Sample records for science classes students

  1. The academic majors of students taking American soil science classes: 2004-2005 to 2013-2014 academic years

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Vaughan, Karen L.; Parikh, Sanjai J.; Dolliver, Holly; Lindbo, David; Steffan, Joshua J.; Weindorf, David; McDaniel, Paul; Mbila, Monday; Edinger-Marshall, Susan

    2017-04-01

    Many papers have been written in recent years discussing the interdisciplinary and transdisciplinary aspects of soil science. Therefore, it would make sense that soil science courses would be taken by students in a wide array of academic majors. To investigate this, we collected data from eight different American universities on the declared academic majors of students enrolled in soil science courses over a 10 year time period (2004-2005 to 2013-2014 academic years). Data was collected for seven different classes taught at the undergraduate level: introduction to soil science, soil fertility, soil management, pedology, soil biology/microbiology, soil chemistry, and soil physics. Overall trends and trends for each class were evaluated. Generally, environmental science and crop science/horticulture/agronomy students were enrolled in soil science courses in the greatest numbers. Environmental science and engineering students showed rapid increases in enrollment over the 10 years of the study, while the number of crop science/ horticulture/ agronomy students declined. In the introduction to soil science classes, environmental science and crop science/ horticulture/ agronomy students were enrolled in the greatest numbers, while declared soil science majors only made up 6.6% of the average enrollment. The highest enrollments in soil fertility were crop science/ horticulture/ agronomy students and other agricultural students (all agricultural majors except crop science, horticulture, agronomy, or soil science). In both the soil management and pedology classes, environmental science and other agricultural students were the largest groups enrolled. Other agricultural students and students from other majors (all majors not otherwise expressly investigated) were the largest enrolled groups in soil biology/microbiology courses, and environmental science and soil science students were the largest enrolled groups in soil chemistry classes. Soil physics was the only class investigated where declared soil science students made up the largest single group of students, with other agricultural students being the second largest group. Results of the study showed that students from many different academic majors take soil science classes at American universities, and the most common majors in these classes depended on the class and the material it addressed.

  2. Enhancing students' science literacy using solar cell learning multimedia containing science and nano technology

    NASA Astrophysics Data System (ADS)

    Eliyawati, Sunarya, Yayan; Mudzakir, Ahmad

    2017-05-01

    This research attempts to enhance students' science literacy in the aspects of students' science content, application context, process, and students' attitude using solar cell learning multimedia containing science and nano technology. The quasi-experimental method with pre-post test design was used to achieve these objectives. Seventy-two students of class XII at a high school were employed as research's subject. Thirty-six students were in control class and another thirty-six were in experiment class. Variance test (t-test) was performed on the average level of 95% to identify the differences of students' science literacy in both classes. As the result, there were significant different of learning outcomes between experiment class and control class. Almost half of students (41.67%) in experiment class are categorized as high. Therefore, the learning using solar cell learning multimedia can improve students' science literacy, especially in the students' science content, application context, and process aspects with n-gain(%) 59.19 (medium), 63.04 (medium), and 52.98 (medium). This study can be used to develop learning multimedia in other science context.

  3. Girls in computer science: A female only introduction class in high school

    NASA Astrophysics Data System (ADS)

    Drobnis, Ann W.

    This study examined the impact of an all girls' classroom environment in a high school introductory computer science class on the student's attitudes towards computer science and their thoughts on future involvement with computer science. It was determined that an all girls' introductory class could impact the declining female enrollment and female students' efficacy towards computer science. This research was conducted in a summer school program through a regional magnet school for science and technology which these students attend during the school year. Three different groupings of students were examined for the research: female students in an all girls' class, female students in mixed-gender classes and male students in mixed-gender classes. A survey, Attitudes about Computers and Computer Science (ACCS), was designed to obtain an understanding of the students' thoughts, preconceptions, attitude, knowledge of computer science, and future intentions around computer science, both in education and career. Students in all three groups were administered the ACCS prior to taking the class and upon completion of the class. In addition, students in the all girls' class wrote in a journal throughout the course, and some of those students were also interviewed upon completion of the course. The data was analyzed using quantitative and qualitative techniques. While there were no major differences found in the quantitative data, it was determined that girls in the all girls' class were truly excited by what they had learned and were more open to the idea of computer science being a part of their future.

  4. Research on same-gender grouping in eighth-grade science classrooms

    NASA Astrophysics Data System (ADS)

    Friend, Jennifer Ingrid

    This study examined two hypotheses related to same-gender grouping of eighth-grade science classes in a public middle-school setting in suburban Kansas City. The first hypothesis, male and female students enrolled in same-gender eighth-grade science classes demonstrate more positive science academic achievement than their male and female peers enrolled in mixed-gender science classes. The second hypothesis, same-gender grouping of students in eighth-grade science has a positive effect on classroom climate. The participants in this study were randomly assigned to class sections of eighth-grade science. The first experimental group was an eighth-grade science class of all-male students (n = 20) taught by a male science teacher. The control group used for comparison to the male same-gender class consisted of the male students (n = 42) in the coeducational eighth-grade science classes taught by the same male teacher. The second experimental group was an eighth-grade science class of all-female students (n = 23) taught by a female science teacher. The control group for the female same-gender class consisted of female students (n = 61) in the coeducational eighth-grade science classes taught by the same female teacher. The male teacher and the female teacher did not vary instruction for the same-gender and mixed-gender classes. Science academic achievement was measured for both groups through a quantitative analysis using grades on science classroom assessment and overall science course grades. Classroom climate was measured through qualitative observations and through qualitative and quantitative analysis of a twenty-question student survey administered at the end of each trimester grading period. The results of this study did not indicate support for either hypothesis. Data led to the conclusions that same-gender grouping did not produce significant differences in student science academic achievement, and that same-gender classes did not create a more positive classroom climate for male or female students. There is evidence in the literature to support further investigations in gender differences in science education to address the unique needs of male and female students in order to create gains in student science achievement and to encourage positive attitudes toward science.

  5. Hidden student voice: A curriculum of a middle school science class heard through currere

    NASA Astrophysics Data System (ADS)

    Crooks, Kathleen Schwartz

    Students have their own lenses through which they view school science and the students' views are often left out of educational conversations which directly affect the students themselves. Pinar's (2004) definition of curriculum as a 'complicated conversation' implies that the class' voice is important, as important as the teacher's voice, to the classroom conversation. If the class' voice is vital to classroom conversations, then the class, consisting of all its students, must be allowed to both speak and be heard. Through a qualitative case study, whereby the case is defined as a particular middle school science class, this research attempts to hear the 'complicated conversation' of this middle school science class, using currere as a framework. Currere suggests that one's personal relationship to the world, including one's memories, hopes, and dreams, should be the crux of education, rather than education being primarily the study of facts, concepts, and needs determined by an 'other'. Focus group interviews were used to access the class' currere: the class' lived experiences of science, future dreams of science, and present experiences of science, which was synthesized into a new understanding of the present which offered the class the opportunity to be fully educated. The interview data was enriched through long-term observation in this middle school science classroom. Analysis of the data collected suggests that a middle school science class has rich science stories which may provide insights into ways to engage more students in science. Also, listening to the voice of a science class may provide insight into discussions about science education and understandings into the decline in student interest in science during secondary school. Implications from this research suggest that school science may be more engaging for this middle school class if it offers inquiry-based activities and allows opportunities for student-led research. In addition, specialized academic and career advice in early middle school may be able to capitalize on this class' positive perspective toward science. Further research may include using currere to hear the voices of middle school science classes with more diverse demographic qualities.

  6. Examining the Conceptual Organization of Students in an Integrated Algebra and Physical Science Class.

    ERIC Educational Resources Information Center

    Westbrook, Susan L.

    1998-01-01

    Compares the conceptual organization of students in an integrated algebra and physical science class (SAM 9) with that of students in a discipline-specific physical science class (PSO). Analysis of students' concept maps indicates that the SAM9 students used a greater number of procedural linkages to connect mathematics and science concepts than…

  7. The impact of scienceware and foundations on students' attitudes towards science and science classes

    NASA Astrophysics Data System (ADS)

    Stratford, Steven J.; Finkel, Elizabeth A.

    1996-03-01

    In this paper, we describe changes in students' ideas about science classes, attitudes about science, and motivations for studying science, in a classroom designed to support projectbased science learing. Using a survey designed to provide a measure of students' attitudes towards science classes and science, we have compared students enrolled in a traditional high school biology course, with students enrolled in an integrated, project-based science course called Foundations I. Survey responses were analyzed to look at differences between and within two groups of students over the course of one school year. In general, the results of this study suggest that providing students with opportunities to collect and analyze their own data in science classes results in a change in students' ideas about science classrooms. Foundations I students' increased tendency to agree with statements about `using information,' `drawing conclusions,' and `thinking about problems,' implies a change in their understanding of what it means to do science in school. These students, in contrast to students in the traditional Biology course, no longer describe their science experience as one of memorization, textbook reading, and test taking. Instead they see science class as a place in which they can collect data, draw conclusions, and formulate and solve problems.

  8. Classroom climate and science-related attitudes of junior high school students in Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Bao-Shan; Crawley, Frank E., III

    Differences in classroom climate and science related attitudes were investigated among junior high school science classes and students in Taiwan. The sample consisted of 1,269 students enrolled in 40 science classes distributed equally among ten junior high schools, five metropolitan and five rural. Classes were further classified according to sex (21 boys and 19 girls classes) and ability (19 high and 21 low ability classes). Using the Learning Environment Inventory (Anderson, Walberg, & Fraser, 1982) to measure climate, science classes in metropolitan schools, more than rural, were found to be characterized by Speed, Friction, Favoritism, Difficulty, Cliqueness, and Competitiveness. No differences were found in the classroom climates of classes in which students were grouped according to sex or ability. Using the Test of Science-Related Attitudes (Fraser, 1981), students in science classes in metropolitan schools, in contrast to rural, expressed more positive attitudes toward the Social Implications of Science, Adoption of Scientific Attitudes, and Attitude to Scientific Inquiry. Boys more than girls recorded high scores on Leisure Interest in Science and Career Interest in Science. High ability students were found to have higher scores on Attitude to Scientific Inquiry than did low ability students. When examining the relationship between the 15 subscale scores of the LEI and the seven subscale scores of the TOSRA for the 40 classes, only 9 out of 105 correlations proved to be significant. Most differences in climate, attitude, and their interactions were attributed to school location rather than to student characteristics.

  9. Using a dynamic, introductory-level volcanoes class as a means to introduce non-science majors to the geosciences

    NASA Astrophysics Data System (ADS)

    Cook, G. W.

    2012-12-01

    At the University of California, San Diego, I teach a quarter-long, introductory Earth Science class titled "Volcanoes," which is, in essence, a functional class in volcanology designed specifically for non-majors. This large-format (enrollment ~ 85), lecture-based class provides students from an assortment of backgrounds an opportunity to acquire much-needed (and sometimes dreaded) area credits in science, while also serving as an introduction to the Earth Science major at UCSD (offered through Scripps Institution of Oceanography). The overall goal of the course is to provide students with a stimulating and exciting general science option that, using an inherently interesting topic, introduces them to the fundamentals of geoscience. A secondary goal is to promote general science and geoscience literacy among the general population of UCSD. Student evaluations of this course unequivocally indicate a high degree of learning and interest in the material. The majority of students in the class (>80%) are non-science majors and very few students (<3%) are Earth science degree-seeking students. In addition, only a handful of students have typically had any form of geology class beyond high school level Earth Science. Consequently, there are challenges associated with teaching the class. Perhaps most significantly, students have very little background—background that is necessary for understanding the processes involved in volcanic eruptions. Second, many non-science students have built-in anxieties with respect to math and science, anxieties that must be considered when designing curriculum and syllabi. It is essential to provide the right balance of technical information while remaining in touch with the audience. My approach to the class involves a dynamic lecture format that incorporates a wide array of multimedia, analogue demonstrations of volcanic processes, and small-group discussions of topics and concepts. In addition to teaching about volcanoes—a fascinating subject in and of itself—I take the opportunity in the first two weeks to introduce students to basic geology, including tectonics, earth materials, surface processes, and geologic time. In fact, this is a vital segment of the class, as the students need this background for the latter portions of the class. A side benefit is that students are provided with a "mini" education in geology whether they know it or not and take this knowledge with them into other classes, and ultimately, their futures. Student satisfaction is uniformly very high with this class. 100% of students agreed that the course material was intellectually stimulating; 95% of students agreed that they learned a great deal from the course; 100% of students stated that they would recommend the class to other students. Overall, the class highlights the role that non-major introductory-level geoscience classes, in particular ones with interesting topics, can serve in educating college-level students about Earth Science. They may also serve as a gateway into the Earth Sciences for students who previously had no such inclination.

  10. Reaching the Students: A New Approach to Enhancing Science Literacy

    NASA Astrophysics Data System (ADS)

    McNamara, B. J.; Burnham, C. C.

    2002-05-01

    Most NSF supported programs directed at improving science literacy among university students who are not majoring in SMET normally target instruction in introductory science or math classes. Unfortunately these efforts seldom reach the vast majority of students at a university because students can fulfil their science requirement by taking several other classes or class sections that are not impacted by the NSF program. Ideally it would be desirable to address the issues of science literacy and science anxiety among non-science majors in a single class that is required of essentially all undergraduates. We describe such a program which is being tested at NMSU. The targeted class is the university's freshman level English class. The idea behind this effort is to provide students with the skills they will need to be successful in their science classes in a less threatening humanities environment. We describe the problems that this approach raises, suggest solutions to these problems, and then discuss the overall status of this effort.

  11. Gesticulating Science: Emergent Bilingual Students' Use of Gestures

    ERIC Educational Resources Information Center

    Ünsal, Zeynep; Jakobson, Britt; Wickman, Per-Olof; Molander, Bengt-Olov

    2018-01-01

    This article examines how emergent bilingual students used gestures in science class, and the consequences of students' gestures when their language repertoire limited their possibilities to express themselves. The study derived from observations in two science classes in Sweden. In the first class, 3rd grade students (9-10 years old) were…

  12. Do Thinking Styles Matter for Science Achievement and Attitudes toward Science Class in Male and Female Elementary School Students in Taiwan?

    ERIC Educational Resources Information Center

    Wang, Tzu-Ling; Tseng, Yi-Kuan

    2015-01-01

    The purposes of this study were to explore the effects of thinking styles on science achievement and attitudes toward science class among Taiwanese elementary school students and to explore the differences between male and female students in their modes of thinking. Participants included 756 sixth-grade students from 28 classes in four elementary…

  13. Using psychological constructs from the MUSIC Model of Motivation to predict students' science identification and career goals: results from the U.S. and Iceland

    NASA Astrophysics Data System (ADS)

    Jones, Brett D.; Sahbaz, Sumeyra; Schram, Asta B.; Chittum, Jessica R.

    2017-05-01

    We investigated students' perceptions related to psychological constructs in their science classes and the influence of these perceptions on their science identification and science career goals. Participants included 575 middle school students from two countries (334 students in the U.S. and 241 students in Iceland). Students completed a self-report questionnaire that included items from several measures. We conducted correlational analyses, confirmatory factor analyses, and structural equation modelling to test our hypotheses. Students' class perceptions (i.e. empowerment, usefulness, success, interest, and caring) were significantly correlated with their science identification, which was correlated positively with their science career goals. Combining students' science class perceptions, science identification, and career goals into one model, we documented that the U.S. and Icelandic samples fit the data reasonably well. However, not all of the hypothesised paths were statistically significant. For example, only students' perceptions of usefulness (for the U.S. and Icelandic students) and success (for the U.S. students only) significantly predicted students' career goals in the full model. Theoretically, our findings are consistent with results from samples of university engineering students, yet different in some ways. Our results provide evidence for the theoretical relationships between students' perceptions of science classes and their career goals.

  14. Interpreting the relationships between single gender science classes and girls' academic motivation and interest

    NASA Astrophysics Data System (ADS)

    Johnson, Sonya L.

    The purpose of this study was to determine how and to what extent single gender science classes affect motivation to learn scientific concepts, interest in science, and college major intent among high school and middle school girls. This study was designed to determine whether students' motivation to learn science changes when they are placed in a single gender science class. The study also measured whether the students' level of interest in science and desire to major in science changes based on their enrollment in a single gender class. Finally, the study investigated the career and college major intentions of the sample population used in the study. Girls in single gender groupings engage in more academic risk taking and participate more than girls in coeducational classes. This benefit alone responds to reform efforts and supports the abolition of gender-based obstacles. Single gender grouping could help encourage more girls to take interest in majoring in science, a field that is considered to be masculine. By increasing students' interest in science while enrolled in single gender classes, students may become more motivated to learn science. This study was conducted using seven, eighth, ninth and tenth grade girls from single sex and coeducational science classes. The students participated in 2 surveys, the Science Motivational Survey and the Test of Science Related Attitudes, at the beginning of the semester and at the end of the semester. In respect to girls in high school single gender science classes, results were contrary to recent studies that state that girls who received science education in a single gender setting have an increase in motivation and attitude towards science. The results did show that middle school girls in single gender science classes did show an increase in motivation.

  15. Investigating Science Discourse in a High School Science Classroom

    NASA Astrophysics Data System (ADS)

    Swanson, Lauren Honeycutt

    Science classrooms in the United States have become more diverse with respect to the variety of languages spoken by students. This qualitative study used ethnographic methods to investigate the discourse and practices of two ninth grade science classrooms. Approximately 44% of students included in the study were designated as English learners. The present work focused on addressing the following questions: 1) In what ways is science discourse taken up and used by students and their teacher? 2) Are there differences in how science discourse is used by students depending on their English language proficiency? Data collection consisted of interviewing the science teacher and the students, filming whole class and small group discussions during two lesson sequences, and collecting lesson plans, curricular materials, and student work. These data were analyzed qualitatively. Findings indicated that the teacher characterized science discourse along three dimensions: 1) the use of evidence-based explanations; 2) the practice of sharing one's science understandings publically; and 3) the importance of using precise language, including both specialized (i.e., science specific) and non-specialized academic words. Analysis of student participation during in-class activities highlighted how students progressed in each of these science discourse skills. However, this analysis also revealed that English learners were less likely to participate in whole class discussions: Though these students participated in small group discussions, they rarely volunteered to share individual or collective ideas with the class. Overall, students were more adept at utilizing science discourse during class discussions than in written assignments. Analysis of students' written work highlighted difficulties that were not visible during classroom interactions. One potential explanation is the increased amount of scaffolding the teacher provided during class discussions as compared to written assignments. In the implications section, I provide science teachers with recommendations regarding how to promote science discourse in their classrooms. Specifically, teachers should provide students structured opportunities to practice science discourse, require students to use both written and oral modalities in assignments, and offer timely feedback to students regarding their progress in developing their science discourse skills. How this study contributes to the research base on the teaching of science and English learners will also be described.

  16. Strategic Note-Taking for Middle-School Students with Learning Disabilities in Science Classes

    ERIC Educational Resources Information Center

    Boyle, Joseph R.

    2010-01-01

    While today's teachers use a variety of teaching methods in middle-school science classes, lectures and note-taking still comprise a major portion of students' class time. To be successful in these classes, middle-school students need effective listening and note-taking skills. Students with learning disabilities (LD) are poor note-takers, which…

  17. The effects of contextual learning instruction on science achievement of male and female tenth-grade students

    NASA Astrophysics Data System (ADS)

    Ingram, Samantha Jones

    The purpose of this study was to investigate the effects of the contextual learning method on science performance, attitudes toward science, and motivational factors that influence high school students to learn science. Gender differences in science performance and attitudes toward science were also investigated. The sample included four tenth-grade classes of African-American students enrolled in Chemistry I. All students were required to review for the Alabama High School Graduation Exam in Science. Students were administered a science pretest and posttest to measure science performance. A two-way analysis of covariance was performed on the test data. The results showed a main effect of contextual learning instruction on science achievement and no significant differences between females' and males' performance in science. The Science Attitude and the Alabama High School Graduation Exam (AHSGE) Review Class Surveys were administered to assess students' beliefs and attitudes toward science. The Science Attitude Survey results indicated a control effect in three subscales: perception of guardian's attitude, attitude toward success in science, and perception of teacher's attitude. No significant differences resulted between males and females in their beliefs about science from the attitude survey. However, students' attitudes toward science were more favorable in the contextual learning classes based on the results of the Review Class Survey. The survey data revealed that both males and females in the contextual classes had positive attitudes toward science and toward being active participants in the learning process. Qualitative data on student motivation were collected to examine the meaningfulness of the contextual learning content and materials. The majority of the students in the treatment (96%) and the control groups (86%) reported high interest in the lesson on Newton's three laws of motion. Both the treatment and the control groups indicated their interest ratings were a result of their prior experiences. This study shows that contextual learning instruction positively influences student motivation, interest, and achievement in science. Student achievement in science improved in the contextual learning classes as a result of increased interest due to learning that emphasized relevancy and purposeful meaning.

  18. Can medical schools teach high school students to be scientists?

    PubMed

    Rosenbaum, James T; Martin, Tammy M; Farris, Kendra H; Rosenbaum, Richard B; Neuwelt, Edward A

    2007-07-01

    The preeminence of science in the United States is endangered for multiple reasons, including mediocre achievement in science education by secondary school students. A group of scientists at Oregon Health and Science University has established a class to teach the process of scientific inquiry to local high school students. Prominent aspects of the class include pairing of the student with a mentor; use of a journal club format; preparation of a referenced, hypothesis driven research proposal; and a "hands-on" laboratory experience. A survey of our graduates found that 73% were planning careers in health or science. In comparison to conventional science classes, including chemistry, biology, and algebra, our students were 7 times more likely to rank the scientific inquiry class as influencing career or life choices. Medical schools should make research opportunities widely available to teenagers because this experience dramatically affects one's attitude toward science and the likelihood that a student will pursue a career in science or medicine. A federal initiative could facilitate student opportunities to pursue research.

  19. The effect of conceptual metaphors through guided inquiry on student's conceptual change

    NASA Astrophysics Data System (ADS)

    Menia, Meli; Mudzakir, Ahmad; Rochintaniawati, Diana

    2017-05-01

    The purpose of this study was to identify student's conceptual change of global warming after integrated science learning based guided inquiry through conceptual metaphors. This study used a quasi-experimental with a nonequivalent control group design. The subject was students of two classes of one of MTsN Salido. Data was collected using conceptual change test (pretest and posttest), observation sheet to observe the learning processes, questionnaire sheet to identify students responses, and interview to identifyteacher'srespons of science learning with conceptual metaphors. The results showed that science learning based guided inquiry with conceptual metaphors is better than science learning without conceptual metaphors. The average of posttest experimental class was 79,40 and control class was 66,09. The student's conceptual change for two classes changed significantly byusing mann whitney U testwith P= 0,003(P less than sig. value, P< 0,05). This means that there was differenceson student's conceptual changebeetwen integrated science learning based guided inquiry with conceptual metaphors class and integrated science learning without conceptual metaphors class. The study also showed that teachers and studentsgive positive responsesto implementation of integrated science learning based guided inquiry with conceptual metaphors.

  20. Middle School Students' Attitudes toward Science, Scientists, Science Teachers and Classes

    ERIC Educational Resources Information Center

    Kapici, Hasan Özgür; Akçay, Hakan

    2016-01-01

    It is an indispensable fact that having a positive attitude towards science is one of the important factors that promotes students for studying in science. The study is a kind of national study that aims to investigate middle school students', from different regions of Turkey, attitudes toward science, scientists and science classes. The study was…

  1. Construction and Validation of an Instrument to Measure Taiwanese Elementary Students' Attitudes toward Their Science Class

    NASA Astrophysics Data System (ADS)

    Wang, Tzu-Ling; Berlin, Donna

    2010-12-01

    The main purpose of this study is to develop a valid and reliable instrument for measuring the attitudes toward science class of fourth- and fifth-grade students in an Asian school culture. Specifically, the development focused on three science attitude constructs-science enjoyment, science confidence, and importance of science as related to science class experiences. A total of 265 elementary school students in Taiwan responded to the instrument developed. Data analysis indicated that the instrument exhibited satisfactory validity and reliability with the Taiwan population used. The Cronbach's alpha coefficient was 0.93 for the entire instrument indicating a satisfactory level of internal consistency. However, both principal component analysis and parallel analysis showed that the three attitude scales were not unique and should be combined and used as a general "attitudes toward science class" scale. The analysis also showed that there were no gender or grade-level differences in students' overall attitudes toward science class.

  2. Transformative Multicultural Science curriculum: A case study of middle school robotics

    NASA Astrophysics Data System (ADS)

    Grimes, Mary Katheryn

    Multicultural Science has been a topic of research and discourse over the past several years. However, most of the literature concerning this topic (or paradigm) has centered on programs in tribal or Indigenous schools. Under the framework of instructional congruence, this case study explored how elementary and middle school students in a culturally diverse charter school responded to a Multicultural Science program. Furthermore, this research sought to better understand the dynamics of teaching and learning strategies used within the paradigm of Multicultural Science. The school's Robotics class, a class typically stereotyped as fitting within the misconceptions associated with the Western Modern Science paradigm, was the center of this case study. A triangulation of data consisted of class observations throughout two semesters; pre and post student science attitude surveys; and interviews with individual students, Robotic student teams, the Robotics class instructor, and school administration. Three themes emerged from the data that conceptualized the influence of a Multicultural Science curriculum with ethnically diverse students in a charter school's Robotics class. Results included the students' perceptions of a connection between science (i.e., Robotics) and their personal lives, a positive growth in the students' attitude toward science (and engineering), and a sense of personal empowerment toward being successful in science. However, also evident in the findings were the students' stereotypical attitudes toward science (and scientists) and their lack of understanding of the Nature of Science. Implications from this study include suggestions toward the development of Multicultural Science curricula in public schools. Modifications in university science methods courses to include the Multicultural Science paradigm are also suggested.

  3. Teacher and student perspectives on motivation within the high school science classroom

    NASA Astrophysics Data System (ADS)

    Pickens, Melanie Turnure

    The purpose of this study was to investigate teacher and student perspectives on the motivation of high school science students and to explore specific motivational strategies used by teachers as they attempt to enhance student motivation. Four science teachers took part in an initial audio-taped interview, classroom observations with debriefing conversations, and a final audio-taped interview to discuss findings and allow member checking for data triangulation and interpretation. Participating teachers also took part in a final focus group interview. Student participants from each teacher's class were given a Likert style anonymous survey on their views about motivation and learning, motivation in science class, and specific motivational strategies that emerged in their current science class. This study focused on effective teaching strategies for motivation commonly used by the four teachers and on specific teaching strategies used by two of these four teachers in different tracks of science classes. The intent was to determine not only what strategies worked well for all types of science classes, but also what specific motivational approaches were being used in high and low tracked science classes and the similarities and differences between them. This approach provided insight into the differences in motivating tracked students, with the hope that other educators in specific tracks might use such pedagogies to improve motivation in their own science classrooms. Results from this study showed that science teachers effectively motivate their students in the following ways: Questioning students to engage them in the lesson, exhibiting enthusiasm in lesson presentations, promoting a non-threatening environment, incorporating hands-on activities to help learn the lesson concepts, using a variety of activities, believing that students can achieve, and building caring relationships in the classroom. Specific to the higher tracked classroom, effective motivational strategies included: Use of teacher enthusiasm, promoting a non-threatening class atmosphere, and connecting the adolescent world to science. In the lower tracked classroom, specific effective strategies were: Encouraging student-student dialogue, making lessons relevant using practical applications, building student self-confidence, and using hands-on inquiry activities. Teachers who incorporate such strategies into their classrooms regardless of the track will likely increase motivation and also enhance learning for all students.

  4. Reaching the Next Stephen Hawking: Five Ways to Help Students with Disabilities in Advanced Placement Science Classes

    ERIC Educational Resources Information Center

    Howard, Lori A.; Potts, Elizabeth A.; Linz, Ed

    2013-01-01

    As the federal government encourages all students to attempt advanced math and science courses, more students with disabilities are enrolling in Advanced Placement (AP) science classes. AP science teachers can better serve these students by understanding the various types of disabilities (whether physical, learning, emotional, or behavioral),…

  5. Pima College Students' Knowledge of Selected Basic Physical Science Concepts.

    ERIC Educational Resources Information Center

    Iadevaia, David G.

    In 1989 a study was conducted at Pima Community College (PCC) to assess students' knowledge of basic physical science concepts. A three-part survey instrument was administered to students in a second semester sociology class, a first semester astronomy class, a second semester Spanish class, and a first semester physics class. The survey…

  6. Identifying Pre-High School Students' Science Class Motivation Profiles to Increase Their Science Identification and Persistence

    ERIC Educational Resources Information Center

    Chittum, Jessica R.; Jones, Brett D.

    2017-01-01

    One purpose of this study was to determine whether patterns existed in pre-high school students' motivation-related perceptions of their science classes. Another purpose was to examine the extent to which these patterns were related to their science identification, gender, grade level, class effort, and intentions to persist in science. We…

  7. Space biology class as part of science education programs for high schools in Japan.

    PubMed

    Kamada, Motoshi; Takaoki, Muneo

    2004-11-01

    Declining incentives and scholastic abilities in science class has been concerned in Japan. The Ministry of Education, Culture, Sports, Science and Technology encourages schools to cooperate with research institutions to raise student's interest in natural sciences. The Science Partnership Program (SPP) and the Super Science High-School (SSH) are among such efforts. Our short SPP course consists of an introductory lecture on space biology in general and a brief laboratory practice on plant gravitropism. Space biology class is popular to students, despite of the absence of flight experiments. We suppose that students are delighted when they find that their own knowledge is not a mere theory, but has very practical applications. Space biology is suitable in science class, since it synthesizes mathematics, physics, chemistry and many other subjects that students might think uninteresting.

  8. The effects of academic grouping on student performance in science

    NASA Astrophysics Data System (ADS)

    Scoggins, Sally Smykla

    The current action research study explored how student placement in heterogeneous or homogeneous classes in seventh-grade science affected students' eighth-grade Science State of Texas Assessment of Academic Readiness (STAAR) scores, and how ability grouping affected students' scores based on race and socioeconomic status. The population included all eighth-grade students in the target district who took the regular eighth-grade science STAAR over four academic school years. The researcher ran three statistical tests: a t-test for independent samples, a one-way between subjects analysis of variance (ANOVA) and a two-way between subjects ANOVA. The results showed no statistically significant difference between eighth-grade Pre-AP students from seventh-grade Pre-AP classes and eighth-grade Pre-AP students from heterogeneous seventh-grade classes and no statistically significant difference between Pre-AP students' scores based on socioeconomic status. There was no statistically significant interaction between socioeconomic status and the seventh-grade science classes. The scores between regular eighth-grade students who were in heterogeneous seventh-grade classes were statistically significantly higher than the scores of regular eighth-grade students who were in regular seventh-grade classes. The results also revealed that the scores of students who were White were statistically significantly higher than the scores of students who were Black and Hispanic. Black and Hispanic scores did not differ significantly. Further results indicated that the STAAR Level II and Level III scores were statistically significantly higher for the Pre-AP eighth-grade students who were in heterogeneous seventh-grade classes than the STAAR Level II and Level III scores of Pre-AP eighth-grade students who were in Pre-AP seventh-grade classes.

  9. The implementation of integrated science teaching materials based socio-scientific issues to improve students scientific literacy for environmental pollution theme

    NASA Astrophysics Data System (ADS)

    Yenni, Rita; Hernani, Widodo, Ari

    2017-05-01

    The study aims to determine the increasing of students' science literacy skills on content aspects and competency of science by using Integrated Science teaching materials based Socio-scientific Issues (SSI) for environmental pollution theme. The method used in the study is quasi-experiment with nonequivalent pretest and posttest control group design. The students of experimental class used teaching materials based SSI, whereas the students of control class were still using the usual textbooks. The result of this study showed a significant difference between the value of N-gain of experimental class and control class, whichalso occurred in every indicator of content aspects and competency of science. This result indicates that using of Integrated Science teaching materials based SSI can improve content aspect and competency of science and can be used as teaching materials alternative in teaching of Integrated Science.

  10. Teaching Science/Learning Gender: Preservice Elementary Teachers Write about Science, Gender, and Identity.

    ERIC Educational Resources Information Center

    Letts, William J., IV

    Using data collected from an undergraduate science methods class, this paper interrogates a variety of ways that preservice teachers construct their identities as both students of science and prospective teachers of science. Data sources included writings about an issue of "difference" in science class, a science autobiography, student-generated…

  11. Nature of Science Lessons, Argumentation and Scientific Discussions among Students in Science Classes: A Case Study in a Successful School

    ERIC Educational Resources Information Center

    Ozturk, Elif; Ucus, Sukran

    2015-01-01

    Argumentation is highlighted as one of the most important activities of science education by many researchers. The main aim of this research is to examine primary school students' nature of science classes and argumentation skills in terms of their academic success in primary science classes. Thus, the main interest of the study is centered on the…

  12. Nature of Science Lessons, Argumentation and Scientific Discussions among Students in Science Class: A Case Study in a Successful School

    ERIC Educational Resources Information Center

    Ozturk, Elif; Ucus, Sukran

    2015-01-01

    Argumentation is highlighted as one of the most important activities of science education by many researchers. The main aim of this research is to examine primary school students' nature of science classes and argumentation skills in terms of their academic success in primary science classes. Thus, the main interest of the study is centered on the…

  13. The effectivenes of science domain-based science learning integrated with local potency

    NASA Astrophysics Data System (ADS)

    Kurniawati, Arifah Putri; Prasetyo, Zuhdan Kun; Wilujeng, Insih; Suryadarma, I. Gusti Putu

    2017-08-01

    This research aimed to determine the significant effect of science domain-based science learning integrated with local potency toward science process skills. The research method used was a quasi-experimental design with nonequivalent control group design. The population of this research was all students of class VII SMP Negeri 1 Muntilan. The sample of this research was selected through cluster random sampling, namely class VII B as an experiment class (24 students) and class VII C as a control class (24 students). This research used a test instrument that was adapted from Agus Dwianto's research. The aspect of science process skills in this research was observation, classification, interpretation and communication. The analysis of data used the one factor anova at 0,05 significance level and normalized gain score. The significance level result of science process skills with one factor anova is 0,000. It shows that the significance level < alpha (0,05). It means that there was significant effect of science domain-based science learning integrated with local potency toward science learning process skills. The results of analysis show that the normalized gain score are 0,29 (low category) in control class and 0,67 (medium category) in experiment class.

  14. Student-generated illustrations and written narratives of biological science concepts: The effect on community college life science students' achievement in and attitudes toward science

    NASA Astrophysics Data System (ADS)

    Harvey, Robert Christopher

    The purpose of this study was to determine the effects of two conceptually based instructional strategies on science achievement and attitudes of community college biological science students. The sample consisted of 277 students enrolled in General Biology 1, Microbiology, and Human Anatomy and Physiology 1. Control students were comprised of intact classes from the 2005 Spring semester; treatment students from the 2005 Fall semester were randomly assigned to one of two groups within each course: written narrative (WN) and illustration (IL). WN students prepared in-class written narratives related to cell theory and metabolism, which were taught in all three courses. IL students prepared in-class illustrations of the same concepts. Control students received traditional lecture/lab during the entire class period and neither wrote in-class descriptions nor prepared in-class illustrations of the targeted concepts. All groups were equivalent on age, gender, ethnicity, GPA, and number of college credits earned and were blinded to the study. All interventions occurred in class and no group received more attention or time to complete assignments. A multivariate analysis of covariance (MANCOVA) via multiple regression was the primary statistical strategy used to test the study's hypotheses. The model was valid and statistically significant. Independent follow-up univariate analyses relative to each dependent measure found that no research factor had a significant effect on attitude, but that course-teacher, group membership, and student academic characteristics had a significant effect (p < .05) on achievement: (1) Biology students scored significantly lower in achievement than A&P students; (2) Microbiology students scored significantly higher in achievement than Biology students; (3) Written Narrative students scored significantly higher in achievement than Control students; and (4) GPA had a significant effect on achievement. In addition, given p < .08: (1) Microbiology students averaged lower in achievement than A&P students; (2) Illustration students averaged higher in achievement than Control students; and (3) Written Narrative students averaged higher in achievement than Illustration students. Findings suggest that science achievement can be enhanced via student-generated illustrations and written narratives, these interventions had no effect on attitudes toward science, and the interventions benefited A&P students more than Microbiology and Biology students.

  15. Science education in a bilingual class: problematising a translational practice

    NASA Astrophysics Data System (ADS)

    Ünsal, Zeynep; Jakobson, Britt; Molander, Bengt-Olov; Wickman, Per-Olof

    2016-10-01

    In this article we examine how bilingual students construe relations between everyday language and the language of science. Studies concerning bilingual students language use in science class have mainly been conducted in settings where both the teacher and the students speak the same minority language. In this study data was collected in a class consisting of students aged 13-14. All students had Turkish as their minority language, whereas the teacher's minority language was Bosnian. The class was observed when they were working with acids and bases. In addition, the students were interviewed in groups. They were asked about how they use their languages during science lessons and then asked to describe and explain scientific phenomena and processes that had been a part of the observed lessons. For the analysis, practical epistemology analysis and the theory of translanguaging were used. The results show how the students' everyday language repertoire may limit their possibilities to make meaning of science. In particular, the teacher's practice of facilitating and supporting students' understanding of science content by relating it to concrete examples took another direction since the everyday words he used were not a part of the students' language repertoire. The study also shows how the students used their minority language as a resource to translate words from Swedish to Turkish in order to proceed with the science activities. However, translating scientific concepts was problematic and led to the students' descriptions of the concepts not being in line with how they are viewed in science. Finally, the study also demonstrates how monolingual exams may limit bilingual students' achievements in science. The study contributes by presenting and discussing circumstances that need to be taken into consideration when planning and conducting science lessons in classes where the teacher and the student do not share the same minority language.

  16. Grade 5 Students' Online Argumentation about Their In-Class Inquiry Investigations

    ERIC Educational Resources Information Center

    Choi, Aeran; Hand, Brian; Norton-Meier, Lori

    2014-01-01

    This study examined the extent to which fifth-grade students participate in online argumentation and the argument patterns they produced about the inquiry-based investigations completed using the Science Writing Heuristic approach in their science classes. One hundred twenty-nine students from five classes of two teachers in a Midwestern public…

  17. Class Size and Academic Achievement in Introductory Political Science Courses

    ERIC Educational Resources Information Center

    Towner, Terri L.

    2016-01-01

    Research on the influence of class size on student academic achievement is important for university instructors, administrators, and students. The article examines the influence of class size--a small section versus a large section--in introductory political science courses on student grades in two comparable semesters. It is expected that…

  18. Characteristics of High School Students' and Science Teachers' Cognitive Frame about Effective Teaching Method for High School Science Subject

    NASA Astrophysics Data System (ADS)

    Chung, Duk Ho; Park, Kyeong-Jin; Cho, Kyu Seong

    2016-04-01

    We investigated the cognitive frame of high school students and inservice high school science teachers about effective teaching method, and we also explored how they understood about the teaching methods suggested by the 2009 revised Science Curriculum. Data were collected from 275 high school science teachers and 275 high school students. We analyzed data in terms of the words and the cognitive frame using the Semantic Network Analysis. The results were as follows. First, the teachers perceived that an activity oriented class was the effective science class that helped improve students'' problem-solving abilities and their inquiry skills. The students had the cognitive frame that their teacher had to present relevant and enough teaching materials to students, and that they should also receive assistance from teachers in science class to better prepare for college entrance exam. Second, both students and teachers retained the cognitive frame about the efficient science class that was not reflected 2009 revised Science Curriculum exactly. Especially, neither groups connected the elements of ''convergence'' as well as ''integration'' embedded across science subject areas to their cognitive frame nor cognized the fact that many science learning contents were closed related to one another. Therefore, various professional development opportunities should be offered so that teachers succinctly comprehend the essential features and the intents of the 2009 revised Science Curriculum and thereby implement it in their science lessons effectively. Keywords : semantic network analysis, cognitive frame, teaching method, science lesson

  19. Secondary science students' beliefs about class discussions: a case study comparing and contrasting academic tracks

    NASA Astrophysics Data System (ADS)

    Silva Pimentel, Diane; McNeill, Katherine L.

    2016-08-01

    The dialogue that occurs in science classrooms has been the subject of research for many decades. Most studies have focused on the actual discourse that occurs and the role of the teacher in guiding the discourse. This case study explored the neglected perspective of secondary science students and their beliefs about their role in class discussions. The study participants (N = 45) were students in one of the three differentially tracked chemistry classes taught by the same teacher. Findings about the differences that exist among students from different academic tracks are reported. While it seems that epistemological beliefs focusing on content are common for the students in this study, the students' social framing in the different tracks is important to consider when teachers attempt to transition to more dialogic forms of discourse. Some key findings of this study are (a) students' beliefs that science is a body of facts to be learned influenced the factors they deemed important for whole-class discussion, (b) students from the lower-level track who typically were associated with lower socioeconomic status were more likely to view their role as passive, and (c) students' comfort level with the members of the class seemed to influence their decisions to participate in class discussions.

  20. Peer Instruction in introductory physics: A method to bring about positive changes in students' attitudes and beliefs

    NASA Astrophysics Data System (ADS)

    Zhang, Ping; Ding, Lin; Mazur, Eric

    2017-06-01

    This paper analyzes pre-post matched gains in the epistemological views of science students taking the introductory physics course at Beijing Normal University (BNU) in China. In this study we examined the attitudes and beliefs of science majors (n =441 ) in four classes, one taught using traditional (lecture) teaching methods, and the other three taught with Peer Instruction (PI). In two of the PI classes, student peer groups were constantly changing throughout the semester, while in the other PI class student groups remained fixed for the duration of the semester. The results of the pre- and post-test using the Colorado Learning Attitudes about Science Survey showed that students in traditional lecture settings became significantly more novicelike in their beliefs about physics and learning physics over the course of a semester, a result consistent with what was reported in the literature. However, all three of the classes taught using the PI method improved student attitudes and beliefs about physics and learning physics. In the PI class with fixed peer groups, students exhibited a greater positive shift in attitudes and beliefs than in the other PI class with changing peer groups. The study also looked at gender differences in student learning attitudes. Gender results revealed that female science majors in the PI classes achieved a greater positive shift in attitudes and beliefs after instruction than did male students.

  1. Impact of Adaptive Materials on Teachers and their Students with Visual Impairments in Secondary Science and Mathematics Classes

    NASA Astrophysics Data System (ADS)

    Rule, Audrey C.; Stefanich, Greg P.; Boody, Robert M.; Peiffer, Belinda

    2011-04-01

    Science, technology, engineering, and mathematics (STEM) fields, important in today's world, are underrepresented by students with disabilities. Students with visual impairments, although cognitively similar to sighted peers, face challenges as STEM subjects are often taught using visuals. They need alternative forms of access such as enlarged or audio-converted text, tactile graphics, and involvement in hands-on science. This project focused on increasing teacher awareness of and providing funds for the purchase of supplemental adaptive resources, supplies, and equipment. We examined attitude and instructional changes across the year of the programme in 15 science and mathematics teachers educating students with visual impairments. Positive changes were noted from pretest to posttest in student and teacher perspectives, and in teacher attitudes towards students with disabilities in STEM classes. Teachers also provided insights into their challenges and successes through a reflective narrative. Several adolescent students resisted accommodations to avoid appearing conspicuous to peers. Teachers implemented three strategies to address this: providing the adaptations to all students in the class; convincing the student of the need for adaptation; and involving the class in understanding and accepting the student's impairment. A variety of teacher-created adaptations for various science and mathematics labs are reported. Another finding was many adaptations provided for the student with visual impairment benefitted the entire class. This study supports the claim that given knowledgeable, supportive teachers, and with appropriate accommodations such as tactile or auditory materials, students with visual impairments can be as successful and engaged as other students in science and mathematics.

  2. Students' Perceptions of the Learning Environment in Tertiary Science Classrooms in Myanmar

    ERIC Educational Resources Information Center

    Khine, Myint Swe; Fraser, Barry J.; Afari, Ernest; Oo, Zeya; Kyaw, Thein Thein

    2018-01-01

    We investigated students' perceptions of their science classroom environments with the use of the What Is Happening In this Class? (WIHIC) questionnaire at the university level in Myanmar. The translated questionnaire was administered to 251 students in first-year science classes at a university. Both exploratory factor analysis and confirmatory…

  3. Construction and Validation of an Instrument to Measure Taiwanese Elementary Students' Attitudes toward Their Science Class

    ERIC Educational Resources Information Center

    Wang, Tzu-Ling; Berlin, Donna

    2010-01-01

    The main purpose of this study is to develop a valid and reliable instrument for measuring the "attitudes toward science class" of fourth- and fifth-grade students in an Asian school culture. Specifically, the development focused on three science attitude constructs--science enjoyment, science confidence, and importance of science as…

  4. Validation study of the Colorado Learning Attitudes about Science Survey at a Hispanic-serving institution

    NASA Astrophysics Data System (ADS)

    Sawtelle, Vashti; Brewe, Eric; Kramer, Laird

    2009-12-01

    The Colorado Learning Attitudes about Science Survey (CLASS) has been widely acknowledged as a useful measure of student cognitive attitudes about science and learning. The initial University of Colorado validation study included only 20% non-Caucasian student populations. In this Brief Report we extend their validation to include a predominately under-represented minority population. We validated the CLASS instrument at Florida International University, a Hispanic-serving institution, by interviewing students in introductory physics classes using a semistructured protocol, examining students’ responses on the CLASS item statements, and comparing them to the items’ intended meaning. We find that in our predominately Hispanic population, 94% of the students’ interview responses indicate that the students interpret the CLASS items correctly, and thus the CLASS is a valid instrument. We also identify one potentially problematic item in the instrument which one third of the students interviewed consistently misinterpreted.

  5. Diagramming the Never Ending Story: Student-generated diagrammatic stories integrate and retain science concepts improving science literacy

    NASA Astrophysics Data System (ADS)

    Pillsbury, Ralph T.

    This research examined an instructional strategy called Diagramming the Never Ending Story: A method called diagramming was taught to sixth grade students via an outdoor science inquiry ecology unit. Students generated diagrams of the new ecology concepts they encountered, creating explanatory 'captions' for their newly drawn diagrams while connecting them in a memorable story. The diagramming process culminates in 20-30 meter-long murals called the Never Ending Story: Months of science instruction are constructed as pictorial scrolls, making sense of all new science concepts they encounter. This method was taught at a North Carolina "Public" Charter School, Children's Community School, to measure its efficacy in helping students comprehend scientific concepts and retain them thereby increasing science literacy. There were four demographically similar classes of 20 students each. Two 'treatment' classes, randomly chosen from the four classes, generated their own Never Ending Stories after being taught the diagramming method. A Solomon Four-Group Design was employed: Two Classes (one control, one treatment) were administered pre- and post; two classes received post tests only. The tests were comprised of multiple choice, fill-in and extended response (open-ended) sections. Multiple choice and fill-in test data were not statistically significant whereas extended response test data confirm that treatment classes made statistically significant gains.

  6. Assessing High School Students’ Pro-Environmental Behaviour

    NASA Astrophysics Data System (ADS)

    Hidayah, N.; Agustin, R. R.

    2017-09-01

    This paper aims to reveal students’ pro-environmental behavior in a High School. Self-reported behavior assessment was administered in this study involving students with age range 15 to 18 years. Pro-environmental behavior in this study comprises six domains. Those are recycling, waste avoidance, consumerism, energy conservation, mobility and transportation, and vicarious conservation behavior. Pro-environmental behavior (PEB) of science class students was compared to behavior of non-science class students. Effect of students’ grade level and extracurricular activity on the behavior was evaluated. Study revealed that science could improve students’ PEB. It is because environmental topics are covered in science class. Student’s involvement in extracurricular activity may enhance PEB as well. In conclusion, students’ PEB is influenced by class program (science or non-science) but it is not influenced by time length in learning science. This finding could be consider by science educator in choosing strategy to enhance student’s pro-environmental behaviour.

  7. Evolution and validation of a personal form of an instrument for assessing science laboratory classroom environments

    NASA Astrophysics Data System (ADS)

    Fraser, Barry J.; Giddings, Geoffrey J.; McRobbie, Campbell J.

    The research reported in this article makes two distinctive contributions to the field of classroom environment research. First, because existing instruments are unsuitable for science laboratory classes, the Science Laboratory Environment Inventory (SLEI) was developed and validated. Second, a new Personal form of the SLEI (involving a student's perceptions of his or her own role within the class) was developed and validated in conjunction with the conventional Class form (involving a student's perceptions of the class as a whole), and its usefulness was investigated. The instrument was cross-nationally fieldtested with 5,447 students in 269 senior high school and university classes in six countries, and cross-validated with 1,594 senior high school students in 92 classes in Australia. Each SLEI scale exhibited satisfactory internal consistency reliability, discriminant validity, and factorial validity, and differentiated between the perceptions of students in different classes. A variety of applications with the new instrument furnished evidence about its usefulness and revealed that science laboratory classes are dominated by closed-ended activities; mean scores obtained on the Class form were consistently somewhat more favorable than on the corresponding Personal form; females generally held more favorable perceptions than males, but these differences were somewhat larger for the Personal form than the Class form; associations existed between attitudinal outcomes and laboratory environment dimensions; and the Class and Personal forms of the SLEI each accounted for unique variance in student outcomes which was independent of that accounted for by the other form.

  8. Using Mobile Devices to Facilitate Student Questioning in a Large Undergraduate Science Class

    ERIC Educational Resources Information Center

    Crompton, Helen; Burgin, Stephen R.; De Paor, Declan G.; Gregory, Kristen

    2018-01-01

    Asking scientific questions is the first practice of science and engineering listed in the Next Generation Science Standards. However, getting students to ask unsolicited questions in a large class can be difficult. In this qualitative study, undergraduate students sent SMS text messages to the instructor who received them on his mobile phone and…

  9. Using Science Fiction in the Classroom

    NASA Astrophysics Data System (ADS)

    Lebofsky, L. A.; Lebofsky, N. R.

    2002-05-01

    At the University of Arizona, all non-science majors are required to take two Tier 1 and one Tier 2 General Education science classes. These are the only science classes that most of these students will take at the University. This groups includes all future K-8 certified teachers. Improving reading comprehension in science and improving writing skills are two of the main requirements of the General Education classes. For my 150 -- 300 students (1 -- 2 classes per semester) I have chosen to use science fiction stories to meet part of these requirements. This assignment provides for assessment of students' writing in several ways: As an alternative assessment: connecting the course material to what they have read. As an alternative assessment: student knowledge of science and technology in general. This assignment also provides for assessment of their comprehension of the authors' application of science fact as follows: Making students aware of how our science knowledge and technology have changed in the years since these books were written (30 -- 140 years ago). Students are required to turn in a short draft version of the assignment about halfway through the semester. They receive feedback on their format (i.e., following directions), appropriateness of chosen topics, spelling, grammar, etc. Books are chosen at a variety of reading levels to accommodate a range of reading levels including students with limited proficiency in English and those with learning disabilities. The books that we are presently using and examples of student writing will be displayed.

  10. Students interest in learning science through fieldwork activity encourage critical thinking and problem solving skills among UPSI pre-university students

    NASA Astrophysics Data System (ADS)

    Jamil, Siti Zaheera Muhamad; Khairuddin, Raja Farhana Raja

    2017-05-01

    Graduates with good critical thinking and problem solving (CTPS) skills are likely to boost their employability to live in 21st century. The demands of graduates to be equipped with CTPS skills have shifted our education system in focusing on these elements in all levels of education, from primary, the secondary, and up to the tertiary education, by fostering interesting teaching and learning activities such as fieldwork activity in science classes. Despite the importance of the CTPS skills, little is known about whether students' interests in teaching and learning activities, such as fieldwork activity, have any influence on the students CTPS skills. Therefore, in this investigation, firstly to examine students interests in learning science through fieldwork activity. Secondly, this study examined whether the students' interest in learning science through fieldwork activity have affect on how the students employ CTPS skills. About 100 Diploma of Science students in Universiti Pendidikan Sultan Idris (UPSI) were randomly chosen to participate in this study. All of the participants completed a survey on how they find the fieldwork activity implemented in their science classes and it relevents towards their CTPS skills development. From our findings, majority of the students (91%) find that fieldwork activity is interesting and helpful in increasing their interest in learning science (learning factor) and accommodate their learning process (utility). Results suggest that students' interest on the fieldwork activity in science classes does have some influence on the students development of CTPS skills. The findings could be used as an initial guideline by incorporating students' interest on other teaching and learning activities that being implemented in science classes in order to know the impacts of these learning activities in enhancing their CTPS skills.

  11. Inquiry-Driven Field-Based (IDFB) Ocean Science Classes: an Important Role in College Students' Development as Scientists, and Student Retention in the Geo-science Pipeline.

    NASA Astrophysics Data System (ADS)

    Crane, N. L.

    2004-12-01

    Experiential learning, engaging students in the process of science, can not only teach students important skills and knowledge, it can also help them become connected with the process on a personal level. This study investigates the role that Inquiry-Driven Field-Based (IDFB) experiences (primarily field classes) in ocean science have on undergraduate science students' development as ocean scientists. Both cognitive (knowledge-based) and affective (motivation and attitude) measures most important to students were used as indicators of development. Major themes will be presented to illustrate how IDFB science experiences can enhance the academic and personal development of students of science. Through their active engagement in the process of science, students gain important skills and knowledge as well as increased confidence, motivation, and ability to plan for their future (in particular their career and educational pathways). This growth is an important part of their development as scientists; the IDFB experience provides them a way to build a relationship with the world of science, and to better understand what science is, what scientists do, and their own future role as scientists. IDFB experiences have a particularly important role in affective measures of development: students develop an important personal connection to science. By doing science, students learn to be scientists and to understand science and science concepts in context. Many underrepresented students do not have the opportunity to take IDFB classes, and addressing this access issue could be an important step towards engaging more underrepresented students in the field. The nature of IDFB experiences and their impact on students makes them a potentially important mechanism for retaining students in the geo-science `pipeline'.

  12. Health Science students' evaluation of courses and Instructors: the effect of response rate and class size interaction.

    PubMed

    Kuwaiti, Ahmed Al

    2015-01-01

    This study aims at investigating the effect of response rate and class size interaction on students' evaluation of instructors and the courses offered at heath science colleges in Saudi Arabia. A retrospective study design was adapted to ascertain Course Evaluation Surveys (CES) conducted at the health science colleges of the University of Dammam [UOD] in the academic year 2013-2014. Accordingly, the CES data which was downloaded from an exclusive online application 'UDQUEST' which includes 337 different courses and 15,264 surveys were utilized in this study. Two-way analysis of variance was utilized to test whether there is any significant interaction between the class size and the response rate on the students' evaluation of courses and instructors. The study showed that high response rate is required for student evaluation of instructors at Health Science colleges when the class size is small whereas a medium response rate is required for students' evaluation of courses. On the other hand, when the class size is medium, a medium or high response rate is needed for students' evaluation of both instructors and courses. The results of this study recommend that the administrators of the health science colleges to be aware of the interpretation of students' evaluations of courses and instructors. The study also suggests that the interaction between response rate and class size is a very important factor that needs to be taken into consideration while interpreting the findings of the students' evaluation of instructors and courses.

  13. Language Use in a Multilingual Class: a Study of the Relation Between Bilingual Students' Languages and Their Meaning-Making in Science

    NASA Astrophysics Data System (ADS)

    Ünsal, Zeynep; Jakobson, Britt; Molander, Bengt-Olov; Wickman, Per-Olof

    2017-04-01

    In this study, we examine how bilingual students in elementary school use their languages and what this means for their meaning-making in science. The class was multilingual with students bilingual in different minority languages and the teacher monolingual in Swedish. The analysis is based on a pragmatic approach and the theory of translanguaging. The science content was electricity, and the teaching involved class instruction and hands-on activities in small groups. The findings of the study are divided into two categories, students' conversations with the teacher and student's conversations with each other. Since the class was multilingual, the class instruction was carried out in Swedish. Generally, when the conversations were characterised by an initiation, response and evaluation pattern, the students made meaning of the activities without any language limitations. However, when the students, during whole class instruction, were engaged in conversations where they had to argue, discuss and explain their ideas, their language repertoire in Swedish limited their possibilities to express themselves. During hands-on activities, students with the same minority language worked together and used both of their languages as resources. In some situations, the activities proceeded without any visible language limitations. In other situations, students' language repertoire limited their possibilities to make meaning of the activities despite being able to use both their languages. What the results mean for designing and conducting science lessons in a multilingual class is discussed.

  14. Secondary Science Teachers' and Students' Beliefs about Engaging in Whole-Class Discussions

    ERIC Educational Resources Information Center

    Silva Pimentel, Diane

    2012-01-01

    Reform movements in science education have repeatedly called for more dialogic and student-centered discussions during science lessons. The approach secondary science teachers take towards talk during whole-class discussions continues to be predominantly teacher-centered even when curriculum materials are designed to support a shift in discourse.…

  15. Characterizing the successful student in general chemistry and physical science classes in terms of Jung's personality types as identified by the Myers-Briggs Type Indicator

    NASA Astrophysics Data System (ADS)

    Riley, Wayne David

    1998-11-01

    A student's success in a science class can depend upon previous experiences, motivation, and the level of interest in the subject. Since psychological type is intrinsic to a person's whole being, it can be influential upon the student's motivation and interests. Thus, a study of student psychological types versus the level of success in a class, as measured by a percentage, has potential to uncover certain personality characteristics which may be helpful to or which may hinder a student's learning environment. This study was initiated, using the Myers-Briggs Type Indicator, to evaluate any correlation between a student's personality type and his/her performance in a science class. A total of 1041 students from three classes: Chemistry 121/122, Chemistry 112, Physical Science 100, volunteered for the study. An analysis of variance (ANOVA) was used to determine the levels of significance among sixteen personality types' averages. The results reveal that for the Chemistry 1121/122 course, the average score of the INTJ personality type was 5.1 to 12.6 points higher than every other personality type. The ANOVA identifies 3 personality types with averages significantly below the INTJ at the p < 0.05 significance level. The ANOVA analysis for the Chemistry 112 course identified significances between student scores at p = 0.08. The significance level for the differences among scores for the Physical Science 100 course was determined at a level of p = 0.02. Significance levels for p < 0.05 and <0.01 were identified between several groups in this course. The data suggest, that although personality type may not predict a particular student's success in a science class, students with certain personality traits may be favored in a chemistry class due the structure of the instruction and the presentation of the subject matter.

  16. Argumentation in Science Class: Its Planning, Practice, and Effect on Student Motivation

    NASA Astrophysics Data System (ADS)

    Taneja, Anju

    Studies have shown an association between argumentative discourse in science class, better understanding of science concepts, and improved academic performance. However, there is lack of research on how argumentation can increase student motivation. This mixed methods concurrent nested study uses Bandura's construct of motivation and concepts of argumentation and formative feedback to understand how teachers orchestrate argumentation in science class and how it affects motivation. Qualitative data was collected through interviews of 4 grade-9 science teachers and through observing teacher-directed classroom discourse. Classroom observations allowed the researcher to record the rhythm of discourse by characterizing teacher and student speech as teacher presentation (TP), teacher guided authoritative discussion (AD), teacher guided dialogic discussion (DD), and student initiation (SI). The Student Motivation Towards Science Learning survey was administered to 67 students before and after a class in which argumentation was used. Analysis of interviews showed teachers collaborated to plan argumentation. Analysis of discourse identified the characteristics of argumentation and provided evidence of students' engagement in argumentation in a range of contexts. Student motivation scores were tested using Wilcoxon signed rank tests and Mann-Whitney U-tests, which showed no significant change. However, one construct of motivation---active learning strategy---significantly increased. Quantitative findings also indicate that teachers' use of multiple methods in teaching science can affect various constructs of students' motivation. This study promotes social change by providing teachers with insight about how to engage all students in argumentation.

  17. Project Clarion: Three Years of Science Instruction in Title I Schools among K-Third Grade Students

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Hee; VanTassel-Baska, Joyce; Bracken, Bruce A.; Feng, Annie; Stambaugh, Tamra; Bland, Lori

    2012-10-01

    The purpose of the study was to measure the effects of higher level, inquiry-based science curricula on students at primary level in Title I schools. Approximately 3,300 K-3 students from six schools were assigned to experimental or control classes ( N = 115 total) on a random basis according to class. Experimental students were exposed to concept-based science curriculum that emphasized `deep learning' though concept mastery and investigation, whereas control classes learned science from traditional school-based curricula. Two ability measures, the Bracken Basic Concept Scale-Revised (BBCS-R, Bracken 1998) and the Naglieri Nonverbal Intelligence Test (NNAT, Naglieri 1991), were used for baseline information. Additionally, a standardized measure of student achievement in science (the MAT-8 science subtest), a standardized measure of critical thinking, and a measure for observing teachers' classroom behaviors were used to assess learning outcomes. Results indicated that all ability groups of students benefited from the science inquiry-based approach to learning that emphasized science concepts, and that there was a positive achievement effect for low socio-economic young children who were exposed to such a curriculum.

  18. Undergraduate basic science preparation for dental school.

    PubMed

    Humphrey, Sue P; Mathews, Robert E; Kaplan, Alan L; Beeman, Cynthia S

    2002-11-01

    In the Institute of Medicines report Dental Education at the Crossroads, it was suggested that dental schools across the country move toward integrated basic science education for dental and medical students in their curricula. To do so, dental school admission requirements and recommendations must be closely reviewed to ensure that students are adequately prepared for this coursework. The purpose of our study was twofold: 1) to identify student dentists' perceptions of their predental preparation as it relates to course content, and 2) to track student dentists' undergraduate basic science course preparation and relate that to DAT performance, basic science course performance in dental school, and Part I and Part II National Board performance. In the first part of the research, a total of ninety student dentists (forty-five from each class) from the entering classes of 1996 and 1997 were asked to respond to a survey. The survey instrument was distributed to each class of students after each completed the largest basic science class given in their second-year curriculum. The survey investigated the area of undergraduate major, a checklist of courses completed in their undergraduate preparation, the relevance of the undergraduate classes to the block basic science courses, and the strength of requiring or recommending the listed undergraduate courses as a part of admission to dental school. Results of the survey, using frequency analysis, indicate that students felt that the following classes should be required, not recommended, for admission to dental school: Microbiology 70 percent, Biochemistry 54.4 percent, Immunology 57.78 percent, Anatomy 50 percent, Physiology 58.89 percent, and Cell Biology 50 percent. The second part of the research involved anonymously tracking undergraduate basic science preparation of the same students with DAT scores, the grade received in a representative large basic science course, and Part I and Part II National Board performance. Using T-test analysis correlations, results indicate that having completed multiple undergraduate basic science courses (as reported by AADSAS BCP hours) did not significantly (p < .05) enhance student performance in any of these parameters. Based on these results, we conclude that student dentists with undergraduate preparation in science and nonscience majors can successfully negotiate the dental school curriculum, even though the students themselves would increase admission requirements to include more basic science courses than commonly required. Basically, the students' recommendations for required undergraduate basic science courses would replicate the standard basic science coursework found in most dental schools: anatomy, histology, biochemistry, microbiology, physiology, and immunology plus the universal foundation course of biology.

  19. Science Illiteracy: Breaking the Cycle

    NASA Astrophysics Data System (ADS)

    Lebofsky, L. A.; Lebofsky, N. R.

    2003-12-01

    At the University of Arizona, as at many state universities and colleges, the introductory science classes for non-science majors may be the only science classes that future K--8 teachers will take. The design of the UA's General Education program requires all future non-science certified teachers to take the General Education science classes. These classes are therefore an ideal venue for the training of the state's future teachers. Many students, often including future teachers, are ill-prepared for college, i.e., they lack basic science content knowledge, basic mathematics skills, and reading and writing skills. They also lack basic critical thinking skills and study skills. It is within this context that our future teachers are trained. How do we break the cycle of science illiteracy? There is no simple solution, and certainly not a one-size-fits-all panacea that complements every professor's style of instruction. However, there are several programs at the University of Arizona, and also principles that I apply in my own classes, that may be adaptable in other classrooms. Assessment of K--12 students' learning supports the use of inquiry-based science instruction. This approach can be incorporated in college classes. Modeling proven and productive teaching methods for the future teachers provides far more than ``just the facts,'' and all students gain from the inquiry approach. Providing authentic research opportunities employs an inquiry-based approach. Reading (outside the textbook) and writing provide feedback to students with poor writing and critical thinking skills. Using peer tutors and an instant messaging hot line gives experience to the tutors and offers "comfortable" assistance to students.

  20. Using Science Fiction in the Classroom

    NASA Astrophysics Data System (ADS)

    Lebofsky, L. A.; Lebofsky, N. R.

    2002-09-01

    At the University of Arizona, all non-science majors are required to take two Tier 1 and one Tier 2 General Education science classes. These are the only science classes that most of these students will take at the University. This includes all future K-8 certified teachers --- our future teachers of science. Improving reading comprehension in science and improving writing skills are two of the main requirements of the General Education classes. For my 150 -- 300 students (1 -- 2 classes per semester) I have chosen to use science fiction stories to meet part of these requirements. This assignment provides for assessment of students' writing in several ways: As an alternative assessment: connecting the course material to what they have read. As an alternative assessment: student knowledge of science and technology in general. This assignment also provides for assessment of their comprehension of the authors' application of science fact: Making students aware of how our science knowledge and technology have changed in the years since these books were written (30 -- 140 years ago). Students are required to turn in a short draft version of the assignment about halfway through the semester. They receive feedback on their format (i.e., following directions), appropriateness of chosen topics, spelling, grammar, etc. Books are chosen at a variety of reading levels to accommodate a range of proficiencies, including choices appropriate for students with limited proficiency in English and those with learning disabilities. The books that we are presently using and examples of student writing will be displayed. This work was supported in part with a grant from the Department of Education (AzTEC).

  1. Atoms, Strings, Apples, and Gravity: What the Average American Science Teacher Does Not Teach

    ERIC Educational Resources Information Center

    Berube, Clair

    2008-01-01

    American science teachers in elementary and middle school face a dilemma as they prepare students for high school physics and advanced placement classes. The dilemma lies in ensuring that these students are equipped with the high-level science content they need to thrive in such classes. Aside from life sciences and chemistry sciences, how are our…

  2. The importance of teacher interpersonal behaviour for student attitudes in Brunei primary science classes

    NASA Astrophysics Data System (ADS)

    den Brok, Perry; Fisher, Darrell; Scott, Rowena

    2005-07-01

    This study investigated relationships between students' perceptions of their teachers' interpersonal behaviour and their subject-related attitude in primary science classes in Brunei. Teacher student interpersonal behaviour was mapped with the Questionnaire on Teacher Interaction (QTI) and reported in terms of two independent dimensions called Influence (teacher dominance vs submission) and Proximity (teacher cooperation vs opposition). While prior research using the QTI mainly focused on secondary education, the present study was one of the first in Brunei and in primary education and one of few studies to use multilevel analysis. Data from 1305 students from 64 classes were used in this study. Results indicated strong and positive effects of Influence and Proximity on students' enjoyment of their science class and supported findings of earlier work with the QTI.

  3. Music Education and the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Beauregard, J. L.

    2011-12-01

    Capturing the interest of non-science majors in science classes can be very difficult, no matter what type of science course it is. At Berklee College of Music, this challenge is especially daunting, as all students are majoring in some type of music program. To engage the Berklee students, I am trying to link the material in Earth science courses to music. The connection between Earth science and music is made in several different ways within the curriculum of each class, with the main connection via a final project. For their projects, students can use any creative outlet (or a standard presentation) to illustrate a point related to the course. Many students have chosen to compose original music and perform it for the class. Some examples of their work will be presented. These original compositions allow students to relate course material to their own lives. Additionally, since many of these students will enter professional careers in the performance and recording industries, the potential exists for them to expose large audiences to the issues of Earth sciences through music.

  4. Does the nature of science influence college students' learning of biological evolution?

    NASA Astrophysics Data System (ADS)

    Butler, Wilbert, Jr.

    This quasi-experimental, mixed-methods study assessed the influence of the nature of science (NOS) instruction on college students' learning of biological evolution. In this research, conducted in two introductory biology courses, in each course the same instruction was employed, with one important exception: in the experimental section students were involved in an explicit, reflective treatment of the nature of science (Explicit, reflective NOS), in the traditional treatment section, NOS was implicitly addressed (traditional treatment). In both sections, NOS aspects of science addressed included is tentative, empirically based, subjective, inferential, and based on relationship between scientific theories and laws. Students understanding of evolution, acceptance of evolution, and understanding of the nature of science were assessed before, during and after instruction. Data collection entailed qualitative and quantitative methods including Concept Inventory for Natural Selection (CINS), Measure of Acceptance of the Theory of Evolution (MATE) survey, Views of nature of Science (VNOS-B survey), as well as interviews, classroom observations, and journal writing to address understand students' views of science and understanding and acceptance of evolution. The quantitative data were analyzed via inferential statistics and the qualitative data were analyzed using grounded theory. The data analysis allowed for the construction and support for four assertions: Assertion 1: Students engaged in explicit and reflective NOS specific instruction significantly improved their understanding of the nature of science concepts. Alternatively, students engaged in instruction using an implicit approach to the nature of science did not improve their understanding of the nature of science to the same degree. The VNOS-B results indicated that students in the explicit, reflective NOS class showed the better understanding of the NOS after the course than students in the implicit NOS class. The increased understanding of NOS demonstrated by students in the explicit, reflective NOS class compared to students in the implicit NOS class can be attributed to the students' engagement in explicit and reflective NOS instruction that was absent in the implicit NOS class. Post VNOS results from students in the explicit, reflective NOS class showed marked improvement in the targeted aspects of NOS (empirical nature of scientific knowledge, inferential nature of scientific knowledge, subjective nature of scientific knowledge, the distinction between scientific law and theory, and the tentative nature of scientific knowledge) compared to the result of the pretest while the scores of students in the implicit NOS class demonstrated little change. Assertion 2: Students in the explicit, reflective NOS class section made greater gains in their understanding of evolution than students in the traditional class. The explicit, reflective NOS class demonstrated a statistically significant improvement in their understanding of biological evolution after the course, while the changes observed in the implicit NOS group were not found to be statistically significant---this despite that the manner in which evolution was taught was held constant across the two sections. Thus, the explicit, reflective NOS approach to the teaching of biological evolution seems to be more effective than many discussed in the literature in supporting student learning about evolution. Assertion 3: The conceptual gains by students in the explicit, reflective NOS course section were allowed by the affective "room" that a sophisticated understanding of the nature of the nature of science provides in a classroom. The data collected from this study collectively indicate that a sophisticated understanding of NOS allows students to recognize the boundaries of science. We argue that an explicit and reflective engagement of the NOS aspects helps the students understand the defining aspects of science better. Assertion 4: A change in students' understanding of evolution does not necessitate a change in students' acceptance of evolution. The results showed that students engaged in explicit and reflective NOS specific instruction significantly improved their understanding of NOS concepts and the understanding of evolution. However, there was not a significant change in acceptance of evolution related to the change in understanding. These results demonstrate that the nature of science instruction plays an important role in the teaching and learning of biological evolution. Nevertheless, this NOS instruction must be explicit and reflective in nature. Students that engage explicitly and reflectively on specific tenets of NOS not only developed a better understanding of the NOS aspects but also a better understanding of biological evolution. Therefore, science teachers in elementary, middle, secondary and post-secondary education should consider implementing an explicit, reflective approach to the nature of science into their science curriculum not only for teaching evolution but for other controversial topics as well. (Abstract shortened by UMI.)

  5. Argumentation in Science Class: Its Planning, Practice, and Effect on Student Motivation

    ERIC Educational Resources Information Center

    Taneja, Anju

    2016-01-01

    Studies have shown an association between argumentative discourse in science class, better understanding of science concepts, and improved academic performance. However, there is lack of research on how argumentation can increase student motivation. This mixed methods concurrent nested study uses Bandura's construct of motivation and concepts of…

  6. The effect of science-technology-society issue instruction on the attitudes of female middle school students toward science

    NASA Astrophysics Data System (ADS)

    Mullinnix, Debra Lynn

    An assessment of the science education programs of the last thirty years reveals traditional science courses are producing student who have negative attitudes toward science, do not compete successfully in international science and mathematics competitions, are not scientifically literate, and are not interested in pursuing higher-level science courses. When the number of intellectually-capable females that fall into this group is considered, the picture is very disturbing. Berryman (1983) and Kahle (1985) have suggested the importance of attitude both, in terms of achievement in science and intention to pursue high-level science courses. Studies of attitudes toward science reveal that the decline in attitudes during grades four through eight was much more dramatic for females than for males. There exists a need, therefore, to explore alternative methods of teaching science, particularly in the middle school, that would increase scientific literacy, improve attitudes toward science, and encourage participation in higher-level science courses of female students. Yager (1996) has suggested that science-technology-society (STS) issue instruction does make significant changes in students' attitudes toward science, stimulates growth in science process skills, and increases concept mastery. The purpose of this study was to examine the effect STS issue instruction had on the attitudes of female middle school students toward science in comparison to female middle school students who experience traditional science instruction. Another purpose was to examine the effect science-technology-society issue instruction had on the attitudes of female middle school students in comparison to male middle school students. The pretests and the posttests were analyzed to examine differences in ten domains: enjoyment of science class; usefulness of information learned in science class; usefulness of science skills; feelings about science class in general; attitudes about what took place in the science classroom; overall response to science class; perception of encouragement to enroll in science electives; future plans to enroll in science electives; reasons for not enrolling in science electives; and perception of restraints in achieving future goals.

  7. Hidden Student Voice: A Curriculum of a Middle School Science Class Heard through Currere

    ERIC Educational Resources Information Center

    Crooks, Kathleen Schwartz

    2012-01-01

    Students have their own lenses through which they view school science and the students' views are often left out of educational conversations which directly affect the students themselves. Pinar's (2004) definition of curriculum as a "complicated conversation" implies that the class' voice is important, as important as the teacher's voice, to the…

  8. Identifying Students' Expectancy-Value Beliefs: A Latent Class Analysis Approach to Analyzing Middle School Students' Science Self-Perceptions

    ERIC Educational Resources Information Center

    Phelan, Julia; Ing, Marsha; Nylund-Gibson, Karen; Brown, Richard S.

    2017-01-01

    This study extends current research by organizing information about students' expectancy-value achievement motivation, in a way that helps parents and teachers identify specific entry points to encourage and support students' science aspirations. This study uses latent class analysis to describe underlying differences in ability beliefs, task…

  9. Concept Mapping in Science Class: A Case Study of Fifth Grade Students

    ERIC Educational Resources Information Center

    Asan, Askin

    2007-01-01

    The purpose of this research project was to determine the effects of incorporating concept mapping on the achievement of fifth grade students in science class. The study was conducted with twenty-three students at Ata Elementary School, Trabzon, Turkey. The students were tested with teacher-constructed pre- and post tests containing 20…

  10. Impact of Giving Students a Choice of Homework Assignments in an Introductory Computer Science Class

    ERIC Educational Resources Information Center

    Fulton, Steven; Schweitzer, Dino

    2011-01-01

    Student assignments have long been an integral part of many university level computer science courses to reinforce material covered in class with practical exercises. For years, researchers have studied ways to improve such student assignments by making them more interesting, applicable, and valuable to the student with a goal of improving…

  11. Grade six students' understanding of the nature of science

    NASA Astrophysics Data System (ADS)

    Cochrane, Donald Brian

    The goal of scientific literacy requires that students develop an understanding of the nature of science to assist them in the reasoned acquisition of science concepts and in their future role as citizens in a participatory democracy. The purpose of this study was to investigate and describe the range of positions that grade six students hold with respect to the nature of science and to investigate whether gender or prior science education was related to students' views of the nature of science. Two grade six classes participated in this study. One class was from a school involved in a long-term elementary science curriculum project. The science curriculum at this school involved constructivist epistemology and pedagogy and a realist ontology. The curriculum stressed hands-on, open-ended activities and the development of science process skills. Students were frequently involved in creating and testing explanations for physical phenomena. The second class was from a matched school that had a traditional science program. Results of the study indicated that students hold a wider range of views of the nature of science than previously documented. Student positions ranged from having almost no understanding of the nature of science to those expressing positions regarding the nature of science that were more developed than previous studies had documented. Despite the range of views documented, all subjects held realist views of scientific knowledge. Contrary to the literature, some students were able to evaluate a scientific theory in light of empirical evidence that they had generated. Results also indicated that students from the project school displayed more advanced views of the nature of science than their matched peers. However, not all students benefited equally from their experiences. No gender differences were found with respect to students' understanding of the nature of science.

  12. How Information Literate Are Junior and Senior Class Biology Students?

    NASA Astrophysics Data System (ADS)

    Schiffl, Iris

    2018-03-01

    Information literacy—i.e. obtaining, evaluating and using information—is a key element of scientific literacy. However, students are frequently equipped with poor information literacy skills—even at university level—as information literacy is often not explicitly taught in schools. Little is known about students' information skills in science at junior and senior class level, and about teachers' competences in dealing with information literacy in science class. This study examines the information literacy of Austrian 8th, 10th and 12th grade students. Information literacy is important for science education in Austria, because it is listed as a basic competence in Austria's science standards. Two different aspects of information literacy are examined: obtaining information and extracting information from texts. An additional research focus of this study is teachers' competences in diagnosing information skills. The results reveal that students mostly rely on online sources for obtaining information. However, they also use books and consult with people they trust. The younger the students, the more they rely on personal sources. Students' abilities to evaluate sources are poor, especially among younger students. Although teachers claim to use information research in class, their ability to assess their students' information competences is limited.

  13. Engineering design activities and conceptual change in middle school science

    NASA Astrophysics Data System (ADS)

    Schnittka, Christine G.

    The purpose of this research was to investigate the impact of engineering design classroom activities on conceptual change in science, and on attitudes toward and knowledge about engineering. Students were given a situated learning context and a rationale for learning science in an active, inquiry-based method, and worked in small collaborative groups. One eighth-grade physical science teacher and her students participated in a unit on heat transfer and thermal energy. One class served as the control while two others received variations of an engineering design treatment. Data were gathered from teacher and student entrance and exit interviews, audio recordings of student dialog during group work, video recordings and observations of all classes, pre- and posttests on science content and engineering attitudes, and artifacts and all assignments completed by students. Qualitative and quantitative data were collected concurrently, but analysis took place in two phases. Qualitative data were analyzed in an ongoing manner so that the researcher could explore emerging theories and trends as the study progressed. These results were compared to and combined with the results of the quantitative data analysis. Analysis of the data was carried out in the interpretive framework of analytic induction. Findings indicated that students overwhelmingly possessed alternative conceptions about heat transfer, thermal energy, and engineering prior to the interventions. While all three classes made statistically significant gains in their knowledge about heat and energy, students in the engineering design class with the targeted demonstrations made the most significant gains over the other two other classes. Engineering attitudes changed significantly in the two classes that received the engineering design intervention. Implications from this study can inform teachers' use of engineering design activities in science classrooms. These implications are: (1) Alternative conceptions will persist when not specifically addressed. (2) Engineering design activities are not enough to promote conceptual change. (3) A middle school teacher can successfully implement an engineering design-based curriculum in a science class. (4) Results may also be of interest to science curriculum developers and engineering educators involved in developing engineering outreach curricula for middle school students.

  14. Factors that affect the physical science career interest of female students: Testing five common hypotheses

    NASA Astrophysics Data System (ADS)

    Hazari, Zahra; Potvin, Geoff; Lock, Robynne M.; Lung, Florin; Sonnert, Gerhard; Sadler, Philip M.

    2013-12-01

    There are many hypotheses regarding factors that may encourage female students to pursue careers in the physical sciences. Using multivariate matching methods on national data drawn from the Persistence Research in Science and Engineering (PRiSE) project (n=7505), we test the following five commonly held beliefs regarding what factors might impact females’ physical science career interest: (i) having a single-sex physics class, (ii) having a female physics teacher, (iii) having female scientist guest speakers in physics class, (iv) discussing the work of female scientists in physics class, and (v) discussing the underrepresentation of women in physics class. The effect of these experiences on physical science career interest is compared for female students who are matched on several factors, including prior science interests, prior mathematics interests, grades in science, grades in mathematics, and years of enrollment in high school physics. No significant effects are found for single-sex classes, female teachers, female scientist guest speakers, and discussing the work of female scientists. However, discussions about women’s underrepresentation have a significant positive effect.

  15. Teaching Evolution to Non-English Proficient Students by Using Lego Robotics

    ERIC Educational Resources Information Center

    Whittier, L. Elena; Robinson, Michael

    2007-01-01

    This article describes a teaching unit that used Lego Robotics to address state science standards for teaching basic principles of evolution in two middle school life science classes. All but two of 29 students in these classes were native Spanish speakers from Mexico. Both classes were taught using Sheltered Instruction Observation Protocol…

  16. Using a motivation-based instructional model for teacher development and students' learning of science

    NASA Astrophysics Data System (ADS)

    Bae, Min-Jung

    2009-10-01

    Science teachers often have difficulty helping students participate in scientific practices and understand scientific ideas. In addition, they do not frequently help students value their science learning. As one way to address these problems, I designed and examined the effects of professional development using a motivation-based instructional model with teachers and students. This motivation-based inquiry and application instructional model (MIAIM) consists of four steps of activities and identifies instructional and motivational functions that teachers can use to engage their students in scientific inquiry and application and to help them value their science learning. In order to conduct this study, I worked with three teachers (4 th, 8th, and 8th) in both suburban and urban environments. This study consisted of three parts-an initial observation of teachers' classrooms, professional development with MIAIM, and an observation of teachers' classrooms after the professional development. Data analysis of class observations, interviews, and class artifacts shows that there was a moderate change in teachers' teaching approach after the intervention. The three teachers designed and enacted some inquiry and application lessons that fit the intent of MIAIM. They also used some instructional and motivational practices more frequently after the intervention than they did before the intervention. In particular, they more frequently established central questions for investigations, helped students find patterns in data by themselves, provided opportunities for application, related science to students' everyday lives, and created students' interests in scientific investigation by using interesting stories. However, there was no substantial change in teachers' use of some practices such as providing explanations, supporting students' autonomy, and using knowledge about students in designing and enacting science lessons. In addition, data analysis of students' surveys, class observations, and tests indicates that some students from each class became more motivated to learn science when their teachers taught MIAIM based science lessons. They became more interested in science class and more appreciative of how science is related and important to their lives. In addition, students from all classes significantly increased their knowledge about scientific topics. Several factors might have influenced the teachers' use of MIAIM: their initial teaching approaches and practices; experiences with using MIAIM in their class; the content area; and school and classroom contexts. Those aspects of MIAIM that teachers did not use may have been more difficult for the teachers to understand or may have been inconsistent with other some of their other beliefs. In addition, the changes in students' motivation and understanding of scientific ideas seemed to be closely associated with what kinds of practices of MIAIM the teachers used. This study indicates that teachers can help students participate in scientific practices, learn important ideas, and value learning science with the help of MIAIM as a conceptual tool and contextualized support from professional development activities and curriculum materials such as worksheets and lesson plans.

  17. Effects of different forms of physiology instruction on the development of students' conceptions of and approaches to science learning.

    PubMed

    Lin, Yi-Hui; Liang, Jyh-Chong; Tsai, Chin-Chung

    2012-03-01

    The purpose of this study was to investigate students' conceptions of and approaches to learning science in two different forms: internet-assisted instruction and traditional (face-to-face only) instruction. The participants who took part in the study were 79 college students enrolled in a physiology class in north Taiwan. In all, 46 of the participants were from one class and 33 were from another class. Using a quasi-experimental research approach, the class of 46 students was assigned to be the "internet-assisted instruction group," whereas the class of 33 students was assigned to be the "traditional instruction group." The treatment consisted of a series of online inquiry activities. To explore the effects of different forms of instruction on students' conceptions of and approaches to learning science, two questionnaires were administered before and after the instruction: the Conceptions of Learning Science Questionnaire and the Approaches to Learning Science Questionnaire. Analysis of covariance results revealed that the students in the internet-assisted instruction group showed less agreement than the traditional instruction group in the less advanced conceptions of learning science (such as learning as memorizing and testing). In addition, the internet-assisted instruction group displayed significantly more agreement than the traditional instruction group in more sophisticated conceptions (such as learning as seeing in a new way). Moreover, the internet-assisted instruction group expressed more orientation toward the approaches of deep motive and deep strategy than the traditional instruction group. However, the students in the internet-assisted instruction group also showed more surface motive than the traditional instruction group did.

  18. "Socratic Circles are a Luxury": Exploring the Conceptualization of a Dialogic Tool in Three Science Classrooms

    NASA Astrophysics Data System (ADS)

    Copelin, Michelle Renee

    Research has shown that dialogic instruction promotes learning in students. Secondary science has traditionally been taught from an authoritative stance, reinforced in recent years by testing policies requiring coverage. Socratic Circles are a framework for student-led dialogic discourse, which have been successfully used in English language arts and social studies classrooms. The purpose of this research was to explore the implementation process of Socratic Circles in secondary science classes where they have been perceived to be more difficult. Focusing on two physical science classes and one chemistry class, this study described the nature and characteristics of Socratic Circles, teachers' dispositions toward dialogic instruction, the nature and characteristics of student discussion, and student motivation. Socratic Circles were found to be a dialogic support that influenced classroom climate, social skills, content connections, and student participation. Teachers experienced conflict between using traditional test driven scripted teaching, and exploring innovation through dialogic instruction. Students experienced opportunities for peer interaction, participation, and deeper discussions in a framework designed to improve dialogic skills. Students in two of the classrooms showed evidence of motivation for engaging in peer-led discussion, and students in one class did not. The class that did not show evidence of motivation had not been given the same scaffolding as the other two classes. Two physical science teachers and one chemistry teacher found that Socratic Circles required more scaffolding than was indicated by their peers in other disciplines such as English and social studies. The teachers felt that student's general lack of background knowledge for any given topic in physical science or chemistry necessitated the building of a knowledge platform before work on a discussion could begin. All three of the teachers indicated that Socratic Circles were a rewarding activity, beneficial to students, which they would use in the future.

  19. Elementary Students' Retention of Environmental Science Knowledge: Connected Science Instruction versus Direct Instruction

    ERIC Educational Resources Information Center

    Upadhyay, Bhaskar; DeFranco, Cristina

    2008-01-01

    This study compares 3rd-grade elementary students' gain and retention of science vocabulary over time in two different classes--"connected science instruction" versus "direct instruction." Data analysis yielded that students who received connected science instruction showed less gain in science knowledge in the short term compared to students who…

  20. Comparative Analyses of Discourse in Specialized STEM School Classes

    ERIC Educational Resources Information Center

    Tofel-Grehl, Colby; Callahan, Carolyn M.; Nadelson, Louis S.

    2017-01-01

    The authors detail the discourse patterns observed within mathematics and science classes at specialized STEM (science, technology, engineering, and mathematics) high schools. Analyses reveal that teachers in mathematics classes tended to engage their students in authoritative discourse while teachers in science classes tended to engage students…

  1. A Comparison of the Performance of Online versus Traditional On-Campus Earth Science Students on Identical Exams

    ERIC Educational Resources Information Center

    Werhner, Matthew J.

    2010-01-01

    In this paper I compare the performance of online versus traditional on-campus students on identical exams in an earth science class. The number of college level distance learning classes offered online continues to increase as they offer greater scheduling flexibility to students, they appeal to students who like to work independently, and allow…

  2. Learning by Doing: Science in a Large General Education Class

    NASA Astrophysics Data System (ADS)

    Lebofsky, Larry A.; Moore, R. W.; Lebofsky, N. R.

    2007-12-01

    Teaching science in a large (150+ students) class can be a challenge. This is especially true in a general education science class that is populated by non-science majors, athletes, and students with math phobias, as well as students with a variety of learning disabilities. To illustrate Newton's Laws, we used The Egg Fling: knocking a pie pan from under a raw egg which then falls straight down into a container of water. Newton's Laws are projected on an overhead in constant view of the students, and an ELMO is used to give a live, big-screen view to engage even those in the back of the large lecture room. Students make predictions, watch the demo, then refine or correct predictions as we discuss which laws are illustrated. The Laws are later related to students’ science fiction books and the GEMS Moons of Jupiter activity. Reading classic science fiction books allows students to see how our understanding of the universe and our technology have changed over the last 150 years, also adding a writing component to the class. Student preceptors are critical to the success of this approach, leading small group discussions that could not easily be done with the whole class. Preceptors receive training before they lead activities or discussions with groups of 10 to 15 peers. Students do live sky observations and informal measurements to track the motion and phases of the Moon against the background stars, but use technology (Heavens Above and Starry Night) to track and understand the rising and setting of the Sun and its relation to the reason for the seasons. Using a combination of live demonstrations with technology, short assessments, and student preceptors makes teaching a large group possible, effective, and fun.

  3. Using Blogs to Improve Elementary School Students' Environmental Literacy in Science Class

    ERIC Educational Resources Information Center

    Saltan, Fatih; Divarci, Omer Faruk

    2017-01-01

    The purpose of this study is to examine the effects of blog activities on elementary students' environmental literacy in science class. The relationships between students' environmental literacy levels, their parents' interest in environmental activities and the frequency of outdoor activities they do have also been also examined. Pre-test…

  4. Do Teaching Assistants Matter? Investigating Relationships between Teaching Assistants and Student Outcomes in Undergraduate Science Laboratory Classes

    ERIC Educational Resources Information Center

    Wheeler, Lindsay B.; Maeng, Jennifer L.; Chiu, Jennie L.; Bell, Randy L.

    2017-01-01

    This study explores the relationship between teaching assistants (TAs) and student learning in undergraduate science laboratory classes. TAs typically instruct laboratory courses, yet little, if any, research examines professional development (PD) for TAs or relationships between instructors and students in laboratory settings. The use of…

  5. Science Literacy and Prior Knowledge of Astronomy MOOC Students

    NASA Astrophysics Data System (ADS)

    Impey, Chris David; Buxner, Sanlyn; Wenger, Matthew; Formanek, Martin

    2018-01-01

    Many of science classes offered on Coursera fall into fall into the category of general education or general interest classes for lifelong learners, including our own, Astronomy: Exploring Time and Space. Very little is known about the backgrounds and prior knowledge of these students. In this talk we present the results of a survey of our Astronomy MOOC students. We also compare these results to our previous work on undergraduate students in introductory astronomy courses. Survey questions examined student demographics and motivations as well as their science and information literacy (including basic science knowledge, interest, attitudes and beliefs, and where they get their information about science). We found that our MOOC students are different than the undergraduate students in more ways than demographics. Many MOOC students demonstrated high levels of science and information literacy. With a more comprehensive understanding of our students’ motivations and prior knowledge about science and how they get their information about science, we will be able to develop more tailored learning experiences for these lifelong learners.

  6. Tangled up in views: Beliefs in the nature of science and responses to socioscientific dilemmas

    NASA Astrophysics Data System (ADS)

    Zeidler, Dana L.; Walker, Kimberly A.; Ackett, Wayne A.; Simmons, Michael L.

    2002-05-01

    The purpose of this study was to investigate the relationships between students' conceptions of the nature of science and their reactions to evidence that challenged their beliefs about socioscientific issues. This study involved 41 pairs of students representing critical cases of contrasting ethical viewpoints. These 82 students were identified from a larger sample of 248 students from 9th and 10th grade general science classes, 11th and 12th grade honors biology, honors science, and physics classes, and upper-level college preservice science education classes. Students responded to questions aimed at revealing their epistemological views of the nature of science and their belief convictions on a selected socioscientific issue. The smaller subset of students was selected based on varying degrees of belief convictions about the socioscientific issues and the selected students were then paired to discuss their reasoning related to the issue while being exposed to anomalous data and information from each other and in response to epistemological probes of an interviewer. Taxonomic categories of students' conceptions of the nature of science were derived from the researchers' analysis of student responses to interviews and questionnaires. In some instances, students' conceptions of the nature of science were reflected in their reasoning on a moral and ethical issue. This study stimulated students to reflect on their own beliefs and defend their opinions. The findings suggest that the reactions of students to anomalous socioscientific data are varied and complex, with notable differences in the reasoning processes of high school students compared to college students. A deeper understanding of how students reason about the moral and ethical context of controversial socioscientific issues will allow science educators to incorporate teaching strategies aimed at developing students' reasoning skills in these crucial areas.

  7. Examining the Relationship of Textbooks and Labs on Student Achievement in Eighth-Grade Science

    NASA Astrophysics Data System (ADS)

    Sugalan, Anacita Noromor

    One of the most important objectives of teachers, parents, school administrators, and students is to improve student scores on standardized tests such as the State of Texas Assessment for Academic Readiness (STAAR) in eighth-grade science. This quasi experimental study examined the science achievement scores between schools that use textbooks and labs when delivering instruction. This study utilized a quantitative approach using archival data and survey design. Analysis of covariance (ANCOVA) and multiple regression were used to analyze the data while controlling STAAR eighth-grade reading scores to reveal significant differences between classes. The sample and population for this study were predominantly eighth-grade Hispanic students in South Texas. Analysis of covariance showed that classes that used high labs got higher science scores and that the reading scores were significantly related to science scores. Multiple regression findings indicated that textbooks and labs were significant predictors of student achievement on the STAAR eighth- grade science class result in South Texas for Spring 2015. The findings of this study may serve as a catalyst for improving student achievement in science through changes in textbook adoption and doing labs in science. The result suggests the need to research further to investigate other contributing factors of student achievement.

  8. Mobile Learning in a Large Blended Computer Science Classroom: System Function, Pedagogies, and Their Impact on Learning

    ERIC Educational Resources Information Center

    Shen, Ruimin; Wang, Minjuan; Gao, Wanping; Novak, D.; Tang, Lin

    2009-01-01

    The computer science classes in China's institutions of higher education often have large numbers of students. In addition, many institutions offer "blended" classes that include both on-campus and online students. These large blended classrooms have long suffered from a lack of interactivity. Many online classes simply provide recorded…

  9. A Trial of PBL Education with Emphasis on Improving Practical Competence of Engineering Students-A Trial Connected with the Support for Science Education in Elementary School

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Hirotaka; Nikkuni, Hiroyuki; Kitakoshi, Daisuke; Yasuda, Toshitaka; Kikuchi, Akira; Mitani, Tomoyo

    Recently Colleges of technology as well as universities have some experience-oriented classes in sciences for elementary school students. These have proved to be successful as good motivation for students in the primary education to be engineers. This research has tried the PBL education, which combined the Support of Science Education in Elementary School and the improvement of students‧ practical competence in their careers. The support of science education in elementary school was carried out by using LEGO blocks, widely utilized in the educational researches of robots, and was conducted in the practical class with the autonomous robots. Finally, the method for the class was evaluated by the elementary school students on the basis of the questionnaire.

  10. Linking Classroom Environment with At-Risk Engagement in Science: A Mixed Method Approach

    NASA Astrophysics Data System (ADS)

    Collins, Stephen Craig

    This explanatory sequential mixed-method study analyzed how the teacher created learning environment links to student engagement for students at-risk across five science classroom settings. The learning environment includes instructional strategies, differentiated instruction, positive learning environment, and an academically challenging environment. Quantitative and qualitative data were gathered in the form of self-reporting surveys and a follow-up interview. The researcher aimed to use the qualitative results to explain the quantitative data. The general research question was "What are the factors of the teacher-created learning environment that were best suited to maximize engagement of students at-risk?" Specifically explaining, (1) How do the measured level of teacher created learning environment link to the engagement level of students at-risk in science class? and (2) What relationship exists between the student perception of the science classroom environment and the level of behavioral, cognitive, emotional, and social engagement for students at-risk in science class? This study took place within a large school system with more than 20 high schools, most having 2000-3000 students. Participating students were sent to a panel hearing that determined them unfit for the regular educational setting, and were given the option of attending one of the two alternative schools within the county. Students in this alternative school were considered at-risk due to the fact that 98% received free and reduced lunch, 97% were minority population, and all have been suspended from the regular educational setting. Pairwise comparisons of the SPS questions between teachers using t-test from 107 students at-risk and 40 interviews suggest that each category of the learning environment affects the level of behavioral, cognitive, emotional, and social engagement in science class for students at-risk in an alternative school setting. Teachers with higher student perceptions of learning environment showed increased levels of all types of engagement over the teachers with a lower perception of learning environment. Qualitative data suggested that teachers who created a more positive learning environment had increased student engagement in their class. Follow-up questions also revealed that teachers who incorporated a wider variety of classroom instructional strategies increased behavioral engagement of students at-risk in science class.

  11. The development of a questionnaire to describe science teacher communication behavior in Taiwan and Australia

    NASA Astrophysics Data System (ADS)

    She, Hsiao-Ching; Fisher, Darrell

    2000-11-01

    Teachers contribute enormously to a positive social climate in science classes, particularly through their communication with students. This article describes the development and validation of a questionnaire, the Teacher Communication Behavior Questionnaire (TCBQ) (see pp. 723-726), which assesses student perceptions of the following five important teacher behaviors: Challenging, Encouragement and Praise, Non-Verbal Support, Understanding and Friendly, and Controlling. The TCBQ was administered to 1202 students from 30 classes in Taiwan and to 301 students from 12 classes in Australia. The reliability and factorial validity of the TCBQ were found to be satisfactory for both the Taiwanese and Australian data. To further validate the questionnaire and understand the differences in teacher behavior according to the perceptions of students from the two countries, a qualitative approach was used. Students were interviewed (two from each of five classes) in both Taiwan and Australia. The interview questions focused on these students' responses to selected questionnaire items. The results obtained from the interviews supported and helped explain the quantitative results. In an application of the TCBQ in both countries, students' perceptions on four of the scales of the TCBQ were associated with their attitudes to their science classes.

  12. (re)producing Good Science Students: Girls' Participation in High School Physics

    NASA Astrophysics Data System (ADS)

    Carlone, Heidi B.

    In this ethnographic study, the author describes the meanings of science and science student in a physics classroom in an upper-middle-class high school and the ways girls participated within these meanings. The classroom practices reproduced prototypical meanings of science (as authoritative) and science student (as "dutiful"). The results highlight girls' embrace of prototypical school science. Yet at the end of the school year, the girls did not consider themselves "science people," nor did they want to pursue physics further. The author's interpretation of these results takes seriously girls' agency in producing the meaning of the physics class (as a way to polish one's transcript) and draws attention to the promoted identities (prototypical good student identities) in the classroom. The author argues that students' agency in resisting or accepting the practices, identities, and knowledge of school science is worth understanding for the improvement of science education.

  13. The Effects of Prior-knowledge and Online Learning Approaches on Students' Inquiry and Argumentation Abilities

    NASA Astrophysics Data System (ADS)

    Yang, Wen-Tsung; Lin, Yu-Ren; She, Hsiao-Ching; Huang, Kai-Yi

    2015-07-01

    This study investigated the effects of students' prior science knowledge and online learning approaches (social and individual) on their learning with regard to three topics: science concepts, inquiry, and argumentation. Two science teachers and 118 students from 4 eighth-grade science classes were invited to participate in this research. Students in each class were divided into three groups according to their level of prior science knowledge; they then took either our social- or individual-based online science learning program. The results show that students in the social online argumentation group performed better in argumentation and online argumentation learning. Qualitative analysis indicated that the students' social interactions benefited the co-construction of sound arguments and the accurate understanding of science concepts. In constructing arguments, students in the individual online argumentation group were limited to knowledge recall and self-reflection. High prior-knowledge students significantly outperformed low prior-knowledge students in all three aspects of science learning. However, the difference in inquiry and argumentation performance between low and high prior-knowledge students decreased with the progression of online learning topics.

  14. Project Clarion: Three Years of Science Instruction in Title I Schools among K-Third Grade Students

    ERIC Educational Resources Information Center

    Kim, Kyung Hee; VanTassel-Baska, Joyce; Bracken, Bruce A.; Feng, Annie; Stambaugh, Tamra; Bland, Lori

    2012-01-01

    The purpose of the study was to measure the effects of higher level, inquiry-based science curricula on students at primary level in Title I schools. Approximately 3,300 K-3 students from six schools were assigned to experimental or control classes (N = 115 total) on a random basis according to class. Experimental students were exposed to…

  15. High School Students' Attitudes and Beliefs on Using the Science Writing Heuristic in an Advanced Placement Chemistry Class

    ERIC Educational Resources Information Center

    Putti, Alice

    2011-01-01

    This paper discusses student attitudes and beliefs on using the Science Writing Heuristic (SWH) in an advanced placement (AP) chemistry classroom. During the 2007 school year, the SWH was used in a class of 24 AP chemistry students. Using a Likert-type survey, student attitudes and beliefs on the process were determined. Methods for the study are…

  16. Electrifying Engagement in Middle School Science Class: Improving Student Interest Through E-textiles

    NASA Astrophysics Data System (ADS)

    Tofel-Grehl, Colby; Fields, Deborah; Searle, Kristin; Maahs-Fladung, Cathy; Feldon, David; Gu, Grace; Sun, Chongning

    2017-08-01

    Most interventions with "maker" technologies take place outside of school or out of core area classrooms. However, intervening in schools holds potential for reaching much larger numbers of students and the opportunity to shift instructional dynamics in classrooms. This paper shares one such intervention where electronic textiles (sewable circuits) were introduced into eighth grade science classes with the intent of exploring possible gains in student learning and motivation, particularly for underrepresented minorities. Using a quasi-experimental design, four classes engaged in a traditional circuitry unit while the other four classes undertook a new e-textile unit. Overall, students in both groups demonstrated significant learning gains on standard test items without significant differences between conditions. Significant differences appeared between groups' attitudes toward science after the units in ways that show increasing interest in science by students in the e-textile unit. In particular, they reported positive identity shifts pertaining to their perceptions of the beliefs of their friends, family, and teacher. Findings and prior research suggest that student-created e-textile designs provide opportunities for connections outside of the classroom with friends and family and may shift students' perceptions of their teacher's beliefs about them more positively.

  17. Using an Exploratory Internet Activity & Trivia Game to Teach Students about Biomes

    ERIC Educational Resources Information Center

    Richardson, Matthew L.

    2009-01-01

    Students in life science classes need an introduction to biomes, including an introduction to the concept, key biotic and abiotic features of biomes, and geographic locations of biomes. In this activity, students in seventh- and eighth-grade science classes used a directed exploratory Internet activity to learn about biomes. The author tested…

  18. Enhancing Students' NOS Views and Science Knowledge Using Facebook-Based Scientific News

    ERIC Educational Resources Information Center

    Huang, Hsi-Yu; Wu, Hui-Ling; She, Hsiao-Ching; Lin, Yu-Ren

    2014-01-01

    This study investigated how the different discussion approaches in Facebook influenced students' scientific knowledge acquisition and the nature of science (NOS) views. Two eighth- and two ninth-grade classes in a Taiwanese junior high school participated in the study. In two of the classes students engaged in synchronous discussion, and in the…

  19. Attending to Student Epistemological Framing in a Science Classroom

    ERIC Educational Resources Information Center

    Hutchison, Paul; Hammer, David

    2010-01-01

    Studies of learning in school settings indicate that many students frame activities in science classes as the production of answers for the teacher or test, rather than as making new sense of the natural world. A case study of an episode from a class taught by the first author demonstrates what productive and unproductive student framing can look…

  20. Authentic scientific data collection in support of an integrative model-based class: A framework for student engagement in the classroom

    NASA Astrophysics Data System (ADS)

    Sorensen, A. E.; Dauer, J. M.; Corral, L.; Fontaine, J. J.

    2017-12-01

    A core component of public scientific literacy, and thereby informed decision-making, is the ability of individuals to reason about complex systems. In response to students having difficulty learning about complex systems, educational research suggests that conceptual representations, or mental models, may help orient student thinking. Mental models provide a framework to support students in organizing and developing ideas. The PMC-2E model is a productive tool in teaching ideas of modeling complex systems in the classroom because the conceptual representation framework allows for self-directed learning where students can externalize systems thinking. Beyond mental models, recent work emphasizes the importance of facilitating integration of authentic science into the formal classroom. To align these ideas, a university class was developed around the theme of carnivore ecology, founded on PMC-2E framework and authentic scientific data collection. Students were asked to develop a protocol, collect, and analyze data around a scientific question in partnership with a scientist, and then use data to inform their own learning about the system through the mental model process. We identified two beneficial outcomes (1) scientific data is collected to address real scientific questions at a larger scale and (2) positive outcomes for student learning and views of science. After participating in the class, students report enjoying class structure, increased support for public understanding of science, and shifts in nature of science and interest in pursuing science metrics on post-assessments. Further work is ongoing investigating the linkages between engaging in authentic scientific practices that inform student mental models, and how it might promote students' systems-thinking skills, implications for student views of nature of science, and development of student epistemic practices.

  1. Class Blogs as a Teaching Tool to Promote Writing and Student Interaction

    ERIC Educational Resources Information Center

    Sullivan, Miriam; Longnecker, Nancy

    2014-01-01

    Blogs are a useful teaching tool for improving student writing and increasing class interaction. However, most studies have looked at individual blogs rather than blogs maintained by a whole class. We introduced assignments involving participation in class blogs to four science communication classes with enrolments of between 15 and 36 students.…

  2. Student conceptions of the nature of science

    NASA Astrophysics Data System (ADS)

    Talbot, Amanda L.

    Research has shown that students from elementary school to college have major misconceptions about the nature of science. While an appropriate understanding of the nature of science has been an objective of science education for a century, researchers using a variety of instruments, continue to document students' inadequate conceptions of what science is and how it operates as an enterprise. Current research involves methods to improve student understanding of the nature of science. Students often misunderstand the creative, subjective, empirical, and tentative nature of science. They do not realize the relationship between laws and theories, nor do they understand that science does not follow a prescribed method. Many do not appreciate the influence culture, society, and politics; nor do they have an accurate understanding of the types of questions addressed by science. This study looks at student understanding of key nature of science (NOS) concepts in order to examine the impact of implementing activities intended to help students better understand the process of science and to see if discussion of key NOS concepts following those activities will result in greater gains in NOS understanding. One class received an "activities only" treatment, while the other participated in the same activities followed by explicit discussion of key NOS themes relating to the activity. The interventions were implemented for one school year in two high school anatomy and physiology courses composed of juniors and seniors. Student views of the nature of science were measured using the Views of the Nature of Science-Form C (VNOS-C). Students in both classes demonstrated significant gains in NOS understanding. However, contrary to current research, the addition of explicit discussion did not result in significantly greater gains in NOS understanding. This suggests that perhaps students in higher-level science classes can draw the correlations between NOS related activities and important aspects of "real" science. Or perhaps that a curriculum with a varied approach my expose students to more aspects of science thus improving their NOS understanding.

  3. Implementation of an Online Climate Science Course at San Antonio College

    NASA Astrophysics Data System (ADS)

    Reyes, R.; Strybos, J.

    2016-12-01

    San Antonio College (SAC) plans to incorporate an online climate science class into the curriculum with a focus on local weather conditions and data. SAC is part of a network of five community colleges based around San Antonio, Texas, has over 20,000 students enrolled, and its student population reflects the diversity in ethnicity, age and gender of the San Antonio community. The college understands the importance of educating San Antonio residents on climate science and its complexities. San Antonio residents are familiar with weather changes and extreme conditions. The region has experienced an extreme drought, including water rationing in the city. Then, this year's El Niño intensified expected annual rainfalls and flash floods. The proposed climate science course will uniquely prepare students to understand weather data and the evidence of climate change impacting San Antonio at a local level. This paper will discuss the importance and challenges of introducing the new climate science course into the curriculum, and the desired class format that will increase the course's success. Two of the most significant challenges are informing students about the value of this class and identifying the best teaching format. Additionally, measuring and monitoring enrollment will be essential to determine the course performance and success. At the same time, Alamo Colleges is modifying the process of teaching online classes and is officially working to establish an online college. Around 23% of students enrolled in SAC offered courses are currently enrolled in online courses only, representing an opportunity to incorporate the climate science class as an online course. Since the proposed course will be using electronic textbooks and online applications to access hyperlocal weather data, the class is uniquely suited for online students.

  4. The teacher's role in the establishment of whole-class dialogue in a fifth grade science classroom using argument-based inquiry

    NASA Astrophysics Data System (ADS)

    Benus, Matthew J.

    The purpose of this study was to examine the patterns of dialogue that were established and emerged in one experienced fifth-grade science teacher's classroom that used the argument-based inquiry (ABI) and the ways in which these patterns of dialogue and consensus-making were used toward the establishment of a grasp of science practice. Most current studies on ABI agree that it does not come naturally and is only acquired through practice. Additionally, the quality of dialogue is also understood to be an important link in support of student learning. Few studies have examined the ways in which a teacher develops whole-class dialogue over time and the ways in which patterns of dialogue shift over time. The research questions that guided this study were: (1) What were the initial whole-class dialogue patterns established by a fifth-grade science teacher who engaged in ABI? (2) How did the science teacher help to refine whole-class dialogue to support the agreeability of ideas constructed over time? This eighteen week study that took place in a small city of less than 15,000 in Midwestern United States was grounded in interactive constructivism, and utilized a qualitative design method to identify the ways in which an experienced fifth-grade science teacher developed whole-class dialogue and used consensus-making activities to develop the practice of ABI with his students. The teacher in this study used the Science Writing Heuristic (SWH) approach to ABI with twenty-one students who had no previous experience engaging in ABI. This teacher with 10 of years teaching experience was purposefully selected because he was proficient and experienced in practicing ABI. Multiple sources of data were collected, including classroom video with transcriptions, semi-structured interviews, after lesson conversations, and researcher's field notes. Data analysis used a basic qualitative approach. The results showed (1) that the teacher principally engaged in three forms of whole-class dialogue with students; talking to, talking with, and thinking through ideas with students. As time went on, the teacher's interactions in whole-class dialogue became increasingly focused on thinking through ideas with students, while at the same time students also dialogued more as each unit progressed. (2) This teacher persistently engaged with students in consensus-making activities during whole-class dialogue.These efforts toward consensus-making over time became part of the students' own as each unit progressed. (3) The classroom did not engage in critique and construction of knowledge necessarily like the community of science but rather used agreeing and disagreeing and explaining why through purposeful dialogic interactions to construct a grasp of science classroom practice. The findings have informed theory and practice about science argumentation, the practice of whole-class dialogue, and grasp of science practice along four aspects: (1) patterns of dialogue within a unit of instruction and across units of instruction, (2) the teacher's ability to follow and develop students' ideas, (3) the role of early and persistent opportunities to engage novice students in consensus-making, and (4) the meaning of grasp of science practice in classroom. This study provides insight into the importance of prolonged and persistent engagement with ABI in classroom practice.

  5. Collaborative Science Work in the Elementary Classroom

    NASA Astrophysics Data System (ADS)

    Kersey, Denise A.

    Not all students with disabilities receive special education accommodations in science class. Without special education support, students with disabilities are unable to comprehend and apply science concepts. Implementing a co-teaching model could be a remedy for this lack of supports. Framed by constructivist theory, this study sought to determine if there was a difference in science assessment scores between students in a co-taught science class and those in a regular education science class. Following a pretest-posttest control group design, this study examined the relation between two teaching models and achievement in science. Using a convenience sample of 84 students drawn from a population of 144 fourth grade special education students in a public school district located in the Southeastern United States, analysis of variance was used to compare the mean growth of the two groups. The data revealed no statistically significant difference in mean gain scores between the two groups. Additional studies using a larger sample and longer trial are needed. Implications for social change include understanding instructional strategies that allow educators to differentiate for diverse learners in mainstreamed classrooms as well as removing barriers for underrepresented groups, thereby allowing equal access to science related professions.

  6. Educational System for Enhancing the Creative Interest of Elementary School Students: A Case Study of a Science Class

    NASA Astrophysics Data System (ADS)

    Soe, Kumi; Motohashi, Mitsuya; Niwa, Masaaki; Tamaki, Akira

    Abstract Our research group engages in activities for promoting science education among children. A characteristic of our science curriculum is that it comprises two parts. To elaborate, a requirement of our science curriculum is that before proceeding to a handcrafting activity, students take part in experiments and observe the physical phenomena related to the object that they construct in the second part. We believe that our science class, which comprises two phases of education, can further stimulate students' interest in science because they not only engage in handcrafting of objects, but also learn the underlying principles and structures of these objects.

  7. Providing Students with Foundational Field Instruction within a 50 Minute Class Period: A Practical Example

    NASA Astrophysics Data System (ADS)

    Percy, M.

    2014-12-01

    There is a growing recognition among secondary educators and administrators that students need to have a science education that provides connections between familiar classes like biology, chemistry, and physics. Because of this waxing interest in an integrative approach to the sciences, there is a broader push for school districts to offer classes geared towards the earth sciences, a field that incorporates knowledge and skills gleaned from the three core science subjects. Within the contexts of a regular secondary school day on a traditional schedule (45- to 50-minute long classes), it is challenging to engage students in rigorous field-based learning, critical for students to develop a deeper understanding of geosciences content, without requiring extra time outside of the regular schedule. We suggest instruction using common, manmade features like drainage retention ponds to model good field practices and provide students with the opportunity to calculate basic hydrologic budgets, take pH readings, and, if in an area with seasonal rainfall, make observations regarding soils by way of trenching, and near-surface processes, including mass wasting and the effects of vegetation on geomorphology. Gains in student understanding are discussed by analyzing the difference in test scores between exams provided to the students after they had received only in-class instruction, and after they had received field instruction in addition to the in-class lectures. In an advanced setting, students made measurements regarding ion contents and pollution that allowed the classes to practice lab skills while developing a data set that was analyzed after field work was completed. It is posited that similar fieldwork could be an effective approach at an introductory level in post-secondary institutions.

  8. Enhancement of Elementary School Students' Science Learning by Web-Quest Supported Science Writing

    ERIC Educational Resources Information Center

    Min-Hsiung, Chuang; Jeng-Fung, Hung; Quo-Cheng, Sung

    2011-01-01

    This study aimed to probe into the influence of implementing Web-quest supported science writing instruction on students' science learning and science writing. The subjects were 34 students in one class of grade six in an elementary school in Taiwan. The students participated in the instruction, which lasted for eight weeks. Data collection…

  9. Teaching socioscientific issues: classroom culture and students' performances

    NASA Astrophysics Data System (ADS)

    Tal, Tali; Kedmi, Yarden

    2006-12-01

    The "Treasures in the Sea: Use and Abuse" unit that deals with authentic socioscientific issues related to the Mediterranean was developed as part of a national effort to increase scientific literacy. The unit aimed to enhance active participation of the learners and encourage higher order thinking in class by applying teaching methods that reduce the unfamiliarity felt by students. This was expected through an explicit use of a variety of teaching and assessment-for-learning methods, suitable for Science for All students. Our main goal was to examine the culture of Science for All classes in which the unit was enacted. In order to address the main learning objectives, we monitored students' performances in tasks that required the higher order thinking skills of argumentation and value judgment, which are central constituents of decision-making processes. We show that while socioscientific issues were discussed in whole class and small group sessions, and students' argumentation improved, there is still a long way to go in applying a thinking culture in non-science major classes. We suggest that science teachers should shift from traditional content-based and value-free approach, to a sociocultural approach that views science as a community practice and the students as active participants in decision-making processes.

  10. Research on Same-Gender Grouping in Eighth Grade Science Classrooms

    ERIC Educational Resources Information Center

    Friend, Jennifer

    2006-01-01

    This study examined two hypotheses related to same-gender grouping of eighth grade science classes in a public middle school setting. The hypotheses were (a) male and female students enrolled in same-gender science classes demonstrate more positive science academic achievement than their peers enrolled in mixed-gender classes, and (b) same-gender…

  11. Principles of Food Science Class Sheds Light on Chemistry

    ERIC Educational Resources Information Center

    Ward, Janet

    2004-01-01

    Many students are curious about the steps in food preparation. As a result of such experiences, the author of this article began to incorporate science demonstrations into food preparation classes. She conducted research, developed resources, and piloted the "Principles of Food Science" class over the next 6 years. "Principles of Food Science"…

  12. On the Cutting Edge of Creativity: The Use of Art Projects in Community College Science Classes.

    ERIC Educational Resources Information Center

    Price, Elsa C.

    This paper reports on the results of a class experiment in which advanced Human Anatomy and Physiology and beginning General Biology science students selected a science project using art as the medium of expression and demonstration. Students were allowed to select their own project, with the instructor's approval. Once a project was decided upon,…

  13. The Effects of Motivation on Student Performance on Science Assessments

    NASA Astrophysics Data System (ADS)

    Glenn, Tina Heard

    Academic achievement of public school students in the United States has significantly fallen behind other countries. Students' lack of knowledge of, or interest in, basic science and math has led to fewer graduates of science, technology, engineering, and math-related fields (STEM), a factor that may affect their career success and will certainly affect the numbers in the workforce who are prepared for some STEM jobs. Drawing from self-determination theory and achievement theory, the purpose of this correlational study was to determine whether there were significant relationships between high school academic performance in science classes, motivations (self-efficacy, self-regulation, and intrinsic and extrinsic goal orientation), and academic performance in an introductory online college biology class. Data were obtained at 2 points in time from a convenience multiethnic sample of adult male ( n =16) and female (n = 49) community college students in the southeast United States. Correlational analyses indicated no statistically significant relationships for intrinsic or extrinsic goal orientation, self-efficacy, or self-regulation with high school science mean-GPA nor college biology final course grade. However, high school academic performance in science classes significantly predicted college performance in an entry-level online biology class. The implications of positive social change include knowledge useful for educational institutions to explore additional factors that may motivate students to enroll in science courses, potentially leading to an increase in scientific knowledge and STEM careers.

  14. The cultural production of "science" and "scientist" in high school physics: Girls' access, participation, and resistance

    NASA Astrophysics Data System (ADS)

    Carlone, Heidi Berenson

    2000-10-01

    For over three decades, the gender gap in science and science education has received attention from teachers, policy makers, and scholars of various disciplines. During this time, feminist scholars have posited many reasons why the gender gap in science and science education exists. Early feminist discourse focused on girls' "deficits," while more recent work has begun to consider the problems with science and school science in the quest for a more gender inclusive science. Specifically, feminist scholars advocate a transformation of both how students learn science and the science curriculum that students are expected to learn. This study was designed to examine more deeply this call for a changed science curriculum and its implications for girls' participation, interest, and scientist identities. If we reinvisioned ways to "do" science, "learn" science, and "be a scientist" in school science, would girls come to see science as something interesting and worth pursuing further? This question framed my ethnographic investigation. I examined the culturally produced meanings of "science" and "scientist" in two high school physics classrooms (one traditional and one non-traditional class framed around real-world themes), how these meanings reproduced and contested larger sociohistorical (and prototypical) meanings of science and scientist, and how girls participated within and against these meanings. The results complicate the assumption that a classroom that enacts a non-traditional curriculum is "better" for girls. This study explained how each classroom challenged sociohistorical legacies of school science in various "spaces of possibility" and how prototypical meanings pushed the potential of these spaces to the margins. Girls in the traditional physics class generally embraced prototypical meanings because they could easily access "good student" identities. Girls in the non-traditional class, though attracted to alternative practices, struggled with the conflicting promoted student identities that did not allow them easy access to "good student" identities. In neither class were girls' perceptions of what it meant to do science and be a scientist challenged. And, in neither class did girls connect to a legitimate scientist identity. These findings leave unanswered the question of whether changes in pedagogy and curriculum alone will produce more gender fair school science.

  15. Positive attitudinal shifts with the Physics by Inquiry curriculum across multiple implementations

    NASA Astrophysics Data System (ADS)

    Lindsey, Beth A.; Hsu, Leonardo; Sadaghiani, Homeyra; Taylor, Jack W.; Cummings, Karen

    2012-06-01

    Recent publications have documented positive attitudinal shifts on the Colorado Learning Attitudes about Science Survey (CLASS) among students enrolled in courses with an explicit epistemological focus. We now report positive attitudinal shifts in classes using the Physics by Inquiry (PbI) curriculum, which has only an implicit focus on student epistemologies and nature of science issues. These positive shifts have occurred in several different implementations of the curriculum, across multiple institutions and multiple semesters. In many classes, students experienced significant attitudinal shifts in the problem-solving categories of the CLASS, despite the conceptual focus of most PbI courses.

  16. "Adotta scienza e arte nella tua classe": The results of a successfully teaching project which combines science with art⋆

    NASA Astrophysics Data System (ADS)

    Giansanti, S.

    2015-03-01

    The project called Adotta scienza e arte nella tua classe ("Adopt Science and Art in your class"), on the interconnection between science and art, has been addressed to the Italian secondary middle and high school involving more than 200 teachers and about 2200 students. The main purpose of this project is to make the young students aware of the strong link between science and art is a unique cultural and interdisciplinary occasion. To reach this goal, the Adotta project asked students to produce an artwork inspired by the interpretation of a quotation among a hundred commented quotes by physicists, mathematicians, scientist, writers, artists, accompanied by an original short sentence written by students themselves. More than 1000 artworks have been produced and collected in two galleries on Facebook. From their analysis emerges the students' feeling about science, which is usually associated to human brain, based on mathematical laws and related to technological progress, but it is also a powerful tool that should be responsibly used. This project also valorizes teachers' role in scientific education through activities that encourage students to recognize science in every aspect of their lives.

  17. Scaling Up: Faculty Workload, Class Size, and Student Satisfaction in a Distance Learning Course on Geographic Information Science.

    ERIC Educational Resources Information Center

    Dibiase, David; Rademacher, Henry J.

    2005-01-01

    This article explores issues of scalability and sustainability in distance learning. The authors kept detailed records of time they spent teaching a course in geographic information science via the World Wide Web over a six-month period, during which class sizes averaged 49 students. The authors also surveyed students' satisfaction with the…

  18. The Quality of Instruction in Urban High Schools: Comparing Mathematics and Science to English and Social Studies Classes in Chicago

    ERIC Educational Resources Information Center

    Lee, Valerie E.; Robinson, Shanta R.; Sebastian, James

    2012-01-01

    Is the quality of instruction systematically better in one subject than another? Teachers and students in the same Chicago high schools reported on one core-curriculum class (English, mathematics, science, or social studies) in 2007 surveys. Teachers commented on instructional demands and student participation. Students described engagement,…

  19. Teacher interaction in psychosocial learning environments: cultural differences and their implications in science instruction

    NASA Astrophysics Data System (ADS)

    Khine, Myint Swe; Fisher, Darrell L.

    2004-01-01

    The purpose of this study was to examine interpersonal behaviour in psychosocial learning environments and to determine the associations between science students' perceptions of their interactions with their teachers, the cultural background of teachers and their attitudinal outcomes. A sample of 1188 students completed the Questionnaire on Teacher Interaction instrument. The responses to two subscales of Test of Science-related Attitudes were used as attitudinal measures. Significant associations between students' perceptions of teacher interpersonal behaviour and the cultural background of teachers were detected. The results showed that students perceived a more favourable interpersonal relationship with Western teachers in the secondary science classrooms. The students in the classes of Western teachers indicated that they enjoyed science lessons more than those in the classes of Asian teachers. Some implications for science instruction in this context are discussed.

  20. Multimodal Representation Contributes to the Complex Development of Science Literacy in a College Biology Class

    ERIC Educational Resources Information Center

    Bennett, William Drew

    2011-01-01

    This study is an investigation into the science literacy of college genetics students who were given a modified curriculum to address specific teaching and learning problems from a previous class. This study arose out of an interest by the professor and researcher to determine how well students in the class Human Genetics in the 21st Century…

  1. Gender differences in teacher-student interactions in science classrooms

    NASA Astrophysics Data System (ADS)

    Jones, M. Gail; Wheatley, Jack

    1990-12-01

    Thirty physical science and 30 chemistry classes, which contained a total of 1332 students, were observed using the Brophy-Good Teacher-Child Dyadic Interaction System. Classroom interactions were examined for gender differences that may contribute to the underrepresentation of women in physics and engineering courses and subsequent careers. The Brophy-Good coding process allows for examination of patterns of interactions for individuals and groups of pupils. An analysis of variance of the data yielded a significant main effect for teacher praise, call outs, procedural questions, and behavioral warnings based on the sex of the student and a significant teacher-sex main effect for direct questions. Significant two-way interactions were found for the behavioral warning variable for teacher sex and subject by student sex. Female teachers warned male students significantly more than female students. Male teachers warned both genders with similar frequency. Male students also received significantly more behavioral warnings in physical science classes than female students. In chemistry classes, both male and female students received approximately the same number of behavioral warnings.

  2. Using Psychological Constructs from the Music Model of Motivation to Predict Students' Science Identification and Career Goals: Results from the U.S. and Iceland

    ERIC Educational Resources Information Center

    Jones, Brett D.; Sahbaz, Sumeyra; Schram, Asta B.; Chittum, Jessica R.

    2017-01-01

    We investigated students' perceptions related to psychological constructs in their science classes and the influence of these perceptions on their science identification and science career goals. Participants included 575 middle school students from two countries (334 students in the U.S. and 241 students in Iceland). Students completed a…

  3. In the Physics Class: University Physics Students' Enactment of Class and Gender in the Context of Laboratory Work

    ERIC Educational Resources Information Center

    Danielsson, Anna T.

    2014-01-01

    This article explores how the doing of social class and gender can intersect with the learning of science, through case studies of two male, working-class university students' constitutions of identities as physics students. In doing so, I challenge the taken-for-granted notion that male physics students have an unproblematic relation to…

  4. Multimodal representation contributes to the complex development of science literacy in a college biology class

    NASA Astrophysics Data System (ADS)

    Bennett, William Drew

    This study is an investigation into the science literacy of college genetics students who were given a modified curriculum to address specific teaching and learning problems from a previous class. This study arose out of an interest by the professor and researcher to determine how well students in the class Human Genetics in the 21st Century responded to a reorganized curriculum to address misconceptions that were prevalent after direct instruction in the previous year's class. One of the components to the revised curriculum was the addition of a multimodal representation requirement as part of their normal writing assignments. How well students performed in these writing assignments and the relationship they had to student learning the rest of the class formed the principle research interest of this study. Improving science literacy has been a consistent goal of science educators and policy makers for over 50 years (DeBoer, 2000). This study uses the conceptualization of Norris and Phillips (2003) in which science literacy can be organized into both the fundamental sense (reading and writing) and the derived sense (experience and knowledge) of science literacy. The fundamental sense of science literacy was investigated in the students' ability to understand and use multimodal representations as part of their homework writing assignments. The derived sense of science literacy was investigated in how well students were able to apply their previous learning to class assessments found in quizzes and exams. This study uses a mixed-methods correlational design to investigate the relationship that existed between students' writing assignment experiences connected to multimodal representations and their academic performance in classroom assessments. Multimodal representations are pervasive in science literature and communication. These are the figures, diagrams, tables, pictures, mathematical equations, and any other form of content in which scientists and science educators are communicating ideas and concepts to their audience with more than simple text. A focused holistic rubric was designed in this study to score how well students in this class were able to incorporate aspects of multimodality into their writing assignments. Using these scores and factors within the rubric (ex. Number of original modes created) they were correlated with classroom performance scores to determine the strength and direction of the relationship. Classroom observations of lectures and discussion sections along with personal interviews with students and teaching assistants aided the interpretation of the results. The results from the study were surprisingly complex to interpret given the background of literature which suggested a strong relationship between multimodal representations and science learning (Lemke, 2000). There were significant positive correlations between student multimodal representations and quiz scores but not exam scores. This study was also confounded by significant differences between sections at the beginning of the study which may have led to learning effects later. The dissimilarity between the tasks of writing during their homework and working on exams may be the reason for no significant correlations with exams. The power to interpret these results was limited by the number of the participants, the number of modal experiences by the students, and the operationalization of multimodal knowledge through the holistic rubric. These results do show that a relationship does exist between the similar tasks within science writing and quizzes. Students may also gain derived science literacy benefits from modal experiences on distal tasks in exams as well. This study shows that there is still much more research to be known about the interconnectedness of multimodal representational knowledge and use to the development of science literacy.

  5. Multiple-Choice Exams: An Obstacle for Higher-Level Thinking in Introductory Science Classes

    ERIC Educational Resources Information Center

    Stanger-Hall, Kathrin F.

    2012-01-01

    Learning science requires higher-level (critical) thinking skills that need to be practiced in science classes. This study tested the effect of exam format on critical-thinking skills. Multiple-choice (MC) testing is common in introductory science courses, and students in these classes tend to associate memorization with MC questions and may not…

  6. Building Bridges between Science Courses Using Honors Organic Chemistry Projects

    ERIC Educational Resources Information Center

    Hickey, Timothy; Pontrello, Jason

    2016-01-01

    Introductory undergraduate science courses are traditionally offered as distinct units without formalized student interaction between classes. To bridge science courses, the authors used three Honors Organic Chemistry projects paired with other science courses. The honors students delivered presentations to mainstream organic course students and…

  7. Deaf, Hard-of-Hearing, and Hearing Signing Undergraduates’ Attitudes toward Science in Inquiry-Based Biology Laboratory Classes

    PubMed Central

    Gormally, Cara

    2017-01-01

    For science learning to be successful, students must develop attitudes toward support future engagement with challenging social issues related to science. This is especially important for increasing participation of students from underrepresented populations. This study investigated how participation in inquiry-based biology laboratory classes affected students’ attitudes toward science, focusing on deaf, hard-of-hearing, and hearing signing students in bilingual learning environments (i.e., taught in American Sign Language and English). Analysis of reflection assignments and interviews revealed that the majority of students developed positive attitudes toward science and scientific attitudes after participating in inquiry-based biology laboratory classes. Attitudinal growth appears to be driven by student value of laboratory activities, repeated direct engagement with scientific inquiry, and peer collaboration. Students perceived that hands-on experimentation involving peer collaboration and a positive, welcoming learning environment were key features of inquiry-based laboratories, affording attitudinal growth. Students who did not perceive biology as useful for their majors, careers, or lives did not develop positive attitudes. Students highlighted the importance of the climate of the learning environment for encouraging student contribution and noted both the benefits and pitfalls of teamwork. Informed by students’ characterizations of their learning experiences, recommendations are made for inquiry-based learning in college biology. PMID:28188279

  8. What students are saying about science: Student perspectives of meaningful, effective and ineffective learning experiences in science class

    NASA Astrophysics Data System (ADS)

    Brown, Thomas John

    Statement of the problem. Research studies have rarely incorporated the subjective experience of students as they are engaged in learning. When the students' position is viewed at all in a research study, it is usually viewed from the perspective of the adult educators' interests and ways of seeing. As a result, the most conspicuously absent feature from the research literature is the first person voice of the student. In regards to science education specifically, few studies have focused on the students' perspective of their experience in science. Therefore, the purpose of this study was to describe and understand student perspectives of meaningful, effective, and ineffective learning experiences in science class. The following served as guiding questions: (1) What do students describe as meaningful and effective learning experiences in science class? (2) What do students describe as obstacles to their effective learning in science class? Methods. An interpretive research methodology was chosen for this study. The nine participants that took part in the study were grouped as self-directed, teacher-guided, and teacher-dependent learners. A variety of data gathering techniques were used including field notes, participant observations, interviews and focus groups. Throughout the study, inductive analysis was employed as a process for making sense out of the data. More specifically, the constant comparative method was used to categorize the data and facilitate the search for meaningful patterns. The analysis included a thick description of the students' experience of science in the first person voice of the student. The results of this study indicate that teachers play the fundamental role in the establishment of an effective learning environment and that students' consider their improved understanding to be a key to their meaningful learning. In addition, the students' improved understanding requires that teachers are actively involved in their progress and are willing to explain concepts on an ongoing basis. The study concludes by asserting that effective teachers must accommodate the needs of both self-directed and instructor-centered learners. Finally, it is argued that student feedback can be used to improve classroom effectiveness.

  9. The Effect of Guided-Inquiry Instruction on 6th Grade Turkish Students' Achievement, Science Process Skills, and Attitudes Toward Science

    NASA Astrophysics Data System (ADS)

    Koksal, Ela Ayse; Berberoglu, Giray

    2014-01-01

    The purpose of this study is to investigate the effectiveness of guided-inquiry approach in science classes over existing science and technology curriculum in developing content-based science achievement, science process skills, and attitude toward science of grade level 6 students in Turkey. Non-equivalent control group quasi-experimental design was used to investigate the treatment effect. There were 162 students in the experimental group and 142 students in the control group. Both the experimental and control group students took the Achievement Test in Reproduction, Development, and Growth in Living Things (RDGLT), Science Process Skills Test, and Attitudes Toward Science Questionnaire, as pre-test and post-test. Repeated analysis of variance design was used in analyzing the data. Both the experimental and control group students were taught in RDGLT units for 22 class hours. The results indicated the positive effect of guided-inquiry approach on the Turkish students' cognitive as well as affective characteristics. The guided inquiry enhanced the experimental group students' understandings of the science concepts as well as the inquiry skills more than the control group students. Similarly, the experimental group students improved their attitudes toward science more than the control group students as a result of treatment. The guided inquiry seems a transition between traditional teaching method and student-centred activities in the Turkish schools.

  10. Improving the teaching and learning of science in a suburban junior high school on Long Island: Achieving parity through cogenerative dialogues

    NASA Astrophysics Data System (ADS)

    Baker, Eileen Perman

    The research in this dissertation focuses on ways to improve the teaching and learning of science in a suburban junior high school on Long Island, New York. The study is my attempt to find ways to achieve parity in my classroom in terms of success in science. I was specifically looking for ways to encourage Black female students in my classroom and in other classrooms to continue their science education into the upper grades. The participants were the 27 students in the class, a friend of one of the students, and I, as the teacher-researcher. In order to examine the ways in which structure mediates the social and historical contexts of experiences in relation to teacher and student practices in the classroom, I used collaborative research; autobiographical reflection; the sociology of emotions; immigration, racialization, and ethnicity, and cogenerative dialogues (cogens) as tools. Cogenerative dialogues are a way for students and teachers to accept shared responsibility for teaching and learning. This study is of importance because of my school's very diverse student body. The school has a large minority population and therefore shares many of the characteristics of urban schools. In my study I look at why there are so few Black female students in the advanced science courses offered by our district and how this problem can be addressed. I used a variety of qualitative approaches including critical ethnography and micro analysis to study the teaching and learning of science. In addition to the usual observational, methodological, and theoretical field notes, I videotaped and audiotaped lessons and had discussions with students and teachers, one-on-one and in groups. In the first year the cogenerative group consisted of two Black female students. In the second year of the study there were four Black and one White-Hispanic female students in the cogen group. In my research I studied the interactions of the students between lessons and during laboratory activities as well as the cogens themselves in order to get the data needed to identify the role of science cogens in the learning and teaching of science. The students both in my cogen and in my science class collaborated with me as we worked to create new culture through conversations. I also used cogens to examine the influence of immigration, race, ethnicity, and gender in my science class. The students in the cogen were native-born children of immigrants, known as the second generation and/or 1.5 generation. In the first year one of these students was the daughter of Jamaican-born parents and the other native Black. The students in the second year included one each of Haitian and Jamaican descent, one with Dominican parents, and two native Blacks. Interestingly enough, if I had not conducted the cogenerative dialogues, I might never have become aware of their ethnicities. The cogens helped me to become a better teacher by allowing me to understand what racialization was and how it impacted students as well as teachers. The cogens helped students voice their opinions in a manner and in a place that supported their understanding of both the similarities and differences among students in the class in addition to contradictions in their science class as well as in other nested fields. Contradictions are differences between people and groups that arise as a normal part of social life in the classroom (and elsewhere, of course), and I looked for ways to retain these differences as we learned to deal with them. I looked especially for contradictions that were evident between the larger culture of the school and that of the students in the cogen. I studied the dialectical relationship between agency and structure in my science class and within the cogenerative dialogue group. I found that as students gained agency, they were more successful in obtaining entry into accelerated science classes and succeeded in those classes. I found that some marginalized students were shut down in their classrooms. During the common planning time within the science department, we discussed the lack of minority students in our advanced science classes. I introduced the idea of cogens and described how they could encourage more students to become involved in the process of learning. Although my colleagues did not institute cogens with their students, they did listen to the ideas about culturally relevant teaching which I communicated, and I was told by some of my colleagues that they were trying to address the cultural mismatch found in their classrooms. The science faculty and I spoke to administrative personnel, and they saw how their goals and ours were aligned. Soon, all stakeholders were on board: my chairperson, the science department, and the administration. (Abstract shortened by UMI.)

  11. Multiple-Choice Exams: An Obstacle for Higher-Level Thinking in Introductory Science Classes

    PubMed Central

    Stanger-Hall, Kathrin F.

    2012-01-01

    Learning science requires higher-level (critical) thinking skills that need to be practiced in science classes. This study tested the effect of exam format on critical-thinking skills. Multiple-choice (MC) testing is common in introductory science courses, and students in these classes tend to associate memorization with MC questions and may not see the need to modify their study strategies for critical thinking, because the MC exam format has not changed. To test the effect of exam format, I used two sections of an introductory biology class. One section was assessed with exams in the traditional MC format, the other section was assessed with both MC and constructed-response (CR) questions. The mixed exam format was correlated with significantly more cognitively active study behaviors and a significantly better performance on the cumulative final exam (after accounting for grade point average and gender). There was also less gender-bias in the CR answers. This suggests that the MC-only exam format indeed hinders critical thinking in introductory science classes. Introducing CR questions encouraged students to learn more and to be better critical thinkers and reduced gender bias. However, student resistance increased as students adjusted their perceptions of their own critical-thinking abilities. PMID:22949426

  12. Earth System Science Education in a General Education Context: Two Case Studies

    NASA Astrophysics Data System (ADS)

    Herring, J. A.

    2004-12-01

    The teaching of Earth System Science (ESS) to non-science majors is examined in a large lecture format class at a state university and in small classes with a significant research component at a liberal arts college. Quantitative and qualitative evaluations of both approaches reveal some of the challenges educators face as they work to advance students' integrated understanding of the Earth system. Student learning on selected concepts in the large lecture format class was poorly or negatively correlated with the amount of class time spent on the topic, even when the time was spent in teacher-student dialogue or in cooperative learning activities. The small class format emphasized student participation in research, which was found to be particularly effective when the class operated as a three-week intensive block and student use of computer models to simulate the dynamics of complex systems, which was found to be more effective when the class was held in a ten-week quarter. This study provides some clarification as to the utility of specific pedagogical frameworks (such as constructivism and experiential education) in the teaching of ESS to a general education audience and emphasizes the importance of carefully defining educational goals (both cognitive and affective) as a part of the curriculum design.

  13. Internationalization of the animal science undergraduate curriculum: a survey of its current status, barriers to its implementation and its value.

    PubMed

    Forsberg, N E; Taur, J S; Xiao, Y; Chesbrough, H

    2003-04-01

    The goal of this project was to identify the current level at which internationalization has been adopted as a theme in the North American animal science curriculum and to identify its value and the barriers to its implementation. We surveyed animal, dairy, and poultry science departments across Canada and the United States. One hundred twenty-four surveys were mailed and 60% were returned. Associations between aspects of internationalization and student outcomes (admission to veterinary and graduate schools and starting salaries) were examined. Although administrators strongly believed internationalization had value, implementation was limited. The most common practices included international content in core animal science classes, advising, international internships, and participation of faculty in international scholarly activities. Few departments have incorporated internationalization into their mission statements or developed a specific international-themed class, scholarships devoted to international activities, or roles for international students. Few departments reported participation of students in international programs. Barriers included finances and limited commitment from higher administration. Student outcomes were positively associated with faculty size, percentage of international faculty, the ratio of international students to the total student population, international content in core animal science classes, a specific international-themed class, availability of international internships, and exchange of class material internationally via the Internet. Departments that did not offer international opportunities had a negative association (r = -0.79) with starting salary, but these relationships may not be causal. Alternatively, progressive departments may attract and retain exceptional students. The analysis indicated an awareness of the value of international programs, positive impacts in student outcomes, and financial barriers to implementation.

  14. The Effects of Project Based Learning on Undergraduate Students' Achievement and Self-Efficacy Beliefs towards Science Teaching

    ERIC Educational Resources Information Center

    Bilgin, Ibrahim; Karakuyu, Yunus; Ay, Yusuf

    2015-01-01

    The purpose of this study is to investigate the effects of the Project-Based Learning (PBL) method on undergraduate students' achievement and its association with these students' self-efficacy beliefs about science teaching and pinions about PBL. The sample of the study consisted of two randomly chosen classes from a set of seven classes enrolled…

  15. Using the Science Process Skills to Investigate Animals and Animal Habitats

    NASA Astrophysics Data System (ADS)

    Braithwaite, Saisha

    This study explored how a STEM (science, technology, engineering, and math) engineer design challenge allowed students to analyze the characteristics of animals and animal habitats. This study was conducted in a kindergarten class within an urban school district. The class has 25 students while the study focuses on six students. The group consists of three boys and three girls. In this study, the students used the science process skills to observe, classify, infer, and make predictions about animals and habitats. In the engineer design, students created an established habitat and built their own animal that can survive in that habitat. The study analyzed how students used process skills to engage with the habitats and animals. The students successfully used the science process skills in this study. The results showed that students gained more content knowledge when they used multiple process skills within a lesson. The study shows that developing lessons using the science process skills improves students' ability to demonstrate their knowledge of animals and their habitats.

  16. Building Science-Relevant Literacy with Technical Writing in High School

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girill, T R

    2006-06-02

    By drawing on the in-class work of an on-going literacy outreach project, this paper explains how well-chosen technical writing activities can earn time in high-school science courses by enabling underperforming students (including ESL students) to learn science more effectively. We adapted basic research-based text-design and usability techniques into age-appropriate exercises and cases using the cognitive apprenticeship approach. This enabled high-school students, aided by explicit guidelines, to build their cognitive maturity, learn how to craft good instructions and descriptions, and apply those skills to better note taking and technical talks in their science classes.

  17. The Effect of Fermi Questions in the Development of Science Processes Skills in Physics among Jordanian Ninth Graders

    ERIC Educational Resources Information Center

    Barahmeh, Haytham Mousa; Hamad, Adwan Mohammad Bani; Barahmeh, Nabeel Mousa

    2017-01-01

    This study aimed at exploring the effect of Fermi question on the development of science process skills in the physics subject at ninth Grade students. The sample of the study consisted of (2) classes for males and (2) classes for females, which were randomly divided into (2) groups: An experimental group of (41) students divided into a class of…

  18. Creating a virtual community of practice to investigate legitimate peripheral participation by African American middle school girls in science activities

    NASA Astrophysics Data System (ADS)

    Edwards, Leslie D.

    How do teenage girls develop an interest in science? What kinds of opportunities can science teachers present to female students that support their engagement with learning science? I studied one aspect of this issue by focusing on ways students could use science to enhance or gain identities that they (probably) already valued. To do that I created technology-rich activities and experiences for an after school class in science and technology for middle school girls who lived in a low socio-economic urban neighborhood. These activities and experiences were designed to create a virtual community of practice whose members used science in diverse ways. Student interest was made evident in their responses to the activities. Four conclusions emerged. (1) Opportunities to learn about the lives and work of admired African American business women interested students in learning by linking it to their middle-class aspirations and their interest in things that money and status can buy. (2) Opportunities to learn about the lives and work of African American women experts in science in a classroom context where students then practiced similar kinds of actual scientific tasks engaged students in relations of legitimate peripheral participation in a virtual and diverse community of practice focused on science which was created in the after-school classes. (3) Opportunities where students used science to show off for family, friends, and supporters of the after-school program, identities they valued, interested them enough that they engaged in long-term science and technology projects that required lots of revisions. (4) In response to the opportunities presented, new and enhanced identities developed around becoming a better student or becoming some kind of scientist.

  19. Application of expert-notice dialogue (END) method to assess students’ science communication ability on biology

    NASA Astrophysics Data System (ADS)

    Sriyati, S.; Amelia, D. N.; Soniyana, G. T.

    2018-05-01

    Student’s science communication ability can be assessed by the Expert-Notice Dialogue (END) method which focusing on verbal explanations using graphs or images as a tool. This study aims to apply the END method to assess students’ science communication ability. The study was conducted in two high schools with each sample of one class at each school (A and B). The number of experts in class A is 8 students and 7 in class B, the number of notice in class A 24 students and 30 in class B. The material chosen for explanation by expert is Ecosystem in class A and plant classification in class B. Research instruments are rubric of science communication ability, observation rubric, notice concept test and notice questionnaire. The implementation recorded with a video camera and then transcribed based on rubric science communication ability. The results showed that the average of science communication ability in class A and B was 60% and 61.8%, respectively, in enough categories. Mastery of the notice concept is in good category with 79.10 averages in class A and 94.64 in class B. Through the questionnaire notice it is known that the END method generally helps notice in understanding the concept.

  20. Factors that encourage females to pursue physical science careers: Testing five common hypotheses

    NASA Astrophysics Data System (ADS)

    Hazari, Zahra; Potvin, Geoff; Lock, Robynne M.; Lung, Florin; Sadler, Philip M.; Sonnert, Gerhard

    2012-03-01

    There are many hypotheses regarding factors that may encourage female students to pursue careers in the physical sciences. Using Propensity Score Matching (PSM) on national data (n=7505) drawn from the Persistence Research in Science and Engineering (PRiSE) project, we test five commonly held beliefs including having a single-sex physics class, having a female physics teacher, having female scientist guest speakers in physics class, discussing the work of women scientists in physics class, and discussing the under-representation of women in physics class. The effect of these experiences is compared for female students who are matched on several factors, including parental education, prior science/math interests, and academic background, thereby controlling for the effect of many confounding variables.

  1. A Project To Make the Laboratory More Accessible to Students with Disabilities

    NASA Astrophysics Data System (ADS)

    Lunsford, Suzanne K.; Bargerhuff, Mary Ellen

    2006-03-01

    This article describes project CLASS (Creating Laboratory Access for Science Students) an innovative NSF-funded project originating at Wright State University in Dayton, Ohio. Project CLASS enables students to participate in chemistry labs regardless of physical or learning disabilities in grades 7 12. This nationally recognized project prepares educators to accommodate and develop adaptive lab equipment to meet the needs of students with physical and learning disabilities while maintaining the integrity of the science curriculum.

  2. Improving Student Science Literacy through an Inquiry-Based, Integrated Science Curriculum and Review of Science Media.

    ERIC Educational Resources Information Center

    Bardeen, Karen

    This project studied the effects of an inquiry-based, integrated science course on student science literacy. The course was aligned to state and national science standards. The target population consisted of sophomore, junior, and senior high-school students in an upper-middle class suburb of a major Midwestern city. Questionnaires, tests, and…

  3. Rules of the Game: Effects of a Game-based Metaphor on Instructional Activity Design and the Use of Student Mentors on Learning Outcomes in a Middle School General Science Class

    NASA Astrophysics Data System (ADS)

    Dowling, Angie

    This study investigated the effects of a game-like environment on instructional activity design and the use of student mentors on learning outcomes in a middle school general science class. The participants for this study were 165 students, ages 13-14 years old, who were enrolled in 8th grade at a mid-Atlantic middle school. Two research questions were used to conduct the research: 1. Can science content be designed and successfully delivered instructionally using a game-like learning environment? 2. Does the use of student mentors/assistants help direct and maintain the flow of the class away from the technological issues toward the necessary learning outcomes while also increasing the science content understanding acquired by the mentors while also increasing class and student engagement? For this study an introductory biology unit was designed using a game-like curricular structure. Student mentors were utilized in order to aid focus on the content and not the technology. The results indicated that the instructional design of the unit using a game-like environment was successful and students exhibited learning. The mentor students were instrumental in steering their fellow students away from the “Siren’s Call” of the instrument (in this case StarLogo) and enabled increased focus on the content. Keywords: Trivial games, Serious Games, Epistemic Games, Student Mentors, StarLogo, Elaboration Theory.

  4. Performance of first-year health sciences students in a large, diverse, multidisciplinary, first-semester, physiology service module.

    PubMed

    Higgins-Opitz, Susan B; Tufts, Mark

    2014-06-01

    Health Science students at the University of KwaZulu-Natal perform better in their professional modules compared with their physiology modules. The pass rates of physiology service modules have steadily declined over the years. While a system is in place to identify "at-risk" students, it is only activated after the first semester. As a result, it is only from the second semester of their first year studies onward that at-risk students can be formally assisted. The challenge is thus to devise an appropriate strategy to identify struggling students earlier in the semester. Using questionnaires, students were asked about attendance, financing of their studies, and relevance of physiology. After the first class test, failing students were invited to complete a second questionnaire. In addition, demographic data were also collected and analyzed. Correlation analyses were undertaken of performance indicators based on the demographical data collected. The 2011 class comprised mainly sport science students (57%). The pass rate of sport science students was lower than the pass rates of other students (42% vs. 70%, P < 0.001). Most students were positive about physiology and recognized its relevance. Key issues identified were problems understanding concepts and terminology, poor study environment and skills, and lack of matriculation biology. The results of the first class test and final module marks correlated well. It is clear from this study that student performance in the first class test is a valuable tool to identify struggling students and that appropriate testing should be held as early as possible. Copyright © 2014 The American Physiological Society.

  5. Performance of first-year health sciences students in a large, diverse, multidisciplinary, first-semester, physiology service module

    PubMed Central

    Tufts, Mark

    2014-01-01

    Health Science students at the University of KwaZulu-Natal perform better in their professional modules compared with their physiology modules. The pass rates of physiology service modules have steadily declined over the years. While a system is in place to identify “at-risk” students, it is only activated after the first semester. As a result, it is only from the second semester of their first year studies onward that at-risk students can be formally assisted. The challenge is thus to devise an appropriate strategy to identify struggling students earlier in the semester. Using questionnaires, students were asked about attendance, financing of their studies, and relevance of physiology. After the first class test, failing students were invited to complete a second questionnaire. In addition, demographic data were also collected and analyzed. Correlation analyses were undertaken of performance indicators based on the demographical data collected. The 2011 class comprised mainly sport science students (57%). The pass rate of sport science students was lower than the pass rates of other students (42% vs. 70%, P < 0.001). Most students were positive about physiology and recognized its relevance. Key issues identified were problems understanding concepts and terminology, poor study environment and skills, and lack of matriculation biology. The results of the first class test and final module marks correlated well. It is clear from this study that student performance in the first class test is a valuable tool to identify struggling students and that appropriate testing should be held as early as possible. PMID:24913452

  6. Contextualizing Nature of Science Instruction in Socioscientific Issues

    ERIC Educational Resources Information Center

    Eastwood, Jennifer Lynne; Sadler, Troy D.; Zeidler, Dana L.; Lewis, Anna; Amiri, Leila; Applebaum, Scott

    2012-01-01

    The purpose of this study was to investigate the effects of two learning contexts for explicit-reflective nature of science (NOS) instruction, socioscientific issues (SSI) driven and content driven, on student NOS conceptions. Four classes of 11th and 12th grade anatomy and physiology students participated. Two classes experienced a curricular…

  7. The Bird Box Survey Project

    ERIC Educational Resources Information Center

    Willis, Patrick

    2014-01-01

    When high school students are asked what's the best part of science class, many will say it's the field trips. Students enjoy engaging in authentic, community-based science outside the classroom. To capitalize on this, Patrick Willis created the Bird Box Survey Project for his introductory field biology class. The project takes students…

  8. Pointing with Power or Creating with Chalk

    ERIC Educational Resources Information Center

    Rudow, Sasha R.; Finck, Joseph E.

    2015-01-01

    This study examines the attitudes of students on the use of PowerPoint and chalk/white boards in college science lecture classes. Students were asked to complete a survey regarding their experiences with PowerPoint and chalk/white boards in their science classes. Both multiple-choice and short answer questions were used. The multiple-choice…

  9. Using children's literature to enhance views of nature of science and scientific attitude in fourth graders

    NASA Astrophysics Data System (ADS)

    Hampton, Kathryn Walker

    This project was an effort to study the effect of integrating children's trade books into the fourth grade science curriculum on the students' views of the nature of science and their scientific attitude. The effect on the students' reading and language achievement, and science content knowledge was also analyzed. This was done by comparing the nature of science views and scientific attitudes, reading and language achievement scores, and the science grades of the treatment group, prior to and immediately following the intervention period, with the control group which did not participate in the integration of children's books. The science teacher's views on the nature of science and her attitude towards teaching science were also evaluated prior to and after the intervention. The selected trade books were evaluated for their coverage of nature of science aspects. Three intact classes of fourth grade students from a local elementary school were involved in the study along with their science and reading teacher. Two of the classes made up the experimental group and the remaining class served as the control group. All students were assessed prior to the intervention phase on their views of the nature of science and scientific attitudes. The experimental group was engaged in reading selected science trade books during their science class and study hall over a semester period. The results of the study showed a significant difference in the groups' initial reading and language achievement, which may have affected the lack of an effect from the intervention. The instrument selected to assess the student's views on the nature of science and scientific attitude (SAI II) was not reliable with this group. There was no significant difference on the students' science content knowledge as measured by their semester grade averages. The results from the teacher's response on the STAS II did indicate slight changes on her views on the nature of science. Sixty-nine of the eighty-three children's trade books selected had one or more aspects of the nature of science included.

  10. School Engagement Mediates Well-Being Differences in Students Attending Specialized versus Regular Classes

    ERIC Educational Resources Information Center

    Orkibi, Hod; Tuaf, Hila

    2017-01-01

    The authors examined (a) differences in school engagement and the subjective well-being (SWB) of 330 Israeli students (Grades 7-10, 52% girls) in specialized school classes (arts and science) versus students in classes with no specialized subject and (b) the role of engagement as a mediator between class choice and SWB. A multivariate analysis of…

  11. Confirmation and investigation of higher science curiosity in Juarez Middle School students compared to their peers in El Paso, Texas

    NASA Astrophysics Data System (ADS)

    Carmona Miranda, Karla

    In the last 20 years attitudes towards science and science classes in K-12 education have been an important topic of investigation due to the decreasing number of students choosing Science, Technology, Engineering and Math (STEM) related careers, and the increasing need for STEM prepared workers to cover the job demands of the future. The purpose of this study is to confirm a previously measured difference in scientific curiosity between middle school students in El Paso and in Ciudad Juarez, and to collect additional data that might tell us what the possible factors or reasons for this difference are. Our sample consists of 156 middle school students from Juarez public schools, and 448 middle school students from El Paso public middle schools. The Children's Science Curiosity Scale of Harty & Beall (1984) will be used to measure the curiosity level. Additionally, the students will be asked to respond to "Why do you like or dislike science?" Our results show that those obtained by Ortiz (2006) in a similar study persist but with a reduction of standard deviations. The percentage of students that state that they do not like science in Ciudad Juarez and El Paso are 9% and 14%, respectively. The most common reason to like science among students in Ciudad Juarez was related to the topics covered in class, and among students in El Paso was related to the experiments and hands-on activities done in class. After analyzing contingency tables with chi-squared tests and calculating the respective contingency coefficients, it is safe to say that even though relationships between the reasons to like or dislike science and country exist, these relationships are not strong. Other results, limitations, and future research also are discussed.

  12. The impact of embedding multiple modes of representation on student construction of chemistry knowledge

    NASA Astrophysics Data System (ADS)

    McDermott, Mark Andrew

    2009-12-01

    This study was designed to examine the impact of embedding multiple modes of representing science information on student conceptual understanding in science. Multiple representations refer to utilizing charts, graphs, diagrams, and other types of representations to communicate scientific information. This study investigated the impact of encouraging students to embed or integrate the multiple modes with text in end of unit writing-to-learn activities. A quasi-experimental design with four separate sites consisting of intact chemistry classes taught by different teachers at each site was utilized. At each site, approximately half of the classes were designated treatment classes and students in these classes participated in activities designed to encourage strategies to embed multiple modes within text in student writing. The control classes did not participate in these activities. All classes participated in identical end of unit writing tasks in which they were required to use at least one mode other than text, followed by identical end of unit assessments. This progression was then repeated for a second consecutive unit of study. Analysis of quantitative data indicated that in several cases, treatment classes significantly outperformed control classes both on measures of embeddedness in writing and on end of unit assessment measures. In addition, analysis at the level of individual students indicated significant positive correlations in many cases between measures of student embeddedness in writing and student performance on end of unit assessments. Three factors emerged as critical in increasing the likelihood of benefit for students from these types of activities. First, the level of teacher implementation and emphasis on the embeddedness lessons was linked to the possibility of conceptual benefit. Secondly, students participating in two consecutive lessons appeared to receive greater benefit during the second unit, inferring a cumulative benefit. Finally, differential impact of the degree of embeddedness on student performance was noted based on student's level of science ability prior to the initiation of study procedures.

  13. Trends in gender diversity American soil science classes: 2004-2005 to 2013-2014 academic years

    NASA Astrophysics Data System (ADS)

    Lindbo, David L.; Brevik, Eric C.; Vaughan, Karen L.; Parikh, Sanjai J.; Dilliver, Holly; Steffan, Joshua J.; Weindorf, David; McDaniel, Paul; Mbila, Monday; Edinger-Marshall, Susan; Thomas, Pamela

    2017-04-01

    A diverse workforce has been viewed for a long time as a healthy workforce. Traditionally however Soil Science has been seen as a male dominated field. The total number of female students enrolled showed increasing trends in all classes investigated during this study, but the percentage of female students showed a decline when analyzed by total students enrolled and also declined in four of the seven individual classes investigated. While both total enrollment and female enrollment increased during the study, male enrollment increased more rapidly than female enrollment. Soil biology/microbiology classes had a trend of more than 45% female enrollment throughout the study period, but many classes had less than 40% female enrollment, especially after the 2008-2009 academic year, and some hovered around only 35% female enrollment. The percentage of female soil science students had increased in the USA and Canada from 1992 to 2004 (Baveye et al., 2006) and Miller (2011) reported an increase in the number of female students at Iowa State University in the early 2000s. Therefore, the decrease in percentage of female soil science students found in our study was disappointing, even though absolute numbers of female students increased. It appears there is still a need to find ways to better market soil science coursework to female students. One possible way to accomplish this is to take advantage of the fact that many schools are now focusing efforts on STEM training specifically for females in grades 5-12, whereby science projects, after school programs, and mentorship can substantively influence females to pursue science-based fields in college. Another possibility is to promote the trends in female employment. As an example female employment within the Soil Science Division of the USDA-NRCS has increased over the same period. It should also be noted that the number of females in leadership roles has also increased. As a profession, soil science should look to take advantage of these types of opportunities. Baveye, P., A.R. Jacobson, S.E. Allaire, J.P. Tandarich, and R.B. Bryant. 2006. Whither goes soil science in the United States and Canada? Soil Sci. 171:501-518. Miller, B.A. 2011. Marketing and branding the agronomy major at Iowa State University. J. Nat. Res. Life Sci. Educ. 40:1-9. doi:10.4195/jnrlse.2009.0037u.

  14. The effects of a combination of text structure awareness and graphic postorganizers on recall and retention of science knowledge

    NASA Astrophysics Data System (ADS)

    Spiegel, George F., Jr.; Barufaldi, James P.

    The purpose of this study was to determine the effectiveness of a self-regulated strategy on immediate recall and retention of science knowledge in community-college anatomy and physiology students who participated in a 14-hour (8 weeks) study skills class. The class emphasized the recognition of five common science textbook text structures (cause and effect, classification, enumeration, generalization, and sequence) and the construction of graphic postorganizers of the text structures. A pretest, two immediate posttests, and a retention posttest were used to measure recall and retention. Results indicated that on immediate posttests students who actively constructed graphic postorganizers of the test structure recalled significantly more content than did the control students who simply underlined, reread, or highlighted. On a 3-week retention posttest, those students in the study skills class retained significantly more of the material studied than did the control group of students.

  15. Working toward equitable opportunities for science students with disabilities: using professional development and technology.

    PubMed

    Bargerhuff, Mary Ellen; Cowan, Heidi; Kirch, Susan A

    2010-01-01

    As a result of federal legislation, adolescents with disabilities and other exceptionalities are increasingly included in science and math classes alongside their peers who are typically developing. The effectiveness of this placement option, however, is largely dependent on the skill level of the general educator and the support afforded to this teacher through various channels. Efforts arising from two National Science Foundation grants address both skill and support. Center's Lesson Adaptations for Student Success (CLASS) project used summer professional development opportunities to equip teachers with the knowledge and skills needed to provide students with physical, sensory and learning disabilities equitable access to laboratory and field experiences. Second, to support teachers back in their classrooms, the Ohio Resource Center's Lesson Adaptations for Student Success (OR-CLASS) uses web resources to share high quality, peer-reviewed lesson plans, complete with specific recommendations on adaptations for students with a variety of exceptional learning needs.

  16. The role of a science story, activities, and dialogue modeled on Philosophy for Children in teaching basic science process skills to fifth graders

    NASA Astrophysics Data System (ADS)

    Ferreira, Louise Brandes Moura

    This study was an application of Philosophy for Children pedagogy to science education. It was designed to answer the question, What roles do a science story (Harry Discovers Science), multi-sensorial activities designed to accompany the story, and classroom dialogue associated with the story---all modeled on the Philosophy for Children curriculum---play in the learning processes of a class of fifth graders with regard to the basic science process skills of classification, observation, and inference? To answer the question, I collected qualitative data as I carried out a participatory study in which I taught science to fifth graders at an international, bilingual private religious school in Brasilia, Brazil for a period of one semester. Twenty-one (n = 21) children participated in the study, 10 females and 11 males, who came from a predominantly middle and upper class social background. Data were collected through student interviews, student class reflection sheets, written learning assessments, audiotapes of all class sessions, including whole-class and small-class group discussions, and a videotape of one class session. Some of the key findings were that the story, activities and dialogue facilitated the children's learning in a number of ways. The story modeled the performance of classification, observation and inference skills for the children as well as reflection on the meaning of inference. The majority of the students identified with the fictional characters, particularly regarding traits such as cleverness and inquisitiveness, and with the learning context of the story. The multi-sensorial activities helped children learn observation and inference skills as well as dialogue. Dialogue also helped children self-correct and build upon each other's ideas. Some students developed theories about how ideal dialogue should work. In spite of the inherent limitations of qualitative and teacher research studies, as well as the limitations of this particular study, and despite the fact that there is a need for further research to confirm the transferability of findings, this study both supports and expands to the domain of basic science process skills the claim that Philosophy for Children helps students develop thinking skills.

  17. Teaching and Learning Science in Authoritative Classrooms: Teachers' Power and Students' Approval in Korean Elementary Classrooms

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-A.; Kim, Chan-Jong

    2017-09-01

    This study aims to understand interactions in Korean elementary science classrooms, which are heavily influenced by Confucianism. Ethnographic observations of two elementary science teachers' classrooms in Korea are provided. Their classes are fairly traditional teaching, which mean teacher-centered interactions are dominant. To understand the power and approval in science classroom discourse, we have adopted Critical Discourse Analysis (CDA). Based on CDA, form and function analysis was adopted. After the form and function analysis, all episodes were analyzed in terms of social distance. The results showed that both teachers exercised their power while teaching. However, their classes were quite different in terms of getting approval by students. When a teacher got students' approval, he could conduct the science lesson more effectively. This study highlights the importance of getting approval by students in Korean science classrooms.

  18. Science Achievement and Students' Self-Confidence and Interest in Science: A Taiwanese Representative Sample Study

    ERIC Educational Resources Information Center

    Chang, Chun-Yen; Cheng, Wei-Ying

    2008-01-01

    The interrelationship between senior high school students' science achievement (SA) and their self-confidence and interest in science (SCIS) was explored with a representative sample of approximately 1,044 11th-grade students from 30 classes attending four high schools throughout Taiwan. Statistical analyses indicated that a statistically…

  19. Revisiting the silence of Asian immigrant students: The negotiation of Korean immigrant students' identities in science classrooms

    NASA Astrophysics Data System (ADS)

    Ryu, Minjung

    This dissertation is a study about Korean immigrant students' identities, including academic identities related to science learning and identities along various social dimensions. I explore how Korean immigrant students participate in science classrooms and how they enact and negotiate their identities in their classroom discursive participation. My dissertation is motivated by the increasing attention in educational research to the intersectionality between science learning and various dimensions of identities (e.g., gender, race, ethnicity, social networks) and a dearth of such research addressing Asian immigrant students. Asian immigrant students are stereotyped as quiet and successful learners, particularly in science and mathematics classes, and their success is often explained by cultural differences. I confront this static and oversimplified notion of cultural differences and Asians' academic success and examine the intersectionality between science learning and identities of Asian immigrant students, with the specific case of Korean immigrants. Drawing upon cultural historical and sociolinguistic perspectives of identity, I propose a theoretical framework that underscores multiple levels of contexts (macro level, meso level, personal, and micro level contexts) in understanding and analyzing students' identities. Based on a year-long ethnographic study in two high school Advanced Placement Biology classes in a public high school, I present the meso level contexts of the focal school and biology classes, and in-depth analyses of three focal students. The findings illustrate: (1) how meso level contexts play a critical role in these students' identities and science classroom participation, (2) how the meso level contexts are reinterpreted and have different meanings to different students depending on their personal contexts, and (3) how students negotiated their positions to achieve certain identity goals. I discuss the implications of the findings for the science education of racially, ethnically, and linguistically diverse students, particularly given the increasing number of immigrant students in U.S. classrooms, and for the education of Asian immigrant students.

  20. Throwing the Dice: Teaching the Hemocytometer

    ERIC Educational Resources Information Center

    Salm, Sarah; Goodwyn, Lauren; van Loon, Nanette; Lind, Georgia

    2010-01-01

    One of the concepts taught to science students is the use of hemocytometer. Students in microbiology, genetics, and anatomy and physiology (A&P) classes use the hemocytometer in a variety of activities. In microbiology and genetics classes, it is used to quantify yeast cells, while in A&P classes; students learn how to count blood cells. This…

  1. Pre-college experiences in and out of the classroom lead to first-year barriers

    NASA Astrophysics Data System (ADS)

    Reed, D. E.; Kaplita, E.; McKenzie, D. A.; Jones, R.; May, L. W.

    2015-12-01

    Students often enter college with preconceived notions about science. These misconceptions, coupled with a potential for a limited number of science classes during college for non-science majors, can make correcting misconceptions a very daunting challenge. In order to efficiently commutate climate science in a limited number of science classes, instructors need to understand the student experiences that have created their preconceived notions. In many cases, a lack of data about student's experiences leads to instructors simply guessing at how students are thinking about and interacting with science. Student surveys were used in our work to quantify pre-college experiences, both in and out of the classroom, in order to examine the connection to both academic major and choice of college or university students attended. Surveys were given to nearly 400 students across 4 different schools in the Oklahoma City Metro area. The location of students (rural or urban) affected science experiences as well as what types of actives (local libraries, museums, or parks) were available to the students. Connections between the timing of experience (elementary through high school) and the type of experience (in the classroom, with family/friends, or on their own) may influence choice of college or university as well as academic major. A better understating of positive student science experiences will allow instructors to better tailor their pedagogy and facilitate better connections between climate science and students.

  2. Blockbuster Ideas: Activities for Breaking Up Block Periods.

    ERIC Educational Resources Information Center

    Bohince, Judy

    1996-01-01

    Describes how to approach block scheduling of science classes. Discusses the planning process, specific activities that work well in longer science classes, and techniques for motivating students. (DDR)

  3. Family Science Night: Changing Perceptions One Family at a Time

    NASA Technical Reports Server (NTRS)

    Pesnell, W. D.; Drobnes, E.; Mitchell, S.; Colina-Trujillo, M.

    2007-01-01

    If students are not encouraged to succeed in science, mathematics, and technology classes at school, efforts to improve the quality of content and teaching in these subjects may be futile. Parents and families are in a unique position to encourage children to enroll and achieve in these classes. The NASA Goddard Space Flight Center Family Science Night program invites middle school students and their families to explore the importance of science and technology in our daily lives by providing a venue for families to comfortably engage in learning activities that change their perception and understanding of science - making it more practical and approachable for participants of all ages. Family Science Night strives to change the way that students and their families participate in science, within the program and beyond.

  4. An Examination of Views of Science Held by English-Trained Chinese Students

    ERIC Educational Resources Information Center

    Stonier, Francis W.; Dickerson, Daniel L.; Lucking, Robert

    2012-01-01

    The purpose of the study was to examine what science views were accepted or rejected by the Chinese university students. We administered the Thinking about Science Survey Instrument (TSSI) to 75 Chinese students in the Sichuan province who were enrolled in Science and Technology English classes. The TSSI focuses on nine key areas of science and…

  5. Impacts of an Inquiry Teaching Method on Earth Science Students' Learning Outcomes and Attitudes at the Secondary School Level.

    ERIC Educational Resources Information Center

    Mao, Song-Ling; Chang, Chun-Yen

    This paper summarizes two companion studies that were designed to investigate the impacts of an inquiry teaching method on Earth science students' achievement and attitudes towards Earth science in secondary schools. Subjects were 557 students (9th grade) enrolled in 14 Earth science classes. Two Earth science units, including topics of astronomy…

  6. Examining the Effects of Science Manipulatives on Achievement, Attitudes, and Journal Writing of Elementary Science Students.

    ERIC Educational Resources Information Center

    Frederick, Lynda R.; Shaw, Edward L., Jr.

    This study examined several aspects of elementary science students' achievement, attitudes, and journal writing in conjunction with an Alabama Hands-on Activity Science Program (HASP) grant utilizing the Full Option Science System (FOSS) kit. The sample of 56 fourth grade students in two classes was administered a 15-item pretest and post-test.…

  7. The Dynamics of Learning Science in Everyday Contexts: A Case Study of Everyday Science Class in Korea

    ERIC Educational Resources Information Center

    Kim, Mijung; Yoon, Heesook; Ji, Young Rae; Song, Jinwoong

    2012-01-01

    With recognition of the importance of scientific literacy for the nation and yet the increasing students' disinterest in science through school science curriculum, the Korea Science Foundation launched an innovative program called "Everyday Science Class (ESC)" in partnership with universities and local government offices in 2003. In…

  8. The Effects of a Concept Map-Based Information Display in an Electronic Portfolio System on Information Processing and Retention in a Fifth-Grade Science Class Covering the Earth's Atmosphere

    ERIC Educational Resources Information Center

    Kim, Paul; Olaciregui, Claudia

    2008-01-01

    An electronic portfolio system, designed to serve as a resource-based learning space, was tested in a fifth-grade science class. The control-group students accessed a traditional folder-based information display in the system and the experimental-group students accessed a concept map-based information display to review a science portfolio. The…

  9. The effects of collaborative video production on the attitudes and science knowledge of sixth graders

    NASA Astrophysics Data System (ADS)

    Gaston, Joseph Pickett

    This quantitative study examined the effects of collaborative video production (CVP) on the attitudes and conceptual understanding of sixth-grade science students at a public middle school in the Southeastern United States. This study followed the nonequivalent control group design, as described by Campbell and Stanley (1963). The study involved four classes of sixth-grade students. The two control classes were taught the science concept by the cooperating teacher through direct instruction, and the two experimental classes learned the science concept through the CVP project. Pre- and posttests were administered to all students, as well as two pre- and post-surveys measuring student attitudes towards science and technology. Analysis of covariance (ANCOVA) with the pretest scores as the covariate (Xc) was conducted with the posttest and post-survey data to determine if a significant difference existed in scores between the two groups. In each case, no significant difference was found. The results of this study suggest that CVP was as effective at conveying conceptual understanding to sixth-grade science students as direct instruction. Although not significant, the study also showed that mean scores of students' attitudes towards science and technology increased from pre-surveys to post-surveys for those who participated in the CVP activity. These findings suggest that the treatment contributed to an increase in participants' attitudes and towards technology and the academic subject. No such increase in mean post-survey scores existed for students receiving direct instruction.

  10. Exploring the consequences of combining medical students with and without a background in biomedical sciences.

    PubMed

    Ellaway, Rachel H; Bates, Amanda; Girard, Suzanne; Buitenhuis, Deanna; Lee, Kyle; Warton, Aidan; Russell, Steve; Caines, Jill; Traficante, Eric; Graves, Lisa

    2014-07-01

    Medical schools have tended to admit students with strong backgrounds in the biomedical sciences. Previous studies have shown that those with backgrounds in the social sciences can be as successful in medical school as those with science backgrounds. However, the experience of being a 'non-science' student over time has not been well described. A mixed-methods study was developed and run with the aim of elucidating the personal experiences of science and non-science students at our institution. Data were generated from a student survey that focused on participants' self-identification as science or non-science students, and on their sense of preparedness and stress, and from a series of student focus groups exploring participants' experiences of science and non-science issues in all aspects of their training. Descriptive statistics were generated for structured survey data. Focus group data and unstructured survey data were analysed to identify common themes. End-of-module and end-of-year examination data for the four class cohorts in the programme were also analysed to compare science and non-science student performance over time. There were clear differences between the experiences and performance of science and non-science students. We found dichotomies in students' self-reported sense of preparedness and stress levels, and marked differences in their examination performance, which diminished over time to converge around the third year of their studies. Combining science and non-science students in the same class affected the students to different extents and in different ways. The potential disruption of mixing science and non-science students diminished as their levels of performance converged. The psychosocial stress experienced by non-science students and the challenges it posed, in both their academic and their personal lives, have implications for how such students should be supported, and how curricula can be configured to afford quality learning for all medical students. © 2014 John Wiley & Sons Ltd.

  11. Generic Science Skills Enhancement of Students through Implementation of IDEAL Problem Solving Model on Genetic Information Course

    NASA Astrophysics Data System (ADS)

    Zirconia, A.; Supriyanti, F. M. T.; Supriatna, A.

    2018-04-01

    This study aims to determine generic science skills enhancement of students through implementation of IDEAL problem-solving model on genetic information course. Method of this research was mixed method, with pretest-posttest nonequivalent control group design. Subjects of this study were chemistry students enrolled in biochemistry course, consisted of 22 students in the experimental class and 19 students in control class. The instrument in this study was essayed involves 6 indicators generic science skills such as indirect observation, causality thinking, logical frame, self-consistent thinking, symbolic language, and developing concept. The results showed that genetic information course using IDEAL problem-solving model have been enhancing generic science skills in low category with of 20,93%. Based on result for each indicator, showed that there are indicators of generic science skills classified in the high category.

  12. The Nature of Science and Art

    ERIC Educational Resources Information Center

    Chessin, Debby; Zander, Mary Jane

    2006-01-01

    A Mrs. Jefferson, a sixth-grade lead science teacher, wandered through her students' art show, she enjoyed the creative drawings that her students did in art class. Next year, due to budget cuts, the art teacher would be shared with several other schools and would not have time for weekly art classes for every grade. The principal understood the…

  13. Non-Stop Lab Week: A Real Laboratory Experience for Life Sciences Postgraduate Courses

    ERIC Educational Resources Information Center

    Freitas, Maria João; Silva, Joana Vieira; Korrodi-Gregório, Luís; Fardilha, Margarida

    2016-01-01

    At the Portuguese universities, practical classes of life sciences are usually professor-centered 2-hour classes. This approach results in students underprepared for a real work environment in a research/clinical laboratory. To provide students with a real-life laboratory environment, the Non-Stop Lab Week (NSLW) was created in the Molecular…

  14. Investigating Optimal Learning Moments in U.S. and Finnish Science Classes

    ERIC Educational Resources Information Center

    Schneider, Barbara; Krajcik, Joseph; Lavonen, Jari; Salmela-Aro, Katariina; Broda, Michael; Spicer, Justina; Bruner, Justin; Moeller, Julia; Linnansaari, Janna; Juuti, Kalle; Viljaranta, Jaana

    2016-01-01

    This study explores how often students are engaged in their science classes and their affective states during these times, using an innovative methodology that records these experiences "in situ". Sampling a subset of high schools in the U.S. and Finland, we collected over 7,000 momentary responses from 344 students over the course of a…

  15. Gender-Based Education: Why It Works at the Middle School Level.

    ERIC Educational Resources Information Center

    Perry, William C.

    1996-01-01

    To counter gender bias effects and improve student learning, staff at a Virginia middle school decided to group eighth-grade students by gender for math and science instruction. Girls felt freer to speak out. Grade point averages in gender-based science and math classes for both girls and boys were higher than in coeducational classes. (MLH)

  16. An Examination of Single-Gender and Coeducational Classes: Their Impact on the Academic Achievement of Middle School Students Enrolled in Mathematics and Science at Selected Schools in Georgia

    ERIC Educational Resources Information Center

    Elam, Jeanette H.

    2009-01-01

    The purpose of this study was to compare the academic performance of students enrolled in coeducational instruction and single-gender instruction. Within this framework, the researcher examined class type, gender, and racial/ethnicity using the sixth grade CRCT scores of selected students in the areas of mathematics and science. The fifth-grade…

  17. STEM for Non-STEM Majors: Enhancing Science Literacy in Large Classes

    ERIC Educational Resources Information Center

    Jin, Guang; Bierma, Tom

    2013-01-01

    This study evaluated a strategy using "clickers," POGIL (process oriented guided inquiry learning), and a focused science literacy orientation in an applied science course for non-STEM undergraduates taught in large classes. The effectiveness of these interventions in improving the science literacy of students was evaluated using a…

  18. Learning science in small multi-age groups: the role of age composition

    NASA Astrophysics Data System (ADS)

    Kallery, Maria; Loupidou, Thomais

    2016-06-01

    The present study examines how the overall cognitive achievements in science of the younger children in a class where the students work in small multi-age groups are influenced by the number of older children in the groups. The context of the study was early-years education. The study has two parts: The first part involved classes attended by pre-primary children aged 4-6. The second part included one primary class attended by students aged 6-8 in addition to the pre-primary classes. Students were involved in inquiry-based science activities. Two sources of data were used: Lesson recordings and children's assessments. The data from both sources were separately analyzed and the findings plotted. The resulting graphs indicate a linear relationship between the overall performance of the younger children in a class and the number of older ones participating in the groups in each class. It seems that the age composition of the groups can significantly affect the overall cognitive achievements of the younger children and preferentially determines the time within which this factor reaches its maximum value. The findings can be utilized in deciding the age composition of small groups in a class with the aim of facilitating the younger children's learning in science.

  19. Exploration and practice in-class practice teaching mode

    NASA Astrophysics Data System (ADS)

    Zang, Xue-Ping; Wu, Wei-Feng

    2017-08-01

    According to the opto-electronic information science and engineering professional course characteristics and cultivate students' learning initiative, raised the teaching of photoelectric professional course introduce In-class practice teaching mode. By designing different In-class practice teaching content, the students' learning interest and learning initiative are improved, deepen students' understanding of course content and enhanced students' team cooperation ability. In-class practice teaching mode in the course of the opto-electronic professional teaching practice, the teaching effect is remarkable.

  20. The Effects of Prior-Knowledge and Online Learning Approaches on Students' Inquiry and Argumentation Abilities

    ERIC Educational Resources Information Center

    Yang, Wen-Tsung; Lin, Yu-Ren; She, Hsiao-Ching; Huang, Kai-Yi

    2015-01-01

    This study investigated the effects of students' prior science knowledge and online learning approaches (social and individual) on their learning with regard to three topics: science concepts, inquiry, and argumentation. Two science teachers and 118 students from 4 eighth-grade science classes were invited to participate in this research. Students…

  1. Shrinking Your Class

    ERIC Educational Resources Information Center

    Herron-Thorpe, Farren L.; Olson, Jo Clay; Davis, Denny

    2010-01-01

    Toys in the classroom was the result of a National Science Foundation grant that brought two engineering graduate students to a middle school math class. The graduate students and teachers collaborated in an effort to enhance students' mathematical learning. An engineering context was theorized as a way to further develop students' understanding…

  2. Pedagogical experimentations about participating science, in a european class, in France.

    NASA Astrophysics Data System (ADS)

    Burgio, Marion

    2015-04-01

    A european class is, in France, a class in which we teach a subject in a foreign language, for example science in English. I led, in my European class, during a seven weeks session, group work activities about different participating science actions. There were groups composed of three or four 16 years old students. Each group chose one type of participating science activity among : - Leading a visioconference with an IODP mission on board the Joides Resolution. - Being part of a "science songs community" with Tom Mc Fadden They divided the work and some of them studied the websites and contacted the actors to present the pedagogical or scientific background of their subject. Others had a concrete production like the organization of a visioconference with the Joides Resolution or the creation of a pedagogical song about geology. I will present some results of their work and explain the students motivation linked to this active learning method.

  3. Students' Regulation of Their Emotions in a Science Classroom

    ERIC Educational Resources Information Center

    Tomas, Louisa; Rigano, Donna; Ritchie, Stephen M.

    2016-01-01

    Research aimed at understanding the role of the affective domain in student learning in classrooms has undergone a recent resurgence due to the need to understand students' affective response to science instruction. In a case study of a year 8 science class in North Queensland, students worked in small groups to write, film, edit, and produce…

  4. High School Physics Students' Personal Epistemologies and School Science Practice

    ERIC Educational Resources Information Center

    Alpaslan, Muhammet Mustafa; Yalvac, Bugrahan; Loving, Cathleen

    2017-01-01

    This case study explores students' physics-related personal epistemologies in school science practices. The school science practices of nine eleventh grade students in a physics class were audio-taped over 6 weeks. The students were also interviewed to find out their ideas on the nature of scientific knowledge after each activity. Analysis of…

  5. An Ethnomethodological Perspective on How Middle School Students Addressed a Water Quality Problem

    ERIC Educational Resources Information Center

    Belland, Brian R.; Gu, Jiangyue; Kim, Nam Ju; Turner, David J.

    2016-01-01

    Science educators increasingly call for students to address authentic scientific problems in science class. One form of authentic science problem--socioscientific issue--requires that students engage in complex reasoning by considering both scientific and social implications of problems. Computer-based scaffolding can support this process by…

  6. Let's Get Physical

    ERIC Educational Resources Information Center

    Kahn, Sami; Wild, Tiffany; Woolsey, Lynn; Haegele, Justin A.

    2014-01-01

    How do students with visual impairments measure liquids? Can a student with cerebral palsy participate in hands-on science activities? What challenges might a hearing-impaired student have in my science class? These are just some of the important questions increasingly being asked by science teachers, thanks in part to the Individuals with…

  7. Diagnostic Tests for Entering and Departing Undergraduate Students

    NASA Astrophysics Data System (ADS)

    Waltham, Chris; Kotlicki, A.

    2006-12-01

    A diagnostic test administered at the start of a class should test basic concepts which are recognized as course prerequisites. The questions should not be over-packaged: e.g. students should be required to create models, rather than this being done for them each time. Students should be allowed great latitude in their answers, so we can discover what they are thinking. When administered at the end of a class the goals should be similar: testing concepts taught in the class itself and the retention of necessary concepts from previous classes. Great care has to be taken to avoid teaching to the test. In assessing an entire program, for example an undergraduate majors degree in physics, then one looks for very general skills and knowledge not specific to any one course. The purpose of an undergraduate degree in physics (or indeed any science) is to equip the students with a set of problem-solving skills and basic knowledge which can be applied in a large variety of workplace settings and to allow that student to contribute to civic society as a science-literate person. The creator of any diagnostic test should always have these big goals in mind. We have developed a set of questions which we think fulfill these criteria, yet are not specific to any particular level of science education. They have been administered to students in secondary schools across Canada, incoming first-year science students and final-year physics students at the University of British Columbia. The results will be presented.

  8. Associations between school-level environment and science classroom environment in secondary schools

    NASA Astrophysics Data System (ADS)

    Dorman, Jeffrey P.; Fraser, Barry J.; McRobbie, Campbell J.

    1995-09-01

    This article describes a study of links between school environment and science classroom environment. Instruments to assess seven dimensions of school environment (viz., Empowerment, Student Support, Affiliation, Professional Interest, Mission Consensus, Resource Adequacy and Work Pressure) and seven dimensions of classroom environment (viz., Student Affiliation, Interactions, Cooperation, Task Orientation, Order & Organisation, Individualisati n and Teacher Control) in secondary school science classrooms were developed and validated. The study involved a sample of 1,318 students in 64 year 9 and year 12 science classes and 128 teachers of science in Australian secondary schools. Using the class mean as the unit of analysis for student data, associations between school and classroom environment were investigated using simple, multiple and canonical correlational analyses. In general, results indicated weak relationships between school and classroom environments and they reinforced the view that characteristics of the school environment are not transmitted automatically into science classrooms.

  9. Development and Validation of an Instrument to Measure Students' Motivation and Self-Regulation in Science Learning

    NASA Astrophysics Data System (ADS)

    Velayutham, Sunitadevi; Aldridge, Jill; Fraser, Barry

    2011-10-01

    Students' motivational beliefs and self-regulatory practices have been identified as instrumental in influencing the engagement of students in the learning process. An important aim of science education is to empower students by nurturing the belief that they can succeed in science learning and to cultivate the adaptive learning strategies required to help to bring about that success. This article reports the development and validation of an instrument to measure salient factors related to the motivation and self-regulation of students in lower secondary science classrooms. The development of the instrument involved identifying key determinants of students' motivation and self-regulation in science learning based on theoretical and research underpinnings. Once the instrument was developed, a pilot study involving 52 students from two Grade 8 science classes was undertaken. Quantitative data were collected from 1,360 students in 78 classes across Grades 8, 9, and 10, in addition to in-depth qualitative information gathered from 10 experienced science teachers and 12 Grade 8 students. Analyses of the data suggest that the survey has strong construct validity when used with lower secondary students. This survey could be practically valuable as a tool for gathering information that may guide classroom teachers in refocusing their teaching practices and help to evaluate the effectiveness of intervention programmes.

  10. Effects of Teacher Science Support on Student Science Support in Selected Tenth Grade Biology Classes.

    ERIC Educational Resources Information Center

    Simpson, Ronald Dale

    The objectives of this study were (1) to assess the effects of teacher science support, as measured by the Science Support Scale (Tri-S scale), on student science support and (2) to gain normative data on the Science Support Scale as an instrument for use with high school students. Twenty-four 10th grade biology teachers were given the Tri-S scale…

  11. Is Science for Us? Black Students' and Parents' Views of Science and Science Careers

    ERIC Educational Resources Information Center

    Archer, Louise; Dewitt, Jennifer; Osborne, Jonathan

    2015-01-01

    There are widespread policy concerns to improve (widen and increase) science, technology, engineering, and mathematics participation, which remains stratified by ethnicity, gender, and social class. Despite being interested in and highly valuing science, Black students tend to express limited aspirations to careers in science and remain…

  12. Exploring environmental identity and behavioral change in an Environmental Science course

    NASA Astrophysics Data System (ADS)

    Blatt, Erica N.

    2013-06-01

    This ethnographic study at a public high school in the Northeastern United States investigates the process of change in students' environmental identity and proenvironmental behaviors during an Environmental Science course. The study explores how sociocultural factors, such as students' background, social interactions, and classroom structures, impact the environmental identity and behavior of students. In this investigation, the identity theory of emotion of Stryker (2004) from the field of sociology is utilized in the interpretation of students' reactions to classroom experiences as they proceed through the Environmental Science course. The participants in this study are an Environmental Science teacher and the 10-12th grade students in her Environmental Science elective course. The researcher collected data for a period of six months, attending class on a daily basis. Data was collected through participant observation, videotaping, interviews, and cogenerative dialogues. The results of this study inform science educators by illuminating important elements, such as students' emotional responses to activities in class, conflicting elements of students' identities, and students' openness and willingness to critically reflect upon new information, which contribute to whether a student is likely to change their views towards the environment and pro-environmental behaviors.

  13. Negotiating the Inquiry Question: A Comparison of Whole Class and Small Group Strategies in Grade Five Science Classrooms

    NASA Astrophysics Data System (ADS)

    Cavagnetto, Andy R.; Hand, Brian; Norton-Meier, Lori

    2011-03-01

    The purpose of this study is to examine the effect of two strategies for negotiating the question for exploration during science inquiry on student achievement and teachers' perceptions. The study is set in the context of the Science Writing Heuristic. The first strategy (small group) consisted of each group of four students negotiating a question for inquiry with the teacher while the second strategy (whole class) consisted of the entire class negotiating a single question for inquiry with the teacher. The study utilized a mixed-method approach. A quasi-experimental repeated measures design was used to determine the effect of strategy on student achievement and semi-structured teacher interviews were used to probe the question of teacher perceptions of the two strategies. Teacher observations were conducted using the Reformed Teaching Observation Protocol (RTOP) to check for variation in implementation of the two strategies. Iowa Test of Basic Skills Science (ITBSS) (2005 and 2006) and teacher/researcher developed unit exams (pre and post) were used as student achievement measures. No statistically significant differences were found among students in the two treatment groups on the ITBSS or unit exams. RTOP observations suggest that teacher implementation was consistent across the two treatment strategies. Teachers disclosed personal preferences for the two strategies, indicating the whole class treatment was easier to manage (at least at the beginning of the school year) as students gained experience with science inquiry and the associated increased responsibility. Possible mechanisms linking the two strategies, negotiated questions, and student outcomes are discussed.

  14. The Science Standards and Students of Color

    ERIC Educational Resources Information Center

    Strachan, Samantha L.

    2017-01-01

    In a 2014 report, the National Center for Education Statistics (NCES) projected that by the year 2022, minority students will outnumber non-Hispanic white students enrolled in public schools. As the diversity of the student population in the United States increases, concerns arise about student performance in science classes, especially among…

  15. Interest in STEM is contagious for students in biology, chemistry, and physics classes.

    PubMed

    Hazari, Zahra; Potvin, Geoff; Cribbs, Jennifer D; Godwin, Allison; Scott, Tyler D; Klotz, Leidy

    2017-08-01

    We report on a study of the effect of peers' interest in high school biology, chemistry, and physics classes on students' STEM (science, technology, engineering, and mathematics)-related career intentions and course achievement. We define an interest quorum as a science class where students perceive a high level of interest for the subject matter from their classmates. We hypothesized that students who experience such an interest quorum are more likely to choose STEM careers. Using data from a national survey study of students' experiences in high school science, we compared the effect of five levels of peer interest reported in biology, chemistry, and physics courses on students' STEM career intentions. The results support our hypothesis, showing a strong, positive effect of an interest quorum even after controlling for differences between students that pose competing hypotheses such as previous STEM career interest, academic achievement, family support for mathematics and science, and gender. Smaller positive effects of interest quorums were observed for course performance in some cases, with no detrimental effects observed across the study. Last, significant effects persisted even after controlling for differences in teaching quality. This work emphasizes the likely importance of interest quorums for creating classroom environments that increase students' intentions toward STEM careers while enhancing or maintaining course performance.

  16. Teaching Citizenship in Science Classes at the University of Arizona

    NASA Astrophysics Data System (ADS)

    Thompson, R. M.; Mangin, K.

    2008-12-01

    Science classes for non-science majors present unique opportunities to create lifelong science aficionados and teach citizenship skills. Because no specific content is needed for future courses, subject matter can be selected to maximize interest and assignments can be focused on life skills such as science literacy instead of discipline-specific content mastery. Dinosaurs! is a very successful non-major science class with a minimum enrollment of 150 that is intended for sophomores. One of the goals of this class is to increase students' awareness of social issues, the political process, and opportunities for keeping up with science later in life. The main theme of this class is evolution. The bird-dinosaur link is the perfect vehicle for illustrating the process of science because the lines of evidence are many, convincing, and based on discoveries made throughout the last half-century and continuing to the present day. The course is also about evolution the social issue. The second writing assignment is an in-class affective writing based on a newspaper article about the Dover, PA court case. The primary purpose of this assignment is to create a comfort zone for those students with strong ideological biases against evolution by allowing them to express their views without being judged, and to instill tolerance and understanding in students at the other end of the spectrum. Another homework uses thomas.loc.gov, the government's public website providing information about all legislation introduced since the 93rd Congress and much more. The assignment highlights the difficulty of passing legislation and the factors that contribute to a given bill's legislative success or failure using the Paleontological Resources Preservation Act, S320. Details of these assignments and others designed to achieve the goals stated above will be presented. A very different undergraduate program, Marine Discovery, offers science majors the opportunity to earn upper division science credits while teaching young people about marine science and conservation. Classes of elementary and middle school students attend a class field trip to a UA teaching laboratory where they explore a variety of hands-on marine biology centers. Undergraduates facilitate the learning centers and develop new centers for future years of the program. In addition, undergraduates in Marine Discovery do a marine ecology field project during a field trip to the Gulf of California, and present their results as a research poster to their peers. The course is entirely project- based, and helps students to develop informal as well as formal science communication skills. Many outreach programs suffer from loss of funding and lack of sustainability. Marine Discovery's popularity with both UA undergraduates and K-12 teachers has helped sustain it into its sixteenth year.

  17. Enabling Wide-Scale Computer Science Education through Improved Automated Assessment Tools

    NASA Astrophysics Data System (ADS)

    Boe, Bryce A.

    There is a proliferating demand for newly trained computer scientists as the number of computer science related jobs continues to increase. University programs will only be able to train enough new computer scientists to meet this demand when two things happen: when there are more primary and secondary school students interested in computer science, and when university departments have the resources to handle the resulting increase in enrollment. To meet these goals, significant effort is being made to both incorporate computational thinking into existing primary school education, and to support larger university computer science class sizes. We contribute to this effort through the creation and use of improved automated assessment tools. To enable wide-scale computer science education we do two things. First, we create a framework called Hairball to support the static analysis of Scratch programs targeted for fourth, fifth, and sixth grade students. Scratch is a popular building-block language utilized to pique interest in and teach the basics of computer science. We observe that Hairball allows for rapid curriculum alterations and thus contributes to wide-scale deployment of computer science curriculum. Second, we create a real-time feedback and assessment system utilized in university computer science classes to provide better feedback to students while reducing assessment time. Insights from our analysis of student submission data show that modifications to the system configuration support the way students learn and progress through course material, making it possible for instructors to tailor assignments to optimize learning in growing computer science classes.

  18. Applying Innovative Educational Principles when Classes Grow and Resources Are Limited: Biochemistry Experiences at Muhimbili University of Allied Health Sciences

    ERIC Educational Resources Information Center

    Omer, Selma; Hickson, Gilles; Tache, Stephanie; Blind, Raymond; Masters, Susan; Loeser, Helen; Souza, Kevin; Mkony, Charles; Debas, Haile; O'Sullivan, Patricia

    2008-01-01

    Teaching to large classes is often challenging particularly when the faculty and teaching resources are limited. Innovative, less staff intensive ways need to be explored to enhance teaching and to engage students. We describe our experience teaching biochemistry to 350 students at Muhimbili University of Health and Allied Sciences (MUHAS) under…

  19. An Analysis of Argumentation Discourse Patterns in Elementary Teachers' Science Classroom Discussions

    NASA Astrophysics Data System (ADS)

    Kim, Sungho; Hand, Brian

    2015-04-01

    This multiple case study investigated how six elementary teachers' argumentation discourse patterns related to students' discussions in the science classroom. Four categories of classroom characteristics emerged through the analysis of the teachers' transcripts and recorded class periods: Structure of teacher and student argumentation, directionality, movement, and structure of student talk. Results showed that the differences between the teachers' discourse patterns were related to their modified reformed teaching observation protocol (RTOP) scores and to how the interaction of those differences affected student learning. Teachers with high RTOP scores were more likely to challenge their students' claims, explanations, and defenses and to provide less guidance and more waiting time for their students' responses than teachers with medium- and low-level RTOP scores. Students in the high-level teachers' classes challenged, defended, rejected, and supported each other's ideas with evidence and required less guidance than students in the medium-level and low-level teachers' classes.

  20. Modeling Aspects Of Nature Of Science To Preservice Elementary Teachers

    NASA Astrophysics Data System (ADS)

    Ashcraft, Paul

    2007-01-01

    Nature of science was modeled using guided inquiry activities in the university classroom with elementary education majors. A physical science content course initially used an Aristotelian model where students discussed the relationship between distance from a constant radiation source and the amount of radiation received based on accepted ``truths'' or principles and concluded that there was an inverse relationship. The class became Galilean in nature, using the scientific method to test that hypothesis. Examining data, the class rejected their hypothesis and concluded that there is an inverse square relationship. Assignments, given before and after the hypothesis testing, show the student's misconceptions and their acceptance of scientifically acceptable conceptions. Answers on exam questions further support this conceptual change. Students spent less class time on the inverse square relationship later when examining electrostatic force, magnetic force, gravity, and planetary solar radiation because the students related this particular experience to other physical relationships.

  1. Teaching science for public understanding: Developing decision-making abilities

    NASA Astrophysics Data System (ADS)

    Siegel, Marcelle A.

    One of the most important challenges educators have is teaching students how to make decisions about complex issues. In this study, methods designed to enhance students' decision-making skills and attitudes were investigated. An issue-oriented science curriculum was partly replaced with activities designed by the experimenter. The first objective of the study was to examine the effects of an instructional method to increase students' use of relevant scientific evidence in their decisions. The second goal of the research was to test whether the instructional activities could promote students' beliefs that science is relevant to them, because attitudes have been shown to affect students' performance and persistence (Schommer, 1994). Third, the study was designed to determine whether the instructional activities would affect students' beliefs that their intelligence is not fixed but can grow; this question is based on Dweck and Leggett's (1988) definition of two orientations toward intelligence---entity theorists and incremental theorists (Dweck & Leggett, 1988; Dweck & Henderson, 1989). Two urban high-school classrooms participated in this study. Tenth graders examined scientific materials about current issues involving technology and society. Instructional materials on decision making were prepared for one class of students to enhance their regular issue-oriented course, Science and Sustainability. A computer program, called Convince Me (Schank, Ranney & Hoadley, 1996), provided scaffolding for making an evidence-based decision. The experimental group's activities also included pen-and-paper lessons on decision making and the effect of experience on the structure of the brain. The control class continued to engage in Science and Sustainability decision-making activities during the time the experimental class completed the treatment. The control group did not show significant improvement on decision-making tasks, and the experimental group showed marginally significant gains (p = .06) according to the Rasch analysis. A measure of students' understanding of coherent argumentation was correlated with higher decision posttest scores. Over time, both classes significantly regarded science as being more relevant to everyday life. Students' attitudes about ability showed insignificant changes.

  2. Teaching Strategies for Developing Students' Argumentation Skills About Socioscientific Issues in High School Genetics

    NASA Astrophysics Data System (ADS)

    Dawson, Vaille Maree; Venville, Grady

    2010-03-01

    An outcome of science education is that young people have the understandings and skills to participate in public debate and make informed decisions about science issues that influence their lives. Toulmin’s argumentation skills are emerging as an effective strategy to enhance the quality of evidence based decision making in science classrooms. In this case study, an Australian science teacher participated in a one-on-one professional learning session on argumentation before explicitly teaching argumentation skills to two year 10 classes studying genetics. Over two lessons, the teacher used whole class discussion and writing frames of two socioscientific issues to teach students about argumentation. An analysis of classroom observation field notes, audiotaped lesson transcripts, writing frames and student interviews indicate that four factors promoted student argumentation. The factors are: the role of the teacher in facilitating whole class discussion; the use of writing frames; the context of the socioscientific issue; and the role of the students. It is recommended that professional learning to promote student argumentation may need to be tailored to individual teachers and that extensive classroom based research is required to determine the impact of classroom factors on students’ argumentation.

  3. Unintended Consequences: How Science Professors Discourage Women of Color

    ERIC Educational Resources Information Center

    Johnson, Angela C.

    2007-01-01

    This study examined how 16 Black, Latina, and American Indian women science students reacted to their undergraduate science classes. I focused on the meanings they made of the common features of university science documented by Seymour and Hewitt (1997), including large, competitive, fast-paced classes, poor teaching, and an unsupportive culture.…

  4. Aerospace-Related Life Science Concepts for Use in Life Science Classes Grades 7-12.

    ERIC Educational Resources Information Center

    Williams, Mary H.; Rademacher, Jean

    The purpose of this guide is to provide the teacher of secondary school life science classes with resource materials for activities to familiarize students with recent discoveries in bioastronautics. Each section introduces a life science concept and a related aerospace concept, gives background information, suggested activities, and an annotated…

  5. Deaf, Hard-of-Hearing, and Hearing Signing Undergraduates' Attitudes toward Science in Inquiry-Based Biology Laboratory Classes.

    PubMed

    Gormally, Cara

    2017-01-01

    For science learning to be successful, students must develop attitudes toward support future engagement with challenging social issues related to science. This is especially important for increasing participation of students from underrepresented populations. This study investigated how participation in inquiry-based biology laboratory classes affected students' attitudes toward science, focusing on deaf, hard-of-hearing, and hearing signing students in bilingual learning environments (i.e., taught in American Sign Language and English). Analysis of reflection assignments and interviews revealed that the majority of students developed positive attitudes toward science and scientific attitudes after participating in inquiry-based biology laboratory classes. Attitudinal growth appears to be driven by student value of laboratory activities, repeated direct engagement with scientific inquiry, and peer collaboration. Students perceived that hands-on experimentation involving peer collaboration and a positive, welcoming learning environment were key features of inquiry-based laboratories, affording attitudinal growth. Students who did not perceive biology as useful for their majors, careers, or lives did not develop positive attitudes. Students highlighted the importance of the climate of the learning environment for encouraging student contribution and noted both the benefits and pitfalls of teamwork. Informed by students' characterizations of their learning experiences, recommendations are made for inquiry-based learning in college biology. © 2017 C. Gormally. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Motivation in High School Science Students: A Comparison of Gender Differences in Life, Physical, and Earth Science Classes

    ERIC Educational Resources Information Center

    Britner, Shari L.

    2008-01-01

    The aims of this study were to examine self-efficacy and other motivation variables among high school science students (n = 502); to determine the degree to which each of the four hypothesized sources of self-efficacy makes an independent contribution to students' science self-efficacy beliefs; to examine possible differences between life,…

  7. A Science-Technology-Society Paradigm and Cross River State Secondary School Students' Scientific Literacy: Problem Solving and Decision Making

    ERIC Educational Resources Information Center

    Umoren, Grace

    2007-01-01

    The aim of this study was to investigate the effect of Science-Technology-Society (STS) curriculum on students' scientific literacy, problem solving and decision making. Four hundred and eighty (480) Senior Secondary two science and non-science students were randomly selected from intact classes in six secondary schools in Calabar Municipality of…

  8. Writing across the Curriculum: A Hermeneutic Study of Students' Experiences in Writing in Food Science Education

    ERIC Educational Resources Information Center

    Dzurec, David J.; Dzurec, Laura Cox

    2005-01-01

    Writing can enhance learning by helping students put words to their thinking about course material. The purposes of this study were to assess the influence of a structured academic journal writing exercise on student learning in a food science class and to examine student responses to the experience. Hermeneutics, a philosophy of science and…

  9. Assessment of preclinical problem-based learning versus lecture-based learning.

    PubMed

    Login, G R; Ransil, B J; Meyer, M; Truong, N T; Donoff, R B; McArdle, P J

    1997-06-01

    Academic performance on a standardized oral comprehensive exam (OCE) was compared for students taught basic science in a problem-based learning (PBL) curriculum and a lecture-based learning (LBL) curriculum. The OCE was administered to the graduating classes of 1991-1994 (n approximately 20/class) six months after completion of their basic science courses. The OCE contained six components including: Organization and Thoroughness, Diagnosis, Primary Treatment Plan, Alternate Treatment Plan, Science and Medical Knowledge, and Dental Knowledge. Six to eight examiners graded each of the students by using a standardized scoring system and by subjective comments. The class of 1991 was taught by LBL, classes of 1993 and 1994 by PBL, and the class of 1992 by an incomplete PBL teaching method. Mean OCE scores were not significantly different between classes; however, the Science and Medical Knowledge component score was significantly better for the class of 1994 than for 1991 (p < 0.05). There was a non-significant 40 percent increase (p = 0.07) in honors and a 269 percent (p < 0.001) increase in cumulative positive examiner comments between 1991 and 1994.

  10. Beating the numbers through strategic intervention materials (SIMs): Innovative science teaching for large classes

    NASA Astrophysics Data System (ADS)

    Alboruto, Venus M.

    2017-05-01

    The study aimed to find out the effectiveness of using Strategic Intervention Materials (SIMs) as an innovative teaching practice in managing large Grade Eight Science classes to raise the performance of the students in terms of science process skills development and mastery of science concepts. Utilizing experimental research design with two groups of participants, which were purposefully chosen, it was obtained that there existed a significant difference in the performance of the experimental and control groups based on actual class observation and written tests on science process skills with a p-value of 0.0360 in favor of the experimental class. Further, results of written pre-test and post-test on science concepts showed that the experimental group with the mean of 24.325 (SD =3.82) performed better than the control group with the mean of 20.58 (SD =4.94), with a registered p-value of 0.00039. Therefore, the use of SIMs significantly contributed to the mastery of science concepts and the development of science process skills. Based on the findings, the following recommendations are offered: 1. that grade eight science teachers should use or adopt the SIMs used in this study to improve their students' performance; 2. training-workshop on developing SIMs must be conducted to help teachers develop SIMs to be used in their classes; 3. school administrators must allocate funds for the development and reproduction of SIMs to be used by the students in their school; and 4. every division should have a repository of SIMs for easy access of the teachers in the entire division.

  11. The Effect on Elementary Science Education Based on Student's Pre-Inquiry

    ERIC Educational Resources Information Center

    Kang, Houn Tae; Noh, Suk Goo

    2017-01-01

    In this research, after extracting the pre-inquiries (student-level question) for which students had curiosity in the elementary science and analyzing their correlation with the elementary science curriculum, highly correlated inquiries (meaningful pre-inquiries) were selected and applied in class. After organizing an experiment group and a…

  12. A Practical Guide for Teaching Science to Students with Special Needs in Inclusive Settings.

    ERIC Educational Resources Information Center

    Mastropieri, Margo A.; Scruggs, Thomas E.

    This manual is intended as a resource for teachers who have special education students in their mainstream science classes, for curriculum adoption committees, and for publishers and consumers of science curriculum materials. Part 1 describes general characteristics of students with disabilities and provides general mainstreaming strategies and…

  13. Restructuring the CS 1 classroom: Examining the effect of open laboratory-based classes vs. closed laboratory-based classes on Computer Science 1 students' achievement and attitudes toward computers and computer courses

    NASA Astrophysics Data System (ADS)

    Henderson, Jean Foster

    The purpose of this study was to assess the effect of classroom restructuring involving computer laboratories on student achievement and student attitudes toward computers and computer courses. The effects of the targeted student attributes of gender, previous programming experience, math background, and learning style were also examined. The open lab-based class structure consisted of a traditional lecture class with a separate, unscheduled lab component in which lab assignments were completed outside of class; the closed lab-based class structure integrated a lab component within the lecture class so that half the class was reserved for lecture and half the class was reserved for students to complete lab assignments by working cooperatively with each other and under the supervision and guidance of the instructor. The sample consisted of 71 students enrolled in four intact classes of Computer Science I during the fall and spring semesters of the 2006--2007 school year at two southern universities: two classes were held in the fall (one at each university) and two classes were held in the spring (one at each university). A counterbalanced repeated measures design was used in which all students experienced both class structures for half of each semester. The order of control and treatment was rotated among the four classes. All students received the same amount of class and instructor time. A multivariate analysis of variance (MANOVA) via a multiple regression strategy was used to test the study's hypotheses. Although the overall MANOVA model was statistically significant, independent follow-up univariate analyses relative to each dependent measure found that the only significant research factor was math background: Students whose mathematics background was at the level of Calculus I or higher had significantly higher student achievement than students whose mathematics background was less than Calculus I. The results suggest that classroom structures that incorporate an open laboratory setting are just as effective on student achievement and attitudes as classroom structures that incorporate a closed laboratory setting. The results also suggest that math background is a strong predictor of student achievement in CS 1.

  14. When Silences Are Broken: An Out of Class Discussion with Asian Female Students

    ERIC Educational Resources Information Center

    Housee, Shirin

    2010-01-01

    This article reports on the views of seven Asian female Social Science students following a class seminar on religious issues and schooling at a university in the UK. It explores the importance of the post-class spontaneous student dialogue where participation in much teaching and learning is voluntary. The concern is with engaged pedagogy and…

  15. The Conundrum of Social Class: Disparities in Publishing among STEM Students in Undergraduate Research Programs at a Hispanic Majority Institution

    ERIC Educational Resources Information Center

    Grineski, Sara; Daniels, Heather; Collins, Timothy; Morales, Danielle X.; Frederick, Angela; Garcia, Marilyn

    2018-01-01

    Research on the science, technology, engineering, and math (STEM) student development pipeline has largely ignored social class and instead examined inequalities based on gender and race. We investigate the role of social class in undergraduate student research publications. Data come from a sample of 213 undergraduate research participants…

  16. Positionings of Racial, Ethnic, and Linguistic Minority Students in High School Biology Class: Implications for Science Education in Diverse Classrooms

    ERIC Educational Resources Information Center

    Ryu, Minjung

    2015-01-01

    In the present study, I analyze ethnographic data from a year-long study of two Advanced Placement (AP) Biology classes that enrolled students with diverse racial, ethnic, and linguistic backgrounds. Specifically, I consider participation, positioning, and learning of newcomer Korean students in the focal classes. Building on the notion of figured…

  17. The Colorado Learning Attitudes about Science Survey (CLASS) for use in Biology.

    PubMed

    Semsar, Katharine; Knight, Jennifer K; Birol, Gülnur; Smith, Michelle K

    2011-01-01

    This paper describes a newly adapted instrument for measuring novice-to-expert-like perceptions about biology: the Colorado Learning Attitudes about Science Survey for Biology (CLASS-Bio). Consisting of 31 Likert-scale statements, CLASS-Bio probes a range of perceptions that vary between experts and novices, including enjoyment of the discipline, propensity to make connections to the real world, recognition of conceptual connections underlying knowledge, and problem-solving strategies. CLASS-Bio has been tested for response validity with both undergraduate students and experts (biology PhDs), allowing student responses to be directly compared with a consensus expert response. Use of CLASS-Bio to date suggests that introductory biology courses have the same challenges as introductory physics and chemistry courses: namely, students shift toward more novice-like perceptions following instruction. However, students in upper-division biology courses do not show the same novice-like shifts. CLASS-Bio can also be paired with other assessments to: 1) examine how student perceptions impact learning and conceptual understanding of biology, and 2) assess and evaluate how pedagogical techniques help students develop both expertise in problem solving and an expert-like appreciation of the nature of biology.

  18. The Colorado Learning Attitudes about Science Survey (CLASS) for Use in Biology

    PubMed Central

    Semsar, Katharine; Knight, Jennifer K.; Birol, Gülnur; Smith, Michelle K.

    2011-01-01

    This paper describes a newly adapted instrument for measuring novice-to-expert-like perceptions about biology: the Colorado Learning Attitudes about Science Survey for Biology (CLASS-Bio). Consisting of 31 Likert-scale statements, CLASS-Bio probes a range of perceptions that vary between experts and novices, including enjoyment of the discipline, propensity to make connections to the real world, recognition of conceptual connections underlying knowledge, and problem-solving strategies. CLASS-Bio has been tested for response validity with both undergraduate students and experts (biology PhDs), allowing student responses to be directly compared with a consensus expert response. Use of CLASS-Bio to date suggests that introductory biology courses have the same challenges as introductory physics and chemistry courses: namely, students shift toward more novice-like perceptions following instruction. However, students in upper-division biology courses do not show the same novice-like shifts. CLASS-Bio can also be paired with other assessments to: 1) examine how student perceptions impact learning and conceptual understanding of biology, and 2) assess and evaluate how pedagogical techniques help students develop both expertise in problem solving and an expert-like appreciation of the nature of biology. PMID:21885823

  19. Students' Mathematical Modeling of Motion

    ERIC Educational Resources Information Center

    Marshall, Jill A.; Carrejo, David J.

    2008-01-01

    We present results of an investigation of university students' development of mathematical models of motion in a physical science course for preservice teachers and graduate students in science and mathematics education. Although some students were familiar with the standard concepts of position, velocity, and acceleration from physics classes,…

  20. Clickers Promote Learning in All Kinds of Classes--Small and Large, Graduate and Undergraduate, Lecture and Lab

    ERIC Educational Resources Information Center

    Sevian, Hannah; Robinson, William E.

    2011-01-01

    Clickers are a popular tool in large science classes. The authors find that clickers can also be used in small undergraduate- and graduate-level science classes, and to some extent also in laboratory classes, to achieve the same purposes as in large classes. Issues that can be addressed using clickers include fully engaging all students,…

  1. Effects of Student Teams-Achievement Divisions Cooperative Learning with Models on Students' Understanding of Electrochemical Cells

    ERIC Educational Resources Information Center

    Karaçöp, Ataman

    2016-01-01

    The aim of this study was to determine the effect of Student Teams-Achievement Divisions cooperative learning with models on academic achievements of undergraduate university students attending classes in which the electrochemical cells. The sample of research was comprised of 70 students from first class of science teacher education program…

  2. An implementation study: An analysis of elementary students' and teachers' attitudes toward science in process-approach vs. traditional science classes

    NASA Astrophysics Data System (ADS)

    Kyle, William C., Jr.; Bonnstetter, Ronald J.; Gadsden, Thomas, Jr.

    In 1983, the Richardson Independent School District conducted an internal audit to assess the status of science education. The audit was in anticipation of Texas Administrative Code Chapter 75 which requires an inquiry-oriented, process-approach to the teaching of science. In response to the data, and to national reports advocating a broadening of the science education curriculum to address the needs of all students, the district established a committee to implement and evaluate their new K-6 SCIENCE THROUGH DISCOVERY curriculum. The Science Curriculum Improvement Study (SCIIS) was adopted as the focal component of the overall curriculum with subsequent, planned innovations to occur in accordance with the Concerns-Based Adoption Model.The purpose of this study was to assess the attitudes toward science of students who had completed one year of SCIIS compared to students in non-SCIIS classes. In addition, the attitudes of teachers who received inservice education and who had instructed SCIIS were compared to non-SCIIS teachers. While SCIIS and non-SCIIS teachers possess similar perceptions of science, drastic attitudinal differences were observed between SCIIS and non-SCIIS students. The results indicate that the nature of the curriculum, in conjunction with the necessary implementation support including inservice education, greatly enhances students perceptions of science.

  3. Confidence Wagering during Mathematics and Science Testing

    ERIC Educational Resources Information Center

    Jack, Brady Michael; Liu, Chia-Ju; Chiu, Hoan-Lin; Shymansky, James A.

    2009-01-01

    This proposal presents the results of a case study involving five 8th grade Taiwanese classes, two mathematics and three science classes. These classes used a new method of testing called confidence wagering. This paper advocates the position that confidence wagering can predict the accuracy of a student's test answer selection during…

  4. Astronautics Degrees for Space Industry

    NASA Astrophysics Data System (ADS)

    Gruntman, M.; Brodsky, R.; Erwin, D.; Kunc, J.

    The Astronautics Program (http://astronautics.usc.edu) of the University of Southern California (USC) offers a full set of undergraduate and graduate degree programs in Aerospace Engineering with emphasis in Astronautics. The Bachelor of Science degree program in Astronautics combines basic science and engineering classes with specialized astronautics classes. The Master of Science degree program in Astronautics offers classes in various areas of space technology. The Certificate in Astronautics targets practicing engineers and scientists who enter space-related fields and/or who want to obtain training in specific space-related areas. Many specialized graduate classes are taught by adjunct faculty working at the leading space companies. The Master of Science degree and Certificate are available through the USC Distance Education Network (DEN). Today, the Internet allows us to reach students anywhere in the world through webcasting. The majority of our graduate students, as well as those pursuing the Certificate, work full time as engineers in the space industry and government research and development centers. The new world of distance learning presents new challenges and opens new opportunities. We show how the transformation of distance learning and particularly the introduction of webcasting transform organization of the program and class delivery. We will describe in detail the academic focus of the program, student reach, and structure of program components. Program development is illustrated by the student enrollment dynamics and related industrial trends; the lessons learned emphasize the importance of feedback from the students and from the space industry.

  5. Teaching 5th grade science for aesthetic understanding

    NASA Astrophysics Data System (ADS)

    Girod, Mark A.

    Many scientists speak with great zeal about the role of aesthetics and beauty in their science and inquiry. Few systematic efforts have been made to teach science in ways that appeal directly to aesthetics and this research is designed to do just that. Drawing from the aesthetic theory of Dewey, I describe an analytic lens called learning for aesthetic understanding that finds power in the degree to which our perceptions of the world are transformed, our interests and enthusiasm piqued, and our actions changed as we seek further experiences in the world. This learning theory is contrasted against two other current and popular theories of science learning, that of learning for conceptual understanding via conceptual change theory and learning for a language-oriented or discourse-based understanding. After a lengthy articulation of the pedagogical strategies used to teach for aesthetic understanding the research is described in which comparisons are drawn between students in two 5th grade classrooms---one taught for the goal of conceptual understanding and the other taught for the goal of aesthetic understanding. Results of this comparison show that more students in the treatment classroom had aesthetic experiences with science ideas and came to an aesthetic understanding when studying weather, erosion, and structure of matter than students in the control group. Also statistically significant effects are shown on measures of interest, affect, and efficacy for students in the treatment class. On measures of conceptual understanding it appears that treatment class students learned more and forgot less over time than control class students. The effect of the treatment does not generally depend on gender, ethnicity, or prior achievement except in students' identity beliefs about themselves as science learners. In this case, a significant interaction for treatment class females on science identity beliefs did occur. A discussion of these results as well as elaboration and extension of the pedagogical model used in teaching for aesthetic understanding is discussed.

  6. Critical Science Education in a Suburban High School Chemistry Class

    NASA Astrophysics Data System (ADS)

    Ashby, Patrick

    To improve students' scientific literacy and their general perceptions of chemistry, I enacted critical chemistry education (CCE) in two "regular level" chemistry classes with a group of 25 students in a suburban, private high school as part of this study. CCE combined the efforts of critical science educators (Fusco & Calabrese Barton, 2001; Gilbert 2013) with the performance expectations of the Next Generation Science Standards (NGSS) (NGSS Lead States, 2013a) to critically transform the traditional chemistry curriculum at this setting. Essentially, CCE engages students in the critical exploration of socially situated chemistry content knowledge and requires them to demonstrate this knowledge through the practices of science. The purpose of this study was to gauge these students development of chemistry content knowledge, chemistry interest, and critical scientific literacy (CSL) as they engaged in CCE. CSL was a construct developed for this study that necessarily combined the National Research Center's (2012) definition of scientific literacy with a critical component. As such, CSL entailed demonstrating content knowledge through the practices of science as well as the ability to critically analyze the intersections between science content and socially relevant issues. A mixed methods, critical ethnographic approach framed the collection of data from open-ended questionnaires, focus group interviews, Likert surveys, pre- and post unit tests, and student artifacts. These data revealed three main findings: (1) students began to develop CSL in specific, significant ways working through the activities of CCE, (2) student participants of CCE developed a comparable level of chemistry content understanding to students who participated in a traditional chemistry curriculum, and (3) CCE developed a group of students' perceptions of interest in chemistry. In addition to being able to teach students discipline specific content knowledge, the implications of this study are that CCE has the ability to affect students' critical science thinking in positive ways. However, to develop longer lasting, deeper critical insights that students use to participate in science-related issues outside of class, critical science education must be enacted longitudinally and across disciplines. Furthermore, it must be enacted in ways that either prompt or help students to transfer classroom learning outside of the classroom as they engage in critical issues in the classroom.

  7. The Effect of Guided-Inquiry Instruction on 6th Grade Turkish Students' Achievement, Science Process Skills, and Attitudes toward Science

    ERIC Educational Resources Information Center

    Koksal, Ela Ayse; Berberoglu, Giray

    2014-01-01

    The purpose of this study is to investigate the effectiveness of guided-inquiry approach in science classes over existing science and technology curriculum in developing content-based science achievement, science process skills, and attitude toward science of grade level 6 students in Turkey. Non-equivalent control group quasi-experimental design…

  8. Secondary Science Teachers' Implementation of CCSS and NGSS Literacy Practices: A Survey Study

    ERIC Educational Resources Information Center

    Drew, Sally Valentino; Thomas, Jeffrey

    2018-01-01

    Most middle and high school students struggle with reading and writing in science. This may be because science teachers are reluctant to teach literacy in science class. New standards now require a shift in the way science teachers develop students' literacy in science. This survey study examined the extent to which science teachers report…

  9. The role of outside-school factors in science education: a two-stage theoretical model linking Bourdieu and Sen, with a case study

    NASA Astrophysics Data System (ADS)

    Gokpinar, Tuba; Reiss, Michael

    2016-05-01

    The literature in science education highlights the potentially significant role of outside-school factors such as parents, cultural contexts and role models in students' formation of science attitudes and aspirations, and their attainment in science classes. In this paper, building on and linking Bourdieu's key concepts of habitus, cultural and social capital, and field with Sen's capability approach, we develop a model of students' science-related capability development. Our model proposes that the role of outside-school factors is twofold, first, in providing an initial set of science-related resources (i.e. habitus, cultural and social capital), and then in conversion of these resources to science-related capabilities. The model also highlights the distinction between science-related functionings (outcomes achieved by individuals) and science-related capabilities (ability to achieve desired functionings), and argues that it is necessary to consider science-related capability development in evaluating the effectiveness of science education. We then test our theoretical model with an account of three Turkish immigrant students' science-related capabilities and the role of outside-school factors in forming and extending these capabilities. We use student and parent interviews, student questionnaires and in-class observations to provide an analysis of how outside-school factors influence these students' attitudes, aspirations and attainment in science.

  10. Increasing Student Engagement with Practical Classes through Online Pre-Lab Quizzes

    ERIC Educational Resources Information Center

    Cann, Alan J.

    2016-01-01

    Laboratory practicals classes are an essential component of all science degrees, but are a pinch point because of rising student numbers, rising student expectations and falling student exposure to laboratory work prior to entering higher education. Augmentation of physical laboratory work with online interventions is not new, but as virtual…

  11. Assigned Positions for In-Class Debates Influence Student Opinions

    ERIC Educational Resources Information Center

    Lilly, Emily

    2012-01-01

    In-class debates are frequently used to encourage student engagement. Ideally, after researching both sides of the debate, students will form their own opinions based on what they have learned. However, in a large course of Environmental Science, opinions of students, when surveyed after the debate, were remarkably consistent with the position…

  12. Comparative Evaluation of Online and In-Class Student Team Presentations

    ERIC Educational Resources Information Center

    Braun, Michael

    2017-01-01

    Student team presentations are commonly utilised in tertiary science courses to help students develop skills in communication, teamwork and literature research, but they are subject to constraints arising from class size, available time, and limited facilities. In an alternative approach, student teams present online using a variety of tools, such…

  13. Finding Connections: Using Accounting Concepts in a Career Planning Class

    ERIC Educational Resources Information Center

    Wang, Michelle

    2013-01-01

    In higher education, the most common challenge for students is the ability to find a connection between one subject that they have learned and another subject. Thus, students' learning becomes compartmentalized and piecemeal. For instance, accounting students may find attending a drawing class boring and a waste of time. Science students may…

  14. Educational commitment and social networking: The power of informal networks

    NASA Astrophysics Data System (ADS)

    Zwolak, Justyna P.; Zwolak, Michael; Brewe, Eric

    2018-06-01

    The lack of an engaging pedagogy and the highly competitive atmosphere in introductory science courses tend to discourage students from pursuing science, technology, engineering, and mathematics (STEM) majors. Once in a STEM field, academic and social integration has been long thought to be important for students' persistence. Yet, it is rarely investigated. In particular, the relative impact of in-class and out-of-class interactions remains an open issue. Here, we demonstrate that, surprisingly, for students whose grades fall in the "middle of the pack," the out-of-class network is the most significant predictor of persistence. To do so, we use logistic regression combined with Akaike's information criterion to assess in- and out-of-class networks, grades, and other factors. For students with grades at the very top (and bottom), final grade, unsurprisingly, is the best predictor of persistence—these students are likely already committed (or simply restricted from continuing) so they persist (or drop out). For intermediate grades, though, only out-of-class closeness—a measure of one's immersion in the network—helps predict persistence. This does not negate the need for in-class ties. However, it suggests that, in this cohort, only students that get past the convenient in-class interactions and start forming strong bonds outside of class are or become committed to their studies. Since many students are lost through attrition, our results suggest practical routes for increasing students' persistence in STEM majors.

  15. A Comparison of Earth Science Science Classes Taught by Using Original Data in a Research-Approach Technique Versus Classes Taught by Conventional Approaches not Using Such Data

    ERIC Educational Resources Information Center

    Agne, Russell M.

    1972-01-01

    Students in classes using a self-instructional unit on meteorology and climatology which provided research data from which generalizations could be drawn increased their critical thinking skills more than groups using conventional earth science texts but did not differ significantly in performance on an achievement test. (AL)

  16. Situated Self-efficacy in Introductory Physics Students

    NASA Astrophysics Data System (ADS)

    Henderson, Rachel; DeVore, Seth; Michaluk, Lynnette; Stewart, John

    2017-01-01

    Within the general university environment, students' perceived self-efficacy has been widely studied and findings suggest it plays a role in student success. The current research adapted a self-efficacy survey, from the ``Self-Efficacy for Learning Performance'' subscale of the Motivated Learning Strategies Questionnaire and administered it to the introductory, calculus-based physics classes (N=1005) over the fall 2015 and spring 2016 semesters. This assessment measured students' self-efficacy in domains including the physics class, other science and mathematics classes, and their intended future career. The effect of gender was explored with the only significant gender difference (p < . 001) existing within the physics domain. A hierarchical linear regression analysis indicated that this gender difference was not explained by a student's performance which was measured by test average. However, a mediation analysis showed that students' overall academic self-efficacy, measured by their math and science self-efficacy, acts as a mediator for the effect of test average on self-efficacy towards the physics class domain. This mediation effect was significant for both female (p < . 01) and male students (p < . 001) however, it was more pronounced for male students.

  17. Space Science in the Kindergarten Classroom and Beyond

    NASA Astrophysics Data System (ADS)

    Bonett, D.

    2000-12-01

    With the advent of probes to our closest planet Mars and the multi-national construction of Earth's first International Space Station, it is not presumptive to introduce 5 year old school children to the space sciences. K. E. Little Elementary School is located in the community of Bacliff, Texas. It is the largest elementary school (950 students) in the Dickinson Independent School District. K. E. Little is a Title 1 school with a multi-ethnic student population. It's close proximity to the Johnson Space Center and the Lunar and Planetary Institute provide ample instructional support and material. Last fall, two kindergarten classes received space science instruction. Both were class sizes of 19 with one class predominantly children of Vietnamese immigrants. Our goal was to create curiosity and awareness through a year-long integrated space science program of instruction. Accurate information of the space sciences was conveyed through sources i.e. books and videos, as well as conventional song, movement, and artistic expression. Videotaping and photographs replaced traditional anecdotal records. Samples of student work were compiled for classroom and school display. This year, two fifth grade classes will receive space science instruction using the Jason Project XII curriculum. Students will engage in a year-long exploration of the Hawaiian Islands. Information will be conveyed via internet and live video presentations as well as traditional sources i.e. books and videos, as well as song, movement, and artistic expression. Comparison of volcanic activity in Hawaii to volcanoes on other planets will be one of several interplanetary correlations. Samples of student work will be compiled for classroom, school, and community display.

  18. The Value of Supplementing Science Education with Outdoor Instruction for Sixth Grade Students

    NASA Astrophysics Data System (ADS)

    Jackson, Devin Joseph Guilford

    Science education is moving away from memorization of facts to inquiry based learning. Adding outdoor instruction can be an effective way to promote this exploratory method of learning. The limited number of empirical studies available have shown significant increase in attitudes and learning with outdoor science instruction. An eight-week quasi-experimental teacher research study was conducted to further this research and assess the value of schoolyard science instruction on student engagement and learning. Participants were 60 students in two sixth grade middle school Earth Science classes. A crossover study design was used with two classes alternating as experimental and control groups. NASA Global Precipitation Measurement mission curriculum was used (NASA/GPM, 2011). While the results did not show a clear increase in student engagement and content knowledge, the study adds to the body of knowledge on outdoor instruction and identifies limitations to consider in future studies.

  19. The Impact of a Geospatial Technology-Supported Energy Curriculum on Middle School Students' Science Achievement

    NASA Astrophysics Data System (ADS)

    Kulo, Violet; Bodzin, Alec

    2013-02-01

    Geospatial technologies are increasingly being integrated in science classrooms to foster learning. This study examined whether a Web-enhanced science inquiry curriculum supported by geospatial technologies promoted urban middle school students' understanding of energy concepts. The participants included one science teacher and 108 eighth-grade students classified in three ability level tracks. Data were gathered through pre/posttest content knowledge assessments, daily classroom observations, and daily reflective meetings with the teacher. Findings indicated a significant increase in the energy content knowledge for all the students. Effect sizes were large for all three ability level tracks, with the middle and low track classes having larger effect sizes than the upper track class. Learners in all three tracks were highly engaged with the curriculum. Curriculum effectiveness and practical issues involved with using geospatial technologies to support science learning are discussed.

  20. Does Taking an Introductory Astronomy Course Increase Student Understanding of the Nature of Science?

    NASA Astrophysics Data System (ADS)

    Duncan, Douglas K.; Arthurs, L.; CATS

    2009-01-01

    Surveys of those who teach Astro 101 say that increasing students’ understanding of the nature and process of science is an important goal. It is also one of the justifications for the "breadth requirement” that supports most of the Astro 101 enterprise in the US. However, little work has been done to measure if this goal is achieved. We interviewed 60 students drawn from two introductory astronomy classes at the beginning and end of the course. Each student was asked 9 questions concerning the nature of science and how it is applied. One of the two introductory classes made a special point of explicitly discussing the nature of science and "science vs. pseudoscience.” Otherwise the two classes were similar. We are investigating how students changed in 4 areas: 1. Do they understand what science is? 2. Do they have the ability to think scientifically themselves? 3. Can they distinguish believable scientific results from bogus ones? 4. Do students develop "basic science literacy?" In addition to the interviews we gave the Epistemological Beliefs Assessment for Physical Science (EBAPS, Elby et al. 2001; www.flaguide.org) to approximately 300 students. Initial results will be reported in our poster, and full results in a publication expected in early 2009. In addition, the results of this study are being used to develop a survey instrument designed specifically for use with Astro 101 students to evaluate the effectiveness of instruction on their scientific attitudes and beliefs as a Collaboration of Astronomy Teaching Scholars (CATS) research project. We would like to thank the NSF for funding under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.

  1. Effects of Brain-Based Learning Approach on Students' Motivation and Attitudes Levels in Science Class

    ERIC Educational Resources Information Center

    Akyurek, Erkan; Afacan, Ozlem

    2013-01-01

    The purpose of the study was to examine the effect of brain-based learning approach on attitudes and motivation levels in 8th grade students' science classes. The main reason for examining attitudes and motivation levels, the effect of the short-term motivation, attitude shows the long-term effect. The pre/post-test control group research model…

  2. Using the First-Year English Class to Develop Scientific Thinking Skills

    NASA Astrophysics Data System (ADS)

    McNamara, B. J.; Burnham, C.; Green, S.; Ball, E.; Schryer, A.

    2002-12-01

    This poster presents the preliminary results from an experimental approach to teaching first-year writing using the scientific method as an organizing theme. The approach presumes a close connection between the classical scientific method: observing, hypothesis forming, hypothesis testing, and generalizing from the results of the testing, and the writing process: inventing and prewriting, drafting, and revising. The project has four goals: 1. To introduce students to the relations between scientific method, academic inquiry, and the writing process; 2. To help students see that academic inquiry, the work of generating, testing, and validating knowledge and then applying that knowledge in real contexts, is actually a hybrid form of the scientific method; 3. To encourage students to connect the work they are doing in the writing classroom with the work they are doing in other classes so they can transfer the skills learned in one context to the other; and 4. To cause students who have previously been alienated by science and science teaching to reconsider their attitudes, and to see the powerful influence of science and scientific thinking in our world. In short, we are teaching science literacy in a humanities classroom. The materials we use include science-based reading and the kinds of writing typically required in science classes. The poster presents the basic premises of the project, samples of class materials, and preliminary results of a controlled pre- and post-test of student attitudes toward science and writing, analyzed especially according to gender and minority status. We also present insights by participating instructors including a female graduate teaching assistant who had been trained as a scientist and a male who had not.

  3. Framing of Transitional Pedagogic Practices in the Sciences: Enabling Access

    ERIC Educational Resources Information Center

    Ellery, Karen

    2017-01-01

    Educational literature shows that students from working-class backgrounds are significantly less likely to persist to completion in higher education than middle-class students. This paper draws theoretically and analytically on Bernstein's ([1990. "Class, Codes and Control, Volume IV: The Structuring of Pedagogic Discourse." London:…

  4. University Students' Perceptions of Their Science Classrooms

    ERIC Educational Resources Information Center

    Kaya, Osman Nafiz; Kilic, Ziya; Akdeniz, Ali Riza

    2004-01-01

    The purpose of this study was to investigate the dimensions of the university students' perceptions of their science classes and whether or not the students' perceptions differ significantly as regards to the gender and grade level in six main categories namely; (1) pedagogical strategies, (2) faculty interest in teaching, (3) students interest…

  5. Visualisation Ability of Senior High School Students with Using GeoGebra and Transparent Mica

    NASA Astrophysics Data System (ADS)

    Thohirudin, M.; Maryati, TK; Dwirahayu, G.

    2017-04-01

    Visualisation ability is an ability to process, inform, and transform object which suitable for geometry topic in math. This research aims to describe the influence of using software GeoGebra and transparent mica for student’s visualisation ability. GeoGebra is shortness of geometry and algebra. GeoGebra is an open source program that is created for math. Transparent mica is a tool that is created by the author to transform a geometry object. This research is a quantitative experiment model. The subject of this research were students in grade XII of science program in Annajah Senior High School Rumpin with two classes which one as an experiment class (science one) and another one as a control class (science two). Experiment class use GeoGebra and transparent mica in the study, and control class use powerpoint in the study. Data of student’s visualisation ability is collected from posttest with visual questions which are gifted at the end of the research to both classes with topic “transformation geometry”. This research resulted that studying with GeoGebra and transparent mica had a better influence than studying with powerpoint to student’s visualisation ability. The time of study in class and the habit of the students to use software and tool affected the result of research. Although, GeoGebra and transparent mica can give help to students in transformation geometry topic.

  6. Block scheduling: Instructional practices in high school science classrooms

    NASA Astrophysics Data System (ADS)

    Richelsoph, Barry

    Proponents of block scheduling perceive this approach to be a 'structural lever' to invite and impel teachers to change their teaching (Marshak, 1997). This desired shift is supposed to be manifest in movement from the traditional classroom structure, focusing on the teacher as lecturer or transmitter of subject matter, to that of teacher as coach with students as active learners, engaged in a variety of activities involving them individually and collaboratively in their education (Canady & Rettig, 1995). Block scheduling changes the formal structure of the school day, but does it really change pedagogical practices in high school science classrooms? Fraser's Individualized Classroom Environment Questionnaire (ICEQ) the instrument used in this study of science classes in five block-scheduled high schools in Connecticut, incorporates the tenets for an enriched classroom environment in its five scales or constructs: Participation---Extent to which students are encouraged to participate rather than be passive learners; Personalization---Emphasis on opportunities for individual students to interact with the teacher and on concern for the personal welfare and social growth of the individual; Investigation---Emphasis on the skills and processes of inquiry and their use in problem solving and investigation. Independence---Extent to which students are allowed to make decisions and have control over their own learning environment and behavior; Differentiation---Emphasis on the selective treatment of students on the basis of ability, learning style, interests, and rate of working (Fraser, 1990). The results and conclusions from this research study suggested that the block-scheduled high school science classes that participated in this research do promote, to varying degrees, those tenets that define an enriched classroom environment. Both the teachers and their classes of students perceived opportunities for Participation, Personalization, and Investigation constructs as prevalent in science instruction. However, Independence and Differentiation, although existent to some extent, were perceived to occur less by both the teachers and the students in their classes. The provision of more class time alone was not enough to drive the tenets of these two constructs significantly.

  7. Supporting Struggling Readers in Secondary School Science Classes

    ERIC Educational Resources Information Center

    Roberts, Kelly D.; Takahashi, Kiriko; Park, Hye-Jin; Stodden, Robert A.

    2012-01-01

    Many secondary school students struggle to read complex expository text such as science textbooks. This article provides step-by-step guidance on how to foster expository reading for struggling readers in secondary school science classes. Two strategies are introduced: Text-to-Speech (TTS) Software as a reading compensatory strategy and the…

  8. Using Assistive Technology to Increase Vocabulary Acquisition and Engagement for Students with Learning Disabilities in the High School Science Classroom

    NASA Astrophysics Data System (ADS)

    Slemrod, Tal

    There is a growing recognition of the importance and effectiveness of instruction in the STEM subjects, including science. The movement towards increased requirements and expectations in science presents a challenge to both students and teachers as many students with Learning Disabilities (LD) often particularly struggle in their science classes. The purpose of this study was to investigate the use of an assistive technology (AT) intervention targeting the acquisition of science vocabulary for adolescents with LD in a general education secondary biology classroom. Participants for this study included 3 secondary students with LD who were enrolled in a biology class. An alternating treatment design was used to compare the effects of a keyword mnemonic vocabulary intervention via index cards or iPod touch on student, vocabulary acquisition, academic engagement and disruptive behavior. All students' acquired the content vocabulary equally well during both conditions. When using the AT, students' engagement increased compared to baseline conditions. It was clear that the students had a strong interest in using AT to increase their grades and engagement, however the teachers had little access and training on using AT to support their students with disabilities.

  9. Note-taking skills of middle school students with and without learning disabilities.

    PubMed

    Boyle, Joseph R

    2010-01-01

    For middle school students with learning disabilities (LD), one major component of learning in content area classes, such as science, involves listening to lectures and recording notes. Lecture learning and note-taking are critical skills for students to succeed in these classes. Despite the importance of note-taking skills, no research has been reported on the problems that school-age students with LD encounter when recording notes during science lectures. Using a sample size of 90 middle school students, the performance of students with LD was compared to students with no learning disabilities (NLD). Results found that students with LD performed significantly worse than students with NLD in terms of the type and amount of notes recorded and test performance.

  10. New Curricular Material for Science Classes: How Do Students Evaluate It?

    NASA Astrophysics Data System (ADS)

    Freire, Sofia; Faria, Cláudia; Galvão, Cecília; Reis, Pedro

    2013-02-01

    Living in an unpredictable and ever changing society demands from its' citizens the development of complex competencies that challenges school, education and curriculum. PARSEL, a pan-European Project related to science education, emerges as a contribution to curricular development as it proposes a set of teaching-learning materials (modules) in order to make science classes more popular and relevant in the eyes of the students and as such to increase their interest with school science. The goal of this study was to understand how students evaluate those innovative modules. This paper presents data concerning 134 secondary students, collected through interviews, questionnaires and written documents. A quantitative analysis of the data collected through questionnaires was complemented by a qualitative analysis of the data collected by interviews and written documents. Results show that understanding the relationship between science and daily life, participating in practical activities based on problem solving and developing critical thinking and reasoning were the issues most valued by students.

  11. The Impact of Internet Virtual Physics Laboratory Instruction on the Achievement in Physics, Science Process Skills and Computer Attitudes of 10th-Grade Students

    NASA Astrophysics Data System (ADS)

    Yang, Kun-Yuan; Heh, Jia-Sheng

    2007-10-01

    The purpose of this study was to investigate and compare the impact of Internet Virtual Physics Laboratory (IVPL) instruction with traditional laboratory instruction in physics academic achievement, performance of science process skills, and computer attitudes of tenth grade students. One-hundred and fifty students from four classes at one private senior high school in Taoyuan Country, Taiwan, R.O.C. were sampled. All four classes contained 75 students who were equally divided into an experimental group and a control group. The pre-test results indicated that the students' entry-level physics academic achievement, science process skills, and computer attitudes were equal for both groups. On the post-test, the experimental group achieved significantly higher mean scores in physics academic achievement and science process skills. There was no significant difference in computer attitudes between the groups. We concluded that the IVPL had potential to help tenth graders improve their physics academic achievement and science process skills.

  12. Advancement of understanding in physical science and reduction of mathematical anxiety through the use of supplemental mathematics material

    NASA Astrophysics Data System (ADS)

    Roberson, James Chadwick

    The purpose of this study was to determine if supplementary mathematics materials (created to be complementary to a physical science course) could provide a significant change in the attitudes and performance of the students involved. The supplementary text was provided in the form of a booklet. Participants were students in a physical science class. Students were given surveys to evaluate existing knowledge of physical science, mathematics skill, and mathematics anxiety in the context of a science class. Students were divided into control and experimental groups by lab section, with the experimental group receiving a supplemental booklet. At the end of the semester, another anxiety survey was given. The anxiety surveys and test grades were compared between groups. Anxiety scores were compared between the beginning and end of the semester within each group. Too few students reported using the booklets for a reliable statistical comparison (of grades) to be made. A statistically significant difference in mathematics anxiety levels was found between the groups.

  13. Interactive Teaching as a Recruitment and Training Tool for K-12 Science Teachers

    NASA Astrophysics Data System (ADS)

    Rosenberg, J. L.

    2004-12-01

    The Science, Technology, Engineering, and Mathematics Teacher Preparation (STEMTP) program at the University of Colorado has been designed to recruit and train prospective K-12 science teachers while improving student learning through interactive teaching. The program has four key goals: (1) recruit undergraduate students into K-12 science education, (2) provide these prospective teachers with hands-on experience in an interactive teaching pedagogy, (3) create an intergrated program designed to support (educationally, socially, and financially) and engage these prospective science teachers up until they obtain liscensure and/or their masters degree in education, and (4) improve student learning in large introductory science classes. Currently there are 31 students involved in the program and a total of 72 students have been involved in the year and a half it has been in existence. I will discuss the design of the STEMTP program, the success in recruiting K-12 science teachers, and the affect on student learning in a large lecture class of implementing interactive learning pedagogies by involving these prospective K-12 science teachers. J. L. Rosenberg would like to acknowledge the NSF Astronomy and Astrophysics Fellowship for support for this work. The course transformation project is also supported by grants from the National Science Foundation.

  14. Lessons Learned from Undergraduate Students in Designing a Science-Based Course in Bioethics

    PubMed Central

    Loike, John D.; Rush, Brittany S.; Schweber, Adam; Fischbach, Ruth L.

    2013-01-01

    Columbia University offers two innovative undergraduate science-based bioethics courses for student majoring in biosciences and pre–health studies. The goals of these courses are to introduce future scientists and healthcare professionals to the ethical questions they will confront in their professional lives, thus enabling them to strategically address these bioethical dilemmas. These courses incorporate innovative pedagogical methods, case studies, and class discussions to stimulate the students to think creatively about bioethical issues emerging from new biotechnologies. At the end of each course, each student is required to submit a one-page strategy detailing how he or she would resolve a bioethical dilemma. Based on our experience in teaching these courses and on a qualitative analysis of the students’ reflections, we offer recommendations for creating an undergraduate science-based course in bioethics. General recommendations include: 1) integrating the science of emerging biotechnologies, their ethical ramifications, and contemporary bioethical theories into interactive class sessions; 2) structuring discussion-based classes to stimulate students to consider the impact of their moral intuitions when grappling with bioethical issues; and 3) using specific actual and futuristic case studies to highlight bioethical issues and to help develop creative problem-solving skills. Such a course sparks students’ interests in both science and ethics and helps them analyze bioethical challenges arising from emerging biotechnologies. PMID:24297296

  15. Design and Assessment of a General Science STEM Course with a Blended Learning Approach

    NASA Astrophysics Data System (ADS)

    Courtier, A. M.; Liu, J. C.; St John, K. K.

    2015-12-01

    Blended learning, a combination of classroom- and computer-mediated teaching and learning, is becoming prominent in higher education, and structured assessment is necessary to determine pedagogical costs and benefits. Assessment of a blended general education science class at James Madison University used a mixed-method causal-comparative design: in Spring 2014, two classes with identical content and similar groups of non-science majors were taught by the same instructor in either blended or full face-to-face formats. The learning experience of 160 students in the two classes was compared based on course and exam grades, classroom observation, and student survey results. Student acquisition of content in both classes was measured with pre-post tests using published concept inventories, and surveys, quizzes, and grade reports in the Blackboard learning management system were additionally used for data collection. Exams were identical between the two sections, and exam questions were validated in advance by a faculty member who teaches other sections of the same course. A course experience questionnaire was administered to measure students' personal experiences in both classes, addressing dimensions of good teaching, clear goals and standards, generic skills, appropriate assessment and workload, and emphasis on independence. Using a STEM classroom observation checklist, two researchers conducted in-class observations for four 75-minute face-to-face meetings with similar content focus in both classes, which allowed assessment of student engagement and participation. We will present details of the course design and research plan, as well as assessment results from both quantitative and qualitative analysis. The preliminary findings include slightly higher average grade distribution and more ready responses to in-class activities in the blended class.

  16. Time on Text and Science Achievement for High School Biology Students

    ERIC Educational Resources Information Center

    Wyss, Vanessa L.; Dolenc, Nathan; Kong, Xiaoqing; Tai, Robert H.

    2013-01-01

    The conflict between the amount of material to be addressed in high school science classes, the need to prepare students for standardized tests, and the amount of time available forces science educators to make difficult pedagogical decisions on a daily basis. Hands-on and inquiry-based learning offer students more authentic learning experiences…

  17. Bluffing Their Way into Science: Analyzing Students' Appropriation of the Research Article Genre.

    ERIC Educational Resources Information Center

    O'Neill, D. Kevin

    This paper reports on research in the analysis of high school and middle school students' appropriation of the Research Article genre in science classes. The appropriation of this rhetorical form is proposed as a measure of students' understanding of adult argumentative practice in science and the effectiveness of a learning environment in…

  18. An Initial Needs Assessment of Science Inquiry Curriculum Practices at a Local Level

    ERIC Educational Resources Information Center

    Cottingham, Susan M.

    2010-01-01

    Frequently, students learn in science classes taught like traditional reading courses in which reading texts and answering questions is the main activity. The problem at one southern middle school is that students are not developing an understanding of science concepts and are doing poorly on standardized testing. Students are seldom given the…

  19. Strategies for Science Student Achievement & Productive School Management

    ERIC Educational Resources Information Center

    Johnson, William L.

    2010-01-01

    There is an increasing literature pertaining to student achievement and school productivity. This session will present school and classroom strategies used in high school science classes at Robert E. Lee High School (5A) in Tyler, Texas. This year, 84% of the students at Lee passed the science TAKS test. Lee is also ranked in the top 1500 high…

  20. Transforming Science Learning and Student Participation in Sixth Grade Science: A Case Study of a Low-Income, Urban, Racial Minority Classroom

    ERIC Educational Resources Information Center

    Tan, Edna; Calabrese Barton, Angela

    2010-01-01

    Recent criticisms of the goal of "science for all" with regard to minority students have alluded to the onerous culture of school science characterized by white, middle-class values that eschew personal everyday science experiences and nontraditional funds of knowledge, in addition to alienating science instruction. Using critically-oriented,…

  1. Student-Centered Learning in an Earth Science, Preservice, Teacher-Education Course

    ERIC Educational Resources Information Center

    Avard, Margaret

    2009-01-01

    In an effort to get elementary teachers to teach more science in the classroom, a required preservice science education course was designed to promote the use of hands-on teaching techniques. This paper describes course content and activities for an innovative, student-centered, Earth science class. However, any science-content course could be…

  2. Effective, Active Learning Strategies for the Oceanography Classroom

    NASA Astrophysics Data System (ADS)

    Dmochowski, J. E.; Marinov, I.

    2014-12-01

    A decline in enrollment in STEM fields at the university level has prompted extensive research on alternative ways of teaching and learning science. Inquiry-based learning as well as the related "flipped" or "active" lectures, and similar teaching methods and philosophies have been proposed as more effective ways to disseminate knowledge in science classes than the traditional lecture. We will provide a synopsis of our experiences in implementing some of these practices into our Introductory Oceanography, Global Climate Change, and Ocean Atmosphere Dynamics undergraduate courses at the University of Pennsylvania, with both smaller and larger enrollments. By implementing tools such as at-home modules; computer labs; incorporation of current research; pre- and post-lecture quizzes; reflective, qualitative writing assignments; peer review; and a variety of in-class learning strategies, we aim to increase the science literacy of the student population and help students gain a more comprehensive knowledge of the topic, enhance their critical thinking skills, and correct misconceptions. While implementing these teaching techniques with college students is not without complications, we argue that a blended class that flexibly and creatively accounts for class size and science level improves the learning experience and the acquired knowledge. We will present examples of student assignments and activities as well as describe the lessons we have learned, and propose ideas for moving forward to best utilize innovative teaching tools in order to increase science literacy in oceanography and other climate-related courses.

  3. Astronautics degrees for the space industry

    NASA Astrophysics Data System (ADS)

    Gruntman, M.; Brodsky, R. F.; Erwin, D. A.; Kunc, J. A.

    2004-01-01

    The Astronautics Program (http://astronautics.usc.edu) of the University of Southern California (USC) offers a full set of undergraduate and graduate degree programs in Aerospace Engineering with emphasis in Astronautics. The Bachelor of Science and Master of Science degree programs in Astronautics combine basic science and engineering classes with specialized classes in space technology. The Certificate in Astronautics targets practicing engineers and scientists who enter space-related fields and/or who want to obtain training in specific space-related areas. Many specialized graduate classes are taught by adjunct faculty working at the leading space companies. The Master of Science degree and Certificate are available entirely through the USC Distance Education Network (DEN). Today, the Internet allows us to reach students anywhere in the world through webcasting. The majority of our graduate students, as well as those pursuing the Certificate, work full time as engineers in the space industry and government research and development centers while earning their degrees. The new world of distance learning presents new challenges and opens new opportunities. Distance learning, and particularly the introduction of webcasting, transform the organization of the graduate program and class delivery. We describe in detail the program's academic focus, student reach, and structure of program components. Program development is illustrated by the student enrollment dynamics and related industrial trends; the lessons learned emphasize the importance of feedback from the students and from the space industry.

  4. Female and male Hispanic students majoring in science or engineering: Their stories describing their educational journeys

    NASA Astrophysics Data System (ADS)

    Brown, Susan Wightman

    National statistics clearly demonstrate an underrepresentation of minorities in the fields of science and engineering. Blacks, Hispanics, American Indians, and Asians do not typically choose science or engineering as their college major; therefore, there is a very small representation of these minorities in the science and engineering labor force. The decision not to major in science and engineering may begin as soon as the child can begin to recognize role models in the media. News stories, magazine articles, television programs, teachers, parents, administrators, and other agencies have painted the picture of a scientist or engineer as being dominantly a White male. Schools have continued society's portrayal by using curriculum, textbooks, role models, instructional strategies, and counseling that continues to encourage the White male to succeed in science and engineering, but discourages the minority students, male and female, from succeeding in these fields. In this qualitative study, 22 Hispanic students, 12 female and 10 male, who are majoring in science or engineering, were interviewed using Seidman's in-depth interviewing technique. These students were shadowed in their college science or engineering classes; their high school and college transcripts were analyzed; and, a focus group was brought together at the end of the interviewing process in order to allow interaction between the participants. The goal was to explore the educational journeys of the 22 Hispanic students. What made a difference in the journeys of these 22 students so that they could succeed in majors that have historically discouraged minority students? Seven themes emerged: family support, honors program, challenging and interactive curriculum, college preparation in high school courses, caring and kind teachers, small class size, and small communities. Gender comparison of the educational journeys documents these differences between the females and males: college preparation, mentoring, special school and summer programs, and gender role conflicts. In Chapter Six, a picture is painted by these 22 Hispanic students of a school that would promote success for all minority students in science and engineering related classes. Science and math educators, and really all educators, should take note and changes need to be made in our schools in order to provide a learning environment for all students.

  5. Embedded Mathematics in Chemistry: A Case Study of Students' Attitudes and Mastery

    NASA Astrophysics Data System (ADS)

    Preininger, Anita M.

    2017-02-01

    There are many factors that shape students' attitudes toward science, technology, engineering and mathematics. This exploratory study of high school students examined the effect of enriching chemistry with math on chemistry students' attitudes toward math and careers involving math. To measure student attitudes, a survey was administered before and after the 18-week chemistry class; results from the chemistry class were compared to survey results from students in an elective science class that did not emphasize mathematics. At the end of the 18-week period, only the chemistry students exhibited more positive views toward their abilities in mathematics and careers that involve mathematics, as compared to their views at the outset of the course. To ensure that chemistry mastery was not hindered by the additional emphasis on math, and that mastery on state end-of-course examinations reflected knowledge acquired during the math-intensive chemistry class, a chemistry progress test was administered at the start and end of the term. This exploratory study suggests that emphasizing mathematical approaches in chemistry may positively influence attitudes toward math in general, as well as foster mastery of chemistry content.

  6. Qualitative Investigation of Students' Views about Experimental Physics

    ERIC Educational Resources Information Center

    Hu, Dehui; Zwickl, Benjamin M.; Wilcox, Bethany R.; Lewandowski, H. J.

    2017-01-01

    This study examines students' reasoning surrounding seemingly contradictory Likert-scale responses within five items in the Colorado Learning Attitudes About Science Survey for Experimental Physics (E-CLASS). We administered the E-CLASS with embedded open-ended prompts, which asked students to provide explanations after making a Likert-scale…

  7. It Pays to Go to School

    ERIC Educational Resources Information Center

    Shubin, Joanna

    2004-01-01

    This article describes a class project that engages students in a scientific dialogue almost immediately upon entering science class on the first day of school. The teacher's first announcement is that each student will receive one dollar. Student response will most likely be suspicion, amazement, and perplexity--all the attributes of scientists…

  8. Scientist Spotlight Homework Assignments Shift Students' Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class

    ERIC Educational Resources Information Center

    Schinske, Jeffrey N.; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments ("Scientist Spotlights") that featured counterstereotypical…

  9. Fostering Scientific Literacy and Critical Thinking in Elementary Science Education

    ERIC Educational Resources Information Center

    Vieira, Rui Marques; Tenreiro-Vieira, Celina

    2016-01-01

    Scientific literacy (SL) and critical thinking (CT) are key components of science education aiming to prepare students to think and to function as responsible citizens in a world increasingly affected by science and technology (S&T). Therefore, students should be given opportunities in their science classes to be engaged in learning…

  10. Position Posters: An Alternative Take on Science Posters

    ERIC Educational Resources Information Center

    Dorner, Meredith

    2015-01-01

    Research shows the importance of active learning, especially within science classes. One way to achieve this goal is to incorporate student-driven projects into the course (e.g., posters). Traditionally, science-poster assignments follow the spirit of the science fair in which a student conducts an experiment and analyzes the results. This article…

  11. Learning Environment and Attitudes Associated with an Innovative Science Course Designed for Prospective Elementary Teachers

    ERIC Educational Resources Information Center

    Martin-Dunlop, Catherine; Fraser, Barry J.

    2008-01-01

    This study assessed the effectiveness of an innovative science course for improving prospective elementary teachers' perceptions of laboratory learning environments and attitudes towards science. The sample consisted of 27 classes with 525 female students in a large urban university. Changing students' ideas about science laboratory teaching and…

  12. Promoting Students' Motivation in Learning Physical Science--An Action Research Approach.

    ERIC Educational Resources Information Center

    Tuan, Hsiao-Lin; Chin, Chi-Chin; Tsai, Chih-Chung

    This study reported how four science teachers used action research to promote their students' motivation in learning physical science. Four teachers with one of their 8th grade physical science classes participated in the study. A combination of qualitative and quantitative research design were used in the study, and data collection included…

  13. Humorous Cartoons Made by Preservice Teachers for Teaching Science Concepts to Elementary Students: Process and Product

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Sallis, Derek A.; Donaldson, J. Ana

    2008-01-01

    Elementary school science is an often-neglected subject in the current literacy-focused political atmosphere. However, reading informational trade books about science in literacy class can help children increase their science knowledge. Incorporating humor through content-related cartoons is an effective way to engage students in deeper…

  14. Attitudes toward science and science knowledge of intellectually gifted and average students in third, seventh, and eleventh grades

    NASA Astrophysics Data System (ADS)

    Barrington, Byron L.; Hendricks, Bryan

    A questionnaire regarding attitudes toward science and scientific knowledge (Yager & Yager, 1985b) was administered to 143 intellectually gifted (IQ > 130) and intellectually average third-, seventh-, and eleventh-grade students. Measures of internal reliability on four attitude subscales and a content knowledge subscale are reported. Three-way ANOVAs comparing grade, sex, and ability revealed significant differences between average and gifted students in attitudes toward being a scientist, usefulness of science, and, as might be expected, in knowledge of science. Similarly, there were significant differences between grades on attitudes toward teachers and toward science classes, with the most favorable attitudes expressed in third grade, next most favorable in eleventh grade, and clearly more negative attitudes expressed by students in seventh grade. There also was a significant interaction between grade level and ability regarding attitudes toward science classes. In contrast to what might be expected from reported differences between males and females in attitudes toward science, gender as a separate variable did not have a significant main effect in any of the comparisons.

  15. Encouraging Student Participation in Large Astronomy Courses

    ERIC Educational Resources Information Center

    Willoughby, Shannon D.

    2012-01-01

    Introductory astronomy is one of the most widely taught classes in the country and the majority of the students who take these classes are non-science majors. Because this demographic of students makes up the majority of astronomy enrollments, it is especially important as instructors that we do our best to make sure these students don't finish…

  16. Collaborative Testing as a Model for Addressing Equity in Student Success in STEM Classes

    NASA Astrophysics Data System (ADS)

    Dileonardo, C.; James, B. R.

    2016-12-01

    Introductory Earth science classes at two-year colleges play a critical role as "gateway courses" for underrepresented student populations into undergraduate STEM programs. Students entering college underprepared in math and science typically receive their only exposure to science at the undergraduate level in introductory courses in the Earth and space sciences. In many colleges a huge disparity exists in these classes between success rates amongst students from groups traditionally represented in the STEM fields and those from underrepresented populations. Closing the equity gap in success in these courses is a major focus of many pilot projects nationally. This concern has also led to the adoption of new teaching and learning practices, based on research in learning, in introductory Earth science pedagogy. Models of teaching practices including greater engagement, active learning approaches, and collaborative learning structures seem to help with student achievement in introductory courses. But, whereas these practices might increase overall student success they have not proven to close the equity gap in achievement. De Anza a two-year college in the San Francisco bay area has a long history in the geology department of incorporating and testing teaching practices developed out of research in learning. Collaborative learning has infused every aspect of our learning approaches in the Earth sciences, including laboratory, fieldwork, and test preparation. Though these approaches seemed to have educational benefit the huge equity gap department-wide persisted between targeted and non-targeted populations. Three years ago collaborative testing models were introduced into our geology and meteorology classes. The mechanism included methods for directly comparing collaborative to individual testing. The net result was that targeted populations including African Americans, Latinos, and Filipinos increased steadily at around 3.5% per year from 66% to 73%. The overall success rates of the non-targeted groups remained between 84% and 86%. Preliminary analysis suggests that for disengaged students in the targeted populations the opportunity to collaborate on a portion of the actual test got them more involved in the collaborative process as it offers immediate tangible return on in-class success.

  17. Effectiveness of integrating case studies in online and face-to-face instruction of pathophysiology: a comparative study.

    PubMed

    Saleh, Suha M; Asi, Yara M; Hamed, Kastro M

    2013-06-01

    Due to growing demand from students and facilitated by innovations in educational technology, institutions of higher learning are increasingly offering online courses. Subjects in the hard sciences, such as pathophysiology, have traditionally been taught in the face-to-face format, but growing demand for preclinical science courses has compelled educators to incorporate online components into their classes to promote comprehension. Learning tools such as case studies are being integrated into such courses to aid in student interaction, engagement, and critical thinking skills. Careful assessment of pedagogical techniques is essential; hence, this study aimed to evaluate and compare student perceptions of the use of case studies in face-to-face and fully online pathophysiology classes. A series of case studies was incorporated into the curriculum of a pathophysiology class for both class modes (online and face to face). At the end of the semester, students filled out a survey assessing the effectiveness of the case studies. Both groups offered positive responses about the incorporation of case studies in the curriculum of the pathophysiology class. This study supports the argument that with proper use of innovative teaching tools, such as case studies, online pathophysiology classes can foster a sense of community and interaction that is typically only seen with face-to-face classes, based on student responses. Students also indicated that regardless of class teaching modality, use of case studies facilitates student learning and comprehension as well as prepares them for their future careers in health fields.

  18. Caught in Their Tracks

    ERIC Educational Resources Information Center

    Pacifici, Lara

    2008-01-01

    By allowing students to develop and conduct research on biological or environmental problems they identify themselves, students gain a higher level of understanding and appreciation for science. To this end, teachers should incorporate student-driven research in biology and environmental science classes in lieu of cookbook laboratory activities…

  19. Mapping classroom experiences through the eyes of enlace students: The development of science literate identities

    NASA Astrophysics Data System (ADS)

    Oemig, Paulo Andreas

    The culture of a science classroom favors a particular speech community, thus membership requires students becoming bilingual and bicultural at the same time. The complexity of learning science rests in that it not only possesses a unique lexicon and discourse, but it ultimately entails a way of knowing. My dissertation examined the academic engagement and perceptions of a group (N=30) of high school students regarding their science literate practices. These students were participating in an Engaging Latino Communities for Education (ENLACE) program whose purpose is to increase Latino high school graduation rates and assist them with college entrance requirements. At the time of the study, 19 students were enrolled in different science classes to fulfill the science requirements for graduation. The primary research question: What kind of science classroom learning environment supports science literate identities for Latino/a students? was addressed through a convergent parallel mixed research design (Creswell & Plano Clark, 2011). Over the course of an academic semester I interviewed all 30 students arranged in focus groups and observed in their science classes. ENLACE students expressed interest in science when it was taught through hands-on activities or experiments. Students also stressed the importance of having teachers who made an effort to get to know them as persons and not just as students. Students felt more engaged in science when they perceived their teachers respected them for their experiences and knowledge. Findings strongly suggest students will be more interested in science when they have opportunities to learn through contextualized practices. Science literate identities can be promoted when inquiry serves as a vehicle for students to engage in the language of the discipline in all its modalities. Inquiry-based activities, when carefully planned and implemented, can provide meaningful spaces for students to construct knowledge, evaluate claims, and collaborate with each other.

  20. Earth system science K-12 scientist-student partnerships using paleontological materials

    NASA Astrophysics Data System (ADS)

    Harnik, P. G.; Ross, R. M.; Chiment, J. J.; Sherpa, J. M.

    2001-05-01

    Reducing the discrepancy between the dynamic science that researchers experience and the static fact-driven science education in which k-12 students participate at school is an important component to national science education reform. Scientist-student partnerships (SSPs) involving whole classes in Earth systems research provide a solution to this problem, but existing models have often lacked rigorous scientific data quality control and/or evaluation of pedagogical effectiveness. The Paleontological Research Institution has been prototyping two SSPs with an eye toward establishing protocols to insure both scientific and educational quality of the partnership. Data quality analysis involves making statistical estimates of data accuracy and employing robust statistical techniques for answering essential questions with noisy data. Educational evaluation takes into account affective variables, such as student motivation and interest, and compares the relative pedagogical effectiveness of SSPs with more traditional hands-on activities. Paleontology is a natural subject for scientist-student partnerships because of its intrinsic appeal to the general public, and because its interdisciplinary content serves as a springboard for meeting science education standards across the physical and life sciences. The "Devonian Seas" SSP involves classes in identifying fossil taxa and assessing taphonomic characteristics from Devonian-aged Hamilton Group shales in Central New York. The scientific purpose of the project is to establish at high stratigraphic resolution the sequence of dysoxic biofacies composition, which will shed light on the sensitivity of epeiric sea communities to environmental (e.g., sea level) changes. The project is undertaken in upper elementary school and secondary school Earth science classes, and in some cases has involved field-based teacher training and collection of samples. Students in small teams collaborate to identify taxa within the samples, then group and analyze class data. Ultimately class data will be added to data generated by other schools, after which more synthetic questions can be asked about change in assemblages through time. One year of pilot tests in elementary and secondary schools reveals that with little training student accuracy of 75% can be achieved for 8 of 11 of the species in an artificial assemblage. Encouragingly, even with misidentification of 30% or more by the students, the Pearson correlation between "true" and student abundance data was 0.82 to 0.93, and student rank- order of abundance was very similar to the actual order (Spearman coefficient 0.60 - 0.90). Thus, in spite of noise generated by identification error, the apparent community structure is well-captured with student data. The "Mastodon Matrix" SSP involves classes in sorting biological particles from two recently excavated exquisitely preserved mastodons, one from Central New York and one from the Hudson River Valley. The goal is to reconstruct in detail the geological, climatological, and ecological history of the post-glacial kettle ponds in which the mastodons were found. Students find small bivalves and gastropods, twigs (some of which are beaver-chewed or possibly mastodon-bitten), pine cones, tiny bones and teeth, mastodon bone fragments, seeds, insect parts, and many other objects. The project is generally undertaken by sending 1.0 kg bags to interested classes, with a set of instructions and basic background materials for separating the matrix, filling out the enclosed data sheet, and shipping back the fossil remains. The class is then involved in reconstructing an ancient environment.

  1. Giving Students a Leg Up

    ERIC Educational Resources Information Center

    Lund, Tony; Walker, Mimi

    2015-01-01

    To address the needs of the high population of students with learning disabilities at their school, the author and a colleague created an inclusion science class that focuses on active, hands-on science. The course prepares students of various learning abilities for the state-mandated end-of-course biology assessment. Many of their students have…

  2. Science Learning: A Path Analysis of Its Links with Reading Comprehension, Question-Asking in Class and Science Achievement

    ERIC Educational Resources Information Center

    Cano, Francisco; García, Ángela; Berbén, A. B. G.; Justicia, Fernando

    2014-01-01

    The purpose of this research was to build and test a conceptual model of the complex interrelationships between students' learning in science (learning approaches and self-regulation), their reading comprehension, question-asking in class and science achievement. These variables were measured by means of a test and a series of questionnaires…

  3. Interpreting the Relationships between Single Gender Science Classes and Girls' Academic Motivation and Interest

    ERIC Educational Resources Information Center

    Johnson, Sonya L.

    2012-01-01

    The purpose of this study was to determine how and to what extent single gender science classes affect motivation to learn scientific concepts, interest in science, and college major intent among high school and middle school girls. This study was designed to determine whether students' motivation to learn science changes when they are placed in a…

  4. EVALUATION AND FOLLOWUP STUDY OF A SUMMER SCIENCE AND MATHEMATICS PROGRAM FOR TALENTED SECONDARY SCHOOL STUDENTS.

    ERIC Educational Resources Information Center

    BASSETT, ROBERT D.; COOLEY, WILLIAM W.

    THIS STUDY WAS TO EVALUATE A SUMMER PROGRAM IN SCIENCE AND MATHEMATICS FOR 60 PROMISING SCIENCE STUDENTS, AND TO DETERMINE THE EFFECTS OF SUCH A PROGRAM ON THE BEHAVIOR OF STUDENTS IN CLASSES DURING THE ENSUING YEAR AND ON THEIR FUTURE CAREER DECISIONS. THE FIRST 2 OF THE 10 WEEKS OF THIS PROGRAM THE STUDENTS WERE GIVEN ADVANCED INSTRUCTION BY…

  5. The Role of STEM High Schools in Reducing Gaps in Science and Mathematics Coursetaking: Evidence from North Carolina. Research Report. RTI Press Publication RR-0025-1603

    ERIC Educational Resources Information Center

    Glennie, Elizabeth; Mason, Marcinda; Dalton, Ben

    2016-01-01

    Some states have created science, technology, engineering, and mathematics (STEM) schools to encourage student interest and enhance student proficiency in STEM subjects. We examined a set of STEM schools serving disadvantaged students to see whether these students were more likely to take and pass advanced science and mathematics classes than…

  6. "What's A Geoscientist Do?": A Student Recruitment And Education Tool

    NASA Astrophysics Data System (ADS)

    Hughes, C. G.

    2015-12-01

    Student perception of science, particularly the earth sciences, is not based on actual science jobs. Students have difficulty envisioning themselves as scientists, or in understanding the role of science in their lives as a result. Not all students can envision themselves as scientists when first enrolling in college. While student recruitment into geoscience programs starts before college enrollment at many universities, general education science requirements can act as a gateway into these majors as well. By providing students in general education science classes with more accurate insights into the scientific process and what it means to be a scientist, these classes can help students envision themselves as scientists. A short module, to be embedded within lectures, has been developed to improve recruitment from Clarion University's Introductory Earth Science classes entitled "What's A Geoscientist Do?". As this module aims to help students visualize themselves as geoscientists through examples, diversity of the examples is critical to recruiting students from underrepresented groups. Images and subjects within these modules are carefully selected to emphasize the fact that the geosciences are not, and should not be, the exclusive province of the stereotypical older, white, male scientist. Noteworthy individuals (e.g. John Wesley Powell, Roger Arliner Young) may be highlighted, or the discussion may focus on a particular career path (e.g. hydrologist) relevant to that day's material. While some students are initially attracted to the geosciences due to a love of the outdoors, many students have never spent a night outdoors, and do not find this aspect of the geosciences particularly appealing. "What's A Geoscientist Do?" has been designed to expose these students to the breadth of the field, including a number of geoscience jobs focused on laboratory (e.g. geochemistry) or computer (e.g. GIS, remote sensing, scientific illustration) work instead of focusing exclusively on fieldwork. As Clarion University students tend to be very job-oriented, information on careers includes average starting salaries with the hope of improving student's opinions of the position as possible future employment - helping students (and their families) realize they can support themselves in a geoscience career.

  7. Science Magic: Making a Difference

    ERIC Educational Resources Information Center

    Tidel, L. L.

    2004-01-01

    In this narrative article, the author fondly takes a look back at her own personal experiences with a memorable science teacher who showed his students that science was a living, breathing world. Whether he assigned his class to collect water samples from local ponds (to look at microscopic organisms), bring in rocks to class for identification,…

  8. Understanding Korean Transnational Girls in High School Science Classes: Beyond the Model Minority Stereotype

    ERIC Educational Resources Information Center

    Ryu, Minjung

    2015-01-01

    This study examines six Korean transnational girls enrolled in two advanced placement (AP) biology classes to understand their experiences in science classrooms at the intersection of race, language, and gender. Confronting the model minority stereotype for Asian students, which is particularly salient in science, technology, engineering, and…

  9. Fabrication of taste sensor for education

    NASA Astrophysics Data System (ADS)

    Wu, Xiao; Tahara, Yusuke; Toko, Kiyoshi; Kuriyaki, Hisao

    2017-03-01

    In order to solve the unconcern to usefulness of learning science among high school students in Japan, we developed a simple fabricated taste sensor with sensitivity and selectivity to each taste quality, which can be applied in science class. A commercialized Teflon membrane was used as the polymer membrane holding lipids. In addition, a non-adhesive method is considered to combine the membrane and the sensor electrode using a plastic cap which is easily accessible. The taste sensor for education fabricated in this way showed a good selectivity and sensitivity. By adjusting the composition of trioctylmethylammonium chloride (TOMA) and phosphoric acid di(2-ethylhexyl) ester (PAEE) included in lipid solution, we improved the selectivity of this simple taste sensor to saltiness and sourness. To verify this taste sensor as a useful science teaching material for science class, we applied this taste sensor into a science class for university students. By comparing the results between the sensory test and the sensor response, humans taste showed the same tendency just as the sensor response, which proved the sensor as a useful teaching material for science class.

  10. Energy matters: An investigation of drama pedagogy in the science classroom

    NASA Astrophysics Data System (ADS)

    Alrutz, Megan

    The purpose of this study is to explore and document how informal and improvisational drama techniques affect student learning in the science classroom. While implementing a drama-based science unit, I examined multiple notions of learning, including, but not limited to, traditional notions of achievement, student understanding, student participation in the science classroom, and student engagement with, and knowledge of, science content. Employing an interpretivist research methodology, as outlined by Fredrick Erickson for qualitative analysis in the classroom, I collected data through personal observations; student and teacher interviews; written, artistic and performed class work; video-recorded class work; written tests; and questionnaires. In analyzing the data, I found strong support for student engagement during drama-based science instruction. The drama-based lessons provided structures that drew students into lessons, created enthusiasm for the science curriculum, and encouraged meaningful engagement with, and connections to, the science content, including the application and synthesis of science concepts and skills. By making student contributions essential to each of the lessons, and by challenging students to justify, explain, and clarify their understandings within a dramatic scenario, the classroom facilitators created a conducive learning environment that included both support for student ideas and intellectual rigor. The integration of drama-based pedagogy most affected student access to science learning and content. Students' participation levels, as well as their interest in both science and drama, increased during this drama-based science unit. In addition, the drama-based lessons accommodated multiple learning styles and interests, improving students' access to science content and perceptions of their learning experience and abilities. Finally, while the drama-based science lessons provided multiple opportunities for solidifying understanding of the science content, the data also revealed missed opportunities for sense-making within the delivery of several drama-based science lessons. In conclusion, this study demonstrates how the integration of drama and science prepares students for seeking, accessing, and organizing information in different ways, providing multiple means for students to build knowledge and understanding for actively participating in the changing world around us.

  11. Science Learning Outcomes in Alignment with Learning Environment Preferences

    ERIC Educational Resources Information Center

    Chang, Chun-Yen; Hsiao, Chien-Hua; Chang, Yueh-Hsia

    2011-01-01

    This study investigated students' learning environment preferences and compared the relative effectiveness of instructional approaches on students' learning outcomes in achievement and attitude among 10th grade earth science classes in Taiwan. Data collection instruments include the Earth Science Classroom Learning Environment Inventory and Earth…

  12. Teacher Use of Evidence to Customize Inquiry Science Instruction

    ERIC Educational Resources Information Center

    Gerard, Libby F.; Spitulnik, Michele; Linn, Marcia C.

    2010-01-01

    This study investigated how professional development featuring evidence-based customization of technology-enhanced curriculum projects can improve inquiry science teaching and student knowledge integration in earth science. Participants included three middle school sixth-grade teachers and their classes of students (N = 787) for three consecutive…

  13. An Examination of High School Social Science Students' Levels Motivation towards Learning Geography

    ERIC Educational Resources Information Center

    Yildirim, Tahsin

    2017-01-01

    This aim of this research was to examine the levels of motivation among high school social science students towards learning geography. The study group consisted of 397 students from different classes at Aksaray Ahmet Cevdet Pasa High School in the College of Social Science. The research was carried out with a scanning model, with data obtained…

  14. The Attitudes of First Year Senior Secondary School Students toward Their Science Classes in the Sudan

    ERIC Educational Resources Information Center

    Lado, Longun Moses

    2011-01-01

    This study examined the influence of a set of relevant independent variables on students' decision to major in math or science disciplines, on the one hand, or arts or humanities disciplines, on the other. The independent variables of interest in the study were students' attitudes toward science, their gender, their socioeconomic status, their…

  15. My Science Class and Expected Career Choices--A Structural Equation Model of Determinants Involving Abu Dhabi High School Students

    ERIC Educational Resources Information Center

    Badri, Masood; Alnuaimi, Ali; Mohaidat, Jihad; Al Rashedi, Asma; Yang, Guang; Al Mazroui, Karima

    2016-01-01

    Background: This study is about Abu Dhabi high school students' interest in science in different contexts. The survey was conducted in connection with the international project, the Relevance of Science Education (ROSE). The sample consists of 5650 students in public and private schools. A structural equation model (SEM) is developed to capture…

  16. The Effects of Diagnosis, Remediation and Locus of Control on Achievement, Retention, and Attitudes of Middle School Science Students.

    ERIC Educational Resources Information Center

    Saunders, Ramona L.; Yeany, Russell H.

    Reported is a study designed to determine the effects of diagnostic testing followed by prescribed remediation on the immediate and retained science achievement of middle school students, and to determine if effects of treatment were consistent across students' race and locus of control (LOC) levels. Three intact seventh-grade science classes were…

  17. Improving Science Instruction for Students with Disabilities: Proceedings. Working Conference on Science for Persons with Disabilities (Anaheim, California, March 28-29, 1994).

    ERIC Educational Resources Information Center

    Stefanich, Greg P.; Egelston-Dodd, Judy, Ed.

    This proceedings report includes papers presented at a conference on teaching science to students with disabilities. In the first paper, "Family Pedigrees: A Model Lesson Illustrating Strategies for Teaching Students with Disabilities in a Mainstreamed High School Biology Class" (Kathleen Ball and Edward C. Keller, Jr.), strategies are described…

  18. What Makes Science Relevant?: Student Perceptions of Multimedia Case Learning in Ecology and Health

    ERIC Educational Resources Information Center

    Wolter, Bjorn H. K.; Lundeberg, Mary A.; Bergland, Mark

    2013-01-01

    The perception of science as boring is a major issue for teachers at all instructional levels. Tertiary classes especially suffer from a reputation for being dry, instructor-centered, and irrelevant to the lives of students. However, previous research has shown that science can be interesting to students if it is presented in such a manner as to…

  19. Gender Differences in the Effects of a Utility-Value Intervention to Help Parents Motivate Adolescents in Mathematics and Science

    ERIC Educational Resources Information Center

    Rozek, Christopher S.; Hyde, Janet S.; Svoboda, Ryan C.; Hulleman, Chris S.; Harackiewicz, Judith M.

    2015-01-01

    A foundation in science, technology, engineering, and mathematics (STEM) education is critical for students' college and career advancement, but many U.S. students fail to take advanced mathematics and science classes in high school. Research has neglected the potential role of parents in enhancing students' motivation for pursuing STEM courses.…

  20. An Integrative Cultural Model to better situate marginalized science students in postsecondary science education

    NASA Astrophysics Data System (ADS)

    Labouta, Hagar Ibrahim; Adams, Jennifer Dawn; Cramb, David Thomas

    2018-03-01

    In this paper we reflect on the article "I am smart enough to study postsecondary science: a critical discourse analysis of latecomers' identity construction in an online forum", by Phoebe Jackson and Gale Seiler (Cult Stud Sci Educ. https://doi.org/10.1007/s11422-017-9818-0). In their article, the authors did a significant amount of qualitative analysis of a discussion on an online forum by four latecomer students with past negative experiences in science education. The students used this online forum as an out-of-class resource to develop a cultural model based on their ability to ask questions together with solidarity as a new optimistic way to position themselves in science. In this forum, we continue by discussing the identity of marginalized science students in relation to resources available in postsecondary science classes. Recent findings on a successful case of a persistent marginalized science student in spite of prior struggles and failures are introduced. Building on their model and our results, we proposed a new cultural model, emphasizing interaction between inside and outside classroom resources which can further our understanding of the identity of marginalized science students. Exploring this cultural model could better explain drop-outs or engagement of marginalized science students to their study. We, then, used this model to reflect on both current traditional and effective teaching and learning practices truncating or re-enforcing relationships of marginalized students with the learning environment. In this way, we aim to further the discussion initiated by Jackson and Seiler and offer possible frameworks for future research on the interactions between marginalized students with past low achievements and other high and mid achieving students, as well as other interactions between resources inside and outside science postsecondary classrooms.

  1. Learning to Write Like a Scientist: A Writing-Intensive Course for Microbiology/Health Science Students †

    PubMed Central

    Grzyb, Kimi; Snyder, Wesley; Field, Katharine G.

    2018-01-01

    Learning the tools and conventions of expert communication in the sciences provides multiple benefits to bioscience students, yet often these skills are not formally taught. To address this need, we designed a writing-intensive microbiology course on emerging infectious diseases to provide upper-division students with science-specific writing skills along with disciplinary course content. The course followed the guidelines of our university’s Writing Intensive Curriculum (WIC) program. Students wrote a press release, a case study, a controversy/position paper, and a grant prospectus, and revised drafts after feedback. To assess the course, in 2015 and 2016 we administered pre-post surveys and collected writing samples for analysis. Students reported on their experience, training, skills, and knowledge before taking the course. They then rated the extent to which the assignments, lectures, in-class activities, and writing activities contributed to their attainment of the learning outcomes of the course. Students entering the class were inexperienced in tools of science writing and the specific genres covered by the class. Their confidence levels rose in both skills and knowledge. Feedback from instructors was cited as most helpful in the majority of the areas where students reported the most gains. The survey provided evidence that discipline-specific knowledge had been acquired through writing activities. Teaching science writing by allowing the students to write “fiction” (e.g., a case report about a fictional patient) was effective in maintaining a high level of interest, both in learning the conventions of the genre and in seeking out detailed information about emerging infectious diseases. Both the course structure and the specific assignments would be useful at other institutions to teach science writing. PMID:29904515

  2. Women, race, and science: The academic experiences of twenty women of color with a passion for science

    NASA Astrophysics Data System (ADS)

    Johnson, Angela C.

    Women of color drop out of science at higher rates than other students. This study is an ethnographic examination of why this occurs and how women of color can be supported in studying science. Through participant observation in science classes, labs, and a program supporting high-achieving students of color, as well as interviews with minority women science students, the student identities celebrated by science departments, as well as those embraced by my informants, were uncovered. Cultural norms of science classes often differed from those of the women in the study. Only one identity---apprentice research scientist---was celebrated in science settings, although others were tolerated. The women tended to either embrace the apprentice research scientist identity, form an alternative science-oriented identity, or never form a satisfying science student identity. Women who were more racially marked were more likely to fall into the second and third groups. This study uncovered difficulties which women students of color faced more than other science students. In addition, it uncovered several seemingly neutral institutional features of science lectures and labs which actually served to discourage or marginalize women students of color. It revealed values held in common by the women in the study and how those characteristics (especially altruism and pride and pleasure in academic challenge) led them to study science. It also revealed strategies used by the most successful women science students, as well as by professors and programs most successful at supporting women of color in the study of science. Based on this study, increasing the participation of women of color in science holds the possibility of altering the basic values of science; however, institutional features and personal interactions within science departments tend to resist those changes, primarily by encouraging women of color to abandon their study of science.

  3. Ethics in the classroom: a reflection on integrating ethical discussions in an introductory course in computer programming.

    PubMed

    Smolarski, D C; Whitehead, T

    2000-04-01

    In this paper, we describe our recent approaches to introducing students in a beginning computer science class to the study of ethical issues related to computer science and technology. This consists of three components: lectures on ethics and technology, in-class discussion of ethical scenarios, and a reflective paper on a topic related to ethics or the impact of technology on society. We give both student reactions to these aspects, and instructor perspective on the difficulties and benefits in exposing students to these ideas.

  4. A Comparison of Single-Gender Classes and Traditional, Coeducational Classes on Student Academic Achievement, Discipline Referrals, and Attitudes toward Subjects

    ERIC Educational Resources Information Center

    Smith, Debra Messenger

    2010-01-01

    In recent years, there has been a resurgence of interest in single gender education. Emerging science has proven that boys and girls learn differently. This study compared fifth grade single-gender classes to fifth grade traditional, coeducational classes in the same urban middle school. The following were compared: students' academic achievement;…

  5. Looking in a science classroom: exploring possibilities of creative cultural divergence in science teaching and learning

    NASA Astrophysics Data System (ADS)

    Baron, Alex; Chen, Hsiao-Lan Sharon

    2012-03-01

    Worldwide proliferation of pedagogical innovations creates expanding potential in the field of science education. While some teachers effectively improve students' scientific learning, others struggle to achieve desirable student outcomes. This study explores a Taiwanese science teacher's ability to effectively enhance her students' science learning. The authors visited a Taipei city primary school class taught by an experienced science teacher during a 4-week unit on astronomy, with a total of eight, 90-minute periods. Research methods employed in this study included video capture of each class as well as reflective interviews with the instructor, eliciting the teacher's reflection upon both her pedagogical choices and the perceived results of these choices. We report that the teacher successfully teaches science by creatively diverging from culturally generated educational expectations. Although the pedagogical techniques and ideas enumerated in the study are relevant specifically to Taiwan, creative cultural divergence might be replicated to improve science teaching worldwide.

  6. The Effect of STEM Learning through the Project of Designing Boat Model toward Student STEM Literacy

    NASA Astrophysics Data System (ADS)

    Tati, T.; Firman, H.; Riandi, R.

    2017-09-01

    STEM Learning focusses on development of STEM-literate society, the research about implementation of STEM learning to develope students’ STEM literacy is still limited. This study is aimed to examine the effect of implementation STEM learning through the project of designing boat model on students STEM literacy in energy topic. The method of this study was a quasi-experiment with non-randomized pretest-posttest control group design. There were two classes involved, the experiment class used Project Based Learning with STEM approach and control class used Project-Based Learning without STEM approach. A STEM Literacy test instrument was developed to measure students STEM literacy which consists of science literacy, mathematics literacy, and technology-engineering literacy. The analysis showed that there were significant differences on improvement science literacy, mathematics technology-engineering between experiment class and control class with effect size more than 0.8 (large effect). The difference of improvement of STEM literacy between experiment class and control class is caused by the existence of design engineering activity which required students to apply the knowledge from every field of STEM. The challenge that was faced in STEM learning through design engineering activity was how to give the students practice to integrate STEM field in solving the problems. In additional, most of the students gave positive response toward implementation of STEM learning through design boat model project.

  7. Getting Past "Just Because": Teaching Writing in Science Class

    ERIC Educational Resources Information Center

    Grymonpre, Kris; Cohn, Allison; Solomon, Stacey

    2012-01-01

    How many times do teachers assign writing in science class only to be exasperated by their students' lack of writing skills? They often have difficulty making claims and using evidence; instead of explaining their reasoning, they state, "Just because." But teaching writing isn't just for English/language arts (ELA) class. Over the past two years,…

  8. Student Performance in a Multimedia Case-Study Environment

    ERIC Educational Resources Information Center

    Wolter, Bjorn H. K.; Lundeberg, Mary A.; Bergland, Mark; Klyczek, Karen; Tosado, Rafael; Toro, Arlin; White, C. Dinitra

    2013-01-01

    Does an online, multimedia case study influence students' performance, motivation, and perceptions of science in collegiate level biology classes, and if so, how? One hundred and eight students in 5 classes from 4 campuses in the United States and Puerto Rico participated in data collection (performance tests, surveys and focus group interviews).…

  9. Flipped Classrooms and Student Learning: Not Just Surface Gains

    ERIC Educational Resources Information Center

    McLean, Sarah; Attardi, Stefanie M.; Faden, Lisa; Goldszmidt, Mark

    2016-01-01

    The flipped classroom is a relatively new approach to undergraduate teaching in science. This approach repurposes class time to focus on application and discussion; the acquisition of basic concepts and principles is done on the students' own time before class. While current flipped classroom research has focused on student preferences and…

  10. Cell Phones Transform a Science Methods Course

    ERIC Educational Resources Information Center

    Madden, Lauren

    2012-01-01

    A science methods instructor intentionally encouraged cell phone use for class work to discover how cell phones can be used as research tools to enhance the content and engage the students. The anecdotal evidence suggested that students who used their smartphones as research tools experienced the science content and pedagogical information…

  11. Family Science Night

    ERIC Educational Resources Information Center

    Hansen, Holly; Alderman, Helen Christine

    2016-01-01

    The goal of the Family Science Night (FSN) described in this article was to involve culturally and linguistically diverse families in school life so that students would be more vocal, successful, and interactive in science class. The project would also demonstrate to the students that their teacher valued their input in the classroom. The setting…

  12. Students' Perceptions of Single-Gender Science and Mathematics Classroom Experiences

    ERIC Educational Resources Information Center

    Brown, Sherri L.; Ronau, Robert R.

    2012-01-01

    While participating in single- and mixed-gender science and mathematics classes, ninth-grade urban high school students' (n = 118) academic self-concept, self-efficacy, and school climate perceptions were examined. Their perceptions were measured quantitatively from the Fennema-Sherman Mathematics (modified for Science) Attitude and the Patterns…

  13. Developmental Perspectives on Reflective Practices of Elementary Science Education Students

    ERIC Educational Resources Information Center

    Olson, Joanne K.; Finson, Kevin D.

    2009-01-01

    Instructors of elementary science methods classes have long lamented the significant difficulties their students exhibit when trying to understand the many complexities of teaching science. As noted by some researchers and practicing teachers, preservice teachers often fail to developmentally function at desired levels with respect to…

  14. Impact of Automated Software Testing Tools on Reflective Thinking and Student Performance in Introductory Computer Science Programming Classes

    ERIC Educational Resources Information Center

    Fridge, Evorell; Bagui, Sikha

    2016-01-01

    The goal of this research was to investigate the effects of automated testing software on levels of student reflection and student performance. This was a self-selecting, between subjects design that examined the performance of students in introductory computer programming classes. Participants were given the option of using the Web-CAT…

  15. Investigation of Primary Education Second Level Students' Motivations toward Science Learning in Terms of Various Factors

    ERIC Educational Resources Information Center

    Sert Çibik, Ayse

    2014-01-01

    The purpose of this research was to investigate the primary education second level students' motivations towards science learning in terms of various factors. Within the research, the variation of the total motivational scores in science learning according to the gender, class, socio-economic levels, success in science-technology course and…

  16. Promoting interest and performance in high school science classes.

    PubMed

    Hulleman, Chris S; Harackiewicz, Judith M

    2009-12-04

    We tested whether classroom activities that encourage students to connect course materials to their lives will increase student motivation and learning. We hypothesized that this effect will be stronger for students who have low expectations of success. In a randomized field experiment with high school students, we found that a relevance intervention, which encouraged students to make connections between their lives and what they were learning in their science courses, increased interest in science and course grades for students with low success expectations. The results have implications for the development of science curricula and theories of motivation.

  17. Effects of an Inverted Instructional Delivery Model on Achievement of Ninth-Grade Physical Science Honors Students

    NASA Astrophysics Data System (ADS)

    Howell, Donna

    This mixed-methods action research study was designed to assess the achievement of ninth-grade Physical Science Honors students by analysis of pre and posttest data. In addition, perceptual data from students, parents, and the researcher were collected to form a complete picture of the flipped lecture format versus the traditional lecture format. The researcher utilized a 4MAT learning cycle in two Physical Science Honors classes. One of these classes was traditionally delivered with lecture-type activities taking place inside the classroom and homework-type activities taking place at home; the other inverted, or flipped, delivered with lecture-type activities taking place outside the classroom and homework-type activities taking place inside the classroom. Existing unit pre and posttests for both classes were analyzed for differences in academic achievement. At the completion of the units, the flipped class students and parents were surveyed, and student focus groups were convened to ascertain their perceptions of the flipped classroom delivery model. Statistical analysis of posttest data revealed that there is no significant difference between the traditional lecture delivery format and the flipped delivery format. Analysis of perceptual data revealed six themes that must be considered when deciding to flip the classroom: how to hold students accountable for viewing the at-home videos, accessibility of students to the required technology, technical considerations relating to the video production, comprehension of the material both during and after viewing the videos, pedagogy of the overall flipped method, and preference for the flipped method overall. Findings revealed that students, parents, and the researcher all had a preference for the flipped class format, provided the above issues are addressed. The flipped class format encourages students to become more responsible for their learning, and, in addition, students reported that the hands-on inquiry activities done in class aided them in learning the subject matter. It is recommended, however, that before instructors decide to flip the classroom, they ensure that all students have access to needed technology, that there is a plan in place for ensuring that the students actually view the assigned videos, that they have a way to create the videos and ensure adequate quality, and that some discussion is held in class after each assigned video to ensure comprehension of the material.

  18. Framing discourse for optimal learning in science and mathematics

    NASA Astrophysics Data System (ADS)

    Megowan, Mary Colleen

    2007-12-01

    This study explored the collaborative thinking and learning that occurred in physics and mathematics classes where teachers practiced Modeling Instruction. Four different classes were videotaped---a middle school mathematics resource class, a 9th grade physical science class, a high school honors physics class and a community college engineering physics course. Videotapes and transcripts were analyzed to discover connections between the conceptual structures and spatial representations that shaped students' conversations about space and time. Along the way, it became apparent that students' and teachers' cultural models of schooling were a significant influence, sometimes positive and sometimes negative, in students' engagement and metaphor selection. A growing number of researchers are exploring the importance of semiotics in physics and mathematics, but typically their unit of analysis is the individual student. To examine the distributed cognition that occurred in this unique learning setting, not just among students but also in connection with their tools, artifacts and representations, I extended the unit of analysis for my research to include small groups and their collaborative work with whiteboarded representations of contextual problems and laboratory exercises. My data revealed a number of interesting insights. Students who constructed spatial representations and used them to assist their reasoning, were more apt to demonstrate a coherent grasp of the elements, operations, relations and rules that govern the model under investigation than those who relied on propositional algebraic representations of the model. In classrooms where teachers permitted and encouraged students to take and hold the floor during whole-group discussions, students learned to probe one another more deeply and conceptually. Shared representations (whether spatial or propositional/algebraic), such as those that naturally occurred when students worked together in small groups to prepare collaborative displays of their thinking, were more apt to stimulate conceptually oriented conversations among students than individual work, i.e., what each student had written on his or her worksheet. This research was supported, in part, by grants from the National Science Foundation (#0337795 and #0312038). Any opinions, findings, conclusions or recommendations expressed herein are those of the author and do not necessarily reflect the views of the National Science Foundation.

  19. Middle school girls: Experiences in a place-based education science classroom

    NASA Astrophysics Data System (ADS)

    Shea, Charlene K.

    The middle school years are a crucial time when girls' science interest and participation decrease (Barton, Tan, O'Neill, Bautista-Guerra, & Brecklin, 2013). The purpose of this study was to examine the experiences of middle school girls and their teacher in an eighth grade place-based education (PBE) science classroom. PBE strives to increase student recognition of the importance of educational concepts by reducing the disconnection between education and community (Gruenewald, 2008; Smith, 2007; Sobel, 2004). The current study provides two unique voices---the teacher and her students. I describe how this teacher and her students perceived PBE science instruction impacting the girls' participation in science and their willingness to pursue advanced science classes and science careers. The data were collected during the last three months of the girls' last year of middle school by utilizing observations, interviews and artifacts of the teacher and her female students in their eighth grade PBE science class. The findings reveal how PBE strategies, including the co-creation of science curriculum, can encourage girls' willingness to participate in advanced science education and pursue science careers. The implications of these findings support the use of PBE curricular strategies to encourage middle school girls to participate in advance science courses and science careers.

  20. Increasing High School Student Interest in Science: An Action Research Study

    NASA Astrophysics Data System (ADS)

    Vartuli, Cindy A.

    An action research study was conducted to determine how to increase student interest in learning science and pursuing a STEM career. The study began by exploring 10th-grade student and teacher perceptions of student interest in science in order to design an instructional strategy for stimulating student interest in learning and pursuing science. Data for this study included responses from 270 students to an on-line science survey and interviews with 11 students and eight science teachers. The action research intervention included two iterations of the STEM Career Project. The first iteration introduced four chemistry classes to the intervention. The researcher used student reflections and a post-project survey to determine if the intervention had influence on the students' interest in pursuing science. The second iteration was completed by three science teachers who had implemented the intervention with their chemistry classes, using student reflections and post-project surveys, as a way to make further procedural refinements and improvements to the intervention and measures. Findings from the exploratory phase of the study suggested students generally had interest in learning science but increasing that interest required including personally relevant applications and laboratory experiences. The intervention included a student-directed learning module in which students investigated three STEM careers and presented information on one of their chosen careers. The STEM Career Project enabled students to explore career possibilities in order to increase their awareness of STEM careers. Findings from the first iteration of the intervention suggested a positive influence on student interest in learning and pursuing science. The second iteration included modifications to the intervention resulting in support for the findings of the first iteration. Results of the second iteration provided modifications that would allow the project to be used for different academic levels. Insights from conducting the action research study provided the researcher with effective ways to make positive changes in her own teaching praxis and the tools used to improve student awareness of STEM career options.

  1. The Effects of Teaching Notetaking Strategies on Elementary Students' Science Learning

    ERIC Educational Resources Information Center

    Lee, Pai-Lin; Lan, William; Hamman, Douglas; Hendricks, Bret

    2008-01-01

    The research examined effects of notetaking instruction on elementary-aged students' abilities to recall science information and their notetaking behaviors. Classes of eight to nine years old third grade students were randomly assigned to three treatment conditions: strategic notetaking, partial strategic notetaking, and control, for four training…

  2. Digging into Inquiry-Based Earth Science Research

    ERIC Educational Resources Information Center

    Schultz, Bryan; Yates, Crystal; Schultz, Jayne M.

    2008-01-01

    To help eighth-grade students experience the excitement of Earth science research, the authors developed an inquiry-based project in which students evaluated and cataloged their campus geology and soils. Following class discussions of rock-weathering and soil-forming processes, students worked in groups to excavate multiple soil pits in the school…

  3. Tool Time: Gender and Students' Use of Tools, Control, and Authority.

    ERIC Educational Resources Information Center

    Jones, M. Gail; Brader-Araje, Laura; Carboni, Lisa Wilson; Carter, Glenda; Rua, Melissa J.; Banilower, Eric; Hatch, Holly

    2000-01-01

    Observes 16 students from five elementary science classes to examine how students use tools when constructing new knowledge during science instruction, how control of tools is actualized from pedagogical perspectives, how language and tool accessibility intersect, how gender intersects with tool use, and how competition for resources impacts…

  4. The Video Toaster Meets Science + English + At-Risk Students.

    ERIC Educational Resources Information Center

    Perryess, Charlie

    1992-01-01

    Describes an experimental Science-English class for at-risk students which was team taught and used technology--particularly a Video Toaster (a videotape editing machine)--as a motivator. Discusses procedures for turning videotape taken on field trips into three- to five-minute student productions on California's water crisis. (SR)

  5. Californian Science Students' Perceptions of Their Classroom Learning Environments

    ERIC Educational Resources Information Center

    den Brok, Perry; Fisher, Darrell; Rickards, Tony; Bull, Eric

    2006-01-01

    This study utilised the "What Is Happening In this Class" (WIHIC) questionnaire to examine factors that influence Californian students' perceptions of their learning environment. Data were collected from 665 USA middle school science students in 11 Californian schools. Several background variables, such as gender, socioeconomic status,…

  6. Teacher research experiences, epistemology, and student attitudes toward science

    NASA Astrophysics Data System (ADS)

    Payne, Diana L.

    This concurrent mixed methods research study examined the impact of a Teacher Research Experience (TRE) on science teacher beliefs about science, scientific research, science teaching, and student attitudes toward science. Surveys, interviews, reflective journals, and classroom observations of six teachers involved in a TRE were utilized to examine changes in beliefs as a result of participation in the TRE. Student attitudes were measured with a pre and post survey. An analysis of qualitative data from the teachers' interviews, journals, and pre and post TRE surveys indicated that some change occurred in their beliefs about science and scientists for all six teachers, and that teachers' beliefs about science teaching were affected in a variety of ways after participating in the TRE. The quantitative results of the study using Science Teachers' Beliefs About Science (STBAS) instrument suggest that the change from the beginning to the end of the school year, if any, was minimal. However, interviews with and observations of teachers identified valuable components of the TRE, such as the advanced resources (e.g., DVD, samples), a feeling of rejuvenation in teaching, a new perspective on science and scientific research, and first hand experiences in science. Results from the classroom observations using the Science Classroom Practice Record (SCPR) were mixed. Some differences may be explained, however, as relating to content taught in the pre and post classes observed or simply to inherent differences in student dynamics and behavior from class to class. There were no significant differences from pre to post TRE regarding student attitudes toward science as measured by paired samples t-tests on the modified Attitudes Toward Science (mATSI) instrument. Attitudes and beliefs are not easily changed, and change is more likely to result from direct experience and education rather than an indirect experience. Although the results are generalizable only to the participants in this study, the findings have the potential to inform other types of TRE professional development efforts of different design, duration, and location.

  7. Bringing Real Solar Physics to the High School Classroom

    NASA Astrophysics Data System (ADS)

    Seaton, Daniel

    2006-06-01

    UNH's Partnership for Research Opportunities to Benefit Education (PROBE) project sends graduate students into high school classrooms across New Hampshire in order to help introduce students to authentic scientific inquiry. As one of ten graduate fellows, I worked with students in in ninth through twelfth grades in physical science, physics, earth science, and astronomy classes; helping students carry out individual and class projects on physics and solar physics. Projects related to solar physics included the production and analysis of plasma using a microwave oven, measurement of the solar constant, measurement of the solar rotation rate, solar spectroscopy, analysis of data from TRACE and SOHO, and the construction of various solar-powered devices. This work was generously supported by a grant from the National Science Foundation's GK-12 initiative (NSF#0338277).

  8. Decentering: A Characteristic of Effective Student-Student Discourse in Inquiry-Oriented Physical Chemistry Classrooms

    ERIC Educational Resources Information Center

    Moon, Alena; Stanford, Courtney; Cole, Renee; Towns, Marcy

    2017-01-01

    Recent science reform documents have called for incorporating authentic scientific discourse into science classes as engaging in discourse has shown to result in numerous benefits. Whether these benefits are observed in students depends upon the quality of the discourse in which they engage. However, characterizing the quality of student-student…

  9. The Role of Motivating Tasks and Personal Goal Orientations in Students' Coping Strategies in Science

    ERIC Educational Resources Information Center

    Subasi, Münevver; Tas, Yasemin

    2016-01-01

    This study aims to investigate coping strategies of middle school students in science classes in relation to students' goal orientations and motivating tasks conducted in the classroom environment. The study was conducted in spring semester of 2015-2016 academic year. Sample of the study consists of 316 middle school students receiving education…

  10. Supporting Argumentation through Students' Questions: Case Studies in Science Classrooms

    ERIC Educational Resources Information Center

    Chin, Christine; Osborne, Jonathan

    2010-01-01

    This study explores how student-generated questions can support argumentation in science. Students were asked to discuss which of two graphs showing the change in temperature with time when ice is heated to steam was correct. Four classes of students, aged 12-14 years, from two countries, first wrote questions about the phenomenon. Then, working…

  11. The effect of homework choices on achievement and intrinsic motivation

    NASA Astrophysics Data System (ADS)

    Christensen, Emily Fast

    The purpose of this research was to test an intervention of choices in homework on the achievement and intrinsic motivation of seventh-grade science students at a middle school. The intervention was based on concepts from the cognitive evaluation theory of Edward L. Deci and Richard M. Ryan (1985). The subjects were sixteen heterogeneous classes of seventh-grade students, who were divided among four teachers. Two randomly chosen classes from each teacher received choices in their homework and the remaining two classes of each teacher received similar homework assignments without choices. Two hypotheses were developed for this study: (1) Seventh-grade science students given choices in their homework would show an increase in intrinsic motivation as measured on a motivation orientation measure, compared to students not given choices in their homework, and (2) Seventh-grade science students given choices in their homework would show an increase in achievement on an achievement measure, compared to students not given choices in their homework. Having choices in homework did not increase intrinsic motivation or achievement. However, students who did their homework did significantly better on the posttest, and students who were more intrinsically motivated did significantly better on the posttest. Just doing the homework was important for achievement, and intrinsic motivation was linked to achievement.

  12. Constellation Prizes: Using Science Fiction for Lesbian, Gay, and Bisexual Issues in College Classes.

    ERIC Educational Resources Information Center

    Marchesani, Joseph J.

    An English professor used science fiction to introduce his students to a range of questions about alternative sexualities. While a course proposal for a science fiction class being taught as a "diversity offering" with an emphasis on gender and sexual orientation was working its way through the bureaucracy at Pennsylvania State…

  13. Experiment of Enzyme Kinetics Using Guided Inquiry Model for Enhancing Generic Science Skills

    NASA Astrophysics Data System (ADS)

    Amida, N.; Supriyanti, F. M. T.; Liliasari

    2017-02-01

    This study aims to enhance generic science skills of students using guided inquiry model through experiments of enzyme kinetics. This study used quasi-experimental methods, with pretest-posttestnonequivalent control group design. Subjects of this study were chemistry students enrolled in biochemistry lab course, consisted of 18 students in experimental class and 19 students in control class. Instrument in this study were essay test that involves 5 indicators of generic science skills (i.e. direct observation, causality, symbolic language, mathematical modeling, and concepts formation) and also student worksheets. The results showed that the experiments of kinetics enzyme using guided inquiry model have been enhance generic science skills in high category with a value of average of 0.77. Four indicators classified in the high category are direct observation, causality, symbolic language, and mathematical modeling with the value of 0,73 0,70; 0,96; dan 0,85. Meanwhile, indicator of concepts formation in the medium category with a value of 0.62

  14. Impacts of a Place-Based Science Curriculum on Student Place Attachment in Hawaiian and Western Cultural Institutions at an Urban High School in Hawai'i

    ERIC Educational Resources Information Center

    Kuwahara, Jennifer L. H.

    2013-01-01

    This study investigates how students' participation in a place-based science curriculum may influence their place attachment (dependence and identity). Participants attend an urban high school in Hawai'i and are members of different cultural institutions within the school. Students are either enrolled in an environmental science class within the…

  15. The Effects of Scientific Representations on Primary Students' Development of Scientific Discourse and Conceptual Understandings during Cooperative Contemporary Inquiry-Science

    ERIC Educational Resources Information Center

    Gillies, Robyn M.; Nichols, Kim; Khan, Asaduzzaman

    2015-01-01

    Teaching students to use and interpret representations in science is critically important if they are to become scientifically literate and learn how to communicate their understandings and learning in science. This study involved 248 students (119 boys and 129 girls) from 26 grade 6 teachers' classes in nine primary schools in Brisbane,…

  16. Analysis According to Certain Variables of Scientific Literacy among Gifted Students That Participate in Scientific Activities at Science and Art Centers

    ERIC Educational Resources Information Center

    Kömek, Emre; Yagiz, Dursun; Kurt, Murat

    2015-01-01

    The purpose of this study is to analyze scientific literacy levels relevant to science and technology classes among gifted students that participate in scientific activities at science and art centers. This study investigated whether there was a significant difference in scientific literacy levels among gifted students according to the areas of…

  17. "We're All Gonna' Die": Using Human Interest in Disasters to Promote Student Interest and Research in Introductory Science Classes for Non-Science Majors.

    NASA Astrophysics Data System (ADS)

    Prueher, L.

    2008-12-01

    Humans are fascinated by disasters. Volcanic eruptions, earthquakes, and other natural disasters capture the public interest and provide educators a venue in which to present scientific information and dispel common misconceptions. Presenting scientific information via the vehicle of a disaster can attract even the most science-phobic student, capturing their interest in a way that more traditional methods of presentation cannot or do not. People are inundated with scientific data through the popular media yet little is done to provide non-scientists with the information needed to distinguish between fact and fiction. Docudramas such as, "Supervolcano", blur the boundary between reality and fiction. Human interest in disasters can be used as an educational tool to foster scientific literacy among non-science majors. "We're All Gonna' Die", is an inquiry-based research project used in introductory geology classes at Arapahoe Community College and the University of Northern Colorado. Most students taking this class have no college science background. The project introduces students to geological and environmental hazards. Students choose a city of interest, analyze the potential geologic and environmental hazards in the area, and determine what can be done to minimize potential damage and fatalities. Students are more interested in a topic and delve deeper into the subject matter when researching a project of their own choosing. Students have incorporated demonstrations, skits, student-made videos, games, current geologic events, and research results into their projects. Perhaps as important, the students have fun, become excited about their project and topic, and disseminate the information to family and friends.

  18. Critical incidents influencing students' selection of elective science

    NASA Astrophysics Data System (ADS)

    Essary, Danny Ray

    Purpose of the study. The purpose of the study was to investigate the critical incidents that determined high school students' self selection into and out of elective science classes. The Critical Incident Technique was used to gather data. Procedure. Subjects for study were 436 students attending five high schools within the geographical boundaries of a Northeast Texas County. Each student was enrolled in a senior level government/economics course during the spring semester of 1997. Students enrolled and in attendance during data collection procedures were subjects of the study. The subjects recorded 712 usable critical incidents. Incidents were categorized by examiners and a total of eleven incident categories emerged for analysis purposes. Incident frequencies were categorized by sample population, selectors, and nonselectors; subdivided by gender. Findings. The following categories emerged for study; (A) Mentored, (B) Requirements, (C) Personal Interest(s), (D) Level of Difficulty, (E) Time Restraints, (F) Future Concerns, (G) Grades, (H) Teacher, (I) Peer Influence, (J) Challenge, (K) Other Academic Experiences. Data were analyzed qualitatively to answer research questions and quantitatively to test hypotheses. There was an emergence of ten incident categories for nonselectors and an emergence of eleven incident categories for selectors. Of the twelve hypotheses, four failed to be rejected and eight were rejected. Conclusions. Nonselectors and selectors of elective science were influenced by various external factors. Requirements were influential for nonselectors. Nonselectors chose to select the minimum number of science classes necessary for graduation. Selectors were influenced by curriculum requirements, future concerns and mentors. Special programs that required extra science classes were influential in students' decisions to enroll in elective science. Gender differences were not influential for selectors or nonselectors of elective science.

  19. Setting the question for inquiry: The effects of whole class vs small group on student achievement in elementary science

    NASA Astrophysics Data System (ADS)

    Cavagnetto, Andy Roy

    This study was conducted to determine the effects of two different student-centered approaches to setting the question for inquiry. The first approach (whole class) consisted of students setting a single question for inquiry after which students worked in small groups during an investigation phase of the activity with all groups exploring the same question. The second approach (small group) consisted of each group of students setting a question resulting in numerous questions being explored per class. A mixed method quasi-experimental design was utilized. Two grade five teachers from a small rural school district in the Midwestern United States participated, each teaching two sections of science (approximately 25 students per section). Results indicate three major findings. Instructional approach (whole class vs. small group) did not effect student achievement in science or language arts. Observational data indicated the actions and skills teachers utilized to implement the approaches were similar. Specifically, the pedagogical skills of dialogical interaction (which was found to be influenced by teacher level of control of learning and teacher content knowledge) and effective rather than efficient use of time were identified as key factors in teachers' progression toward a student-centered, teacher-managed instructional approach. Unit exams along with qualitative and quantitative teacher observation data indicated that these factors do have an impact on student achievement. Specifically increased dialogical interaction in the forms of greater student voice, and increased cognitive demands placed on students by embedding and emphasizing science argument within the student inquiry corresponded to positive gains in student achievement. Additionally, teacher's perception of student abilities was also found to influence professional growth. Finally, allowing students to set the questions for inquiry and design the experiments impact the classroom environment as teacher talk changed from giving directions toward scaffolding student thought. These results have implications for professional development and teacher education as they suggest that more time should be spent on challenging teachers to align their pedagogy with how students learn rather than simply providing strategies and lesson plans for teachers to use in the classrooms.

  20. Impact of the 3-D model strategy on science learning of the solar system

    NASA Astrophysics Data System (ADS)

    Alharbi, Mohammed

    The purpose of this mixed method study, quantitative and descriptive, was to determine whether the first-middle grade (seventh grade) students at Saudi schools are able to learn and use the Autodesk Maya software to interact and create their own 3-D models and animations and whether their use of the software influences their study habits and their understanding of the school subject matter. The study revealed that there is value to the science students regarding the use of 3-D software to create 3-D models to complete science assignments. Also, this study aimed to address the middle-school students' ability to learn 3-D software in art class, and then ultimately use it in their science class. The success of this study may open the way to consider the impact of 3-D modeling on other school subjects, such as mathematics, art, and geography. When the students start using graphic design, including 3-D software, at a young age, they tend to develop personal creativity and skills. The success of this study, if applied in schools, will provide the community with skillful young designers and increase awareness of graphic design and the new 3-D technology. Experimental method was used to answer the quantitative research question, are there significant differences applying the learning method using 3-D models (no 3-D, premade 3-D, and create 3-D) in a science class being taught about the solar system and its impact on the students' science achievement scores? Descriptive method was used to answer the qualitative research questions that are about the difficulty of learning and using Autodesk Maya software, time that students take to use the basic levels of Polygon and Animation parts of the Autodesk Maya software, and level of students' work quality.

  1. The effects of blogs versus dialogue journals on open-response writing scores and attitudes of grade eight science students

    NASA Astrophysics Data System (ADS)

    Erickson, Diane K.

    Today's students have grown up surrounded by technology. They use cell phones, word processors, and the Internet with ease, talking with peers in their community and around the world through e-mails, chatrooms, instant messaging, online discussions, and weblogs ("blogs"). In the midst of this technological explosion, adolescents face a growing need for strong literacy skills in all subject areas for achievement in school and on mandated state and national high stakes tests. The purpose of this study was to examine the use of blogs as a tool for improving open-response writing in the secondary science classroom in comparison to the use of handwritten dialogue journals. The study used a mixed-method approach, gathering both quantitative and qualitative data from 94 students in four eighth-grade science classes. Two classes participated in online class blogs where they posted ideas about science and responded to the ideas of other classmates. Two classes participated in handwritten dialogue journals, writing ideas about science and exchanging journals to respond to the ideas of classmates. The study explored these research questions: Does the use of blogs, as compared to the use of handwritten dialogue journals, improve the open-response writing scores of eighth grade science students? How do students describe their experience using blogs to study science as compared to students using handwritten dialogue journals? and How do motivation, self-efficacy, and community manifest themselves in students who use blogs as compared to students who use handwritten dialogue journals? The quantitative aspect of the study used data from pre- and post-tests and from a Likert-scale post-survey. The pre- and post-writing on open-response science questions were scored using the Massachusetts Comprehensive Assessment System (MCAS) open-response scoring rubric. The study found no statistically significant difference in the writing scores between the blog group and the dialogue journal groups. The study found significant difference between the scores on the post-survey of the two groups with the blogging group registering a more positive attitude about the experience than the dialogue journal group. The qualitative aspect of the study used group and individual interviews with 26 randomly-chosen students to explore the nature of the students' experiences using blogs and dialogue journals. Overall, the blog group communicated more positive responses to the experience than did students from the dialogue journal group, often indicating that blogging was "fun" and "helpful" and made them look forward to science class. This study addressed research needs in the fields of writing, technology, and content literacy. It is significant because there is little research on the use of blogs in the middle school content classroom, particularly on the use of blogs as a tool for improving open-response writing. It adds information as to the experience of students who use blogs in the science classroom and explored it as a way to explore ideas, build understanding, and connect with others. This is significant to know as school districts look to include more technology instruction and practices in the curriculum. Blogs could give students a critical tool for writing and thinking in the content classroom, helping to prepare students for an increasingly technological and global society.

  2. The importance of teacher-student interpersonal relationships for Turkish students' attitudes towards science

    NASA Astrophysics Data System (ADS)

    Telli, Sibel; den Brok, Perry; Cakiroglu, Jale

    2010-11-01

    The purpose of this study was to examine associations between Turkish high school students' perceptions of their science teachers' interpersonal behaviour and their attitudes towards science. Students' perceptions of the teacher-student interpersonal relationship were mapped with the Questionnaire on Teacher Interaction (QTI), which uses two relational dimensions: influence and proximity. Data on Students' subject-related attitudes were collected with the Test of Science Related Attitudes (TOSRA). A total of 7484 students (Grades 9 to 11) from 278 science classes (55 public schools) in 13 major Turkish cities participated in the study. Multilevel analyses of variance indicated that influence was related with student enjoyment, while proximity was associated with attitudes towards inquiry and with enjoyment.

  3. Research Experiences for Science Teachers: The Impact On Their Students

    NASA Astrophysics Data System (ADS)

    Dubner, J.

    2005-12-01

    Deficiencies in science preparedness of United States high school students were recognized more than two decades ago, as were some of their underlying causes. Among the primary causes are the remoteness of the language, tools, and concepts of science from the daily experiences of teachers and students, and the long-standing national shortage of appropriately prepared science teachers. Secondary school science teachers are challenged each school year by constantly changing content, new technologies, and increasing demands for standards-based instruction. A major deficiency in the education of science teachers was their lack of experience with the practice of science, and with practicing scientists. Providing teachers with opportunities to gain hands-on experience with the tools and materials of science under the guidance and mentorship of leading scientists in an environment attuned to professional development, would have many beneficial effects. They would improve teachers' understanding of science and their ability to develop and lead inquiry- and standards-based science classes and laboratories. They would enable them to communicate the vitality and dynamism of science to their students and to other teachers. They would enhance their ability to motivate and guide students. From its inception, Columbia University's Summer Research Program for Science Teacher's goal has been to enhance interest and improve performance in science of students in New York City area schools. The program seeks to achieve this goal by increasing the professional competence of teachers. Our ongoing program evaluation shows that following completion of the program, the teachers implement more inquiry-based classroom and laboratory exercises, increase utilization of Internet resources, motivate students to participate in after school science clubs and Intel-type science projects; and create opportunities for students to investigate an area of science in greater depth and for longer periods of time than more conventionally trained teachers. Most importantly, the performance of their students improves; students of participating teachers have a higher pass rate on New York State Science Regents examinations than students in classes of non-participating teachers in the same schools. Student outcomes data will be presented for both Columbia's program and from a multi-site study, which Columbia's program headed up.

  4. From Proposal Writing to Data Collection to Presentation: Physical Oceanography Laboratory Class Students Explore the Fundamentals of Science

    NASA Astrophysics Data System (ADS)

    Buijsman, M. C.; Church, I.; Haydel, J.; Martin, K. M.; Shiller, A. M.; Wallace, D. J.; Blancher, J.; Foltz, A.; Griffis, A. M.; Kosciuch, T. J.; Kincketootle, A.; Pierce, E.; Young, V. A.

    2016-02-01

    To better prepare first-year Department of Marine Science MSc students of the University of Southern Mississippi for their science careers, we plan to execute a semester-long Physical Oceanography laboratory class that exposes the enrolled students to all aspects of interdisciplinary research: writing a proposal, planning a cruise, collecting and analyzing data, and presenting their results. Although some of these aspects may be taught in any such class, the incorporation of all these aspects makes this class unique.The fieldwork will be conducted by boat in the Rigolets in Louisiana, a 13-km long tidal strait up to 1 km wide connecting the Mississippi Sound with Lake Pontchartrain. The students have the opportunity to collect ADCP, CTD, multibeam sonar, sediment and water samples.A second novel characteristic of this class is that the instructor partnered with the Lake Pontchartrain Basin Foundation, a not for profit environmental advocacy group. The foundation will give an hour-long seminar on the natural history of the study area and its environmental problems. This information provides context for the students' research proposals and allows them to formulate research questions and hypotheses that connect their research objectives to societally relevant issues, such as coastal erosion, salt water intrusion, and water quality. The proposal writing and cruise planning is done in the first month of the 3.5-month long semester. In the second month two surveys are conducted. The remainder of the semester is spent on analysis and reporting. Whenever possible we teach Matlab for the students to use in their data analysis. In this presentation, we will report on the successes and difficulties associated with teaching such a multi-faceted class.

  5. Science Learning Outcomes in Alignment with Learning Environment Preferences

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Yen; Hsiao, Chien-Hua; Chang, Yueh-Hsia

    2011-04-01

    This study investigated students' learning environment preferences and compared the relative effectiveness of instructional approaches on students' learning outcomes in achievement and attitude among 10th grade earth science classes in Taiwan. Data collection instruments include the Earth Science Classroom Learning Environment Inventory and Earth Science Learning Outcomes Inventory. The results showed that most students preferred learning in a classroom environment where student-centered and teacher-centered instructional approaches coexisted over a teacher-centered learning environment. A multivariate analysis of covariance also revealed that the STBIM students' cognitive achievement and attitude toward earth science were enhanced when the learning environment was congruent with their learning environment preference.

  6. Neuroscience in middle schools: a professional development and resource program that models inquiry-based strategies and engages teachers in classroom implementation.

    PubMed

    MacNabb, Carrie; Schmitt, Lee; Michlin, Michael; Harris, Ilene; Thomas, Larry; Chittendon, David; Ebner, Timothy J; Dubinsky, Janet M

    2006-01-01

    The Department of Neuroscience at the University of Minnesota and the Science Museum of Minnesota have developed and implemented a successful program for middle school (grades 5-8) science teachers and their students, called Brain Science on the Move. The overall goals have been to bring neuroscience education to underserved schools, excite students about science, improve their understanding of neuroscience, and foster partnerships between scientists and educators. The program includes BrainU, a teacher professional development institute; Explain Your Brain Assembly and Exhibit Stations, multimedia large-group presentation and hands-on activities designed to stimulate student thinking about the brain; Class Activities, in-depth inquiry-based investigations; and Brain Trunks, materials and resources related to class activities. Formal evaluation of the program indicated that teacher neuroscience knowledge, self-confidence, and use of inquiry-based strategies and neuroscience in their classrooms have increased. Participating teachers increased the time spent teaching neuroscience and devoted more time to "inquiry-based" teaching versus "lecture-based teaching." Teachers appreciated in-depth discussions of pedagogy and science and opportunities for collegial interactions with world-class researchers. Student interest in the brain and in science increased. Since attending BrainU, participating teachers have reported increased enthusiasm about teaching and have become local neuroscience experts within their school communities.

  7. Neuroscience in Middle Schools: A Professional Development and Resource Program That Models Inquiry-based Strategies and Engages Teachers in Classroom Implementation

    PubMed Central

    MacNabb, Carrie; Schmitt, Lee; Michlin, Michael; Harris, Ilene; Thomas, Larry; Chittendon, David; Ebner, Timothy J.

    2006-01-01

    The Department of Neuroscience at the University of Minnesota and the Science Museum of Minnesota have developed and implemented a successful program for middle school (grades 5–8) science teachers and their students, called Brain Science on the Move. The overall goals have been to bring neuroscience education to underserved schools, excite students about science, improve their understanding of neuroscience, and foster partnerships between scientists and educators. The program includes BrainU, a teacher professional development institute; Explain Your Brain Assembly and Exhibit Stations, multimedia large-group presentation and hands-on activities designed to stimulate student thinking about the brain; Class Activities, in-depth inquiry-based investigations; and Brain Trunks, materials and resources related to class activities. Formal evaluation of the program indicated that teacher neuroscience knowledge, self-confidence, and use of inquiry-based strategies and neuroscience in their classrooms have increased. Participating teachers increased the time spent teaching neuroscience and devoted more time to “inquiry-based” teaching versus “lecture-based teaching.” Teachers appreciated in-depth discussions of pedagogy and science and opportunities for collegial interactions with world-class researchers. Student interest in the brain and in science increased. Since attending BrainU, participating teachers have reported increased enthusiasm about teaching and have become local neuroscience experts within their school communities. PMID:17012205

  8. Design validation of an eye-safe scanning aerosol lidar with the Center for Lidar and Atmospheric Sciences Students (CLASS) at Hampton University

    NASA Astrophysics Data System (ADS)

    Richter, Dale A.; Higdon, N. S.; Ponsardin, Patrick L.; Sanchez, David; Chyba, Thomas H.; Temple, Doyle A.; Gong, Wei; Battle, Russell; Edmondson, Mika; Futrell, Anne; Harper, David; Haughton, Lincoln; Johnson, Demetra; Lewis, Kyle; Payne-Baggott, Renee S.

    2002-01-01

    ITTs Advanced Engineering and Sciences Division and the Hampton University Center for Lidar and Atmospheric Sciences Students (CLASS) team have worked closely to design, fabricate and test an eye-safe, scanning aerosol-lidar system that can be safely deployed and used by students form a variety of disciplines. CLASS is a 5-year undergraduate- research training program funded by NASA to provide hands-on atmospheric-science and lidar-technology education. The system is based on a 1.5 micron, 125 mJ, 20 Hz eye-safe optical parametric oscillator (OPO) and will be used by the HU researchers and students to evaluate the biological impact of aerosols, clouds, and pollution a variety of systems issues. The system design tasks we addressed include the development of software to calculate eye-safety levels and to model lidar performance, implementation of eye-safety features in the lidar transmitter, optimization of the receiver using optical ray tracing software, evaluation of detectors and amplifiers in the near RI, test of OPO and receiver technology, development of hardware and software for laser and scanner control and video display of the scan region.

  9. Assessing the Effectiveness of Inquiry-based Learning Techniques Implemented in Large Classroom Settings

    NASA Astrophysics Data System (ADS)

    Steer, D. N.; McConnell, D. A.; Owens, K.

    2001-12-01

    Geoscience and education faculty at The University of Akron jointly developed a series of inquiry-based learning modules aimed at both non-major and major student populations enrolled in introductory geology courses. These courses typically serve 2500 students per year in four to six classes of 40-160 students each per section. Twelve modules were developed that contained common topics and assessments appropriate to Earth Science, Environmental Geology and Physical Geology classes. All modules were designed to meet four primary learning objectives agreed upon by Department of Geology faculty. These major objectives include: 1) Improvement of student understanding of the scientific method; 2) Incorporation of problem solving strategies involving analysis, synthesis, and interpretation; 3) Development of the ability to distinguish between inferences, data and observations; and 4) Obtaining an understanding of basic processes that operate on Earth. Additional objectives that may be addressed by selected modules include: 1) The societal relevance of science; 2) Use and interpretation of quantitative data to better understand the Earth; 3) Development of the students' ability to communicate scientific results; 4) Distinguishing differences between science, religion and pseudo-science; 5) Evaluation of scientific information found in the mass media; and 6) Building interpersonal relationships through in-class group work. Student pre- and post-instruction progress was evaluated by administering a test of logical thinking, an attitude toward science survey, and formative evaluations. Scores from the logical thinking instrument were used to form balanced four-person working groups based on the students' incoming cognitive level. Groups were required to complete a series of activities and/or exercises that targeted different cognitive domains based upon Bloom's taxonomy (knowledge, comprehension, application, analysis, synthesis and evaluation of information). Daily assessments of knowledge-level learning included evaluations of student responses to pre- and post-instruction conceptual test questions, short group exercises and content-oriented exam questions. Higher level thinking skills were assessed when students completed exercises that required the completion of Venn diagrams, concept maps and/or evaluation rubrics both during class periods and on exams. Initial results indicate that these techniques improved student attendance significantly and improved overall retention in the course by 8-14% over traditional lecture formats. Student scores on multiple choice exam questions were slightly higher (1-3%) for students taught in the active learning environment and short answer questions showed larger gains (7%) over students' scores in a more traditional class structure.

  10. What Should My Science Classroom Rules Be and How Can I Get My Students to Follow Them?

    ERIC Educational Resources Information Center

    Frazier, Wendy M.; Sterling, Donna R.

    2005-01-01

    This article discusses the rules science teachers need and how to implement these rules in the class. What should my science classroom rules be? Ideally, this question is asked prior to the teacher's entry to the classroom during their teacher training and revisited throughout their coursework preparation and student teaching. A science teacher…

  11. Note-Taking Skills of Middle School Students with and without Learning Disabilities

    ERIC Educational Resources Information Center

    Boyle, Joseph R.

    2010-01-01

    For middle school students with learning disabilities (LD), one major component of learning in content area classes, such as science, involves listening to lectures and recording notes. Lecture learning and note-taking are critical skills for students to succeed in these classes. Despite the importance of note-taking skills, no research has been…

  12. Teaching for Transformative Experience in Science: An Investigation of the Effectiveness of Two Instructional Elements.

    ERIC Educational Resources Information Center

    Pugh, Kevin J.

    2002-01-01

    Examined the effectiveness of two teaching elements (the artistic crafting of content and the modeling and scaffolding of perception and value) at fostering transformative experiences among students in a high school zoology class. Student outcomes were compared to the outcomes of students in a class taught with a case-based method. Significantly…

  13. Examine Middle School Students' Constructivist Environment Perceptions in Turkey: School Location and Class Size

    ERIC Educational Resources Information Center

    Yigit, Nevzat; Alpaslan, Muhammet Mustafa; Cinemre, Yasin; Balcin, Bilal

    2017-01-01

    This study aims to examine the middle school students' perceptions of the classroom learning environment in the science course in Turkey in terms of school location and class size. In the study the Assessing of Constructivist Learning Environment (ACLE) questionnaire was utilized to map students' perceptions of the classroom learning environment.…

  14. Science Instruction through the Game and Physical Activities Course: An Interdisciplinary Teaching Practice

    ERIC Educational Resources Information Center

    Boyraz, Celal; Serin, Gökhan

    2017-01-01

    The purpose of this study was to examine the effect of science instruction given through the game and physical activities course in accordance with interdisciplinary teaching approaches on students' science achievement and retention. The participants were 82 third grade students from a public elementary school. Three classes were chosen as…

  15. Deaf, Hard-of-Hearing, and Hearing Signing Undergraduates' Attitudes toward Science in Inquiry-Based Biology Laboratory Classes

    ERIC Educational Resources Information Center

    Gormally, Cara

    2017-01-01

    For science learning to be successful, students must develop attitudes toward support future engagement with challenging social issues related to science. This is especially important for increasing participation of students from underrepresented populations. This study investigated how participation in inquiry-based biology laboratory classes…

  16. English Skills for Life Sciences: Problem Solving in Biology. Tutor Version [and] Student Version.

    ERIC Educational Resources Information Center

    California Univ., Los Angeles. Center for Language Education and Research.

    This manual is part of a series of materials designed to reinforce essential concepts in physical science through interactive, language-sensitive, problem-solving exercises emphasizing cooperative learning. The materials are intended for limited-English-proficient (LEP) students in beginning physical science classes. The materials are for teams of…

  17. Explaining Variation in Student Efforts towards Using Math and Science Knowledge in Engineering Contexts

    ERIC Educational Resources Information Center

    Berland, Leema K.; Steingut, Rebecca

    2016-01-01

    Previous research suggests that in classes that take an integrated approach to science, technology, engineering, and math (STEM) education, students tend to engage in fulfilling goals of their engineering design challenges, but only inconsistently engage with the related math and science content. The present research examines these inconsistencies…

  18. How Teaching Science Using Project-Based Learning Strategies Affects the Classroom Learning Environment

    ERIC Educational Resources Information Center

    Hugerat, Muhamad

    2016-01-01

    This study involved 458 ninth-grade students from two different Arab middle schools in Israel. Half of the students learned science using project-based learning strategies and the other half learned using traditional methods (non-project-based). The classes were heterogeneous regarding their achievements in the sciences. The adapted questionnaire…

  19. Using Inquiry-Based Interventions to Improve Secondary Students' Interest in Science and Technology

    ERIC Educational Resources Information Center

    Potvin, Patrice; Hasni, Abdelkrim; Sy, Ousmane

    2017-01-01

    Nine secondary school teachers participated in a five day training program where they developed inquiry-based pedagogical interventions for their science classes. Student interest and self-concept in school science and technology were measured before and after the interventions. Increases in interest and self-concept were compared with the results…

  20. Teaching with Socio-Scientific Issues in Physical Science: Teacher and Students' Experiences

    ERIC Educational Resources Information Center

    Talens, Joy

    2016-01-01

    Socio-scientific issues (SSI) are recommended by many science educators worldwide for learners to acquire first hand experience to apply what they learned in class. This investigated experiences of teacher-researcher and students in using SSI in Physical Science, Second Semester, School Year 2012-2013. Latest and controversial news articles on…

  1. How Do Interest in Sciences Vary with Gender?

    ERIC Educational Resources Information Center

    Gafoor, K. Abdul

    2011-01-01

    This study explores interest in physics, chemistry and biology among school students in Kerala. It used a sample of 3236 (1659 boys, 1577 girls) students studying in upper primary to higher secondary classes. Three separate versions of scale of interest in science were used to quantify interest in science of upper primary, secondary and higher…

  2. Bringing CASE in from the Cold: The Teaching and Learning of Thinking

    ERIC Educational Resources Information Center

    Oliver, Mary; Venville, Grady

    2017-01-01

    "Thinking Science" is a 2-year program of professional development for teachers and thinking lessons for students in junior high school science classes. This paper presents research on the effects of "Thinking Science" on students' levels of cognition in Australia. The research is timely, with a general capability focused on…

  3. Story - Science - Solutions: A new middle school science curriculum that promotes climate-stewardship

    NASA Astrophysics Data System (ADS)

    Cordero, E.; Centeno Delgado, D. C.

    2017-12-01

    Over the last five years, Green Ninja has been developing educational media to help motivate student interest and engagement around climate science and solutions. The adoption of the Next Generation Science Standards (NGSS) offers a unique opportunity where schools are changing both what they teach in a science class and how they teach. Inspired by the new emphasis in NGSS on climate change, human impact and engineering design, Green Ninja developed a technology focused, integrative, and yearlong science curriculum (6th, 7th and 8th grade) focused broadly around solutions to environmental problems. The use of technology supports the development of skills valuable for students, while also offering real-time metrics to help measure both student learning and environmental impact of student actions. During the presentation, we will describe the design philosophy around our middle school curriculum and share data from a series of classes that have created environmental benefits that transcend the traditional classroom. The notion that formal education, if done correctly, can be leveraged as a viable climate mitigation strategy will be discussed.

  4. Comparison of Student Achievement Using Didactic, Inquiry-Based, and the Combination of Two Approaches of Science Instruction

    NASA Astrophysics Data System (ADS)

    Foster, Hyacinth Carmen

    Science educators and administrators support the idea that inquiry-based and didactic-based instructional strategies have varying effects on students' acquisition of science concepts. The research problem addressed whether incorporating the two approaches covered the learning requirements of all students in science classes, enabling them to meet state and national standards. The purpose of this quasiexperimental, posttest design research study was to determine if student learning and achievement in high school biology classes differed for each type of instructional method. Constructivism theory suggested that each learner creates knowledge over time because of the learners' interactions with the environment. The optimal teaching method, didactic (teacher-directed), inquiry-based, or a combination of two approaches instructional method, becomes essential if students are to discover ways to learn information. The research question examined which form of instruction had a significant effect on student achievement in biology. The data analysis consisted of single-factor, independent-measures analysis of variance (ANOVA) that tested the hypotheses of the research study. Locally, the results indicated greater and statistically significant differences in standardized laboratory scores for students who were taught using the combination of two approaches. Based on these results, biology instructors will gain new insights into ways of improving the instructional process. Social change may occur as the science curriculum leadership applies the combination of two instructional approaches to improve acquisition of science concepts by biology students.

  5. A motivational account of the undergraduate experience in science: brief measures of students' self-system appraisals, engagement in coursework, and identity as a scientist

    NASA Astrophysics Data System (ADS)

    Skinner, Ellen; Saxton, Emily; Currie, Cailin; Shusterman, Gwen

    2017-11-01

    As part of long-standing efforts to promote undergraduates' success in science, researchers have investigated the instructional strategies and motivational factors that promote student learning and persistence in science coursework and majors. This study aimed to create a set of brief measures that educators and researchers can use as tools to examine the undergraduate motivational experience in science classes. To identify key motivational processes, we drew on self-determination theory (SDT), which holds that students have fundamental needs - to feel competent, related, and autonomous - that fuel their intrinsic motivation. When educational experiences meet these needs, students engage more energetically and learn more, cumulatively contributing to a positive identity as a scientist. Based on information provided by 1013 students from 8 classes in biology, chemistry, and physics, we constructed conceptually focused and psychometrically sound survey measures of three sets of motivational factors: (1) students' appraisals of their own competence, autonomy, and relatedness; (2) the quality of students' behavioural and emotional engagement in academic work; and (3) students' emerging identities as scientists, including their science identity, purpose in science, and science career plans. Using an iterative confirmatory process, we tested short item sets for unidimensionality and internal consistency, and then cross-validated them. Tests of measurement invariance showed that scales were generally comparable across disciplines. Most importantly, scales and final course grades showed correlations consistent with predictions from SDT. These measures may provide a window on the student motivational experience for educators, researchers, and interventionists who aim to improve the quality of undergraduate science teaching and learning.

  6. Findings from Five Years Investigating Science Literacy and Where Students Get their Information about Science

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; Impey, C. D.; Nieberding, M. N.; Romine, J. M.; Antonellis, J. C.; Llull, J.; Tijerino, K.; Collaborations of Astronomy Teaching Scholars (CATS)

    2014-01-01

    Supported by funding from NSF, we have been investigating the science literacy of undergraduate students using data collected from 1980 -2013. To date, we have collected over 12,000 surveys asking students about their foundational science knowledge as well as their attitudes towards science and technology topics. In 2012, we began investigating where students get their information about science and we have collected 30 interviews and almost 1000 survey responses. Our findings reveal that students’ science literacy, as measured by this instrument, has changed very little over the 23 years of data collection despite major educational innovations offered to students. A fraction of students continue to hold onto non-scientific beliefs, coupled with faith-based attitudes and beliefs, which are resistant to formal college instruction. Analysis of students’ open-ended responses show that although students use words often associated with science, they lack understandings of key aspects of science including the importance of evidence to support arguments and the need for replication of results. These results have important implications about how we teach science and how we assess students’ scientific understandings during class. Our recent work has shown that students use online sources to gain information about science for classes their own interests. Despite this, they rate professors and researchers as more reliable sources of scientific knowledge than online sources. This disconnect raises questions about how educators can work with students to provide knowledge in ways that are both accessible and reliable and how to help students sort knowledge in an age where everything can be found online. This material is based in part upon work supported by the National Science Foundation under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

  7. Doing, talking and writing science: A discourse analysis of the process of resemiotization in a middle school lab-based science class

    NASA Astrophysics Data System (ADS)

    Wright, Laura J.

    This study examines students' sense making practices in a middle school science class from a discourse analytic perspective. Using Mediated Discourse Analysis (MDA) (Scollon 1998, 2001) and interactional sociolinguistics (Gumperz 1999, 2001, Schiffrin 1994), my research seeks to enrich findings from recent sociocultural studies of science classrooms that focus on doing, talking and writing science (Roth 2005, Kress, et al. 2002, Halliday & Martin 1993, Lemke 1990). Within a middle school science classroom, these fundamental activities form a nexus of practice (Scollon 1998, 2001) basic to science literacy (AAAS 1989) and reflective of the work of practicing scientists. Moreover, students' engagement in these practices provides insight into the cultural production and reproduction of science and scientist. I first examine how the students' curriculum text encourages these three scientific practices and then trace students' uptake; that is, how they subsequently do, talk, and write science throughout the course of the unit. I argue that learning science with this curriculum unit requires students to resemiotize (Iedema 2001, 2003) first hand experience so they can represent their knowledge cohesively and coherently in evaluable forms. Ultimately, students must transform language from the curriculum text and their teacher into action in their laboratory activities and action in their laboratory activities into language. In addition, I show how students are apprenticed to the conventionalized practices and voices (Bakhtin 1986) of science (i.e. the scientific register), and how their figures of personhood (Agha 2005) reflect the development of their scientific identities. Overall, I argue that the microanalytic methods I use illuminate how students draw upon curricular resources to become scientifically literate and develop scientific identities.

  8. The Effect of Jigsaw Technique on 6th Graders' Learning of Force and Motion Unit and Their Science Attitudes and Motivation

    ERIC Educational Resources Information Center

    Ural, Evrim; Ercan, Orhan; Gençoglan, Durdu Mehmet

    2017-01-01

    The study aims to investigate the effects of jigsaw technique on 6th graders' learning of "Force and Motion" unit, their science learning motivation and their attitudes towards science classes. The sample of the study consisted of 49 6th grade students from two different classes taking the Science and Technology course at a government…

  9. Case Studies of Secondary School Teachers Designing Socioscientific Issues-Based Instruction and Their Students' Socioscientific Reasoning

    NASA Astrophysics Data System (ADS)

    Karahan, Engin

    Addressing socioscientific issues (SSI) has been one of the main focuses in science education since the Science, Technology, and Society (STS) movement in the 1970s (Levinson, 2006); however, teaching controversial socioscientific issues has always been challenging for teachers (Dillon, 1994; Osborne, Duschl, & Fairbrother, 2002). Although teachers exhibit positive attitudes for using controversial socioscientific issues in their science classrooms, only a small percentage of them actually incorporate SSI content into their science curricula on a regular basis (Sadler, Amirshokoohi, Kazempour, & Allspaw, 2006; Lee & Witz, 2009). The literature in science education has highlighted the signi?cant relationships among teacher beliefs, teaching practices, and student learning (Bryan & Atwater, 2002; King, Shumow, & Lietz, 2001; Lederman, 1992). Despite the fact that the case studies present a relatively detailed picture of teachers' values and motivations for teaching SSI (e.g. Lee, 2006; Lee & Witz, 2009; Reis & Galvao, 2004), these studies still miss the practices of these teachers and potential outcomes for their students. Therefore, there is a great need for in-depth case studies that would focus on teachers' practices of designing and teaching SSI-based learning environments, their deeper beliefs and motivations for teaching SSI, and their students' response to these practices (Lee, 2006). This dissertation is structured as three separate, but related, studies about secondary school teachers' experiences of designing and teaching SSI-based classes and their students' understanding of science and SSI reasoning. The case studies in this dissertation seek answers for (1) teachers' practices of designing and teaching SSI-based instruction, as well as its relation to their deeper personal beliefs and motivations to teach SSI, and (2) how their students respond to their approaches of teaching SSI in terms of their science understanding and SSI reasoning. The first paper presents case studies of three secondary science teachers within three high schools located along the Minnesota River Basin. The findings of this study documented the experiences of the participant teachers, as well as the contextual influences on those experiences. The second paper presents a case study of a science teacher and a social studies teacher which describes how these two teachers collaboratively designed and taught an environmental ethics class. The results of this study documented teachers' ways of sharing responsibilities, bringing their content and pedagogical expertise, and promoting the agency of their students in the environmental ethics class. The final paper in this dissertation presents case studies of secondary school students who were the participants in the SSI-based science classes described in the first two studies. The results of this study provided evidence for participant students' understanding of science and their socioscientific reasoning, as well as how they were influenced by the instructional decisions their teachers made.

  10. The Impact of Color-Coding Freshmen Integrated-Science Assignments on Student Achievement

    NASA Astrophysics Data System (ADS)

    Sturdivant Allen, Anita Kay

    Students in Grade 9 exhibit high rates of grade retention and absenteeism. Educators have used different strategies that will increase the achievement of those students. The purpose of this study was to determine whether a relationship existed between student achievement and the strategy to use colored paper for Grade 9 science assignments and tests. Itten's color theory provided the theoretical framework. Itten was one of the first researchers to explore the notion that the human eye can detect wavelengths as colors and that those colors can engage and create order in the human brain. A sample of students assigned to 4 classroom teachers at one high school who volunteered to take part in the study for 18 weeks were used in this quantitative study. Teachers administered student assessments on blue, green, yellow, and white paper. Each class was assigned 1 of the 4 colors for 4.5 weeks. The classes were then assigned a different color for the same length of time until each class had exposure to all 4 colors. Physical science exams given to students in the same grade or subject were used as the dependent variable. An ANOVA indicated that the groups using blue paper scored the highest on the physical science exams; students who used white paper earned the lowest scores. When comparing all 3 groups using colored paper (all three colored paper groups combined into one group) to the white paper groups, t-test results indicated that students using any colored paper scored higher than students using white paper. Further research on the impact of colored paper on student academic performance is necessary. Implications for positive social change indicate that new knowledge about instructional tools that impact student achievement deserves more attention.

  11. Science Teacher Candidates' Learning and Studying Strategies in the Context of Self-Regulation

    ERIC Educational Resources Information Center

    Yilmaz, Özkan

    2017-01-01

    This study investigated the students' individual study and learning strategies. Toward this purpose, open ended question form was administered to 40 university students who have enrolled department of mathematics and science education, faculty of education. Students were selected randomly in all level of class. Qualitative research method was used…

  12. Student Misconceptions about Plant Transport--A Sri Lankan Example

    ERIC Educational Resources Information Center

    Vitharana, P. R. K. A.

    2015-01-01

    Students bring with them their own misconceptions to the science classes and it becomes a barrier in developing new concepts. Therefore, identifying misconceptions is an essential component in teaching science. The objective of this study was to identify 10th grade students' misconceptions on plant transport with the use of two-tier diagnostic…

  13. Students with Blindness Explore Chemistry at "Camp Can Do"

    ERIC Educational Resources Information Center

    Supalo, Cary A.; Wohlers, H. David; Humphrey, Jennifer R.

    2011-01-01

    Students with blindness or low vision are often discouraged from full participation in laboratory science classes due to the inadequacy of current methodological approaches and the lack of sophisticated adaptive technologies. Consequently, these students rarely go on to pursue advanced studies and employment in the sciences. In response to his own…

  14. Enhancing Science Instruction through Student-Created PowerPoint Presentations

    ERIC Educational Resources Information Center

    Gerido, Leona; Curran, Mary Carla

    2014-01-01

    Technology use in science classes can enhance lessons and reinforce scientific content. The creation of multimedia projects is a great way to engage students in lessons about estuarine ecosystems. In this activity, students can learn about estuarine organisms and use their creativity to write a story, create artwork, and develop a multimedia…

  15. Outreach to Science Faculty and Students through Research Exhibitions

    ERIC Educational Resources Information Center

    Chan, Tina; Hebblethwaite, Chris

    2014-01-01

    Penfield Library at the State University of New York at Oswego (SUNY Oswego) has a gallery exhibit space near the front entrance that is used to showcase student-faculty research and art class projects. This article features the library's outreach efforts to science faculty and students through research exhibitions. The library held an exhibition…

  16. Science Achievement of Students in Co-Taught, Inquiry-Based Classrooms

    ERIC Educational Resources Information Center

    Brusca-Vega, Rita; Brown, Kathleen; Yasutake, David

    2011-01-01

    This case investigation followed the progress of middle students with disabilities, their peers, and teachers in co-taught science classrooms where a hands-on, inquiry-based curriculum was used. Students with disabilities (n=21), including learning disabilities, mild intellectual impairment, and mild autism were placed in co-taught classes with…

  17. Determining Science Student Teachers' Cognitive Structure on the Concept of "Food Chain"

    ERIC Educational Resources Information Center

    Çinar, Derya

    2015-01-01

    The current study aims to determine science student teachers' cognitive structure on the concept of food chain. Qualitative research method was applied in this study. Fallacies detected in the pre-service teachers' conceptual structures are believed to result in students' developing misconceptions in their future classes and will adversely affect…

  18. Science Student Teachers' Cognitive Structure on the Concept of "Food Pyramid"

    ERIC Educational Resources Information Center

    Çinar, Derya

    2016-01-01

    The current study aims to determine science student teachers' cognitive structure on the concept of food pyramid. Qualitative research method was applied in this study. Fallacies detected in the pre-service teachers' conceptual structures are believed to result in students' developing misconceptions in their future classes and will adversely…

  19. An Introduction to Dynamic Systems and Feedback.

    ERIC Educational Resources Information Center

    Rabins, Michael J.

    This introduction to dynamic systems is intended for freshman and sophomore students in engineering, physical science, or social science. Material has been class tested and has led to increased student interest in further work in systems analysis and operations research. Notes are written for the student and are self-contained. Material can be…

  20. Classroom Environment and Student Outcomes Associated with Using Anthropometry Activities in High School Science.

    ERIC Educational Resources Information Center

    Lightburn, Millard E.; Fraser, Barry J.

    The study involved implementing and evaluating activities that actively engage students in the process of gathering, processing and analyzing data derived from human body measurements, with students using their prior knowledge acquired in science, mathematics, and computer classes to interpret this information. In the classroom activities…

  1. Assessing Students' Attitudes and Achievements in a Multicultural and Multilingual Science Classroom.

    ERIC Educational Resources Information Center

    Hadi-Tabassum, Samina

    1999-01-01

    Takes a qualitative and quantitative look at the curriculum and teaching of a two-way immersion eighth-grade solar energy science classroom and examines its implications for education policy and reform. Results for a class of 25 students indicate that the approach increases the retention rate of Hispanic students. (SLD)

  2. An Investigative Approach to Elementary School Science Teaching.

    ERIC Educational Resources Information Center

    Schmiess, Elmer G.

    This study was conducted to determine whether sixth grade students can successfully engage in scientific investigation. The success of the students' investigation was measured by their proficiency in solving selected problems, interest in science, and growth in solving new problems. One class of 34 sixth grade students was selected. A battery of…

  3. Science as a Classed and Gendered Endeavor: Persistence of Two White Female First-Generation College Students within an Undergraduate Science Context

    ERIC Educational Resources Information Center

    Wilson, Rachel E.; Kittleson, Julie

    2013-01-01

    As colleges and universities aim for greater diversity in their undergraduate populations, one population researchers consider is first-generation students, or students whose parents do not have a college education. The research reported here addresses first-generation college students' discipline of study (e.g., biology) and its impact on…

  4. In Junior High You Take Earth Science: Including a Student with Severe Disabilities into an Academic Class.

    ERIC Educational Resources Information Center

    Siegel-Causey, Ellin; McMorris, Carol; McGowen, Susan; Sands-Buss, Sue

    1998-01-01

    This case study of a 14-year-old boy with severe disabilities describes the collaboration of a team of educators who sought to include him in eighth-grade general-education classes. His inclusion plan included four steps: planning, selecting classes, accommodating, and collaborating. The accomplishments of the student's inclusion in earth science…

  5. Committing to creating time for integrating contemporary environmental issues into a traditional introduction to Earth Science course, one topic at a time

    NASA Astrophysics Data System (ADS)

    Cook, H. M.

    2014-12-01

    I teach an Earth Science course, designed as an introductory science class that also fulfills the Earth Science requirement for pre-service teachers preparing to take their state content exam. This course provides an introduction to astronomy, geology, oceanography, and meteorology. By design, the class is content-heavy. Despite this, with so many current environmental and societal issues directly tied to the Earth Sciences, it is essential to address contemporary problems and to educate students about the changes and challenges in the world around them. I have made a commitment to doing this by incorporating relevant societal and environmental issues into every topic and every class session. While this may sound basic, doing so requires diligence and research. For example, when teaching about weathering and erosion, I discuss soils, soil quality and erosion, and the impact this has on our global food supply. A hands-on mineral activity lends itself to looking at the energy and waste involved in ore extraction. A lecture on ocean circulation results in an opportunity to analyze the consequences of the interruption of this pattern due to global warming. Through this approach, students are provided with necessary content; furthermore, by linking traditional content to modern issues on a regular basis, students see the relevance of what they are learning and become more aware of the environmental issues facing society today. Student evaluations indicate that this approach has been successful: 100% of students reported that they learned a great deal from the course, and 100% of students agreed that the quality of the course was high. In addition, prior to the class 55.8% of the students indicated interested in the content; whereas, after the course 88.6% indicated interest, with strong interest in the content increasing from 16.3% to 41%.

  6. Teaching Introductory Oceanography through Case Studies: Project based approach for general education students

    NASA Astrophysics Data System (ADS)

    Farnsworth, K. L.; House, M.; Hovan, S. A.

    2013-12-01

    A recent workshop sponsored by SERC-On the Cutting Edge brought together science educators from a range of schools across the country to discuss new approaches in teaching oceanography. In discussing student interest in our classes, we were struck by the fact that students are drawn to emotional or controversial topics such as whale hunting and tsunami hazard and that these kinds of topics are a great vehicle for introducing more complex concepts such as wave propagation, ocean upwelling and marine chemistry. Thus, we have developed an approach to introductory oceanography that presents students with real-world issues in the ocean sciences and requires them to explore the science behind them in order to improve overall ocean science literacy among non-majors and majors at 2 and 4 year colleges. We have designed a project-based curriculum built around topics that include, but are not limited to: tsunami hazard, whale migration, ocean fertilization, ocean territorial claims, rapid climate change, the pacific trash patch, overfishing, and ocean acidification. Each case study or project consists of three weeks of class time and is structured around three elements: 1) a media analysis; 2) the role of ocean science in addressing the issue; 3) human impact/response. Content resources range from textbook readings, popular or current print news, documentary film and television, and data available on the world wide web from a range of sources. We employ a variety of formative assessments for each case study in order to monitor student access and understanding of content and include a significant component of in-class student discussion and brainstorming guided by faculty input to develop the case study. Each study culminates in summative assessments ranging from exams to student posters to presentations, depending on the class size and environment. We envision this approach for a range of classroom environments including large group face-to-face instruction as well as hybrid and fully online courses.

  7. Natural Sciences and Pre-Schoolers: Impact and Future Approaches

    NASA Astrophysics Data System (ADS)

    Mira, Sara; Leote, Catarina; Ferreira, Hélder; Correia, Diana; Alho, Joana; Costa, Júlio; Silva, Adriana; Faria, Cláudia; Azevedo Rodrigues, Luis

    2017-04-01

    Geosciences are more and more part of the primary school curriculum. However, the subjects of Earth and Astronomy remain very lightly approached. In Portugal, after the mandatory class period from 9 a.m. to 4 p.m., a complementary Experimental Sciences class of 1 or 2 hours per week has been introduced. In the past two years, through a partnership with the Lagos City Hall, the Lagos Ciência Viva Science Centre (CCVL) has been responsible for these classes in 8 primary schools engaging roughly 500 students in STEM activities that aim to support students to better understand and explore general scientific (and geosciences) subjects. But what is the impact of these classes in their knowledge and thinking procedure? What competencies and skills are gained, if any? And what is the background of our students regarding scientific literacy and habits? To answer these questions, we used questionnaires and personal meaning mapping to characterize our primary school population concerning scientific literacy and habits, assess the impact in their knowledge and identify potential caveats in our teaching and evaluation methods.

  8. Effect of levels of inquiry model of science teaching on scientific literacy domain attitudes

    NASA Astrophysics Data System (ADS)

    Achmad, Maulana; Suhandi, Andi

    2017-05-01

    The aim of this research was to obtain an overview of the increase scientific literacy attitudes domain in high school students as the effects of the Levels of Inquiry (LOI) model of science teaching. This research using a quasi-experimental methods and randomizedpretest-posttest control group design. The subject of this research was students of grade X in a senior high school in Purwakarta and it consists of two classes who were divided into experimental class (30 students) and control class (30 students). While experimental class was taught LOIand control class was taught Interactive Lecture Demonstration (ILD). Data were collected using an attitude scale scientific literacy test which is based on the Likert scale. Data were analyzed using normality test, homogeneity test, and t-test to the value of N-gain attitude of scientific literacy scale test. The result of percentage average N-gain experimental class and control are 49 and 31 that classified into medium improvement category. Based on the results of hypothesis testing on the N-gain value obtained by the Sig.(One-tailed) 0.000 < 0.050, it means that H1 was accepted. The results showed that scientific literacy domain attitude of students who got learning by LOI is higher than students who got learning by ILD. It can be concluded that the effect of LOI is better to improve scientific literacy domain attitudes significantly.

  9. Terra Firma: "Physics First" for Teaching Chemistry to Pre-Service Elementary School Teachers

    ERIC Educational Resources Information Center

    More, Michelle B.

    2007-01-01

    A pre-service elementary school teacher chemistry class that incorporates the physics first idea is described. This class is taught basic physics followed by introductory chemistry and the students' response indicates that both science literacy and science interest increase using this method.

  10. A study of preservice elementary teachers enrolled in a discrepant-event-based physical science class

    NASA Astrophysics Data System (ADS)

    Lilly, James Edward

    This research evaluated the POWERFUL IDEAS IN PHYSICAL SCIENCE (PIiPS) curriculum model used to develop a physical science course taken by preservice elementary teachers. The focus was on the evaluation of discrepant events used to induce conceptual change in relation to students' ideas concerning heat, temperature, and specific heat. Both quantitative and qualitative methodologies were used for the analysis. Data was collected during the 1998 Fall semester using two classes of physical science for elementary school teachers. The traditionally taught class served as the control group and the class using the PIiPS curriculum model was the experimental group. The PIiPS curriculum model was evaluated quantitatively for its influence on students' attitude toward science, anxiety towards teaching science, self efficacy toward teaching science, and content knowledge. An analysis of covariance was performed on the quantitative data to test for significant differences between the means of the posttests for the control and experimental groups while controlling for pretest. It was found that there were no significant differences between the means of the control and experimental groups with respect to changes in their attitude toward science, anxiety toward teaching science and self efficacy toward teaching science. A significant difference between the means of the content examination was found (F(1,28) = 14.202 and p = 0.001), however, the result is questionable. The heat and energy module was the target for qualitative scrutiny. Coding for discrepant events was adapted from Appleton's 1996 work on student's responses to discrepant event science lessons. The following qualitative questions were posed for the investigation: (1) what were the ideas of the preservice elementary students prior to entering the classroom regarding heat and energy, (2) how effective were the discrepant events as presented in the PIiPS heat and energy module, and (3) how much does the "risk taking factor" associated with not telling the students the answer right away, affect the learning of the material. It was found that preservice elementary teachers harbor similar preconceptions as the general population according to the literature. The discrepant events used in this module of the PIiPS curriculum model met with varied results. It appeared that those students who had not successfully confronted their preconceptions were less likely to accept the new concepts that were to be developed using the discrepant events. Lastly, students had shown great improvement in content understanding and developed the ability to ask deep and probing questions.

  11. The Effect of Using Problem-Based Learning in Middle School Gifted Science Classes on Student Achievement and Students' Perceptions of Classroom Quality

    ERIC Educational Resources Information Center

    Horak, Anne Karen

    2013-01-01

    The purpose of this study was to explore the impact of the Problem Based Learning (PBL) units developed by a large suburban school district in the mid-Atlantic for the middle school gifted science curriculum on: a) students' performance on standardized tests in middle school Science, as measured by a sample of relevant test questions from a…

  12. Application of Model Project Based Learning on Integrated Science in Water Pollution

    NASA Astrophysics Data System (ADS)

    Yamin, Y.; Permanasari, A.; Redjeki, S.; Sopandi, W.

    2017-09-01

    The function of this research was to analyze the influence model Project Based Learning (PjBl) on integrated science about the concept mastery for junior high school students. Method used for this research constitutes the quasi of experiment method. Population and sample for this research are the students junior high school in Bandung as many as two classes to be experiment and control class. The instrument that used for this research is the test concept mastery, assessment questionnaire of product and the questionnaire responses of the student about learning integrated science. Based on the result of this research get some data that with accomplishment the model of PjBl. Learning authority of integrated science can increase the concept mastery for junior high school students. The highest increase in the theme of pollution water is in the concept of mixtures and the separation method. The students give a positive response in learning of integrated science for the theme of pollution of the water used model PjBL with questionnaire of the opinion aspect in amount of 83.5%, the anxiety of the students in amount of 95.5%, the profit learning model of PjBL in amount of 96.25% and profit learning of integrated science in amount of 95.75%.

  13. The effectiveness of multi modal representation text books to improve student's scientific literacy of senior high school students

    NASA Astrophysics Data System (ADS)

    Zakiya, Hanifah; Sinaga, Parlindungan; Hamidah, Ida

    2017-05-01

    The results of field studies showed the ability of science literacy of students was still low. One root of the problem lies in the books used in learning is not oriented toward science literacy component. This study focused on the effectiveness of the use of textbook-oriented provisioning capability science literacy by using multi modal representation. The text books development method used Design Representational Approach Learning to Write (DRALW). Textbook design which was applied to the topic of "Kinetic Theory of Gases" is implemented in XI grade students of high school learning. Effectiveness is determined by consideration of the effect and the normalized percentage gain value, while the hypothesis was tested using Independent T-test. The results showed that the textbooks which were developed using multi-mode representation science can improve the literacy skills of students. Based on the size of the effect size textbooks developed with representation multi modal was found effective in improving students' science literacy skills. The improvement was occurred in all the competence and knowledge of scientific literacy. The hypothesis testing showed that there was a significant difference on the ability of science literacy between class that uses textbooks with multi modal representation and the class that uses the regular textbook used in schools.

  14. Teaching Sustainable Water Resources and Low Impact Development: A Project Centered Course for First-Year Undergraduates

    NASA Astrophysics Data System (ADS)

    Cianfrani, C. M.

    2009-12-01

    Teaching Sustainable Water Resources and Low Impact Development: A Project Centered Course for First-Year Undergraduates Christina M. Cianfrani Assistant Professor, School of Natural Science, Hampshire College, 893 West Avenue, Amherst, MA 01002 Sustainable water resources and low impact development principles are taught to first-year undergraduate students using an applied design project sited on campus. All students at Hampshire College are required to take at least one natural science course during their first year as part of their liberal arts education. This requirement is often met with resistance from non-science students. However, ‘sustainability’ has shown to be a popular topic on campus and ‘Sustainable Water Resources’ typically attracts ~25 students (a large class size for Hampshire College). Five second- or third-year students are accepted in the class as advanced students and serve as project leaders. The first-year students often enter the class with only basic high school science background. The class begins with an introduction to global water resources issues to provide a broad perspective. The students then analyze water budgets, both on a watershed basis and a personal daily-use basis. The students form groups of 4 to complete their semester project. Lectures on low impact design principles are combined with group work sessions for the second half of the semester. Students tour the physical site located across the street from campus and begin their project with a site analysis including soils, landcover and topography. They then develop a building plan and identify preventative and mitigative measures for dealing with stormwater. Each group completes TR-55 stormwater calculations for their design (pre- and post-development) to show the state regulations for quantity will be met with their design. Finally, they present their projects to the class and prepare a formal written report. The students have produced a wide variety of creative, mostly practical designs. Student feedback about the course has included high praise for the applied nature of the project as well as the use of advanced students to lead the groups and help provide guidance throughout the project. Example of low impact development using clustered housing, rain gardens (small dots), green roofs (circles on house sites), vegetated swales along roadways, infiltration area, and a reforested buffer (along right edge).

  15. The predictors of chemistry achievement of 12th grade students in secondary schools in the United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Khalaf, Ali Khalfan

    2000-10-01

    The purpose of this study is to explore variables related to chemistry achievement of 12th grade science students in the United Arab Emirates (UAE). The focus is to identify student, teacher, and school variables that predict chemistry achievement. The analysis sample included 204 males and 252 females in 66 classes in 60 schools from 10 districts or bureaus of education in the UAE. Thirty-two male and 33 female chemistry teachers and 60 school principals were included. The Khalaf Chemistry Achievement Test, GALT, the Student Questionnaire, Teacher Questionnaire, and School Information Questionnaire were administered. Descriptive statistics, correlations, analyses of variance, factor analysis, and stepwise multiple linear regression analyses were done. The results indicate that demographic, home environment, prior knowledge, scholastic ability, attitudes and perceptions related to chemistry and science, and student perception of instructional practices variables correlated with student chemistry achievement. The amount of help teachers received from the supervisor, class size, and courses in geology were teacher variables that correlated with class chemistry achievement. Nine school variables involving school, division, and class sizes correlated with school chemistry achievement. Analyses of variance revealed significant interaction effects: district by school size and district by student gender. In two districts, students in small schools achieved better than those in large schools. Generally female students achieved equal to or better than males. Three factors from the factor analysis: School Size, Prior Student Achievement, and Student Perception of Teacher Effectiveness, correlated with school chemistry achievement. The results of the multiple linear regression indicated that the factors of Prior Student Achievement, Student Perception of Teacher Effectiveness, and Teacher Experience and Expertise accounted for 45% of the variance in school chemistry achievement. Results indicate that the strongest predictors of chemistry achievement are prior achievement in science, Arabic language, and mathematics; student perception of teacher effectiveness; and teacher experience and expertise. Females tend to achieve better in chemistry than males. No nationality differences were found and the relationship of school size to chemistry achievement was inconclusive. Recommendations related to chemistry and science are presented. These include curriculum, school practice, teacher professional development, and future research.

  16. Engaging Undergraduates in Methods of Communicating Global Climate Change

    NASA Astrophysics Data System (ADS)

    Hall, C.; Colgan, M. W.; Humphreys, R. R.

    2010-12-01

    Global Climate Change has become a politically contentious issue in large part because of the failure of scientists to effectively communicate this complex subject to the general public. In a Global Change class, offered within a science department and therefore focused primarily on the underlying science, we have incorporated a citizen science module into the course to raise awareness among future scientists to the importance of communicating information to a broad and diverse audience. The citizen science component of this course focuses on how the predicted climate changes will alter the ecologic and economic landscape of the southeastern region. Helping potential scientists to learn to effectively communicate with the general public is particularly poignant for this predominate southern student body. A Pew Research Center for the People and the Press study found that less than 50% of Southerners surveyed felt that global warming is a very serious problem and over 30% of Southerners did not believe that there was any credible evidence that the Earth is warming. This interdisciplinary and topical nature of the course attracts student from a variety of disciplines, which provides the class with a cross section of students not typically found in most geology classes. This mixture provides a diversity of skills and interest that leads to success of the Citizen Science component. This learning approach was adapted from an education module developed through the Earth System Science Education Alliance and a newly developed component to that program on citizen science. Student teams developed several citizen science-related public service announcements concerning projected global change effects on Charleston and the South Carolina area. The scenario concerned the development of an information campaign for the City of Charleston, culminating with the student presentations on their findings to City officials. Through this real-life process, the students developed new strategies that inform their own means of communicating science, whether to the general public, to peers, or to other scientists. This course with the citizen science component serves as a model for other programs. Incorporating a communication aspect into science courses that revolve around complex but socially important topics, such as global climate change, is necessary in building the confidence in our science students to communicate effectively, imaginatively, and memorably. In addition, the students gain a deeper understanding and appreciation of the necessity to communicate to public audiences and the value of outreach to the community.

  17. Make Science Matter. Hands on Science.

    ERIC Educational Resources Information Center

    Kepler, Lynne

    1992-01-01

    Presents class activities to help elementary students learn about changes in the state of matter by making ice cream. In addition to making observations on the changes of state, students can practice measuring and identifying the properties (e.g., color, size, and shape). (SM)

  18. Beyond "Hitting the Books"

    ERIC Educational Resources Information Center

    Entress, Cole; Wagner, Aimee

    2014-01-01

    Scientists, science teachers, and serious students recognize that success in science classes requires consistent practice--including study at home. Whether balancing chemical equations, calculating angular momentum, or memorizing the steps of cell division, students must review material repeatedly to fully understand new ideas--and must practice…

  19. Assessing does not mean threatening: the purpose of assessment as a key determinant of girls' and boys' performance in a science class.

    PubMed

    Souchal, Carine; Toczek, Marie-Christine; Darnon, Céline; Smeding, Annique; Butera, Fabrizio; Martinot, Delphine

    2014-03-01

    Is it possible to reach performance equality between boys and girls in a science class? Given the stereotypes targeting their groups in scientific domains, diagnostic contexts generally lower girls' performance and non-diagnostic contexts may harm boys' performance. The present study tested the effectiveness of a mastery-oriented assessment, allowing both boys and girls to perform at an optimal level in a science class. Participants were 120 boys and 72 girls (all high-school students). Participants attended a science lesson while expecting a performance-oriented assessment (i.e., an assessment designed to compare and select students), a mastery-oriented assessment (i.e., an assessment designed to help students in their learning), or no assessment of this lesson. In the mastery-oriented assessment condition, both boys and girls performed at a similarly high level, whereas the performance-oriented assessment condition reduced girls' performance and the no-assessment condition reduced boys' performance. One way to increase girls' performance on a science test without harming boys' performance is to present assessment as a tool for improving mastery rather than as a tool for comparing performances. © 2013 The British Psychological Society.

  20. The Design and Validation of the Colorado Learning Attitudes about Science Survey

    NASA Astrophysics Data System (ADS)

    Adams, W. K.; Perkins, K. K.; Dubson, M.; Finkelstein, N. D.; Wieman, C. E.

    2005-09-01

    The Colorado Learning Attitudes about Science Survey (CLASS) is a new instrument designed to measure various facets of student attitudes and beliefs about learning physics. This instrument extends previous work by probing additional facets of student attitudes and beliefs. It has been written to be suitably worded for students in a variety of different courses. This paper introduces the CLASS and its design and validation studies, which include analyzing results from over 2400 students, interviews and factor analyses. Methodology used to determine categories and how to analyze the robustness of categories for probing various facets of student learning are also described. This paper serves as the foundation for the results and conclusions from the analysis of our survey data.

  1. Addressing scientific literacy through content area reading and processes of scientific inquiry: What teachers report

    NASA Astrophysics Data System (ADS)

    Cooper, Susan J.

    The purpose of this study was to interpret the experiences of secondary science teachers in Florida as they address the scientific literacy of their students through teaching content reading strategies and student inquiry skills. Knowledge of the successful integration of content reading and inquiry skills by experienced classroom teachers would be useful to many educators as they plan instruction to achieve challenging state and national standards for reading as well as science. The problem was investigated using grounded theory methodology. Open-ended questions were asked in three focus groups and six individual interviews that included teachers from various Florida school districts. The constant comparative approach was used to analyze the data. Initial codes were collapsed into categories to determine the conceptual relationships among the data. From this, the five core categories were determined to be Influencers, Issues, Perceptions, Class Routines, and Future Needs. These relate to the central phenomenon, Instructional Modifications, because teachers often described pragmatic and philosophical changes in their teaching as they deliberated to meet state standards in both reading and science. Although Florida's secondary science teachers have been asked to incorporate content reading strategies into their science instruction for the past several years, there was limited evidence of using these strategies to further student understanding of scientific processes. Most teachers saw little connection between reading and inquiry, other than the fact that students must know how to read to follow directions in the lab. Scientific literacy, when it was addressed by teachers, was approached mainly through class discussions, not reading. Teachers realized that students cannot learn secondary science content unless they read science text with comprehension; therefore the focus of reading instruction was on learning science content, not scientific literacy or student inquiry. Most of the teachers were actively looking for reading materials and strategies to facilitate student understanding of science concepts, but they did not want to give up limited class time attempting methods that have not been proven to be successful in science classrooms.

  2. Creating Aliens: The Ultimate Life Sciences Activity.

    ERIC Educational Resources Information Center

    Beltramo, Dan

    2001-01-01

    Describes a seven-week project completed by the author's eighth-grade science students (as they studied "the chemistry of living things") in which they designed an alien and its world using the scientific concepts that they learned in class. Compares class presentations using PowerPoint software to presentations using posterboard. (SR)

  3. Research and Teaching: Aligning Assessment to Instruction--Collaborative Group Testing in Large- Enrollment Science Classes

    ERIC Educational Resources Information Center

    Siegel, Marcelle; Roberts, Tina M.; Freyermuth, Sharyn K.; Witzig, Stephen B.; Izci, Kemal

    2015-01-01

    The authors describe a collaborative group-testing strategy implemented and studied in undergraduate science classes. This project investigated how the assessment strategy relates to student performance and perceptions about collaboration and focused on two sections of an undergraduate biotechnology course taught in separate semesters.

  4. Student attitudes toward science and sciencerelated careers: A program designed to promote a stimulating gender-free learning environment

    NASA Astrophysics Data System (ADS)

    Mason, Cheryl L.; Butler Kahle, Jane

    A project designed to foster the full and fair participation of girls in high-school science classes addressed obstacles, both perceived and actual, to equal participation. In order to modify existing classroom techniques and environments, a Teacher Intervention Program was designed. By means of a workshop and periodic personal communications, teachers were sensitized to the importance of a stimulating, gender-free learning environment. In addition, they were presented with a variety of methods and materials which had been shown to encourage girls in science. Twelve teachers, who were selected randomly, taught in diverse communities throughout one Midwestern state. The subjects tested were students in 24 general biology classes taught by the 12 teachers. Although both qualitative and quantitative measures were used during the research, only the quantitative results are discussed in this paper. Using ANOVA's, treatment group by student sex, a comparison of the mean scores was made for all students, as well as for all females and for all males. The results indicated that the experimental group, compared to the control group, had significantly higher mean scores on tests of attitudes toward science, perceptions of science, extracurricular science activities, and interest in a science-related career.

  5. Effectiveness of place-based science curriculum projects situated in Hawaiian and Western cultural institutions at an urban high school in Hawai'i

    NASA Astrophysics Data System (ADS)

    Kuwahara, Jennifer Leslie Hoof

    Place-based education is a multidisciplinary and experiential approach to learning that utilizes a local environment or community. This study examined the influences of place attachment and cultural affiliation in the school on student experience and learning in a place-based science course, as well as the course's potential influence on environmentally responsible behaviors. The participants attended an urban high school on O'ahu, Hawai'i. By understanding student reaction to experience in both Western- and Hawaiian-centered classes, this study contributes to the literature on place-based education in relation to how differences in cultural affiliation in a school setting can have varying impacts on place attachment, science literacy, and environmental responsibility. A comparative case study was conducted with students enrolled in the Hawaiian Academy and non-academy students. Analysis of a pre- and post-survey and science content assessments, student documents, field notes, and interview transcripts suggested place-based science has both similar and different impacts on students depending on cultural affiliation within the school. Students in the Hawaiian Academy, as a whole, showed stronger science literacy and environmental responsibility than students in the non-Hawaiian Academy class. However, non-Hawaiian Academy students showed increased place attachment in a spiritual sense. Reactions from both groups suggest a need for smaller learning communities that promote a unity of knowledge rather than distinct courses and disciplines.

  6. Student Intern Freed Competes at Intel ISEF, Two Others Awarded at Local Science Fair | Poster

    Cancer.gov

    Class of 2014–2015 Werner H. Kirsten (WHK) student intern Rebecca “Natasha” Freed earned a fourth-place award in biochemistry at the 2015 Intel International Science and Engineering Fair (ISEF), the largest high school science research competition in the world, according to the Society for Science & the Public’s website. Freed described the event as “transformative

  7. Tangled Up in Views: Beliefs in the Nature of Science and Responses to Socio-Scientific Dilemmas.

    ERIC Educational Resources Information Center

    Zeidler, Dana L.; Walker, Kimberly A.; Ackett, Wayne A.; Simmons, Michael L.

    The purpose of this study was to investigate the relationships between students' conceptions of the nature of science and their reactions to evidence that challenged their beliefs about socio-scientific issues. This study used 248 students from 9th and 10th grade general science classes, 11th and 12th grade honors biology, honors science, and…

  8. Exploring the efficacy of electronic response devices in ninth-grade science classrooms

    NASA Astrophysics Data System (ADS)

    Dey, John A., Jr.

    Student use of electronic response technology has been prevalent in postsecondary institutions and is beginning to penetrate K--12 classroom settings. Despite these trends, research exploring the impact of this technology in these settings has been limited. The extant research has relied heavily on survey methodologies and largely has focused on student/teacher perception or implementation practices while remaining silent on learning outcomes. The purpose of this study was to broaden the scope of research models used to explore electronic response technology and its impact on student learning. The study took place in a ninth-grade science classroom at a large high school with a comprehensive curriculum. Study participants were first-year high school students enrolled in one of two sections of the freshman science sequence focusing on Physical Science content. One section, serving as the Treatment group, used electronic response devices on a daily basis to respond to preplanned teacher questions. The other section, serving as the Comparison group, relied on traditional methods of interaction such as raising hands to respond to questions. They responded to the same set of preplanned questions and differed only in the manner of response, with the teacher asking the class and then calling on one of the students to answer. The study focused on academic achievement, as measured by student performance on a pre- and posttest, as well as student engagement, measured by momentary time sample data taken throughout the entire class with focused attention on periods of teacher questioning. The analysis of academic achievement employed an ANOVA, and no statistically significant difference was found between the groups. Engagement data were analyzed using an independent samples t test, and statistically significant differences were found between the two groups. Findings from this study indicated that, when using electronic response technology in their science classes, students demonstrated significantly higher levels of engagement across an entire class period as well as during teacher questioning. Implications of the study have been framed around the promise of electronic response technology for engaging and motivating students.

  9. How to Use the Science of Snow to Engage Middle School Students in an Interdisciplinary Experience

    ERIC Educational Resources Information Center

    Lange, Catherine; Huff, Kenneth L.; Silverman, Scott; Wallace, Karen

    2012-01-01

    In this interdisciplinary and field-based activity, grade 5 to 9 students engage in a comprehensive scientific study of snow. Through a series of in-class and out-of-class structured interdisciplinary and team-teaching lesson progressions, students will collect data to be able to analyze and apply knowledge about weather, the physical properties…

  10. The effects of a problem-based learning digital game on continuing motivation to learn science

    NASA Astrophysics Data System (ADS)

    Toprac, Paul K.

    The purpose of this study was to determine whether playing a problem-based learning (PBL) computer game, Alien Rescue III, would promote continuing motivation (CM) to learn science, and to explore the possible sources of CM. Another goal was to determine whether CM and interest to learn science in the classroom were identical constructs. CM was defined as the pursuit of academic learning goals in noninstructional contexts that were initially encountered in the classroom. Alien Rescue was played for a total of 9 hours in the seventh grade of a private middle school with 44 students, total, participating. The study used a design-based research approach that attempted to triangulate quantitative and qualitative methods. A science knowledge test, and two self-report questionnaires---one measuring motivation and one measuring CM---were administered preintervention, postintervention, and follow-up. Qualitative data was also collected, including student interviews, classroom observations, written responses, and a science teacher interview. Repeated measures ANOVAs were used to determine any significant changes in scores. A multiple regression analysis was used to explore whether a model of CM could be determined using the Eccles' expectancy-value achievement motivation model. The constant comparative method was used to obtain relevant information from the qualitative data. Based on contradictory quantitative and qualitative findings, results were mixed as to whether students exhibited an increase in CM to learn space science. Students continued to freely engage Alien Rescue during the mid-class break, but this does not strictly adhere to the definition of CM. However, many students did find space science more interesting than anticipated and developed increased desire to learn more in class, if not outside of class. Results also suggest that CM and interest in learning more in class are separate but related constructs. Finally, no satisfactory model emerged from the multiple regression analysis but based on students' interviews, continuing interest to learn is influenced by all the components of Eccles' expectancy-value model. Response effects may have confounded quantitative results. Discussion includes challenges of researching in classrooms, CM, and Eccles' motivational model, and the tension between PBL and game based approaches. Future design recommendations and research directions are provided.

  11. The effect of online collaborative learning on middle school student science literacy and sense of community

    NASA Astrophysics Data System (ADS)

    Wendt, Jillian Leigh

    This study examines the effects of online collaborative learning on middle school students' science literacy and sense of community. A quantitative, quasi-experimental pretest/posttest control group design was used. Following IRB approval and district superintendent approval, students at a public middle school in central Virginia completed a pretest consisting of the Misconceptions-Oriented Standards-Based Assessment Resources for Teachers (MOSART) Physical Science assessment and the Classroom Community Scale. Students in the control group received in-class assignments that were completed collaboratively in a face-to-face manner. Students in the experimental group received in-class assignments that were completed online collaboratively through the Edmodo educational platform. Both groups were members of intact, traditional face-to-face classrooms. The students were then post tested. Results pertaining to the MOSART assessment were statistically analyzed through ANCOVA analysis while results pertaining to the Classroom Community Scale were analyzed through MANOVA analysis. Results are reported and suggestions for future research are provided.

  12. Students' and Teachers' Understanding of the Nature of Science: A Reassessment.

    ERIC Educational Resources Information Center

    Lederman, Norman G.

    1986-01-01

    High school biology teachers (N=18), and one 10th-grade class of each teacher, were given the Nature of Scientific Knowledge Scale at the beginning and end of a school year to determine their conceptions of the nature of science. Results (such as students not possessing "adequate" conceptions of science) are reported and discussed. (JN)

  13. Elementary Students Using a Tablet-Based Note-Taking Application in the Science Classroom

    ERIC Educational Resources Information Center

    Paek, Seungoh; Fulton, Lori A.

    2016-01-01

    This exploratory study investigates the potential of a tablet-based note-taking application (TbNA) to serve as a digital notebook in support of students' classroom science practices. An elementary teacher (Grades 4-5) from a public charter school integrated a TbNA into her science class for one semester while participating in professional…

  14. Assessment of a Constructivist-Motivated Mentoring Program to Enhance the Teaching Skills of Atmospheric Science Graduate Students

    ERIC Educational Resources Information Center

    Drossman, Howard; Benedict, Jim; McGrath-Spangler, Erica; Van Roekel, Luke; Wells, Kelley

    2011-01-01

    This article describes a collaborative mentoring program in which graduate students (fellows) from a university atmospheric science research department team-taught environmental science classes with professors in a liberal arts college. The mentorship allowed fellows to develop and test the effectiveness of curriculum based on the Process Oriented…

  15. Effect of Cooperative Learning on Achievement of Students in General Science at Secondary Level

    ERIC Educational Resources Information Center

    Parveen, Qaisara; Batool, Sadia

    2012-01-01

    The aim of the study was to explore the effects of cooperative learning on General Science achievement among 9th class students. Based upon previous research literature it was hypothesized that significant difference existed between the mean posttest scores of General Science achievement of experimental group and control group. The pretest…

  16. Avenues to Inspiration

    ERIC Educational Resources Information Center

    Campbell, Ashley

    2011-01-01

    Integrating the worlds of art and science can be a perfect tool for engaging students who wouldn't be initially interested in a science class. Even those students who love science may delve deeper into the subject when it's associated with art. One way to make this connection is to explore the life and work of great nature artists of the past and…

  17. Do High-Ability Students Disidentify with Science? A Descriptive Study of U.S. Ninth Graders in 2009

    ERIC Educational Resources Information Center

    Andersen, Lori; Chen, Jason A.

    2016-01-01

    The present study describes science expectancy-value motivation classes within a nationally representative sample of students who were U.S. ninth graders in 2009. An expectancy-value model was the basis for science-specific profile indicators (self-efficacy, attainment value, utility value, interest-enjoyment value). Using exploratory latent class…

  18. Using Technology to Support Expository Reading and Writing in Science Classes

    ERIC Educational Resources Information Center

    Montelongo, Jose A.; Herter, Roberta J.

    2010-01-01

    Students struggle with the transition from learning to read narrative text in the early grades to reading expository text in the science classroom in the upper grades as they begin reading and writing to gain information. Science teachers can adapt their teaching materials to develop students' reading comprehension and recall by writing summaries…

  19. The Efficacy of Haptic Simulations to Teach Students with Visual Impairments about Temperature and Pressure

    ERIC Educational Resources Information Center

    Jones, M. Gail; Childers, Gina; Emig, Brandon; Chevrier, Joël; Tan, Hong; Stevens, Vanessa; List, Jonathan

    2014-01-01

    Traditional science instruction is typically reliant on visual modes of learning, such as textbooks and graphs. Furthermore, since science instruction is often heavily dependent upon visual cues, students with visual impairment often do not have access to the same educational opportunities in most science classes (Jones, Minogue, Oppewal, Cook,…

  20. Science Anxiety: Relation with Gender, Year in Chemistry Class, Achievement, and Test Anxiety.

    ERIC Educational Resources Information Center

    Wynstra, Sharon; Cummings, Corenna

    The relationships of science anxiety to measures of achievement, test anxiety, year of chemistry taken, and gender were investigated for high school students; the study also attemped to establish reliability data on the Czerniak Assessment of Science Anxiety (CASA) of L. Chiarelott and C. Czerniak (1987). Subjects were 101 students (45 males and…

  1. Trash Conflicts: A Science and Social Studies Curriculum on the Ethics of Disposal. An Interdisciplinary Curriculum.

    ERIC Educational Resources Information Center

    Ballin, Amy; And Others

    Designed for middle school science and social studies classes, this document is a curriculum on waste disposal. Mathematics and language skills also are incorporated into many of the activities. In the study of trash disposal, science students benefit from understanding the social issues related to the problem. Social studies students need…

  2. Perceived impact on student engagement when learning middle school science in an outdoor setting

    NASA Astrophysics Data System (ADS)

    Abbatiello, James

    Human beings have an innate need to spend time outside, but in recent years children are spending less time outdoors. It is possible that this decline in time spent outdoors could have a negative impact on child development. Science teachers can combat the decline in the amount of time children spend outside by taking their science classes outdoors for regular classroom instruction. This study identified the potential impacts that learning in an outdoor setting might have on student engagement when learning middle school science. One sixth-grade middle school class participated in this case study, and students participated in outdoor intervention lessons where the instructional environment was a courtyard on the middle school campus. The outdoor lessons consisted of the same objectives and content as lessons delivered in an indoor setting during a middle school astronomy unit. Multiple sources of data were collected including questionnaires after each lesson, a focus group, student work samples, and researcher observations. The data was triangulated, and a vignette was written about the class' experiences learning in an outdoor setting. This study found that the feeling of autonomy and freedom gained by learning in an outdoor setting, and the novelty of the outdoor environment did increase student engagement for learning middle school science. In addition, as a result of this study, more work is needed to identify how peer to peer relationships are impacted by learning outdoors, how teachers could best utilize the outdoor setting for regular science instruction, and how learning in an outdoor setting might impact a feeling of stewardship for the environment in young adults.

  3. The effects of student-level and classroom-level factors on elementary students' science achievement in five countries

    NASA Astrophysics Data System (ADS)

    Kaya, Sibel

    The interest in raising levels of achievement in math and science has led to a focus on investigating the factors that shape achievement in these subjects (Lamb & Fullarton, 2002) as well as understanding how these factors operate across countries (Baker, Fabrega, Galindo, & Mishook, 2004). The current study examined the individual student factors and classroom factors on fourth grade science achievement within and across five countries. Guided by the previous school learning models, the elements of students' science learning were categorized as student-level and classroom-level factors. The student-level factors included gender, self-confidence in science, and home resources. The classroom-level factors included teacher characteristics, instructional variables and classroom composition. Results for the United States and four other countries, Singapore, Japan, Australia, and Scotland were reported. Multilevel effects of student and classroom variables were examined through Hierarchical Linear Modeling (HLM) using the Trends in International Mathematics and Science Study (TIMSS) 2003 fourth grade dataset. The outcome variable was the TIMSS 2003 science score. Overall, the results of this study showed that selected student background characteristics were consistently related to elementary science achievement in countries investigated. At the student-level, higher levels of home resources and self-confidence and at the classroom-level, higher levels of class mean home resources yielded higher science scores on the TIMSS 2003. In general, teacher and instructional variables were minimally related to science achievement. There was evidence of positive effects of teacher support in the U.S. and Singapore. The emphasis on science inquiry was positively related to science achievement in Singapore and negatively related in the U.S. and Australia. Experimental studies that investigate the impacts of teacher and instructional factors on elementary science achievement are needed. For all the countries investigated, with the exception of Singapore, the between-class variance was much smaller than the within-class variance. Japan had the smallest variation in science achievement among classrooms which indicates the homogeneity across classrooms in Japan. Increasing awareness and knowledge of gender neutral instructional techniques, providing a non-threatening, rich and supportive environment for both genders in classrooms by elementary teachers are to be encouraged. To improve students' self beliefs about science, it is recommended that teachers model science activities and accommodate students' needs and abilities (Bandura, 1997; Britner & Pajares, 2006). Schools and teachers are recommended to develop a successful home-school partnership for improved student learning and positive attitudes toward science (Eccles & Harold, 1996; Epstein & Salinas, 2004). Furthermore, developing a knowledge base for teachers regarding the influences of classroom and school composition is highlighted (Honig, Kahne, & McLaughlin, 2001; Murrel, 2001). At the classroom- and school-level, policy efforts could focus on the distribution of educational resources (Condron & Roscigno, 2003; Goesling, 2003) to compensate for poor family background.

  4. Single-sex middle school science classrooms: Separate and equal?

    NASA Astrophysics Data System (ADS)

    Glasser, Howard M.

    The U.S. Department of Education's amended regulations to Title IX have attempted to expand the circumstances in which single-sex classes are permissible in public schools. This ethnographic study uses grounded theory to investigate aspects of one single-sex offering at a public, coeducational middle school. Applying elements of postmodern, queer, and sociocultural lenses, it examines the perspectives for this offering, shedding insight into the cultures of two single-sex classrooms and what it meant to be a boy or girl in this setting. Additionally, it focuses attention on the all-boy and all-girl science classes that were taught by the same teacher and examines what it meant to learn science as boys and girls in this program. Although participants supplied financial, socio-emotional, and academic reasons for these classes, the initial motivation for these classes stemmed from the teachers' desire to curb the amount of sex talk and related behaviors that were exhibited in their classrooms. Through these conversations and classroom events, the girls were constructed as idealized students, academically and behaviorally, who needed to be protected from boys' behaviors---both boys' dominating classroom behaviors and aggressive (hetero)sexual behaviors. Conversely, boys were constructed as needing help both academically and behaviorally, but in the specific discipline of science boys were identified as the sex that was more interested in the content and gained greater exposure to skills that could assist them in future science courses and careers. Overall, boys and girls, and the culture of their two classrooms, were regularly defined relative to each other and efforts were made to maintain these constructed differences. As a result, the classes and students were hierarchically ranked in ways that often pitted one sex of students, or the entire class, as better or worse than the other. The theory emerging from this study is that single-sex policies arise and survive through an endorsement of exclusion, which perpetuates the construction of differences between the sexes. These single-sex settings construct identities and cultures that could have substantial effects on students' understanding of themselves and other students, their future academic and professional pursuits, and their relationships with other people.

  5. Introducing Interactive Teaching Styles into Astronomy Lectures

    NASA Astrophysics Data System (ADS)

    Deming, G. L.

    1997-12-01

    The majority of undergraduate students who take an astronomy class are non-science majors attempting to satisfy a science requirement. Often in these "scientific literacy" courses, facts are memorized for the exam and forgotten shortly afterwards. Scientific literacy courses should advance student skills toward processing information and applying higher order thinking rather than simple recall and memorization of facts. Thinking about material as it is presented, applying new knowledge to solve problems, and thinking critically about topics are objectives that many astronomy instructors hope their students are achieving. A course in astronomy is more likely to achieve such goals if students routinely participate in their learning. Interactive techniques can be quite effective even in large classes. Examples of activities are presented that involve using cooperative learning techniques, writing individual and group "minute papers," identifying and correcting misconceptions, including the whole class in a demonstration, and applying knowledge to new situations.

  6. Free-Fall Sex and Golden Eggs

    ERIC Educational Resources Information Center

    Burke, Michael C.

    1978-01-01

    Provides an annotated bibliography of science fiction literature suitable for use with secondary school students. Connections between science fiction and the science disciplines are viewed by the author as an excellent method by which to enrich science classes. (CP)

  7. Scientist Spotlight Homework Assignments Shift Students’ Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class

    PubMed Central

    Schinske, Jeffrey N.; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments (“Scientist Spotlights”) that featured counterstereotypical examples of scientists in an introductory biology class at a diverse community college. Scientist Spotlights additionally served as tools for content coverage, as scientists were selected to match topics covered each week. We analyzed beginning- and end-of-course essays completed by students during each of five courses with Scientist Spotlights and two courses with equivalent homework assignments that lacked connections to the stories of diverse scientists. Students completing Scientist Spotlights shifted toward counterstereotypical descriptions of scientists and conveyed an enhanced ability to personally relate to scientists following the intervention. Longitudinal data suggested these shifts were maintained 6 months after the completion of the course. Analyses further uncovered correlations between these shifts, interest in science, and course grades. As Scientist Spotlights require very little class time and complement existing curricula, they represent a promising tool for enhancing science identity, shifting stereotypes, and connecting content to issues of equity and diversity in a broad range of STEM classrooms. PMID:27587856

  8. The Utility of Inquiry-Based Exercises in Mexican Science Classrooms: Reports from a Professional Development Workshop for Science Teachers in Quintana Roo, Mexico

    NASA Astrophysics Data System (ADS)

    Racelis, A. E.; Brovold, A. A.

    2010-12-01

    The quality of science teaching is of growing importance in Mexico. Mexican students score well below the world mean in math and science. Although the government has recognized these deficiencies and has implemented new policies aimed to improve student achievement in the sciences, teachers are still encountering in-class barriers to effective teaching, especially in public colleges. This paper reports on the utility of inquiry based exercises in Mexican classrooms. In particular, it describes a two-day professional development workshop with science teachers at the Instituto Tecnologico Superior in Felipe Carrillo Puerto in the Mexican state of Quintana Roo. Felipe Carrillo Puerto is an indigenous municipality where a significant majority of the population speak Maya as their first language. This alone presents a unique barrier to teaching science in the municipality, but accompanied with other factors such as student apathy, insufficient prior training of both students and teachers, and pressure to deliver specific science curriculum, science teachers have formidable challenges for effective science teaching. The goals of the workshop were to (1) have a directed discussion regarding science as both content and process, (2) introduce inquiry based learning as one tool of teaching science, and (3) get teachers to think about how they can apply these techniques in their classes.

  9. A Practical Project To Help Bilingual Students To Develop Their Knowledge of Science and English Language.

    ERIC Educational Resources Information Center

    Fouzder, Nani B.; Markwick, Andrew J. W.

    1999-01-01

    Describes a class project that included a literature search, observation of the Hale-Bopp comet, planning and building a model solar system, and presentation of the model in class. Finds that bilingual students in the class made significant progress in their learning of concepts and the acquisition of English as a result of completing the project.…

  10. Engaging Adolescents' Interests, Literacy Practices, and Identities: Digital Collaborative Writing of Fantasy Fiction in a High School English Elective Class

    ERIC Educational Resources Information Center

    Rish, Ryan M.

    2011-01-01

    This study investigates an elective English class, in which students in grades 10-12 collectively read and collaboratively wrote fantasy fiction in four groups. The purpose of the class was to have students consider the choices fantasy and science fictions writers, directors, and video game designers make when creating a fictional world. The…

  11. Test-Enhanced Learning in a Middle School Science Classroom: The Effects of Quiz Frequency and Placement

    ERIC Educational Resources Information Center

    McDaniel, Mark A.; Agarwal, Pooja K.; Huelser, Barbie J.; McDermott, Kathleen B.; Roediger, Henry L., III

    2011-01-01

    Typically, teachers use tests to evaluate students' knowledge acquisition. In a novel experimental study, we examined whether low-stakes testing ("quizzing") can be used to foster students' learning of course content in 8th grade science classes. Students received multiple-choice quizzes (with feedback); in the quizzes, some target…

  12. Identifying Exemplary Science Teachers through Students' Perceptions of Their Learning Environment

    ERIC Educational Resources Information Center

    Waldrip, Bruce G.; Fisher, Darrell L.; Dorman, Jeffrey

    2009-01-01

    The purpose of this study was to examine students' psychosocial perceptions of their science classroom learning environment in order to identify exemplary teachers. This mixed-method study used the valid and reliable What Is Happening In this Class? (WIHIC) questionnaire with over 3,000 middle school students in 150 classrooms in Australia.…

  13. Improving the Reading Ability of Science Students through Study Groups and Multiple Intelligences

    ERIC Educational Resources Information Center

    Owolabi, Tunde; Okebukola, Foluso

    2009-01-01

    This study explored the effects of appropriate pedagogical skills (study groups and multiple intelligences) on students' efficiencies in reading skills. It employed a factorial design using three variables. A sample of 90 science students choosing from three intact classes were involved in the study. Data analyses were carried out using mean,…

  14. The Nature of Discourse throughout 5E Lessons in a Large Enrolment College Biology Course

    ERIC Educational Resources Information Center

    Sickel, Aaron J.; Witzig, Stephen B.; Vanmali, Binaben H.; Abell, Sandra K.

    2013-01-01

    Large enrolment science courses play a significant role in educating undergraduate students. The discourse in these classes usually involves an instructor lecturing with little or no student participation, despite calls from current science education reform documents to elicit and utilize students' ideas in teaching. In this study, we used the 5E…

  15. Research and Teaching: Integrating Lecture and Laboratory in Health Sciences Courses Improves Student Satisfaction and Performance

    ERIC Educational Resources Information Center

    Finn, Kevin; FitzPatrick, Kathleen; Yan, Zi

    2017-01-01

    Students often struggle in introductory health sciences courses; some students have difficulty in upper level classes. To address this, we converted three lecture/lab courses, traditional first-year Anatomy and Physiology (A&P I), upper level Biomechanics, and upper level Microbiology to an integrated studio model. We used the Student…

  16. Convergent Inquiry in Science & Engineering: The Use of Atomic Force Microscopy in a Biology Class

    ERIC Educational Resources Information Center

    Lee, Il-Sun; Byeon, Jung-Ho; Kwon, Yong-Ju

    2013-01-01

    The purpose of this study was to design a teaching method suitable for science high school students using atomic force microscopy. During their scientific inquiry procedure, high school students observed a micro-nanostructure of a biological sample, which is unobservable via an optical microscope. The developed teaching method enhanced students'…

  17. Exploring the Development of Classroom Group Identities in an Urban High School Chemistry Class

    ERIC Educational Resources Information Center

    Macaluso, Stefania

    2014-01-01

    A key to achieving academic success in science is providing students with meaningful experiences and skills to negotiate how these experiences affect them and the society in which they live. Although students strive for academic success, a challenge that faces many urban science students and their teachers is finding ways to promote student…

  18. Museums as Resources for Science Teachers

    ERIC Educational Resources Information Center

    Summers, Susan

    2004-01-01

    A class visit to an informal science center can do wonders to broaden students? horizons while challenging creative thinking. However, students will get much more out of the visit with a little preparation. One of the best ways to prepare students is by providing them with a focus question to research during the visit. Some centers will be able…

  19. Literacy events during science instruction in a fifth-grade classroom: Listening to teacher and student voices

    NASA Astrophysics Data System (ADS)

    Deal, Debby

    Concern with science literacy and how to achieve it has a long history in our education system. The goals and definitions established by the National Science Education Standards (1996) suggest that if we are to successfully prepare students for the information age, science education must blend the natural and social sciences. However, research indicates that connections between hands-on science and literacy, as a tool for processing information, do not regularly occur during school science instruction. This case study explored the use of literacy by a second year teacher in a fifth grade class during consecutive science units on chemistry and liquids. The research questions focused on how and why the teacher and students used literacy during science and how and why the teacher and selected focus students believed literacy influenced their learning in science. Data was collected through classroom observations and multiple interviews with the teacher and selected focus students. Interview data was analyzed and coded using an iterative process. Field notes and student artifacts were used to triangulate the data. The study found that the teacher and students used reading and writing to record and acquire content knowledge, learn to be organized, and to facilitate assessment. Although the teacher had learned content literacy strategies in her pre-service program, she did not implement them in the classroom and her practice seemed to reflect her limited science content knowledge and understanding of the nature of science. The focus students believed that recording and studying notes, reading books, drawing, and reading study guides helped them learn science. The findings suggest the following implications: (1) More data is needed on the relationship between teaching approach, science content knowledge, and beliefs about science. (2) Elementary student voices make a valuable contribution to our understanding of science learning. (3) Pre-service candidates should have multiple opportunities to explicitly reflect on their beliefs about literacy, the nature of science, and learning in general. (4) Science methods classes should balance content, beliefs and attitudes related to science, and content literacy strategies.

  20. A case study of two exemplary biology teachers

    NASA Astrophysics Data System (ADS)

    Treagust, David F.

    Research has indicated that most science classrooms are not intellectually demanding and place little emphasis on small group discussions and laboratory activities. However, successful science programs and competent science teaching that can provide models for other science teachers do exist. This study sought to document the teaching practices of two exemplary biology teachers of grades 11 and 12 by means of an interpretive research methodology. Both teachers had a thorough and comprehensive knowledge of the content they were to teach and had a range of teaching strategies that could be used without a great deal of thought. Their expectations for student performance were high, consistent, and firm. Students were expected to complete a high level of academic work in discussions, in problem work, and in laboratory activities, and were encouraged to take responsibility for their own learning. A distinctive feature of these biology classes was the high level of managerial efficiency, where lessons were busy occasions for both teacher and students; students had little opportunity for off-task behavior. Both teachers actively monitored the behavior of both high- and low-ability students by moving around the room and speaking with individuals, while still maintaining control of the entire class. By manipulating questioning and the social environment, both teachers encouraged students to engage in work, gave effective praise to the whole class and to individuals, encouraged student input by referring to it, helped students to effectively use their time, and gave marks for completion of set work. Compared to research with less-successful teachers, these teaching behaviors contributed to exemplary practice.

  1. Technology Supported Facilitation and Assessment of Small Group Collaborative Inquiry Learning in Large First-Year Classes

    ERIC Educational Resources Information Center

    Lawrie, Gwendolyn A.; Gahan, Lawrence R.; Matthews, Kelly E.; Weaver, Gabriela C.; Bailey, Chantal; Adams, Peter; Kavanagh, Lydia J.; Long, Phillip D.; Taylor, Matthew

    2014-01-01

    Collaborative learning activities offer the potential to support mutual knowledge construction and shared understanding amongst students. Introducing collaborative tasks into large first-year undergraduate science classes to create learning environments that foster student engagement and enhance communication skills is appealing. However,…

  2. Where's the C in STEM?

    ERIC Educational Resources Information Center

    Heldman, Bill

    2010-01-01

    With few exceptions, students interact with technology in one way or another every day. And yet, in most U.S. schools, the term "computer science" (CS) refers only to generic skills classes, such as keyboarding and computer applications. Even most Web programming classes usually teach students only how to use conventional graphical user…

  3. Knowledge, language and subjectivities in a discourse community: Ideas we can learn from elementary children about science

    NASA Astrophysics Data System (ADS)

    Kurth, Lori Ann

    2000-10-01

    In light of continuing poor performance by American students in school science, feminists and sociocultural researchers have demonstrated that we need to look beyond content to address the science needs of all school children. In this study I examined issues of discourse norms, knowledge, language and subjectivities (meaning personal and social observations and characteristics) in elementary science. Over a two-year period, I used an interpretive methodological approach to investigate science experiences in two first-second and second grade classrooms. I first established some of the norms and characteristics of the discourse communities through case studies of new students attempting to gain entry to whole class conversations. I then examined knowledge, a central focus of science education addressed by a variety of theoretical approaches. In these classrooms students co-constructed and built knowledge in their whole class science conversations sometimes following convergent (similar knowledge) and, at other times, divergent (differing knowledge) paths allowing for broader discourse. In both paths, there was gendered construction of knowledge in which same gender students elaborated the reasoning of previous speakers. In conjunction with these analyses, I examined what knowledge sources the students used in their science conversations. Students drew on a variety of informal and formal knowledge sources including personal experiences, other students, abstract logic and thought experiments, all of which were considered valid. In using sources from both in and out of school, students' knowledge bases were broader than traditional scientific content giving greater access and richness to their conversations. The next analysis focused on students' use of narrative and paradigmatic language forms in the whole class science conversations. Traditionally, only paradigmatic language forms have been used in science classrooms. The students in this study used both narrative and paradigmatic language by drawing on stories of personal experience as well as canonical scientific argument. As had the varied knowledge paths and sources, the use of both language forms contributed to a broader and richer scientific discourse. Finally, in studying students' written discourse through their journals, I found that students had expanded views of science as they incorporated many aspects of their subjective selves including self and human elements, thinking, emotions, etc. in their writing and drawing. The enactment of knowledge, language and subjectivities in these discourse communities was unique, rich and meaningful highlighting a broader, more accessible vision of science. I advocate that knowledge, language and subjectivities should be central concepts in the practices of science communities as demonstrated in these classrooms. In establishing and integrating these concepts, the use of alternative and traditional modes of expression should be supported as both necessary and complementary. Students and teachers must also jointly construct classroom discourse norms, talk and writing in specific ways in order to provide a safe, comfortable and meaningful learning environment. Many teachers, students and scientists would benefit from broader visions of science, which enrich scientific knowledge and practice and engage and value participants from many backgrounds.

  4. Students' attitudes towards interdisciplinary education: a course on interdisciplinary aspects of science and engineering education

    NASA Astrophysics Data System (ADS)

    Gero, Aharon

    2017-05-01

    A course entitled 'Science and Engineering Education: Interdisciplinary Aspects' was designed to expose undergraduate students of science and engineering education to the attributes of interdisciplinary education which integrates science and engineering. The core of the course is an interdisciplinary lesson, which each student is supposed to teach his/her peers. Sixteen students at advanced stages of their studies attended the course. The research presented here used qualitative instruments to characterise students' attitudes towards interdisciplinary learning and teaching of science and engineering. According to the findings, despite the significant challenge which characterises interdisciplinary teaching, a notable improvement was evident throughout the course in the percentage of students who expressed willingness to teach interdisciplinary classes in future.

  5. As Long as You Are Here, Can I Interest in You Some Science? Increasing Student Engagement by Co-Opting a Social Networking Site, Facebook for Science Discussions

    ERIC Educational Resources Information Center

    Pai, Aditi; Cole, Megan; Kovacs, Jennifer; Lee, Mark; Stovall, Kyndra; McGinnis, Gene

    2017-01-01

    We adopted Facebook as part of a large enrollment science discussion class in a bid to exploit students' time on this social networking site and tested the effectiveness of this "co-option" strategy of creating education-related activity on Facebook for our students. We used a "Facebook Group" to create an online avenue for…

  6. Story Telling: Research and Action to Improve 6th Grade Students' Views about Certain Aspects of Nature of Science

    ERIC Educational Resources Information Center

    Kahraman, Feray; Karatas, Faik Özgür

    2015-01-01

    This study is a four-week section of ongoing attempts that aim to improve 6th grade students' understandings of the nature of science. The study was carried out in a sixth grade science and technology class at a rural middle school with 15 students on the basis of action research methodology. During the study, four different stories based on the…

  7. Best practices for learning physiology: combining classroom and online methods.

    PubMed

    Anderson, Lisa C; Krichbaum, Kathleen E

    2017-09-01

    Physiology is a requisite course for many professional allied health programs and is a foundational science for learning pathophysiology, health assessment, and pharmacology. Given the demand for online learning in the health sciences, it is important to evaluate the efficacy of online and in-class teaching methods, especially as they are combined to form hybrid courses. The purpose of this study was to compare two hybrid physiology sections in which one section was offered mostly in-class (85% in-class), and the other section was offered mostly online (85% online). The two sections in 2 yr ( year 1 and year 2 ) were compared in terms of knowledge of physiology measured in exam scores and pretest-posttest improvement, and in measures of student satisfaction with teaching. In year 1 , there were some differences on individual exam scores between the two sections, but no significant differences in mean exam scores or in pretest-posttest improvements. However, in terms of student satisfaction, the mostly in-class students in year 1 rated the instructor significantly higher than did the mostly online students. Comparisons between in-class and online students in the year 2 cohort yielded data that showed that mean exam scores were not statistically different, but pre-post changes were significantly greater in the mostly online section; student satisfaction among mostly online students also improved significantly. Education researchers must investigate effective combinations of in-class and online methods for student learning outcomes, while maintaining the flexibility and convenience that online methods provide. Copyright © 2017 the American Physiological Society.

  8. Characteristics of the General Physics student population.

    NASA Astrophysics Data System (ADS)

    Hunt, Gary L.

    2006-12-01

    Are pre-medical students different than the other students in a General physics class? They often appear to be different, based on how often they seek help from the instructor or how nervous they are about 2 points on a lab report. But are these students different in a measurable characteristic? The purpose of this study is to better understand the characteristics of the students in the introductory physics classes. This is the first step toward improving the instruction. By better understanding the students the classroom, the organization and pedagogy can be adjusted to optimize student learning. The characteristics to be investigated during this study are: · student epistemological structure, · student attitudes, · science course preparation prior to this course, · study techniques used, · physics concepts gained during the class · performance in the class. The data will be analyzed to investigate differences between groups. The groups investigated will be major, gender, and traditional/nontraditional students.

  9. Using the Humanities to Teach Neuroscience to Non-majors.

    PubMed

    McFarlane, Hewlet G; Richeimer, Joel

    2015-01-01

    We developed and offered a sequence of neuroscience courses geared toward changing the way non-science students interact with the sciences. Although we accepted students from all majors and at all class levels, our target population was first and second year students who were majoring in the fine arts or the humanities, or who had not yet declared a major. Our goal was to engage these students in science in general and neuroscience in particular by teaching science in a way that was accessible and relevant to their intellectual experiences. Our methodology was to teach scientific principles through the humanities by using course material that is at the intersection of the sciences and the humanities and by changing the classroom experience for both faculty and students. Examples of our course materials included the works of Oliver Sacks, V.S. Ramachandran, Martha Nussbaum, Virginia Woolf and Karl Popper, among others. To change the classroom experience we used a model of team-teaching, which required the simultaneous presence of two faculty members in the classroom for all classes. We changed the structure of the classroom experience from the traditional authority model to a model in which inquiry, debate, and intellectual responsibility were central. We wanted the students to have an appreciation of science not only as an endeavor guided by evidence and experimentation, but also a public discourse driven by creativity and controversy. The courses attracted a significant number of humanities and fine arts students, many of whom had already completed their basic science requirement.

  10. From Peripheral to Central, the Story of Melanie's Metamorphosis in an Urban Middle School Science Class

    ERIC Educational Resources Information Center

    Tan, Edna; Barton, Angela Calabrese

    2008-01-01

    Identity formation is a critical dimension of how and why students engage in science to varying degrees. In this paper, we use the lens of identity formation, and in particular identities in practice, to make sense of how and why Melanie, over the course of sixth grade, transformed from a marginalized member of the science class with a failing…

  11. Accelerating the development of formal thinking in middle and high school students

    NASA Astrophysics Data System (ADS)

    Adey, Philip; Shayer, Michael

    In an attempt to accelerate the development of formal operations in average young adolescents, intervention lessons relating to all formal schemata were designed in the context of school science courses. Over a period of two years, up to 30 intervention lessons were given by science teachers to their classes in eight schools. Boys who started the program aged 12+ showed a pre-posttest effect size on Piagetian tests of 0.89 SD compared with control classes. In terms of British norms for the development of operational thinking this was a mean change from the 51st to the 74th percentile. Neither the middle school students nor the 12+ girls showed greater gain than the controls. Gains were shown by girls in one 11+ class and in the two 11+ laboratory classes. In the laboratory school students given intervention lessons by the researchers maintained their gains over controls in formal operations at a delayed posttest one year after cessation of the program. There was no effect on tests of science achievement during the intervention. It was argued that the interventions needed to be accompanied by in-service training designed to enable teachers to change their teaching style in line with their students' increased operational thinking capacity.

  12. The relationship between participation in student-centered discussions and the academic achievement of fifth-grade science students

    NASA Astrophysics Data System (ADS)

    Mathues, Patricia Kelly

    Although the social constructivist theory proposed by Vygotsky states the value of discourse as a contribution to the ability of the learner to create meaning, student-led discussions have often been relegated to the language arts classroom. The standards created by the National Council of Teachers of English and the International Reading Association have long recognized that learners create meaning in a social context. The National Science Education Standards have also challenged science teachers to facilitate discourse. However, the science standards document provides no specific structure through which such discourse should be taught. This study investigated the effectiveness of a discussion strategy provided by Shoop and Wright for teaching and conducting student-centered discussions (SCD). Fifth graders in one school were randomly selected and randomly assigned to one of two science classes; 22 students in one class learned and applied the SCD strategies while a second class with 19 students learned the same science concepts from a teacher using traditional methods as described by Cazden. This study used a pretest-posttest design to test the hypothesis that participation in SCD's would effect a difference in fifth-graders' abilities to comprehend science concepts. Results of independent-samples t-tests showed that while there was no significant difference between the mean ability scores of the two groups of subjects as measured by a standardized mental abilities test, the mean pretest score of the traditional group was significantly higher than the SCD group's mean pretest score. ANCOVA procedures demonstrated that the SCD group's mean posttest score was significantly higher than the mean posttest score of the traditional group. Data analysis supported the rejection of the null hypothesis. The investigator concluded that the SCD methodology contributed to students' understanding of the science concepts. Results of this study challenge content area teachers to provide direct instruction of the SCD strategies and to encourage students to engage in the construction of knowledge through such discourse. Future research should focus on the application of the SCD strategies in other settings and for various durations of time.

  13. Parent involvement and science achievement: A latent growth curve analysis

    NASA Astrophysics Data System (ADS)

    Johnson, Ursula Yvette

    This study examined science achievement growth across elementary and middle school and parent school involvement using the Early Childhood Longitudinal Study - Kindergarten Class of 1998--1999 (ECLS-K). The ECLS-K is a nationally representative kindergarten cohort of students from public and private schools who attended full-day or half-day kindergarten class in 1998--1999. The present study's sample (N = 8,070) was based on students that had a sampling weight available from the public-use data file. Students were assessed in science achievement at third, fifth, and eighth grades and parents of the students were surveyed at the same time points. Analyses using latent growth curve modeling with time invariant and varying covariates in an SEM framework revealed a positive relationship between science achievement and parent involvement at eighth grade. Furthermore, there were gender and racial/ethnic differences in parents' school involvement as a predictor of science achievement. Findings indicated that students with lower initial science achievement scores had a faster rate of growth across time. The achievement gap between low and high achievers in earth, space and life sciences lessened from elementary to middle school. Parents' involvement with school usually tapers off after elementary school, but due to parent school involvement being a significant predictor of eighth grade science achievement, later school involvement may need to be supported and better implemented in secondary schooling.

  14. In the Footsteps of Roger Revelle: Seagoing Oceanography for Middle School Science

    NASA Astrophysics Data System (ADS)

    Brice, D.; Foley, S.; Knox, R. A.; Mauricio, P.

    2007-12-01

    Now in its fourth year, "In the Footsteps of Roger Revelle" (IFRR) is a middle school science education program that draws student interest, scientific content and coherence with National Science Standards from real-time research at sea in fields of physical science. As a successful collaboration involving Scripps Institution of Oceanography (SIO), Woods Hole Oceanographic Institution (WHOI), National Oceanic and Atmospheric Administration (NOAA), Office of Naval Research (ONR), National Science Foundation (NSF), San Diego County Office of Education (SDCOE), and San Marcos Middle School (SMMS), IFRR brings physical oceanography and related sciences to students at the San Marcos Middle School in real-time from research vessels at sea using SIO's HiSeasNet satellite communication system. With their science teacher on the ship as an education outreach specialist or ashore guiding students in their interactions with selected scientists at sea, students observe shipboard research being carried out live via videoconference, daily e-mails, interviews, digital whiteboard sessions, and web interaction. Students then research, design, develop, deploy, and field-test their own data-collecting physical oceanography instruments in their classroom. The online interactive curriculum encourages active inquiry with intellectually stimulating problem-solving, enabling students to gain critical insight and skill while investigating some of the most provocative questions of our time, and seeing scientists as role- models. Recent science test scores with IFRR students have shown significant increases in classes where this curriculum has been implemented as compared to other classes where the traditional curriculum has been used. IFRR has provided students in the San Diego area with a unique opportunity for learning about oceanographic research, which could inspire students to become oceanographers or at least scientifically literate citizens - a benefit for a country that depends increasingly on technically proficient personnel, and a benefit for society at large.

  15. Science dual enrollment: An examination of high school students' post-secondary aspirations

    NASA Astrophysics Data System (ADS)

    Berry, Chelsia

    The purpose of this study was to determine if participation in science dual enrollment courses influenced African American high school students' post-secondary aspirations that will lead to college attendance. The investigation examined the relationship between African American students' learning experiences and how their self-efficacy and outcome expectations impact their goal setting. The goal was to determine the impact of the following variables on African American students' plan to pursue a bachelor's or advanced degree: (a) STEM exposure, (b) Algebra 1 achievement, (c) level of science class, and (d) receiving science college credit for dual enrollment course. The social cognitive career theory framed this body of research to explore how career and academic interests mature, are developed, and are translated into action. Science dual enrollment participation is a strategy for addressing the lack of African American presence in the STEM fields. The causal comparative ex post facto research design was used in this quantitative study. The researcher performed the Kruskal-Wallis non-parametric analysis of variance and Pearson's chi-square tests to analyze secondary data from the High School Longitudinal Study first follow-up student questionnaire. The results indicate that STEM exposure and early success in Algebra 1 have a statistically significant impact on African American students' ambition to pursue a bachelor's or advanced degree. According to the Pearson's chi-square and independent sample Kruskal-Wallis analyses, level of students' science class and receiving college credit for dual enrollment do not significantly influence African American students' postsecondary aspirations.

  16. Student Engagement in a Computer Rich Science Classroom

    NASA Astrophysics Data System (ADS)

    Hunter, Jeffrey C.

    The purpose of this study was to examine the student lived experience when using computers in a rural science classroom. The overarching question the project sought to examine was: How do rural students relate to computers as a learning tool in comparison to a traditional science classroom? Participant data were collected using a pre-study survey, Experience Sampling during class and post-study interviews. Students want to use computers in their classrooms. Students shared that they overwhelmingly (75%) preferred a computer rich classroom to a traditional classroom (25%). Students reported a higher level of engagement in classes that use technology/computers (83%) versus those that do not use computers (17%). A computer rich classroom increased student control and motivation as reflected by a participant who shared; "by using computers I was more motivated to get the work done" (Maggie, April 25, 2014, survey). The researcher explored a rural school environment. Rural populations represent a large number of students and appear to be underrepresented in current research. The participants, tenth grade Biology students, were sampled in a traditional teacher led class without computers for one week followed by a week using computers daily. Data supported that there is a new gap that separates students, a device divide. This divide separates those who have access to devices that are robust enough to do high level class work from those who do not. Although cellular phones have reduced the number of students who cannot access the Internet, they may have created a false feeling that access to a computer is no longer necessary at home. As this study shows, although most students have Internet access, fewer have access to a device that enables them to complete rigorous class work at home. Participants received little or no training at school in proper, safe use of a computer and the Internet. It is clear that the majorities of students are self-taught or receive guidance from peers resulting in lower self-confidence or the development of misconceptions of their skill or ability.

  17. Sighted and visually impaired students’ perspectives of illustrations, diagrams and drawings in school science

    PubMed Central

    McDonald, Celia; Rodrigues, Susan

    2016-01-01

    Background: In this paper we report on the views of students with and without visual impairments on the use of illustrations, diagrams and drawings (IDD) in science lessons. Method: Our findings are based on data gathered through a brief questionnaire completed by a convenience sample of students prior to trialling new resource material. The questionnaire sought to understand the students’ views about using IDD in science lessons. The classes involved in the study included one class from a primary school, five classes from a secondary school and one class from a school for visually impaired students. Results: Approximately 20% of the participants thought that the diagrams were boring and just under half (48%) of the total sample (regardless of whether they were sighted or visually impaired) did not think diagrams were easy to use. Only 14% of the participants felt that repeated encounters with the same diagrams made the diagrams easy to understand. Unlike sighted students who can ‘flit’ across diagrams, a visually impaired student may only see or touch a small part of the diagram at a time so for them ‘fliting’ could result in loss of orientation with the diagram. Conclusions: Treating sighted and visually impaired pupils equally is different to treating them identically. Sighted students incidentally learn how to interpret visual information from a young age. Students who acquire sight loss need to learn the different rules associated with reading tactile diagrams, or large print and those who are congenitally blind do not have visual memories to rely upon. PMID:27918598

  18. Results of Studying Astronomy Students’ Science Literacy, Quantitative Literacy, and Information Literacy

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; Impey, Chris David; Follette, Katherine B.; Dokter, Erin F.; McCarthy, Don; Vezino, Beau; Formanek, Martin; Romine, James M.; Brock, Laci; Neiberding, Megan; Prather, Edward E.

    2017-01-01

    Introductory astronomy courses often serve as terminal science courses for non-science majors and present an opportunity to assess non future scientists’ attitudes towards science as well as basic scientific knowledge and scientific analysis skills that may remain unchanged after college. Through a series of studies, we have been able to evaluate students’ basic science knowledge, attitudes towards science, quantitative literacy, and informational literacy. In the Fall of 2015, we conducted a case study of a single class administering all relevant surveys to an undergraduate class of 20 students. We will present our analysis of trends of each of these studies as well as the comparison case study. In general we have found that students basic scientific knowledge has remained stable over the past quarter century. In all of our studies, there is a strong relationship between student attitudes and their science and quantitative knowledge and skills. Additionally, students’ information literacy is strongly connected to their attitudes and basic scientific knowledge. We are currently expanding these studies to include new audiences and will discuss the implications of our findings for instructors.

  19. Societal Issues and Their Importance for Contemporary Science Education--A Pedagogical Justification and the State-of-the-Art in Israel, Germany, and the USA

    ERIC Educational Resources Information Center

    Hofstein, Avi; Eilks, Ingo; Bybee, Rodger

    2011-01-01

    One common theme underlying recent reports on science education is that the content of school science and its related pedagogical approaches are not aligned with the interests and needs of both society and the majority of the students. Most students do not find their science classes interesting and motivating. These claims are especially valid…

  20. Student Mastery of the Sun-Earth-Moon System in a Flipped Classroom of Pre-service Elementary Education Students

    NASA Astrophysics Data System (ADS)

    Larsen, Kristine

    2014-01-01

    One of the current trends in pedagogy at all levels(K-college) is the so-called ‘flipped classroom’, in which students prepare for a class meeting through self-study of the material. It is based on a rejection of the classic model of the faculty member as the ‘sage on the stage’ instead, responsibility for learning shifts to the individual student. The faculty member takes on the role of learning facilitator or mentor, and focuses the students’ learning by crafting and administering timely formative assessments (in multiple formats and applied multiple times) that aid both students and the faculty member in tracking the students’ mastery of the learning outcomes. In a flipped, freshman-only, section of SCI 111 Elementary Earth-Physical Sciences (a required introductory science course for pre-service elementary school teachers) the students learned through a combination of individual and group hands-on in-class activities, technology (including PowerPoint presentations and short videos viewed prior to attending class), in-class worksheets, and in-class discussions. Students self-differentiated in how they interacted with the available teaching materials, deciding which activities to spend the most time on based on their individual needs (based on an online quiz taken the night before the class period, and their personal self-confidence with the material). Available in-class activities and worksheets were developed by the faculty member based on student scores on the online quiz as well as personal messages submitted through the course management system the night before the class meeting. While this placed a significant burden on the faculty member in terms of course preparation, it allowed for just-in-time teaching to take place. This poster describes the results of student mastery of content centered on the sun-earth-moon system (specifically seasons, moon phases, and eclipses) as compared to traditional classroom sections.

  1. Collaboration with Community Partners

    ERIC Educational Resources Information Center

    Sterling, Donna R.; Frazier, Wendy M.

    2006-01-01

    For eight years, relationships with community partners have been the mainstay of a science enrichment program for secondary students. Through the use of problem-based learning, science classes use, the techniques and tools of scientists to solve authentic problems directly related to students' interests and needs. In this article, the author…

  2. Evaluation of the Effect of Laboratory-Oriented Science Curriculum Materials on the Attitudes of Students with Reading Difficulties.

    ERIC Educational Resources Information Center

    Milson, James L.

    1979-01-01

    Investigated how the use of laboratory-oriented science curriculum materials affected the attitudes of students with reading difficulties. Both the ninth grade experimental and control classes used a six-week instructional unit on heat and temperature. (HM)

  3. Interest in STEM is contagious for students in biology, chemistry, and physics classes

    PubMed Central

    Hazari, Zahra; Potvin, Geoff; Cribbs, Jennifer D.; Godwin, Allison; Scott, Tyler D.; Klotz, Leidy

    2017-01-01

    We report on a study of the effect of peers’ interest in high school biology, chemistry, and physics classes on students’ STEM (science, technology, engineering, and mathematics)–related career intentions and course achievement. We define an interest quorum as a science class where students perceive a high level of interest for the subject matter from their classmates. We hypothesized that students who experience such an interest quorum are more likely to choose STEM careers. Using data from a national survey study of students‘ experiences in high school science, we compared the effect of five levels of peer interest reported in biology, chemistry, and physics courses on students‘ STEM career intentions. The results support our hypothesis, showing a strong, positive effect of an interest quorum even after controlling for differences between students that pose competing hypotheses such as previous STEM career interest, academic achievement, family support for mathematics and science, and gender. Smaller positive effects of interest quorums were observed for course performance in some cases, with no detrimental effects observed across the study. Last, significant effects persisted even after controlling for differences in teaching quality. This work emphasizes the likely importance of interest quorums for creating classroom environments that increase students’ intentions toward STEM careers while enhancing or maintaining course performance. PMID:28808678

  4. Improving student learning in calculus through applications

    NASA Astrophysics Data System (ADS)

    Young, C. Y.; Georgiopoulos, M.; Hagen, S. C.; Geiger, C. L.; Dagley-Falls, M. A.; Islas, A. L.; Ramsey, P. J.; Lancey, P. M.; Straney, R. A.; Forde, D. S.; Bradbury, E. E.

    2011-07-01

    Nationally only 40% of the incoming freshmen Science, Technology, Engineering and Mathematics (STEM) majors are successful in earning a STEM degree. The University of Central Florida (UCF) EXCEL programme is a National Science Foundation funded STEM Talent Expansion Programme whose goal is to increase the number of UCF STEM graduates. One of the key requirements for STEM majors is a strong foundation in Calculus. To improve student learning in calculus, the EXCEL programme developed two special courses at the freshman level called Applications of Calculus I (Apps I) and Applications of Calculus II (Apps II). Apps I and II are one-credit classes that are co-requisites for Calculus I and II. These classes are teams taught by science and engineering professors whose goal is to demonstrate to students where the calculus topics they are learning appear in upper level science and engineering classes as well as how faculty use calculus in their STEM research programmes. This article outlines the process used in producing the educational materials for the Apps I and II courses, and it also discusses the assessment results pertaining to this specific EXCEL activity. Pre- and post-tests conducted with experimental and control groups indicate significant improvement in student learning in Calculus II as a direct result of the application courses.

  5. An Informal Outreach Model for Fostering Diversity and inclusion in the Sciences

    NASA Astrophysics Data System (ADS)

    Morris, P. A.; Obot, V.

    2006-05-01

    In the greater Houston area we have developed an effective informal education model that encourages communication between racial and ethnic groups, increases the base knowledge of space science, and promotes family involvement in science education. Space Science Student Ambassadors (SSSA), part of a NASA funded MUCERPI program, is student led and interacts with the community through interactive demonstrations, mini-classes for schools, museums, youth clubs, neighborhood centers and community family events. The events vary in length from one day to three weeks. The predominantly African American and Hispanic student ambassadors are recruited from inner city high schools and minority serving universities. NASA Johnson Space Center scientists are involved in the science education and training of the students. The students receive training in safety, classroom control, time management and team building skills. The lead SSSA contacts potential venues and establishes the event calendar. The students organize the activities for each venue. The SSSA increase their science knowledge. The diversity of the students and their cordial interactions serve as role models for venue participants. The participants can visually see the lack of ethnic or racial boundaries as the ambassadors interact with each other and the audience. Many of our SSSA have stated in evaluations that they have learned more about space science in our program than in their classes. Some of our SSSA are now pursuing graduate degrees in the geosciences. These students, prior to their involvement in our program, would not have pursued graduate degrees or they may have pursued degrees in other fields.

  6. The Influence of an Introductory Environmental Science Class on Environmental Perceptions

    ERIC Educational Resources Information Center

    Gerstenberger, Shawn L.; Kelly, William E.; Cross, Chad L.

    2004-01-01

    An environmental concern scale (ECS) was administered to a group of college students before and after completion of an introductory environmental science class. A significant increase in the level of concern was seen in questions related to overall environmental awareness and personal responsibility. Specifically, concern was raised on questions…

  7. Tried and True: Springing into Linear Models

    ERIC Educational Resources Information Center

    Darling, Gerald

    2012-01-01

    In eighth grade, students usually learn about forces in science class and linear relationships in math class, crucial topics that form the foundation for further study in science and engineering. An activity that links these two fundamental concepts involves measuring the distance a spring stretches as a function of how much weight is suspended…

  8. Putting Students on the Hot Seat to Stimulate Interest in Biology in Non-Science Majors

    ERIC Educational Resources Information Center

    Fowler, Samantha R.

    2012-01-01

    The Hot Seat is a discussion-based activity that requires students enrolled in a biology course for non-majors to pose a question to the class that is related to the current lecture topic and facilitate a brief class discussion. This paper describes the Hot Seat, how it is assessed, and how it has influenced students' attitudes toward the course…

  9. The Cassette Tape Recorder Means Versus Written and Symbolic Means of Providing Feedback of a Student's Performance on Secondary School Science Laboratory Exercises.

    ERIC Educational Resources Information Center

    Tauber, Robert T.; Fowler, H. Seymour

    Reported is a study of the relationship between student's performance scores and teacher's means of providing evaluative feedback. The sample included 12 classes of 224 students from the tenth through the twelfth grades. The classes included the disciplines of biology, chemistry, and physics including regular, advanced, traditional, PSSC, and…

  10. The availability of teaching-pedagogical resources used for promotion of learning in teaching human anatomy.

    PubMed

    Aragão, José Aderval; Fonseca-Barreto, Ana Terra; Brito, Ciro José; Guerra, Danilo Ribeiro; Nunes-Mota, José Carlos; Reis, Francisco Prado

    2013-01-01

    Five hundred students attending higher education institutions in northeastern Brazil responded to questionnaires about their anatomy classes; students represented a variety of different health sciences disciplines. Analysis of the responses revealed the participation of teaching assistants in a large percentage of classes and the use of teaching resources, particularly images, from conventional radiographs to magnetic resonance images. The number of classes for cadaver dissection and the number of students with access to that type of class were small. In most cases, dissection was performed according to anatomic regions or systems. Medicine and nursing students had the highest number of practical dissection classes. Most students were assessed using practical and theoretical tests. Findings revealed conditions similar to those found elsewhere. Resources should be renewed and used to improve teaching for students whose courses demand the study of human anatomy.

  11. The availability of teaching–pedagogical resources used for promotion of learning in teaching human anatomy

    PubMed Central

    Aragão, José Aderval; Fonseca-Barreto, Ana Terra; Brito, Ciro José; Guerra, Danilo Ribeiro; Nunes-Mota, José Carlos; Reis, Francisco Prado

    2013-01-01

    Five hundred students attending higher education institutions in northeastern Brazil responded to questionnaires about their anatomy classes; students represented a variety of different health sciences disciplines. Analysis of the responses revealed the participation of teaching assistants in a large percentage of classes and the use of teaching resources, particularly images, from conventional radiographs to magnetic resonance images. The number of classes for cadaver dissection and the number of students with access to that type of class were small. In most cases, dissection was performed according to anatomic regions or systems. Medicine and nursing students had the highest number of practical dissection classes. Most students were assessed using practical and theoretical tests. Findings revealed conditions similar to those found elsewhere. Resources should be renewed and used to improve teaching for students whose courses demand the study of human anatomy. PMID:24062622

  12. Performance and Perception in the Flipped Learning Model: An Initial Approach to Evaluate the Effectiveness of a New Teaching Methodology in a General Science Classroom

    NASA Astrophysics Data System (ADS)

    González-Gómez, David; Jeong, Jin Su; Airado Rodríguez, Diego; Cañada-Cañada, Florentina

    2016-06-01

    "Flipped classroom" teaching methodology is a type of blended learning in which the traditional class setting is inverted. Lecture is shifted outside of class, while the classroom time is employed to solve problems or doing practical works through the discussion/peer collaboration of students and instructors. This relatively new instructional methodology claims that flipping your classroom engages more effectively students with the learning process, achieving better teaching results. Thus, this research aimed to evaluate the effects of the flipped classroom on the students' performance and perception of this new methodology. This study was conducted in a general science course, sophomore of the Primary Education bachelor degree in the Training Teaching School of the University of Extremadura (Spain) during the course 2014/2015. In order to assess the suitability of the proposed methodology, the class was divided in two groups. For the first group, a traditional methodology was followed, and it was used as control. On the other hand, the "flipped classroom" methodology was used in the second group, where the students were given diverse materials, such as video lessons and reading materials, before the class to be revised at home by them. Online questionnaires were as well provided to assess the progress of the students before the class. Finally, the results were compared in terms of students' achievements and a post-task survey was also conducted to know the students' perceptions. A statistically significant difference was found on all assessments with the flipped class students performing higher on average. In addition, most students had a favorable perception about the flipped classroom noting the ability to pause, rewind and review lectures, as well as increased individualized learning and increased teacher availability.

  13. The effectiveness of student team-achievement division (STAD) for teaching high school chemistry in the United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Balfakih, Nagib M. A.

    2003-05-01

    Education in the United Arab Emirates (UAE) faces major problems which may hinder its future development. These include low achievement in science and a negative attitude toward science subjects, which have resulted in a high number of student dropouts from the science track in high school. It is believed among UAE educators that the main reason is the way science that has been taught in its schools. A solution to this problem depends on finding effective teaching methods, which maintain student achievement, improve students' attitude and provide opportunities to develop essential scientific skills. The effectiveness of Student Team-Achievement Division (STAD) for teaching science to high school classes in the UAE was investigated. The sample was selected randomly. A representative group of UAE high school students was chosen from the northern province, which includes urban areas, and from the eastern province, which includes rural areas. The study involved sixteen tenth grade classes. During the second semester of the academic year 1998/1999, three units in the chemistry curriculum were covered. This study was designed to investigate the effectiveness of STAD in teaching high school chemistry in the UAE and to find out which groups, gender, area, and ability benefitted most.

  14. Utilizing Urban Environments for Effective Field Experiences

    NASA Astrophysics Data System (ADS)

    MacAvoy, S. E.; Knee, K.

    2014-12-01

    Research surveys suggest that students are demanding more applied field experiences from their undergraduate environmental science programs. For geoscience educators at liberal arts colleges without field camps, university vehicles, or even geology departments, getting students into the field is especially rewarding - and especially challenging. Here, we present strategies that we have used in courses ranging from introductory environmental science for non-majors, to upper level environmental methods and geology classes. Urban locations provide an opportunity for a different type of local "field-work" than would otherwise be available. In the upper-level undergraduate Environmental Methods class, we relied on a National Park area located a 10-minute walk from campus for most field exercises. Activities included soil analysis, measuring stream flow and water quality parameters, dendrochronology, and aquatic microbe metabolism. In the non-majors class, we make use of our urban location to contrast water quality in parks and highly channelized urban streams. Here we share detailed lesson plans and budgets for field activities that can be completed during a class period of 2.5 hours with a $75 course fee, show how these activities help students gain quantitative competency, and provide student feedback about the classes and activities.

  15. Shared or Integrated: Which Type of Integration is More Effective Improves Students’ Creativity?

    NASA Astrophysics Data System (ADS)

    Mariyam, M.; Kaniawati, I.; Sriyati, S.

    2017-09-01

    Integrated science learning has various types of integration. This study aims to apply shared and integrated type of integration with project based learning (PjBL) model to improve students’ creativity on waste recycling theme. The research method used is a quasi experiment with the matching-only pre test-post test design. The samples of this study are 108 students consisting of 36 students (experiment class 1st), 35 students (experiment class 2nd) and 37 students (control class 3rd) at one of Junior High School in Tanggamus, Lampung. The results show that there is difference of creativity improvement in the class applied by PjBL model with shared type of integration, integrated type of integration and without any integration in waste recycling theme. Class applied by PjBL model with shared type of integration has the higher creativity improvement than the PjBL model with integrated type of integration and without any integration. Integrated science learning using shared type only combines 2 lessons, hence an intact concept is resulted. So, PjBL model with shared type of integration more effective improves students’ creativity than integrated type.

  16. The Importance of Agriculture Science Course Sequencing in High Schools: A View from Collegiate Agriculture Students

    ERIC Educational Resources Information Center

    Wheelus, Robin P.

    2009-01-01

    The objective of this study was to investigate the importance of Agriculture Science course sequencing in high schools, as a preparatory factor for students enrolled in collegiate agriculture classes. With the variety of courses listed in the Texas Essential Knowledge and Skills (TEKS) for Agriculture Science, it has been possible for counselors,…

  17. Secondary Science Students' Beliefs about Class Discussions: A Case Study Comparing and Contrasting Academic Tracks

    ERIC Educational Resources Information Center

    Pimentel, Diane Silva; McNeill, Katherine L.

    2016-01-01

    The dialogue that occurs in science classrooms has been the subject of research for many decades. Most studies have focused on the actual discourse that occurs and the role of the teacher in guiding the discourse. This case study explored the neglected perspective of secondary science students and their beliefs about their role in class…

  18. Dorm Room Labs for Introductory Large-Lecture Science Classes for Nonscience Majors

    ERIC Educational Resources Information Center

    Moldwin, Mark B.

    2018-01-01

    Many large-lecture introductory science courses for nonscience majors do not have a lab component and hence do not provide much opportunity for students to engage in the practice of science. I have developed a new instructional activity called Dorm Room Labs that enables students to conduct hands-on activities as homework (or dorm room work) to…

  19. What Undergraduates Choose to Think and Write about when Reading Science News Articles on the Internet

    ERIC Educational Resources Information Center

    Ghent, Cindy

    2010-01-01

    Students are scientifically literate when they can read material about science and intelligently communicate their viewpoints, comments, and critiques, using scientific vocabulary and applying the ideas of the process and nature of science. As part of their normal class, 80 students were asked to find an article on the internet, read it, and then…

  20. Science for the People: High School Students Investigate Community Air Quality

    ERIC Educational Resources Information Center

    Marks-Block, Tony

    2011-01-01

    Over a year, a small group of high school students risked their afternoons and summer to participate in a science program that was "much different from science class." This was one of several after-school programs in Oakland and Richmond that the author was leading as an instructor with the East Bay Academy for Young Scientists (EBAYS). Students…

  1. Reading instruction in science: Teachers' practices, beliefs, & self-efficacy

    NASA Astrophysics Data System (ADS)

    Morales, Christina M.

    The Common Core State Standards (CCSS, 2010) and the Next Generation Science Standards (NGSS, 2013) call on science teachers to play a stronger role in helping students learn from informational science texts. Curriculum implementation efforts aimed at addressing these new standards should build on what teachers are already doing to help students with reading in their classrooms and the pedagogical issues that they feel are important to science learning. However, few current studies have gathered these important insights from science teachers. Aiming to fill this gap in the literature, this study attempted to describe middle school science teachers' current practices, beliefs, and self-efficacy regarding reading and reading instruction in their classrooms. A conceptual model hypothesizing that self-efficacy mediates the relationship between teachers' beliefs about how important reading instruction is to science learning and how often they provide reading instruction in their science classes was also tested. Participants (N = 247) reported that students regularly engaged in reading-related tasks in science class. Somer's D correlation analyses highlighted positive associations between the frequency with which teachers reported that students engaged in various reading-related tasks and the frequency with which they reported providing reading instruction for those tasks, suggesting that students tended to receive explicit instruction or coaching for the reading-related tasks they engaged in most often. Middle school science teachers also expressed positive beliefs about the importance of reading-related tasks and explicit instruction or coaching for reading in science and tended to take on responsibility for helping students become better readers of science texts. Last, a path analysis confirmed that the association between teachers' beliefs and practices was mediated through teachers' self-efficacy (beta = .07, p < .001). This suggests that self-efficacy can influence teacher practice: even if teachers believe that reading instruction is important or even essential to science learning, they might avoid or resist providing reading instruction if they do not feel efficacious in helping students become stronger readers of science texts.

  2. Building and Deploying Remotely Operated Vehicles in the First-Year Experience

    NASA Astrophysics Data System (ADS)

    O'Brien-Gayes, A.; Fuss, K.; Gayes, P.

    2007-12-01

    Coastal Carolina University has committed to improving student retention and success in Mathematics and Science through a pilot program to engage first-year students in an applied and investigative project as part of the University's First-Year Experience (FYE). During the fall 2007 semester, five pilot sections of FYE classes, consisting of students from the College of Natural and Applied Sciences are building and deploying Remotely Operated Vehicles (ROVs). These ROV-based classes are designed to: accelerate exploration of the broad fields of science and mathematics; enlist interest in technology by engaging students in a multi-stepped, interdisciplinary problem solving experience; explore science and mathematical concepts; institute experiential learning; and build a culture of active learners to benefit student success across traditional departmental boundaries. Teams of three students (forty teams total) will build, based on the MIT Sea Perch design, and test ROVs in addition to collecting data with their ROVs. Various accessories attached to the vehicles for data collection will include temperature and light sensors, plankton nets and underwater cameras. The first-year students will then analyze the data, and the results will be documented as part of their capstone projects. Additionally, two launch days will take place on two campus ponds. Local middle and high school teachers and their students will be invited to observe this event. The teams of students with the most capable and successful ROVs will participate in a workshop held in November 2007 for regional elementary, middle and high school teachers. These students will give a presentation on the building of the ROVs and also provide a hands-on demonstration for the workshop participants. These activities will ensure an incorporation of service learning into the first semester of the freshmen experience. The desired outcomes of the ROV-based FYE classes are: increased retention at the postsecondary level in mathematics and science; increased student confidence to persevere through difficult courses by seeing the actual application of the science; greater self-esteem and self-efficacy through service learning; and engaging middle and high school students in mathematics and science. The innovative significance of the program is three fold: applying experiential learning through technology; integrating disciplines in a planned manner with consistent delivery; and creating an environment conducive to success.

  3. Using High Level Literacy Techniques to Teach Astronomy to Non-Science Majors

    NASA Astrophysics Data System (ADS)

    Garland, C. A.; Ratay, D. L.

    2005-12-01

    We present a discussion of an introductory-level college astronomy class which significantly relied on reading and writing assignments to deliver basic content knowledge and provide a basis for deeper analysis of the material. As opposed to the traditional problem-set method of homework, students were required to read popular articles from magazines and newspapers related to the content presented in class and then prepare responses. Responses ranged from methodological analysis to using the readings to create original science journalism. Other forms of assessment indicated that students benefitted from this type of course design. We propose that given the background of students in this type of course, the course design is better suited to engage students in the material and provides a better assessment of student achievement.

  4. A Model for the Development of Web-Based, Student-Centered Science Education Resources.

    ERIC Educational Resources Information Center

    Murfin, Brian; Go, Vanessa

    The purpose of this study was to evaluate The Student Genome Project, an experiment in web-based genetics education. Over a two-year period, a team from New York University worked with a biology teacher and 33 high school students (N=33), and a middle school science teacher and a class of students (N=21) to develop a World Wide Web site intended…

  5. Increasing Engagement in Science through an Authentic Crop Protection Experiment for Year 9 School Students Working with Scientists

    ERIC Educational Resources Information Center

    Oliver, Richard; Rybak, Kasia; Gruber, Cornelia; Nicholls, Graeme; Roberts, Graeme; Mengler, Janet; Oliver, Mary

    2011-01-01

    Practical work is often considered to be a highlight of science classes for students. However, there are few opportunities for students to engage in an investigation which is situated in a real world problem and students are required to contribute their own ideas to the design and conduct of an experiment. This paper reports on a Scientists in…

  6. A Teaching Model for Scaffolding 4th Grade Students' Scientific Explanation Writing

    NASA Astrophysics Data System (ADS)

    Yang, Hsiu-Ting; Wang, Kuo-Hua

    2014-08-01

    Improving students scientific explanations is one major goal of science education. Both writing activities and concept mapping are reported as effective strategies for enhancing student learning of science. The purpose of this study was to examine the effect of a teaching model, named the DCI model, which integrates a Descriptive explanation writing activity, Concept mapping, and an Interpretive explanation writing activity, is introduced in a 4th grade science class to see if it would improve students' scientific explanations and understanding. A quasi-experimental design, including a non-randomized comparison group and a pre- and post-test design, was adopted for this study. An experimental group of 25 students were taught using the DCI teaching model, while a comparison group received a traditional lecture teaching. A rubric and content analysis was used to assess students' scientific explanations. The independent sample t test was used to measure difference in conceptual understanding between the two groups, before and after instruction. Then, the paired t test analysis was used to understand the promotion of the DCI teaching model. The results showed that students in the experimental group performed better than students in the comparison group, both in scientific concept understanding and explanation. Suggestions for using concept mapping and writing activities (the DCI teaching model) in science classes are provided in this study.

  7. Connecting Oceanography and Music

    NASA Astrophysics Data System (ADS)

    Beauregard, J. L.

    2016-02-01

    Capturing and retaining the interest of non-science majors in science classes can be difficult, no matter what type of science. At Berklee College of Music, this challenge is especially significant, as all students are music majors. In my Introductory Oceanography course, I use a final project as a way for the students to link class material with their own interests. The students may choose any format to present their projects to the class; however, many students write and perform original music. The performances of ocean-themed music have become a huge draw of the Introductory Oceanography course. In an effort to expand the reach of this music, several colleagues and I organized the first Earth Day event at Berklee, `Earthapalooza 2015.' This event included performances of music originally written for the final projects, as well as other musical performances, poetry readings, guest talks, and information booths. Although the idea of an Earth Day event is not new, this event is unique in that student performances really resonate with the student audience. Additionally, since many of these students will enter professional careers in the performance and recording industries, the potential exists for them to expose large audiences to the issues of oceanography through music. In this presentation, I will play examples of original student compositions and show video of the live student performances. I will also discuss the benefits and challenges of the final projects and the Earth Day event. Finally, I will highlight the future plans to continue ocean-themed music at Berklee.

  8. Large-Scale Survey of Chinese Precollege Students' Epistemological Beliefs about Physics: A Progression or a Regression?

    ERIC Educational Resources Information Center

    Zhang, Ping; Ding, Lin

    2013-01-01

    This paper reports a cross-grade comparative study of Chinese precollege students' epistemological beliefs about physics by using the Colorado Learning Attitudes Survey about Sciences (CLASS). Our students of interest are middle and high schoolers taking traditional lecture-based physics as a mandatory science course each year from the 8th grade…

  9. Effects of Teaching Gardening on Science Students' Attitudes toward Entrepreneurial Skills Acquisition in Jos South, Plateau State, Nigeria

    ERIC Educational Resources Information Center

    Charity, Dimlong; Ozoji, Bernadette Ebele; Osasebor, Florence Osaze; Ibn Umar, Suleiman

    2017-01-01

    This study investigated the effects of teaching gardening on science students' attitudes toward entrepreneurial skills acquisition in Jos South, Plateau State, Nigeria. The study employed the non-randomized pre-test post-test non-equivalent control group design. A sample of 75 senior secondary school students from two intact classes, randomly…

  10. The Effect of Inquiry-Based Learning Method on Students' Academic Achievement in Science Course

    ERIC Educational Resources Information Center

    Abdi, Ali

    2014-01-01

    The purpose of this study was to investigate the effects of inquiry-based learning method on students' academic achievement in sciences lesson. A total of 40 fifth grade students from two different classes were involved in the study. They were selected through purposive sampling method. The group which was assigned as experimental group was…

  11. Relative Effects of Programmed Instruction and Demonstration Methods on Students' Academic Performance in Science

    ERIC Educational Resources Information Center

    Uhumuavbi, P. O.; Mamudu, J. A.

    2009-01-01

    This study compared the effects of Programmed Instruction and Demonstration methods on students academic performance in science in Esan West Local Government Area of Edo State. A sampling technique (balloting) was used in selecting two schools in Esan West local government area for the study. Two intact classes of fifty (50) students each from the…

  12. The Effect of Teaching Strategy Based on Multiple Intelligences on Students' Academic Achievement in Science Course

    ERIC Educational Resources Information Center

    Abdi, Ali; Laei, Susan; Ahmadyan, Hamze

    2013-01-01

    The purpose of this study was to investigate the effects of Teaching Strategy based on Multiple Intelligences on students' academic achievement in sciences course. Totally 40 students from two different classes (Experimental N = 20 and Control N = 20) participated in the study. They were in the fifth grade of elementary school and were selected…

  13. Correlation of Social Science Students' Grade Outcome with Reading and Writing Scores.

    ERIC Educational Resources Information Center

    Parrott, Marietta

    A study was conducted at College of the Sequoias (COS) to examine the entry-level reading and writing skills of students and their grade outcomes in the social science courses for which they were enrolled. The study sought to identify any predictors of students' eventual success/non-success in class. The study focused on the placement test scores…

  14. Effect of Computer-Based Multimedia Presentation on Senior Secondary Students' Achievement in Agricultural Science

    ERIC Educational Resources Information Center

    Olori, Abiola Lateef; Igbosanu, Adekunle Olusegun

    2016-01-01

    The study was carried out to determine the use of computer-based multimedia presentation on Senior Secondary School Students' Achievement in Agricultural Science. The study was a quasi-experimental, pre-test, post-test control group research design type, using intact classes. A sample of eighty (80) Senior Secondary School One (SS II) students was…

  15. The Mathematical and Science Skills of Students Who Are Deaf or Hard of Hearing Educated in Inclusive Settings

    ERIC Educational Resources Information Center

    Vosganoff, Diane; Paatsch, Louise E.; Toe, Dianne M.

    2011-01-01

    This study examined the science and mathematics achievements of 16 Year 9 students with hearing loss in an inclusive high-school setting in Western Australia. Results from the Monitoring Standards in Education (MSE) compulsory state tests were compared with state and class averages for students with normal hearing. Data were collected from three…

  16. Students' Questions and Discursive Interaction: Their Impact on Argumentation during Collaborative Group Discussions in Science

    ERIC Educational Resources Information Center

    Chin, Christine; Osborne, Jonathan

    2010-01-01

    This study investigated the potential of students' written and oral questions both as an epistemic probe and heuristic for initiating collaborative argumentation in science. Four classes of students, aged 12-14 years from two countries, were asked to discuss which of two graphs best represented the change in temperature as ice was heated to steam.…

  17. Impact of Redesigning a Large-Lecture Introductory Earth Science Course to Increase Student Achievement and Streamline Faculty Workload

    ERIC Educational Resources Information Center

    Kapp, Jessica L.; Slater, Timothy F.; Slater, Stephanie J.; Lyons, Daniel J.; Manhart, Kelly; Wehunt, Mary D.; Richardson, Randall M.

    2011-01-01

    A Geological Perspective is a general education survey course for non-science majors at a large southwestern research extensive university. The class has traditionally served 600 students per semester in four 150-student lectures taught by faculty, and accompanied by optional weekly study groups run by graduate teaching assistants. We radically…

  18. Learning in a Physics Classroom Community: Physics Learning Identity Construct Development, Measurement and Validation

    NASA Astrophysics Data System (ADS)

    Li, Sissi L.

    At the university level, introductory science courses usually have high student to teacher ratios which increases the challenge to meaningfully connect with students. Various curricula have been developed in physics education to actively engage students in learning through social interactions with peers and instructors in class. This learning environment demands not only conceptual understanding but also learning to be a scientist. However, the success of student learning is typically measured in test performance and course grades while assessment of student development as science learners is largely ignored. This dissertation addresses this issue with the development of an instrument towards a measure of physics learning identity (PLI) which is used to guide and complement case studies through student interviews and in class observations. Using the conceptual framework based on Etienne Wenger's communities of practice (1998), I examine the relationship between science learning and learning identity from a situated perspective in the context of a large enrollment science class as a community of practice. This conceptual framework emphasizes the central role of identity in the practices negotiated in the classroom community and in the way students figure out their trajectory as members. Using this framework, I seek to understand how the changes in student learning identity are supported by active engagement based instruction. In turn, this understanding can better facilitate the building of a productive learning community and provide a measure for achievement of the curricular learning goals in active engagement strategies. Based on the conceptual framework, I developed and validated an instrument for measuring physics learning identity in terms of student learning preferences, self-efficacy for learning physics, and self-image as a physics learner. The instrument was pilot tested with a population of Oregon State University students taking calculus based introductory physics. The responses were analyzed using principal component exploratory factor analysis. The emergent factors were analyzed to create reliable subscales to measure PLI in terms of physics learning self-efficacy and social expectations about learning. Using these subscales, I present a case study of a student who performed well in the course but resisted the identity learning goals of the curriculum. These findings are used to support the factors that emerged from the statistical analysis and suggest a potential model of the relationships between the factors describing science learning and learning identity in large enrollment college science classes. This study offers an instrument with which to measure aspects of physics learning identity and insights on how PLI might develop in a classroom community of practice.

  19. Field classes: key to involve and attract students to soils

    NASA Astrophysics Data System (ADS)

    Muggler, Cristine Carole; Cardoso, Irene Maria; da Silva Lopes, Angelica

    2015-04-01

    Soil genesis is a subject taught to students of Agrarian Sciences and Geography at the Federal University of Viçosa in Minas Gerais, Brazil. Each semester 200 to 250 students inscribe for it. It is organized as the first 60 hours course on soils for 1st and 2nd year's students. The course has a distinct pedagogical approach, which is based on Paulo Freire's education principles, known as socio constructivism. In such approach, learning environments and materials are prepared to stimulate dialogues and exchange of knowledge between students themselves, strengthening that their role is crucial to their own learning. During the course, students have different types of practical classes: indoors, in a class room or at the Earth Sciences museum and outdoors, in the field. In the class room they have the opportunity to handle materials -minerals, rocks, soils and maps-, follow demonstrations and perform small experiments. The classes given in the museum intend a broadening of the subjects approached in theoretical and practical classes. In the field classes the students are organized in small groups with the task to investigate soil formation by observation and description of geology, landscape, land use, soil expositions and some of the soil properties. Attracting students to soils involves looking at meanings and perceptions related to soils they bring with themselves and follow this up to sensitize and create awareness about their importance. With this aim, it is also included, as part of the evaluation, a final voluntary presentation that many of the students do. The presentation can be a song, a poem, a sketch or whatever they propose and create. Many of the presentations bring topics related to the new perception about soils they get during the semester and to ideas or questions raised in the field classes. A survey with the students showed that field classes are by far the preferred classes and they are considered more dynamic. Since students have less and less contact with soils and rural livelihoods before they enter the university, field classes are best to make the connections between their (mostly urban) life and the soils. They also play an important role in developing an integrated observation and understanding of the environment and land use.

  20. The nature of culturally responsive pedagogy in two urban African American middle school science classrooms

    NASA Astrophysics Data System (ADS)

    Bondima, Michelle Harris

    This ethnographic in nature study explores how two middle school science teachers who have classes populated by urban African Americans teach their students and how their students perceive their teaching. Since urban African American students continue to perform lower than desired on measures of science achievement, there is an urgent need to understand what pedagogical methodologies assist and hinder urban African American students in achieving higher levels of success in science. A pedagogical methodology that theorists posit assists subordinated school populations is culturally responsive pedagogy. Culturally responsive pedagogy is defined as a teaching methodology concerned with preparing students to question inequality, racism, and injustice. Teachers who use culturally responsive pedagogy respect the culture students bring to the class, and require that the teachers willingly do whatever is necessary to educate students (Nieto, 2000). The teacher participants were two female African Americans who were identified by their school supervisors as being highly effective with urban African American students. The researcher presented the teachers in separate case studies conducted over a data collection period of nine months. Data were collected by participant observation, interviews, and artifact collection. Data were analyzed by application of grounded theory techniques. Findings of the teachers' (and the students') beliefs about pedagogy that both assisted and hindered the students' performance in science were reported in a rich and nuanced storytelling manner based on multiple perspectives (teachers', students', and the researcher's). Pedagogical methodologies that the teachers used that assisted their students were the use of cultural metaphors and images in science and applications of motivational techniques that encouraged a nurturing relationship between the teacher and her students. Pedagogical methodologies that hindered students varied by teacher. Metaphorically, the teachers differed vividly. One was a nurturing mother, sister, and friend who assisted her students to cross the cultural line between the science classroom and their home and community. The other was a stern disciplinarian who painted a picture of order and hard work as keys for her students' success in school science. The researcher, who promotes a social justice ideology, made implications and recommendations for science teacher education and public policy.

Top