-free coverage of the terrestrial surface. The HyspIRI Multi-Spectral Thermal instrument provides: 8 spectral bands from 4 to 12 microns; 60 m spatial sampling with a 600 km swath; and fully downlinked coverage of the Earth's terrestrial shallow water regions every 5 days (day/night) to provide nominally cloud-free monthly coverage. The HyspIRI mission also includes an on-board processing and direct broadcast capability, referred to as the Intelligent Payload Module (IPM), which will allow users with the appropriate antenna to download a subset of the HyspIRI data stream to a local ground station. These science and science application objectives are critical today and uniquely addressed by the combined imaging spectroscopy, thermal infrared measurements, and IPM direct broadcast capability of HyspIRI. Two key objectives are: (1) The global HyspIRI spectroscopic measurements of the terrestrial biosphere including vegetation composition and function to constrain and reduce the uncertainty in climate-carbon interactions and terrestrial biosphere feedback. (2) The global 8 band thermal measurements to provide improved constraint of fire related emissions. In this paper the current HyspIRI mission concept that has been reviewed and refined to its current level of maturity with a Data Products Symposium, Science Workshop and NASA HWorkshop is presented including traceability between the measurements and the science and science application objectives.
Application of atomic force microscopy as a nanotechnology tool in food science.
Yang, Hongshun; Wang, Yifen; Lai, Shaojuan; An, Hongjie; Li, Yunfei; Chen, Fusheng
2007-05-01
Atomic force microscopy (AFM) provides a method for detecting nanoscale structural information. First, this review explains the fundamentals of AFM, including principle, manipulation, and analysis. Applications of AFM are then reported in food science and technology research, including qualitative macromolecule and polymer imaging, complicated or quantitative structure analysis, molecular interaction, molecular manipulation, surface topography, and nanofood characterization. The results suggested that AFM could bring insightful knowledge on food properties, and the AFM analysis could be used to illustrate some mechanisms of property changes during processing and storage. However, the current difficulty in applying AFM to food research is lacking appropriate methodology for different food systems. Better understanding of AFM technology and developing corresponding methodology for complicated food systems would lead to a more in-depth understanding of food properties at macromolecular levels and enlarge their applications. The AFM results could greatly improve the food processing and storage technologies.
PREFACE: The 15th International Conference on X-ray Absorption Fine Structure (XAFS15)
NASA Astrophysics Data System (ADS)
Wu, Z. Y.
2013-04-01
The 15th International Conference on X-ray Absorption Fine Structure (XAFS15) was held on 22-28 July 2012 in Beijing, P. R. China. About 340 scientists from 34 countries attended this important international event. Main hall Figure 1. Main hall of XAFS15. The rapidly increasing application of XAFS to the study of a large variety of materials and the operation of the new SR source led to the first meeting of XAFS users in 1981 in England. Following that a further 14 International Conferences have been held. Comparing a breakdown of attendees according to their national origin, it is clear that participation is spreading to include attendees from more and more countries every year. The strategy of development in China of science and education is increasing quickly thanks to the large investment in scientific and technological research and infrastructure. There are three Synchrotron Radiation facilities in mainland China, Hefei Light Source (HLS) in the National Natural Science Foundation of China (NSRL), Beijing Synchrotron Radiation Facility (BSRF) in the Institute of High Energy Physics, and Shanghai Synchrotron Radiation Facility (SSRF) in the Shanghai Institute of Applied Physics. More than 10000 users and over 5000 proposals run at these facilities. Among them, many teams from the USA, Japan, German, Italy, Russia, and other countries. More than 3000 manuscript were published in SCI journals, including (incomplete) Science (7), Nature (10), Nature Series (7), PNAS (3), JACS (12), Angew. Chem. Int. Ed. (15), Nano Lett. (2), etc. In XAFS15, the participants contributed 18 plenary invited talks, 16 parallel invited talks, 136 oral presentations, 12 special talks, and 219 poster presentations. Wide communication was promoted in the conference halls, the classical banquet restaurant, and the Great Wall. Parallel hallCommunicationPoster room Figure 2. Parallel hallFigure 3. CommunicationFigure 4. Poster room This volume contains 136 invited and contributed papers, accepted after a rigorous peer review procedure. A group of about 90 outstanding scientists in the field reviewed and suggested revisions of the manuscripts to improve scientific presentation. As a result, we believe the entire volume has reached a high standard. The 19 topics covered are listed as follows: Theory Data analysis New technology and devices of XAFS Applications in Nano science and technology Applications in Life Science Applications in Chemistry Applications in Catalytic Science Applications in Surface and Interface Science Applications in Material Science Applications in Energy and Environmental Science Applications in Magnetic and Related Material Science Applications in Nuclear Science Applications in Disordered Systems Applications in Extreme Conditions Applications for Time-resolved experiments XMCD technology and its applications Advanced methods (e.g., new coherent sources and spectroscopic imaging techniques) XAFS combined with other experimental methods Other related studies We hope this volume will be a useful reference for the ongoing scientific activity in XAFS. We would also like to express our sincere appreciation to the sponsors for their generous support: Chinese Academy of Science, National Natural Science Foundation of China, China Center of Advanced Science and Technology World Laboratory, University of Science and Technology of China, National Synchrotron Radiation Laboratory, Institute of High Energy Physics Chinese Academy of Sciences, and our commercial sponsors (AREVA, Xi'an Action Power Electric Co., Ltd). Finally, we would like to acknowledge the entire local organizing staff (names are given below) and particularly the collaborators and members of the XAS group at the National Natural Science Foundation of China and Institute of High Energy Physics Chinese Academy of Sciences for their efforts to make the XAFS15 conference a success. Ziyu Wu Chair of the Conference and Proceedings Editor Hefei, P. R. China, 28 September 2012 Committees and Staff Chair of the Conference Ziyu Wu International Advisory Committee Adam Hitchcock, Canada Adriano Filipponi, Italy Alain Manceau, France Alexander Soldatov, Russia Andrea Di Cicco, Italy Britt Hedman, USA Bruce Bunker, USA Calogero R. Natoli, Italy Christopher T. Chantler, Australia Frank M. F. De Groot, Netherlands Hiroyuki Oyanagi, Japan Ingolf Lindau, USA J. Mustre de Leon, México James E Penner-Hahn, USA Joaquin Garcia Ruiz, Spain John Evans, UK John J. Rehr, USA Kiyotaka Asakura, Japan Majed Chergui, Switzerland Mark Newton, UK Shiqiang Wei, P. R. China Tsun-Kong Sham, Canada Ziyu Wu, P. R. China International Program Committee Antonio Bianconi, Italy Augusto Marcelli, Italy Emad Flear Aziz, Germany Jinghua Guo, USA Joly Yves, France Masaharu Nomura, Japan Maurizio Benfatto, Italy Pieter Glatzel, France Shiqiang Wei, China Tiandou Hu, China Toshihiko Yokoyama, Japan Way-Faung Pong, Taiwan Xinyi Zhang, China Yi Xie, China Yuying Huang, China Zhonghua Wu, China Ziyu Wu, China Local Organizing Committee Bo He Fengchun Hu Haifeng Zhao Jing Zhang Meijuan Yu Qin Yu Shuo Zhang Wangsheng Chu Wei He Wei Xu Wensheng Yan Xiaomei Gong Xing Chen Yang Zou Yi Xia Zheng Jiang Zhi Xie Zhihu Sun Zhiyun Pan Additional Staff Chengxun Liu
NASA Technical Reports Server (NTRS)
Estes, John E.; Smith, Terence; Star, Jeffrey L.
1987-01-01
Information Sciences Research Group (ISRG) research continues to focus on improving the type, quantity, and quality of information which can be derived from remotely sensed data. Particular focus in on the needs of the remote sensing research and application science community which will be served by the Earth Observing System (EOS) and Space Station, including associated polar and co-orbiting platforms. The areas of georeferenced information systems, machine assisted information extraction from image data, artificial intelligence and both natural and cultural vegetation analysis and modeling research will be expanded.
Design of Mariner 9 Science Sequences using Interactive Graphics Software
NASA Technical Reports Server (NTRS)
Freeman, J. E.; Sturms, F. M, Jr.; Webb, W. A.
1973-01-01
This paper discusses the analyst/computer system used to design the daily science sequences required to carry out the desired Mariner 9 science plan. The Mariner 9 computer environment, the development and capabilities of the science sequence design software, and the techniques followed in the daily mission operations are discussed. Included is a discussion of the overall mission operations organization and the individual components which played an essential role in the sequence design process. A summary of actual sequences processed, a discussion of problems encountered, and recommendations for future applications are given.
Diffraction radiation generators
NASA Astrophysics Data System (ADS)
Shestopalov, Viktor P.; Vertii, Aleksei A.; Ermak, Gennadii P.; Skrynnik, Boris K.; Khlopov, Grigorii I.; Tsvyk, Aleksei I.
Research in the field of diffraction radiation generators (DRG) conducted at the Radio Physics and electronics Institute of the Ukranian Academy of Sciences over the past 25 years is reviewed. The effect of diffraction radiation is analyzed in detail, and various operating regimes of DRGs are discussed. The discussion then focuses on the principal requirements for the design of packaged DRGs and their principal parameters. Finally, applications of DRGs in various fields of science and technology are reviewed, including such applications as DRG spectroscopy, diagnostics of plasma, biological specimens, and vibration, and DRG radar systems.
Cambié, Dario; Bottecchia, Cecilia; Straathof, Natan J W; Hessel, Volker; Noël, Timothy
2016-09-14
Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous reactants. In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment. In addition, the advantages of continuous-flow photochemistry are pointed out and a thorough comparison with batch processing is presented.
Pika: A snow science simulation tool built using the open-source framework MOOSE
NASA Astrophysics Data System (ADS)
Slaughter, A.; Johnson, M.
2017-12-01
The Department of Energy (DOE) is currently investing millions of dollars annually into various modeling and simulation tools for all aspects of nuclear energy. An important part of this effort includes developing applications based on the open-source Multiphysics Object Oriented Simulation Environment (MOOSE; mooseframework.org) from Idaho National Laboratory (INL).Thanks to the efforts of the DOE and outside collaborators, MOOSE currently contains a large set of physics modules, including phase-field, level set, heat conduction, tensor mechanics, Navier-Stokes, fracture and crack propagation (via the extended finite-element method), flow in porous media, and others. The heat conduction, tensor mechanics, and phase-field modules, in particular, are well-suited for snow science problems. Pika--an open-source MOOSE-based application--is capable of simulating both 3D, coupled nonlinear continuum heat transfer and large-deformation mechanics applications (such as settlement) and phase-field based micro-structure applications. Additionally, these types of problems may be coupled tightly in a single solve or across length and time scales using a loosely coupled Picard iteration approach. In addition to the wide range of physics capabilities, MOOSE-based applications also inherit an extensible testing framework, graphical user interface, and documentation system; tools that allow MOOSE and other applications to adhere to nuclear software quality standards. The snow science community can learn from the nuclear industry and harness the existing effort to build simulation tools that are open, modular, and share a common framework. In particular, MOOSE-based multiphysics solvers are inherently parallel, dimension agnostic, adaptive in time and space, fully coupled, and capable of interacting with other applications. The snow science community should build on existing tools to enable collaboration between researchers and practitioners throughout the world, and advance the state-of-the-art in line with other scientific research efforts.
NASA Technical Reports Server (NTRS)
McQuillen, John; Green, Robert D.; Henrie, Ben; Miller, Teresa; Chiaramonte, Fran
2014-01-01
The Physical Science Informatics (PSI) system is the next step in this an effort to make NASA sponsored flight data available to the scientific and engineering community, along with the general public. The experimental data, from six overall disciplines, Combustion Science, Fluid Physics, Complex Fluids, Fundamental Physics, and Materials Science, will present some unique challenges. Besides data in textual or numerical format, large portions of both the raw and analyzed data for many of these experiments are digital images and video, requiring large data storage requirements. In addition, the accessible data will include experiment design and engineering data (including applicable drawings), any analytical or numerical models, publications, reports, and patents, and any commercial products developed as a result of the research. This objective of paper includes the following: Present the preliminary layout (Figure 2) of MABE data within the PSI database. Obtain feedback on the layout. Present the procedure to obtain access to this database.
Earth Science Mobile App Development for Non-Programmers
NASA Astrophysics Data System (ADS)
Oostra, D.; Crecelius, S.; Lewis, P.; Chambers, L. H.
2012-08-01
A number of cloud based visual development tools have emerged that provide methods for developing mobile applications quickly and without previous programming experience. The MY NASA DATA (MND) team would like to begin a discussion on how we can best leverage current mobile app technologies and available Earth science datasets. The MY NASA DATA team is developing an approach based on two main ideas. The first is to teach our constituents how to create mobile applications that interact with NASA datasets; the second is to provide web services or Application Programming Interfaces (APIs) that create sources of data that educators, students and scientists can use in their own mobile app development. This framework allows data providers to foster mobile application development and interaction while not becoming a software clearing house. MY NASA DATA's research has included meetings with local data providers, educators, libraries and individuals. A high level of interest has been identified from initial discussions and interviews. This overt interest combined with the marked popularity of mobile applications in our societies has created a new channel for outreach and communications with and between the science and educational communities.
Microgravity science and applications bibliography, 1988 revision
NASA Technical Reports Server (NTRS)
1989-01-01
The Microgravity Science and Applications (MSA) Bibliography is a compilation of government reports, contractor reports, conference proceedings, and journal articles dealing with flight experiments utilizing a low-gravity environment to elucidate and control various processes or with ground-based activities that provide supporting research. It encompasses literature published but not cited in the 1984 Revision and the literature which was published in the past year. Subdivisions of the bibliography include: electronic materials; metals, alloys, and composites; fluid dynamics and transports; biotechnology; glass and ceramics; and combustion. Also included are publications from the European, Soviet, and Japanese MSA programs. In addition, there is a list of patents and appendices providing a compilation of anonymously authored collections of reports and a cross reference index.
Flight project data book, 1991
NASA Technical Reports Server (NTRS)
1991-01-01
The Office of Space Science and Applications (OSSA) is responsible for planning, directing, executing, and evaluating that part of the overall NASA program that has as its goal the use of the unique characteristics of the space environment to conduct a scientific study of the universe, to solve practical problems on Earth, and to provide the scientific research foundation for expanding human presence beyond Earth into the solar system. OSSA manages the development of NASA's flight instrumentation for space science and applications including free flying spacecraft, Shuttle and Space Station payloads, and the suborbital sounding rockets, balloons, and aircraft programs. A summary is provided of future flight missions, including those approved and currently under development and those which appear in the OSSA strategic plan.
1st International Nuclear Science and Technology Conference 2014 (INST2014)
NASA Astrophysics Data System (ADS)
2015-04-01
Nuclear technology has played an important role in many aspects of our lives, including agriculture, energy, materials, medicine, environment, forensics, healthcare, and frontier research. The International Nuclear Science and Technology Conference (INST) aims to bring together scientists, engineers, academics, and students to share knowledge and experiences about all aspects of nuclear sciences. INST has evolved from a series of national conferences in Thailand called Nuclear Science and Technology (NST) Conference, which has been held for 11 times, the first being in 1986. INST2014 was held in August 2014 and hosted by Thailand Institute of Nuclear Technology (TINT). The theme was "Driving the future with nuclear technology". The conference working language was English. The proceedings were peer reviewed and considered for publication. The topics covered in the conference were: • Agricultural and food applications [AGR] • Environmental applications [ENV] • Radiation processing and industrial applications [IND] • Medical and nutritional applications [MED] • Nuclear physics and engineering [PHY] • Nuclear and radiation safety [SAF] • Other related topics [OTH] • Device and instrument presentation [DEV] Awards for outstanding oral and poster presentations will be given to qualified students who present their work during the conference.
Perspectives on Imaging: Advanced Applications. Introduction and Overview.
ERIC Educational Resources Information Center
Lynch, Clifford A.; Lunin, Lois F.
1991-01-01
Provides an overview of six articles that address relationships between electronic imaging technology and information science. Articles discuss the areas of technology; applications in the fields of visual arts, medicine, and textile history; conceptual foundations; and future visions, including work in virtual reality and cyberspace. (LRW)
Fifth Annual Workshop on Space Operations Applications and Research (SOAR 1991), volume 2
NASA Technical Reports Server (NTRS)
Krishen, Kumar (Editor)
1992-01-01
Papers given at the Space Operations and Applications Symposium, host by the NASA Johnson Space Center on July 9-11, 1991 are given. The technical areas covered included intelligent systems, automation and robotics, human factors and life sciences, and environmental interactions.
Microgravity Science and Applications Program tasks, 1987 revision
NASA Technical Reports Server (NTRS)
1988-01-01
A compilation is presented of the active research tasks as of the end of the FY87 of the Microgravity Science and Applications Program, NASA-Office of Space Science and Applications, involving several NASA centers and other organizations. An overview is provided of the program scope for managers and scientists in industry, university, and government communities. An introductory description is provided of the program along with the strategy and overall goal, identification of the organizational structures and people involved, and a description of each task. A list of recent publications is also provided. The tasks are grouped into six major categories: Electronic Materials; Solidification of Metals, Alloys, and Composites; Fluid Dynamics and Transport Phenomena; Biotechnology; Glasses and Ceramics; and Combustion. Other categories include Experimental Technology, General Studies and Surveys; Foreign Government Affiliations; Industrial Affiliations; and Physics and Chemistry Experiments (PACE). The tasks are divided into ground based and flight experiments.
An Overview of R in Health Decision Sciences.
Jalal, Hawre; Pechlivanoglou, Petros; Krijkamp, Eline; Alarid-Escudero, Fernando; Enns, Eva; Hunink, M G Myriam
2017-10-01
As the complexity of health decision science applications increases, high-level programming languages are increasingly adopted for statistical analyses and numerical computations. These programming languages facilitate sophisticated modeling, model documentation, and analysis reproducibility. Among the high-level programming languages, the statistical programming framework R is gaining increased recognition. R is freely available, cross-platform compatible, and open source. A large community of users who have generated an extensive collection of well-documented packages and functions supports it. These functions facilitate applications of health decision science methodology as well as the visualization and communication of results. Although R's popularity is increasing among health decision scientists, methodological extensions of R in the field of decision analysis remain isolated. The purpose of this article is to provide an overview of existing R functionality that is applicable to the various stages of decision analysis, including model design, input parameter estimation, and analysis of model outputs.
Enhancements to the Redmine Database Metrics Plug in
2017-08-01
management web application has been adopted within the US Army Research Laboratory’s Computational and Information Sciences Directorate as a database...Metrics Plug-in by Terry C Jameson Computational and Information Sciences Directorate, ARL Approved for public... information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
Enhancing the Scientific Process with Artificial Intelligence: Forest Science Applications
Ronald E. McRoberts; Daniel L. Schmoldt; H. Michael Rauscher
1991-01-01
Forestry, as a science, is a process for investigating nature. It consists of repeatedly cycling through a number of steps, including identifying knowledge gaps, creating knowledge to fill them, and organizing, evaluating, and delivering this knowledge. Much of this effort is directed toward creating abstract models of natural phenomena. The cognitive techniques of AI...
The psychological science of addiction.
Gifford, Elizabeth; Humphreys, Keith
2007-03-01
To discuss the contributions and future course of the psychological science of addiction. The psychology of addiction includes a tremendous range of scientific activity, from the basic experimental laboratory through increasingly broad relational contexts, including patient-practitioner interactions, families, social networks, institutional settings, economics and culture. Some of the contributions discussed here include applications of behavioral principles, cognitive and behavioral neuroscience and the development and evaluation of addiction treatment. Psychology has at times been guilty of proliferating theories with relatively little pruning, and of overemphasizing intrapersonal explanations for human behavior. However, at its best, defined as the science of the individual in context, psychology is an integrated discipline using diverse methods well-suited to capture the multi-dimensional nature of addictive behavior. Psychology has a unique ability to integrate basic experimental and applied clinical science and to apply the knowledge gained from multiple levels of analysis to the pragmatic goal of reducing the prevalence of addiction.
2011-02-01
subject matter experts, to analysis of laboratory samples during V2010. Significance: The MECSS project produced more than 195 scientific reports...represents the sum of knowledge related to project management and includes best practises and techniques generally accepted by the project...2011-03 2.2.1 Science Town Science Town is the moniker for a multi-agency, mobile laboratory capability that brings together world
NASA Technical Reports Server (NTRS)
Ding, Feng; Keim, Elaine; Hearty, Thomas J.; Wei, Jennifer; Savtchenko, Andrey; Theobald, Michael; Vollmer, Bruce
2016-01-01
The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the home of processing, archiving, and distribution services for NASA sounders: the present Aqua AIRS mission and the succeeding SNPP CrIS mission. The AIRS mission is entering its 15th year of global observations of the atmospheric state, including temperature and humidity profiles, outgoing longwave radiation, cloud properties, and trace gases. The GES DISC, in collaboration with the AIRS Project, released product from the version 6 algorithm in early 2013. Giovanni, a Web-based application developed by the GES DISC, provides a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data without having to download the data. Most important variables from version 6 AIRS product are available in Giovanni. We are developing a climatology product using 14-year AIRS retrievals. The study can be a good start for the long term climatology from NASA sounders: the AIRS and the succeeding CrIS. This presentation will show the impacts to the climatology product from different aggregation methods. The climatology can serve climate science and application communities in data visualization and analysis, which will be demonstrated using a variety of functions in version 4 Giovanni. The highlights of these functions include user-defined monthly and seasonal climatology, inter annual seasonal time series, anomaly analysis.
NASA Astrophysics Data System (ADS)
Ding, F.; Keim, E.; Hearty, T. J., III; Wei, J. C.; Savtchenko, A.; Theobald, M.; Vollmer, B.
2016-12-01
The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the home of processing, archiving, and distribution services for NASA sounders: the present Aqua AIRS mission and the succeeding SNPP CrIS mission. The AIRS mission is entering its 15th year of global observations of the atmospheric state, including temperature and humidity profiles, outgoing longwave radiation, cloud properties, and trace gases. The GES DISC, in collaboration with the AIRS Project, released product from the version 6 algorithm in early 2013. Giovanni, a Web-based application developed by the GES DISC, provides a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data without having to download the data. Most important variables from version 6 AIRS product are available in Giovanni. We are developing a climatology product using 14-year AIRS retrievals. The study can be a good start for the long term climatology from NASA sounders: the AIRS and the succeeding CrIS. This presentation will show the impacts to the climatology product from different aggregation methods. The climatology can serve climate science and application communities in data visualization and analysis, which will be demonstrated using a variety of functions in version 4 Giovanni. The highlights of these functions include user-defined monthly and seasonal climatology, inter annual seasonal time series, anomaly analysis.
Visiting Scholars Program Application | FNLCR Staging
Below are scientific areas and programs that the Frederick National Labisactively seeking scholars to participate: Data Science and Information Technology (including Bioinformatics, Visualization, etc) Advanced Preclinical Researc
Science in the regulatory setting: a challenging but incompatible mix?
Yetley, Elizabeth A
2007-01-01
Regulatory decisions informed by sound science have an important role in many regulatory applications involving drugs and foods, including applications related to dietary supplements. However, science is only one of many factors that must be taken into account in the regulatory decision-making process. In many cases, the scientific input to a regulatory decision must compete with other factors (e.g. economics, legal requirements, stakeholder interests) for impact on the resultant policy decision. Therefore, timely and effective articulation of the available science to support a regulatory decision can significantly affect the relative weight given to science. However, the incorporation of science into the regulatory process for dietary supplements is often fraught with challenges. The available scientific evidence has rarely been designed for the purpose of addressing regulatory questions and is often preliminary and of widely varying scientific quality. To add to the confusion, the same scientific evidence may result in what appears to be different regulatory decisions because the context in which the science is used differs. The underlying assumption is that scientists who have a basic understanding of the interface between science and policy decisions can more effectively provide scientific input into these decisions.
NASA Astrophysics Data System (ADS)
Alameda, J. C.
2011-12-01
Development and optimization of computational science models, particularly on high performance computers, and with the advent of ubiquitous multicore processor systems, practically on every system, has been accomplished with basic software tools, typically, command-line based compilers, debuggers, performance tools that have not changed substantially from the days of serial and early vector computers. However, model complexity, including the complexity added by modern message passing libraries such as MPI, and the need for hybrid code models (such as openMP and MPI) to be able to take full advantage of high performance computers with an increasing core count per shared memory node, has made development and optimization of such codes an increasingly arduous task. Additional architectural developments, such as many-core processors, only complicate the situation further. In this paper, we describe how our NSF-funded project, "SI2-SSI: A Productive and Accessible Development Workbench for HPC Applications Using the Eclipse Parallel Tools Platform" (WHPC) seeks to improve the Eclipse Parallel Tools Platform, an environment designed to support scientific code development targeted at a diverse set of high performance computing systems. Our WHPC project to improve Eclipse PTP takes an application-centric view to improve PTP. We are using a set of scientific applications, each with a variety of challenges, and using PTP to drive further improvements to both the scientific application, as well as to understand shortcomings in Eclipse PTP from an application developer perspective, to drive our list of improvements we seek to make. We are also partnering with performance tool providers, to drive higher quality performance tool integration. We have partnered with the Cactus group at Louisiana State University to improve Eclipse's ability to work with computational frameworks and extremely complex build systems, as well as to develop educational materials to incorporate into computational science and engineering codes. Finally, we are partnering with the lead PTP developers at IBM, to ensure we are as effective as possible within the Eclipse community development. We are also conducting training and outreach to our user community, including conference BOF sessions, monthly user calls, and an annual user meeting, so that we can best inform the improvements we make to Eclipse PTP. With these activities we endeavor to encourage use of modern software engineering practices, as enabled through the Eclipse IDE, with computational science and engineering applications. These practices include proper use of source code repositories, tracking and rectifying issues, measuring and monitoring code performance changes against both optimizations as well as ever-changing software stacks and configurations on HPC systems, as well as ultimately encouraging development and maintenance of testing suites -- things that have become commonplace in many software endeavors, but have lagged in the development of science applications. We view that the challenge with the increased complexity of both HPC systems and science applications demands the use of better software engineering methods, preferably enabled by modern tools such as Eclipse PTP, to help the computational science community thrive as we evolve the HPC landscape.
Metal-free and Oxygen-free Graphene as Oxygen Reduction Catalysts for Highly Efficient Fuel Cells
2013-06-30
electrocatalysts for ORR in fuel cells and other applications, including dye-sensitized solar cells (DSSCs). Introduction Instead of burning...fuel cells and other applications, including dye-sensitized solar cells (DSSCs). 15. SUBJECT TERMS nano materials, nano science and technology...dye sensitized solar cells (DSSCs) have attracted much attention since Oregan and Grätzel’s seminal report in 1991. A typical DSSC device consists
Gao, Wei; Guo, Shu-Zhen; Han, Li-Wei; Zhang, Feng-Zhu
2016-10-01
The paper reviewed the sponsorship and final reports of projects focus on Science of Chinese materia medica resource in Medical Science Department, National Natural Science Foundation of China. The applicant and supportive organizations were analyzed. The progress and results of some projects were summarized by research fields including formation mechanism of Dao-di herbs, research of plant taxonomy, breeding and cultivation of medical plants, ecological and environmental adaptability of Chinese materia medica resource, quality assessment of Chinese materia medica resource, and biosynthesis and regulation of active compounds. In addition, the potential problems and the most and least focused areas in the application were summarized for reference. Copyright© by the Chinese Pharmaceutical Association.
NASA Astrophysics Data System (ADS)
Lee, C. M.
2016-02-01
The NASA Applied Sciences Program plays a unique role in facilitating access to remote sensing-based water information derived from US federal assets towards the goal of improving science and evidence-based decision-making in water resources management. The Water Resources Application Area within NASA Applied Sciences works specifically to develop and improve water data products to support improved management of water resources, with partners who are faced with real-world constraints and conditions including cost and regulatory standards. This poster will highlight the efforts and collaborations enabled by this program that have resulted in integration of remote sensing-based information for water quality modeling and monitoring within an operational context.
NASA Astrophysics Data System (ADS)
Lee, C. M.
2016-12-01
The NASA Applied Sciences Program plays a unique role in facilitating access to remote sensing-based water information derived from US federal assets towards the goal of improving science and evidence-based decision-making in water resources management. The Water Resources Application Area within NASA Applied Sciences works specifically to develop and improve water data products to support improved management of water resources, with partners who are faced with real-world constraints and conditions including cost and regulatory standards. This poster will highlight the efforts and collaborations enabled by this program that have resulted in integration of remote sensing-based information for water quality modeling and monitoring within an operational context.
Space Science at Los Alamos National Laboratory
NASA Astrophysics Data System (ADS)
Smith, Karl
2017-09-01
The Space Science and Applications group (ISR-1) in the Intelligence and Space Research (ISR) division at the Los Alamos National Laboratory lead a number of space science missions for civilian and defense-related programs. In support of these missions the group develops sensors capable of detecting nuclear emissions and measuring radiations in space including γ-ray, X-ray, charged-particle, and neutron detection. The group is involved in a number of stages of the lifetime of these sensors including mission concept and design, simulation and modeling, calibration, and data analysis. These missions support monitoring of the atmosphere and near-Earth space environment for nuclear detonations as well as monitoring of the local space environment including space-weather type events. Expertise in this area has been established over a long history of involvement with cutting-edge projects continuing back to the first space based monitoring mission Project Vela. The group's interests cut across a large range of topics including non-proliferation, space situational awareness, nuclear physics, material science, space physics, astrophysics, and planetary physics.
The AIRS Applications Pipeline, from Identification to Visualization to Distribution
NASA Astrophysics Data System (ADS)
Ray, S. E.; Pagano, T. S.; Fetzer, E. J.; Lambrigtsen, B.; Teixeira, J.
2014-12-01
The Atmospheric Infrared Sounder (AIRS) on NASA's Aqua spacecraft has been returning daily global observations of Earth's atmospheric constituents and properties since 2002. AIRS provides observations of temperature and water vapor along the atmospheric column and is sensitive to many atmospheric constituents in the mid-troposphere, including carbon monoxide, carbon dioxide and ozone. With a 12-year data record and daily, global observations in near real-time, we are finding that AIRS data can play a role in applications that fall under most of the NASA Applied Sciences focus areas. Currently in development are temperature inversion maps that can potentially correlate to respiratory health problems, dengue fever and West Nile virus outbreak prediction maps, maps that can be used to make assessments of air quality, and maps of volcanic ash burden. This poster will communicate the Project's approach and efforts to date of its applications pipeline, which includes identifying applications, utilizing science expertise, hiring outside experts to assist with development and dissemination, visualization along application themes, and leveraging existing NASA data frameworks and organizations to facilitate archiving and distribution. In addition, a new web-based browse tool being developed by the AIRS Project for easy access to application product imagery will also be described.
Nano Entry System for CubeSat-Class Payloads Project (Nano-ADEPT)
NASA Technical Reports Server (NTRS)
Smith, Brandon Patrick
2014-01-01
This project is developing a mechanically deployed system through a mission application study, deployment/ejection testing, and wind tunnel testing. Adaptable Deployable Entry and Placement Technology (ADEPT) has been under development at NASA since 2011. Nano-ADEPT is the application of this revolutionary entry technology for small spacecraft. The unique capability of ADEPT for small science payloads comes from its ability to stow within a slender volume and deploy passively to achieve a mass-efficient drag surface with a high heat rate capability. Near-term applications for this technology include return of small science payloads or CubeSat technology from Low Earth Orbit (LEO) and delivery of secondary payloads to the surface of Mars.
Wang, Huai-Song; Song, Min; Hang, Tai-Jun
2016-02-10
The high-value applications of functional polymers in analytical science generally require well-defined interfaces, including precisely synthesized molecular architectures and compositions. Controlled/living radical polymerization (CRP) has been developed as a versatile and powerful tool for the preparation of polymers with narrow molecular weight distributions and predetermined molecular weights. Among the CRP system, atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) are well-used to develop new materials for analytical science, such as surface-modified core-shell particles, monoliths, MIP micro- or nanospheres, fluorescent nanoparticles, and multifunctional materials. In this review, we summarize the emerging functional interfaces constructed by RAFT and ATRP for applications in analytical science. Various polymers with precisely controlled architectures including homopolymers, block copolymers, molecular imprinted copolymers, and grafted copolymers were synthesized by CRP methods for molecular separation, retention, or sensing. We expect that the CRP methods will become the most popular technique for preparing functional polymers that can be broadly applied in analytical chemistry.
Science and applications on the space station: A strategic vision
NASA Technical Reports Server (NTRS)
1988-01-01
The central themes relating to science and applications on the Space Station for fiscal year 1989 are discussed. Materials science research is proposed in a wide variety of subfields including protein crystal growth, metallurgy, and properties of fluids. Also proposed are the U.S. Polar Platform, an Extended Duration Crew Operations Project, and a long-range Space Biology Research Project to investigate plant and animal physiology, gravitational biology, life support systems, and exobiology. The exterior of the Space Station will provide attachment points for payloads to study subjects such as the earth and its environment, the sun, other bodies in the solar system, and cosmic objects. Examples of such attached payloads are given. They include a plasma interaction monitoring system, observation of solar features and properties, studies of particle radiation from the sun, cosmic dust collection and analysis, surveys of various cosmic and solar rays, measurements of rainfall and wind and the study of global changes on earth.
Digital Videoconferencing: Applications across the Disciplines
ERIC Educational Resources Information Center
Dudding, Carol C.
2009-01-01
The purpose of this article is to describe the technologies and applications of digital videoconferencing (DVC) within the realm of communication sciences and disorders. The discussion includes (a) a brief description of videoconferencing, (b) an explanation of the types of DVC available along with the advantages and disadvantages of each, (c)…
Teaching Mathematics to Non-Mathematics Majors through Applications
ERIC Educational Resources Information Center
Abramovich, Sergei; Grinshpan, Arcadii Z.
2008-01-01
This article focuses on the important role of applications in teaching mathematics to students with career paths other than mathematics. These include the fields as diverse as education, engineering, business, and life sciences. Particular attention is given to instructional computing as a means for concept development in mathematics education…
NASA Astrophysics Data System (ADS)
Lee, C. M.; Omar, A. H.; Hook, S. J.; Tzortziou, M.; Luvall, J. C.; Turner, W. W.
2016-02-01
Observations from the Pre-Aerosol Cloud and ocean Ecosystem (PACE) and Hyperspectral InfraRed Imager (HyspIRI) satellite missions are highly complementary and have the potential to significantly advance understanding of various science and applications challenges in the ocean sciences and water quality communities. Scheduled for launch in the 2022 timeframe, PACE is designed to make climate-quality global measurements essential for understanding ocean biology, biogeochemistry and ecology, and determining the role of the ocean in global biogeochemical cycling and ocean ecology, and how it affects and is affected by climate change. PACE will provide high signal-to-noise, hyperspectral observations over an extended spectral range (UV to SWIR) and will have global coverage every 1-2 days, at approximately 1 km spatial resolution; furthermore, PACE is currently designed to include a polarimeter, which will vastly improve atmospheric correction algorithms over water bodies. The PACE mission will enable advances in applications across a range of areas, including oceans, climate, water resources, ecological forecasting, disasters, human health and air quality. HyspIRI, with contiguous measurements in VSWIR, and multispectral measurements in TIR, will be able to provide detailed spectral observations and higher spatial resolution (30 to 60-m) over aquatic systems, but at a temporal resolution that is approximately 5-16 days. HyspIRI would enable improved, detailed studies of aquatic ecosystems, including benthic communities, algal blooms, coral reefs, and wetland species distribution as well as studies of water quality indicators or pollutants such as oil spills, suspended sediment, and colored dissolved organic matter. Together, PACE and HyspIRI will be able to address numerous applications and science priorities, including improving and extending climate data records, and studies of inland, coastal and ocean environments.
Mainstreaming Modeling and Simulation to Accelerate Public Health Innovation
Sepulveda, Martin-J.; Mabry, Patricia L.
2014-01-01
Dynamic modeling and simulation are systems science tools that examine behaviors and outcomes resulting from interactions among multiple system components over time. Although there are excellent examples of their application, they have not been adopted as mainstream tools in population health planning and policymaking. Impediments to their use include the legacy and ease of use of statistical approaches that produce estimates with confidence intervals, the difficulty of multidisciplinary collaboration for modeling and simulation, systems scientists’ inability to communicate effectively the added value of the tools, and low funding for population health systems science. Proposed remedies include aggregation of diverse data sets, systems science training for public health and other health professionals, changing research incentives toward collaboration, and increased funding for population health systems science projects. PMID:24832426
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- STS-107 Payload Specialist Ilan Ramon, who represents the Israel Space Agency, chats with the Closeout Crew in the White Room before entering Columbia. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. Ramon is the first Israeli astronaut to fly in the Shuttle. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- STS-107 Payload Specialist Ilan Ramon, who represents the Israel Space Agency, chats with the Closeout Crew in the White Room before entering Columbia. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. Ramon is the first Israeli astronaut to fly in the Shuttle. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
A Scientist's Guide to Achieving Broader Impacts through K-12 STEM Collaboration.
Komoroske, Lisa M; Hameed, Sarah O; Szoboszlai, Amber I; Newsom, Amanda J; Williams, Susan L
2015-03-01
The National Science Foundation and other funding agencies are increasingly requiring broader impacts in grant applications to encourage US scientists to contribute to science education and society. Concurrently, national science education standards are using more inquiry-based learning (IBL) to increase students' capacity for abstract, conceptual thinking applicable to real-world problems. Scientists are particularly well suited to engage in broader impacts via science inquiry outreach, because scientific research is inherently an inquiry-based process. We provide a practical guide to help scientists overcome obstacles that inhibit their engagement in K-12 IBL outreach and to attain the accrued benefits. Strategies to overcome these challenges include scaling outreach projects to the time available, building collaborations in which scientists' research overlaps with curriculum, employing backward planning to target specific learning objectives, encouraging scientists to share their passion, as well as their expertise with students, and transforming institutional incentives to support scientists engaging in educational outreach.
Moore, Justin B.; Carson, Russell L.; Webster, Collin A.; Singletary, Camelia R.; Castelli, Darla M.; Pate, Russell R.; Beets, Michael W.; Beighle, Aaron
2018-01-01
Comprehensive school physical activity programs (CSPAPs) have been endorsed as a promising strategy to increase youth physical activity (PA) in school settings. A CSPAP is a five-component approach, which includes opportunities before, during, and after school for PA. Extensive resources are available to public health practitioners and school officials regarding what should be implemented, but little guidance and few resources are available regarding how to effectively implement a CSPAP. Implementation science provides a number of conceptual frameworks that can guide implementation of a CSPAP, but few published studies have employed an implementation science framework to a CSPAP. Therefore, we developed Be a Champion! (BAC), which represents a synthesis of implementation science strategies, modified for application to CSPAPs implementation in schools while allowing for local tailoring of the approach. This article describes BAC while providing examples from the implementation of a CSPAP in three rural elementary schools. PMID:29354631
Why Don't All Professors Use Computers?
ERIC Educational Resources Information Center
Drew, David Eli
1989-01-01
Discusses the adoption of computer technology at universities and examines reasons why some professors don't use computers. Topics discussed include computer applications, including artificial intelligence, social science research, statistical analysis, and cooperative research; appropriateness of the technology for the task; the Computer Aptitude…
Physical sciences: Thermodynamics, cryogenics, and vacuum technology: A compilation
NASA Technical Reports Server (NTRS)
1974-01-01
Technological developments which have potential application outside the aerospace community are reported. A variety of thermodynamic devices including heat pipes and cooling systems are described along with methods of handling cryogenic fluids. Vacuum devices are also described. Pata et information is included.
NASA Astrophysics Data System (ADS)
Whitehurst, A.; Murphy, K. J.
2017-12-01
The objectives of the NASA Citizen Science for Earth Systems Program (CSESP) include both the evaluation of using citizen science data in NASA Earth science related research and engaging the public in Earth systems science. Announced in 2016, 16 projects were funded for a one year prototype phase, with the possibility of renewal for 3 years pending a competitive evaluation. The current projects fall into the categories of atmospheric composition (5), biodiversity and conservation (5), and surface hydrology/water and energy cycle (6). Out of the 16, 8 of the projects include the development and/or implementation of low cost sensors to facilitate data collection. This presentation provides an overview of the NASA CSESP program to both highlight the diversity of innovative projects being funded and to share information with future program applicants.
Defining a Mechanism of Educational Interface Between NASA Life Sciences the Nation's Students
NASA Technical Reports Server (NTRS)
Chamberland, D.; Dreschel, T.; Coulter, G.
1995-01-01
Harnessing our greatest national resource, as represented by the nation's students, will require a thoughtful, well developed and administered program that includes precise, executable strategies and valid evaluation tools. Responding to a national education outreach priority, the National Aeronautics and Space Administration's Life and Biomedical Sciences and Applications Division has initiated a process or organizing and implementing various strategies through a steering committee that includes representatives from Headquarters and three field centers with major Life Sciences programs. The mandate of the Life Sciences Education Outreach Steering Committee is to develop ways of communicating space life science issues to America's students through the nation's teachers by curriculum enhancement and direct participation in the education process with an emphasis in the primary and secondary schools. Metrics are also developed for each individually defined process so that the mechanis can be continuously refined and improved.
NASA Astrophysics Data System (ADS)
King, Melissa Digennaro
Goals 2000 set forth a bold vision for U.S. students: they would be "first in the world in science and mathematics" by the year 2000. Performance indicators such as the TIMSS-R (1999) and NAEP (2000) reports suggest that U.S. students have not yet reached that goal. This study intended to learn how specific assessment strategies might contribute to improved student performance in science. This quasi-experimental study investigated the effects of formative assessment with reflection on students' motivational beliefs, self-regulatory skills, and achievement in elementary science. The study aimed to find out whether and how classroom applications of formative assessment during science instruction might influence fifth-grade students' attitudes and self-perceptions about science learning, self-regulatory learning behaviors, and achievement. To explore the effects of the assessment intervention, the study utilized a mixed methods approach involving quantitative and qualitative investigations of treatment and control groups during a four-week intervention period. Quantitative measures included student self-report surveys administered pre- and post-treatment and an end-of-unit science test. Qualitative measures included classroom observations, student interviews (post-treatment), and a teacher interview (post-treatment). Findings indicated that the fifth-grade students in this study had positive attitudes toward science and high levels of self-efficacy for science. Results suggested that these elementary students employed a wide variety of cognitive and metacognitive strategies to support science learning. Findings revealed that these fifth graders believed formative assessment with reflection was beneficial for science learning outcomes. Research results did not show that the formative assessment intervention contributed to significant differences between treatment and control groups. However, the data revealed different levels of academic achievement and self-regulation for students in specific instructional services subgroups (i.e., gifted, regular education, special education, and ESL). For example, high achieving students reported higher levels of self-regulatory learning behavior than other fifth grade students. Findings suggested that elementary science instruction that includes classroom applications of formative assessment with reflection may provide support for science learning and the development of self-regulatory learning behavior. However, widespread implementation of this practice in elementary science classrooms represents significant challenges for today's educators, due to time limitations and increasing accountability pressures in our nation's schools.
Computer Sciences and Data Systems, volume 2
NASA Technical Reports Server (NTRS)
1987-01-01
Topics addressed include: data storage; information network architecture; VHSIC technology; fiber optics; laser applications; distributed processing; spaceborne optical disk controller; massively parallel processors; and advanced digital SAR processors.
Teaching Scientific Method: The Logic of Confirmation and Falsification.
ERIC Educational Resources Information Center
Garrison, James W.; Bentley, Michael L.
1990-01-01
Presents important principles and issues related to postpositivism including logic of confirmation and logic of falsification. Discusses possible applications in science education. Lists 23 references. (YP)
Landsat science team meeting: Summer 2015
Schroeder, Todd; Loveland, Thomas; Wulder, Michael A.; Irons, James R.
2015-01-01
With over 60 participants in attendance, this was the largest LST meeting ever held. Meeting topics on the first day included Sustainable Land Imaging and Landsat 9 development, Landsat 7 and 8 operations and data archiving, the Landsat 8 Thermal Infrared Sensor (TIRS) stray-light issue, and the successful Sentinel-2 launch. In addition, on days two and three the LST members presented updates on their Landsat science and applications research. All presentations are available at landsat.usgs.gov/science_LST_Team_ Meetings.php.
Lidar Past, Present, and Future in NASA's Earth and Space Science Programs
NASA Technical Reports Server (NTRS)
Einaudi, Franco; Schwemmer, Geary K.; Gentry, Bruce M.; Abshire, James B.
2004-01-01
Lidar is firmly entrenched in the family of remote sensing technologies that NASA is developing and using. Still a relatively new technology, lidar should continue to experience significant advances and progress. Lidar is used in each one of the major research themes, including planetary exploration, in the Earth Sciences Directorate at Goddard Space Flight Center. NASA has and will continue to generate new lidar applications from ground, air and space for both Earth science and planetary exploration.
Post-Genomics Nanotechnology Is Gaining Momentum: Nanoproteomics and Applications in Life Sciences
Kobeissy, Firas H.; Gulbakan, Basri; Alawieh, Ali; Karam, Pierre; Zhang, Zhiqun; Guingab-Cagmat, Joy D.; Mondello, Stefania; Tan, Weihong; Anagli, John
2014-01-01
Abstract The post-genomics era has brought about new Omics biotechnologies, such as proteomics and metabolomics, as well as their novel applications to personal genomics and the quantified self. These advances are now also catalyzing other and newer post-genomics innovations, leading to convergences between Omics and nanotechnology. In this work, we systematically contextualize and exemplify an emerging strand of post-genomics life sciences, namely, nanoproteomics and its applications in health and integrative biological systems. Nanotechnology has been utilized as a complementary component to revolutionize proteomics through different kinds of nanotechnology applications, including nanoporous structures, functionalized nanoparticles, quantum dots, and polymeric nanostructures. Those applications, though still in their infancy, have led to several highly sensitive diagnostics and new methods of drug delivery and targeted therapy for clinical use. The present article differs from previous analyses of nanoproteomics in that it offers an in-depth and comparative evaluation of the attendant biotechnology portfolio and their applications as seen through the lens of post-genomics life sciences and biomedicine. These include: (1) immunosensors for inflammatory, pathogenic, and autoimmune markers for infectious and autoimmune diseases, (2) amplified immunoassays for detection of cancer biomarkers, and (3) methods for targeted therapy and automatically adjusted drug delivery such as in experimental stroke and brain injury studies. As nanoproteomics becomes available both to the clinician at the bedside and the citizens who are increasingly interested in access to novel post-genomics diagnostics through initiatives such as the quantified self, we anticipate further breakthroughs in personalized and targeted medicine. PMID:24410486
Clarke, Brydie; Swinburn, Boyd; Sacks, Gary
2016-10-13
Theories of the policy process are recommended as tools to help explain both policy stasis and change. A systematic review of the application of such theoretical frameworks within the field of obesity prevention policy was conducted. A meta-synthesis was also undertaken to identify the key influences on policy decision-making. The review identified 17 studies of obesity prevention policy underpinned by political science theories. The majority of included studies were conducted in the United States (US), with significant heterogeneity in terms of policy level (e.g., national, state) studied, areas of focus, and methodologies used. Many of the included studies were methodologically limited, in regard to rigour and trustworthiness. Prominent themes identified included the role of groups and networks, political institutions, and political system characteristics, issue framing, the use of evidence, personal values and beliefs, prevailing political ideology, and timing. The limited application of political science theories indicates a need for future theoretically based research into the complexity of policy-making and multiple influences on obesity prevention policy processes.
Advances in the NASA Earth Science Division Applied Science Program
NASA Astrophysics Data System (ADS)
Friedl, L.; Bonniksen, C. K.; Escobar, V. M.
2016-12-01
The NASA Earth Science Division's Applied Science Program advances the understanding of and ability to used remote sensing data in support of socio-economic needs. The integration of socio-economic considerations in to NASA Earth Science projects has advanced significantly. The large variety of acquisition methods used has required innovative implementation options. The integration of application themes and the implementation of application science activities in flight project is continuing to evolve. The creation of the recently released Earth Science Division, Directive on Project Applications Program and the addition of an application science requirement in the recent EVM-2 solicitation document NASA's current intent. Continuing improvement in the Earth Science Applications Science Program are expected in the areas of thematic integration, Project Applications Program tailoring for Class D missions and transfer of knowledge between scientists and projects.
Nuclear science outreach program for high school girls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foster, D.E.; Stone, C.A.
1996-12-31
The authors have developed a 2-week summer school on nuclear science for high school girls. This summer school is an outgrowth of a recent American Nuclear Society high school teachers workshop held at San Jose State University. Young scientists are introduced to concepts in nuclear science through a combination of lectures, laboratory experiments, literature research, and visits to local national laboratories and nuclear facilities. Lectures cover a range of topics, including radioactivity and radioactive decay, statistics, fission and fusion, nuclear medicine, and food irradiation. A variety of applications of nuclear science concepts are also presented.
NASA Technical Reports Server (NTRS)
Kobler, Ben (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)
1992-01-01
This report contains copies of nearly all of the technical papers and viewgraphs presented at the NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Application. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include the following: magnetic disk and tape technologies; optical disk and tape; software storage and file management systems; and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.
Microgravity science and applications bibliography, 1987 revision
NASA Technical Reports Server (NTRS)
1988-01-01
This edition of the Microgravity Science and Applications (MSA) Bibliography is a compilation of Government reports, contractor reports, conference proceedings, and journal articles dealing with flight experiments utilizing a low gravity environment to elucidate and control various processes or with ground based activities that provide supporting research. It encompasses literature published but not cited in the 1984 Revision and literature which has been published in the past year. Subdivisions of the bibliography include six major categories: Electronic Materials; Metals, Alloys, and Composites; Fluid Dynamics and Transport; Biotechnology; Glass and Ceramics; and Combustion. Also included are publications from the European, Soviet, and Japanese MSA programs. In addition, there is a list of patents and appendices providing a compilation of an anonymously authored collection of reports and a cross reference index.
Microgravity science and applications bibliography, 1985 revision
NASA Technical Reports Server (NTRS)
Pentecost, E. (Compiler)
1985-01-01
This edition of the Microgravity Science and Applications (MSA) Bibliography is a compilation of Government reports, contractor reports, conference proceedings, and journal articles dealing with flight experiments utilizing a low-gravity environment to elucidate and control various processes or with ground-based activities that provide supporting research. It encompasses literature published but not cited in the 1984 Revision and that literature which has been published in the past year. Subdivisions of the bibliography include six major categories: Electronic Materials; Metal, Alloys, and Composites; Fluid Dynamics and Transports; Biotechnology; Glass and Ceramics; and Combustion. Also included are publications from the European, Soviet, and Japanese MSA programs. In addition, there is a list of patents and appendices providing a compilation of anonymously authored collection of reports and a cross reference index.
Computer Science Research at Langley
NASA Technical Reports Server (NTRS)
Voigt, S. J. (Editor)
1982-01-01
A workshop was held at Langley Research Center, November 2-5, 1981, to highlight ongoing computer science research at Langley and to identify additional areas of research based upon the computer user requirements. A panel discussion was held in each of nine application areas, and these are summarized in the proceedings. Slides presented by the invited speakers are also included. A survey of scientific, business, data reduction, and microprocessor computer users helped identify areas of focus for the workshop. Several areas of computer science which are of most concern to the Langley computer users were identified during the workshop discussions. These include graphics, distributed processing, programmer support systems and tools, database management, and numerical methods.
Nonlinear dynamics and predictability in the atmospheric sciences
NASA Technical Reports Server (NTRS)
Ghil, M.; Kimoto, M.; Neelin, J. D.
1991-01-01
Systematic applications of nonlinear dynamics to studies of the atmosphere and climate are reviewed for the period 1987-1990. Problems discussed include paleoclimatic applications, low-frequency atmospheric variability, and interannual variability of the ocean-atmosphere system. Emphasis is placed on applications of the successive bifurcation approach and the ergodic theory of dynamical systems to understanding and prediction of intraseasonal, interannual, and Quaternary climate changes.
Bridging the Gap Between Research and Practice: Implementation Science.
Olswang, Lesley B; Prelock, Patricia A
2015-12-01
This article introduces implementation science, which focuses on research methods that promote the systematic application of research findings to practice. The narrative defines implementation science and highlights the importance of moving research along the pipeline from basic science to practice as one way to facilitate evidence-based service delivery. This review identifies challenges in developing and testing interventions in order to achieve widespread adoption in practice settings. A framework for conceptualizing implementation research is provided, including an example to illustrate the application of principles in speech-language pathology. Last, the authors reflect on the status of implementation research in the discipline of communication sciences and disorders. The extant literature highlights the value of implementation science for reducing the gap between research and practice in our discipline. While having unique principles guiding implementation research, many of the challenges and questions are similar to those facing any investigators who are attempting to design valid and reliable studies. This article is intended to invigorate interest in the uniqueness of implementation science among those pursuing both basic and applied research. In this way, it should help ensure the discipline's knowledge base is realized in practice and policy that affects the lives of individuals with communication disorders.
NASA Astrophysics Data System (ADS)
Osti, D.; Osti, A.
2013-12-01
People are very busy today and getting stakeholders the information they need is an important part of our jobs. The BDL application is the mobile extension of the California collaborative resource management portal www.baydeltalive.com. BDL has been visited by more than 250,000 unique visitors this past year from various areas of water use and management including state and federal agencies, agriculture, scientists, policy makers, water consumers, voters, operations management and more. The audience is a qualified user group of more than 15,000 individuals participating in California hydrological ecosystem science, water management and policy. This is an important effort aimed to improve how scientists and policy makers are working together to understand this complicated and divisive system and how they are becoming better managers of that system. The BayDetaLive mobile application gives California watershed management stakeholders and water user community unprecedented access to real time natural resource management information. The application provides user with the following: 1. Access to Real Time Environmental Conditions from the more than the 600 California Data Exchange Sensors including hydrodynamic, water quality and meteorological data. Save important stations as favorites for easy access later. 2. Daily Delta Operations Data including estimated hydrology, daily exports, status of infrastructure operations, reservoir storage, salvage data, major stations, drinking water quality reports, weather forecasts and more. 3. Photos/Videos/Documents: Browse and share from the more than 1000 current documents in the BDL library. Relevant images, videos, science journals, presentations and articles. 4. Science: Access the latest science articles, news, projects and journals. 5. Data Visualizations: View recently published real time data interpolations of Delta Conditions. From 30-day turbidity models to daily forecasts. This service is published as conditions produce scientifically relevant visuals including winter conditions, first flush archives and fish migration seasons. 5. Maps: Access the entire Delta Atlas from anywhere! The atlas includes Delta levees, soils, islands and waterways, diversions, infrastructure, urban areas, land use, salinity, tidal flows, managed lands, protected lands and more. 6. Projects: Discover the latest project summaries currently underway in the Delta. Project Categories include restoration, operations, infrastructure to name a few. Share your discovery for more depth access on the BayDeltaLive.com website. 7. News: Current Delta Science topics. App Keywords: California Delta, Water Management, Natural Resource Management, Real Time Data, Water Operations, Water Supply, Water Quality, Collaboration
NASA Astrophysics Data System (ADS)
Darema, F.
2016-12-01
InfoSymbiotics/DDDAS embodies the power of Dynamic Data Driven Applications Systems (DDDAS), a concept whereby an executing application model is dynamically integrated, in a feed-back loop, with the real-time data-acquisition and control components, as well as other data sources of the application system. Advanced capabilities can be created through such new computational approaches in modeling and simulations, and in instrumentation methods, and include: enhancing the accuracy of the application model; speeding-up the computation to allow faster and more comprehensive models of a system, and create decision support systems with the accuracy of full-scale simulations; in addition, the notion of controlling instrumentation processes by the executing application results in more efficient management of application-data and addresses challenges of how to architect and dynamically manage large sets of heterogeneous sensors and controllers, an advance over the static and ad-hoc ways of today - with DDDAS these sets of resources can be managed adaptively and in optimized ways. Large-Scale-Dynamic-Data encompasses the next wave of Big Data, and namely dynamic data arising from ubiquitous sensing and control in engineered, natural, and societal systems, through multitudes of heterogeneous sensors and controllers instrumenting these systems, and where opportunities and challenges at these "large-scales" relate not only to data size but the heterogeneity in data, data collection modalities, fidelities, and timescales, ranging from real-time data to archival data. In tandem with this important dimension of dynamic data, there is an extended view of Big Computing, which includes the collective computing by networked assemblies of multitudes of sensors and controllers, this range from the high-end to the real-time seamlessly integrated and unified, and comprising the Large-Scale-Big-Computing. InfoSymbiotics/DDDAS engenders transformative impact in many application domains, ranging from the nano-scale to the terra-scale and to the extra-terra-scale. The talk will address opportunities for new capabilities together with corresponding research challenges, with illustrative examples from several application areas including environmental sciences, geosciences, and space sciences.
Access and visualization using clusters and other parallel computers
NASA Technical Reports Server (NTRS)
Katz, Daniel S.; Bergou, Attila; Berriman, Bruce; Block, Gary; Collier, Jim; Curkendall, Dave; Good, John; Husman, Laura; Jacob, Joe; Laity, Anastasia;
2003-01-01
JPL's Parallel Applications Technologies Group has been exploring the issues of data access and visualization of very large data sets over the past 10 or so years. this work has used a number of types of parallel computers, and today includes the use of commodity clusters. This talk will highlight some of the applications and tools we have developed, including how they use parallel computing resources, and specifically how we are using modern clusters. Our applications focus on NASA's needs; thus our data sets are usually related to Earth and Space Science, including data delivered from instruments in space, and data produced by telescopes on the ground.
NASA Astrophysics Data System (ADS)
Borne, K. D.; Fortson, L.; Gay, P.; Lintott, C.; Raddick, M. J.; Wallin, J.
2009-12-01
The remarkable success of Galaxy Zoo as a citizen science project for galaxy classification within a terascale astronomy data collection has led to the development of a broader collaboration, known as the Zooniverse. Activities will include astronomy, lunar science, solar science, and digital humanities. Some features of our program include development of a unified framework for citizen science projects, development of a common set of user-based research tools, engagement of the machine learning community to apply machine learning algorithms on the rich training data provided by citizen scientists, and extension across multiple research disciplines. The Zooniverse collaboration is just getting started, but already we are implementing a scientifically deep follow-on to Galaxy Zoo. This project, tentatively named Galaxy Merger Zoo, will engage users in running numerical simulations, whose input parameter space is voluminous and therefore demands a clever solution, such as allowing the citizen scientists to select their own sets of parameters, which then trigger new simulations of colliding galaxies. The user interface design has many of the engaging features that retain users, including rapid feedback, visually appealing graphics, and the sense of playing a competitive game for the benefit of science. We will discuss these topics. In addition, we will also describe applications of Citizen Science that are being considered for the petascale science project LSST (Large Synoptic Survey Telescope). LSST will produce a scientific data system that consists of a massive image archive (nearly 100 petabytes) and a similarly massive scientific parameter database (20-40 petabytes). Applications of Citizen Science for such an enormous data collection will enable greater scientific return in at least two ways. First, citizen scientists work with real data and perform authentic research tasks of value to the advancement of the science, providing "human computation" capabilities and resources to review, annotate, and explore aspects of the data that are too overwhelming for the science team. Second, citizen scientists' inputs (in the form of rich training data and class labels) can be used to improve the classifiers that the project team uses to classify and prioritize new events detected in the petascale data stream. This talk will review these topics and provide an update on the Zooniverse project.
Visiting Scholars Program Application | Frederick National Laboratory for Cancer Research
Below are scientific areas and programs that the Frederick National Labisactively seeking scholars to participate: Data Science and Information Technology (including Bioinformatics, Visualization, etc) Advanced Preclinical Researc
ERIC Educational Resources Information Center
Jones, C. E.
1972-01-01
Describes various parts of a mini car and their chemical composition. Useful information is included for science teachers to relate basic chemistry concepts and techniques with their application in automobile industry. (PS)
Analytical group decision making in natural resources: methodology and application
Daniel L. Schmoldt; David L. Peterson
2000-01-01
Group decision making is becoming increasingly important in natural resource management and associated scientific applications, because multiple values are treated coincidentally in time and space, multiple resource specialists are needed, and multiple stakeholders must be included in the decision process. Decades of social science research on decision making in groups...
Diverse Applications of Electronic-Nose Technologies in Agriculture and Forestry
Alphus D. Wilson
2013-01-01
Electronic-nose (e-nose) instruments, derived from numerous types of aroma-sensor technologies, have been developed for a diversity of applications in the broad fields of agriculture and forestry. Recent advances in e-nose technologies within the plant sciences, including improvements in gas-sensor designs, innovations in data analysis and pattern-recognition...
77 FR 77077 - Pesticide Product Registration; Receipt of Applications for New Uses
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-31
... affected entities may include: Crop production (NAICS code 111). Animal production (NAICS code 112). Food... File Symbol: 264-1049 and 72155- RNO. Docket ID Number: EPA-HQ-OPP-2012-0946. Applicant: Bayer CropScience, 2 T. W. Alexander Drive, P. O. Box 12014, Research Triangle Park, NC 27709. Active Ingredient...
NASA Astrophysics Data System (ADS)
Wentzcovitch, R. M.; Da Silveira, P. R.; Wu, Z.; Yu, Y.
2013-12-01
Today first principles calculations in mineral physics play a fundamental role in understanding of the Earth. They complement experiments by expanding the pressure and temperature range for which properties can be obtained and provide access to atomic scale phenomena. Since the wealth of predictive first principles results can hardly be communicated in printed form, we have developed online applications where published results can be reproduced/verified online and extensive unpublished results can be generated in customized form. So far these applications have included thermodynamics properties of end-member phases and thermal elastic properties of end-member phases and few solid solutions. Extension of this software infrastructure to include other properties is in principle straightforward. This contribution will review the nature of results that can be generated (methods, thermodynamics domain, list of minerals, properties, etc) and nature of the software infrastructure. These applications are part of a more extensive cyber-infrastructure operating in the XSEDE - the VLab Science Gateway [1]. [1] https://www.xsede.org/web/guest/gateways-listing Research supported by NSF grants ATM-0428744 and EAR-1047629.
CRISPR-Based Technologies and the Future of Food Science.
Selle, Kurt; Barrangou, Rodolphe
2015-11-01
The on-going CRISPR craze is focused on the use of Cas9-based technologies for genome editing applications in eukaryotes, with high potential for translational medicine and next-generation gene therapy. Nevertheless, CRISPR-Cas systems actually provide adaptive immunity in bacteria, and have much promise for various applications in food bacteria that include high-resolution typing of pathogens, vaccination of starter cultures against phages, and the genesis of programmable and specific antibiotics that can selectively modulate bacterial population composition. Indeed, the molecular machinery from these DNA-encoded, RNA-mediated, DNA-targeting systems can be harnessed in native hosts, or repurposed in engineered systems for a plethora of applications that can be implemented in all organisms relevant to the food chain, including agricultural crops trait-enhancement, livestock breeding, and fermentation-based manufacturing, and for the genesis of next-generation food products with enhanced quality and health-promoting functionalities. CRISPR-based applications are now poised to revolutionize many fields within food science, from farm to fork. In this review, we describe CRISPR-Cas systems and highlight their potential for the development of enhanced foods. © 2015 Institute of Food Technologists®
NASA Technical Reports Server (NTRS)
1994-01-01
The NASA budget request has been restructured in FY 1995 into four appropriations: human space flight; science, aeronautics, and technology; mission support; and inspector general. The human space flight appropriations provides funding for NASA's human space flight activities. This includes the on-orbit infrastructure (space station and Spacelab), transportation capability (space shuttle program, including operations, program support, and performance and safety upgrades), and the Russian cooperation program, which includes the flight activities associated with the cooperative research flights to the Russian Mir space station. These activities are funded in the following budget line items: space station, Russian cooperation, space shuttle, and payload utilization and operations. The science, aeronautics, and technology appropriations provides funding for the research and development activities of NASA. This includes funds to extend our knowledge of the earth, its space environment, and the universe and to invest in new technologies, particularly in aeronautics, to ensure the future competitiveness of the nation. These objectives are achieved through the following elements: space science, life and microgravity sciences and applications, mission to planet earth, aeronautical research and technology, advanced concepts and technology, launch services, mission communication services, and academic programs.
Global Summit on Regulatory Science 2013.
Howard, Paul C; Tong, Weida; Weichold, Frank; Healy, Marion; Slikker, William
2014-12-01
Regulatory science has been defined as the science that is used to develop regulatory decisions by government bodies. Regulatory science encompasses many scientific disciplines that oversee many studies producing a wide array of data. These may include fundamental research into the cellular interaction or response to a particular chemical or substance, hazard-assessment and dose-response studies in animal species, neurophysiological or neurobehavioral studies, best practices for the generation and analysis of genomics data, bioinformatics approaches, and mathematical modeling of risk. The Global Summit on Regulatory Science is an international conference with a mission to explore emerging and innovative technologies, and provide a platform to enhance translation of basic science into regulatory applications. The Third Global Summit on Regulatory Science which focused on nanotechnology is discussed. Published by Elsevier Inc.
Network science: Destruction perfected
NASA Astrophysics Data System (ADS)
Kovács, István A.; Barabási, Albert-László
2015-08-01
Pinpointing the nodes whose removal most effectively disrupts a network has become a lot easier with the development of an efficient algorithm. Potential applications might include cybersecurity and disease control. See Letter p.65
Interactive Technologies and the Social Studies. Emerging Issues and Applications.
ERIC Educational Resources Information Center
Martorella, Peter H., Ed.
This book includes contributions from seven authors with diverse backgrounds, whose specializations include the area of social studies education, software development, computer science, and visual design. The chapters are: (1) "Online Learning Communities: Implications for the Social Studies" (Lynn A. Fontana); (2) "Bringing Preservice Teachers…
Global Systems Science and Hands-On Universe Course Materials for High School
NASA Astrophysics Data System (ADS)
Gould, A.
2011-09-01
The University of California Berkeley's Lawrence Hall of Science has a project called Global Systems Science (GSS). GSS produced a set of course materials for high school science education that includes reading materials, investigations, and software for analyzing satellite images of Earth focusing on Earth systems as well as societal issues that require interdisciplinary science for full understanding. The software has general application in analysis of any digital images for a variety of purposes. NSF and NASA funding have contributed to the development of GSS. The current NASA-funded project of GSS is Lifelines for High School Climate Change Education (LHSCCE), which aims to establish professional learning communities (PLCs) to share curriculum resources and best practices for teaching about climate change in grades 9-12. The project explores ideal ways for teachers to meet either in-person or using simple yet effective distance-communication techniques (tele-meetings), depending on local preferences. Skills promoted include: how to set up a website to share resources; initiating tele-meetings with any available mechanism (webinars, Skype, telecons, moodles, social network tools, etc.); and easy ways of documenting and archiving presentations made at meetings. Twenty teacher leaders are forming the PLCs in their regions or districts. This is a national effort in which teachers share ideas, strategies, and resources aimed at making science education relevant to societal issues, improve students' understanding of climate change issues, and contribute to possible solutions. Although the binding theme is climate change, the application is to a wide variety of courses: Earth science, environmental science, biology, physics, and chemistry. Moreover, the PLCs formed can last as long as the members find it useful and can deal with any topics of interest, even if they are only distantly related to climate change.
Sketching together the modern histories of science, technology, and medicine.
Pickstone, John V
2011-03-01
This essay explores ways to "write together" the awkwardly jointed histories of "science" and "me dicine"--but it also includes other "arts" (in the old sense) and technologies. It draws especially on the historiography of medicine, but I try to use terms that are applicable across all of science, technology, and medicine (STM). I stress the variety of knowledges and practices in play at any time and the ways in which the ensembles change. I focus on the various relations of "science" and "medicine," as they were understood for a succession of periods--from mainly agricultural societies, through industrial societies, to our biomedical present--trying to sketch a history that encompasses daily practices and understandings as well as major conceptual and technical innovations. The model is meant to facilitate inquiry across topics and across times, including those to come.
Expanding NASA Science Cooperation with New Partners
NASA Astrophysics Data System (ADS)
Allen, Marc; Bress, Kent
Expanding NASA Science Cooperation with New Partners When NASA was created in 1958, it was given a goal of "cooperation by the United States with other nations and groups of nations in work done pursuant to this Act and in the peaceful application of the results." As science has become increasingly globalized during the past 50 years, NASA and its many partners in space and Earth science research have benefited enormously from pooling ideas, skills, and resources for joint undertakings. The discoveries made have powerfully advanced public awareness of science and its importance all over the world. Today, the U.S. Administra-tion is encouraging NASA to expand its cooperation with new and emerging partners. NASA space and Earth science cooperation is founded on scientist-to-scientist research collaboration. Space missions are very costly and technically challenging, but there are many other important areas for international cooperation. Areas ripe for expansion with new partners include space data sharing, scientist-to-scientist collaborative research, international research program plan-ning and coordination, Earth applications for societal benefit, ground-based measurements for Earth system science, and education and public outreach. This presentation lays out NASA's general principles for international science cooperation, briefly describes each of these opportu-nity areas, and suggests avenues for initiating new cooperative relationships.
NASA Astrophysics Data System (ADS)
Malkawi, Amal Reda; Rababah, Ebtesam Qassim
2018-06-01
This study investigated the degree that Science and Engineering Practices (SEPs) criteria from the Next Generation Science Standards (NGSS) were included in self-reported teaching practices of twelfth-grade science teachers in Jordan. This study sampled (n = 315) science teachers recruited from eight different public school directorates. The sample was surveyed using an instrument adapted from Kawasaki (2015). Results found that Jordanian science teachers incorporate (SEPs) in their classroom teaching at only a moderate level. SEPs applied most frequently included 'using the diagram, table or graphic through instructions to clarify the subject of a new science,' and to 'discuss with the students how to interpret the quantitative data from the experiment or investigation'. The practice with the lowest frequency was 'teach a lesson on interpreting statistics or quantitative data,' which was moderately applied. No statistically significant differences at (α = 0.05) were found among these Jordanian science teachers' self-estimations of (SEP) application into their own teaching according to the study's demographic variables (specialisation, educational qualification, teaching experience). However, a statistically significant difference at (α = 0.05) was found among Jordanian high school science teachers' practice means based on gender, with female teachers using SEPs at a higher rate than male teachers.
Materials Evaluation in the Tri-Service Thermal Radiation Test Facility.
1984-06-20
CONTRACTORS (Continued) Science Applications Intl Corp Science Applications. Inc ATTN: S. Binninger ATTN: Tech Library Science Applications Intl Corp...Tech, Inc ATTN: Library Science Applications, Inc ATTN: Tech Library TRW Electronics & Defense Sector ATTN: h. Plows ATTN: B. Sussholtz ATTN: J
ERIC Educational Resources Information Center
Anderson, Paul S.; Schoner, James S.
The MDT multi-digit technique, a development in testing technology, is described; and its application to science classrooms is discussed. Some actual materials for use in a cell biology class are included. The primary characteristic of an MDT multi-digit test is a long list of possible responses, with each term marked with a three-digit number…
Radio Interference Modeling and Prediction for Satellite Operation Applications
2015-08-25
et al. Department of Electrical Engineering and Computer Science The Catholic University of America Washington, DC 20064 25 Aug 2015 Final...data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that...AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBERDepartment of Electrical Engineering and Computer Science The Catholic University of
Graphene in biomedicine: opportunities and challenges.
Feng, Liangzhu; Liu, Zhuang
2011-02-01
Graphene, whose discovery won the 2010 Nobel Prize in physics, has been a shining star in the material science in the past few years. Owing to its interesting electrical, optical, mechanical and chemical properties, graphene has found potential applications in a wide range of areas, including biomedicine. In this article, we will summarize the latest progress of using graphene for various biomedical applications, including drug delivery, cancer therapies and biosensing, and discuss the opportunities and challenges in this emerging field.
A brief simulation intervention increasing basic science and clinical knowledge.
Sheakley, Maria L; Gilbert, Gregory E; Leighton, Kim; Hall, Maureen; Callender, Diana; Pederson, David
2016-01-01
The United States Medical Licensing Examination (USMLE) is increasing clinical content on the Step 1 exam; thus, inclusion of clinical applications within the basic science curriculum is crucial. Including simulation activities during basic science years bridges the knowledge gap between basic science content and clinical application. To evaluate the effects of a one-off, 1-hour cardiovascular simulation intervention on a summative assessment after adjusting for relevant demographic and academic predictors. This study was a non-randomized study using historical controls to evaluate curricular change. The control group received lecture (n l=515) and the intervention group received lecture plus a simulation exercise (n l+s=1,066). Assessment included summative exam questions (n=4) that were scored as pass/fail (≥75%). USMLE-style assessment questions were identical for both cohorts. Descriptive statistics for variables are presented and odds of passage calculated using logistic regression. Undergraduate grade point ratio, MCAT-BS, MCAT-PS, age, attendance at an academic review program, and gender were significant predictors of summative exam passage. Students receiving the intervention were significantly more likely to pass the summative exam than students receiving lecture only (P=0.0003). Simulation plus lecture increases short-term understanding as tested by a written exam. A longitudinal study is needed to assess the effect of a brief simulation intervention on long-term retention of clinical concepts in a basic science curriculum.
A brief simulation intervention increasing basic science and clinical knowledge.
Sheakley, Maria L; Gilbert, Gregory E; Leighton, Kim; Hall, Maureen; Callender, Diana; Pederson, David
2016-01-01
Background The United States Medical Licensing Examination (USMLE) is increasing clinical content on the Step 1 exam; thus, inclusion of clinical applications within the basic science curriculum is crucial. Including simulation activities during basic science years bridges the knowledge gap between basic science content and clinical application. Purpose To evaluate the effects of a one-off, 1-hour cardiovascular simulation intervention on a summative assessment after adjusting for relevant demographic and academic predictors. Methods This study was a non-randomized study using historical controls to evaluate curricular change. The control group received lecture (n l =515) and the intervention group received lecture plus a simulation exercise (n l+s =1,066). Assessment included summative exam questions (n=4) that were scored as pass/fail (≥75%). USMLE-style assessment questions were identical for both cohorts. Descriptive statistics for variables are presented and odds of passage calculated using logistic regression. Results Undergraduate grade point ratio, MCAT-BS, MCAT-PS, age, attendance at an academic review program, and gender were significant predictors of summative exam passage. Students receiving the intervention were significantly more likely to pass the summative exam than students receiving lecture only (P=0.0003). Discussion Simulation plus lecture increases short-term understanding as tested by a written exam. A longitudinal study is needed to assess the effect of a brief simulation intervention on long-term retention of clinical concepts in a basic science curriculum.
COEUS: “semantic web in a box” for biomedical applications
2012-01-01
Background As the “omics” revolution unfolds, the growth in data quantity and diversity is bringing about the need for pioneering bioinformatics software, capable of significantly improving the research workflow. To cope with these computer science demands, biomedical software engineers are adopting emerging semantic web technologies that better suit the life sciences domain. The latter’s complex relationships are easily mapped into semantic web graphs, enabling a superior understanding of collected knowledge. Despite increased awareness of semantic web technologies in bioinformatics, their use is still limited. Results COEUS is a new semantic web framework, aiming at a streamlined application development cycle and following a “semantic web in a box” approach. The framework provides a single package including advanced data integration and triplification tools, base ontologies, a web-oriented engine and a flexible exploration API. Resources can be integrated from heterogeneous sources, including CSV and XML files or SQL and SPARQL query results, and mapped directly to one or more ontologies. Advanced interoperability features include REST services, a SPARQL endpoint and LinkedData publication. These enable the creation of multiple applications for web, desktop or mobile environments, and empower a new knowledge federation layer. Conclusions The platform, targeted at biomedical application developers, provides a complete skeleton ready for rapid application deployment, enhancing the creation of new semantic information systems. COEUS is available as open source at http://bioinformatics.ua.pt/coeus/. PMID:23244467
COEUS: "semantic web in a box" for biomedical applications.
Lopes, Pedro; Oliveira, José Luís
2012-12-17
As the "omics" revolution unfolds, the growth in data quantity and diversity is bringing about the need for pioneering bioinformatics software, capable of significantly improving the research workflow. To cope with these computer science demands, biomedical software engineers are adopting emerging semantic web technologies that better suit the life sciences domain. The latter's complex relationships are easily mapped into semantic web graphs, enabling a superior understanding of collected knowledge. Despite increased awareness of semantic web technologies in bioinformatics, their use is still limited. COEUS is a new semantic web framework, aiming at a streamlined application development cycle and following a "semantic web in a box" approach. The framework provides a single package including advanced data integration and triplification tools, base ontologies, a web-oriented engine and a flexible exploration API. Resources can be integrated from heterogeneous sources, including CSV and XML files or SQL and SPARQL query results, and mapped directly to one or more ontologies. Advanced interoperability features include REST services, a SPARQL endpoint and LinkedData publication. These enable the creation of multiple applications for web, desktop or mobile environments, and empower a new knowledge federation layer. The platform, targeted at biomedical application developers, provides a complete skeleton ready for rapid application deployment, enhancing the creation of new semantic information systems. COEUS is available as open source at http://bioinformatics.ua.pt/coeus/.
Vane Flow Direction Sensor for Blast Waves
1987-02-07
APPLICATIONS INTL CORP IIT RESEARCH INSTITUTE ATTN: K SITES ATTN: DOCUMENTS LIBRARY SCIENCE APPLICATIONS INTL CORP KAMAN SCIENCES CORP ATTN: TECHNICAL...UBRARY ATTN: L MENTE ATTN: W PLOWS ATTN: LIBRARY SCIENCE APPLICATIONS INTL CORP KAMAN SCIENCE§ CORP ATTN: J MCRARY ATTN: B KINSLOW SCIENCE APPLICATIONS
OBIS-USA: Enhancing Ocean Science Outcomes through Data Interoperability and Usability
NASA Astrophysics Data System (ADS)
Goldstein, P.; Fornwall, M.
2014-12-01
Commercial and industrial information systems have long built and relied upon standard data formats and transactions. Business processes, analytics, applications, and social networks emerge on top of these standards to create value. Examples of value delivered include operational productivity, analytics that enable growth and profit, and enhanced human communication and creativity for innovation. In science informatics, some research and operational activities operate with only scattered adoption of standards and few of the emergent benefits of interoperability. In-situ biological data management in the marine domain is an exemplar. From the origination of biological occurrence records in surveys, observer programs, monitoring and experimentation, through distribution techniques, to applications, decisions, and management response, marine biological data can be difficult, limited, and costly to integrate because of non-standard and undocumented conditions in the data. While this presentation identifies deficits in marine biological data practices, the presentation also identifies this as a field of opportunity. Standards for biological data and metadata do exist, with growing global adoption and extensibility features. Scientific, economic, and social-value motivations provide incentives to maximize marine science investments. Diverse science communities of national and international scale begin to see benefits of collaborative technologies. OBIS-USA (http://USGS.gov/obis-usa) is a program of the United States Geological Survey. This presentation shows how OBIS-USA directly addresses the opportunity to enhance ocean science outcomes through data infrastructure, including: (1) achieving rapid, economical, and high-quality data capture and data flow, (2) offering technology for data storage and methods for data discovery and quality/suitability evaluation, (3) making data understandable and consistent for application purposes, (4) distributing and integrating data in various formats, (5) addressing a range of subject matter within data contents, and (6) preserving data for access long-term.
McClure, Kimberley A; McGuire, Katherine L; Chapan, Denis M
2018-05-07
Policy on officer-involved shootings is critically reviewed and errors in applying scientific knowledge identified. Identifying and evaluating the most relevant science to a field-based problem is challenging. Law enforcement administrators with a clear understanding of valid science and application are in a better position to utilize scientific knowledge for the benefit of their organizations and officers. A recommended framework is proposed for considering the validity of science and its application. Valid science emerges via hypothesis testing, replication, extension and marked by peer review, known error rates, and general acceptance in its field of origin. Valid application of behavioral science requires an understanding of the methodology employed, measures used, and participants recruited to determine whether the science is ready for application. Fostering a science-practitioner partnership and an organizational culture that embraces quality, empirically based policy, and practices improves science-to-practice translation. © 2018 American Academy of Forensic Sciences.
The art of research: Opportunities for a science-based approach
Silva, Austin Ray; Avina, Glory Emmanuel; Tsao, Jeffrey Y.
2016-02-01
Research, the manufacture of knowledge, is currently practiced largely as an “art,” not a “science.” Just as science (understanding) and technology (tools) have revolutionized the manufacture of other goods and services, it is natural, perhaps inevitable, that they will ultimately also be applied to the manufacture of knowledge. In this article, we present an emerging perspective on opportunities for such application, at three different levels of the research enterprise. At the cognitive science level of the individual researcher, opportunities include: overcoming idea fixation and sloppy thinking, and balancing divergent and convergent thinking. At the social network level of the researchmore » team, opportunities include: overcoming strong links and groupthink, and optimally distributing divergent and convergent thinking between individuals and teams. At the research ecosystem level of the research institution and the larger national and international community of researchers, opportunities include: overcoming GPA and performance fixation, overcoming narrow measures of research impact, and overcoming (or harnessing) existential/social stress.« less
The art of research: Opportunities for a science-based approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, Austin Ray; Avina, Glory Emmanuel; Tsao, Jeffrey Y.
Research, the manufacture of knowledge, is currently practiced largely as an “art,” not a “science.” Just as science (understanding) and technology (tools) have revolutionized the manufacture of other goods and services, it is natural, perhaps inevitable, that they will ultimately also be applied to the manufacture of knowledge. In this article, we present an emerging perspective on opportunities for such application, at three different levels of the research enterprise. At the cognitive science level of the individual researcher, opportunities include: overcoming idea fixation and sloppy thinking, and balancing divergent and convergent thinking. At the social network level of the researchmore » team, opportunities include: overcoming strong links and groupthink, and optimally distributing divergent and convergent thinking between individuals and teams. At the research ecosystem level of the research institution and the larger national and international community of researchers, opportunities include: overcoming GPA and performance fixation, overcoming narrow measures of research impact, and overcoming (or harnessing) existential/social stress.« less
Application of forensic DNA testing in the legal system.
Primorac, D; Schanfield, M S
2000-03-01
DNA technology has taken an irreplaceable position in the field of the forensic sciences. Since 1985, when Peter Gill and Alex Jeffreys first applied DNA technology to forensic problems, to the present, more than 50,000 cases worldwide have been solved through the use of DNA based technology. Although the development of DNA typing in forensic science has been extremely rapid, today we are witnessing a new era of DNA technology including automation and miniaturization. In forensic science, DNA analysis has become "the new form of scientific evidence" and has come under public scrutiny and the demand to show competence. More and more courts admit the DNA based evidence. We believe that in the near future this technology will be generally accepted in the legal system. There are two main applications of DNA analysis in forensic medicine: criminal investigation and paternity testing. In this article we present background information on DNA, human genetics, and the application of DNA analysis to legal problems, as well as the commonly applied respective mathematics.
Microgravity Science and Applications Program tasks, 1986 revision
NASA Technical Reports Server (NTRS)
1987-01-01
The Microgravity Science and Applications (MSA) program is directed toward research in the science and technology of processing materials under conditions of low gravity to provide a detailed examination of the constraints imposed by gravitational forces on Earth. The program is expected to lead to the development of new materials and processes in commercial applications adding to this nation's technological base. The research studies emphasize the selected materials and processes that will best elucidate the limitations due to gravity and demonstrate the enhanced sensitivity of control of processes that may be provided by the weightless environment of space. Primary effort is devoted to a study of the specific areas of research which reveals potential value in the initial investigations of the previous decades. Examples of previous process research include crystal growth and directional solidification of metals; containerless processing of reactive materials; synthesis and separation of biological materials; etc. Additional efforts will be devoted to identifying the special requirements which drive the design of hardware to reduce risk in future developments.
NASA Astrophysics Data System (ADS)
Anders, Niels; Suomalainen, Juha; Seeger, Manuel; Keesstra, Saskia; Bartholomeus, Harm; Paron, Paolo
2014-05-01
The recent increase of performance and endurance of electronically controlled flying platforms, such as multi-copters and fixed-wing airplanes, and decreasing size and weight of different sensors and batteries leads to increasing popularity of Unmanned Aerial Systems (UAS) for scientific purposes. Modern workflows that implement UAS include guided flight plan generation, 3D GPS navigation for fully automated piloting, and automated processing with new techniques such as "Structure from Motion" photogrammetry. UAS are often equipped with normal RGB cameras, multi- and hyperspectral sensors, radar, or other sensors, and provide a cheap and flexible solution for creating multi-temporal data sets. UAS revolutionized multi-temporal research allowing new applications related to change analysis and process monitoring. The EGU General Assembly 2014 is hosting a session on platforms, sensors and applications with UAS in soil science and geomorphology. This presentation briefly summarizes the outcome of this session, addressing the current state and future challenges of small-platform data acquisition in soil science and geomorphology.
LSST system analysis and integration task for an advanced science and application space platform
NASA Technical Reports Server (NTRS)
1980-01-01
To support the development of an advanced science and application space platform (ASASP) requirements of a representative set of payloads requiring large separation distances selected from the Science and Applications Space Platform data base. These payloads were a 100 meter diameter atmospheric gravity wave antenna, a 100 meter by 100 meter particle beam injection experiment, a 2 meter diameter, 18 meter long astrometric telescope, and a 15 meter diameter, 35 meter long large ambient deployable IR telescope. A low earth orbit at 500 km altitude and 56 deg inclination was selected as being the best compromise for meeting payload requirements. Platform subsystems were defined which would support the payload requirements and a physical platform concept was developed. Structural system requirements which included utilities accommodation, interface requirements, and platform strength and stiffness requirements were developed. An attitude control system concept was also described. The resultant ASASP concept was analyzed and technological developments deemed necessary in the area of large space systems were recommended.
Building international genomics collaboration for global health security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Helen H.; Erkkila, Tracy; Chain, Patrick S. G.
Genome science and technologies are transforming life sciences globally in many ways and becoming a highly desirable area for international collaboration to strengthen global health. The Genome Science Program at the Los Alamos National Laboratory is leveraging a long history of expertise in genomics research to assist multiple partner nations in advancing their genomics and bioinformatics capabilities. The capability development objectives focus on providing a molecular genomics-based scientific approach for pathogen detection, characterization, and biosurveillance applications. The general approaches include introduction of basic principles in genomics technologies, training on laboratory methodologies and bioinformatic analysis of resulting data, procurement, and installationmore » of next-generation sequencing instruments, establishing bioinformatics software capabilities, and exploring collaborative applications of the genomics capabilities in public health. Genome centers have been established with public health and research institutions in the Republic of Georgia, Kingdom of Jordan, Uganda, and Gabon; broader collaborations in genomics applications have also been developed with research institutions in many other countries.« less
Building international genomics collaboration for global health security
Cui, Helen H.; Erkkila, Tracy; Chain, Patrick S. G.; ...
2015-12-07
Genome science and technologies are transforming life sciences globally in many ways and becoming a highly desirable area for international collaboration to strengthen global health. The Genome Science Program at the Los Alamos National Laboratory is leveraging a long history of expertise in genomics research to assist multiple partner nations in advancing their genomics and bioinformatics capabilities. The capability development objectives focus on providing a molecular genomics-based scientific approach for pathogen detection, characterization, and biosurveillance applications. The general approaches include introduction of basic principles in genomics technologies, training on laboratory methodologies and bioinformatic analysis of resulting data, procurement, and installationmore » of next-generation sequencing instruments, establishing bioinformatics software capabilities, and exploring collaborative applications of the genomics capabilities in public health. Genome centers have been established with public health and research institutions in the Republic of Georgia, Kingdom of Jordan, Uganda, and Gabon; broader collaborations in genomics applications have also been developed with research institutions in many other countries.« less
Cryogenics and its application with reference to spice grinding: a review.
Balasubramanian, S; Gupta, Manoj Kumar; Singh, K K
2012-01-01
Cryogenics is the study of very low temperature and its application on different materials including biological products. Cryogenics has numerous applications in space science, electronics, automobiles, the manufacturing industry, sports and musical instruments, biological science and agriculture, etc. Cryogenic freezing finds pivotal application in food, that is, spices and condiments. Although there is a wide range of cryogens to produce the desired low temperature, generally liquid nitrogen (LN₂) is used in food grinding. The application of low temperature shows a promising pathway to produce higher quality end product with higher flavor and volatile oil retention. Cryogenic grinders generally consist of precoolers and grinder with the cryogen distribution system. In such grinding systems, cryogens subject the raw material up to or lower than glass transition temperature before it is ground, thus eliminating much of the material and quality hassles of traditional grinding. At present, the capital investment including cryogen and handling costs escalate the final cost of the product. Thus, for large-scale production, a proper design to optimize and make it feasible is the need of the hour and understanding the behavior of different food materials at these low temperature conditions. This article reviews the scenario and application of cryogenics in different sectors, especially to spice grinding.
75 FR 12226 - Privacy Act of 1974; Computer Matching Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-15
... include: the Federal Pell Grant Program; the Academic Competitiveness Grant Program; the National Science... the VIS database for the purpose of confirming the immigration status of applicants for assistance, as...
NASA Technical Reports Server (NTRS)
Estes, J. E.; Smith, T.; Star, J. L.
1986-01-01
Research continues to focus on improving the type, quantity, and quality of information which can be derived from remotely sensed data. The focus is on remote sensing and application for the Earth Observing System (Eos) and Space Station, including associated polar and co-orbiting platforms. The remote sensing research activities are being expanded, integrated, and extended into the areas of global science, georeferenced information systems, machine assissted information extraction from image data, and artificial intelligence. The accomplishments in these areas are examined.
Space medicine research publications: 1987-1988
NASA Technical Reports Server (NTRS)
1991-01-01
A list of publications of investigators supported by the Biomedical Research and Clinical Programs of the Life Sciences Division, Office of Space Science and Applications is given. Included are publications entered into the Life Sciences Bibliographic Database by the George Washington University as of 31 December 1988. Principal Investigators whose research tasks resulted in publication are identified by asterisk. Publications are organized into the following subject areas: space physiology and countermeasures (cardiopulmonary, musculoskeletal, neuroscience, and regulatory physiology), space human factors, environmental health, radiation health, clinical medicine, and general space medicine.
Agreements/subagreements Applicable to Wallops, 12 Nov. 1991
NASA Technical Reports Server (NTRS)
1991-01-01
The status of space science agreements are noted. A general overview of the Wallops Flight Facility (WFF) is given. The geography, history, and mission of the facility are briefly surveyed. Brief accounts are given of NASA earth science activities at the WFF, including atmospheric dynamics, atmospheric optics, ocean physics, microwave altimetry, ocean color research, wind-wave-current interaction, flight support activities, the Sounding Rocket Program, and the NASA Balloon Program. Also discussed are the WFF launch range, the research airport, aircraft airborne science, telemetry, data systems, communications, and command and control.
Visual Color Comparisons in Forensic Science.
Thornton, J I
1997-06-01
Color is used extensively in forensic science for the characterization and comparison of physical evidence, and should thus be well understood. Fundamental elements of color perception and color comparison systems are first reviewed. The second portion of this article discusses instances in which defects in color perception may occur, and the recognition of opportunities by means of which color perception and color discrimination may be expressed and enhanced. Application and limitations of color comparisons in forensic science, including soil, paint, and fibers comparisons and color tests, are reviewed. Copyright © 1997 Central Police University.
Boisvert, R F; Donahue, M J; Lozier, D W; McMichael, R; Rust, B W
2001-01-01
In this paper we describe the role that mathematics plays in measurement science at NIST. We first survey the history behind NIST's current work in this area, starting with the NBS Math Tables project of the 1930s. We then provide examples of more recent efforts in the application of mathematics to measurement science, including the solution of ill-posed inverse problems, characterization of the accuracy of software for micromagnetic modeling, and in the development and dissemination of mathematical reference data. Finally, we comment on emerging issues in measurement science to which mathematicians will devote their energies in coming years.
NASA Technical Reports Server (NTRS)
1973-01-01
Major topics covered include radiation monitoring instrumentation, nuclear circuits and systems, biomedical applications of nuclear radiation in diagnosis and therapy, plasma research for fusion power, reactor control and instrumentation, nuclear power standards, and applications of digital computers in nuclear power plants. Systems and devices for space applications are described, including the Apollo alpha spectrometer, a position sensitive detection system for UV and X-ray photons, a 4500-volt electron multiplier bias supply for satellite use, spark chamber systems, proportional counters, and other devices. Individual items are announced in this issue.
An experimental toolbox for the generation of cold and ultracold polar molecules
NASA Astrophysics Data System (ADS)
Zeppenfeld, Martin; Gantner, Thomas; Glöckner, Rosa; Ibrügger, Martin; Koller, Manuel; Prehn, Alexander; Wu, Xing; Chervenkov, Sotir; Rempe, Gerhard
2017-01-01
Cold and ultracold molecules enable fascinating applications in quantum science. We present our toolbox of techniques to generate the required molecule ensembles, including buffergas cooling, centrifuge deceleration and optoelectrical Sisyphus cooling. We obtain excellent control over both the motional and internal molecular degrees of freedom, allowing us to aim at various applications.
ERIC Educational Resources Information Center
McPherson, Moira N.; Marsh, Pamela K.; Montelpare, William J.; Van Barneveld, Christina; Zerpa, Carlos E.
2009-01-01
Background: Wizards of Motion is a program of curriculum delivery through which experts in Kinesiology introduce grade 7 students to applications of physics for human movement. The program is linked closely to Ministry of Education curriculum requirements but includes human movement applications and data analysis experiences. Purpose: The purpose…
ERIC Educational Resources Information Center
Stage, Frances K.
The nature and use of LISREL (LInear Structural RELationships) analysis are considered, including an examination of college students' commitment to a university. LISREL is a fairly new causal analysis technique that has broad application in the social sciences and that employs structural equation estimation. The application examined in this paper…
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.
2010-01-01
The presentation slides include: The SPoRT Center, History and Future of SPoRT, Great Lakes Applications, Great Lakes Forecasting Issues, Applications to the WRF-EMS, Precipitation Science, Lake Effect Precipitation, Sensitivity to Microphysics, Exploring New Schemes, Opportunities for Collaboration, and SPoRT Research and Development.
Applications of aerospace technology in the environmental sciences
NASA Technical Reports Server (NTRS)
1972-01-01
Detailed information is reported on the operations and accomplishments of the RTI Technology Application Team for the period October 11, 1971 to March 10, 1972. Mathematical models for prediction of pollutant formation during combustion are discussed along with generic areas of air pollution problems, which NASA technology offers a high potential for solving. Recommendations for future work are included.
The National Cancer Institute's Physical Sciences - Oncology Network
NASA Astrophysics Data System (ADS)
Espey, Michael Graham
In 2009, the NCI launched the Physical Sciences - Oncology Centers (PS-OC) initiative with 12 Centers (U54) funded through 2014. The current phase of the Program includes U54 funded Centers with the added feature of soliciting new Physical Science - Oncology Projects (PS-OP) U01 grant applications through 2017; see NCI PAR-15-021. The PS-OPs, individually and along with other PS-OPs and the Physical Sciences-Oncology Centers (PS-OCs), comprise the Physical Sciences-Oncology Network (PS-ON). The foundation of the Physical Sciences-Oncology initiative is a high-risk, high-reward program that promotes a `physical sciences perspective' of cancer and fosters the convergence of physical science and cancer research by forming transdisciplinary teams of physical scientists (e.g., physicists, mathematicians, chemists, engineers, computer scientists) and cancer researchers (e.g., cancer biologists, oncologists, pathologists) who work closely together to advance our understanding of cancer. The collaborative PS-ON structure catalyzes transformative science through increased exchange of people, ideas, and approaches. PS-ON resources are leveraged to fund Trans-Network pilot projects to enable synergy and cross-testing of experimental and/or theoretical concepts. This session will include a brief PS-ON overview followed by a strategic discussion with the APS community to exchange perspectives on the progression of trans-disciplinary physical sciences in cancer research.
NASA Technical Reports Server (NTRS)
Horowitz, Richard (Compiler); Jackson, John E. (Compiler); Cameron, Winifred S. (Compiler)
1987-01-01
The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of planetary and heliocentric spacecraft and associated experiments. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.
NASA Technical Reports Server (NTRS)
Schofield, Norman J. (Editor); Parthasarathy, R. (Editor); Hills, H. Kent (Editor)
1988-01-01
The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets from geostationary and high altitude scientific spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.
NASA Technical Reports Server (NTRS)
Jackson, John E. (Editor); Horowitz, Richard (Editor)
1986-01-01
The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets from low and medium altitude scientific spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.
Accommodation requirements for microgravity science and applications research on space station
NASA Technical Reports Server (NTRS)
Uhran, M. L.; Holland, L. R.; Wear, W. O.
1985-01-01
Scientific research conducted in the microgravity environment of space represents a unique opportunity to explore and exploit the benefits of materials processing in the virtual abscence of gravity induced forces. NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. A study is performed to define from the researchers' perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. The accommodation requirements focus on the microgravity science disciplines including combustion science, electronic materials, metals and alloys, fluids and transport phenomena, glasses and ceramics, and polymer science. User requirements have been identified in eleven research classes, each of which contain an envelope of functional requirements for related experiments having similar characteristics, objectives, and equipment needs. Based on these functional requirements seventeen items of experiment apparatus and twenty items of core supporting equipment have been defined which represent currently identified equipment requirements for a pressurized laboratory module at the initial operating capability of the NASA space station.
Proceedings of the First Hanford Separation Science Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-05-01
The First Hanford Separation Science Workshop, sponsored by PNL had two main objectives: (1) assess the applicability of available separation methods for environmental restoration and for minimization, recovery, and recycle of mixed and radioactive mutes; and (2) identify research needs that must be addressed to create new or improved technologies. The information gathered at this workshop not only applies to Hanford but could be adapted to DOE facilities throughout the nation as well. These proceedings have been divided into three components: Background and Introduction to the Problem gives an overview of the history of the Site and the cleanup mission,more » including waste management operations, past disposal practices, current operations, and plans for the future. Also included in this section is a discussion of specific problems concerning the chemistry of the Hanford wastes. Separation Methodologies contains the papers given at the workshop by national experts in the field of separation science regarding the state-of-the-art of various methods and their applicability/adaptability to Hanford. Research Needs identifies further research areas developed in working group sessions. Individual papers are indexed separately.« less
Clinical Correlations as a Tool in Basic Science Medical Education
Klement, Brenda J.; Paulsen, Douglas F.; Wineski, Lawrence E.
2016-01-01
Clinical correlations are tools to assist students in associating basic science concepts with a medical application or disease. There are many forms of clinical correlations and many ways to use them in the classroom. Five types of clinical correlations that may be embedded within basic science courses have been identified and described. (1) Correlated examples consist of superficial clinical information or stories accompanying basic science concepts to make the information more interesting and relevant. (2) Interactive learning and demonstrations provide hands-on experiences or the demonstration of a clinical topic. (3) Specialized workshops have an application-based focus, are more specialized than typical laboratory sessions, and range in complexity from basic to advanced. (4) Small-group activities require groups of students, guided by faculty, to solve simple problems that relate basic science information to clinical topics. (5) Course-centered problem solving is a more advanced correlation activity than the others and focuses on recognition and treatment of clinical problems to promote clinical reasoning skills. Diverse teaching activities are used in basic science medical education, and those that include clinical relevance promote interest, communication, and collaboration, enhance knowledge retention, and help develop clinical reasoning skills. PMID:29349328
Cloud-Based Mobile Application Development Tools and NASA Science Datasets
NASA Astrophysics Data System (ADS)
Oostra, D.; Lewis, P. M.; Chambers, L. H.; Moore, S. W.
2011-12-01
A number of cloud-based visual development tools have emerged that provide methods for developing mobile applications quickly and without previous programming experience. This paper will explore how our new and current data users can best combine these cloud-based mobile application tools and available NASA climate science datasets. Our vision is that users will create their own mobile applications for visualizing our data and will develop tools for their own needs. The approach we are documenting is based on two main ideas. The first is to provide training and information. Through examples, sharing experiences, and providing workshops, users can be shown how to use free online tools to easily create mobile applications that interact with NASA datasets. The second approach is to provide application programming interfaces (APIs), databases, and web applications to access data in a way that educators, students and scientists can quickly integrate it into their own mobile application development. This framework allows us to foster development activities and boost interaction with NASA's data while saving resources that would be required for a large internal application development staff. The findings of this work will include data gathered through meetings with local data providers, educators, libraries and individuals. From the very first queries into this topic, a high level of interest has been identified from our groups of users. This overt interest, combined with the marked popularity of mobile applications, has created a new channel for outreach and communications between the science and education communities. As a result, we would like to offer educators and other stakeholders some insight into the mobile application development arena, and provide some next steps and new approaches. Our hope is that, through our efforts, we will broaden the scope and usage of NASA's climate science data by providing new ways to access environmentally relevant datasets.
NASA's In-Space Propulsion Technology Project's Products for Near-term Mission Applicability
NASA Astrophysics Data System (ADS)
Dankanich, John
2009-01-01
The In-Space Propulsion Technology (ISPT) project, funded by NASA's Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. The primary investments and products currently available for technology infusion include NASA's Evolutionary Xenon Thruster (NEXT) and the Advanced Materials Bipropellant Rocket (AMBR) engine. These products will reach TRL 6 in 2008 and are available for the current and all future mission opportunities. Development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of electric propulsion, advanced chemical thrusters, and aerocapture are presented.
Here's the beef: A case study in organizational transformation
NASA Technical Reports Server (NTRS)
Huseonica, William F.; Giardino, Marco J.
1992-01-01
The Science and Technology Lab (STL) is tasked with the design, development, and application of the science and engineering services. Formed in the early 1970's STL adhered to many traditional attitudes including barriers to communication, excessive management control, parochial strategies, unclear measures of success, lack of customer focus, underutilization of people, and excessive administrative burdens on scientists and engineers. The challenge for the STL was to maximize customer satisfaction through the effective and efficient application of the notable skills and talents of the STL's workforce. In this way, the Lab would begin its exciting journey toward becoming world class. A discussion of this on-going transformation is presented.
Aerospace Applications of Magnetic Suspension Technology, part 2
NASA Technical Reports Server (NTRS)
Groom, Nelson J. (Editor); Britcher, Colin P. (Editor)
1991-01-01
In order to examine the state of technology of all areas of magnetic suspension with potential aerospace applications, and to review related recent developments in sensors and control approaches, superconducting technology, and design/implementation practices, a workshop was held at NASA-Langley. Areas of concern are pointing and isolation systems, microgravity and vibration isolation, bearing applications, wind tunnel model suspension systems, large gap magnetic suspension systems, controls, rotating machinery, science and applications of superconductivity, and sensors. Papers presented are included.
Luminescent nanodiamonds for biomedical applications.
Say, Jana M; van Vreden, Caryn; Reilly, David J; Brown, Louise J; Rabeau, James R; King, Nicholas J C
2011-12-01
In recent years, nanodiamonds have emerged from primarily an industrial and mechanical applications base, to potentially underpinning sophisticated new technologies in biomedical and quantum science. Nanodiamonds are relatively inexpensive, biocompatible, easy to surface functionalise and optically stable. This combination of physical properties are ideally suited to biological applications, including intracellular labelling and tracking, extracellular drug delivery and adsorptive detection of bioactive molecules. Here we describe some of the methods and challenges for processing nanodiamond materials, detection schemes and some of the leading applications currently under investigation.
Uncertainty in Citizen Science observations: from measurement to user perception
NASA Astrophysics Data System (ADS)
Lahoz, William; Schneider, Philipp; Castell, Nuria
2016-04-01
Citizen Science activities concern general public engagement in scientific research activities when citizens actively contribute to science either with their intellectual effort or surrounding knowledge or with their tools and resources. The advent of technologies such as the Internet and smartphones, and the growth in their usage, has significantly increased the potential benefits from Citizen Science activities. Citizen Science observations from low-cost sensors, smartphones and Citizen Observatories, provide a novel and recent development in platforms for observing the Earth System, with the opportunity to extend the range of observational platforms available to society to spatio-temporal scales (10-100s m; 1 hr or less) highly relevant to citizen needs. The potential value of Citizen Science is high, with applications in science, education, social aspects, and policy aspects, but this potential, particularly for citizens and policymakers, remains largely untapped. Key areas where Citizen Science data start to have demonstrable benefits include GEOSS Societal Benefit Areas such as Health and Weather. Citizen Science observations have many challenges, including simulation of smaller spatial scales, noisy data, combination with traditional observational methods (satellite and in situ data), and assessment, representation and visualization of uncertainty. Within these challenges, that of the assessment and representation of uncertainty and its communication to users is fundamental, as it provides qualitative and/or quantitative information that influences the belief users will have in environmental information. This presentation will discuss the challenges in assessment and representation of uncertainty in Citizen Science observations, its communication to users, including the use of visualization, and the perception of this uncertainty information by users of Citizen Science observations.
Why Citizen Science Without Usability Testing Will Underperform
NASA Astrophysics Data System (ADS)
Romano, C.; Gay, P.; Owens, R.; Burlea, G.
2017-12-01
Citizen science projects must undergo usability testing and optimization if they are to meet their stated goals. This presentation will include video of usability tests conducted upon citizen science websites. Usability testing is essential to the success of online interaction, however, citizen science projects have just begun to include this critical activity. Interaction standards in citizen science lag behind those of commercial interests, and published research on this topic is limited. Since online citizen science is by definition, an exchange of information, a clear understanding of how users experience an online project is essential to informed decision-making. Usability testing provides that insight. Usability testing collects data via direct observation of a person while she interacts with a digital product, such as a citizen science website. The test participant verbalizes her thoughts while using the website or application; the moderator follows the participant and captures quantitative measurement of the participant's confidence of success as she advances through the citizen science project. Over 15 years of usability testing, we have observed that users who do not report a consistent sense of progress are likely to abandon a website after as few as three unrewarding interactions. Since citizen science is also a voluntary activity, ensuring seamless interaction for users is mandatory. Usability studies conducted on citizen science websites demonstrate that project teams frequently underestimate a user's need for context and ease of use. Without usability testing, risks to online citizen science projects include high bounce rate (users leave the website without taking any action), abandonment (of the website, tutorials, registration), misunderstanding instructions (causing disorientation and erroneous conclusions), and ultimately, underperforming projects.
Rocket Science at the Nanoscale.
Li, Jinxing; Rozen, Isaac; Wang, Joseph
2016-06-28
Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.
NPOESS Preparatory Project (NPP) Science Overview
NASA Technical Reports Server (NTRS)
Butler, James J.
2011-01-01
NPP Instruments are: (1) well understood thanks to instrument comprehensive test, characterization and calibration programs. (2) Government team ready for October 25 launch followed by instrument activation and Intensive Calibration/Validation (ICV). NPP Data Products preliminary work includes: (1) JPSS Center for Satellite Applications and Research (STAR) team ready to support NPP ICV and operational data products. (2) NASA NPP science team ready to support NPP ICV and EOS data continuity.
ERIC Educational Resources Information Center
Poyatos, Fernando
1975-01-01
The new science of Proxemic Behavior (introduced by Edward T. Hall) should be included in the basic triple structure of human communicative behavior: language-paralanguage-kinesthesia. The applications of such a science are many e.g., analysis and study of the narrative character in novels. (Text is in Spanish.) (DS)
JPRS report: Science and Technology. Europe and Latin America
NASA Astrophysics Data System (ADS)
1988-01-01
Articles from the popular and trade press are included on the following subjects: advanced materials, aerospace industry, automotive industry, biotechnology, computers, factory automation and robotics, microelectronics, and science and technology policy. The aerospace articles discuss briefly and in a nontechnical way the SAGEM bubble memories for space applications, Ariane V new testing facilities, innovative technologies of TDF-1 satellite, and the restructuring of the Aviation Division at France's Aerospatiale.
Review of the SAFARI 2000 RC-10 Aerial Photography
NASA Technical Reports Server (NTRS)
Myers, Jeff; Shelton, Gary; Annegarn, Harrold; Peterson, David L. (Technical Monitor)
2001-01-01
This presentation will review the aerial photography collected by the NASA ER-2 aircraft during the SAFARI (Southern African Regional Science Initiative) year 2000 campaign. It will include specifications on the camera and film, and will show examples of the imagery. It will also detail the extent of coverage, and the procedures to obtain film products from the South African government. Also included will be some sample applications of aerial photography for various environmental applications, and its use in augmenting other SAFARI data sets.
Data Base Management Systems Panel Workshop: Executive summary
NASA Technical Reports Server (NTRS)
1979-01-01
Data base management systems (DBMS) for space acquired and associated data are discussed. The full range of DBMS needs is covered including acquiring, managing, storing, archiving, accessing and dissemination of data for an application. Existing bottlenecks in DBMS operations, expected developments in the field of remote sensing, communications, and computer science are discussed, and an overview of existing conditions and expected problems is presented. The requirements for a proposed spatial information system and characteristics of a comprehensive browse facility for earth observations applications are included.
NASA'S Earth Science Enterprise Embraces Active Laser Remote Sensing from Space
NASA Technical Reports Server (NTRS)
Luther, Michael R.; Paules, Granville E., III
1999-01-01
Several objectives of NASA's Earth Science Enterprise are accomplished, and in some cases, uniquely enabled by the advantages of earth-orbiting active lidar (laser radar) sensors. With lidar, the photons that provide the excitation illumination for the desired measurement are both controlled and well known. The controlled characteristics include when and where the illumination occurs, the wavelength, bandwidth, pulse length, and polarization. These advantages translate into high signal levels, excellent spatial resolution, and independence from time of day and the sun's position. As the lidar technology has rapidly matured, ESE scientific endeavors have begun to use lidar sensors over the last 10 years. Several more lidar sensors are approved for future flight. The applications include both altimetry (rangefinding) and profiling. Hybrid missions, such as the approved Geoscience Laser Altimeter System (GLAS) sensor to fly on the ICESat mission, will do both at the same time. Profiling applications encompass aerosol, cloud, wind, and molecular concentration measurements. Recent selection of the PICASSO Earth System Science Pathfinder mission and the complementary CLOUDSAT radar-based mission, both flying in formation with the EOS PM mission, will fully exploit the capabilities of multiple sensor systems to accomplish critical science needs requiring such profiling. To round out the briefing a review of past and planned ESE missions will be presented.
Plasma Science and Applications at the Intel Science Fair: A Retrospective
NASA Astrophysics Data System (ADS)
Berry, Lee
2009-11-01
For the past five years, the Coalition for Plasma Science (CPS) has presented an award for a plasma project at the Intel International Science and Engineering Fair (ISEF). Eligible projects have ranged from grape-based plasma production in a microwave oven to observation of the effects of viscosity in a fluid model of quark-gluon plasma. Most projects have been aimed at applications, including fusion, thrusters, lighting, materials processing, and GPS improvements. However diagnostics (spectroscopy), technology (magnets), and theory (quark-gluon plasmas) have also been represented. All of the CPS award-winning projects so far have been based on experiments, with two awards going to women students and three to men. Since the award was initiated, both the number and quality of plasma projects has increased. The CPS expects this trend to continue, and looks forward to continuing its work with students who are excited about the possibilities of plasma. You too can share this excitement by judging at the 2010 fair in San Jose on May 11-12.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1973-01-01
Congressman James Symington was chairman of the Subcommittee on Space Science and Applications of the House Committee on Science and Astronautics. Congressman Mike McCormack was present at the proceedings and witnesses presented data on the development of long-term fuel supplies, a continued search for more reliable and more efficient designs of plants, and the optimization of the impact on society in the use of energy for such things as food, shelter, clothing, heat, light, health, recreation, travel, and education. Then, general problems of the byproducts of the energy-producing processes are examined including fly ash, sulfur oxides, nitrogen, oxides, warm water,more » esthetics, strip mining, and radiation. Representatives from the utilities, national laboratories, gas companies, universities, environmental councils, space agencies, and communication companies presented the data covering all aspects of energy research. (MCW)« less
A Scientist's Guide to Achieving Broader Impacts through K–12 STEM Collaboration
Komoroske, Lisa M.; Hameed, Sarah O.; Szoboszlai, Amber I.; Newsom, Amanda J.; Williams, Susan L.
2015-01-01
The National Science Foundation and other funding agencies are increasingly requiring broader impacts in grant applications to encourage US scientists to contribute to science education and society. Concurrently, national science education standards are using more inquiry-based learning (IBL) to increase students’ capacity for abstract, conceptual thinking applicable to real-world problems. Scientists are particularly well suited to engage in broader impacts via science inquiry outreach, because scientific research is inherently an inquiry-based process. We provide a practical guide to help scientists overcome obstacles that inhibit their engagement in K–12 IBL outreach and to attain the accrued benefits. Strategies to overcome these challenges include scaling outreach projects to the time available, building collaborations in which scientists’ research overlaps with curriculum, employing backward planning to target specific learning objectives, encouraging scientists to share their passion, as well as their expertise with students, and transforming institutional incentives to support scientists engaging in educational outreach. PMID:26955078
Budge, Eleanor Jane; Tsoti, Sandra Maria; Howgate, Daniel James; Sivakumar, Shivan; Jalali, Morteza
2015-01-01
Translational medicine bridges the gap between discoveries in biomedical science and their safe and effective clinical application. Despite the gross opportunity afforded by modern research for unparalleled advances in this field, the process of translation remains protracted. Efforts to expedite science translation have included the facilitation of interdisciplinary collaboration within both academic and clinical environments in order to generate integrated working platforms fuelling the sharing of knowledge, expertise, and tools to align biomedical research with clinical need. However, barriers to scientific translation remain, and further progress is urgently required. Collective intelligence and crowdsourcing applications offer the potential for global online networks, allowing connection and collaboration between a wide variety of fields. This would drive the alignment of biomedical science with biotechnology, clinical need, and patient experience, in order to deliver evidence-based innovation which can revolutionize medical care worldwide. Here we discuss the critical steps towards implementing collective intelligence in translational medicine using the experience of those in other fields of science and public health.
From field data collection to earth sciences dissemination: mobile examples in the digital era
NASA Astrophysics Data System (ADS)
Giardino, Marco; Ghiraldi, Luca; Palomba, Mauro; Perotti, Luigi
2015-04-01
In the framework of the technological and cultural revolution related to the massive diffusion of mobile devices, as smartphones and tablets, the information management and accessibility is changing, and many software houses and developer communities realized applications that can meet various people's needs. Modern collection, storing and sharing of data have radically changed, and advances in ICT increasingly involve field-based activities. Progresses in these researches and applications depend on three main components: hardware, software and web system. Since 2008 the geoSITLab multidisciplinary group (Earth Sciences Department and NatRisk Centre of the University of Torino and the Natural Sciences Museum of the Piemonte Region) is active in defining and testing methods for collecting, managing and sharing field information using mobile devices. Key issues include: Geomorphological Digital Mapping, Natural Hazards monitoring, Geoheritage assessment and applications for the teaching of Earth Sciences. An overview of the application studies is offered here, including the use of Mobile tools for data collection, the construction of relational databases for inventory activities and the test of Web-Mapping tools and mobile apps for data dissemination. The fil rouge of connection is a standardized digital approach allowing the use of mobile devices in each step of the process, which will be analysed within different projects set up by the research group (Geonathaz, EgeoFieldwork, Progeo Piemonte, GeomediaWeb). The hardware component mainly consists of the availability of handheld mobile devices (e.g. smartphones, PDAs and Tablets). The software component corresponds to applications for spatial data visualization on mobile devices, such as composite mobile GIS or simple location-based apps. The web component allows the integration of collected data into geodatabase based on client-server architecture, where the information can be easily loaded, uploaded and shared between field staff and data management team, in order to disseminate collected information to media or to inform the decision makers. Results demonstrated the possibility to record field observations in a fast and reliable way, using standardized formats that can improve the precision of collected information and lower the possibility of errors and data omission. Dedicated forms have been set up for gathering different thematic data (geologic/geomorphologic, faunal and floristic, path system…etc.). Field data allowed to arrange maps and SDI useful for many application purposes: from country-planning to disaster risk management, from Geoheritage management to Earth Science concepts dissemination.
Visions 2025 and Linkage to NEXT
NASA Technical Reports Server (NTRS)
Wiscombe, W.; Lau, William K. M. (Technical Monitor)
2002-01-01
This talk will describe the progress to date on creating a science-driven vision for the NASA Earth Science Enterprise (ESE) in the post-2010 period. This effort began in the Fall of 2001 by organizing five science workgroups with representatives from NASA, academia and other agencies: Long-Term Climate, Medium-Term Climate, Extreme Weather, Biosphere & Ecosystems, and Solid Earth, Ice Sheets, & Sea Level. Each workgroup was directed to scope out one Big Question, including not just the science but the observational and modeling requirements, the information system requirements, and the applications and benefits to society. This first set of five Big Questions is now in hand and has been presented to the ESE Director. It includes: water resources, intraseasonal predictability, tropical cyclogenesis, invasive species, and sea level. Each of these topics will be discussed briefly. How this effort fits into the NEXT vision exercise and into Administrator O'Keefe's new vision for NASA will also be discussed.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- The STS-107 crew heads for the Astrovan and a ride to Launch Pad 39A for liftoff. From left to right are Payload Commander Michael Anderson, Mission Specialist David Brown, Payload Specialist Ilan Ramon, Mission Specialists Laurel Clark and Kalpana Chawla, Mission Commandaer Rick Husband and Pilot William "Willie" McCool. Ramon is the first astronaut from Israel to fly on a Shuttle. The 16-day mission is devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST. [Photo courtesy of Scott Andrews
Multifarious applications of atomic force microscopy in forensic science investigations.
Pandey, Gaurav; Tharmavaram, Maithri; Rawtani, Deepak; Kumar, Sumit; Agrawal, Y
2017-04-01
Forensic science is a wide field comprising of several subspecialties and uses methods derived from natural sciences for finding criminals and other evidence valid in a legal court. A relatively new area; Nano-forensics brings a new era of investigation in forensic science in which instantaneous results can be produced that determine various agents such as explosive gasses, biological agents and residues in different crime scenes and terrorist activity investigations. This can be achieved by applying Nanotechnology and its associated characterization techniques in forensic sciences. Several characterization techniques exist in Nanotechnology and nano-analysis is one such technique that is used in forensic science which includes Electron microscopes (EM) like Transmission (TEM) and Scanning (SEM), Raman microscopy (Micro -Raman) and Scanning Probe Microscopes (SPMs) like Atomic Force Microscope (AFM). Atomic force microscopy enables surface characterization of different materials by examining their morphology and mechanical properties. Materials that are immeasurable such as hair, body fluids, textile fibers, documents, polymers, pressure sensitive adhesives (PSAs), etc. are often encountered during forensic investigations. This review article will mainly focus on the use of AFM in the examination of different evidence such as blood stains, forged documents, human hair samples, ammunitions, explosives, and other such applications in the field of Forensic Science. Copyright © 2017 Elsevier B.V. All rights reserved.
Radiance Data Products at the GES DAAC
NASA Technical Reports Server (NTRS)
Savtchenko, A.; Ouzounov, D.; Acker, J.; Johnson, J.; Leptoukh, G.; Qin, J.; Rui, H.; Smith, P.; Teng, W.
2004-01-01
The Goddard Earth Sciences Distributed Active Archive Center (GES DAAC) has been archiving and distributing Radiance data, and serving science and application users of these data, for over 10 years now. The user-focused stewardship of the Radiance data from the AIRS, AVHRR, MODIS, SeaWiFS, SORCE, TOMS, TOVS, TRMM, and UARS instruments exemplifies the GES DAAC tradition and experience. Radiance data include raw radiance counts, onboard calibration data, geolocation products, radiometric calibrated and geolocated-calibrated radiance/reflectance. The number of science products archived at the GES DAAC is steadily increasing, as a result of more sophisticated sensors and new science algorithms. Thus, the main challenge for the GES DAAC is to guide users through the variety of Radiance data sets, provide tools to visualize and reduce the volume of the data, and provide uninterrupted access to the data. This presentation will describe the effort at the GES DAAC to build a bridge between multi-sensor data and the effective scientific use of the data, with an emphasis on the heritage of the science products. The intent is to inform users of the existence of this large collection of Radiance data; suggest starting points for cross-platform science projects and data mining activities; provide data services and tools information; and to give expert help in the science data formats and applications.
A descriptive and historical review of bibliometrics with applications to medical sciences.
Thompson, Dennis F; Walker, Cheri K
2015-06-01
The discipline of bibliometrics involves the application of mathematical and statistical methods to scholarly publications. The first attempts at systematic data collection were provided by Alfred Lotka and Samuel Bradford, who subsequently established the foundational laws of bibliometrics. Eugene Garfield ushered in the modern era of bibliometrics with the routine use of citation analysis and systematized processing. Key elements of bibliometric analysis include database coverage, consistency and accuracy of the data, data fields, search options, and analysis and use of metrics. A number of bibliometric applications are currently being used in medical science and health care. Bibliometric parameters and indexes may be increasingly used by grant funding sources as measures of research success. Universities may build benchmarking standards from bibliometric data to determine academic achievement through promotion and tenure guidelines in the future. This article reviews the history, definition, laws, and elements of bibliometric principles and provides examples of bibliometric applications to the broader health care community. To accomplish this, the Medline (1966-2014) and Web of Science (1945-2014) databases were searched to identify relevant articles; select articles were also cross-referenced. Articles selected were those that provided background, history, descriptive analysis, and application of bibliometric principles and metrics to medical science and health care. No attempt was made to cover all areas exhaustively; rather, key articles were chosen that illustrate bibliometric concepts and enhance the reader's knowledge. It is important that faculty and researchers understand the limitations and appropriate uses of bibliometric data. Bibliometrics has considerable potential as a research area for health care scientists and practitioners that can be used to discover new information about academic trends, pharmacotherapy, disease, and broader health sciences trends. © 2015 Pharmacotherapy Publications, Inc.
Introduction to Pharmaceutical Biotechnology, Volume 1; Basic techniques and concepts
NASA Astrophysics Data System (ADS)
Bhatia, Saurabh; Goli, Divakar
2018-05-01
Animal biotechnology is a broad field including polarities of fundamental and applied research, as well as DNA science, covering key topics of DNA studies and its recent applications. In Introduction to Pharmaceutical Biotechnology, DNA isolation procedures followed by molecular markers and screening methods of the genomic library are explained. Interesting areas like isolation, sequencing and synthesis of genes, with the broader coverage on synthesis of genes, are also described. The book begins with an introduction to biotechnology and its main branches, explaining both the basic science and the applications of biotechnology-derived pharmaceuticals, with special emphasis on their clinical use. It then moves on to historical development and scope of biotechnology with an overall review of early applications that scientists employed long before the field was defined.
The application of cloud computing to scientific workflows: a study of cost and performance.
Berriman, G Bruce; Deelman, Ewa; Juve, Gideon; Rynge, Mats; Vöckler, Jens-S
2013-01-28
The current model of transferring data from data centres to desktops for analysis will soon be rendered impractical by the accelerating growth in the volume of science datasets. Processing will instead often take place on high-performance servers co-located with data. Evaluations of how new technologies such as cloud computing would support such a new distributed computing model are urgently needed. Cloud computing is a new way of purchasing computing and storage resources on demand through virtualization technologies. We report here the results of investigations of the applicability of commercial cloud computing to scientific computing, with an emphasis on astronomy, including investigations of what types of applications can be run cheaply and efficiently on the cloud, and an example of an application well suited to the cloud: processing a large dataset to create a new science product.
Laser ablation surface-enhanced Raman microspectroscopy.
Londero, Pablo S; Lombardi, John R; Leona, Marco
2013-06-04
Improved identification of trace organic compounds in complex matrixes is critical for a variety of fields such as material science, heritage science, and forensics. Surface-enhanced Raman scattering (SERS) is a vibrational spectroscopy technique that can attain single-molecule sensitivity and has been shown to complement mass spectrometry, but lacks widespread application without a robust method that utilizes the effect. We demonstrate a new, highly sensitive, and widely applicable approach to SERS analysis based on laser ablation in the presence of a tailored plasmonic substrate. We analyze several challenging compounds, including non-water-soluble pigments and dyed leather from an ancient Egyptian chariot, achieving sensitivity as high as 120 amol for a 1:1 signal-to-noise ratio and 5 μm spatial resolution. This represents orders of magnitude improvement in spatial resolution and sensitivity compared to those of other SERS approaches intended for widespread application, greatly increasing the applicability of SERS.
NASA Technical Reports Server (NTRS)
Redmann, G. H.
1976-01-01
Recent advances in image processing and new applications are presented to the user community to stimulate the development and transfer of this technology to industrial and commercial applications. The Proceedings contains 37 papers and abstracts, including many illustrations (some in color) and provides a single reference source for the user community regarding the ordering and obtaining of NASA-developed image-processing software and science data.
34 CFR 263.21 - What priority is given to certain projects and applicants?
Code of Federal Regulations, 2010 CFR
2010-07-01
... successful entry into school at the kindergarten school level. (2) Early childhood and kindergarten programs... subject matters, including math and science, to enable Indian students to successfully transition to...
The Cycles of Math and Science.
ERIC Educational Resources Information Center
Sumrall, William J.; Rock, David
2002-01-01
Introduces lesson plans on cycles designed for middle school students. Activities include: (1) "Boiling and Evaporation"; (2) "Experimenting with Evaporation"; (3) "Condensation and the Water Cycle"; and (4) "Understanding Cycles". Explains the mathematical applications of cycles. (YDS)
75 FR 8939 - Pesticide Products; Registration Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-26
.... FIFRA Registration Applications On October 10, 2006, EPA received applications from Bayer CropScience... application from Bayer Environmental Science for a spirotetramat end- use product for insect control in... CropScience for another spirotetramat end-use product for agricultural use. The applications are...
Spacelab 3 Mission Science Review
NASA Technical Reports Server (NTRS)
Fichtl, George H. (Editor); Theon, John S. (Editor); Hill, Charles K. (Editor); Vaughan, Otha H. (Editor)
1987-01-01
Papers and abstracts of the presentations made at the symposium are given as the scientific report for the Spacelab 3 mission. Spacelab 3, the second flight of the National Aeronautics and Space Administration's (NASA) orbital laboratory, signified a new era of research in space. The primary objective of the mission was to conduct applications, science, and technology experiments requiring the low-gravity environment of Earth orbit and stable vehicle attitude over an extended period (e.g., 6 days) with emphasis on materials processing. The mission was launched on April 29, 1985, aboard the Space Shuttle Challenger which landed a week later on May 6. The multidisciplinary payload included 15 investigations in five scientific fields: material science, fluid dynamics, life sciences, astrophysics, and atmospheric science.
Data Mining Citizen Science Results
NASA Astrophysics Data System (ADS)
Borne, K. D.
2012-12-01
Scientific discovery from big data is enabled through multiple channels, including data mining (through the application of machine learning algorithms) and human computation (commonly implemented through citizen science tasks). We will describe the results of new data mining experiments on the results from citizen science activities. Discovering patterns, trends, and anomalies in data are among the powerful contributions of citizen science. Establishing scientific algorithms that can subsequently re-discover the same types of patterns, trends, and anomalies in automatic data processing pipelines will ultimately result from the transformation of those human algorithms into computer algorithms, which can then be applied to much larger data collections. Scientific discovery from big data is thus greatly amplified through the marriage of data mining with citizen science.
VoPham, Trang; Hart, Jaime E; Laden, Francine; Chiang, Yao-Yi
2018-04-17
Geospatial artificial intelligence (geoAI) is an emerging scientific discipline that combines innovations in spatial science, artificial intelligence methods in machine learning (e.g., deep learning), data mining, and high-performance computing to extract knowledge from spatial big data. In environmental epidemiology, exposure modeling is a commonly used approach to conduct exposure assessment to determine the distribution of exposures in study populations. geoAI technologies provide important advantages for exposure modeling in environmental epidemiology, including the ability to incorporate large amounts of big spatial and temporal data in a variety of formats; computational efficiency; flexibility in algorithms and workflows to accommodate relevant characteristics of spatial (environmental) processes including spatial nonstationarity; and scalability to model other environmental exposures across different geographic areas. The objectives of this commentary are to provide an overview of key concepts surrounding the evolving and interdisciplinary field of geoAI including spatial data science, machine learning, deep learning, and data mining; recent geoAI applications in research; and potential future directions for geoAI in environmental epidemiology.
Medical University admission test: a confirmatory factor analysis of the results.
Luschin-Ebengreuth, Marion; Dimai, Hans P; Ithaler, Daniel; Neges, Heide M; Reibnegger, Gilbert
2016-05-01
The Graz Admission Test has been applied since the academic year 2006/2007. The validity of the Test was demonstrated by a significant improvement of study success and a significant reduction of dropout rate. The purpose of this study was a detailed analysis of the internal correlation structure of the various components of the Graz Admission Test. In particular, the question investigated was whether or not the various test parts constitute a suitable construct which might be designated as "Basic Knowledge in Natural Science." This study is an observational investigation, analyzing the results of the Graz Admission Test for the study of human medicine and dentistry. A total of 4741 applicants were included in the analysis. Principal component factor analysis (PCFA) as well as techniques from structural equation modeling, specifically confirmatory factor analysis (CFA), were employed to detect potential underlying latent variables governing the behavior of the measured variables. PCFA showed good clustering of the science test parts, including also text comprehension. A putative latent variable "Basic Knowledge in Natural Science," investigated by CFA, was indeed shown to govern the response behavior of the applicants in biology, chemistry, physics, and mathematics as well as text comprehension. The analysis of the correlation structure of the various test parts confirmed that the science test parts together with text comprehension constitute a satisfactory instrument for measuring a latent construct variable "Basic Knowledge in Natural Science." The present results suggest the fundamental importance of basic science knowledge for results obtained in the framework of the admission process for medical universities.
The Generation of Near-Real Time Data Products for MODIS
NASA Astrophysics Data System (ADS)
Teague, M.; Schmaltz, J. E.; Ilavajhala, S.; Ye, G.; Masuoka, E.; Murphy, K. J.; Michael, K.
2010-12-01
The GSFC Terrestrial Information Systems Branch (614.5) operate the Land and Atmospheres Near-real-time Capability for EOS (LANCE-MODIS) system. Other LANCE elements include -AIRS, -MLS, -OMI, and -AMSR-E. LANCE-MODIS incorporates the former Rapid Response system and will, in early 2011, include the Fire Information for Resource Management System (FIRMS). The purpose of LANCE is to provide applications users with a variety of products on a near-real time basis. The LANCE-MODIS data products include Level 1 (L1), L2 fire, snow, sea ice, cloud mask/profiles, aerosols, clouds, land surface reflectance, land surface temperature, and L2G and L3 gridded, daily, land surface reflectance products. Data are available either by ftp access (pull) or by subscription (push) and the L1 and L2 data products are available within an average of 2.5 hours of the observation time. The use of ancillary data products input to the standard science algorithms has been modified in order to obtain these latencies. The resulting products have been approved for applications use by the MODIS Science Team. The http://lance.nasa.gov site provides registration information and extensive information concerning the MODIS data products and imagery including a comparison between the LANCE-MODIS and the standard science-quality products generated by the MODAPS system. The LANCE-MODIS system includes a variety of tools that enable users to manipulate the data products including: parameter, band, and geographic subsetting, re-projection, mosaicing, and generation of data in the GeoTIFF format. In most instances the data resulting from use of these tools has a latency of less than 3 hours. Access to these tools is available through a Web Coverage Service. A Google Earth/Web Mapping Service is available to access image products. LANCE-MODIS supports a wide variety of applications users in civilian, military, and foreign agencies as well as universities and the private sector. Examples of applications are: Flood Mapping, Famine relief, Food and Agriculture, Hazards and Disasters, and Weather.
Space-based Science Operations Grid Prototype
NASA Technical Reports Server (NTRS)
Bradford, Robert N.; Welch, Clara L.; Redman, Sandra
2004-01-01
Grid technology is the up and coming technology that is enabling widely disparate services to be offered to users that is very economical, easy to use and not available on a wide basis. Under the Grid concept disparate organizations generally defined as "virtual organizations" can share services i.e. sharing discipline specific computer applications, required to accomplish the specific scientific and engineering organizational goals and objectives. Grids are emerging as the new technology of the future. Grid technology has been enabled by the evolution of increasingly high speed networking. Without the evolution of high speed networking Grid technology would not have emerged. NASA/Marshall Space Flight Center's (MSFC) Flight Projects Directorate, Ground Systems Department is developing a Space-based Science Operations Grid prototype to provide to scientists and engineers the tools necessary to operate space-based science payloads/experiments and for scientists to conduct public and educational outreach. In addition Grid technology can provide new services not currently available to users. These services include mission voice and video, application sharing, telemetry management and display, payload and experiment commanding, data mining, high order data processing, discipline specific application sharing and data storage, all from a single grid portal. The Prototype will provide most of these services in a first step demonstration of integrated Grid and space-based science operations technologies. It will initially be based on the International Space Station science operational services located at the Payload Operations Integration Center at MSFC, but can be applied to many NASA projects including free flying satellites and future projects. The Prototype will use the Internet2 Abilene Research and Education Network that is currently a 10 Gb backbone network to reach the University of Alabama at Huntsville and several other, as yet unidentified, Space Station based science experimenters. There is an international aspect to the Grid involving the America's Pathway (AMPath) network, the Chilean REUNA Research and Education Network and the University of Chile in Santiago that will further demonstrate how extensive these services can be used. From the user's perspective, the Prototype will provide a single interface and logon to these varied services without the complexity of knowing the where's and how's of each service. There is a separate and deliberate emphasis on security. Security will be addressed by specifically outlining the different approaches and tools used. Grid technology, unlike the Internet, is being designed with security in mind. In addition we will show the locations, configurations and network paths associated with each service and virtual organization. We will discuss the separate virtual organizations that we define for the varied user communities. These will include certain, as yet undetermined, space-based science functions and/or processes and will include specific virtual organizations required for public and educational outreach and science and engineering collaboration. We will also discuss the Grid Prototype performance and the potential for further Grid applications both space-based and ground based projects and processes. In this paper and presentation we will detail each service and how they are integrated using Grid
ERIC Educational Resources Information Center
Gitari, Wanja
2016-01-01
This qualitative study investigated non-guided applications of school science by high school youth in Ontario in non-school contexts. Although science education (in Ontario and elsewhere) mostly focuses on the meaningful learning of science, learning that can lead to knowledge application, non-guided application of acquired knowledge is rarely…
Digitized Educational Technology: A Learning Tool Using Remotely Sensed Data
NASA Technical Reports Server (NTRS)
Love, Gloria Carter
1999-01-01
Digitized Educational software for different levels of instruction were developed and placed on the web (geocities). Students attending the Pre-Engineering Summer 1998 Camp at Dillard University explored the use of the software which included presentations, applications, and special exercises. Student comments were received and considered for adjustments. The second outreach program included students from Colton Junior High School and Natural Science Majors at Dillard University. The Natural Majors completed a second survey concerning reasons why students selected majors in the Sciences and Mathematics. Two student research assistants (DU) and faculty members/parents of Colton Junior High assisted.
Geological applications and training in remote sensing
NASA Technical Reports Server (NTRS)
Sabins, F. F., Jr.
1981-01-01
Some of the experiences, methods, and opinions developed during 15 years of teaching an introductory course in remote sensing at several universities in the Southern California area are related. Although the course is offered in Geology departments, every class includes significant numbers of students from other disciplines including geography, computer science, biology, and environmental science. The instructor or teaching assistant provides a few hours of tutorial lectures (outside of regular class time) on basic geology for these nongeologists. This approach is successful because the grade distribution for nongeologists is similar to that for geologists. The schedule for a typical one-semester course is given.
Multiuser Collaboration with Networked Mobile Devices
NASA Technical Reports Server (NTRS)
Tso, Kam S.; Tai, Ann T.; Deng, Yong M.; Becks, Paul G.
2006-01-01
In this paper we describe a multiuser collaboration infrastructure that enables multiple mission scientists to remotely and collaboratively interact with visualization and planning software, using wireless networked personal digital assistants(PDAs) and other mobile devices. During ground operations of planetary rover and lander missions, scientists need to meet daily to review downlinked data and plan science activities. For example, scientists use the Science Activity Planner (SAP) in the Mars Exploration Rover (MER) mission to visualize downlinked data and plan rover activities during the science meetings [1]. Computer displays are projected onto large screens in the meeting room to enable the scientists to view and discuss downlinked images and data displayed by SAP and other software applications. However, only one person can interact with the software applications because input to the computer is limited to a single mouse and keyboard. As a result, the scientists have to verbally express their intentions, such as selecting a target at a particular location on the Mars terrain image, to that person in order to interact with the applications. This constrains communication and limits the returns of science planning. Furthermore, ground operations for Mars missions are fundamentally constrained by the short turnaround time for science and engineering teams to process and analyze data, plan the next uplink, generate command sequences, and transmit the uplink to the vehicle [2]. Therefore, improving ground operations is crucial to the success of Mars missions. The multiuser collaboration infrastructure enables users to control software applications remotely and collaboratively using mobile devices. The infrastructure includes (1) human-computer interaction techniques to provide natural, fast, and accurate inputs, (2) a communications protocol to ensure reliable and efficient coordination of the input devices and host computers, (3) an application-independent middleware that maintains the states, sessions, and interactions of individual users of the software applications, (4) an application programming interface to enable tight integration of applications and the middleware. The infrastructure is able to support any software applications running under the Windows or Unix platforms. The resulting technologies not only are applicable to NASA mission operations, but also useful in other situations such as design reviews, brainstorming sessions, and business meetings, as they can benefit from having the participants concurrently interact with the software applications (e.g., presentation applications and CAD design tools) to illustrate their ideas and provide inputs.
ERIC Educational Resources Information Center
D'Souza, Malcolm J.; Kashmar, Richard J.; Hurst, Kent; Fiedler, Frank; Gross, Catherine E.; Deol, Jasbir K.; Wilson, Alora
2015-01-01
Wesley College is a private, primarily undergraduate minority-serving institution located in the historic district of Dover, Delaware (DE). The College recently revised its baccalaureate biological chemistry program requirements to include a one-semester Physical Chemistry for the Life Sciences course and project-based experiential learning…
CIP's Eighth Annual Educational Software Contest: The Winners.
ERIC Educational Resources Information Center
Donnelly, Denis
1997-01-01
Announces the winners of an annual software contest for innovative software in physics education. Winning entries include an application to help students visualize the origin of energy bands in a solid, a package on the radioastronomy of pulsars, and a school-level science simulation program. Also includes student winners, honorable mentions,…
In-Service Training Argumentation Application for Elementary School Teachers: Pilot Study
ERIC Educational Resources Information Center
Alkis-Küçükaydin, Mensure; Uluçinar Sagir, Safak; Kösterelioglu, Ilker
2016-01-01
Science Course Curriculum was revised in Turkey in 2013 and some methods and strategies were suggested to be included such as argumentation. This study includes the evaluation of in-service training applied as pilot study for introducing argumentation to elementary school teachers. The study consists of applying needs analysis, preparing and…
Space physics missions handbook
NASA Technical Reports Server (NTRS)
Cooper, Robert A. (Compiler); Burks, David H. (Compiler); Hayne, Julie A. (Editor)
1991-01-01
The purpose of this handbook is to provide background data on current, approved, and planned missions, including a summary of the recommended candidate future missions. Topics include the space physics mission plan, operational spacecraft, and details of such approved missions as the Tethered Satellite System, the Solar and Heliospheric Observatory, and the Atmospheric Laboratory for Applications and Science.
Fortran Programs for Weapon Systems Analysis
1990-06-01
interested in ballistics and related work. The programs include skeletal combat models , a set of discrete-event timing routines, mathematical and...32 4.3 LinEqs: Solve Linear Equations Like a Textbook ........................................................................... 34...military applications as it is of computer science. This crisis occurs in all fields, including the modeling of logistics, mobility, ballistics, and combat
Eldredge, Jonathan D
2003-06-01
to describe the essential components of the Randomised Controlled Trial (RCT) and its major variations; to describe less conventional applications of the RCT design found in the health sciences literature with potential relevance to health sciences librarianship; to discuss the limited number of RCTs within health sciences librarianship. narrative review supported to a limited extent with PubMed and Library Literature database searches consistent with specific search parameters. In addition, more systematic methods, including handsearching of specific journals, to identify health sciences librarianship RCTs. While many RCTs within the health sciences follow more conventional patterns, some RCTs assume certain unique features. Selected examples illustrate the adaptations of this experimental design to answering questions of possible relevance to health sciences librarians. The author offers several strategies for controlling bias in library and informatics applications of the RCT and acknowledges the potential of the electronic era in providing many opportunities to utilize the blinding aspects of RCTs. RCTs within health sciences librarianship inhabit a limited number of subject domains such as education. This limited scope offers both advantages and disadvantages for making Evidence-Based Librarianship (EBL) a reality. The RCT design offers the potential to answer far more EBL questions than have been addressed by the design to date. Librarians need only extend their horizons through use of the versatile RCT design into new subject domains to facilitate making EBL a reality.
Increasing High School Student Interest in Science: An Action Research Study
NASA Astrophysics Data System (ADS)
Vartuli, Cindy A.
An action research study was conducted to determine how to increase student interest in learning science and pursuing a STEM career. The study began by exploring 10th-grade student and teacher perceptions of student interest in science in order to design an instructional strategy for stimulating student interest in learning and pursuing science. Data for this study included responses from 270 students to an on-line science survey and interviews with 11 students and eight science teachers. The action research intervention included two iterations of the STEM Career Project. The first iteration introduced four chemistry classes to the intervention. The researcher used student reflections and a post-project survey to determine if the intervention had influence on the students' interest in pursuing science. The second iteration was completed by three science teachers who had implemented the intervention with their chemistry classes, using student reflections and post-project surveys, as a way to make further procedural refinements and improvements to the intervention and measures. Findings from the exploratory phase of the study suggested students generally had interest in learning science but increasing that interest required including personally relevant applications and laboratory experiences. The intervention included a student-directed learning module in which students investigated three STEM careers and presented information on one of their chosen careers. The STEM Career Project enabled students to explore career possibilities in order to increase their awareness of STEM careers. Findings from the first iteration of the intervention suggested a positive influence on student interest in learning and pursuing science. The second iteration included modifications to the intervention resulting in support for the findings of the first iteration. Results of the second iteration provided modifications that would allow the project to be used for different academic levels. Insights from conducting the action research study provided the researcher with effective ways to make positive changes in her own teaching praxis and the tools used to improve student awareness of STEM career options.
Scheduling Mission-Critical Flows in Congested and Contested Airborne Network Environments
2018-03-01
precision agriculture [64–71]. However, designing, implementing, and testing UAV networks poses numerous interdisciplinary challenges because the...applications including search and rescue, disaster relief, precision agriculture , environmental monitoring, and surveillance. Many of these applications...monitoring enabling precision agriculture ,” in Automation Science and Engineering (CASE), 2015 IEEE International Conference on. IEEE, 2015, pp. 462–469. [65
Wang, Youfa; Xue, Hong; Liu, Shiyong
2015-01-01
Interest in the application of systems science (SS) in biomedical research, particularly regarding obesity and noncommunicable chronic disease (NCD) research, has been growing rapidly over the past decade. SS is a broad term referring to a family of research approaches that include modeling. As an emerging approach being adopted in public health, SS focuses on the complex dynamic interaction between agents (e.g., people) and subsystems defined at different levels. SS provides a conceptual framework for interdisciplinary and transdisciplinary approaches that address complex problems. SS has unique advantages for studying obesity and NCD problems in comparison to the traditional analytic approaches. The application of SS in biomedical research dates back to the 1960s with the development of computing capacity and simulation software. In recent decades, SS has been applied to addressing the growing global obesity epidemic. There is growing appreciation and support for using SS in the public health field, with many promising opportunities. There are also many challenges and uncertainties, including methodologic, funding, and institutional barriers. Integrated efforts by stakeholders that address these challenges are critical for the successful application of SS in the future. © 2015 American Society for Nutrition.
76 FR 46769 - Applications for New Awards; Minority Science and Engineering Improvement Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-03
... DEPARTMENT OF EDUCATION Applications for New Awards; Minority Science and Engineering Improvement... Information: Minority Science and Engineering Improvement Program (MSEIP) Notice inviting applications for new... effect long-range improvement in science and engineering education at predominantly minority institutions...
Hrdlicka, Patrick J; Karmakar, Saswata
2017-11-29
Oligonucleotides (ONs) modified with 2'-O-(pyren-1-yl)methylribonucleotides have been explored for a range of applications in molecular biology, nucleic acid diagnostics, and materials science for more than 25 years. The first part of this review provides an overview of synthetic strategies toward 2'-O-(pyren-1-yl)methylribonucleotides and is followed by a summary of biophysical properties of nucleic acid duplexes modified with these building blocks. Insights from structural studies are then presented to rationalize the reported properties. In the second part, applications of ONs modified with 2'-O-(pyren-1-yl)methyl-RNA monomers are reviewed, which include detection of RNA targets, discrimination of single nucleotide polymorphisms, formation of self-assembled pyrene arrays on nucleic acid scaffolds, the study of charge transfer phenomena in nucleic acid duplexes, and sequence-unrestricted recognition of double-stranded DNA. The predictable binding mode of the pyrene moiety, coupled with the microenvironment-dependent properties and synthetic feasibility, render 2'-O-(pyren-1-yl)methyl-RNA monomers as a promising class of pyrene-functionalized nucleotide building blocks for new applications in molecular biology, nucleic acid diagnostics, and materials science.
Neta, Gila; Sanchez, Michael A; Chambers, David A; Phillips, Siobhan M; Leyva, Bryan; Cynkin, Laurie; Farrell, Margaret M; Heurtin-Roberts, Suzanne; Vinson, Cynthia
2015-01-08
The National Cancer Institute (NCI) has supported implementation science for over a decade. We explore the application of implementation science across the cancer control continuum, including prevention, screening, treatment, and survivorship. We reviewed funding trends of implementation science grants funded by the NCI between 2000 and 2012. We assessed study characteristics including cancer topic, position on the T2-T4 translational continuum, intended use of frameworks, study design, settings, methods, and replication and cost considerations. We identified 67 NCI grant awards having an implementation science focus. R01 was the most common mechanism, and the total number of all awards increased from four in 2003 to 15 in 2012. Prevention grants were most frequent (49.3%) and cancer treatment least common (4.5%). Diffusion of Innovations and Reach, Effectiveness, Adoption, Implementation, Maintenance (RE-AIM) were the most widely reported frameworks, but it is unclear how implementation science models informed planned study measures. Most grants (69%) included mixed methods, and half reported replication and cost considerations (49.3%). Implementation science in cancer research is active and diverse but could be enhanced by greater focus on measures development, assessment of how conceptual frameworks and their constructs lead to improved dissemination and implementation outcomes, and harmonization of measures that are valid, reliable, and practical across multiple settings.
NASA Technical Reports Server (NTRS)
Estes, Joseph C., Jr.; Arca. Jeremy M.; Ko, Michael A.; Oks, Boris
2012-01-01
The Office of the CIO at JPL has developed an iPhone application for the Aquarius/SAC-D mission. The application includes specific information about the science and purpose of the Aquarius satellite and also features daily mission news updates pulled from sources at Goddard Space Flight Center as well as Twitter. The application includes a media and data tab section. The media section displays images from the observatory, viewing construction up to the launch and also includes various videos and recorded diaries from the Aquarius Project Manager. The data tab highlights many of the factors that affect the Earth s ocean and the water cycle. The application leverages the iPhone s accelerometer to move the Aquarius Satellite over the Earth, revealing these factors. Lastly, this application features a countdown timer to the satellite s launch, which is currently counting the days since launch. This application was highly successful in promoting the Aquarius Mission and educating the public about how ocean salinity is paramount to understanding the Earth.
Strategies for Teaching Elementary and Junior High Students.
ERIC Educational Resources Information Center
Consuegra, Gerard F.
1980-01-01
Discusses the applications of Piaget's theory of cognitive development to elementary and junior high school science teaching. Topics include planning concrete experiences, inductive and hypothetical deductive reasoning, measurement concepts, combinatorial logic, scientific experimentation and reflexive thinking. (SA)
Code of Federal Regulations, 2010 CFR
2010-10-01
... Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION NONDISCRIMINATION ON THE BASIS... publishes or uses recruitment materials or publications containing general information that it makes available to participants, beneficiaries, applicants, or employees, it shall include in those materials or...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION NONDISCRIMINATION ON THE BASIS... publishes or uses recruitment materials or publications containing general information that it makes available to participants, beneficiaries, applicants, or employees, it shall include in those materials or...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION NONDISCRIMINATION ON THE BASIS... publishes or uses recruitment materials or publications containing general information that it makes available to participants, beneficiaries, applicants, or employees, it shall include in those materials or...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION NONDISCRIMINATION ON THE BASIS... publishes or uses recruitment materials or publications containing general information that it makes available to participants, beneficiaries, applicants, or employees, it shall include in those materials or...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION NONDISCRIMINATION ON THE BASIS... publishes or uses recruitment materials or publications containing general information that it makes available to participants, beneficiaries, applicants, or employees, it shall include in those materials or...
ERIC Educational Resources Information Center
Journal of Biological Education, 1982
1982-01-01
Summarizes a Royal Society report on the educational implications of the growth of biotechnology (application of biological organisms, systems, or processes to manufacturing and service industries). Eighteen recommendations are made including the inclusion of biotechnological content into science curricula. (Author/JN)
International Space Station: becoming a reality.
David, L
1999-07-01
An overview of the development of the International Space Station (ISS) is presented starting with a brief history of space station concepts from the 1960's to the decision to build the present ISS. Other topics discussed include partnerships with Japan, Canada, ESA countries, and Russia; design changes to the ISS modules, the use of the ISS for scientific purposes and the application of space research to medicine on Earth; building ISS modules on Earth, international funding for Russian components, and the political aspects of including Russia in critical building plans. Sidebar articles examine commercialization of the ISS, multinational efforts in the design and building of the ISS, emergency transport to Earth, the use of robotics in ISS assembly, application of lessons learned from the Skylab project to the ISS, initial ISS assembly in May 1999, planned ISS science facilities, and an overview of space stations in science fiction.
Enhancing Cassini Operations & Science Planning Tools
NASA Technical Reports Server (NTRS)
Castello, Jonathan
2012-01-01
The Cassini team uses a variety of software utilities as they manage and coordinate their mission to Saturn. Most of these tools have been unchanged for many years, and although stability is a virtue for long-lived space missions, there are some less-fragile tools that could greatly benefit from modern improvements. This report shall describe three such upgrades, including their architectural differences and their overall impact. Emphasis is placed on the motivation and rationale behind architectural choices rather than the final product, so as to illuminate the lessons learned and discoveries made.These three enhancements included developing a strategy for migrating Science Planning utilities to a new execution model, rewriting the team's internal portal for ease of use and maintenance, and developing a web-based agenda application for tracking the sequence of files being transmitted to the Cassini spacecraft. Of this set, the first two have been fully completed, while the agenda application is currently in the early prototype stage.
Connecting NASA science and engineering with earth science applications
USDA-ARS?s Scientific Manuscript database
The National Research Council (NRC) recently highlighted the dual role of NASA to support both science and applications in planning Earth observations. This Editorial reports the efforts of the NASA Soil Moisture Active Passive (SMAP) mission to integrate applications with science and engineering i...
Translations on USSR Science and Technology, Physical Sciences and Technology, Number 16
1977-08-05
34INVESTIGATION OF SPLITTING OF LIGHT NUCLEI WITH HIGH-ENERGY y -RAYS WITH THE METHOD OF WILSON’S CHAMBER OPERATING IN POWERFUL BEAMS OF ELECTRONIC...boast high reliability, high speed, and extremely modest power requirements. Information oh the Screen Visual display devices greatly facilitate...area of application of these units Includes navigation, control of power systems, machine tools, and manufac- turing processes. Th» ^»abilities of
BioImg.org: A Catalog of Virtual Machine Images for the Life Sciences
Dahlö, Martin; Haziza, Frédéric; Kallio, Aleksi; Korpelainen, Eija; Bongcam-Rudloff, Erik; Spjuth, Ola
2015-01-01
Virtualization is becoming increasingly important in bioscience, enabling assembly and provisioning of complete computer setups, including operating system, data, software, and services packaged as virtual machine images (VMIs). We present an open catalog of VMIs for the life sciences, where scientists can share information about images and optionally upload them to a server equipped with a large file system and fast Internet connection. Other scientists can then search for and download images that can be run on the local computer or in a cloud computing environment, providing easy access to bioinformatics environments. We also describe applications where VMIs aid life science research, including distributing tools and data, supporting reproducible analysis, and facilitating education. BioImg.org is freely available at: https://bioimg.org. PMID:26401099
BioImg.org: A Catalog of Virtual Machine Images for the Life Sciences.
Dahlö, Martin; Haziza, Frédéric; Kallio, Aleksi; Korpelainen, Eija; Bongcam-Rudloff, Erik; Spjuth, Ola
2015-01-01
Virtualization is becoming increasingly important in bioscience, enabling assembly and provisioning of complete computer setups, including operating system, data, software, and services packaged as virtual machine images (VMIs). We present an open catalog of VMIs for the life sciences, where scientists can share information about images and optionally upload them to a server equipped with a large file system and fast Internet connection. Other scientists can then search for and download images that can be run on the local computer or in a cloud computing environment, providing easy access to bioinformatics environments. We also describe applications where VMIs aid life science research, including distributing tools and data, supporting reproducible analysis, and facilitating education. BioImg.org is freely available at: https://bioimg.org.
Climate Literacy: STEM and Climate Change Education and Remote Sensing Applications
NASA Astrophysics Data System (ADS)
Reddy, S. R.
2015-12-01
NASA Innovations in Climate Education (NICE) is a competitive project to promote climate and Earth system science literacy and seeks to increase the access of underrepresented minority groups to science careers and educational opportunities. A three year funding was received from NASA to partnership with JSU and MSU under cooperative agreement "Strengthening Global Climate Change education through Remote Sensing Application in Coastal Environment using NASA Satellite Data and Models". The goal is to increase the number of highschool and undergraduate students at Jackson State University, a Historically Black University, who are prepared to pursue higher academic degrees and careers in STEM fields. A five Saturday course/workshop was held during March/April 2015 at JSU, focusing on historical and technical concepts of math, enginneering, technology and atmosphere and climate change and remote sensing technology and applications to weather and climate. Nine students from meteorology, biology, industrial technology and computer science/engineering of JSU and 19 high scool students from Jackson Public Schools participated in the course/workshop. The lecture topics include: introduction to remote sensing and GIS, introduction to atmospheric science, math and engineering, climate, introduction to NASA innovations in climate education, introduction to remote sensing technology for bio-geosphere, introduction to earth system science, principles of paleoclimatology and global change, daily weather briefing, satellite image interpretation and so on. In addition to lectures, lab sessions were held for hand-on experiences for remote sensing applications to atmosphere, biosphere, earth system science and climate change using ERDAS/ENVI GIS software and satellite tools. Field trip to Barnett reservoir and National weather Service (NWS) was part of the workshop. Basics of Earth System Science is a non-mathematical introductory course designed for high school seniors, high school teachers and undergraduate students who may or may not have adequate exposure to fundamental concepts of the key components of the modern earth system and their interactions. This is an online course that will be delivered using Blackboard platform available at Jackson State University.
Microgravity: A Teacher's Guide With Activities in Science, Mathematics, and Technology
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.; Vogt, Gregory L.; Wargo, Michael J.
1997-01-01
The purpose of this curriculum supplement guide is to define and explain microgravity and show how microgravity can help us learn about the phenomena of our world. The front section of the guide is designed to provide teachers of science, mathematics, and technology at many levels with a foundation in microgravity science and applications. It begins with background information for the teacher on what microgravity is and how it is created. This is followed with information on the domains of microgravity science research; biotechnology, combustion science, fluid physics, fundamental physics, materials science, and microgravity research geared toward exploration. The background section concludes with a history of microgravity research and the expectations microgravity scientists have for research on the International Space Station. Finally, the guide concludes with a suggested reading list, NASA educational resources including electronic resources, and an evaluation questionnaire.
Restricted access processor - An application of computer security technology
NASA Technical Reports Server (NTRS)
Mcmahon, E. M.
1985-01-01
This paper describes a security guard device that is currently being developed by Computer Sciences Corporation (CSC). The methods used to provide assurance that the system meets its security requirements include the system architecture, a system security evaluation, and the application of formal and informal verification techniques. The combination of state-of-the-art technology and the incorporation of new verification procedures results in a demonstration of the feasibility of computer security technology for operational applications.
Lessons Learned from Autonomous Sciencecraft Experiment
NASA Technical Reports Server (NTRS)
Chien, Steve A.; Sherwood, Rob; Tran, Daniel; Cichy, Benjamin; Rabideau, Gregg; Castano, Rebecca; Davies, Ashley; Mandl, Dan; Frye, Stuart; Trout, Bruce;
2005-01-01
An Autonomous Science Agent has been flying onboard the Earth Observing One Spacecraft since 2003. This software enables the spacecraft to autonomously detect and responds to science events occurring on the Earth such as volcanoes, flooding, and snow melt. The package includes AI-based software systems that perform science data analysis, deliberative planning, and run-time robust execution. This software is in routine use to fly the EO-l mission. In this paper we briefly review the agent architecture and discuss lessons learned from this multi-year flight effort pertinent to deployment of software agents to critical applications.
Space technology and the optical sciences.
Yates, H W
1982-01-15
The earth-orbiting satellites and the deep-space probes have provided for the optical sciences platforms from which to study the earth, the solar system, and the universe with truly revolutionary capability. For the terrestrial sciences the orbiting platforms for optical measurements in both low and geostationary orbits have given us a view of our planet and a global coverage never before possible. For the astronomical applications of optical instruments that "cataract of the telescopic eye," the atmosphere of the earth has been left behind and through proximity, including actual contact, we now have resolution and spectral coverage limited only by money and motive.
eScience for molecular-scale simulations and the eMinerals project.
Salje, E K H; Artacho, E; Austen, K F; Bruin, R P; Calleja, M; Chappell, H F; Chiang, G-T; Dove, M T; Frame, I; Goodwin, A L; Kleese van Dam, K; Marmier, A; Parker, S C; Pruneda, J M; Todorov, I T; Trachenko, K; Tyer, R P; Walker, A M; White, T O H
2009-03-13
We review the work carried out within the eMinerals project to develop eScience solutions that facilitate a new generation of molecular-scale simulation work. Technological developments include integration of compute and data systems, developing of collaborative frameworks and new researcher-friendly tools for grid job submission, XML data representation, information delivery, metadata harvesting and metadata management. A number of diverse science applications will illustrate how these tools are being used for large parameter-sweep studies, an emerging type of study for which the integration of computing, data and collaboration is essential.
Boisvert, Ronald F.; Donahue, Michael J.; Lozier, Daniel W.; McMichael, Robert; Rust, Bert W.
2001-01-01
In this paper we describe the role that mathematics plays in measurement science at NIST. We first survey the history behind NIST’s current work in this area, starting with the NBS Math Tables project of the 1930s. We then provide examples of more recent efforts in the application of mathematics to measurement science, including the solution of ill-posed inverse problems, characterization of the accuracy of software for micromagnetic modeling, and in the development and dissemination of mathematical reference data. Finally, we comment on emerging issues in measurement science to which mathematicians will devote their energies in coming years. PMID:27500024
Utilizing Remote Sensing Data to Ascertain Soil Moisture Applications and Air Quality Conditions
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory; Kempler, Steve; Teng, William; Friedl, Lawrence; Lynnes, Chris
2009-01-01
Recognizing the significance of NASA remote sensing Earth science data in monitoring and better understanding our planet's natural environment, NASA Earth Applied Sciences has implemented the 'Decision Support Through Earth Science Research Results' program. Several applications support systems through collaborations with benefiting organizations have been implemented. The Goddard Earth Sciences Data and Information Services Center (GES DISC) has participated in this program on two projects (one complete, one ongoing), and has had opportune ad hoc collaborations utilizing NASA Earth science data. GES DISC's understanding of Earth science missions and resulting data and information enables the GES DISC to identify challenges that come with bringing science data to research applications. In this presentation we describe applications research projects utilizing NASA Earth science data and a variety of resulting GES DISC applications support system project experiences. In addition, defining metrics that really evaluate success will be exemplified.
State of science: human factors and ergonomics in healthcare.
Hignett, Sue; Carayon, Pascale; Buckle, Peter; Catchpole, Ken
2013-01-01
The past decade has seen an increase in the application of human factors and ergonomics (HFE) techniques to healthcare delivery in a broad range of contexts (domains, locations and environments). This paper provides a state of science commentary using four examples of HFE in healthcare to review and discuss analytical and implementation challenges and to identify future issues for HFE. The examples include two domain areas (occupational ergonomics and surgical safety) to illustrate a traditional application of HFE and the area that has probably received the most research attention. The other two examples show how systems and design have been addressed in healthcare with theoretical approaches for organisational and socio-technical systems and design for patient safety. Future opportunities are identified to develop and embed HFE systems thinking in healthcare including new theoretical models and long-term collaborative partnerships. HFE can contribute to systems and design initiatives for both patients and clinicians to improve everyday performance and safety, and help to reduce and control spiralling healthcare costs. There has been an increase in the application of HFE techniques to healthcare delivery in the past 10 years. This paper provides a state of science commentary using four illustrative examples (occupational ergonomics, design for patient safety, surgical safety and organisational and socio-technical systems) to review and discuss analytical and implementation challenges and identify future issues for HFE.
Plasma Processing with a One Atmosphere Uniform Glow Discharge Plasma (OAUGDP)
NASA Astrophysics Data System (ADS)
Reece Roth, J.
2000-10-01
The vast majority of all industrial plasma processing is conducted with glow discharges at pressures below 10 torr. This has limited applications to high value workpieces as a result of the large capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharges would play a much larger industrial role if they could be operated at one atmosphere. The One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) has been developed at the University of Tennessee Plasma Sciences Laboratory. The OAUGDP is non-thermal RF plasma with the time-resolved characteristics of a classical low pressure DC normal glow discharge. An interdisciplinary team was formed to conduct exploratory investigations of the physics and applications of the OAUGDP. This team includes collaborators from the UTK Textiles and Nonwovens Development Center (TANDEC) and the Departments of Electrical and Computer Engineering, Microbiology, Food Science and Technology, and Mechanical and Aerospace Engineering and Engineering Science. Exploratory tests were conducted on a variety of potential plasma processing and other applications. These include the use of OAUGDP to sterilize medical and dental equipment and air filters; diesel soot removal; plasma aerodynamic effects; electrohydrodynamic (EDH) flow control of the neutral working gas; increasing the surface energy of materials; increasing the wettability and wickability of fabrics; and plasma deposition and directional etching. A general overview of these topics will be presented.
Submicron x-ray diffraction and its applications to problems in materials and environmental science
NASA Astrophysics Data System (ADS)
Tamura, N.; Celestre, R. S.; MacDowell, A. A.; Padmore, H. A.; Spolenak, R.; Valek, B. C.; Meier Chang, N.; Manceau, A.; Patel, J. R.
2002-03-01
The availability of high brilliance third generation synchrotron sources together with progress in achromatic focusing optics allows us to add submicron spatial resolution to the conventional century-old x-ray diffraction technique. The new capabilities include the possibility to map in situ, grain orientations, crystalline phase distribution, and full strain/stress tensors at a very local level, by combining white and monochromatic x-ray microbeam diffraction. This is particularly relevant for high technology industry where the understanding of material properties at a microstructural level becomes increasingly important. After describing the latest advances in the submicron x-ray diffraction techniques at the Advanced Light Source, we will give some examples of its application in material science for the measurement of strain/stress in metallic thin films and interconnects. Its use in the field of environmental science will also be discussed.
Green materials for sustainable development
NASA Astrophysics Data System (ADS)
Purwasasmita, B. S.
2017-03-01
Sustainable development is an integrity of multidiscipline concept combining ecological, social and economic aspects to construct a liveable human living system. The sustainable development can be support through the development of green materials. Green materials offers a unique characteristic and properties including abundant in nature, less toxic, economically affordable and versatility in term of physical and chemical properties. Green materials can be applied for a numerous field in science and technology applications including for energy, building, construction and infrastructures, materials science and engineering applications and pollution management and technology. For instance, green materials can be developed as a source for energy production. Green materials including biomass-based source can be developed as a source for biodiesel and bioethanol production. Biomass-based materials also can be transformed into advanced functionalized materials for advanced bio-applications such as the transformation of chitin into chitosan which further used for biomedicine, biomaterials and tissue engineering applications. Recently, cellulose-based material and lignocellulose-based materials as a source for the developing functional materials attracted the potential prospect for biomaterials, reinforcing materials and nanotechnology. Furthermore, the development of pigment materials has gaining interest by using the green materials as a source due to their unique properties. Eventually, Indonesia as a large country with a large biodiversity can enhance the development of green material to strengthen our nation competitiveness and develop the materials technology for the future.
A Study of Vicon System Positioning Performance.
Merriaux, Pierre; Dupuis, Yohan; Boutteau, Rémi; Vasseur, Pascal; Savatier, Xavier
2017-07-07
Motion capture setups are used in numerous fields. Studies based on motion capture data can be found in biomechanical, sport or animal science. Clinical science studies include gait analysis as well as balance, posture and motor control. Robotic applications encompass object tracking. Today's life applications includes entertainment or augmented reality. Still, few studies investigate the positioning performance of motion capture setups. In this paper, we study the positioning performance of one player in the optoelectronic motion capture based on markers: Vicon system. Our protocol includes evaluations of static and dynamic performances. Mean error as well as positioning variabilities are studied with calibrated ground truth setups that are not based on other motion capture modalities. We introduce a new setup that enables directly estimating the absolute positioning accuracy for dynamic experiments contrary to state-of-the art works that rely on inter-marker distances. The system performs well on static experiments with a mean absolute error of 0.15 mm and a variability lower than 0.025 mm. Our dynamic experiments were carried out at speeds found in real applications. Our work suggests that the system error is less than 2 mm. We also found that marker size and Vicon sampling rate must be carefully chosen with respect to the speed encountered in the application in order to reach optimal positioning performance that can go to 0.3 mm for our dynamic study.
Sieverling, Jennifer B.; Char, Stephen J.; San Juan, Carma A.
2005-01-01
Introduction: The U.S. Geological Survey (USGS) Fourth Biennial Geographic Information Science (GIS) Workshop (USGS-GIS 2001) was held April 23-27, 2001, at the Denver Federal Center in Denver, Colorado. The workshop provided an environment for participants to improve their knowledge about GIS and GIS-related applications that are used within the USGS. Two major topics of USGS-GIS 2001 were the application of GIS technology to interdisciplinary science and the distribution and sharing of USGS GIS products. Additionally, several presentations included GIS technology and tools, project applications of GIS, and GIS data management. USGS-GIS 2001 included user and vendor presentations, demonstrations, and hands-on technical workshops. Presentation abstracts that were submitted for publication are included in these proceedings. The keynote speaker was Karen Siderelis, the USGS Associate Director for Information (Geographic Information Officer). In addition to the USGS, other Federal agencies, GIS-related companies, and university researchers presented lectures or demonstrations or conducted hands-on sessions. USGS employees and contractors from every discipline and region attended the workshop. To facilitate the interaction between the Federal agencies, each of the presenting Federal agencies was invited to send a representative to the workshop. One of the most beneficial activities of USGS-GIS 2001, as identified by an informal poll of attendees, was the Monday evening poster session in which more than 75 poster presentations gave attendees a chance to learn of work being performed throughout the USGS. A feature new to USGS-GIS 2001 was internet participation of USGS personnel through cyber seminars of the morning plenary sessions.
In Situ Environmental TEM in Imaging Gas and Liquid Phase Chemical Reactions for Materials Research.
Wu, Jianbo; Shan, Hao; Chen, Wenlong; Gu, Xin; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao
2016-11-01
Gas and liquid phase chemical reactions cover a broad range of research areas in materials science and engineering, including the synthesis of nanomaterials and application of nanomaterials, for example, in the areas of sensing, energy storage and conversion, catalysis, and bio-related applications. Environmental transmission electron microscopy (ETEM) provides a unique opportunity for monitoring gas and liquid phase reactions because it enables the observation of those reactions at the ultra-high spatial resolution, which is not achievable through other techniques. Here, the fundamental science and technology developments of gas and liquid phase TEM that facilitate the mechanistic study of the gas and liquid phase chemical reactions are discussed. Combined with other characterization tools integrated in TEM, unprecedented material behaviors and reaction mechanisms are observed through the use of the in situ gas and liquid phase TEM. These observations and also the recent applications in this emerging area are described. The current challenges in the imaging process are also discussed, including the imaging speed, imaging resolution, and data management. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ESML for Earth Science Data Sets and Analysis
NASA Technical Reports Server (NTRS)
Graves, Sara; Ramachandran, Rahul
2003-01-01
The primary objective of this research project was to transition ESML from design to application. The resulting schema and prototype software will foster community acceptance for the Define once, use anywhere concept central to ESML. Supporting goals include: 1) Refinement of the ESML schema and software libraries in cooperation with the user community; 2) Application of the ESML schema and software to a variety of Earth science data sets and analysis tools; 3) Development of supporting prototype software for enhanced ease of use; 4) Cooperation with standards bodies in order to assure ESML is aligned with related metadata standards as appropriate; and 5) Widespread publication of the ESML approach, schema, and software.
Fluid Mechanics and Homeland Security
NASA Astrophysics Data System (ADS)
Settles, Gary S.
2006-01-01
Homeland security involves many applications of fluid mechanics and offers many opportunities for research and development. This review explores a wide selection of fluids topics in counterterrorism and suggests future directions. Broad topics range from preparedness and deterrence of impending terrorist attacks to detection, response, and recovery. Specific topics include aircraft hardening, blast mitigation, sensors and sampling, explosive detection, microfluidics and labs-on-a-chip, chemical plume dispersal in urban settings, and building ventilation. Also discussed are vapor plumes and standoff detection, nonlethal weapons, airborne disease spread, personal protective equipment, and decontamination. Involvement in these applications requires fluid dynamicists to think across the traditional boundaries of the field and to work with related disciplines, especially chemistry, biology, aerosol science, and atmospheric science.
Summer graduate research program for interns in science and engineering
NASA Technical Reports Server (NTRS)
Lee, Clinton B.
1992-01-01
The goal of the 10 week graduate intern program was to increase the source of candidates for positions in science and engineering at the Goddard Space Flight Center. Students participating in this program submitted papers on the work they performed over the 10 week period and also filled out questionnaires on the program's effectiveness, their own performance, and suggestions on improvements. The topics covered by the student's papers include: microsoft excel applications; fast aurora zone analysis; injection seeding of a Q-switched alexandrite laser; use of high temperature superconductors; modifications on a communication interface board; modeling of space network activities; prediction of atmospheric ozone content; and applications of industrial engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, J.D.; Wybo, J.L.; Buisson, L.
1995-12-31
This conference was held May 9--12, 1995 in Nice, France. The purpose of this conference was to provide a forum for exchange of state-of-the-art information to cope more effectively with emergencies. Attention is focused on advance technology from both a managerial and a scientific viewpoint. Interests include computers and communication systems as well as the social science and management aspects involved in emergency management and engineering. The major sections are: Management and Social Sciences; Training; Natural Disasters; Nuclear Hazards; Chemical Hazards; Research; and Applications. Individual papers have been processed separately for inclusion in the appropriate data bases.
What is "neuromarketing"? A discussion and agenda for future research.
Lee, Nick; Broderick, Amanda J; Chamberlain, Laura
2007-02-01
Recent years have seen advances in neuroimaging to such an extent that neuroscientists are able to directly study the frequency, location, and timing of neuronal activity to an unprecedented degree. However, marketing science has remained largely unaware of such advances and their huge potential. In fact, the application of neuroimaging to market research--what has come to be called "neuromarketing"--has caused considerable controversy within neuroscience circles in recent times. This paper is an attempt to widen the scope of neuromarketing beyond commercial brand and consumer behaviour applications, to include a wider conceptualisation of marketing science. Drawing from general neuroscience and neuroeconomics, neuromarketing as a field of study is defined, and some future research directions are suggested.
Summer graduate research program for interns in science and engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C.B.
1992-03-01
The goal of the 10 week graduate intern program was to increase the source of candidates for positions in science and engineering at the Goddard Space Flight Center. Students participating in this program submitted papers on the work they performed over the 10 week period and also filled out questionnaires on the program's effectiveness, their own performance, and suggestions on improvements. The topics covered by the student's papers include: microsoft excel applications; fast aurora zone analysis; injection seeding of a Q-switched alexandrite laser; use of high temperature superconductors; modifications on a communication interface board; modeling of space network activities; predictionmore » of atmospheric ozone content; and applications of industrial engineering.« less
Eighth International Workshop on Laser Ranging Instrumentation
NASA Technical Reports Server (NTRS)
Degnan, John J. (Compiler)
1993-01-01
The Eighth International Workshop for Laser Ranging Instrumentation was held in Annapolis, Maryland in May 1992, and was sponsored by the NASA Goddard Space Flight Center in Greenbelt, Maryland. The workshop is held once every 2 to 3 years under differing institutional sponsorship and provides a forum for participants to exchange information on the latest developments in satellite and lunar laser ranging hardware, software, science applications, and data analysis techniques. The satellite laser ranging (SLR) technique provides sub-centimeter precision range measurements to artificial satellites and the Moon. The data has application to a wide range of Earth and lunar science issues including precise orbit determination, terrestrial reference frames, geodesy, geodynamics, oceanography, time transfer, lunar dynamics, gravity and relativity.
Analysis of Low Frequency Ground Motions Induced by Near-Surface and Atmospheric Explosions.
1982-08-01
Library S-CUBED ATTN: J. Murphy Institute for Defense Analyses ATTN: Classified Library Science Applications, Inc ATTN: Technical Library Kaman...AviDyne ATTN: Library Science Applications, Inc ATTN: N. Hobbs ATTN: D. Maxwell ATTN: D. Bernstein Kaman Sciences Corp ATTN: Library Science Applications
Exemplary Science Teachers' Use of Technology
ERIC Educational Resources Information Center
Hakverdi-Can, Meral; Dana, Thomas M.
2012-01-01
The purpose of this study is to examine exemplary science teachers' level of computer use, their knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, how often they required their students to use those applications in or for their science class…
NASA Astrophysics Data System (ADS)
Cone, R. L.; Thiel, C. W.; Sun, Y.; Böttger, Thomas; Macfarlane, R. M.
2012-02-01
Unique spectroscopic properties of isolated rare earth ions in solids offer optical linewidths rivaling those of trapped single atoms and enable a variety of recent applications. We design rare-earth-doped crystals, ceramics, and fibers with persistent or transient "spectral hole" recording properties for applications including high-bandwidth optical signal processing where light and our solids replace the high-bandwidth portion of the electronics; quantum cryptography and information science including the goal of storage and recall of single photons; and medical imaging technology for the 700-900 nm therapeutic window. Ease of optically manipulating rare-earth ions in solids enables capturing complex spectral information in 105 to 108 frequency bins. Combining spatial holography and spectral hole burning provides a capability for processing high-bandwidth RF and optical signals with sub-MHz spectral resolution and bandwidths of tens to hundreds of GHz for applications including range-Doppler radar and high bandwidth RF spectral analysis. Simply stated, one can think of these crystals as holographic recording media capable of distinguishing up to 108 different colors. Ultra-narrow spectral holes also serve as a vibration-insensitive sub-kHz frequency reference for laser frequency stabilization to a part in 1013 over tens of milliseconds. The unusual properties and applications of spectral hole burning of rare earth ions in optical materials are reviewed. Experimental results on the promising Tm3+:LiNbO3 material system are presented and discussed for medical imaging applications. Finally, a new application of these materials as dynamic optical filters for laser noise suppression is discussed along with experimental demonstrations and theoretical modeling of the process.
Aggregation-induced emission—fluorophores and applications
NASA Astrophysics Data System (ADS)
Hong, Yuning
2016-06-01
Aggregation-induced emission (AIE) is a novel photophysical phenomenon found in a group of luminogens that are not fluorescent in solution but are highly emissive in the aggregate or solid state. Since the first publication of AIE luminogens in 2001, AIE has become a hot research area in which the number of research papers regarding new AIE molecules and their applications has been increasing in an exponential manner. Thomson Reuters Essential Science Indicators ranked AIE no.3 among the Top 100 Research Frontiers in the field of Chemistry and Materials Science in 2013. In this review, I will give a general introduction of the AIE phenomenon, discuss the structure-property relationship of the AIE lumingens and summarize the recent progress in the applications including as light-emitting materials in optoelectronics, as chemosensors and bioprobes, and for bioimaging (total 69 references cited).
Application of Next-generation Sequencing Technology in Forensic Science
Yang, Yaran; Xie, Bingbing; Yan, Jiangwei
2014-01-01
Next-generation sequencing (NGS) technology, with its high-throughput capacity and low cost, has developed rapidly in recent years and become an important analytical tool for many genomics researchers. New opportunities in the research domain of the forensic studies emerge by harnessing the power of NGS technology, which can be applied to simultaneously analyzing multiple loci of forensic interest in different genetic contexts, such as autosomes, mitochondrial and sex chromosomes. Furthermore, NGS technology can also have potential applications in many other aspects of research. These include DNA database construction, ancestry and phenotypic inference, monozygotic twin studies, body fluid and species identification, and forensic animal, plant and microbiological analyses. Here we review the application of NGS technology in the field of forensic science with the aim of providing a reference for future forensics studies and practice. PMID:25462152
NASA Technical Reports Server (NTRS)
Davis, M. H. (Editor); Singy, A. (Editor)
1994-01-01
The Universities Space Research Association (USRA) was incorporated 25 years ago in the District of Columbia as a private nonprofit corporation under the auspices of the National Academy of Sciences. Institutional membership in the association has grown from 49 colleges and universities, when it was founded, to 76 in 1993. USRA provides a mechanism through which universities can cooperate effectively with one another, with the government, and with other organizations to further space science and technology and to promote education in these areas. Its mission is carried out through the institutes, centers, divisions, and programs that are described in detail in this booklet. These include the Lunar and Planetary Institute, the Institute for Computer Applications in Science and Engineering (ICASE), the Research Institute for Advanced Computer Science (RIACS), and the Center of Excellence in Space Data and Information Sciences (CESDIS).
Large Scale GW Calculations on the Cori System
NASA Astrophysics Data System (ADS)
Deslippe, Jack; Del Ben, Mauro; da Jornada, Felipe; Canning, Andrew; Louie, Steven
The NERSC Cori system, powered by 9000+ Intel Xeon-Phi processors, represents one of the largest HPC systems for open-science in the United States and the world. We discuss the optimization of the GW methodology for this system, including both node level and system-scale optimizations. We highlight multiple large scale (thousands of atoms) case studies and discuss both absolute application performance and comparison to calculations on more traditional HPC architectures. We find that the GW method is particularly well suited for many-core architectures due to the ability to exploit a large amount of parallelism across many layers of the system. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, as part of the Computational Materials Sciences Program.
Error and its meaning in forensic science.
Christensen, Angi M; Crowder, Christian M; Ousley, Stephen D; Houck, Max M
2014-01-01
The discussion of "error" has gained momentum in forensic science in the wake of the Daubert guidelines and has intensified with the National Academy of Sciences' Report. Error has many different meanings, and too often, forensic practitioners themselves as well as the courts misunderstand scientific error and statistical error rates, often confusing them with practitioner error (or mistakes). Here, we present an overview of these concepts as they pertain to forensic science applications, discussing the difference between practitioner error (including mistakes), instrument error, statistical error, and method error. We urge forensic practitioners to ensure that potential sources of error and method limitations are understood and clearly communicated and advocate that the legal community be informed regarding the differences between interobserver errors, uncertainty, variation, and mistakes. © 2013 American Academy of Forensic Sciences.
National Climate Change and Wildlife Science Center, Version 2.0
O'Malley, R.; Fort, E.; Hartke-O'Berg, N.; Varela-Acevedo, E.; Padgett, Holly A.
2013-01-01
The mission of the USGS's National Climate Change and Wildlife Science Center (NCCWSC) is to serve the scientific needs of managers of fish, wildlife, habitats, and ecosystems as they plan for a changing climate. DOI Climate Science Centers (CSCs) are management by NCCWSC and include this mission as a core responsibility, in line with the CSC mission to provide scientific support for climate-adaptation across a full range of natural and cultural resources. NCCWSC is a Science Center application designed in Drupal with the OMEGA theme. As a content management system, Drupal allows the science center to keep their website up-to-date with current publications, news, meetings and projects. OMEGA allows the site to be adaptive at different screen sizes and is developed on the 960 grid.
Cumulative reports and publications through December 31, 1987
NASA Technical Reports Server (NTRS)
1988-01-01
This document contains a complete list of Institute for Computer Applications in Science and Engineering (ICASE) Reports. Since ICASE Reports are preprints of articles to be published in journals or conference proceeding, the published reference is included when available.
Dividends from Technology Applied.
ERIC Educational Resources Information Center
Aviation/Space, 1982
1982-01-01
National Aeronautics and Space Administration's (NASA) Applications Program employs aerospace science/technology to provide direct public benefit. Topics related to this program discussed include: Landsat, earth crustal study (plate tectonics), search and rescue systems, radiation measurement, upper atmosphere research, space materials processing,…
NASA Technical Reports Server (NTRS)
Hartman, Steven
1992-01-01
Viewgraphs on technology coordination are provided. Topics covered include: technology coordination process to date; goals; how the Office of Aeronautics and Space Technology (OAST) can support the Office of Space Science and Applications (OSSA); how OSSA can support OAST; steps to technology transfer; and recommendations.
Application of Ontologies for Big Earth Data
NASA Astrophysics Data System (ADS)
Huang, T.; Chang, G.; Armstrong, E. M.; Boening, C.
2014-12-01
Connected data is smarter data! Earth Science research infrastructure must do more than just being able to support temporal, geospatial discovery of satellite data. As the Earth Science data archives continue to expand across NASA data centers, the research communities are demanding smarter data services. A successful research infrastructure must be able to present researchers the complete picture, that is, datasets with linked citations, related interdisciplinary data, imageries, current events, social media discussions, and scientific data tools that are relevant to the particular dataset. The popular Semantic Web for Earth and Environmental Terminology (SWEET) ontologies is a collection of ontologies and concepts designed to improve discovery and application of Earth Science data. The SWEET ontologies collection was initially developed to capture the relationships between keywords in the NASA Global Change Master Directory (GCMD). Over the years this popular ontologies collection has expanded to cover over 200 ontologies and 6000 concepts to enable scalable classification of Earth system science concepts and Space science. This presentation discusses the semantic web technologies as the enabling technology for data-intensive science. We will discuss the application of the SWEET ontologies as a critical component in knowledge-driven research infrastructure for some of the recent projects, which include the DARPA Ontological System for Context Artifact and Resources (OSCAR), 2013 NASA ACCESS Virtual Quality Screening Service (VQSS), and the 2013 NASA Sea Level Change Portal (SLCP) projects. The presentation will also discuss the benefits in using semantic web technologies in developing research infrastructure for Big Earth Science Data in an attempt to "accommodate all domains and provide the necessary glue for information to be cross-linked, correlated, and discovered in a semantically rich manner." [1] [1] Savas Parastatidis: A platform for all that we know: creating a knowledge-driven research infrastructure. The Fourth Paradigm 2009: 165-172
Proposal for grid computing for nuclear applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idris, Faridah Mohamad; Ismail, Saaidi; Haris, Mohd Fauzi B.
2014-02-12
The use of computer clusters for computational sciences including computational physics is vital as it provides computing power to crunch big numbers at a faster rate. In compute intensive applications that requires high resolution such as Monte Carlo simulation, the use of computer clusters in a grid form that supplies computational power to any nodes within the grid that needs computing power, has now become a necessity. In this paper, we described how the clusters running on a specific application could use resources within the grid, to run the applications to speed up the computing process.
ERIC Educational Resources Information Center
Merrill, Samuel, III; Enelow, James M.
This document consists of two modules. The first studies a variety of multicandidate voting systems, including approval, Borda, and cumulative voting, using a model which takes account of a voter's intensity of preference for candidates. The voter's optimal strategy is investigated for each voting system using decision criteria under uncertainty…
Alginate: properties and biomedical applications
Lee, Kuen Yong; Mooney, David J.
2011-01-01
Alginate is a biomaterial that has found numerous applications in biomedical science and engineering due to its favorable properties, including biocompatibility and ease of gelation. Alginate hydrogels have been particularly attractive in wound healing, drug delivery, and tissue engineering applications to date, as these gels retain structural similarity to the extracellular matrices in tissues and can be manipulated to play several critical roles. This review will provide a comprehensive overview of general properties of alginate and its hydrogels, their biomedical applications, and suggest new perspectives for future studies with these polymers. PMID:22125349
Fabrication techniques and applications of flexible graphene-based electronic devices
NASA Astrophysics Data System (ADS)
Luqi, Tao; Danyang, Wang; Song, Jiang; Ying, Liu; Qianyi, Xie; He, Tian; Ningqin, Deng; Xuefeng, Wang; Yi, Yang; Tian-Ling, Ren
2016-04-01
In recent years, flexible electronic devices have become a hot topic of scientific research. These flexible devices are the basis of flexible circuits, flexible batteries, flexible displays and electronic skins. Graphene-based materials are very promising for flexible electronic devices, due to their high mobility, high elasticity, a tunable band gap, quantum electronic transport and high mechanical strength. In this article, we review the recent progress of the fabrication process and the applications of graphene-based electronic devices, including thermal acoustic devices, thermal rectifiers, graphene-based nanogenerators, pressure sensors and graphene-based light-emitting diodes. In summary, although there are still a lot of challenges needing to be solved, graphene-based materials are very promising for various flexible device applications in the future. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) Program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and China's Postdoctoral Science Foundation (CPSF).
NASA Astrophysics Data System (ADS)
Cecil, L.; Young, D. F.; Parker, P. A.; Eckman, R. S.
2006-12-01
The NASA Applied Sciences Program extends the results of Earth Science Division (ESD) research and knowledge beyond the scientific and research communities to contribute to national priority applications with societal benefits. The Applied Sciences Program focuses on, (1) assimilation of NASA Earth-science research results and their associated uncertainties to improve decision support systems and, (2) the transition of NASA research results to evolve improvements in future operational systems. The broad range of Earth- science research results that serve as inputs to the Applied Sciences Program are from NASA's Research and Analysis Program (R&A) within the ESD. The R&A Program has established six research focus areas to study the complex processes associated with Earth-system science; Atmospheric Composition, Carbon Cycle and Ecosystems, Climate Variability and Change, Earth Surface and Interior, Water and Energy Cycle, and Weather. Through observations-based Earth-science research results, NASA and its partners are establishing predictive capabilities for future projections of natural and human perturbations on the planet. The focus of this presentation is on the use of research results and their associated uncertainties from several of NASA's nine next generation missions for societal benefit. The newly launched missions are, (1) CloudSat, and (2) CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations), both launched April 28, 2006, and the planned next generation missions include, (3) the Orbiting Carbon Observatory (OCO), (4) the Global Precipitation Mission (GPM), (5) the Landsat Data Continuity Mission (LDCM), (6) Glory, for measuring the spatial and temporal distribution of aerosols and total solar irradiance for long-term climate records, (7) Aquarius, for measuring global sea surface salinity, (8) the Ocean Surface Topography Mission (OSTM), and (9) the NPOESS Preparatory Project (NPP) for measuring long-term climate trends and global biological productivity. NASA's Applied Sciences Program is taking a scientifically rigorous systems engineering approach to facilitate rapid prototyping of potential uses of the projected research capabilities of these new missions into decision support systems. This presentation includes an example of a prototype experiment that focuses on two of the Applied Sciences Program's twelve National Applications focus areas, Water Management and Energy Management. This experiment is utilizing research results and associated uncertainties from existing Earth-observation missions as well as from several of NASA's nine next generation missions. This prototype experiment is simulating decision support analysis and research results leading to priority management and/or policy issues concentrating on climate change and uncertainties in alpine areas on the watershed scale.
Exploring Earth Systems Through STEM
NASA Astrophysics Data System (ADS)
Chen, Loris; Salmon, Jennifer; Burns, Courtney
2015-04-01
During the 2010 school year, grade 8 science teachers at Dwight D. Eisenhower Middle School in Wyckoff, New Jersey, began using the draft of A Framework for K-12 Science Education to transition to the Next Generation Science Standards. In an evolutionary process of testing and revising, teachers work collaboratively to develop problem-based science, technology, engineering, and mathematics (STEM) units that integrate earth science, physical science, and life science topics. Students explore the interconnections of Earth's atmosphere, lithosphere, hydrosphere, and biosphere through problem-based learning. Problem-based learning engages students in (1) direct observations in the field and classroom, (2) collection and analysis of data from remote sensors and hand-held sensors, and (3) analysis of physical, mathematical, and virtual models. Students use a variety of technologies and applications in their investigations, for example iPad apps, Google Classroom, and Vernier sensors. Data from NASA, NOAA, non-government organizations, and scientific research papers inspire student questions and spark investigations. Teachers create materials and websites to support student learning. Teachers curate reading, video, simulations, and other Internet resources for students. Because curriculum is standards-based as opposed to textbook-based, teacher participation in workshops and institutes frequently translates into new or improved study units. Recent programs include Toyota International Teacher Program to Costa Rica, Japan Society Going Global, Siemens STEM Academy, U.S. Naval Academy SET Sail, and NJSTA Maitland P. Simmons Memorial Award Summer Institute. Unit themes include weather and climate, introduction to general chemistry and biochemistry, and cells and heredity. Each if the three 12-week units has embedded engineering challenges inspired by current events, community needs, and/or the work of scientists. The unit segments begin with a problem, progress to observations and data collection, and end with an engineering application. English language arts and mathematics skills are developed through performance assessments that include written arguments that require students to state a claim and support the claim with evidence, analysis, and reasoning. Student selected capstone projects are completed during the final three weeks of the school year. Partnerships with universities, research scientists, and science centers are essential to the development of unit challenges. Collaborative projects have included studies of iron cycling in the Ross Sea with scientists from Rutgers University, climate and climate change using NASA data and resources from Liberty Science Center, human and natural impacts on endangered species with San Diego Zoo Institute for Conservation Research, and air quality monitoring with the University of Northern Iowa. Grant funds have supported student research projects involving air quality improvement, urban heat island mitigation, alternative energies, and sustainability.
NASA Astrophysics Data System (ADS)
Balaji Bhaskar, M. S.; Rosenzweig, J.; Shishodia, S.
2017-12-01
The objective of our activity is to improve the students understanding and interpretation of geospatial science and climate change concepts and its applications in the field of Environmental and Biological Sciences in the College of Science Engineering and Technology (COEST) at Texas Southern University (TSU) in Houston, TX. The courses of GIS for Environment, Ecology and Microbiology were selected for the curriculum infusion. A total of ten GIS hands-on lab modules, along with two NCAR (National Center for Atmospheric Research) lab modules on climate change were implemented in the "GIS for Environment" course. GIS and Google Earth Labs along with climate change lectures were infused into Microbiology and Ecology courses. Critical thinking and empirical skills of the students were assessed in all the courses. The student learning outcomes of these courses includes the ability of students to interpret the geospatial maps and the student demonstration of knowledge of the basic principles and concepts of GIS (Geographic Information Systems) and climate change. At the end of the courses, students developed a comprehensive understanding of the geospatial data, its applications in understanding climate change and its interpretation at the local and regional scales during multiple years.
Enabling Extreme Scale Earth Science Applications at the Oak Ridge Leadership Computing Facility
NASA Astrophysics Data System (ADS)
Anantharaj, V. G.; Mozdzynski, G.; Hamrud, M.; Deconinck, W.; Smith, L.; Hack, J.
2014-12-01
The Oak Ridge Leadership Facility (OLCF), established at the Oak Ridge National Laboratory (ORNL) under the auspices of the U.S. Department of Energy (DOE), welcomes investigators from universities, government agencies, national laboratories and industry who are prepared to perform breakthrough research across a broad domain of scientific disciplines, including earth and space sciences. Titan, the OLCF flagship system, is currently listed as #2 in the Top500 list of supercomputers in the world, and the largest available for open science. The computational resources are allocated primarily via the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, sponsored by the U.S. DOE Office of Science. In 2014, over 2.25 billion core hours on Titan were awarded via INCITE projects., including 14% of the allocation toward earth sciences. The INCITE competition is also open to research scientists based outside the USA. In fact, international research projects account for 12% of the INCITE awards in 2014. The INCITE scientific review panel also includes 20% participation from international experts. Recent accomplishments in earth sciences at OLCF include the world's first continuous simulation of 21,000 years of earth's climate history (2009); and an unprecedented simulation of a magnitude 8 earthquake over 125 sq. miles. One of the ongoing international projects involves scaling the ECMWF Integrated Forecasting System (IFS) model to over 200K cores of Titan. ECMWF is a partner in the EU funded Collaborative Research into Exascale Systemware, Tools and Applications (CRESTA) project. The significance of the research carried out within this project is the demonstration of techniques required to scale current generation Petascale capable simulation codes towards the performance levels required for running on future Exascale systems. One of the techniques pursued by ECMWF is to use Fortran2008 coarrays to overlap computations and communications and to reduce the total volume of data communicated. Use of Titan has enabled ECMWF to plan future scalability developments and resource requirements. We will also discuss the best practices developed over the years in navigating logistical, legal and regulatory hurdles involved in supporting the facility's diverse user community.
Cumulutive reports and publications through December 31, 1984
NASA Technical Reports Server (NTRS)
1985-01-01
A complete list of the Institute for Computer Applications in Science and Engineering (ICASE) Reports are given. Since ICASE Reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available. Topics include numerical methods, parameter identification, fluid dynamics, acoustics, structural analysis, and computers.
TDPAC and β-NMR applications in chemistry and biochemistry
NASA Astrophysics Data System (ADS)
Jancso, Attila; Correia, Joao G.; Gottberg, Alexander; Schell, Juliana; Stachura, Monika; Szunyogh, Dániel; Pallada, Stavroula; Lupascu, Doru C.; Kowalska, Magdalena; Hemmingsen, Lars
2017-06-01
Time differential perturbed angular correlation (TDPAC) of γ-rays spectroscopy has been applied in chemistry and biochemistry for decades. Herein we aim to present a comprehensive review of chemical and biochemical applications of TDPAC spectroscopy conducted at ISOLDE over the past 15 years, including elucidation of metal site structure and dynamics in proteins and model systems. β-NMR spectroscopy is well established in nuclear physics, solid state physics, and materials science, but only a limited number of applications in chemistry have appeared. Current endeavors at ISOLDE advancing applications of β-NMR towards chemistry and biochemistry are presented, including the first experiment on 31Mg2+ in an ionic liquid solution. Both techniques require the production of radioisotopes combined with advanced spectroscopic instrumentation present at ISOLDE.
Principles and Applications of Geochemistry, 2nd Edition
NASA Astrophysics Data System (ADS)
Marcantonio, Franco
Many academic geology departments do not include geochemistry in their undergraduate core curriculums. The second edition of Principles and Applications of Geochemistry demonstrates why this should change. Gunter Faure's book clearly shows the important role played by quantitative geochemical analysis in our understanding of Earth processes, both natural and anthropogenic. Intended as an introductory inorganic geochemistry text for senior undergraduates or first-year graduate students, the book makes even the most difficult concepts readily understandable. Beyond its lucid technical explanations, it also includes engaging discussions of the history of geochemistry as a science.
Solar-terrestrial models and application software
NASA Technical Reports Server (NTRS)
Bilitza, Dieter
1990-01-01
The empirical models related to solar-terrestrial sciences are listed and described which are available in the form of computer programs. Also included are programs that use one or more of these models for application specific purposes. The entries are grouped according to the region of the solar-terrestrial environment to which they belong and according to the parameter which they describe. Regions considered include the ionosphere, atmosphere, magnetosphere, planets, interplanetary space, and heliosphere. Also provided is the information on the accessibility for solar-terrestrial models to specify the magnetic and solar activity conditions.
Dataset for petroleum based stock markets and GAUSS codes for SAMEM.
Khalifa, Ahmed A A; Bertuccelli, Pietro; Otranto, Edoardo
2017-02-01
This article includes a unique data set of a balanced daily (Monday, Tuesday and Wednesday) for oil and natural gas volatility and the oil rich economies' stock markets for Saudi Arabia, Qatar, Kuwait, Abu Dhabi, Dubai, Bahrain and Oman, using daily data over the period spanning Oct. 18, 2006-July 30, 2015. Additionally, we have included unique GAUSS codes for estimating the spillover asymmetric multiplicative error model (SAMEM) with application to Petroleum-Based Stock Market. The data, the model and the codes have many applications in business and social science.
Applications of the Cambridge Structural Database in organic chemistry and crystal chemistry.
Allen, Frank H; Motherwell, W D Samuel
2002-06-01
The Cambridge Structural Database (CSD) and its associated software systems have formed the basis for more than 800 research applications in structural chemistry, crystallography and the life sciences. Relevant references, dating from the mid-1970s, and brief synopses of these papers are collected in a database, DBUse, which is freely available via the CCDC website. This database has been used to review research applications of the CSD in organic chemistry, including supramolecular applications, and in organic crystal chemistry. The review concentrates on applications that have been published since 1990 and covers a wide range of topics, including structure correlation, conformational analysis, hydrogen bonding and other intermolecular interactions, studies of crystal packing, extended structural motifs, crystal engineering and polymorphism, and crystal structure prediction. Applications of CSD information in studies of crystal structure precision, the determination of crystal structures from powder diffraction data, together with applications in chemical informatics, are also discussed.
Introduction of International Microgravity Strategic Planning Group
NASA Technical Reports Server (NTRS)
Rhome, Robert
1998-01-01
Established in May 6, 1995, the purpose of this International Strategic Planning Group for Microgravity Science and Applications Research is to develop and update, at least on a biennial basis, an International Strategic Plan for Microgravity Science and Applications Research. The member space agencies have agreed to contribute to the development of a Strategic Plan, and seek the implementation of the cooperative programs defined in this Plan. The emphasis of this plan is the coordination of hardware construction and utilization within the various areas of research including biotechnology, combustion science, fluid physics, materials science and other special topics in physical sciences. The Microgravity Science and Applications International Strategic Plan is a joint effort by the present members - ASI, CNES, CSA, DLR, ESA, NASA, and NASDA. It represents the consensus from a series of discussions held within the International Microgravity Strategic Planning Group (IMSPG). In 1996 several space agencies initiated multilateral discussions on how to improve the effectiveness of international microgravity research during the upcoming Space Station era. These discussions led to a recognition of the need for a comprehensive strategic plan for international microgravity research that would provide a framework for cooperation between international agencies. The Strategic Plan is intended to provide a basis for inter-agency coordination and cooperation in microgravity research in the environment of the International Space Station (ISS) era. This will be accomplished through analysis of the interests and goals of each participating agency and identification of mutual interests and program compatibilities. The Plan provides a framework for maximizing the productivity of space-based research for the benefit of our societies.
NASA Astrophysics Data System (ADS)
Rice, J. L.; Woodhouse, C.; Lukas, J.
2008-12-01
Current climate variability, potential impacts of climate change, and limited resources in the face of growing demand are increasingly prompting water managers in the western United States to consider and use data from climate-related research in water resource planning. Much of these data are produced by stakeholder- driven science programs, such as NOAA's Regional Integrated Science Assessments (RISAs), but there have been few efforts to evaluate the effectiveness of these science-to-application efforts. Over the past several years, researchers with the Western Water Assessment (WWA) RISA have been providing tree-ring reconstructions of streamflow to water managers in Colorado and other western states, and presenting technical workshops explaining the applications of these tree-ring data for water management and planning. Using in-depth interviews and a survey questionnaire, we have assessed the effectiveness and outcomes of these engagements, addressing (1) the factors that have prompted water managers to seek out tree-ring data, (2) how paleoclimate data has been made relevant and accessible for water resource planning, and (3) how tree-ring data and information have been utilized by water managers and other workshop participants. We also provide an assessment of challenges and opportunities that exist in the translation of climate science for decision-making, including how tree-ring data are interpreted in the context of water planning paradigms, issues of credibility and acceptance of tree ring data, and what data needs exist in different planning environments. These findings have broader application in improving and evaluating science-policy interactions related to climate and climate change.
Building the interspace: Digital library infrastructure for a University Engineering Community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schatz, B.
A large-scale digital library is being constructed and evaluated at the University of Illinois, with the goal of bringing professional search and display to Internet information services. A testbed planned to grow to 10K documents and 100K users is being constructed in the Grainger Engineering Library Information Center, as a joint effort of the University Library and the National Center for Supercomputing Applications (NCSA), with evaluation and research by the Graduate School of Library and Information Science and the Department of Computer Science. The electronic collection will be articles from engineering and science journals and magazines, obtained directly from publishersmore » in SGML format and displayed containing all text, figures, tables, and equations. The publisher partners include IEEE Computer Society, AIAA (Aerospace Engineering), American Physical Society, and Wiley & Sons. The software will be based upon NCSA Mosaic as a network engine connected to commercial SGML displayers and full-text searchers. The users will include faculty/students across the midwestern universities in the Big Ten, with evaluations via interviews, surveys, and transaction logs. Concurrently, research into scaling the testbed is being conducted. This includes efforts in computer science, information science, library science, and information systems. These efforts will evaluate different semantic retrieval technologies, including automatic thesaurus and subject classification graphs. New architectures will be designed and implemented for a next generation digital library infrastructure, the Interspace, which supports interaction with information spread across information spaces within the Net.« less
Technological Applications in Science Assessment.
ERIC Educational Resources Information Center
Helgeson, Stanley L.; Kumar, David D.
Educational technology has been a focus of development and research in science teaching and learning. This document reviews research dealing with computer and hypermedia applications to assessment in science education. The paper reports the findings first for computer applications for assessment and then for hypermedia applications in assessment.…
NASA Astrophysics Data System (ADS)
Barak, Miri
2017-10-01
The new guidelines for science education emphasize the need to introduce computers and digital technologies as a means of enabling visualization and data collection and analysis. This requires science teachers to bring advanced technologies into the classroom and use them wisely. Hence, the goal of this study was twofold: to examine the application of web-based technologies in science teacher preparation courses and to examine pre-service teachers' perceptions of "cloud pedagogy"—an instructional framework that applies technologies for the promotion of social constructivist learning. The study included university teachers ( N = 48) and pre-service science teachers ( N = 73). Data were collected from an online survey, written reflections, and interviews. The findings indicated that university teachers use technologies mainly for information management and the distribution of learning materials and less for applying social constructivist pedagogy. University teachers expect their students (i.e., pre-service science teachers) to use digital tools in their future classroom to a greater extent than they themselves do. The findings also indicated that the "cloud pedagogy" was perceived as an appropriate instructional framework for contemporary science education. The application of the cloud pedagogy fosters four attributes: the ability to adapt to frequent changes and uncertain situations, the ability to collaborate and communicate in decentralized environments, the ability to generate data and manage it, and the ability to explore new venous.
Cumulative reports and publications through December 31, 1991
NASA Technical Reports Server (NTRS)
1992-01-01
A reports and publications list is given from the Institute for Computer Applications in Science and Engineering (ICASE) through December 31, 1991. The major categories of the current ICASE research program are; numerical methods, control and parameter identification problems, computational problems in engineering and the physical sciences, and computer systems and software. Since ICASE reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when available.
Applications of airborne remote sensing in atmospheric sciences research
NASA Technical Reports Server (NTRS)
Serafin, R. J.; Szejwach, G.; Phillips, B. B.
1984-01-01
This paper explores the potential for airborne remote sensing for atmospheric sciences research. Passive and active techniques from the microwave to visible bands are discussed. It is concluded that technology has progressed sufficiently in several areas that the time is right to develop and operate new remote sensing instruments for use by the community of atmospheric scientists as general purpose tools. Promising candidates include Doppler radar and lidar, infrared short range radiometry, and microwave radiometry.
The Crew Earth Observations Experiment: Earth System Science from the ISS
NASA Technical Reports Server (NTRS)
Stefanov, William L.; Evans, Cynthia A.; Robinson, Julie A.; Wilkinson, M. Justin
2007-01-01
This viewgraph presentation reviews the use of Astronaut Photography (AP) as taken from the International Space Station (ISS) in Earth System Science (ESS). Included are slides showing basic remote sensing theory, data characteristics of astronaut photography, astronaut training and operations, crew Earth observations group, targeting sites and acquisition, cataloging and database, analysis and applications for ESS, image analysis of particular interest urban areas, megafans, deltas, coral reefs. There are examples of the photographs and the analysis.
NASA Astrophysics Data System (ADS)
Havlin, S.; Kenett, D. Y.; Ben-Jacob, E.; Bunde, A.; Cohen, R.; Hermann, H.; Kantelhardt, J. W.; Kertész, J.; Kirkpatrick, S.; Kurths, J.; Portugali, J.; Solomon, S.
2012-11-01
Network theory has become one of the most visible theoretical frameworks that can be applied to the description, analysis, understanding, design and repair of multi-level complex systems. Complex networks occur everywhere, in man-made and human social systems, in organic and inorganic matter, from nano to macro scales, and in natural and anthropogenic structures. New applications are developed at an ever-increasing rate and the promise for future growth is high, since increasingly we interact with one another within these vital and complex environments. Despite all the great successes of this field, crucial aspects of multi-level complex systems have been largely ignored. Important challenges of network science are to take into account many of these missing realistic features such as strong coupling between networks (networks are not isolated), the dynamics of networks (networks are not static), interrelationships between structure, dynamics and function of networks, interdependencies in given networks (and other classes of links, including different signs of interactions), and spatial properties (including geographical aspects) of networks. This aim of this paper is to introduce and discuss the challenges that future network science needs to address, and how different disciplines will be accordingly affected.
Slade, Louise; Levine, Harry
2018-04-13
This article reviews the application of the "Food Polymer Science" approach to the practice of industrial R&D, leading to patent estates based on fundamental starch science and technology. The areas of patents and patented technologies reviewed here include: (a) soft-from-the-freezer ice creams and freezer-storage-stable frozen bread dough products, based on "cryostabilization technology" of frozen foods, utilizing commercial starch hydrolysis products (SHPs); (b) glassy-matrix encapsulation technology for flavors and other volatiles, based on structure-function relationships for commercial SHPs; (c) production of stabilized whole-grain wheat flours for biscuit products, based on the application of "solvent retention capacity" technology to develop flours with reduced damaged starch; (d) production of improved-quality, low-moisture cookies and crackers, based on pentosanase enzyme technology; (e) production of "baked-not-fried," chip-like, starch-based snack products, based on the use of commercial modified-starch ingredients with selected functionality; (f) accelerated staling of a starch-based food product from baked bread crumb, based on the kinetics of starch retrogradation, treated as a crystallization process for a partially crystalline glassy polymer system; and (g) a process for producing an enzyme-resistant starch, for use as a reduced-calorie flour replacer in a wide range of grain-based food products, including cookies, extruded expanded snacks, and breakfast cereals.
76 FR 60934 - Notice of Permit Application Received Under the Antarctic Conservation Act of 1978
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-30
...Notice is hereby given that the National Science Foundation (NSF) has received a waste management permit application for Quark Expeditions' cruise ships to conduct a number of activities, including: shore excursions via zodiac or helicopter, camping ashore or extended stays, mountaineering, kayaking, helicopter flight seeing/emergency landings, and skiing. The application is submitted by Quark Expeditions of Waterbury, Vermont and submitted to NSF pursuant to regulations issued under the Antarctic Conservation Act of 1978.
Tools and Data Services from the NASA Earth Satellite Observations for Climate Applications
NASA Technical Reports Server (NTRS)
Vicente, Gilberto A.
2005-01-01
Climate science and applications require access to vast amounts of archived high quality data, software tools and services for data manipulation and information extraction. These on the other hand require gaining detailed understanding of the data's internal structure and physical implementation to data reduction, combination and data product production. This time-consuming task must be undertaken before the core investigation can begin and is an especially difficult challenge when science objectives require users to deal with large multi-sensor data sets of different formats, structures, and resolutions. In order to address these issues the Goddard Space Flight Center (GSFC) Earth Sciences (GES), Data and Information Service Center (DISC) Distributed Active Archive Center (DAAC) has made great progress in facilitating science and applications research by developing innovative tools and data services applied to the Earth sciences atmospheric and climate data. The GES/DISC/DAAC has successfully implemented and maintained a long-term climate satellite data archive and developed tools and services to a variety of atmospheric science missions including AIRS, AVHRR, MODIS, SeaWiFS, SORCE, TOMS, TOVS, TRMM, and UARS and Aura instruments providing researchers with excellent opportunities to acquire accurate and continuous atmospheric measurements. Since the number of climate science products from these various missions is steadily increasing as a result of more sophisticated sensors and new science algorithms, the main challenge for data centers like the GES/DISC/DAAC is to guide users through the variety of data sets and products, provide tools to visualize and reduce the volume of the data and secure uninterrupted and reliable access to data and related products. This presentation will describe the effort at the GES/DISC/DAAC to build a bridge between multi-sensor data and the effective scientific use of the data, with an emphasis on the heritage satellite observations and science products for climate applications. The intent is to inform users of the existence of this large collection of data and products; suggest starting points for cross-platform science projects and data mining activities and provide data services and tools information. More information about the GES/DISC/DAAC satellite data and products, tools, and services can be found at http://daac.gsfc.nasa.gov.
Code of Federal Regulations, 2012 CFR
2012-07-01
... and applicants for the Uniformed Services University of Health Sciences (USUHS). 728.75 Section 728.75... cadetship at service academies and applicants for the Uniformed Services University of Health Sciences... Sciences (USUHS) will be furnished medical examinations at facilities designated by the DODMERB...
Code of Federal Regulations, 2014 CFR
2014-07-01
... and applicants for the Uniformed Services University of Health Sciences (USUHS). 728.75 Section 728.75... cadetship at service academies and applicants for the Uniformed Services University of Health Sciences... Sciences (USUHS) will be furnished medical examinations at facilities designated by the DODMERB...
Code of Federal Regulations, 2010 CFR
2010-07-01
... and applicants for the Uniformed Services University of Health Sciences (USUHS). 728.75 Section 728.75... cadetship at service academies and applicants for the Uniformed Services University of Health Sciences... Sciences (USUHS) will be furnished medical examinations at facilities designated by the DODMERB...
Code of Federal Regulations, 2011 CFR
2011-07-01
... and applicants for the Uniformed Services University of Health Sciences (USUHS). 728.75 Section 728.75... cadetship at service academies and applicants for the Uniformed Services University of Health Sciences... Sciences (USUHS) will be furnished medical examinations at facilities designated by the DODMERB...