2008-09-11
September 11th remembrance ceremony held in front of NASA Research Park Bldg-17 (Lunar Science Institute) hosted by the American Legion, Post 881, Moffett Field. Welcome by Moffett Field Post Commander Carolann Wunderlin.
2008-09-11
September 11th remembrance ceremony held in front of NASA Research Park Bldg-17 (Lunar Science Institute) hosted by the American Legion, Post 881, Moffett Field. Welcome by Moffett Field Post Commander Carolann Wunderlin.
The Role of the NCO Inside the BCT Command Post
2016-11-22
account for and maintain individual and unit equipment while caring for Soldiers and their families on and off duty. NCOs coach, mentor , and teach...information system capabilities for the commander while also serving as the senior trainer for information system sustainment training. This...equipment, and the individual and team training in itself that is required to execute the science of mission command can seem overwhelming; however, senior
Spacelab life sciences 2 post mission report
NASA Technical Reports Server (NTRS)
Buckey, Jay C.
1994-01-01
Jay C. Buckey, M.D., Assistant Professor of Medicine at The University of Texas Southwestern Medical Center at Dallas served as an alternate payload specialist astronaut for the Spacelab Life Sciences 2 Space Shuttle Mission from January 1992 through December 1993. This report summarizes his opinions on the mission and offers suggestions in the areas of selection, training, simulations, baseline data collection and mission operations. The report recognizes the contributions of the commander, payload commander and mission management team to the success of the mission. Dr. Buckey's main accomplishments during the mission are listed.
International Space Station (ISS)
2001-02-01
The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows the Operations Controllers (OC) at their work stations. The OC coordinates the configuration of resources to enable science operations, such as power, cooling, commanding, and the availability of items like tools and laboratory equipment.
Lewis Wooten in the MSFC Payload Operations Integration facility.
2015-04-13
LEWIS WOOTEN, NEW DIRECTOR OF THE MISSION OPERATIONS LABORATORY AT NASA'S MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALABAMA, MANAGES OPERATIONS IN THE PAYLOAD OPERATIONS INTEGRATION CENTER-THE COMMAND POST FOR ALL SCIENCE AND RESEARCH ACTIVITIES ON THE INTERNATIONAL SPACE STATION
ASTP Visual Observation Debriefing
NASA Technical Reports Server (NTRS)
1975-01-01
This document is the transcription of the post-flight experiments debriefing conducted by the ASTP (Apollo Soyuz Test Project) crew at the Lunar Science Institute on August 12, 1975. The companion document to this transcription is the Experiments Debriefing. Where possible, questioners have been identified by their last names. However, the attendees and questioners are too numerous to identify or list here. The astronaut participants are as follows: Thomas P. Stafford, Commander; Vance D. Brand, Command Module Pilot; Donald K. Slayton, Docking Module Pilot.
Measuring Command Post Operations in a Decisive Action Training Environment
2017-05-01
Research Report 2001 Measuring Command Post Operations in a Decisive Action Training Environment Michelle N...September 2014 - September 2015 4. TITLE AND SUBTITLE Measuring Command Post Operations in a Decisive Action Training Environment 5a...Readiness Training Center Warrior Leadership Council, we explored whether a guide on Command Post (CP) Operations could improve performance during
Defense.gov - Special Report - Travels With Mullen
European CommandÂs change of command ceremony. Top Stories Stavridis Assumes Top European Command Post the top post at U.S. European Command. He will also serve as NATO's supreme allied commander for
70. SAC command post construction, building 500, undated Offutt ...
70. SAC command post construction, building 500, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
The next generation of command post computing
NASA Astrophysics Data System (ADS)
Arnold, Ross D.; Lieb, Aaron J.; Samuel, Jason M.; Burger, Mitchell A.
2015-05-01
The future of command post computing demands an innovative new solution to address a variety of challenging operational needs. The Command Post of the Future is the Army's primary command and control decision support system, providing situational awareness and collaborative tools for tactical decision making, planning, and execution management from Corps to Company level. However, as the U.S. Army moves towards a lightweight, fully networked battalion, disconnected operations, thin client architecture and mobile computing become increasingly essential. The Command Post of the Future is not designed to support these challenges in the coming decade. Therefore, research into a hybrid blend of technologies is in progress to address these issues. This research focuses on a new command and control system utilizing the rich collaboration framework afforded by Command Post of the Future coupled with a new user interface consisting of a variety of innovative workspace designs. This new system is called Tactical Applications. This paper details a brief history of command post computing, presents the challenges facing the modern Army, and explores the concepts under consideration for Tactical Applications that meet these challenges in a variety of innovative ways.
71. SAC command post construction, building 500, January 20, 1987 ...
71. SAC command post construction, building 500, January 20, 1987 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
66. SAC command post lobby, building 500, undated, looking southeast ...
66. SAC command post lobby, building 500, undated, looking southeast - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
63. Aerial view of SAC command post construction, looking west ...
63. Aerial view of SAC command post construction, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
69. Vice President Ford entering SAC command post, February, 1974 ...
69. Vice President Ford entering SAC command post, February, 1974 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
67. Aerial view of SAC command post, building 500, looking ...
67. Aerial view of SAC command post, building 500, looking northeast, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
64. SAC command post lobby, building 500, November 8, 1956, ...
64. SAC command post lobby, building 500, November 8, 1956, looking east - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
61. SAC control center command post construction, March 2, 1956, ...
61. SAC control center command post construction, March 2, 1956, looking northeast - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
62. Aerial view of SAC command post, building 500, looking ...
62. Aerial view of SAC command post, building 500, looking east - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
Quick response airborne command post communications
NASA Astrophysics Data System (ADS)
Blaisdell, Randy L.
1988-08-01
National emergencies and strategic crises come in all forms and sizes ranging from natural disasters at one end of the scale up to and including global nuclear warfare at the other. Since the early 1960s the U.S. Government has spent billions of dollars fielding airborne command posts to ensure continuity of government and the command and control function during times of theater conventional, theater nuclear, and global nuclear warfare. Unfortunately, cost has prevented the extension of the airborne command post technology developed for these relatively unlikely events to the lower level, though much more likely to occur, crises such as natural disasters, terrorist acts, political insurgencies, etc. This thesis proposes the implementation of an economical airborne command post concept to address the wide variety of crises ignored by existing military airborne command posts. The system is known as the Quick Response Airborne Command Post (QRAC Post) and is based on the exclusive use of commercially owned and operated aircraft, and commercially available automated data processing and communications resources. The thesis addresses the QRAC Post concept at a systems level and is primarily intended to demonstrate how current technology can be exploited to economically achieve a national objective.
68. Aerial view of SAC command post, building 500, looking ...
68. Aerial view of SAC command post, building 500, looking northeast, spring, 1957 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
2012-06-01
concluding an "agonizing reappraisal" of the future role of research and develop- ment with the issuance of a General Order creating the post of Deputy...utilization of European science. The Command held to the view that any program designed to make use of European science must be directed by an...Atlantic Treaty Organization (NATO), provided formal notification on 4 February 1952 that the United States Air Force had been designated the executive
2009-05-11
CAPE CANAVERAL, Fla. – The mini-convoy is lined up on the Shuttle Landing Facility runway at NASA's Kennedy Space Center in Florida awaiting space shuttle Atlantis' launch on the STS-125 mission to service NASA's Hubble Space Telescope. The convoy is prepared to act should the shuttle need to return to the launch site in the event of an emergency. At left is the Convoy Command Vehicle which is the command post for the convoy commander. Atlantis launched successfully on time at 2:01 p.m. EDT. Atlantis' 11-day flight will include five spacewalks to refurbish and upgrade the telescope with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014. The payload includes a Wide Field Camera 3, Fine Guidance Sensor and the Cosmic Origins Spectrograph. Photo credit: NASA/Jack Pfaller
75 FR 38792 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-06
... inquiries to the 45 Space Wing Command Post, Patrick Air Force Base, FL 32925-3002. Requests must contain... Superintendent, 30 Space Wing Command Post 867 Washington Ave, Suite 205, Vandenberg Air Force Base, CA 93437... inquiries to 45 Space Wing Command Post, Patrick Air Force Base, FL 32925-3002. Requests must contain the...
78 FR 5791 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-28
... of records should address written inquiries to the 45 Space Wing Command Post, Patrick Air Force Base... Superintendent, 30 Space Wing Command Post, 867 Washington Ave., Suite 205, Vandenberg Air Force Base, CA 93437... written inquiries to 45th Space Wing Command Post, Patrick Air Force Base, FL 32925-3002. Individuals with...
The Sudan and Development of Post Conflict Indicators
2011-08-01
Dying for Peace”. Review of African Political Economy Vol. 33, No. 108, North Africa : Power, Politics & Promise (Jun., 2006), pp. 326 15 J. J. Welling...groups in Sudan had relations with a wide range of culture in north and northeast Africa , but its closest ties were with the inhabitants of...New York 10996 August 2011 Report 2011-4 DTIC: ADA547383 Prepared For United States Africa Command OSD Science and Technology Advisor Unit
Offutt Air Force Base, Looking Glass Airborne Command Post, Blast ...
Offutt Air Force Base, Looking Glass Airborne Command Post, Blast Deflector Fences, Northeast & Southwest sides of Operational Apron, Project Looking Glass Historic District, Bellevue, Sarpy County, NE
International Space Station (ISS)
2001-02-01
The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows a Payload Rack Officer (PRO) at a work station. The PRO is linked by a computer to all payload racks aboard the ISS. The PRO monitors and configures the resources and environment for science experiments including EXPRESS Racks, multiple-payload racks designed for commercial payloads.
1989-03-14
rehearsed for years particularly in the "Autumn Forge" large-scale maneuvers, as well as in the Europe-wide secret "Wintex- Cimex " command post exercises...Plans and Unemployment"] [Text] In the framework of the command post exercise "Wintex- Cimex ," NATO is at present exercising the alliance’s ability...command post exercise, "Win- tex- Cimex " began, which will last until 9 March and which tests the alliance’s ability to carry out a nuclear
Public Employee Unions and the Post Commander.
1982-04-01
sector employees joining unions was addressed in June, 1981 while the author was a student in a graduate degree program . Then, as now, my bias was anti...AD-A116 168 ARMY WAR COLL CARLISLE BARRACKS PA F/6 5/1 PUBLIC EMPLOYEE UNIONS AND THE POST COMMANDER. (U) APR 82 E L DANIEL UNCLASSIFIED u mm um(u pp...COVERED Public Employee Unions and the Post Commander Student Essay 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(S) LTC
Offutt Air Force Base, Looking Glass Airborne Command Post, Operational ...
Offutt Air Force Base, Looking Glass Airborne Command Post, Operational & Hangar Access Aprons, Spanning length of northeast half of Project Looking Glass Historic District, Bellevue, Sarpy County, NE
Offutt Air Force Base, Looking Glass Airborne Command Post, Vehicle ...
Offutt Air Force Base, Looking Glass Airborne Command Post, Vehicle Refueling Station, Northeast of AGE Storage Facility at far northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE
Offutt Air Force Base, Looking Glass Airborne Command Post, Hydraulic ...
Offutt Air Force Base, Looking Glass Airborne Command Post, Hydraulic Fluid Buildings, Northeast of Looking Glass Avenue at southwest side of Project Looking Glass Historic District, Bellevue, Sarpy County, NE
On the Use of a Range Trigger for the Mars Science Laboratory Entry Descent and Landing
NASA Technical Reports Server (NTRS)
Way, David W.
2011-01-01
In 2012, during the Entry, Descent, and Landing (EDL) of the Mars Science Laboratory (MSL) entry vehicle, a 21.5 m Viking-heritage, Disk-Gap-Band, supersonic parachute will be deployed at approximately Mach 2. The baseline algorithm for commanding this parachute deployment is a navigated planet-relative velocity trigger. This paper compares the performance of an alternative range-to-go trigger (sometimes referred to as Smart Chute ), which can significantly reduce the landing footprint size. Numerical Monte Carlo results, predicted by the POST2 MSL POST End-to-End EDL simulation, are corroborated and explained by applying propagation of uncertainty methods to develop an analytic estimate for the standard deviation of Mach number. A negative correlation is shown to exist between the standard deviations of wind velocity and the planet-relative velocity at parachute deploy, which mitigates the Mach number rise in the case of the range trigger.
Modeling Interpersonal Trust in Distributed Command and Control Teams
2010-06-01
Journal of Applied Psychology, 92(4), 909-927. Dirks, K. T. & Ferrin, D. L. (2001). The role of trust in organizational settings. Organization Science ...Command Performance Research, Inc.), Arwen E. Hunter (U. S. Army Research Institute for the Behavioral and Social Sciences ) & Linda G. Pierce (U. S...Army Research Institute for the Behavioral and Social Sciences ) Command Performance Research, Inc. U. S. Army Research Institute 206 N
International Space Station (ISS)
2001-02-01
The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows the Timeline Change Officer (TCO) at a work station. The TCO maintains the daily schedule of science activities and work assignments, and works with planners at Mission Control at Johnson Space Center in Houston, Texas, to ensure payload activities are accommodated in overall ISS plans and schedules.
SciBox, an end-to-end automated science planning and commanding system
NASA Astrophysics Data System (ADS)
Choo, Teck H.; Murchie, Scott L.; Bedini, Peter D.; Steele, R. Josh; Skura, Joseph P.; Nguyen, Lillian; Nair, Hari; Lucks, Michael; Berman, Alice F.; McGovern, James A.; Turner, F. Scott
2014-01-01
SciBox is a new technology for planning and commanding science operations for Earth-orbital and planetary space missions. It has been incrementally developed since 2001 and demonstrated on several spaceflight projects. The technology has matured to the point that it is now being used to plan and command all orbital science operations for the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury. SciBox encompasses the derivation of observing sequences from science objectives, the scheduling of those sequences, the generation of spacecraft and instrument commands, and the validation of those commands prior to uploading to the spacecraft. Although the process is automated, science and observing requirements are incorporated at each step by a series of rules and parameters to optimize observing opportunities, which are tested and validated through simulation and review. Except for limited special operations and tests, there is no manual scheduling of observations or construction of command sequences. SciBox reduces the lead time for operations planning by shortening the time-consuming coordination process, reduces cost by automating the labor-intensive processes of human-in-the-loop adjudication of observing priorities, reduces operations risk by systematically checking constraints, and maximizes science return by fully evaluating the trade space of observing opportunities to meet MESSENGER science priorities within spacecraft recorder, downlink, scheduling, and orbital-geometry constraints.
A High Efficiency System for Science Instrument Commanding for the Mars Global Surveyor Mission
NASA Technical Reports Server (NTRS)
Jr., R. N. Brooks
1995-01-01
The Mars Global Surveyor (MGS) mission will return to Mars to re- cover most of the science lost when the ill fated Mars Observer space- craft suffered a catastrophic anomaly in its propulsion system and did not go into orbit. Described in detail are the methods employed by the MGS Sequence Team to accelerate science command processing by using standard command generation process and standard UNIX control scripts.
Post-Flight EDL Entry Guidance Performance of the 2011 Mars Science Laboratory Mission
NASA Technical Reports Server (NTRS)
Mendeck, Gavin F.; McGrew, Lynn Craig
2013-01-01
The 2011 Mars Science Laboratory was the first Mars guided entry which safely delivered the rover to a landing within a touchdown ellipse of 19.1 km x 6.9 km. The Entry Terminal Point Controller guidance algorithm is derived from the final phase Apollo Command Module guidance and, like Apollo, modulates the bank angle to control the range flown. The guided entry performed as designed without any significant exceptions. The Curiosity rover was delivered about 2.2 km from the expected touchdown. This miss distance is attributed to little time to correct the downrange drift from the final bank reversal and a suspected tailwind during heading alignment. The successful guided entry for the Mars Science Laboratory lays the foundation for future Mars missions to improve upon.
Curriculum Evolution at Air Command and Staff College in the Post-Cold War Era
ERIC Educational Resources Information Center
Donovan, William Robert, II.
2010-01-01
This qualitative study used a historical research method to eliminate the gap in the historical knowledge of Air Command and Staff College (ACSC) curriculum evolution in the post-Cold War era. This study is the only known analysis of the forces that influenced the ACSC curriculum and the rationale behind curricular change at ACSC in the post-Cold…
1997-04-08
KENNEDY SPACE CENTER, FLA. -- With the Space Shuttle Orbiter Columbia in the background, STS-83 Mission Commander James D. Halsell (center) gives a post-landing briefing on Runway 33 at KSC’s Shuttle Landing Facility. Columbia landed at 2:33:11 p. m. EDT, April 8, to conclude the Microgravity Science Laboratory-1 (MSL-1) mission. The other flight crew members (from left) are: Payload Specialist Roger K. Crouch; Payload Commander Janice Voss; Mission Specialist Michael L. Gernhardt; Pilot Susan L. Still; Payload Specialist Gregory T. Linteris; and Mission Specialist Donald A. Thomas. At main gear touchdown, the STS-83 mission duration was 3 days, 23 hours, 12 minutes. The planned 16-day mission was cut short by a faulty fuel cell. This is only the third time in Shuttle program history that an orbiter was brought home early due to mechanical problems. This was also the 36th KSC landing since the program began in 1981
Always Wanted to Hack the Pentagon? DoD Says Bring It
test and find vulnerabilities in the department's applications, websites and networks, he added Resolve/Foal Eagle 2010, a joint U.S. and South Korean command-post exercise with computer-based command-post exercise with computer-based simulations and field exercises. Cook said other networks
The Evolution of Army Leader Development
2013-03-01
Human Resources Command, OPMD- MFE -I. 4 U.S. Army General Officer Management Office, Army General Officer Roster (Washington, DC, U.S. Department of the...Human Resources Command, Command Management Branch post board data analysis. 15 Data from the United States Army Human Resources Command, OPMD- MFE -A...May 1, 2008), D-1. 25 19 Data from the United States Army Human Resources Command, OPMD- MFE -A, 01 February, 2013. 20 U.S. Joint Chiefs of
Command and Control of Guerrilla Groups in the Philippines, 1941-1945
2017-05-25
However, the phasing concept in this case seems ex post facto , rather than descriptive of any initial design. Especially in its early days, the trajectory... post -independence era. They apply a framework that examines the environment, organization, tactics, doctrine, and technology of each phase of history...defenses on Mindanao and destroyed the bulk of Sharp’s force, though the command post at Del Monte remained intact.33 On May 9, Sharp met with a
Magellan Project: Evolving enhanced operations efficiency to maximize science value
NASA Technical Reports Server (NTRS)
Cheuvront, Allan R.; Neuman, James C.; Mckinney, J. Franklin
1994-01-01
Magellan has been one of NASA's most successful spacecraft, returning more science data than all planetary spacecraft combined. The Magellan Spacecraft Team (SCT) has maximized the science return with innovative operational techniques to overcome anomalies and to perform activities for which the spacecraft was not designed. Commanding the spacecraft was originally time consuming because the standard development process was envisioned as manual tasks. The Program understood that reducing mission operations costs were essential for an extended mission. Management created an environment which encouraged automation of routine tasks, allowing staff reduction while maximizing the science data returned. Data analysis and trending, command preparation, and command reviews are some of the tasks that were automated. The SCT has accommodated personnel reductions by improving operations efficiency while returning the maximum science data possible.
1980-09-01
1969 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN MECHANICAL ENGINEERING from the NAVAL POSTGRADUATE... Science and Engineering 3 ABSTRACT A continuation of experiments initiated by Commander Calvin G. Miller, USN, on the effect of flow rate, flow geometry and...Salvage Department INaval Coastal Systems Center Panama City, Florida 32401 6. Commander, Naval Sea Systems Command 2 Supervisor of Diving (Code GOC
Modelling Workload on the Bison C3I Command Post: Phase 1 - Task Analysis
2009-08-01
Intelligence Mobile Command Post is an armoured vehicle originally designed as an infantry section carrier. Manufactured by General Dynamics, the MCP...variant of the Bison Armoured Vehicle has a raised roof to accommodate various radio suites. There are three blast seats inside the vehicle as well as...SLIMGARD VEHICLE HEADSET....................................................................................................... 27 FIGURE 17: ARMOUR
1981-01-31
Intelligence and Security Command (INSCOM), the US Army Communications Command (USACC), and the US Army Computer Systems Command (USACSC). (3...responsibilities of the US-Army Intelligence and Security Command (INSCOM), the US Army Communications Command (USACC), and the US Army Computer Systems...necessary to sustain, modify, and improve a deployed system’s computer software, as defined by the User or his representative. It includes evaluation
A Long Range Science Rover For Future Mars Missions
NASA Technical Reports Server (NTRS)
Hayati, Samad
1997-01-01
This paper describes the design and implementation currently underway at the Jet Propulsion Laboratory of a long range science rover for future missions to Mars. The small rover prototype, called Rocky 7, is capable of long traverse. autonomous navigation. and science instrument control, carries three science instruments, and can be commanded from any computer platform and any location using the World Wide Web. In this paper we describe the mobility system, the sampling system, the sensor suite, navigation and control, onboard science instruments. and the ground command and control system.
Fabric Structures Team Technology Update
2011-11-01
Command Posts – • Julia McAdams – Chemical Engineer • Liz Swisher – Electrical Engineer • Chris Aall – Mechanical Engineer • Clinton McAdams...TEMPER design originally built for AMED through Force Provider (640 sq ft with a 20 ft long airlock) • The entire airlock is made of textiles and...Activity (USAMMDA) UNCLASSIFIED Large Command Post Airbeam Shelter NSRDEC Deployment – Sept 2011 UNCLASSIFIED Airbeam & Frame Backpackable Tents • Primary
2000-06-01
appropriate working definition. Whereas command takes the form of art , control borders closely on the realm of science . One source holds control to be: [The......OPERATIONAL ART 6 3 COMMAND, CONTROL, AND AIRPOWER 15 4 CASE STUDIES IN THE COMMAND-AND-CONTROL OF AIRPOWER 30 5 CONCLUSIONS 78 6 IMPLICATIONS 87 GLOSSARY
Decision making technical support study for the US Army's Chemical Stockpile Disposal Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, D.L.; Dobson, J.E.
1990-08-01
This report examines the adequacy of current command and control systems designed to make timely decisions that would enable sufficient warning and protective response to an accident at the Edgewood area of Aberdeen Proving Ground (APG), Maryland, and at Pine Bluff Arsenal (PBA), Arkansas. Institutional procedures designed to facilitate rapid accident assessment, characterization, warning, notification, and response after the onset of an emergency and computer-assisted decision-making aids designed to provide salient information to on- and-off-post emergency responders are examined. The character of emergency decision making at APG and PBA, as well as potential needs for improvements to decision-making practices, procedures,more » and automated decision-support systems (ADSSs), are described and recommendations are offered to guide equipment acquisition and improve on- and off-post command and control relationships. We recommend that (1) a continued effort be made to integrate on- and off-post command control, and decision-making procedures to permit rapid decision making; (2) the pathways for alert and notification among on- and off-post officials be improved and that responsibilities and chain of command among off-post agencies be clarified; (3) greater attention be given to organizational and social context factors that affect the adequacy of response and the likelihood that decision-making systems will work as intended; and (4) faster improvements be made to on-post ADSSs being developed at APG and PBA, which hold considerable promise for depicting vast amounts of information. Phased development and procurement of computer-assisted decision-making tools should be undertaken to balance immediate needs against available resources and to ensure flexibility, equity among sites, and compatibility among on- and off-post systems. 112 refs., 6 tabs.« less
Understanding Commanders’ Information Needs for Influence Operations
2009-01-01
AND HEALTH CARE INTERNATIONAL AFFAIRS NATIONAL SECURITY POPULATION AND AGING PUBLIC SAFETY SCIENCE AND TECHNOLOGY SUBSTANCE ABUSE TERRORISM AND...Scott, Cathryn Quantic Thurston, Kristin J. Leuschner Prepared for the United States Army Approved for public release; distribution unlimited ARROYO...Information services. 3. Command of troops. 4. Influence (Psychology) 5. Information warfare—United States. 6. Combined operations (Military science
Expedition 11 and Expedition 12 commander and Spaceflight participant in Zvezda
2005-10-08
ISS011-E-14192 (8 October 2005) --- Russian Federal Space Agency cosmonaut Sergei K. Krikalev (right), Expedition 11 commander; astronaut William S. McArthur Jr. (center), Expedition 12 commander and NASA science officer; and U. S. Spaceflight Participant Gregory Olsen are pictured in the Destiny laboratory of the international space station following the ceremony of Changing-of-Command from Expedition 11 to Expedition 12.
Autonomous Onboard Science Image Analysis for Future Mars Rover Missions
NASA Technical Reports Server (NTRS)
Gulick, V. C.; Morris, R. L.; Ruzon, M. A.; Roush, T. L.
1999-01-01
To explore high priority landing sites and to prepare for eventual human exploration, future Mars missions will involve rovers capable of traversing tens of kilometers. However, the current process by which scientists interact with a rover does not scale to such distances. Specifically, numerous command cycles are required to complete even simple tasks, such as, pointing the spectrometer at a variety of nearby rocks. In addition, the time required by scientists to interpret image data before new commands can be given and the limited amount of data that can be downlinked during a given command cycle constrain rover mobility and achievement of science goals. Experience with rover tests on Earth supports these concerns. As a result, traverses to science sites as identified in orbital images would require numerous science command cycles over a period of many weeks, months or even years, perhaps exceeding rover design life and other constraints. Autonomous onboard science analysis can address these problems in two ways. First, it will allow the rover to transmit only "interesting" images, defined as those likely to have higher science content. Second, the rover will be able to anticipate future commands. For example, a rover might autonomously acquire and return spectra of "interesting" rocks along with a high resolution image of those rocks in addition to returning the context images in which they were detected. Such approaches, coupled with appropriate navigational software, help to address both the data volume and command cycle bottlenecks that limit both rover mobility and science yield. We are developing fast, autonomous algorithms to enable such intelligent on-board decision making by spacecraft. Autonomous algorithms developed to date have the ability to identify rocks and layers in a scene, locate the horizon, and compress multi-spectral image data. Output from these algorithms could be used to autonomously obtain rock spectra, determine which images should be transmitted to the ground, or to aid in image compression. We will discuss these and other algorithms and demonstrate their performance during a recent rover field test.
NASA Astrophysics Data System (ADS)
Vostrukhin, A.; Kozyrev, A.; Litvak, M.; Malakhov, A.; Mitrofanov, I.; Mokrousov, M.; Sanin, A.; Tretyakov, V.
2009-04-01
The Dynamic Albedo of Neutrons (DAN) instrument is contributed by Russian Space Agency to NASA for Mars Science Laboratory mission which was originally scheduled for 2009 and now is shifted to 2011. The design of DAN instrument is partially inherited from HEND instrument for NASA's Mars Odyssey, which now successfully operates providing global mapping of martian neutron albedo, searching the distribution of martian water and observing the martian seasonal cycles. DAN is specially designed as an active neutron instrument for surface operations onboard mobile platforms. It is able to focus science investigations on local surface area around rover with horizontal resolution about 1 meter and vertical penetration about 0.5 m. The primary goal of DAN is the exploration of the hydrogen content of the bulk Martian subsurface material. This data will be used to estimate the content of chemically bound water in the hydrated minerals. The concept of DAN operations is based on combination of neutron activation analysis and neutron well logging tequnique, which are commonly used in the Earth geological applications. DAN consists blocks of Detectors and Electronics (DE) and Pulse Neutron Generator (PNG). The last one is used to irradiate the martian subsurface by pulses of 14MeV neutrons with changeable frequency up to 10 Hz. The first one detects post-pulse afterglow of neutrons, as they were thermalized down to epithermal and thermal energies within the martian subsurface. The result of detections are so called die away curves of neutrons afterglow, which show flux and time profile of thermalized neutrons and bring to us the observational signature of layering structure of martian regolith in part of depth distribution of Hydrogen (most effective element for thermalization of neutrons). In this study we focus on the development, verification and validation of DAN fast data processing and commanding. It is necessary to perform deconvolution from counting statistic in DAN detectors (raw data) to the real science products such as estimated average content of Hydrgen content or its depth distribution along the rover trace. For the rover surface operations it is necessary to provide real time data analysis to combine DAN data with data from all another science instruments and to develop the best observation strategy for the future periods of operation activity. In our approach we use: 1) Onboard FPGA data processing for recording neutron die away curves for epthermal and thermal neutrons of post-pulse afterglow 2) Getting raw data of DAN at the Mission operation center 3) Validation of instrument parameters and operational performance 4) Fast first level science data processing (statistical analysis, background subtraction, normalization) 5) Fast deconvolution of detector counts into the Hydrogen content (including numerical simulation, comparison with the known standard models of regolith), 6) Comparison with known information obtained with another instruments 7) Development of the near-term and long-term strategy for next DAN operations onboard MSL. 8) Generation and testing commanding sequences for the next period of MSL autonomous operations All this activity shall be adjusted in the real time, so the steps 2-8 shall not exceed 2-3 hours. Before launch we plan to validate this approach trough the instrument calibrations, field tests and MSL science group activity. The first experience will be presented of fast data analysis and commanding for the field tests of DAN, which were performed in the testing facility of the Joint Institute of Nuclear Research (Russia). Also, we will discuss our plans of DAN operations for coming field tests in Antarctica.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-01
..., Command and Control, Science and Technology, Missile Defense. Meeting Accessibility: Pursuant to 5 U.S.C... DEPARTMENT OF DEFENSE Notice of Advisory Committee Closed Meeting; U.S. Strategic Command Strategic Advisory Group AGENCY: Department of Defense. ACTION: Notice of Advisory Committee closed meeting...
TOPEX NASA Altimeter Operations Handbook, September 1992. Volume 6
NASA Technical Reports Server (NTRS)
Hancock, David W., III; Hayne, George S.; Purdy, Craig L.; Bull, James B.; Brooks, Ronald L.
2003-01-01
This operations handbook identifies the commands for the NASA radar altimeter for the TOPEX/Poseidon spacecraft, defines the functions of these commands, and provides supplemental reference material for use by the altimeter operations personnel. The main emphasis of this document is placed on command types, command definitions, command sequences, and operational constraints. Additional document sections describe uploadable altimeter operating parameters, the telemetry stream data contents (for both the science and the engineering data), the Missions Operations System displays, and the spacecraft and altimeter health monitors.
International Space Station (ISS)
2002-07-10
This is a photo of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.
1995-10-20
Onboard Space Shuttle Columbia (STS-73) Payload Commander Kathryn Thornton and Commander Ken Bowersox discuss the Drop Physics Module (DPM) experiment in the United States Microgravity Laboratory 2 (USML-2) spacelab science module.
2004-10-04
Expedition 10 Commander and NASA Science Officer Leroy Chiao, right, Flight Engineer and Soyuz Commander Salizhan Sharipov donned their launch and entry suits and climbed aboard their Soyuz TMA-5 spacecraft Friday, October 5, 2004, at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)
STS-120 and Expedition 16 Commanders in Node 1/Unity module
2007-11-04
S120-E-008350 (4 Nov. 2007) --- Astronauts Pam Melroy (foreground), STS-120 commander; and Peggy Whitson, Expedition 16 commander, add the STS-120 crew patch in the Unity node to the growing collection of those representing shuttle crews who have worked on the International Space Station. A location in the Unity node serves as one of the traditional posting sites for the patches.
Recent Religious Accommodations: Have We Gone Too Far Too Fast?
2012-03-12
de corps, eventually colorful fighting uniforms gave way to drab colors as weapons improved in precision and camouflaging with the environment...and the Army provides gear for soldiers use. In garrisons, soldiers wear their uniforms unless the commander allows for the wear of civilian clothes ...provides an appeal process .39 Commanders, often in conjunction with their command or post chaplain, routinely address requests for religious
32 CFR 643.120 - Post offices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 4 2010-07-01 2010-07-01 true Post offices. 643.120 Section 643.120 National... Additional Authority of Commanders § 643.120 Post offices. Title 10 U.S.C. 4779b, provides that the SA shall assign suitable space for post office purposes at military posts where post offices have been established...
Marine Science Building Dedicated
2003-10-17
Officials cut the ribbon during dedication ceremonies of the George A. Knauer Marine Science Building on Oct. 17 at NASA Stennis Space Center (SSC). The $2.75 million facility, the first building at the test site funded by the state of Mississippi, houses six science labs, classrooms and office space for 40 faculty and staff. Pictured are, from left, Rear Adm. Thomas Donaldson, commander of the Naval Meteorology and Oceanography Command; SSC Assistant Director David Throckmorton; Dr. George A. Knauer, founder of the Center of Marine Science at the University of Southern Mississippi (USM); Lt. Gov. Amy Tuck; and USM President Dr. Shelby Thames.
Marine Science Building Dedicated
NASA Technical Reports Server (NTRS)
2003-01-01
Officials cut the ribbon during dedication ceremonies of the George A. Knauer Marine Science Building on Oct. 17 at NASA Stennis Space Center (SSC). The $2.75 million facility, the first building at the test site funded by the state of Mississippi, houses six science labs, classrooms and office space for 40 faculty and staff. Pictured are, from left, Rear Adm. Thomas Donaldson, commander of the Naval Meteorology and Oceanography Command; SSC Assistant Director David Throckmorton; Dr. George A. Knauer, founder of the Center of Marine Science at the University of Southern Mississippi (USM); Lt. Gov. Amy Tuck; and USM President Dr. Shelby Thames.
Preparing Schools for Terrorist Attacks.
ERIC Educational Resources Information Center
School Safety, 1991
1991-01-01
Outlines 21 actions, both immediate and over the long term, that administrators can take to protect students and schools from terrorist activities. Includes establishing a chain of command, a command post, a crisis response team, a communications staff, and inservice training. (four references) (MLF)
1995-10-20
Astronaut Kathryn C. Thornton, payload commander, works at the Drop Physics Module (DPM) on the portside of the science module supporting the U.S. Microgravity Laboratory (USML-2). Astronaut Kerneth D. Bowersox, mission commander, looks on.
32 CFR Appendix F to Part 651 - Glossary
Code of Federal Regulations, 2011 CFR
2011-07-01
... Training Area Management. LCED Life Cycle Environmental Documentation. MACOM Major Army Command. MATDEV... Record of Non-Applicability. RSC Regional Support Command. S&T Science and Technology. SA Secretary of...
Command Post Exercise Control at Division Level
1964-05-01
assistance i n supplying pertinant information concerning t heir extensive command post exercise control experience. iii . ~ ) PREFACE •••• LIST...Effectiveness Conversion Graph • • . . . Combat Power Indicies • • • • • • • • . . . . . . . vii 69 93 95 ( 20. 21. 22. 23. 24. 25. 26. 27. 28...soldiers. 2 While this first attempt at a war game ’t-tas desi~ned for pleasure and for the nobi lity, it set t he spark t hat kept variations of
A Combinatorial Geometry Computer Description of the M577A1 Light Tracked Command Post Carrier
1979-12-01
REPORT DATE DECEMBER 1979 13. NUMBER OF PAGES 107 1 «. MONITORING AGENCY NAME ft ADDRESS(lf dlHermt Irom Controlling OUIce) 15...DISTRIBUTION LIST 103 LIST OF FIGURES Figure Page 1 . The M577A1 Command Post Carrier 10 2. Intersection (+), Subtraction (-), Union (OR) of Solids...with a computer- ized description of the M577A1. A photograph of the vehicle is shown in Figure 1 . Presently, the BRL employs a technique known as
Post-Flight EDL Entry Guidance Performance of the 2011 Mars Science Laboratory Mission
NASA Technical Reports Server (NTRS)
Mendeck, Gavin F.; McGrew, Lynn Craig
2012-01-01
The 2011 Mars Science Laboratory was the first successful Mars mission to attempt a guided entry which safely delivered the rover to a final position approximately 2 km from its target within a touchdown ellipse of 19.1 km x 6.9 km. The Entry Terminal Point Controller guidance algorithm is derived from the final phase Apollo Command Module guidance and, like Apollo, modulates the bank angle to control the range flown. For application to Mars landers which must make use of the tenuous Martian atmosphere, it is critical to balance the lift of the vehicle to minimize the range error while still ensuring a safe deploy altitude. An overview of the process to generate optimized guidance settings is presented, discussing improvements made over the last nine years. Key dispersions driving deploy ellipse and altitude performance are identified. Performance sensitivities including attitude initialization error and the velocity of transition from range control to heading alignment are presented. Just prior to the entry and landing of MSL in August 2012, the EDL team examined minute tuning of the reference trajectory for the selected landing site, analyzed whether adjustment of bank reversal deadbands were necessary, the heading alignment velocity trigger was in union with other parameters to balance the EDL risks, and the vertical L/D command limits. This paper details a preliminary postflight assessment of the telemetry and trajectory reconstruction that is being performed, and updates the information presented in the former paper Entry Guidance for the 2011 Mars Science Laboratory Mission (AIAA Atmospheric Flight Mechanics Conference; 8-11 Aug. 2011; Portland, OR; United States)
Defense Advanced Research Projects Agency: Strategic Plan
2009-05-01
technologies to detect, prevent, or mitigate asymmetric attacks, including suicide bombers, improvised explosive devices, and weapons of mass destruction...the Army’s Command Post of the Future (CPOF) to amplify the capabilities of overworked combat command and control staffs. Working with CPOF, PAL
NASA Astrophysics Data System (ADS)
Sherwood, R.; Mutz, D.; Estlin, T.; Chien, S.; Backes, P.; Norris, J.; Tran, D.; Cooper, B.; Rabideau, G.; Mishkin, A.; Maxwell, S.
2001-07-01
This article discusses a proof-of-concept prototype for ground-based automatic generation of validated rover command sequences from high-level science and engineering activities. This prototype is based on ASPEN, the Automated Scheduling and Planning Environment. This artificial intelligence (AI)-based planning and scheduling system will automatically generate a command sequence that will execute within resource constraints and satisfy flight rules. An automated planning and scheduling system encodes rover design knowledge and uses search and reasoning techniques to automatically generate low-level command sequences while respecting rover operability constraints, science and engineering preferences, environmental predictions, and also adhering to hard temporal constraints. This prototype planning system has been field-tested using the Rocky 7 rover at JPL and will be field-tested on more complex rovers to prove its effectiveness before transferring the technology to flight operations for an upcoming NASA mission. Enabling goal-driven commanding of planetary rovers greatly reduces the requirements for highly skilled rover engineering personnel. This in turn greatly reduces mission operations costs. In addition, goal-driven commanding permits a faster response to changes in rover state (e.g., faults) or science discoveries by removing the time-consuming manual sequence validation process, allowing rapid "what-if" analyses, and thus reducing overall cycle times.
2004-10-04
Expedition 10 Commander and NASA Science Officer Leroy Chiao, right, Flight Engineer and Soyuz Commander Salizhan Sharipov and Russian Space Forces cosmonaut Yuri Shargin, left, donned their launch and entry suits and climbed aboard their Soyuz TMA-5 spacecraft Friday, October 5, 2004, at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)
2004-10-04
Expedition 10 Commander and NASA Science Officer Leroy Chiao, left, and Flight Engineer and Soyuz Commander Salizhan Sharipov donned their launch and entry suits and climbed aboard their Soyuz TMA-5 spacecraft Friday, October 5, 2004, at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)
2004-10-04
Expedition 10 Commander and NASA Science Officer Leroy Chiao, Flight Engineer and Soyuz Commander Salizhan Sharipov and Russian Space Forces cosmonaut Yuri Shargin donned their launch and entry suits and climbed aboard their Soyuz TMA-5 spacecraft Friday, October 5, 2004, at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)
2004-10-04
Expedition 10 Flight Engineer and Soyuz Commander Salizhan Sharipov, Expedition 10 Commander and NASA Science Officer Leroy Chiao, Russian Space Forces cosmonaut Yuri Shargin donned their launch and entry suits and climbed aboard their Soyuz TMA-5 spacecraft Friday, October 5, 2004, at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)
Expedition 11 and Expedition 12 on-orbit crew portrait
2005-10-08
ISS011-E-14191 (8 October 2005) --- The crewmembers onboard the International Space Station pose for a group photo in the Destiny laboratory following the ceremony of Changing-of-Command from Expedition 11 to Expedition 12. From the left (front row) are Russian Federal Space Agency cosmonaut Sergei K. Krikalev, Expedition 11 commander; and astronaut William S. McArthur Jr., Expedition 12 commander and NASA science officer. From the left (back row) are astronaut John L. Phillips, Expedition 11 NASA science officer and flight engineer; U.S. Spaceflight Participant Gregory Olsen; and Russian Federal Space Agency cosmonaut Valery I. Tokarev, Expedition 12 flight engineer.
Organizational Systems Theory and Command and Control Concepts
2013-03-01
Decentralized C2 • Problem is determinable • Many solutions • Predictable results • Low Risk • Slow feedback loop • Plans: Engineered or designed • C2...of these concepts in the Art of Command and the Science of Control, but lacks a proper model to assist commanders in determining how to correctly...commanders in determining how to correctly apply the concepts based on the operational environment. The paper concludes with a recommendation that the
1982-01-01
Quanticou VA 22134 (R. F. DeKinder. Ji.) Fort Leavenworth. KS 602" Commander Dugway Proving Ground I Commander ATTN: STEDP-MT Atmospheric Sciences Lah...Documentation. Atmo.spheric Sciences Lalsuratun Report h.Sl.TR.48172. January 1981. I. . P. Olser. J. T. Wood. C. J. Nash. (C) I isionics E4) Sensor...7f’’ I PtoiecU Manager MIICV I Diicctoi ’Aairen, MI 48~01)0 Atmospheric Sciences Lab ATTN: 1)1LAS-I) I I’oject Manager White Sands Missile Rang
An investigation of the 'von Restorff' phenomenon in post-test workload ratings
NASA Technical Reports Server (NTRS)
Thornton, D. C.
1985-01-01
The von Restorff effect in post-task ratings of task difficulty is examined. Nine subjects performed a hovercraft simulation task which combined elements of skill-based tracking and rule- and knowledge-based process control for five days of one hour sessions. The effects of isolated increases in workload on rating of task performance, and on the number of command errors and river band hits are analyzed. It is observed that the position of the workload increase affects the number of bank hits and command errors. The data reveal that factors not directly related to the task performance influence subjective rating, and post-task ratings of workload are biased.
2011-12-16
Balanced Approach ...............................................................................32 Understanding Loyalty...across the board . How do we develop leaders? And can we use techniques developed and utilized by collegiate head coaches to enhance our capability...Mission Command. Described as the balance between the art of command and the science of control. The commander must be able to understand, visualize
1984-12-01
and physical dimensions of pieces of equipment in those cases where adverse comments had been made by operators and maintainers. The questionnaire...the urgent requirement to deploy the AN/MSC-64 FT’s, a decision was made to procure an Interim Command Post (ICP). A contract was awarded 1 Oct 80...12.0 F E-5 33 5.6 304X6 15.5 7 . . . (3) Four times the temperature and humidity were measured with a hand-held psychrometer B4477. The effective
US Army Research Office research in progress, July 1, 1991--June 30, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-31
The US Army Research Office, under the US Army Materiel Command (AMC), is responsible for coordinating and supporting research in the physical and engineering sciences, in materials science, geosciences, biology, and mathematics. This report describes research directly supported by the Army Research Projects Agency, and several AMC and other Army commands. A separate section is devoted to the research program at the US Army Research, Development and Standardization Group - United Kingdom. The present volume includes the research program in physics, chemistry, biological sciences, mathematics, engineering sciences, metallurgy and materials science, geosciences, electronics, and the European Research Program. It coversmore » the 12-month period from 1 July 1991 through 30 June 1992.« less
Defense Science Board Summer Study on Transformation: A Progress Assessment. Volume 1
2006-02-01
Force Chairmen. Dr. Jerry McGinn, OUSD(P), will serve as the Executive Secretary, and Lt Col Dave Robertson will serve as the Defense Science Board...Sweetzer United States Army Operational Assessment 2005 Col Gail Wojtowicz United States Air Force USAF Brief on Transformation Col Peter Zielinski ...JOC) COL Peter Zielinski CENTCOM Central Command C-10 DSB 2005 SUMMER STUDY ON APPENDICES MULTI-AGENCY INTEGRATION MG Herbert Altshuler Commander
2004-10-04
Expedition 10 Flight Engineer and Soyuz Commander Salizhan Sharipov, foreground, Expedition 10 Commander, Russian Space Forces cosmonaut Yuri Shargin and NASA Science Officer Leroy Chiao, background, donned their launch and entry suits and climbed aboard their Soyuz TMA-5 spacecraft Friday, October 5, 2004, at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)
2004-10-04
Security controls access to the Soyuz capsule and test stand area, Friday, Oct. 5, 2004, at the Baikonur Cosmodrome. Expedition 10 Commander and NASA Science Officer Leroy Chiao, Flight Engineer and Soyuz Commander Salizhan Sharipov and Russian Space Forces Cosmonaut Yuri Shargin donned their launch and entry suits and climbed aboard their Soyuz TMA-5 for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)
2004-10-04
Expedition 10 Commander and NASA Science Officer Leroy Chiao, giving thumbs up, Russian Space Forces cosmonaut Yuri Shargin and Flight Engineer and Soyuz Commander Salizhan Sharipov donned their launch and entry suits and climbed aboard their Soyuz TMA-5 spacecraft Friday, October 5, 2004, at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)
2004-10-04
Expedition 10 Flight Engineer and Soyuz Commander Salizhan Sharipov, right, Expedition 10 Commander and NASA Science Officer Leroy Chiao, Russian Space Forces cosmonaut Yuri Shargin, left, donned their launch and entry suits and climbed aboard their Soyuz TMA-5 spacecraft Friday, October 5, 2004, at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)
Command and data handling of science signals on Spacelab
NASA Technical Reports Server (NTRS)
Mccain, H. G.
1975-01-01
The Orbiter Avionics and the Spacelab Command and Data Management System (CDMS) combine to provide a relatively complete command, control, and data handling service to the instrument complement during a Shuttle Sortie Mission. The Spacelab CDMS services the instruments and the Orbiter in turn services the Spacelab. The CDMS computer system includes three computers, two I/O units, a mass memory, and a variable number of remote acquisition units. Attention is given to the CDMS high rate multiplexer, CDMS tape recorders, closed circuit television for the visual monitoring of payload bay and cabin area activities, methods of science data acquisition, questions of transmission and recording, CDMS experiment computer usage, and experiment electronics.
76 FR 78286 - Collection of Information Under Review by Office of Management and Budget
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-16
..., between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. OIRA posts its decisions on.... Coast Guard, Acting Assistant Commandant for Command, Control, Communications, Computers and Information... DEPARTMENT OF HOMELAND SECURITY Coast Guard [USCG-2011-0902] Collection of Information Under...
78 FR 45545 - Collection of Information under Review by Office of Management and Budget
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-29
.... OIRA posts its decisions on ICRs online at http://www.reginfo.gov/public/do/PRAMain after the comment... Commandant for Command, Control, Communications, Computers and Information Technology. [FR Doc. 2013-18068... DEPARTMENT OF HOMELAND SECURITY Coast Guard [USCG-2013-0045] Collection of Information under...
Commander Ken Bowersox films activity in Spacelab
1995-11-02
STS073-230-014 (20 October - 5 November 1995) --- Astronaut Kenneth D. Bowersox, STS-73 mission commander, uses a camcorder to record United States Microgravity Laboratory 2 (USML-2) activities onboard the Space Shuttle Columbia. Nearby, astronaut Kathryn C. Thornton, payload commander, prepares to open a supply chest to support one of many science experiments conducted by the seven-member crew during the 16-day USML-2 flight.
Expedition 21 Commander De Winne poses for a photo with a MSL FLSS
2009-10-14
ISS021-E-018952 (14 Oct. 2009) --- European Space Agency astronaut Frank De Winne, Expedition 21 commander, is pictured with Materials Science Laboratory (MSL) hardware in the Kibo laboratory of the International Space Station.
Autonomous Image Analysis for Future Mars Missions
NASA Technical Reports Server (NTRS)
Gulick, V. C.; Morris, R. L.; Ruzon, M. A.; Bandari, E.; Roush, T. L.
1999-01-01
To explore high priority landing sites and to prepare for eventual human exploration, future Mars missions will involve rovers capable of traversing tens of kilometers. However, the current process by which scientists interact with a rover does not scale to such distances. Specifically, numerous command cycles are required to complete even simple tasks, such as, pointing the spectrometer at a variety of nearby rocks. In addition, the time required by scientists to interpret image data before new commands can be given and the limited amount of data that can be downlinked during a given command cycle constrain rover mobility and achievement of science goals. Experience with rover tests on Earth supports these concerns. As a result, traverses to science sites as identified in orbital images would require numerous science command cycles over a period of many weeks, months or even years, perhaps exceeding rover design life and other constraints. Autonomous onboard science analysis can address these problems in two ways. First, it will allow the rover to preferentially transmit "interesting" images, defined as those likely to have higher science content. Second, the rover will be able to anticipate future commands. For example, a rover might autonomously acquire and return spectra of "interesting" rocks along with a high-resolution image of those rocks in addition to returning the context images in which they were detected. Such approaches, coupled with appropriate navigational software, help to address both the data volume and command cycle bottlenecks that limit both rover mobility and science yield. We are developing fast, autonomous algorithms to enable such intelligent on-board decision making by spacecraft. Autonomous algorithms developed to date have the ability to identify rocks and layers in a scene, locate the horizon, and compress multi-spectral image data. We are currently investigating the possibility of reconstructing a 3D surface from a sequence of images acquired by a robotic arm camera. This would then allow the return of a single completely in focus image constructed only from those portions of individual images that lie within the camera's depth of field. Output from these algorithms could be used to autonomously obtain rock spectra, determine which images should be transmitted to the ground, or to aid in image compression. We will discuss these algorithms and their performance during a recent rover field test.
International Space Station (ISS)
2002-07-10
Expedition Five crewmember and flight engineer Peggy Whitson displays the progress of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.
DPM, Payload Commander Kathy Thornton and Commander Ken Bowersox in Spacelab
1995-11-05
STS073-229-014 (20 October - 5 November 1995) --- Astronauts Kathryn C. Thornton, STS-73 payload commander, and Kenneth D. Bowersox, mission commander, observe a liquid drop's activity at the Drop Physics Module (DPM) in the science module aboard the Earth-orbiting Space Shuttle Columbia. The drop is partially visible at the center of the left edge of the frame. The two were joined by three other NASA astronauts and two guest researchers for almost 16-days of in-orbit research in support of the U.S. Microgravity Laboratory (USML-2) mission.
Selection and Training of Navy Recruit Company Commanders. Final Report.
ERIC Educational Resources Information Center
Curry, Thomas F., Jr.; And Others
This report addresses the selection, training, and utilization of Navy Recruit Company Commanders (Recruit Training Instructors). It represents one in a series of reports concerning the optimization of Navy Recruit Training to meet the needs of the post-1980 period. The report provides a comprehensive review of the Navy's Recruit Company Commander…
Apollo 9 - Prime Crew - Apollo Command Module (CM)-103 - Post-Test
1968-07-19
S68-42164 (19 July 1968) --- The prime crew of the third manned Apollo space mission stands in front of the Apollo Command Module 103 after egress during crew compartment fit and function test activity. Left to right are astronauts Russell L. Schweickart, David R. Scott, and James A. McDivitt.
Caravagna, Céline; Kinkead, Richard; Soliz, Jorge
2014-08-15
Previous studies indicated that erythropoietin modulates central respiratory command in mice. Specifically, a one-hour incubation of the brainstems with erythropoietin attenuates hypoxia-induced central respiratory depression. Here, using transgenic mice constitutively overexpressing erythropoietin specifically in the brain (Tg21), we investigated the effect of chronic erythropoietin stimulation on central respiratory command activity during post-natal development. In vitro brainstem-spinal cord preparations from mice at 0 (P0) or 3 days of age (P3) were used to record the fictive inspiratory activity from the C4 ventral root. Our results show that erythropoietin already stimulates the hypoxic burst frequency at P0, and at P3, erythropoietin effectively stimulates the hypoxic burst frequency and amplitude. Because the maturation of the central respiratory command in mice is characterized by a decrease in the burst frequency with age, our results also suggest that erythropoietin accelerates the maturation of the newborn respiratory network and its response to hypoxia. Copyright © 2014 Elsevier B.V. All rights reserved.
U.S. Northern Command Counterterrorism Response Force Requirement
2016-06-10
PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) U.S. Army Command and General Staff College ATTN: ATZL-SWD-GD Fort Leavenworth, KS 66027-2301 8...Command and General Staff College in partial fulfillment of the requirements for the degree MASTER OF MILITARY ART AND SCIENCE Homeland Security...Studies by MATTHEW D. BARTELS, MAJOR, U.S. MARINE CORPS M.A., U.S. Naval War College , Newport, Rhode Island, 2015
Malenchenko and Lu in Pirs Docking Compartment (DC-1) module
2003-10-20
ISS007-E-17761 (20 October 2003) --- The Expedition 7 crewmembers, cosmonaut Yuri I. Malenchenko, mission commander representing Rosaviakosmos; and astronaut Edward T. Lu, NASA ISS science officer and flight engineer, pose for a photo by a camera triggered for a change by something other than auto-set or remote means. The photographer in this case was one of the newly arrived Expedition 8 crewmembers, astronaut C. Michael Foale, American commander and NASA ISS science officer and cosmonaut Alexander Kaleri, Russian flight engineer and Soyuz commander; or possibly European Space Agency astronaut Pedro Duque, who joined the Expedition 8 crew for the trip "up" and who will return to Earth on Oct. 28 with the Expedition 7 crew.
Pool, Sean M; Hoyle, John M; Malone, Laurie A; Cooper, Lloyd; Bickel, C Scott; McGwin, Gerald; Rimmer, James H; Eberhardt, Alan W
2016-04-08
One approach to encourage and facilitate exercise is through interaction with virtual environments. The present study assessed the utility of Microsoft Kinect as an interface for choosing between multiple routes within a virtual environment through body gestures and voice commands. The approach was successfully tested on 12 individuals post-stroke and 15 individuals with cerebral palsy (CP). Participants rated their perception of difficulty in completing each gesture using a 5-point Likert scale questionnaire. The "most viable" gestures were defined as those with average success rates of 90% or higher and perception of difficulty ranging between easy and very easy. For those with CP, hand raises, hand extensions, and head nod gestures were found most viable. For those post-stroke, the most viable gestures were torso twists, head nods, as well as hand raises and hand extensions using the less impaired hand. Voice commands containing two syllables were viable (>85% successful) for those post-stroke; however, participants with CP were unable to complete any voice commands with a high success rate. This study demonstrated that Kinect may be useful for persons with mobility impairments to interface with virtual exercise environments, but the effectiveness of the various gestures depends upon the disability of the user.
1979-11-01
FORGE REFORGER and CRESTED CAP NORTHERN WEDDING 78 DISPLAY DETERMINATION 78 WINTEX/ CIMEX 79 POWER PLAN 79 US Service Participation in Exercises...southern flank with the rapid employment of external reinforce- ments. WINTEX/ CIMEX 79- In the area of major command post exercises this exercise...planning for which is currently underway) Is of particular Interest. WINTEX/ CIMEX 79 is the latest In the WINTEX series of major NATO-wide command post
Robot Sequencing and Visualization Program (RSVP)
NASA Technical Reports Server (NTRS)
Cooper, Brian K.; Maxwell,Scott A.; Hartman, Frank R.; Wright, John R.; Yen, Jeng; Toole, Nicholas T.; Gorjian, Zareh; Morrison, Jack C
2013-01-01
The Robot Sequencing and Visualization Program (RSVP) is being used in the Mars Science Laboratory (MSL) mission for downlink data visualization and command sequence generation. RSVP reads and writes downlink data products from the operations data server (ODS) and writes uplink data products to the ODS. The primary users of RSVP are members of the Rover Planner team (part of the Integrated Planning and Execution Team (IPE)), who use it to perform traversability/articulation analyses, take activity plan input from the Science and Mission Planning teams, and create a set of rover sequences to be sent to the rover every sol. The primary inputs to RSVP are downlink data products and activity plans in the ODS database. The primary outputs are command sequences to be placed in the ODS for further processing prior to uplink to each rover. RSVP is composed of two main subsystems. The first, called the Robot Sequence Editor (RoSE), understands the MSL activity and command dictionaries and takes care of converting incoming activity level inputs into command sequences. The Rover Planners use the RoSE component of RSVP to put together command sequences and to view and manage command level resources like time, power, temperature, etc. (via a transparent realtime connection to SEQGEN). The second component of RSVP is called HyperDrive, a set of high-fidelity computer graphics displays of the Martian surface in 3D and in stereo. The Rover Planners can explore the environment around the rover, create commands related to motion of all kinds, and see the simulated result of those commands via its underlying tight coupling with flight navigation, motor, and arm software. This software is the evolutionary replacement for the Rover Sequencing and Visualization software used to create command sequences (and visualize the Martian surface) for the Mars Exploration Rover mission.
McArthur in Destiny laboratory
2005-10-05
ISS011-E-14120 (5 October 2005) --- Astronaut William S. McArthur, Jr., Expedition 12 commander and NASA science officer, works with Space Station Remote Manipulator System or Canadarm2 controls located in the Destiny lab, while sharing duty time with the Expedition 11 crewmembers on the international space station. The Expedition 11 crew of cosmonaut Sergei K. Krikalev of Russia's Federal Space Agency, commander, and astronaut John L. Phillips, flight engineer and NASA science officer, along with spaceflight participant Greg Olsen, will be returning to Earth early next week.
A novel method to fast fix the post OPC weak-points through Calibre eqDRC application
NASA Astrophysics Data System (ADS)
Jin, YaDong; Lyu, Shizhi; Deng, ZeXi; Lu, Cong
2018-03-01
With shrinking nodes, as the layout patterns are becoming more and more complicated, OPC accuracy and performance is becoming increasingly challenging. While we are trying to perfect our OPC script to have a clean output without weak points, in a real urgent tape-out scenario, often there will be weak points and we cannot afford the cost to run the OPC again with an updated OPC recipe. Naturally the post OPC repair becomes the only cost-effective choice. The paper studies and compares a few methods for the post OPC weak-points repair: the manual OPC repair flow and traditional repair flow based on the DRC commands. Here, we introduce a novel method based on the eqDRC commands, which are widely used in the design house but have never been used in the post OPC flow. We discuss how to apply the eqDRC into the post OPC repairs and demonstrate its advantages over the traditional methods.
NASA Technical Reports Server (NTRS)
Liebowitz, J.
1985-01-01
The development of an expert system prototype for determining software functional requirements for NASA Goddard's Command Management System (CMS) is described. The role of the CMS is to transform general requests into specific spacecraft commands with command execution conditions. The CMS is part of the NASA Data System which entails the downlink of science and engineering data from NASA near-earth satellites to the user, and the uplink of command and control data to the spacecraft. Subjects covered include: the problem environment of determining CMS software functional requirements; the expert system approach for handling CMS requirements development; validation and evaluation procedures for the expert system.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-31
... Engineering Command, Edgewood Chemical Biological Center (ECBC) AGENCY: Office of the Deputy Under Secretary... the Army, Army Research, Development and Engineering Command, Edgewood Chemical Biological Center... Biological Chemical Center, (RDCB-DPC-W), 5183 Blackhawk Road, Building 3330, Room 264, Aberdeen Proving...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
... Demonstration Project, Department of the Army, Army Research, Development and Engineering Command, Armament Research, Development and Engineering Center (ARDEC); Notice #0;#0;Federal Register / Vol. 76 , No. 13... the Army, Army Research, Development and Engineering Command, Armament Research, Development and...
Robotic Exploration: The Role of Science Autonomy
NASA Technical Reports Server (NTRS)
Roush, Ted L.; DeVincenzi, D. (Technical Monitor)
2002-01-01
Historical mission operations have involved: (1) commands transmitted to the craft; (2) execution of commands; (3) return of scientific data; (4) evaluation of these data by scientists; and (5) recommendations for future mission activity by scientists. This cycle is repeated throughout the mission with command opportunities once or twice per day. For a rover, this historical cycle is not amenable to rapid long range traverses or rapid response to any novel or unexpected situations.
Requirements for the Military Message System (MMS) Family: Data Types and User Commands.
1986-04-11
AD-A167 126 REQUIREMENTS FOR THE MILITARY MESSASE SYSTEM (NHS) i FRILY: DATA TYPES AND USER CONNNDS(U) NAVAL RESEARCH LAB WASHINGTON DC C L HEITHEVER... System (MMS) Family: Data Types and User Commands CONSTANCE L. HEITMEYER Computer Science and Systems Branch I Information Technology Division April 11...Security Classification) Requirements for the Military Message System (MMS) Family: Data Types and User Commands 12. PERSONAL AUTHOR(S) Heitmeer, Constance
2006-04-01
Banking Mr. Robert Luby, IBM Dr. Robert Lucky, Telcordia Technologies Mr. William Lynn, Raytheon Mr. Dave Oliver, EADS North America GOVERNMENT...MAY 2005 Central Command (CENTCOM) COL Peter Zielinski CENTCOM Office of Force Transformation (OFT) Review of COCOM Experimentation COL Richard...for Defense Analyses Mr. Patrick McCarthy, U.S. Joint Forces Command Mr. Stephen Moore, U.S. Joint Forces Command MAY 10, 2005 COL Peter Zielinski
46 CFR 154.1862 - Posting of speed reduction.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Posting of speed reduction. 154.1862 Section 154.1862... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1862 Posting of speed reduction. If a speed reduction is specially approved by the Commandant under § 154.409, the master shall...
46 CFR 154.1862 - Posting of speed reduction.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Posting of speed reduction. 154.1862 Section 154.1862... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1862 Posting of speed reduction. If a speed reduction is specially approved by the Commandant under § 154.409, the master shall...
2004-10-04
The prime and backup crew buses are escorted through the Baikonur Cosmodrome as the crew returns to the Cosmonaut Hotel. Expedition 10 Commander and NASA Science Officer Leroy Chiao, Flight Engineer and Soyuz Commander Salizhan Sharipov and Russian Space Forces Cosmonaut Yuri Shargin donned their launch and entry suits and climbed aboard their Soyuz TMA-5 spacecraft October 5, 2004 at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station, while Shargin will return to Earth October 24 with the Station’s current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: “NASA/Bill Ingalls”
Strategies for automatic planning: A collection of ideas
NASA Technical Reports Server (NTRS)
Collins, Carol; George, Julia; Zamani, Elaine
1989-01-01
The main goal of the Jet Propulsion Laboratory (JPL) is to obtain science return from interplanetary probes. The uplink process is concerned with communicating commands to a spacecraft in order to achieve science objectives. There are two main parts to the development of the command file which is sent to a spacecraft. First, the activity planning process integrates the science requests for utilization of spacecraft time into a feasible sequence. Then the command generation process converts the sequence into a set of commands. The development of a feasible sequence plan is an expensive and labor intensive process requiring many months of effort. In order to save time and manpower in the uplink process, automation of parts of this process is desired. There is an ongoing effort to develop automatic planning systems. This has met with some success, but has also been informative about the nature of this effort. It is now clear that innovative techniques and state-of-the-art technology will be required in order to produce a system which can provide automatic sequence planning. As part of this effort to develop automatic planning systems, a survey of the literature, looking for known techniques which may be applicable to our work was conducted. Descriptions of and references for these methods are given, together with ideas for applying the techniques to automatic planning.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-29
... Engineering Command, Armament Research, Development and Engineering Center (ARDEC); Correction AGENCY: Office... employees at the Army Research, Development and Engineering Command, Armament Research, Development and Engineering Center (ARDEC). Within that notice the descriptors for levels IV and V are incorrect under factor...
ERIC Educational Resources Information Center
Allen, Mary J.
The attached materials have been developed for use on the CSU CYBER Computer's Statistical Package for the Social Sciences (SPSSONL). The assignments are graded in difficulty and gradually introduce new commands and require the practice of previously learned commands. The handouts begin with basic instructions for logging on; then XEDIT is taught…
STS-114: Discovery Crew Post Landing Press Briefing
NASA Technical Reports Server (NTRS)
2005-01-01
The crew of the STS-114 Discovery is shown during a post landing press briefing. Commander Collins introduces the crew members who consist of Pilot Jim Kelley, Mission Specialist Soichi Noguchi from JAXA, Steve Robinson, Mission Specialist and Charlie Camarda, Mission Specialist. Steve Robinson answers a question from the news media about the repair that he performed in orbit, and his feelings about being back in his hometown of California. Commander Collins talks about the most significant accomplishment of the mission. The briefing ends as each crewmember reflects on the Space Shuttle Columbia tragedy and expresses their personal thoughts and feelings as they re-entered the Earth's atmosphere.
Cmdr Halsell on forward flight deck
2016-08-12
STS083-450-012 (4-8 April 1997) --- Astronaut James D. Halsell, Jr., commander, mans the commander's station aboard the Space Shuttle Columbia. Designed as a 16-day Microgravity Science Laboratory 1 (MSL-1) mission, the flight was cut short when one of three fuel cells did not function properly.
1988-07-01
Security Classification) Mtutagenic potential of nitroguan idine in the Drosophila melano- gaster sex-linked recessive lethal test 12. PERSONAL AUTHOR(S...Frederick, MD 21701-5012 Commander Commandant US Army Environmental Hygine Academy of Health Sciences. US Army Agency ATTN: AHS-CDM ATTN: Librarian, HSDH
Rebalance to Asia and the Pacific: Leveraging Vietnam to Counter-Balance China
2016-06-10
Army Command and General Staff College in partial fulfillment of the requirements for the degree MASTER OF MILITARY ART AND SCIENCE Strategic......the U.S. Army Command and General Staff College or any other governmental agency. (References to this study should include the foregoing statement
USN/USMC Commander’s Quick Reference Legal Handbook
2015-01-01
compounds of designer drugs. [See references (a), (f), and (g).] Commanders shall obtain authorization for testing for synthetic drug compounds from...17 Pre-Trial Agreements 19 Post -Trial Review 21 Victim/Witness Issues 23 Section II: Administrative...advocate except in extraordinary circumstances. Only flag or general officers (and a very few specifically designated non-flag/general officers who are
Synergistic Action of FOXP3 and TSC1 Pathways During Tumor Progression
2016-10-01
Tumor progression, Gene therapy, Transcriptional regulation, Post -translational modification ACCOMPLISHMENTS Our preliminary studies provide evidence...Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for...10. SPONSOR/MONITOR’S ACRONYM(S) U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR’S REPORT
Incarnation, Image, and Story: Toward a Postmodern Orthodoxy for Christian Educators
ERIC Educational Resources Information Center
Wineland, Richard K.
2005-01-01
As Christian educators we must take seriously the gospel command to "go, and teach them all that I have commanded you." But how are we to proclaim the ancient faith in a relativistic, image-driven, post-modern age that long ago abandoned modernism's holy crusade to either prove or disprove the orthodox faith through reason? Using the example of…
2004-10-04
Expedition 10 Commander and NASA Science Officer Leroy Chiao donned his launch and entry suit and climbed aboard the Soyuz TMA-5 spacecraft Friday, October 5, 2004, at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)
1968-07-31
Ground breaking ceremony for the Alabama Space Science Center, later renamed the U.S. Space and Rocket Center. Shown in this picture, left to right, are Edward O. Buckbee, Space Center Director; Jack Giles, Alabama State Senator of Huntsville; Dr. Wernher on Braun, Marshall Space Flight Center (MSFC) Director; Martin Darity, head of the Alabama Publicity Bureau (representing Governor Albert Brewer); James Allen, former Lieutenant governor, chairman of the Alabama Space Science Exhibit Commission; Major General Charles Eifler, commanding general of the Army Ordnance Missile Command; and Huntsville Mayor Glenrn Hearn. (Courtesy of Huntsville/Madison County Public Library)
ASTRONAUT LOUSMA, JACK - EGRESS - SKYLAB 3 COMMAND MODULE - PACIFIC
1973-09-25
S73-36435 (25 Sept. 1973) --- Astronaut Jack R. Lousma, Skylab 3 pilot, egresses the Skylab 3 Command Module aboard the prime recovery ship, USS New Orleans, during recovery operations in the Pacific Ocean. Astronauts Lousma; Alan L. Bean, commander; and Owen L. Garriott, science pilot, had just completed a successful 59-day visit to the Skylab space station in Earth orbit. The Skylab 3 spacecraft splashed down in the Pacific about 230 miles southwest of San Diego, California. Photo credit: NASA
STS-83 Mission Commander Halsell arrives at SLF prior to launch
NASA Technical Reports Server (NTRS)
1997-01-01
STS-83 Mission Commander James D. Halsell, Jr. poses in his T-33 jet trainer aircraft after his arrival at the KSC Shuttle Landing Facility with the rest of the flight crew for final countdown preparations for the 16-day Microgravity Science Laboratory-1 (MSL-1) mission. The other crew members are Pilot Susan L. Still; Payload Commander Janice Voss; Mission Specialists Michael L.Gernhardt and Donald A. Thomas; and Payload Specialists Roger K. Crouch and Gregory T. Linteris.
2004-10-08
From left to right, Russian Space Forces cosmonaut Yuri Shargin, Expedition 10 Commander and NASA Science Officer Leroy Chiao, Flight Engineer and Soyuz Commander Salizhan Sharipov, Expedition 10 backup Soyuz Commander Valery Tokarev and backup Expedition Commander Bill McArthur speak with officials from behind glass after having conducted a final inspection of their Soyuz TMA-5 spacecraft on Saturday, October 9, 2004, at the Baikonur Cosmodrome in Kazakhstan in preparation for their launch October 14 to the International Space Station. The Soyuz vehicle will be mated to its booster rocket October 11 in preparation for its rollout to the Central Asian launch pad October 12. Photo Credit: (NASA/Bill Ingalls)
STS-36 Commander Creighton and Pilot Casper on flight deck during JSC training
NASA Technical Reports Server (NTRS)
1989-01-01
In their forward flight deck stations, STS-36 Commander John O. Creighton and Pilot John H. Casper discuss procedures prior to participating in JSC Fixed Based (FB) Shuttle Mission Simulator (SMS) exercises in the Shuttle Simulation and Training Facility Bldg 5. Creighton (left) sits in front of the commanders station controls and Casper (right) in front of the pilots station controls. Checklists are posted in various positions on the forward control panels as the crewmembers prepare for the FB-SMS simulation and their Department of Defense (DOD) flight aboard Atlantis, Orbiter Vehicle (OV) 104.
Code of Federal Regulations, 2012 CFR
2012-10-01
... fishing gear consisting of a float and one or more lines suspended therefrom. A hook or hooks are on the... live fish on board a vessel. Center means one of the five NMFS Fisheries Science Centers. Charter boat... carry six or fewer passengers for hire. Coast Guard Commander means one of the commanding officers of...
Code of Federal Regulations, 2010 CFR
2010-10-01
... consisting of a float and one or more lines suspended therefrom. A hook or hooks are on the lines at or near... live fish on board a vessel. Center means one of the five NMFS Fisheries Science Centers. Charter boat... carry six or fewer passengers for hire. Coast Guard Commander means one of the commanding officers of...
Code of Federal Regulations, 2014 CFR
2014-10-01
... fishing gear consisting of a float and one or more lines suspended therefrom. A hook or hooks are on the... live fish on board a vessel. Center means one of the five NMFS Fisheries Science Centers. Charter boat... carry six or fewer passengers for hire. Coast Guard Commander means one of the commanding officers of...
Code of Federal Regulations, 2011 CFR
2011-10-01
... fishing gear consisting of a float and one or more lines suspended therefrom. A hook or hooks are on the... live fish on board a vessel. Center means one of the five NMFS Fisheries Science Centers. Charter boat... carry six or fewer passengers for hire. Coast Guard Commander means one of the commanding officers of...
Code of Federal Regulations, 2013 CFR
2013-10-01
... fishing gear consisting of a float and one or more lines suspended therefrom. A hook or hooks are on the... live fish on board a vessel. Center means one of the five NMFS Fisheries Science Centers. Charter boat... carry six or fewer passengers for hire. Coast Guard Commander means one of the commanding officers of...
The Proximity Principle: Army Chaplains on the Fighting Line in Doctrine and History
2014-12-12
U.S. Army Command and General Staff College in partial fulfillment of the requirements for the degree MASTER OF MILITARY ART AND SCIENCE Art......and do not necessarily represent the views of the U.S. Army Command and General Staff College or any other governmental agency. (References to this
Evolution of the Air Component Commander Post Goldwater-Nichols
2013-06-01
example, before Brigadier General James Mattis led Marine forces in the taking of Kandahar, he spoke with Moseley; and they agreed to conduct the...These separated commands and the division of airpower, along 3 James A. Winnefeld and Dana J...Biography: Lieutenant General Michael C. Short,” July 2000., http://www.af.mil/information/ bios /bio.asp?bioID=7136 (accessed March 20, 2013). 27 Short
2010-12-01
messages étaient présentés au moyen des haut-parleurs en présence de bruit dans le véhicule. Même si des notes relativement faibles ont été obtenues...Research Ethics Committee. Each subject read the protocol and provided informed consent before participating. The terms and conditions of remuneration
Environmental Response Policy « Coast Guard Maritime Commons
effect This post provides links to updated forms CG-2692 and CG-2692B, which have both been revised to in conjunction with Vessel Response Plans: The First Year In this post, the assistant commandant for post was updated April 10, 2018 to reflect that Inmarsat will begin the migration 1400 UTC May 9, 2018
About Coast Guard Maritime Commons « Coast Guard Maritime Commons
occasional post by our senior leaders (including the Commandant of the Coast Guard). External Link Disclaimer retains the discretion to determine which comments it will post and which it will not. We expect all contributors to be respectful. We will not post comments that contain personal attacks of any kind; refer to
NASA Technical Reports Server (NTRS)
Stanboli, Alice
2013-01-01
Phxtelemproc is a C/C++ based telemetry processing program that processes SFDU telemetry packets from the Telemetry Data System (TDS). It generates Experiment Data Records (EDRs) for several instruments including surface stereo imager (SSI); robotic arm camera (RAC); robotic arm (RA); microscopy, electrochemistry, and conductivity analyzer (MECA); and the optical microscope (OM). It processes both uncompressed and compressed telemetry, and incorporates unique subroutines for the following compression algorithms: JPEG Arithmetic, JPEG Huffman, Rice, LUT3, RA, and SX4. This program was in the critical path for the daily command cycle of the Phoenix mission. The products generated by this program were part of the RA commanding process, as well as the SSI, RAC, OM, and MECA image and science analysis process. Its output products were used to advance science of the near polar regions of Mars, and were used to prove that water is found in abundance there. Phxtelemproc is part of the MIPL (Multi-mission Image Processing Laboratory) system. This software produced Level 1 products used to analyze images returned by in situ spacecraft. It ultimately assisted in operations, planning, commanding, science, and outreach.
GLAST Burst Monitor Signal Processing System
NASA Astrophysics Data System (ADS)
Bhat, P. Narayana; Briggs, Michael; Connaughton, Valerie; Diehl, Roland; Fishman, Gerald; Greiner, Jochen; Kippen, R. Marc; von Kienlin, Andreas; Kouveliotou, Chryssa; Lichti, Giselher; Meegan, Charles; Paciesas, William; Persyn, Steven; Preece, Robert; Steinle, Helmut; Wilson-Hodge, Colleen
2007-07-01
The onboard Data Processing Unit (DPU), designed and built by Southwest Research Institute, performs the high-speed data acquisition for GBM. The analog signals from each of the 14 detectors are digitized by high-speed multichannel analog data acquisition architecture. The streaming digital values resulting from a periodic (period of 104.2 ns) sampling of the analog signal by the individual ADCs are fed to a Field-Programmable Gate Array (FPGA). Real-time Digital Signal Processing (DSP) algorithms within the FPGA implement functions like filtering, thresholding, time delay and pulse height measurement. The spectral data with a 12-bit resolution are formatted according to the commandable look-up-table (LUT) and then sent to the High-Speed Science-Date Bus (HSSDB, speed=1.5 MB/s) to be telemetered to ground. The DSP offers a novel feature of a commandable & constant event deadtime. The ADC non-linearities have been calibrated so that the spectral data can be corrected during analysis. The best temporal resolution is 2 μs for the pre-burst & post-trigger time-tagged events (TTE) data. The time resolution of the binned data types is commandable from 64 msec to 1.024 s for the CTIME data (8 channel spectral resolution) and 1.024 to 32.768 s for the CSPEC data (128 channel spectral resolution). The pulse pile-up effects have been studied by Monte Carlo simulations. For a typical GRB, the possible shift in the Epeak value at high-count rates (~100 kHz) is ~1% while the change in the single power-law index could be up to 5%.
78 FR 40065 - Airworthiness Directives; Dassault Aviation Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-03
... incorporate repetitive operational tests of the electric motors reversion relays and trim emergency command of... on those comments. We will post all comments we receive, without change, to http://www.regulations.gov , including any personal information you provide. We will also post a report summarizing each...
Little AI: Playing a constructivist robot
NASA Astrophysics Data System (ADS)
Georgeon, Olivier L.
Little AI is a pedagogical game aimed at presenting the founding concepts of constructivist learning and developmental Artificial Intelligence. It primarily targets students in computer science and cognitive science but it can also interest the general public curious about these topics. It requires no particular scientific background; even children can find it entertaining. Professors can use it as a pedagogical resource in class or in online courses. The player presses buttons to control a simulated "baby robot". The player cannot see the robot and its environment, and initially ignores the effects of the commands. The only information received by the player is feedback from the player's commands. The player must learn, at the same time, the functioning of the robot's body and the structure of the environment from patterns in the stream of commands and feedback. We argue that this situation is analogous to how infants engage in early-stage developmental learning (e.g., Piaget (1937), [1]).
The Galileo Orbiter - Command and telemetry subsystems on their way to Jupiter
NASA Astrophysics Data System (ADS)
Erickson, James K.
1990-09-01
An overview is given of the Galileo command and telemetry subsystems, which exemplify the rigid time-synchronized systems required by TDM (time division multiplexing). The spacecraft clock is examined, along with some of the rationale for the development of the clock structure and timing to give a sense of the design imperatives for rigidly synchronized systems. Additional subjects include the structure of the science and engineering frames, emphasizing the subcommutated structure of the engineering frame and its relationship to the spacecraft clock; ground processing for and basic uses of the telemetry; the various message types used to transmit commands to the spacecraft; and the generation processes for the command message types.
Senate Hearing on Assured Access to Space
2014-07-16
General William Sherlton, Commander of the United States Air Force Space Command, answers a question during testimony in front of the Senate Subcommittee on Strategic Forces and Senate Committee on Commerce, Science, and Transportation on Wednesday, July 16, 2014, at the Hart Senate Office Building in Washington, DC. The Senate hearing focused on assured access to space.
Targets for Marine Corps Purchasing and Supply Management Initiatives: Spend Analysis Findings
2011-01-01
TRANSPORTATION INTERNATIONAL AFFAIRS LAW AND BUSINESS NATIONAL SECURITY POPULATION AND AGING PUBLIC SAFETY SCIENCE AND TECHNOLOGY TERRORISM AND...States Transportation Command UNICOR Federal Prison Industries, Inc. USMC United States Marine Corps WHS/SIAD Washington Headquarters Services...Services Admin- istration (GSA), and the United States Transportation Command (TRANSCOM), as well as via Military Interdepartmental Purchase Requests
LIF - Payload commander Voss in front of experiment rack
2016-08-12
STS083-318-001 (4-8 April 1997) --- Mission specialist Janice E. Voss, payload commander, participates in the activation of the Spacelab Science Module aboard the Earth-orbiting Space Shuttle Columbia. Crewed by Voss, four other NASA astronauts and two payload specialists, the scheduled 16-day mission was later cut short by a power shortage.
Senate Hearing on Assured Access to Space
2014-07-16
General William Sherlton, Commander of the United States Air Force Space Command, left; answers a question during testimony in front of the Senate Subcommittee on Strategic Forces and Senate Committee on Commerce, Science, and Transportation on Wednesday, July 16, 2014, at the Hart Senate Office Building in Washington, DC. The Senate hearing focused on assured access to space.
Senate Hearing on Assured Access to Space
2014-07-16
General William Shelton, Commander of the United States Air Force Space Command, delivers his opening statement during testimony in front of the Senate Subcommittee on Strategic Forces and Senate Committee on Commerce, Science, and Transportation on Wednesday, July 16, 2014, at the Hart Senate Office Building in Washington, DC. The Senate hearing focused on assured access to space.
Senate Hearing on Assured Access to Space
2014-07-16
General William Shelton, Commander of the United States Air Force Space Command, second from right, answers a question during testimony in front of the Senate Subcommittee on Strategic Forces and Senate Committee on Commerce, Science, and Transportation on Wednesday, July 16, 2014, at the Hart Senate Office Building in Washington, DC. The Senate hearing focused on assured access to space.
2009-04-01
ENDNOTES 1 Stephanie Hansen, “US Africa Command,” Council on Foreign Relations (3 May 2007): http://www.cfr.org/publication/ 13255 /. 2 Office of the...http://www.cfr.org/publication/ 13255 / (accessed 18 Jan 2009). Hill, Ginny. “Military Focuses on Development in Africa.” The Christian Science Monitor
The Deep Space Network: A Radio Communications Instrument for Deep Space Exploration
NASA Technical Reports Server (NTRS)
Renzetti, N. A.; Stelzried, C. T.; Noreen, G. K.; Slobin, S. D.; Petty, S. M.; Trowbridge, D. L.; Donnelly, H.; Kinman, P. W.; Armstrong, J. W.; Burow, N. A.
1983-01-01
The primary purpose of the Deep Space Network (DSN) is to serve as a communications instrument for deep space exploration, providing communications between the spacecraft and the ground facilities. The uplink communications channel provides instructions or commands to the spacecraft. The downlink communications channel provides command verification and spacecraft engineering and science instrument payload data.
Assessing the Utility of Work Team Theory in a Unified Command Environment at Catastrophic Incidents
2005-03-01
between agencies that potentially affects command post (CP) interactions . All of the foregoing factors contribute to a turbulent management environment...requiring special strategy consideration with and IMT preparation. “Conflict refers to a process of social interaction involving a struggle over...from interactions . These schemas can be grouped as cultural norms perpetuated generationally from seasoned officers to raw recruits, and shared by
Genetic Modeling of Radiation Injury in Prostate Cancer Patients Treated with Radiotherapy
2017-10-01
approaches in the GWAS meta-analysis: 1) logistic regression to test association of each SNP with grade 1 or worse toxicity at 2 years post ...Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for...Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY
1968-10-28
S68-52542 (22 Oct. 1968) --- The Apollo 7 crew arrives aboard the USS Essex, the prime recovery ship for the mission. Left to right, are astronauts Walter M. Schirra Jr., commander; Donn F. Eisele, command module pilot; Walter Cunningham, lunar module pilot; and Dr. Donald E. Stullken, NASA Recovery Team Leader from the Manned Spacecraft Center's (MSC) Landing and Recovery Division. The crew is pausing in the doorway of the recovery helicopter.
STS-32 Commander Brandenstein in LES prepares for WETF water egress training
NASA Technical Reports Server (NTRS)
1989-01-01
STS-32 Commander Daniel C. Brandenstein, wearing a launch and entry suit (LES), orange parachute harness and life vest, is briefed on emergency egress procedures in JSC's Weightless Environment Training Facility Bldg 29. The crew used the WETF's nearby 25 ft deep pool for the exercises, which familiarize assigned space shuttle crewmembers with procedures associated with the post-Challenger pole system of emergency egress.
32 CFR 643.129 - Youth groups.
Code of Federal Regulations, 2011 CFR
2011-07-01
... facilities, without monetary consideration, to on-post youth groups such as the Boy Scouts, Girl Scouts, and Little League. (b) Installation commanders may grant revocable-at-will licenses for one-time use, or for intermittent or continuing use, to off-post youth groups such as the Boy Scouts, Girl Scouts, and the Little...
32 CFR 643.129 - Youth groups.
Code of Federal Regulations, 2013 CFR
2013-07-01
... facilities, without monetary consideration, to on-post youth groups such as the Boy Scouts, Girl Scouts, and Little League. (b) Installation commanders may grant revocable-at-will licenses for one-time use, or for intermittent or continuing use, to off-post youth groups such as the Boy Scouts, Girl Scouts, and the Little...
32 CFR 643.129 - Youth groups.
Code of Federal Regulations, 2012 CFR
2012-07-01
... facilities, without monetary consideration, to on-post youth groups such as the Boy Scouts, Girl Scouts, and Little League. (b) Installation commanders may grant revocable-at-will licenses for one-time use, or for intermittent or continuing use, to off-post youth groups such as the Boy Scouts, Girl Scouts, and the Little...
32 CFR 643.129 - Youth groups.
Code of Federal Regulations, 2014 CFR
2014-07-01
... facilities, without monetary consideration, to on-post youth groups such as the Boy Scouts, Girl Scouts, and Little League. (b) Installation commanders may grant revocable-at-will licenses for one-time use, or for intermittent or continuing use, to off-post youth groups such as the Boy Scouts, Girl Scouts, and the Little...
Defense.gov - Special Report - Media Roundtable with the Commander-in-Chief
incidents of post-traumatic stress disorder. Story Obama: Health Care Reform WonÂt Impact VA, Tricare works with Congress to shore up gaps in Post-9/11 GI Bill benefits, President Barack Obama said he wants Secretary Eric Shinseki discuss Post-9/11 GI Bill benefits and health care reform with military journalists
Tomi, Leena M; Rossokha, Katherine; Hosein, Janette
2002-01-01
The role of cross-cultural factors in long-duration international space missions was examined during an isolation study that simulated many of the conditions aboard the International Space Station. Interactions involving two heterogeneous crews and one homogeneous crew staying in isolation from 110 to 240 days were studied. Data consisted of post-isolation interviews with crewmembers, ground support personnel and management, observational data, and public statements by crewmembers. Data was analyzed using the techniques of linguistic anthropology and ethnography. Sub-cultural (organizational and professional) differences played a larger role than national differences in causing misunderstandings in this study. Conversely, some misunderstandings and conflicts were escalated by participants falsely assuming cultural differences or similarities. Comparison between the two heterogeneous crews showed the importance of training, personality factors, and commander and language skills in preventing and alleviating cultural misunderstandings. The study revealed a number of ways that cultural differences, real as well as assumed, can play a role and interact with other, non-cultural, factors in causing and/or precipitating conflict situations. It is postulated that such difficulties can be avoided by selecting culturally adaptive crewmembers and by cross-cultural and language training. Also the crew composition and role of commander were found to be important in mitigating conflict situations. c2002 Lister Science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasquale, David A.; Hansen, Richard G.
This paper discusses command and control issues relating to the operation of Incident Command Posts (ICPs) and Emergency Operations Centers (EOCs) in the surrounding area jurisdictions following the detonation of an Improvised Nuclear Device (IND). Although many aspects of command and control will be similar to what is considered to be normal operations using the Incident Command System (ICS) and the National Incident Management System (NIMS), the IND response will require many new procedures and associations in order to design and implement a successful response. The scope of this white paper is to address the following questions: • Would themore » current command and control framework change in the face of an IND incident? • What would the management of operations look like as the event unfolded? • How do neighboring and/or affected jurisdictions coordinate with the state? • If the target area’s command and control infrastructure is destroyed or disabled, how could neighboring jurisdictions assist with command and control of the targeted jurisdiction? • How would public health and medical services fit into the command and control structure? • How can pre-planning and common policies improve coordination and response effectiveness? • Where can public health officials get federal guidance on radiation, contamination and other health and safety issues for IND response planning and operations?« less
2016-05-26
Post -Soviet World A Monograph by MAJ Andrew S. Glenn US Army School of Advanced Military Studies United States Army Command and General...2016 4. TITLE AND SUBTITLE Avoiding Armageddon: The US Military1s Response to Trans-Regional Nuclear Proliferation in a Post -Soviet World Sa...MAJ Andrew S. Glenn Monograph Title: Avoiding Armageddon: The US Military’s Response to Trans- Regional Nuclear Proliferation in a Post -Soviet
ERIC Educational Resources Information Center
Jung, Karl G.; Brown, Julie C.
2016-01-01
To engage in the practices of science, students must have a strong command of science academic language. However, content area teachers often make academic language an incidental part of their lesson planning, which leads to missed opportunities to enhance students' language development. To support pre-service elementary science teachers (PSTs) in…
Science, Technology & Requirements Forum
2012-10-01
Science, Technology & Requirements Forum COL Barry K. Williams Assistant Commandant US Army Engineer School Engineer Warriors leading to...2012 4. TITLE AND SUBTITLE Science, Technology & Requirements Forum 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...unlimited 13. SUPPLEMENTARY NOTES Presented at the 2012 Science, Technology & Requirements Forum held 17-18 October in Fort Leonard Wood, MO. 14
2003-10-12
Expedition 8 Commander and NASA Science Officer Michael Foale talks to a colleague on his cell phone from his crew quarters at the Cosmonaut Hotel in Baikonur, Kazakhstan, Wednesday, Oct. 15, 2003. Foale along with Expedition 8 Soyuz Commander Alexander Kaleri and European Space Agency astronaut Pedro Duuque of Spain, launched on a Soyuz TMA-3 vehicle to the International Space Station. Photo Credit (NASA/Bill Ingalls)
2005-08-05
S114-E-7111 (5 August 2005) --- Crewmembers work on various tasks in the Unity node of the International Space Station. From the left are astronaut Charles J. Camarda, STS-114 mission specialist; cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency; astronaut John L. Phillips, Expedition 11 NASA Space Station science officer and flight engineer; and Eileen M. Collins, STS-114 commander.
2016-06-10
WEB 2.0 SYSTEMS IN THE BRIGADE COMBAT TEAM AS AN ENABLER OF MISSION COMMAND: A DIALECTIC IN INFORMATION DISCOURSE A thesis......This qualitative research in the field of information science aims to examine the use of Web 2.0 systems in the Brigade Combat Team as an enabler of
1992-10-01
intelligence developed an authentic European conflict scenario based on WINTEX- CIMEX , a detailed European command post exercise. One of the primary...them. The only exercises in which we effectively train from start to finish are the large CPXs like WINTEX/ CIMEX . This exercise is a procedural...general war CPX, sponsored by the Joint Chiefs of Staff. WINTEX/ CIMEX exercises. tests, and evaluates command and control procedures. planning. and
STS-95: Post Landing and Crew Walkaround of the Orbiter at the Shuttle Landing Facility
NASA Technical Reports Server (NTRS)
1998-01-01
After landing, the STS-95 crew (Commander Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, Pedro Duque, Payload Specialists Chiaki Mukai and the legendary John H. Glenn) descend from the Space Shuttle. Commander Brown congratulates the crew and team photos are taken. The crew does a walkaround inspection of the spacecraft, then boards the bus for departure from the facility.
ERIC Educational Resources Information Center
Wimsatt, Mary Jo
2012-01-01
Science, Technology, Engineering, and Math (STEM) education is currently commanding an ever-greater share of our national dialogue about education. Very few STEM initiatives focus on studies involving in-service teachers; most education research involves preservice teacher candidates. This researcher used a 54 question survey to examine in-service…
Factor Analysis of Aviation Training Measures and Post-Training Performance Evaluations.
ERIC Educational Resources Information Center
Booth, Richard F.; Berkshire, James R.
The purpose of this study was to relate the factor structure of naval air training measures to the performance of Marine pilots in operational squadrons. Five post-training criteria were developed; four were Commanding Officer (C.O.) nominations of junior officers for hypothetical special assignments, and the fifth was a general…
2011-03-24
JSC2011-E-040273 (24 March 2011) --- NASA astronaut Chris Ferguson, STS-135 commander, is reflected in a mirror before participating in a post-insertion training session in the Full-Fuselage Trainer in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center in Houston March 24, 2011. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool
Tidal and Lunar Data for Point Mugu, San Nicolas Island, and the Barking Sands Area During 1988.
1987-12-31
C l vNvN-A -0%Ow’!’N N r--Me’a In v-(v0r-v inav -f -X W WI- 0 -!)0 N~o CD NI- 0V NMQ-N o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ V KU LMM tt-y d tL) J O’ed.ci I o -a NM...Commander Third Fleet 1 Pearl Harbor, HI 96860-7500 Commander Naval Weapons Center Attn: Earth and Planetary Sciences Division 1 Code 343 (Technical...Center P.O. Box 271 Attn: Fishery-Oceanographic Group La Jolla, CA 92037 University of California Department of Biological Sciences Attn: Dr. A. M
Skylab 4 crew at start of high altitude chamber test at KSC
NASA Technical Reports Server (NTRS)
1973-01-01
Astronaut Gerald P. Carr, fully suited, Skylab 4 commander, prepares to enter spacecraft 118 (the Skylab 4 vehicle) at the start of the high altitude chamber test at the Kennedy Space Center (KSC) (34093); The Skylab 4 crew, fully suited, are seated inside their Command Module, which has been undergoing high altitude chamber test runs at KSC after being considered as a possible rescue vehicle, if needed for the Skylab 3 crew. Facing the camera is Scientist-Astronaut Edward G. Gibson, science pilot. Astronauts Carr, commander; and William R. Pogue, pilot, are also pictured (34094).
2012-01-10
ISS030-E-030125 (10 Jan. 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, works on the Selectable Optical Diagnostics Instrument C Colloid (SODI-COLLOID) hardware in the Microgravity Science Glovebox in the International Space Station?s Destiny laboratory. Burbank is supporting ground-commanded operations by exchanging out some disks. COLLOID is part of ESA?s triple experiment series for advancement in liquids, diffusion measurements in petroleum reservoirs and the study on growth and properties of advanced photonic materials within colloidal solutions. The commander is currently joined by five other Expedition 30 astronauts and cosmonauts, all flight engineers, aboard the orbital outpost.
Monjo, Florian; Forestier, Nicolas
2016-12-17
Muscle fatigue modifies the gain between motor command magnitude and the mechanical muscular response. In other words, post-fatigue, central drives to the muscles must increase to maintain a particular submaximum mechanical output. In this study, we tested the hypothesis that this modified gain can be predicted by the central nervous system (CNS) during discrete ballistic movements. In two separate experiments, subjects were required to perform shoulder flexions in standing and sitting positions at submaximum target peak accelerations. They were assisted with visual feedback informing them on their performance after each trial. Shoulder flexions were performed before and after fatiguing protocols of the focal muscles. Acceleration signals, focal and postural muscle electromyograms (EMGs) were recorded. The results demonstrated that participants were able to reach with precision the target acceleration during the first movements post-fatigue at the cost of significant increase in focal motor command magnitude. Decreased variance of peak accelerations associated with increased focal command variability was observed post-fatigue. During the standing experiment, postural muscle EMGs revealed that anticipatory postural adjustments (APAs) scaled to focal movement acceleration post-fatigue. All these results support that fatigue effects are taken into account during movement planning. Indeed, given that no feedback could enable participants to adjust acceleration during movement, this capacity to anticipate fatigue effects is the exclusive result of feedforward processes. To account for this prediction capacity, we discuss the role of fatigue-related modifications in sensory inputs from the working muscles. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Autonomous Science Analyses of Digital Images for Mars Sample Return and Beyond
NASA Technical Reports Server (NTRS)
Gulick, V. C.; Morris, R. L.; Ruzon, M.; Roush, T. L.
1999-01-01
To adequately explore high priority landing sites, scientists require rovers with greater mobility. Therefore, future Mars missions will involve rovers capable of traversing tens of kilometers (vs. tens of meters traversed by Mars Pathfinder's Sojourner). However, the current process by which scientists interact with a rover does not scale to such distances. A single science objective is achieved through many iterations of a basic command cycle: (1) all data must be transmitted to Earth and analyzed; (2) from this data, new targets are selected and the necessary information from the appropriate instruments are requested; (3) new commands are then uplinked and executed by the spacecraft and (4) the resulting data are returned to Earth, starting the process again. Experience with rover tests on Earth shows that this time intensive process cannot be substantially shortened given the limited data downlink bandwidth and command cycle opportunities of real missions. Sending complete multicolor panoramas at several waypoints, for example, is out of the question for a single downlink opportunity. As a result, long traverses requiring many science command cycles would likely require many weeks, months or even years, perhaps exceeding rover design life or other constraints. Autonomous onboard science analyses can address these problems in two ways. First, it will allow the rover to transmit only "interesting" images, defined as those likely to have higher science content. Second, the rover will be able to anticipate future commands, for example acquiring and returning spectra of "interesting" rocks along with the images in which they were detected. Such approaches, coupled with appropriate navigational software, address both the data volume and command cycle bottlenecks that limit both rover mobility and science yield. We are developing algorithms to enable such intelligent decision making by autonomous spacecraft. Reflecting the ultimate level of ability we aim for, this program has been dubbed the "Grad Student on Mars Project". We envision, for example, an appropriately intelligent Athena-like rover at the Pathfinder landing site might be able to traverse over the ridge towards "Twin Peaks" to obtain better information on the stratigraphy of these "streamlined islands" or of the size, composition and morphology of boulders located on them. Along the traverse, the intelligent rover would collect and analyze images and obtain spectra of geologically interesting features or regions. The intelligent rover might also traverse further up Arcs Vallis, and find additional paleoflood stage indicators such as slackwater deposits. Recognizing additional regions where boulders are imbricated, noting changes in their size, distribution, morphology, composition and the associated changes in channel geometry would yield important information on the outflow channel's paleoflood history, Representative images and associated supporting data from these locations could be downlinked to Earth along with the data requested by scientists from the previous uplink opportunity. Our initial work has focused on recognizing geologically interesting portions of images. Here we summarize some of the algorithms to date.
FAST: FAST Analysis of Sequences Toolbox
Lawrence, Travis J.; Kauffman, Kyle T.; Amrine, Katherine C. H.; Carper, Dana L.; Lee, Raymond S.; Becich, Peter J.; Canales, Claudia J.; Ardell, David H.
2015-01-01
FAST (FAST Analysis of Sequences Toolbox) provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU's Not Unix) Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R, and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics make FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format). Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought. PMID:26042145
International Space Station (ISS)
2001-02-01
The International Space Station (ISS) Payload Operations Center (POC) at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is the world's primary science command post for the International Space Station (ISS), the most ambitious space research facility in human history. The Payload Operations team is responsible for managing all science research experiments aboard the Station. The center is also home for coordination of the mission-plarning work of variety of international sources, all science payload deliveries and retrieval, and payload training and safety programs for the Station crew and all ground personnel. Within the POC, critical payload information from the ISS is displayed on a dedicated workstation, reading both S-band (low data rate) and Ku-band (high data rate) signals from a variety of experiments and procedures operated by the ISS crew and their colleagues on Earth. The POC is the focal point for incorporating research and experiment requirements from all international partners into an integrated ISS payload mission plan. This photograph is an overall view of the MSFC Payload Operations Center displaying the flags of the countries participating the ISS. The flags at the left portray The United States, Canada, France, Switzerland, Netherlands, Japan, Brazil, and Sweden. The flags at the right portray The Russian Federation, Italy, Germany, Belgium, Spain, United Kingdom, Denmark, and Norway.
International Space Station (ISS)
2000-02-01
The International Space Station (ISS) Payload Operations Center (POC) at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is the world's primary science command post for the (ISS), the most ambitious space research facility in human history. The Payload Operations team is responsible for managing all science research experiments aboard the Station. The center is also home for coordination of the mission-plarning work of variety of international sources, all science payload deliveries and retrieval, and payload training and safety programs for the Station crew and all ground personnel. Within the POC, critical payload information from the ISS is displayed on a dedicated workstation, reading both S-band (low data rate) and Ku-band (high data rate) signals from a variety of experiments and procedures operated by the ISS crew and their colleagues on Earth. The POC is the focal point for incorporating research and experiment requirements from all international partners into an integrated ISS payload mission plan. This photograph is an overall view of the MSFC Payload Operations Center displaying the flags of the countries participating in the ISS. The flags at the left portray The United States, Canada, France, Switzerland, Netherlands, Japan, Brazil, and Sweden. The flags at the right portray The Russian Federation, Italy, Germany, Belgium, Spain, United Kingdom, Denmark, and Norway.
The NASA Sounding Rocket Program and space sciences.
Gurkin, L W
1992-10-01
High altitude suborbital rockets (sounding rockets) have been extensively used for space science research in the post-World War II period; the NASA Sounding Rocket Program has been on-going since the inception of the Agency and supports all space science disciplines. In recent years, sounding rockets have been utilized to provide a low gravity environment for materials processing research, particularly in the commercial sector. Sounding rockets offer unique features as a low gravity flight platform. Quick response and low cost combine to provide more frequent spaceflight opportunities. Suborbital spacecraft design practice has achieved a high level of sophistication which optimizes the limited available flight times. High data-rate telemetry, real-time ground up-link command and down-link video data are routinely used in sounding rocket payloads. Standard, off-the-shelf, active control systems are available which limit payload body rates such that the gravitational environment remains less than 10(-4) g during the control period. Operational launch vehicles are available which can provide up to 7 minutes of experiment time for experiment weights up to 270 kg. Standard payload recovery systems allow soft impact retrieval of payloads. When launched from White Sands Missile Range, New Mexico, payloads can be retrieved and returned to the launch site within hours.
The NASA Sounding Rocket Program and space sciences
NASA Technical Reports Server (NTRS)
Gurkin, L. W.
1992-01-01
High altitude suborbital rockets (sounding rockets) have been extensively used for space science research in the post-World War II period; the NASA Sounding Rocket Program has been on-going since the inception of the Agency and supports all space science disciplines. In recent years, sounding rockets have been utilized to provide a low gravity environment for materials processing research, particularly in the commercial sector. Sounding rockets offer unique features as a low gravity flight platform. Quick response and low cost combine to provide more frequent spaceflight opportunities. Suborbital spacecraft design practice has achieved a high level of sophistication which optimizes the limited available flight times. High data-rate telemetry, real-time ground up-link command and down-link video data are routinely used in sounding rocket payloads. Standard, off-the-shelf, active control systems are available which limit payload body rates such that the gravitational environment remains less than 10(-4) g during the control period. Operational launch vehicles are available which can provide up to 7 minutes of experiment time for experiment weights up to 270 kg. Standard payload recovery systems allow soft impact retrieval of payloads. When launched from White Sands Missile Range, New Mexico, payloads can be retrieved and returned to the launch site within hours.
Autonomously generating operations sequences for a Mars Rover using AI-based planning
NASA Technical Reports Server (NTRS)
Sherwood, Rob; Mishkin, Andrew; Estlin, Tara; Chien, Steve; Backes, Paul; Cooper, Brian; Maxwell, Scott; Rabideau, Gregg
2001-01-01
This paper discusses a proof-of-concept prototype for ground-based automatic generation of validated rover command sequences from highlevel science and engineering activities. This prototype is based on ASPEN, the Automated Scheduling and Planning Environment. This Artificial Intelligence (AI) based planning and scheduling system will automatically generate a command sequence that will execute within resource constraints and satisfy flight rules.
A Health Science Process Framework for Comprehensive Clinical Functional Assessment
2014-02-01
Services (CMS), a Research , Measurement, Assessment, Design, and Analysis (RMADA) IDIQ with the primary task order targeting improving the disability ...2014 TYPE OF REPORT: Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT...U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION
2003-10-13
October 13, 2003. Baikonur Cosmodrome, Kazakhstan. Expedition 8 Soyuz Commander Alexander Kaleri (left) and Expedition 8 Commander and NASA Science Officer Mike Foale visit the launch pad at the Baikonur Cosmodrome in Kazakhstan Oct. 13, 2003. Foale, Kaleri and European Space Agency Astronaut Pedro Duque of Spain will be launched from the Central Asian launch pad to the International Space Station on Oct. 18. Photo Credit"NASA/Bill Ingalls"
2017-09-25
From Marshall’s science command center, Vice President Pence called the NASA astronauts aboard the space station and spoke with Expedition 53 commander Randy Bresnik, and flight engineers Mark Vande Hei and Joe Acaba. He also met with the ground controllers that provide around-the-clock support of the crew’s scientific activities on the orbiting laboratory, paving the way for future deep space exploration missions.
Terrain Commander: a next-generation remote surveillance system
NASA Astrophysics Data System (ADS)
Finneral, Henry J.
2003-09-01
Terrain Commander is a fully automated forward observation post that provides the most advanced capability in surveillance and remote situational awareness. The Terrain Commander system was selected by the Australian Government for its NINOX Phase IIB Unattended Ground Sensor Program with the first systems delivered in August of 2002. Terrain Commander offers next generation target detection using multi-spectral peripheral sensors coupled with autonomous day/night image capture and processing. Subsequent intelligence is sent back through satellite communications with unlimited range to a highly sophisticated central monitoring station. The system can "stakeout" remote locations clandestinely for 24 hours a day for months at a time. With its fully integrated SATCOM system, almost any site in the world can be monitored from virtually any other location in the world. Terrain Commander automatically detects and discriminates intruders by precisely cueing its advanced EO subsystem. The system provides target detection capabilities with minimal nuisance alarms combined with the positive visual identification that authorities demand before committing a response. Terrain Commander uses an advanced beamforming acoustic sensor and a distributed array of seismic, magnetic and passive infrared sensors to detect, capture images and accurately track vehicles and personnel. Terrain Commander has a number of emerging military and non-military applications including border control, physical security, homeland defense, force protection and intelligence gathering. This paper reviews the development, capabilities and mission applications of the Terrain Commander system.
2014-06-13
article, Chivers highlights the “ development of local arms-producing industries in Syrian cities and the countryside,” claiming that given the absence...At the operational and tactical levels, military commanders and their staffs must develop a mindset where protection of critical infrastructure is...presented to the Faculty of the U.S. Army Command and General Staff College in partial fulfillment of the requirements for the degree MASTER OF
2015-11-01
provided by a stand-alone desktop or hand held computing device. This introduces into the discussion a large number of mobile , tactical command...control, communications, and computer (C4) systems across the Services. A couple of examples are mobile command posts mounted on the back of an M1152... infrastructure (DCPI). This term encompasses on-site backup generators, switchgear, uninterruptible power supplies (UPS), power distribution units
Guilt-Free War: Post-Traumatic Stress and an Ethical Framework for Battlefield Decisions
2015-12-01
Susan Wolf, “ Moral Obligations and Social Command,” in Metaphysics and the Good: Themes from the Philosophy of Robert Merrihew Adams, edited by...1–18. Wolf, Susan. “ Moral Obligations and Social Command.” In Metaphysics and the Good: Themes from the Philosophy of Robert Merrihew Ad- ams, edited...Analysis of Recent Studies 5 Discussion of Various Approaches to Addressing Moral Injuries 7 Recommendations 17 Conclusion 19 Abbreviations 25
The Global Logistics Command: A Strategy to Sustain the Post-War Army
2014-05-22
Logistics: Determining Relevance for 21st Century Operations,” 17. 56Jobson and Antell, U.S. Army Materiel Command, 23. Joseph M. Heiser Jr., “Supply...mechanization expanded. Heiser , “Supply Support in Vietnam,” 37. 24 lacked.58 He also formalized in-theater training with two teams, codenamed Project...Airborne Corps History Office, Fort Bragg, NC, 2010. Heiser , Joseph M. Jr. Vietnam Studies Logistics Support. Washington, DC: U.S. Army Center of
2013-08-01
position unless so designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an official endorsement or...the presence of large volumes of time critical information. CPOF was designed to support the Army transformation to network-enabled operations. The...Cognitive Performance The visual display of information is vital to cognitive performance. For example, the poor visual design of the radar display
NASA Technical Reports Server (NTRS)
2002-01-01
Footage shows the crew of STS-109 (Commander Scott Altman, Pilot Duane Carey, Payload Commander John Grunsfeld, and Mission Specialists Nancy Currie, James Newman, Richard Linnehan, and Michael Massimino) during various parts of their training. Scenes show the crew's photo session, Post Landing Egress practice, training in Dome Simulator, Extravehicular Activity Training in the Neutral Buoyancy Laboratory (NBL), and using the Virtual Reality Laboratory Robotic Arm. The crew is also seen tasting food as they choose their menus for on-orbit meals.
An Approach to Improving the Effectiveness of Army Commanders in Multi- Ethnic Settings
1978-09-01
economic and environmental adaptation with less need for affectual or’ emot ionial relationships and supportive cultural forces. . .. White...Objetiv II Mehod ofChage.A dilemma for the commander onmerged: if he is skeptical about the need for change in race relat ions, can his own superiors...felt that gaming was generally rewarded in Army life and honesty was a definite risk . Post B: This group felt that minorities are the ones who are
2016-12-01
1 Award Number: W81XWH-12-2-0118 TITLE: Early Diagnosis and Intervention Strategies for Post -Traumatic Heterotopic Ossification in Severely...December 2016 TYPE OF REPORT: Final PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION...COVERED 30Sep2012 - 29Sep2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Early Diagnosis and Intervention Strategies for Post -Traumatic Heterotopic
The James Webb Space Telescope Integrated Science Instrument Module
NASA Technical Reports Server (NTRS)
Greenhouse, Matthew A.; Sullivan, Pamela C.; Boyce, Leslye A.; Glazer, Stuart D.; Johnson, Eric L.; McCloskey, John C.; Voyton, Mark F.
2004-01-01
The Integrated Science Instrument Module of the James Webb Space Telescope is described from a systems perspective with emphasis on unique and advanced technology aspects. The major subsystems of this flight element are described including: structure, thermal, command and data handling, and software.
Foale performs IFM at the science window in the U.S. Lab during Expedition 8
2004-04-23
ISS008-E-22271 (23 April 2004) --- Astronaut C. Michael Foale, Expedition 8 commander and NASA ISS science officer, performs in-flight maintenance (IFM) on the nadir window in the Destiny laboratory of the International Space Station (ISS).
Commander Kenneth D. Bowersox and Flight Engineer Donald R. Pettit are relaxing in the U.S. Lab
2003-03-18
ISS006-E-39461 (18 March 2003) --- Astronauts Donald R. Pettit (left), Expedition 6 NASA ISS Science Officer, and Kenneth D. Bowersox, mission commander, are pictured in the Destiny laboratory on the International Space Station (ISS). The supply tank and Fluid Control Pump Assembly (FCPA), which are a part of the Internal Thermal Control System (ITCS), are visible floating freeing above them.
International Space Station (ISS)
2003-10-25
Aboard the International Space Station (ISS), European Space Agency astronaut Pedro Duque of Spain watches a water bubble float between a camera and himself. The bubble shows his reflection (reversed). Duque was launched aboard a Russian Soyuz TMA-3 spacecraft from the Baikonur Cosmodrome, Kazakhstan on October 18th, along with expedition-8 crew members Michael C. Foale, Mission Commander and NASA ISS Science Officer, and Cosmonaut Alexander Y. Kaleri, Soyuz Commander and flight engineer.
Airsea Battle: Can the Air Force and the Navy Get Along
2011-06-01
staffs at headquarters, Special Operations Command – Korea (SOCKOR) and at Joint Special Operations Task Force – Philippines (JSOTF- P ). His most...Detachment (JSOAD) deputy commander for JSOTF- P . Major Kobs holds a Bachelors of Arts Degree in Political Science from the University of New...1894), p . 26. concept, Glenn H. Curtiss agreed to instruct naval officers for the creation of a naval aviation program. Lieutenant T.G
Equal Opportunity Leadership Training for Company-Level Chain of Command
1981-01-01
Relations/ Equal Opportunity Training in USAREUR, ARI Technical Report TR-78-B10, Alexandria, Va.: US. Army Research Institute for the Behavioral and Social ...Behavioral and Social Sciences, 1978. Marcia A. Gilbert and Peter G. Nordlie, An Analysis of Race Relations/ Equal Opportunity Training in USAREUR, ARI...Technical Report 534 - EQUAL OPPORTUNITY LEADERSHIP TRAINING FOR COMPANY-LEVEL CHAIN OF COMMAND Dale K. Brown, Silas J. White, Exequiel R. Sevilla
STS-47 Commander Gibson and Pilot Brown at CCT side hatch during JSC training
NASA Technical Reports Server (NTRS)
1992-01-01
STS-47 Endeavour, Orbiter Vehicle (OV) 105, Spacelab Japan (SLJ) Commander Robert L. Gibson (right) and Pilot Curtis L. Brown, Jr, wearing launch and entry suits (LESs), pose in front of the Crew Compartment Trainer (CCT) mockup side hatch during post landing emergency egress procedures held at JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE. Note that the crew escape system (CES) pole is in position at side hatch but is not extended.
STS-48 Commander Creighton, in LES, stands at JSC FFT side hatch
NASA Technical Reports Server (NTRS)
1991-01-01
STS-48 Discovery, Orbiter Vehicle (OV) 103, Commander John O. Creighton, wearing a launch and entry suit (LES), stands at the side hatch of JSC's full fuselage trainer (FFT). Creighton will enter the FFT shuttle mockup through the side hatch and take his assigned position on the forward flight deck. Creighton, along with the other crewmembers, is participating in a post-landing emergency egress exercise. The FFT is located in the Mockup and Integration Laboratory (MAIL) Bldg 9A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, K.R.; Fisher, J.E.
1997-03-01
ACE/gr is XY plotting tool for workstations or X-terminals using X. A few of its features are: User defined scaling, tick marks, labels, symbols, line styles, colors. Batch mode for unattended plotting. Read and write parameters used during a session. Polynomial regression, splines, running averages, DFT/FFT, cross/auto-correlation. Hardcopy support for PostScript, HP-GL, and FrameMaker.mif format. While ACE/gr has a convenient point-and-click interface, most parameter settings and operations are available through a command line interface (found in Files/Commands).
Reconstruction Leaders’ Perceptions of the Commander’s Emergency Response Program in Iraq
2012-04-30
provided immediate support to the Iraqi people. American Commanders in Iraq used CERP funds to build schools , roads, health clinics, sewers, and...and 2008 we considered them as having served during the surge. If their time in Iraq was before those years we considered them to be pre- surge. If...their time in Iraq was after those years we considered them as having served post-surge. More details about our survey methodology are in Appendix
Commanders and Cyber Chat: Should More Guidance be Provided for Social Networking Sites
2011-04-01
his favorite book is Mein Kampf, his favorite movie is the Nazi propaganda film, Triumph of the Will, his interests are “white women, and his...service member wearing a Navy uniform and holding a Confederate insignia is on a commander’s friends list? Is that commander responsible for...Cybervetting and Posting. January 10, 2011. www.inamecheck.com. 18 Ibid. 19 Ibid. 20 Baron, Kevin. "Watchdog group: Dozens of active-duty found on neo- Nazi
2011-04-01
their command, using the strategies and tactics presented to them during training. The ideal study design would be a pretest - posttest control group ...strategies, and tactics were reviewed by senior officers at the Army War College and focus groups of junior officers at two installations. In a series of...easily lost. We delivered the training in multiple small group sessions at a single post. Two brigades were trained in April and May, 2008, and two
Conversion of the Defense Communications System from Analog to Digital Form.
1974-06-01
Hjr,.nZing of Mail: Transmission Methods, Report R-69-046-5, Prepared for Bureau of Research and Engineering, Post Office Department, Washington (July...Transmission Methods, Report R-69-046-5, Prepared for Bureau of Research and 165 Engineerin-, Post Office Department, Washington (July 1970), P. 3-5. 3...Prepared for Bureau of Research and Engineering, Post Office Department Washington . July 1970. Df-AG" 5M ARMY COMMAND AND SENERAL STAFF COLL FORT
2016-12-01
the study for the presence or absence of ectopic bone formation at the indicated time points post injury (Table 1.). 8 Table 1. Incidence of HO...1 Award Number: W81XWH-12-2-0119 TITLE: Early Diagnosis and Intervention Strategies for Post -Traumatic Heterotopic Ossification in Severely...2016 TYPE OF REPORT: Final PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT
War Termination: Dreaming of the End and the Ultimate Triumph
2004-05-17
and unstructured, art and science . To realize national strategic objectives and develop a triumphant peace, operational commanders must shun the...itself, war termination is both political and military, structured and unstructured, art and science . To realize national strategic objectives and...termination is political and military, structured and unstructured, art and science . By applying elements of operational art to war termination and
Operational Command and Control in the Age of Entropy
2007-06-01
discusses the more important entropic effects as they affect operational art and operational science . It concludes that militaries face significantly...This paper discusses the more important entropic effects as they affect operational art and operational science . It concludes that militaries face...objective measurement or science . 10 Sun Tzu, The Art of War (Demma Translation), Boston: Shambala, 2001. 10 Clausewitzian concept describing
STS-107 Crew Interviews: Rick D. Husband, Commander
NASA Technical Reports Server (NTRS)
2002-01-01
STS-107 Commander Rick Husband is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Husband outlines what his role in the mission will be, what training the crew received, what crew member responsibilities will be, particularly during launch and reentry, what day to day life will be like on an extended duration mission, and what science experiments are going to be conducted onboard. He discusses the following science experiments and instruments in detail: MEIDEX (Mediterranean Israeli Dust Experiment), SOLSE (Shuttle Ozone Limb Sounding Experiment, FREESTAR (Fast Reaction Enabling Science Technology and Research) and various student projects. Husband also touches on the importance of space research, the value of international cooperation, the reason for dual crew shifts on the mission and the role of crew members as research subjects.
STS-73 Liftoff - close up front view left hand side
NASA Technical Reports Server (NTRS)
1995-01-01
The Space Shuttle Columbia blasts off on the 72nd Shuttle flight. The second U.S. Microgravity Laboratory (USML-2) mission began with a liftoff from Launch Pad 39B at 9:53:00 a.m. EDT, October 20. On board are a crew of seven; Mission Commander Kenneth D. Bowersox; Pilot Kent V. Rominger; Payload Commander Kathryn C. Thornton; Mission Specialists Michael E. Lopez-Alegria and Catherine G. Coleman; and Payload Specialists Fred W. Leslie and Albert Sacco Jr. During the nearly 16-day flight of Mission STS- 73, the crew will work around the clock on a diverse assortment of USML-2 experiments located in a Spacelab module in Columbia's payload bay. USML-2 builds on the foundation of its predecessor, USML-1, which ranks as one of NASA's most successful science missions. Fields of study include fluid physics, materials science, biotechnology, combustion science and commercial space processing technologies.
Suzuki, Masataka; Yamazaki, Yoshihiko
2005-01-01
According to the equilibrium point hypothesis of voluntary motor control, control action of muscles is not explicitly computed, but rather arises as a consequence of interaction between moving equilibrium position, current kinematics and stiffness of the joint. This approach is attractive as it obviates the need to explicitly specify the forces controlling limb movements. However, many debatable aspects of this hypothesis remain in the manner of specification of the equilibrium point trajectory and muscle activation (or its stiffness), which elicits a restoring force toward the planned equilibrium trajectory. In this study, we expanded the framework of this hypothesis by assuming that the control system uses the velocity measure as the origin of subordinate variables scaling descending commands. The velocity command is translated into muscle control inputs by second order pattern generators, which yield reciprocal command and coactivation commands, and create alternating activation of the antagonistic muscles during movement and coactivation in the post-movement phase, respectively. The velocity command is also integrated to give a position command specifying a moving equilibrium point. This model is purely kinematics-dependent, since the descending commands needed to modulate the visco-elasticity of muscles are implicitly given by simple parametric specifications of the velocity command alone. The simulated movements of fast elbow single-joint movements corresponded well with measured data performed over a wide range of movement distances, in terms of both muscle excitations and kinematics. Our proposal on a synthesis for the equilibrium point approach and velocity command, may offer some insights into the control scheme of the single-joint arm movements.
Waterside Security 2010 (WSS 2010) Conference: Post Conference Report
2011-02-01
Memorandum Report NURC-MR-2011-002 Waterside Security 2010 (WSS2010) Conference: post conference report Ronald Kessel and...in NATO, NURC conducts maritime research in support of NATO’s operational and transformation requirements. Reporting to the Supreme Allied Commander...independent business process certification. Copyright © NURC 2011. NATO member nations have unlimited rights to use, modify, reproduce, release
L to R: STS-98 Mission Specialist Thomas Jones, Pilot Mark Polansky, and Commander Kenneth Cockrell
NASA Technical Reports Server (NTRS)
2001-01-01
L to R: STS-98 Mission Specialist Thomas Jones, Pilot Mark Polansky, and Commander Kenneth Cockrell greet STS-92 Commander Brian Duffy, Dryden Center Director Kevin Petersen, and AFFTC Commander Major General Richard Reynolds after landing on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. Space Shuttle Atlantis landed at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000.
The Process of Sensemaking in Complex Human Endeavors
2008-06-01
encompassing Joint, Interagency, and Multinational capabilities. The Art and Science of Battle Command LeadUnderstand CDR / Staff ART / Science In short, we...operations. Staff Running Estimates t ff i i Visualize CDR / Staff ART / Science •Planning guidance •Planning guidance •Cdr ’s Intent Describe CDR...Staff ART / Science •Plans & Orders •Preparation •Plans & Orders •Preparation •Execution WF • Intelligence •Maneuver •Fire Support • Protection
NASA Astrophysics Data System (ADS)
Allgood, Glenn O.; Kuruganti, Phani Teja; Nutaro, James; Saffold, Jay
2009-05-01
Combat resiliency is the ability of a commander to prosecute, control, and consolidate his/her's sphere of influence in adverse and changing conditions. To support this, an infrastructure must exist that allows the commander to view the world in varying degrees of granularity with sufficient levels of detail to permit confidence estimates to be levied against decisions and course of actions. An infrastructure such as this will include the ability to effectively communicate context and relevance within and across the battle space. To achieve this will require careful thought, planning, and understanding of a network and its capacity limitations in post-event command and control. Relevance and impact on any existing infrastructure must be fully understood prior to deployment to exploit the system's full capacity and capabilities. In this view, the combat communication network is considered an integral part of or National communication network and infrastructure. This paper will describe an analytical tool set developed at ORNL and RNI incorporating complexity theory, advanced communications modeling, simulation, and visualization technologies that could be used as a pre-planning tool or post event reasoning application to support response and containment.
Foale works at the MSG / ESEM in the U.S. Lab during Expedition 8
2004-04-05
ISS008-E-20622 (5 April 2004) --- Astronaut C. Michael Foale, Expedition 8 commander and NASA ISS science officer, conducts an inspection of the Microgravity Science Glovebox (MSG) / Exchangeable Standard Electronic Module (ESEM) in the Destiny laboratory of the International Space Station (ISS).
Foale works at the MSG / ESEM in the U.S. Lab during Expedition 8
2004-04-05
ISS008-E-20632 (5 April 2004) --- Astronaut C. Michael Foale, Expedition 8 commander and NASA ISS science officer, conducts an inspection of the Microgravity Science Glovebox (MSG) / Exchangeable Standard Electronic Module (ESEM) in the Destiny laboratory of the International Space Station (ISS).
The Integrative Studies of Genetic and Environmental Factors in Systemic Sclerosis
2009-05-01
University of Texas Health Science Center Houston, Texas 77030-3900 REPORT DATE...May 2009 TYPE OF REPORT: Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command... Texas Health Science Center Houston, Texas 77030-3900 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR
Thirteen days: Joseph Delboeuf versus Pierre Janet on the nature of hypnotic suggestion.
LeBlanc, André
2004-01-01
The problem of post-hypnotic suggestion was introduced in 1884. Give a hypnotic subject the post-hypnotic command to return in 13 days. Awake, the subject remembers nothing yet nonetheless fulfills the command to return. How then does the subject count 13 days without knowing it? In 1886, Pierre Janet proposed the concept of dissociation as a solution, arguing that a second consciousness kept track of time outside of the subject's main consciousness. Joseph Delboeuf, in 1885, and Hippolyte Bernheim, in 1886, proposed an alternative solution, arguing that subjects occasionally drifted into a hypnotic state in which they were reminded of the suggestion. This article traces the development of these competing solutions and describes some of Delboeuf's final reflections on the problem of simulation and the nature of hypnosis. Copyright 2004 Wiley Periodicals, Inc.
US Effects on Allied Strategic Decision Making during the First World War
2017-06-09
PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) U.S. Army Command and General Staff College ATTN: ATZL-SWD-GD Fort Leavenworth, KS 66027-2301 8...Bibliographies Davray, Henry D. Lord Kitchener: His Work and His Prestige. London : T. Fisher Unwin, 1917. Newhall, David S . Clemenceau: A Life at...Command and General Staff College in partial fulfillment of the requirements for the degree MASTER OF MILITARY ART AND SCIENCE Military History
Autonomy Architectures for a Constellation of Spacecraft
NASA Technical Reports Server (NTRS)
Barrett, Anthony
2000-01-01
This paper describes three autonomy architectures for a system that continuously plans to control a fleet of spacecraft using collective mission goals instead of goals of command sequences for each spacecraft. A fleet of self-commanding spacecraft would autonomously coordinate itself to satisfy high level science and engineering goals in a changing partially-understood environment-making feasible the operation of tens of even a hundred spacecraft (such as for interferometer or magnetospheric constellation missions).
GFFC, Commander Ken Bowersox monitors Spacelab experiment
1995-11-05
STS073-363-032 (20 October - 5 November 1995) --- Astronaut Kenneth D. Bowersox, STS-73 mission commander, studies the movement of fluids in microgravity at the Geophysical Fluid Flow Cell (GFFC) workstation in the science module of the Earth-orbiting Space Shuttle Columbia. Bowersox was joined by four other NASA astronauts and two guest researchers for almost 16-days of Earth-orbit research in support of the U.S. Microgravity Laboratory (USML-2) mission.
Installation Restoration Program. Confirmation/Quantification Stage 1. Phase 2
1985-03-07
INSTALLATION RESTORATION PROGRAM i0 PHASE II - CONFIRMATION/QUANTIFICATION 0STAGE 1 KIRTLAND AFB KIRTLAND AFB, NEW MEXICO 87117 IIl PREPARED BY SCIENCE...APPLICATIONS INTERNATIONAL CORPORATION 505 MARQUETTE NW, SUITE 1200 ALBUQUERQUE, NEW MEXICO 871021 5MARCH 1985 FINAL REPORT FROM FEB 1983 TO MAR 1985...QUANTIFICATION STAGE 1 i FINAL REPORT FOR IKIRTLAND AFB KIRTLAND AFB, NEW MEXICO 87117U HEADQUARTERS MILITARY AIRLIFT COMMAND COMMAND SURGEON’S OFFICE (HQ MAC
A Theory of Diagnostic Inference: Contract Final Report,
1983-11-01
and I-bLications ftlated to this Contract ........ 19 1caml.igmnts and Scientific I&VOuMM1.......................... 21 M&i 2 This report esunarizes our... Comunications Sciences Division Naval Training Equipment Center Code 7500 Orlando, FL 32813 Naval Research Laboratory Washington, D. C. 20375 Dr. Gary...Dr. A. L. Slafkosky Scientific Advisor Commander Commandant of the Marine Corps Naval Electronics Systems Co-and C6de RD-1 Human Factors Engineering
Astronaut Pedro Duque Watches A Water Bubble
NASA Technical Reports Server (NTRS)
2003-01-01
Aboard the International Space Station (ISS), European Space Agency astronaut Pedro Duque of Spain watches a water bubble float between a camera and himself. The bubble shows his reflection (reversed). Duque was launched aboard a Russian Soyuz TMA-3 spacecraft from the Baikonur Cosmodrome, Kazakhstan on October 18th, along with expedition-8 crew members Michael C. Foale, Mission Commander and NASA ISS Science Officer, and Cosmonaut Alexander Y. Kaleri, Soyuz Commander and flight engineer.
Visible and Infrared Obscuration Effects of Ice Fog
1981-05-01
DC 20305 McLean, VA 22102 Director Science Applications, Inc. Defense Nuclear Agency 8400 Westpark Drive ATTN: RAAE (Dr. Carl Fitz ) ATTN: Dr. John E...Pinkley 4040 South Memorial Parkway Commander Huntsville, AL 35802 US Army Missile Command Redstone Scientific Information Center John M. Hobbie ATTN...Mugu, CA 93042 ATTN: Mr. Charles R. Hill Centinela and Teale Streets Effects Technology Inc. Bldg 305, MS T-73A ATTN: Mr. John 0. Carlyle Culter City
United States Intervention in Panama: The Battle Continues
1991-02-11
U. S. presencc in Panama in accbrda~nce with Panama Canal Tra atiuzs, arid; support the Pentagon’s proposed post -cold war concept of retucing the...the Pentagon’s proposed post -cold war concept of reducing the number of unified commands. IDT10TA4 , ADi sr I o L: r 91-01546 9 6 7 064 11111 H11Il01l...success of Operation Just Cause, there were no post -invasion plans for rebuilding :;q - 5 Panama. According to General Frederick Woerner, former
2016-04-07
ISS047e050514 (04/07/2016) --- Expedition 47 Commander Tim Kopra configures the station’s Microgravity Science Glovebox for upcoming research operations. The glovebox is one of the major dedicated science facilities inside Destiny. It has a large front window and built-in gloves to provide a sealed environment for conducting science and technology experiments. The Glovebox is particularly suited for handling hazardous materials when the crew is present.
Resilience Among Students at the Basic Enlisted Submarine School
2016-12-01
reported resilience. The Hayes’ Macro in the Statistical Package for the Social Sciences (SSPS) was used to uncover factors relevant to mediation analysis... Statistical Package for the Social Sciences (SPSS) was used to uncover factors relevant to mediation analysis. Findings suggest that the encouragement of...to Stressful Experiences Scale RTC Recruit Training Command SPSS Statistical Package for the Social Sciences SS Social Support SWB Subjective Well
Optimal attitude maneuver execution for the Advanced Composition Explorer (ACE) mission
NASA Technical Reports Server (NTRS)
Woodard, Mark A.; Baker, David
1995-01-01
The Advanced Composition Explorer (ACE) spacecraft will require frequent attitude reorientations in order to maintain the spacecraft high gain antenna (HGA) within 3 deg of earth-pointing. These attitude maneuvers will be accomplished by employing a series of ground-commanded thruster pulses, computed by ground operations personnel, to achieve the desired change in the spacecraft angular momentum vector. With each maneuver, attitude nutation will be excited. Large nutation angles are undesirable from a science standpoint. It is important that the thruster firings be phased properly in order to minimize the nutation angle at the end of the maneuver so that science collection time is maximized. The analysis presented derives a simple approximation for the nutation contribution resulting from a series of short thruster burns. Analytic equations are derived which give the induced nutation angle as a function of the number of small thruster burns used to execute the attitude maneuver and the phasing of the burns. The results show that by properly subdividing the attitude burns, the induced nutation can be kept low. The analytic equations are also verified through attitude dynamics simulation and simulation results are presented. Finally, techniques for quantifying the post-maneuver nutation are discussed.
STS-8 crew during post flight telephone conversation with President Reagan
NASA Technical Reports Server (NTRS)
1983-01-01
The STS-8 crew, all seated on a platform in a studio, respond to a comment made by President Ronald Reagan during a post flight telephone conversation. Richard Truly, center, is crew commander. Pilot for the flight was Daniel C. Brandenstein, second left. The mission specialists were Guion S. Bluford, left: Dr. William S. Thornton, second right, and Dale A. Gardner, right.
Induced Stress, Artificial Environment, Simulated Tactical Operations Center Model
1973-06-01
oriented 4 activities or, at best , tre application of dor:trinal i. 14 concepts to command post exercises. Unlike mechanical skills, weapon’s...training model identified as APSTRAT, an acronym indicating aptitude and strategies , be considered as a point of reference. Several instructional...post providing visual and aural sensing tasks and training objective oriented performance tasks. Vintilly, ho concludes that failure should be
Advances in Discrete-Event Simulation for MSL Command Validation
NASA Technical Reports Server (NTRS)
Patrikalakis, Alexander; O'Reilly, Taifun
2013-01-01
In the last five years, the discrete event simulator, SEQuence GENerator (SEQGEN), developed at the Jet Propulsion Laboratory to plan deep-space missions, has greatly increased uplink operations capacity to deal with increasingly complicated missions. In this paper, we describe how the Mars Science Laboratory (MSL) project makes full use of an interpreted environment to simulate change in more than fifty thousand flight software parameters and conditional command sequences to predict the result of executing a conditional branch in a command sequence, and enable the ability to warn users whenever one or more simulated spacecraft states change in an unexpected manner. Using these new SEQGEN features, operators plan more activities in one sol than ever before.
2012-05-07
offer the most opportunity for career progression and command. As Colonel Alphonse Davis highlights: Although the Marine Corps does not promote its...visibility commands or billet, the Marine Corps would inherit the following issues into the millennium as noted by Colonel Alphonse Davis38: in the post... Alphonse G., Pride, Progress, Prospects, History and Muesems Division, Headquarters Marine Corps, Washington D.C., 2000. Shaw Jr., Henry I, and Donnelly
The Collins Center Update. Volume 1, Issue 3, December 1999
1999-12-01
CDN), devel oped and executed the FORO DE ESTRATEGIA NACIONAL 2005 Hon du ras en el Siglo XXI (FEN 2005) {Na tional Strategy Forum 2005 Hon du ras...tools and processes used to make strate gic leaders. Im pressed with this program, Gover nor Pat ton requested a return visit with his en tire...wide command post and field train ing exer cise which tests and vali dates nuclear command and control, and exe cu tion proce dures. It is based on a
Automated CPX support system preliminary design phase
NASA Technical Reports Server (NTRS)
Bordeaux, T. A.; Carson, E. T.; Hepburn, C. D.; Shinnick, F. M.
1984-01-01
The development of the Distributed Command and Control System (DCCS) is discussed. The development of an automated C2 system stimulated the development of an automated command post exercise (CPX) support system to provide a more realistic stimulus to DCCS than could be achieved with the existing manual system. An automated CPX system to support corps-level exercise was designed. The effort comprised four tasks: (1) collecting and documenting user requirements; (2) developing a preliminary system design; (3) defining a program plan; and (4) evaluating the suitability of the TRASANA FOURCE computer model.
2009-01-01
CPCO Centre de Planification et de Conduite des Opérations CPF Centre de Préparation des Forces CPX command post exercise CT collective training CTC...forces presides over the joint staff and commands French forces in the conduct of operations through the Centre de Planification et de Conduite des...i] t is difficult to identify a single concise statement of the government’s foreign policy.”17 The committee instead pointed to the mission state
Astronauts Cockrell, Shepherd and Polansky during hatch opening
2001-02-11
STS98-E-5133 (11 February 2001) --- The crew commanders of Atlantis and the International Space Station shake hands following the opening of the Destiny laboratory on February 11 in this digital still camera view. From the left are astronauts Kenneth D. Cockrell, STS-98 commander; William M. (Bill) Shepherd, Expedition One commander; and Mark L. Polansky, STS-98 pilot. Later, the astronauts and cosmonauts spent the first full day of what are planned to be years of work ahead inside the orbiting science and command center. After Shepherd opened the Destiny hatch, he and Cockrell ventured inside at 8:38 a.m. (CST). As depicted in subsequent digital images in this series, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crew also continued equipment transfers from the shuttle to the station.
Historical Perspectives on Female Participation in Hunting and War
2016-06-10
ORGANIZATION NAME( S ) AND ADDRESS(ES) U.S. Army Command and General Staff College ATTN: ATZL-SWD-GD Fort Leavenworth, KS 66027-2301 8. PERFORMING...Command and General Staff College in partial fulfillment of the requirements for the degree MASTER OF MILITARY ART AND SCIENCE Art of War Scholars...NUMBER 6. AUTHOR( S ) Maj Margaret Alexis Wright Piet, Major, USMCR 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING
2003-10-15
October 15, 2003. Cosmonaut Hotel, Baikonur, Kazakhstan. Expedition 8 Commander and NASA Science Officer Mike Foale talks to a colleague on his cell phone from his Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan Oct. 15, 2003 as he continues prelaunch preparations for his launch on Oct. 18 on a Soyuz TMA-3 vehicle to the International Space Station. Foale will ride into orbit with Expedition 8 Soyuz Commander Alexander Kaleri and European Space Agency Astronaut Pedro Duuque of Spain. Photo Credit: "NASA/Bill Ingalls"
DPM and Glovebox, Payload Commander Kathy Thornton and Payload Specialist Albert Sacco in Spacelab
1995-10-21
STS073-E-5003 (23 Oct. 1995) --- Astronaut Kathryn C. Thornton, STS-73 payload commander, works at the Drop Physics Module (DPM) on the portside of the science module aboard the Space Shuttle Columbia in Earth orbit. Payload specialist Albert Sacco Jr. conducts an experiment at the Glovebox. This frame was exposed with the color Electronic Still Camera (ESC) assigned to the 16-day United States Microgravity Laboratory (USML-2) mission.
Learning Outcomes and Affective Factors of Blended Learning of English for Library Science
ERIC Educational Resources Information Center
Wentao, Chen; Jinyu, Zhang; Zhonggen, Yu
2016-01-01
English for Library Science is an essential course for students to command comprehensive scope of library knowledge. This study aims to compare the learning outcomes, gender differences and affective factors in the environments of blended and traditional learning. Around one thousand participants from one university were randomly selected to…
English Collocation Learning through Corpus Data: On-Line Concordance and Statistical Information
ERIC Educational Resources Information Center
Ohtake, Hiroshi; Fujita, Nobuyuki; Kawamoto, Takeshi; Morren, Brian; Ugawa, Yoshihiro; Kaneko, Shuji
2012-01-01
We developed an English Collocations On Demand system offering on-line corpus and concordance information to help Japanese researchers acquire a better command of English collocation patterns. The Life Science Dictionary Corpus consists of approximately 90,000,000 words collected from life science related research papers published in academic…
Human Systems Integration Competency Development for Navy Systems Commands
2012-09-01
cognizance of Applied Engineering /Psychology relative to knowledge engineering, training, teamwork, user interface design and decision sciences. KSA...cognizance of Applied Engineering /Psychology relative to knowledge engineering, training, teamwork, user interface design and decision sciences...requirements (as required). Fundamental cognizance of Applied Engineering / Psychology relative to knowledge engineering, training, team work, user
Master of Military Art and Science (MMAS) Research and Thesis.
ERIC Educational Resources Information Center
Army Command and General Staff Coll., Fort Leavenworth, KS.
This document describes the requirements for the degree of Master of Military Art and Science (MMAS) at the United States Army Command and General Staff College (CGSC), Fort Leavenworth, Kansas. Chapter one outlines program requirements for the MMAS, discusses the place of research at CGSC, describes research requirements for the MMAS, and…
DISCUS Ninth Grade, Earth Science, Part Two.
ERIC Educational Resources Information Center
Duval County School Board, Jacksonville, FL. Project DISCUS.
Included are instructional materials designed for use with disadvantaged students who have a limited reading ability and poor command of English. The guide is the second volume of a two volume, one year program in earth science, and contains these five units and activities: Rock Cycle, 12 activities; Minerals and Crystals, 6 activities; Weathering…
General view. View to southwest Offutt Air Force Base, ...
General view. View to southwest - Offutt Air Force Base, Looking Glass Airborne Command Post, Vehicle Refueling Station, Northeast of AGE Storage Facility at far northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE
2. Southeast side of addition. View to northwest. Offutt ...
2. Southeast side of addition. View to northwest. - Offutt Air Force Base, Looking Glass Airborne Command Post, Aerospace Ground Equipment (AGE) Storage Facility, Far Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE
The Generic Mapping Tools 6: Classic versus Modern Mode
NASA Astrophysics Data System (ADS)
Wessel, P.; Uieda, L.; Luis, J. M. F.; Scharroo, R.; Smith, W. H. F.; Wobbe, F.
2017-12-01
The Generic Mapping Tools (GMT; gmt.soest.hawaii.edu) is a 25-year old, mature open-source software package for the analysis and display of geoscience data (e.g., interpolate, filter, manipulate, project and plot temporal and spatial data). The GMT "toolbox" includes about 80 core and 40 supplemental modules sharing a common set of command options, file structures, and documentation. GMT5, when released in 2013, introduced an application programming interface (API) to allow programmatic access to GMT from other computing environments. Since then, we have released a GMT/MATLAB toolbox, an experimental GMT/Julia package, and will soon introduce a GMT/Python module. In developing these extensions, we wanted to simplify the GMT learning curve but quickly realized the main stumbling blocks to GMT command-line mastery would be ported to the external environments unless we introduced major changes. With thousands of GMT scripts already in use by scientists around the world, we were acutely aware of the need for backwards compatibility. Our solution, to be released as GMT 6, was to add a modern run mode that complements the classic mode offered so far. Modern mode completely eliminates the top three obstacles for new (and not so new) GMT users: (1) The responsibility to properly stack PostScript layers manually (i.e., the -O -K dance), (2) the responsibility of handling output redirection of PostScript (create versus append), and (3) the need to provide commands with repeated information about regions (-R) and projections (-J). Thus, modern mode results in shorter, simpler scripts with fewer pitfalls, without interfering with classic scripts. Our implementation adds five new commands that begin and end a modern session, simplify figure management, automate the conversion of PostScript to more suitable formats, automate region detection, and offer a new automated subplot environment for multi-panel illustrations. Here, we highlight the GMT modern mode and the simplifications it offers, both for command-line use and in external environments. GMT 6 is in beta mode but accessible from our repository. Numerous improvements have been added in addition to modern mode; we expect a formal release in early 2018. Publication partially supported by FCT project UID/GEO/50019/2013 - Instituto D. Luiz.
2009-11-02
ISS021-E-018978 (2 Nov. 2009) --- European Space Agency astronaut Frank De Winne, Expedition 21 commander, works with Materials Science Laboratory (MSL) hardware in the Destiny laboratory of the International Space Station.
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at Spacehab, Cape Canaveral, Fla., STS-107 Commander Rick Douglas Husband checks out a piece of equipment. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla, David M. Brown and Laurel Blair Salton Clark; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Kalpana Chawla trains on a glove box experiment. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Laurel Blair Salton Clark and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
2001-06-11
KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Laurel Blair Salton Clark gets hands-on training on equipment inside the Spacehab module. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
2001-06-11
KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at Spacehab, Cape Canaveral, Fla., STS-107 Commander Rick Douglas Husband checks out a piece of equipment. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla, David M. Brown and Laurel Blair Salton Clark; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
Change and the Operational Commander
1996-01-01
heaval, and domestic imperatives. The horse gave way to the tank and airplane, and a continental military became a for- ward deployed superpower. Guns and...of Social Sciences at West Point. Change and the Operational Commander By J A Y M. P A R K E R U .S . N av y (T ed S al oi s) JFQPrkr 9/19/96 1...shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1
The Role of Containment: American Middle East Policy and the Islamic Republic of Iran
2016-06-10
WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) U.S. Army Command and General Staff College ATTN: ATZL-SWD-GD Fort Leavenworth...the U.S. Army Command and General Staff College in partial fulfillment of the requirements for the degree MASTER OF MILITARY ART AND SCIENCE...NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) CDR Andrew J. Gustafson 5d. PROJECT NUMBER 5e. TASK NUMBER 5f
How Do Leaders Enable Performance in Adverse Conditions Leadership in Defense of the Alcazar
2016-06-10
WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) U.S. Army Command and General Staff College ATTN: ATZL-SWD-GD Fort...of the U.S. Army Command and General Staff College in partial fulfillment of the requirements for the degree MASTER OF MILITARY ART AND SCIENCE...CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) Edward Clark III 5d. PROJECT NUMBER 5e. TASK NUMBER 5f
2004-10-08
Russian Space Forces cosmonaut Yuri Shargin, right, Expedition 10 Commander and NASA Science Officer Leroy Chiao and Flight Engineer and Soyuz Commander Salizhan Sharipov, lower left, conducted a final inspection of their Soyuz TMA-5 spacecraft, Saturday, October 9, 2004, at the Baikonur Cosmodrome in Kazakhstan in preparation for their launch October 14 to the International Space Station. The Soyuz vehicle will be mated to its booster rocket October 11 in preparation for its rollout to the Central Asian launch pad October 12. Photo Credit: (NASA/Bill Ingalls)
2004-10-08
Expedition 10 Commander and NASA Science Officer Leroy Chiao, right, Flight Engineer and Soyuz Commander Salizhan Sharipov and Russian Space Forces cosmonaut Yuri Shargin, left, conducted a final inspection of their Soyuz TMA-5 spacecraft on Saturday, October 9, 2004, at the Baikonur Cosmodrome in Kazakhstan in preparation for their launch October 14 to the International Space Station. The Soyuz vehicle will be mated to its booster rocket October 11 in preparation for its rollout to the Central Asian launch pad October 12. Photo Credit: (NASA/Bill Ingalls)
2004-10-08
Expedition 10 Commander and NASA Science Officer Leroy Chiao, Flight Engineer and Soyuz Commander Salizhan Sharipov and Russian Space Forces Cosmonaut Yuri Shargin conducted a final inspection of their Soyuz TMA-5 spacecraft Saturday, October 9, 2004 at the Baikonur Cosmodrome in Kazakhstan in preparation for their launch October 14 to the International Space Station. The Soyuz vehicle will be mated to its booster rocket October 11 in preparation for its rollout to the Central Asian launch pad October 12. Photo Credit: (NASA/Bill Ingalls)
2004-10-08
Expedition 10 Commander and NASA Science Officer Leroy Chiao, right, Flight Engineer and Soyuz Commander Salizhan Sharipov and Russian Space Forces cosmonaut Yuri Shargin conducted a final inspection of their Soyuz TMA-5 spacecraft, Saturday, October 9, 2004, at the Baikonur Cosmodrome in Kazakhstan in preparation for their launch October 14 to the International Space Station. The Soyuz vehicle will be mated to its booster rocket October 11 in preparation for its rollout to the Central Asian launch pad October 12. Photo Credit: (NASA/Bill Ingalls)
2004-10-08
Expedition 10 Commander and NASA Science Officer Leroy Chiao, left, Russian Space Forces cosmonaut Yuri Shargin and Flight Engineer and Soyuz Commander Salizhan Sharipov, lower right, conducted a final inspection of their Soyuz TMA-5 spacecraft on Saturday, October 9, 2004, at the Baikonur Cosmodrome in Kazakhstan in preparation for their launch October 14 to the International Space Station. The Soyuz vehicle will be mated to its booster rocket October 11 in preparation for its rollout to the Central Asian launch pad October 12. Photo Credit: (NASA/Bill Ingalls)
2018-01-01
The h-index is frequently used to measure the performance of single scientists in Korea (and beyond). No single indicator alone, however, is able to provide a stable and complete assessment of performance. The Stata command bibrep.ado is introduced which automatically produces bibliometric reports for single researchers (senior researchers working in the natural or life sciences). The user of the command receives a comprehensive bibliometric report which can be used in research evaluation instead of the h-index. PMID:29713257
Expedition-8 Flight Members Pose Inside the Soyuz TMA-3 Vehicle
NASA Technical Reports Server (NTRS)
2003-01-01
Posed inside the Soyuz TMA-3 Vehicle in a processing facility at the Baikonur Cosmodrome in Kazakhstan during a pre-launch inspection are (left to right): Expedition-8 Crew members, Michael C. Foale, Mission Commander and NASA ISS Science Officer; Cosmonaut Alexander Y. Kaleri, Soyuz Commander and flight engineer; and European Space Agency (ESA) astronaut Pedro Duque of Spain. The three launched from the Cosmodrome on October 18, 2003 onboard a Soyuz rocket destined for the International Space Station (ISS).
1992-01-22
Onboard Space Shuttle Discovery (STS-42) the seven crewmembers pose for a traditional in-space portrait in the shirt-sleeve environment of the International Microgravity Laboratory (IML-1) science module in the Shuttle's cargo bay. Pictured are (clockwise from top),Commander Ronald J. Grabe, payload commander Norman E. Thagard, payload specialist Roberta L. Bondar; mission specialists William F. Readdy and David C. Hilmers; pilot Stephen S. Oswald and payload specialist Ulf Merbold. The rotating chair, used often in biomedical tests on the eight-day flight, is in center frame.
Lightweight Tactical Client: A Capability-Based Approach to Command Post Computing
2015-12-01
bundles these capabilities together is proposed: a lightweight tactical client. In order to avoid miscommunication in the future, it is... solutions and almost definitely rules out most terminal-based thin clients. UNCLASSIFIED Approved for public release
6. General interior overview of addition. View to northwest. ...
6. General interior overview of addition. View to northwest. - Offutt Air Force Base, Looking Glass Airborne Command Post, Aerospace Ground Equipment (AGE) Storage Facility, Far Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE
5. General interior overview of addition. View to south. ...
5. General interior overview of addition. View to south. - Offutt Air Force Base, Looking Glass Airborne Command Post, Aerospace Ground Equipment (AGE) Storage Facility, Far Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE
Expedition 11 Press Conference
2005-04-13
Expedition 11 backup crew Robert Thirsk of Canada, left, American Dan Tani, Russian Commander Mikhail Tyurin and prime Expedition 11 crew Commander Sergei Krikalev, fourth from left, Flight Engineer and NASA Science Officer John Phillips and European Space Agency Astronaut Roberto Vittori of Italy, right, talk to the press, Thursday, April 14, 2005, prior to the April 15 launch aboard the Soyuz TMA-6 spacecraft from the Baikonur Cosmodrome in Kazakhstan. Krikalev and Phillips will spend six months on the Station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the Station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)
STS-98 and Expedition One crew prepare to open U.S. Lab hatch
2001-02-11
STS098-352-0025 (11 February 2001) --- STS-98 mission commander Kenneth D. Cockrell (left) assists as Expedition One commander William M. (Bill) Shepherd opens the hatch to the newly attached Destiny laboratory. The crews of Atlantis and the International Space Station entered the laboratory shortly after this photo was made on February 11; and the astronauts and cosmonauts spent the first full day of what are planned to be years of work ahead inside the orbiting science and command center. Members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crew also continued equipment transfers from the shuttle to the station.
1995-10-20
Onboard Space Shuttle Columbia (STS-73) Payload Commander Kathryn Thornton works with the Drop Physics Module (DPM) in the United States Microgravity Laboratory 2 (USML-2) Spacelab Science Module cleaning the experiment chamber of the DPM.
ERIC Educational Resources Information Center
Valeeva, Roza A.; Baykova, Olga V.; Kusainov, Askarbek K.
2016-01-01
The urgency of the problem raised in the article is explained by the increasing demand for qualified specialists who have a good command of a foreign language. The communicative competence of an academic science teacher under the conditions of international cooperation development is of great importance. The article discusses the problem of…
Face Recognition via Ensemble SIFT Matching of Uncorrelated Hyperspectral Bands and Spectral PCTs
2011-06-01
Operational Sciences Graduate School of Engineering and Management Air Force Institute of Technology Air University Air...Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Operations Research...Comparison of performance against different categories of probes (Phillips, Moon, Rauss, & Rizvi, 1997, p. 141
PromISS 4 hardware set up in the MSG during Expedition 12
2006-01-18
ISS012-E-16184 (18 Jan. 2006) --- Astronaut William S. (Bill) McArthur, Jr., Expedition 12 commander and NASA space station science officer, sets up the Protein Crystal Growth Monitoring by Digital Holographic Microscope (PromISS) experiment hardware inside the Microgravity Science Glovebox (MSG) facility in the Destiny laboratory on the International Space Station.
1975-09-01
Programs Psychological Sciences Division Office of Naval Research Contract No. N00014-74-A-0436-0001 NR 151-370 Approved for public release...Supported By Commandant of the Marine Corps (Code RD) And Monitored By Personnel and Training Research Programs Psychological Sciences Division...balance 6. Test for effectiveness 7. Search for problems 8. Ascertain solutions 9« Determine alternatives 10. Seek out methods for improvement
Cognitive and Motivational Consequences of Tutoring and Discovery Learning
1998-06-01
for the Behavioral and Social Sciences t*J Approved for public release; distribution is unlimited. [flEIC QUAUTy INSPECTED U.S. Army Research...Institute for the Behavioral and Social Sciences A Directorate of the U.S. Total Army Personnel Command EDGAR M. JOHNSON Director Research...and Social Sciences. NOTE: The views, opinions, and findings in this Research Note are those of the author(s) and should not be construed as an
High angle of attack flying qualities criteria for longitudinal rate command systems
NASA Technical Reports Server (NTRS)
Wilson, David J.; Citurs, Kevin D.; Davidson, John B.
1994-01-01
This study was designed to investigate flying qualities requirements of alternate pitch command systems for fighter aircraft at high angle of attack. Flying qualities design guidelines have already been developed for angle of attack command systems at 30, 45, and 60 degrees angle of attack, so this research fills a similar need for rate command systems. Flying qualities tasks that require post-stall maneuvering were tested during piloted simulations in the McDonnell Douglas Aerospace Manned Air Combat Simulation facility. A generic fighter aircraft model was used to test angle of attack rate and pitch rate command systems for longitudinal gross acquisition and tracking tasks at high angle of attack. A wide range of longitudinal dynamic variations were tested at 30, 45, and 60 degrees angle of attack. Pilot comments, Cooper-Harper ratings, and pilot induced oscillation ratings were taken from five pilots from NASA, USN, CAF, and McDonnell Douglas Aerospace. This data was used to form longitudinal design guidelines for rate command systems at high angle of attack. These criteria provide control law design guidance for fighter aircraft at high angle of attack, low speed flight conditions. Additional time history analyses were conducted using the longitudinal gross acquisition data to look at potential agility measures of merit and correlate agility usage to flying qualities boundaries. This paper presents an overview of this research.
1988-03-01
framework for acquistion management to analyzing the Identification Friend, Foe or Neutral (IFFN) Joint Testbed to evaluating C2 components of 0 the...measure. The results on the worksheet were columns consisting of ones and zeroes . Every summed measure (e.g.,FAIR, XMOTi, and XCSTi) received a cumulative...were networked by the gateway and through TASS to one another. c. Structural Components The valL-- of the structural measure remained at zero
Treatment of Early Post-Op Wound Infection after Internal Fixation
2016-10-01
PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for public...Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT...vanderbilt.edu Table of Contents Page Body………………………………………………………………………………….. 4 Key Research Accomplishments………………………………………….…….. 5 Reportable
President Nixon and Apollo 13 crewmen at Hickam AFB
1970-04-18
S70-15526 (18 April 1970) --- President Richard M. Nixon and the Apollo 13 crew members pay honor to the United States flag during the post-mission ceremonies at Hickam Air Force Base, Hawaii. Astronauts James A. Lovell Jr., (United States Navy Captain, salutes the flag) commander; John L. Swigert Jr., command module pilot (right); and Fred W. Haise Jr., lunar module pilot (left), were presented the Presidential Medal of Freedom by the Chief Executive. The Apollo 13 splashdown occurred at 12:07:44 p.m. (CST), April 17, 1970, about a day and a half prior to the award presentation.
3. Northwest side and southwest rear of addition. View to ...
3. Northwest side and southwest rear of addition. View to east. - Offutt Air Force Base, Looking Glass Airborne Command Post, Aerospace Ground Equipment (AGE) Storage Facility, Far Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE
9. Interior view of electronics compartment. View toward rear of ...
9. Interior view of electronics compartment. View toward rear of aircraft. - Offutt Air Force Base, Looking Glass Airborne Command Post, Looking Glass Aircraft, On Operational Apron covering northeast half of Project Looking Glass Historic District, Bellevue, Sarpy County, NE
Acoustic/Seismic Ground Sensors for Detection, Localization and Classification on the Battlefield
2006-10-01
controlled so that collisions are avoided. Figure 1 presents BACH system components. 3 BACH Sensor Posts (1 to 8) Command Post BACH MMI PC VHF...2.2.4 Processing scheme Processing inside SP is dedicated to stationary spectral lines extraction and derives from ASW algorithms. Special attention...is similar to that used for helicopters (see figure 4), with adaptations to cope with vehicles signatures (fuzzy unstable spectral lines, abrupt
1989-11-01
other design tools. RESULTS OF TEST/DEMONSTRATION: Training for the Design 4D Program was conducted at USACERL. Although nearly half of the test...subjects had difficulty with the prompts, their understanding of the program improved after experimenting with the commands. After training , most felt...Equipment Testing Process 3 TEST DISTRICT TRAINING ........................................... 10 Training Process Post Training Survey Post Training
Lopez-Alegria with records experiment data
2006-10-03
ISS014-E-05129 (3 Oct. 2006) --- Astronaut Michael E. Lopez-Alegria, Expedition 14 commander and NASA space station science officer, uses a computer in the Destiny laboratory of the International Space Station.
Using AUTORAD for Cassini File Uplinks: Incorporating Automated Commanding into Mission Operations
NASA Technical Reports Server (NTRS)
Goo, Sherwin
2014-01-01
As the Cassini spacecraft embarked on the Solstice Mission in October 2010, the flight operations team faced a significant challenge in planning and executing the continuing tour of the Saturnian system. Faced with budget cuts that reduced the science and engineering staff by over a third in size, new and streamlined processes had to be developed to allow the Cassini mission to maintain a high level of science data return with a lower amount of available resources while still minimizing the risk. Automation was deemed an important key in enabling mission operations with reduced workforce and the Cassini flight team has made this goal a priority for the Solstice Mission. The operations team learned about a utility called AUTORAD which would give the flight operations team the ability to program selected command files for radiation up to seven days in advance and help minimize the need for off-shift support that could deplete available staffing during the prime shift hours. This paper will describe how AUTORAD is being utilized by the Cassini flight operations team and the processes that were developed or modified to ensure that proper oversight and verification is maintained in the generation and execution of radiated command files.
Status of the JWST Science Instrument Payload
NASA Technical Reports Server (NTRS)
Greenhouse, Matt
2016-01-01
The James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) system consists of five sensors (4 science): Mid-Infrared Instrument (MIRI), Near Infrared Imager and Slitless Spectrograph (NIRISS), Fine Guidance Sensor (FGS), Near InfraRed Camera (NIRCam), Near InfraRed Spectrograph (NIRSpec); and nine instrument support systems: Optical metering structure system, Electrical Harness System; Harness Radiator System, ISIM Electronics Compartment, ISIM Remote Services Unit, Cryogenic Thermal Control System, Command and Data Handling System, Flight Software System, Operations Scripts System.
Test Telemetry And Command System (TTACS)
NASA Technical Reports Server (NTRS)
Fogel, Alvin J.
1994-01-01
The Jet Propulsion Laboratory has developed a multimission Test Telemetry and Command System (TTACS) which provides a multimission telemetry and command data system in a spacecraft test environment. TTACS reuses, in the spacecraft test environment, components of the same data system used for flight operations; no new software is developed for the spacecraft test environment. Additionally, the TTACS is transportable to any spacecraft test site, including the launch site. The TTACS is currently operational in the Galileo spacecraft testbed; it is also being provided to support the Cassini and Mars Surveyor Program projects. Minimal personnel data system training is required in the transition from pre-launch spacecraft test to post-launch flight operations since test personnel are already familiar with the data system's operation. Additionally, data system components, e.g. data display, can be reused to support spacecraft software development; and the same data system components will again be reused during the spacecraft integration and system test phases. TTACS usage also results in early availability of spacecraft data to data system development and, as a result, early data system development feedback to spacecraft system developers. The TTACS consists of a multimission spacecraft support equipment interface and components of the multimission telemetry and command software adapted for a specific project. The TTACS interfaces to the spacecraft, e.g., Command Data System (CDS), support equipment. The TTACS telemetry interface to the CDS support equipment performs serial (RS-422)-to-ethernet conversion at rates between 1 bps and 1 mbps, telemetry data blocking and header generation, guaranteed data transmission to the telemetry data system, and graphical downlink routing summary and control. The TTACS command interface to the CDS support equipment is nominally a command file transferred in non-real-time via ethernet. The CDS support equipment is responsible for metering the commands to the CDS; additionally for Galileo, TTACS includes a real-time-interface to the CDS support equipment. The TTACS provides the basic functionality of the multimission telemetry and command data system used during flight operations. TTACS telemetry capabilities include frame synchronization, Reed-Solomon decoding, packet extraction and channelization, and data storage/query. Multimission data display capabilities are also available. TTACS command capabilities include command generation verification, and storage.
2009-08-28
ISS020-E-035016 (27 Aug. 2009) --- Russian cosmonaut Gennady Padalka, Expedition 20 commander, uses the Russian BAR/EXPERT science payload to take various environmental measurements in the Zvezda Service Module of the International Space Station.
2009-08-28
ISS020-E-035017 (27 Aug. 2009) --- Russian cosmonaut Gennady Padalka, Expedition 20 commander, uses the Russian BAR/EXPERT science payload to take various environmental measurements in the Zvezda Service Module of the International Space Station.
U.S. Air Force AF Week in Photos Senior leaders meet with industry to discuss utilizing artificial intelligence and quantum science throughout the Air Force AF announces 2018 Blacks in Government Meritorious
Lopez-Alegria working in the U.S. Laboratory
2006-09-23
ISS013-E-84249 (23 Sept. 2006) --- Astronaut Michael E. Lopez-Alegria, Expedition 14 commander and NASA space station science officer, uses a computer in the Destiny laboratory of the International Space Station.
CDR Frank De Winne during MSRR Commissioning Activities
2009-10-14
ISS021-E-006202 (14 Oct. 2009) --- European Space Agency astronaut Frank De Winne, Expedition 21 commander, works with Materials Science Laboratory (MSL) hardware in the Destiny laboratory of the International Space Station.
CDR Frank De Winne during MSRR Commissioning Activities
2009-10-14
ISS021-E-006219 (14 Oct. 2009) --- European Space Agency astronaut Frank De Winne, Expedition 21 commander, works with Materials Science Laboratory (MSL) hardware in the Destiny laboratory of the International Space Station.
CDR Frank De Winne during MSRR Commissioning Activities
2009-10-14
ISS021-E-006209 (14 Oct. 2009) --- European Space Agency astronaut Frank De Winne, Expedition 21 commander, works with Materials Science Laboratory (MSL) hardware in the Destiny laboratory of the International Space Station.
CDR Frank De Winne during MSRR Commissioning Activities
2009-10-14
ISS021-E-006180 (14 Oct. 2009) --- European Space Agency astronaut Frank De Winne, Expedition 21 commander, works with Materials Science Laboratory (MSL) hardware in the Destiny laboratory of the International Space Station.
CDR Frank De Winne during MSRR Commissioning Activities
2009-10-14
ISS021-E-006196 (14 Oct. 2009) --- European Space Agency astronaut Frank De Winne, Expedition 21 commander, works with Materials Science Laboratory (MSL) hardware in the Destiny laboratory of the International Space Station.
Microcomputer-assisted transmission of disaster data by cellular telephone.
Wigder, H N; Fligner, D J; Rivers, D; Hotch, D
1989-01-01
Voice communication of information during disasters is often inadequate. In particular, simultaneous transmission by multiple callers on the same frequency can result in blocked transmissions and miscommunications. In contrast, nonvoice transmission of data requires less time than does voice communication of the same data, and may be more accurate. We conducted a pilot study to test the feasibility of a microcomputer assisted communication (MAC) network linking the disaster scene and the command hospital. The radio chosen to transmit data from the field disaster site to the command hospital was a cellular telephone connected to the microcomputer by modem. Typed communications between the microcomputer operators enabled dialogue between the disaster site and the hospitals. A computer program using commercially available software (Symphony by Lotus, Inc.) was written to allow for data entry, data transmission, and reports. Patient data, including age, sex, severity of injury, identification number, major injuries, and hospital destination were successfully transmitted from the disaster site command post to the command hospital. This pilot test demonstrated the potential applicability of MAC for facilitating transmission of patient data during a disaster.
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- STS-107 Payload Commander Michael Anderson trains on equipment in the training module at SPACEHAB, Cape Canaveral, Fla. Anderson and other crew members Commander Rick D. Husband, Pilot William C. McCool, Mission Specialists Kalpana Chawla, Laurel Blair Salton Clark and David M. Brown; and Payload Specialist Ilan Ramon, of Israel, are at SPACEHAB to take part in Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. . As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Kalpana Chawla looks over equipment inside the Spacehab module. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Laurel Blair Salton Clark and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- STS-107 Mission Specialist David M. Brown trains on equipment in the training module at SPACEHAB, Cape Canaveral, Fla. Brown and other crew members Commander Rick D. Husband, Pilot William C. McCool, Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla and Laurel Blair Salton Clark; and Payload Specialist Ilan Ramon, of Israel, are at SPACEHAB to take part in Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Laurel Blair Salton Clark gets hands-on training on equipment inside the Spacehab module. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Laurel Blair Salton Clark gets hands-on training on a glove box experiment inside the training module. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- STS-107 Payload Specialist Ilan Ramon, of Israel, trains on equipment in the training module at SPACEHAB, Cape Canaveral. Ramon and other crew members Commander Rick D. Husband, Pilot William C. McCool, Payload Commander Michael P. Anderson; and Mission Specialists Kalpana Chawla, Laurel Blair Salton Clark and David M. Brown are at SPACEHAB to take part in Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Laurel Blair Salton Clark manipulates a piece of equipment. She and other crew members are at SPACEHAB, Port Canaveral, Fla., for Crew Equipment Interface Test (CEIT) activities that enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. Other STS-107 crew members are Commander Rick Douglas Husband, Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists Kalpana Chawla, David M. Brown and Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., Mission Specialist Laurel Blair Salton Clark practices an experiment while Commander Rick Douglas Husband and Mission Specialist Kalpana Chawla observe. They and other crew members Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists David M. Brown and Ilan Ramon, of Israel, are at SPACEHAB for Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002
STS-114 Crew Interview: Soichi Noguchi
NASA Technical Reports Server (NTRS)
2003-01-01
Soichi Noguchi, Mission Specialist 1 (MS1) representing Japan's National Space Development Agency (NASDA) is seen during a prelaunch interview. He discusses the main goals of this flight which are to take expedition 7 to the International Space Station and bring back expedition 6 to the Earth. He is also responsible for all Extravehicular (EVA) work on this mission. Expedition seven includes: Mission Specialist and Commander Yuri Malenchenko; NASA ISS Science Officer Edward Lu; and Flight Engineer Alexander Kaleri. Expedition Six includes: Commander Kenneth Bowersox; NASA ISS Science Officer Donald Petit; and Flight Engineer Nikolai Budarin. Noguchi explains the Utilization and Logistics Flight 1 (ULF1) Mission which entails the exchange of crewmembers, various supplies and experiments and the replacement of a control component on the International Space Station. This is also will be Soichi Noguchi's first spacewalk.
2001-06-11
KENNEDY SPACE CENTER, Fla. -- STS-107 Payload Specialist Ilan Ramon, of Israel, manipulates a piece of equipment in the Spacehab module. He and other crew members are taking part in Crew Equipment Interface Test (CEIT) activities at SPACEHAB, Cape Canaveral, Fla. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband, Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists Kalpana Chawla, Laurel Blair Salton Clark and David M. Brown. STS-107 is scheduled for launch May 23, 2002
2003-01-16
KENNEDY SPACE CENTER, FLA. - STS-107 Payload Commander Michael Anderson is happy to being suiting up for launch on mission STS-107. The mission is devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
Addressing the Digital Divide in Contemporary Biology: Lessons from Teaching UNIX.
Mangul, Serghei; Martin, Lana S; Hoffmann, Alexander; Pellegrini, Matteo; Eskin, Eleazar
2017-10-01
Life and medical science researchers increasingly rely on applications that lack a graphical interface. Scientists who are not trained in computer science face an enormous challenge analyzing high-throughput data. We present a training model for use of command-line tools when the learner has little to no prior knowledge of UNIX. Copyright © 2017 Elsevier Ltd. All rights reserved.
PromISS 4 hardware set up in the MSG during Expedition 12
2006-01-18
ISS012-E-16162 (18 Jan. 2006) --- Astronaut William S. (Bill) McArthur, Expedition 12 commander and NASA space station science officer, configures the Microgravity Science Glovebox (MSG) facility to prepare for the installation and activation of the Protein Crystal Growth Monitoring by Digital Holographic Microscope (PromISS) experiment in the Destiny laboratory on the International Space Station.
PromISS 4 hardware set up in the MSG during Expedition 12
2006-01-19
ISS012-E-16237 (19 Jan. 2006) --- Astronaut William S. (Bill) McArthur, Expedition 12 commander and NASA space station science officer, configures the Microgravity Science Glovebox (MSG) facility to prepare for the installation and activation of the Protein Crystal Growth Monitoring by Digital Holographic Microscope (PromISS) experiment in the Destiny laboratory on the International Space Station.
PromISS 4 hardware set up in the MSG during Expedition 12
2006-01-19
ISS012-E-16245 (19 Jan. 2006) --- Astronaut William S. (Bill) McArthur, Expedition 12 commander and NASA space station science officer, configures the Microgravity Science Glovebox (MSG) facility to prepare for the installation and activation of the Protein Crystal Growth Monitoring by Digital Holographic Microscope (PromISS) experiment in the Destiny laboratory on the International Space Station.
Astronauts Cockrell, Shepherd and Polansky prior to opening hatch
2001-02-11
STS98-E-5123 (11 February 2001) --- This digital still camera shot shows STS-98 mission commander Kenneth D. Cockrell (from left), Expedition One commander William M. (Bill) Shepherd and STS-98 pilot Mark L. Polansky pausing at Unity's closed hatch to the newly attached Destiny laboratory. The crews of Atlantis and the International Space Station opened the laboratory shortly after this photo was made on Feb. 11; and the astronauts and cosmonauts spent the first full day of what are planned to be years of work ahead inside the orbiting science and command center. Shepherd opened the Destiny hatch, and he and shuttle commander Cockrell ventured inside at 8:38 a.m. (CST), Feb. 11. As depicted in subsequent digital images in this series, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crew also continued equipment transfers from the shuttle to the station.
Birchwood, Max; Dunn, Graham; Meaden, Alan; Tarrier, Nicholas; Lewis, Shon; Wykes, Til; Davies, Linda; Michail, Maria; Peters, Emmanuelle
2017-12-05
Acting on harmful command hallucinations is a major clinical concern. Our COMMAND CBT trial approximately halved the rate of harmful compliance (OR = 0.45, 95% CI 0.23-0.88, p = 0.021). The focus of the therapy was a single mechanism, the power dimension of voice appraisal, was also significantly reduced. We hypothesised that voice power differential (between voice and voice hearer) was the mediator of the treatment effect. The trial sample (n = 197) was used. A logistic regression model predicting 18-month compliance was used to identify predictors, and an exploratory principal component analysis (PCA) of baseline variables used as potential predictors (confounders) in their own right. Stata's paramed command used to obtain estimates of the direct, indirect and total effects of treatment. Voice omnipotence was the best predictor although the PCA identified a highly predictive cognitive-affective dimension comprising: voices' power, childhood trauma, depression and self-harm. In the mediation analysis, the indirect effect of treatment was fully explained by its effect on the hypothesised mediator: voice power differential. Voice power and treatment allocation were the best predictors of harmful compliance up to 18 months; post-treatment, voice power differential measured at nine months was the mediator of the effect of treatment on compliance at 18 months.
Battlespace awareness and the Australian Army battlefield command support system
NASA Astrophysics Data System (ADS)
Gaertner, Paul S.; Slade, Mark; Bowden, Fred; Stagg, Bradley; Huf, Samuel
2000-08-01
Effective battlespace awareness is essential for any defence operation; this is especially true in the increasingly complex and dynamic land component of the military environment. Because of its relatively small force size dispersed piece-wise across a large and largely vacant landmass, the Defence of Australia presents a somewhat unique challenge for the development of systems that support command decision-making. The intent of this paper is to first examine the digitisation effort under way in Australia and describe the Army Battlefield Command Support System (BCSS) being developed for use in the tactical arena. BCSS is essentially a suite of commercial-off-the-shelf and government-off-the-shelf software components provided via a standard operating environment to aid decision-making. Then, we present the development of a Tactical Land C4I Assessment Capability (TLCAC) synthetic environment which is being used to undertake controlled performance evaluations of the various elements of the BCSS suite and provide impact assessments of new technological advances. The TLCAC provides a capacity to assess in near real-time Brigade and below level command post exercise activities. That is, when deployed it provides a mechanism to automatically collect command and control and manoeuvre data, which can aid in the after action review process.
Trauma management: Chernobyl in Belarus and Ukraine.
Zhukova, Ekatherina
2016-06-01
Although the Chernobyl nuclear disaster happened in the Soviet Union in 1986, we still do not know how the most affected states - Ukraine and Belarus - have managed this tragedy since independence. Drawing on the concept of cultural trauma, this article compares Chernobyl narratives in Belarus and Ukraine over the past 28 years. It shows that national narratives of Chernobyl differ, representing the varying ways in which the state overcomes trauma. Our understanding of post-communist transformations can be improved by analysing trauma management narratives and their importance for new national identity construction. These narratives also bring new insights to our vision of cultural trauma by linking it to ontological insecurity. The article demonstrates how the state can become an arena of trauma process as it commands material and symbolic resources to deal with trauma. In general, it contributes to a better understanding of how the same traumatic event can become a source of solidarity in one community, but a source of hostility in another. © London School of Economics and Political Science 2016.
United States European Command
Organization The Region History Media Library Articles Press Releases Photos Videos Documents Blog Posts Us Press Releases Site Policies Site Translation (Disclaimer) EUCOM's disclaimer regarding this . More in Site Policies External Links Privacy and Security Accessibility/Section 508 Site Translation
Interior of the U.S. Laboratory / Destiny module
2001-02-11
STS98-E-5113 (11 February 2001) --- This wide shot, photographed with a digital still camera, shows the interior of the newly attached Destiny laboratory. The crews of Atlantis and the International Space Station opened the laboratory on Feb. 11 and spent the first full day of what are planned to be years of work ahead inside the orbiting science and command center. Station commander William M. (Bill) Shepherd opened the Destiny hatch, and he and shuttle commander Kenneth D. Cockrell ventured inside at 8:38 a.m. (CST), Feb. 11. As depicted in subsequent digital images in this series, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crew also continued equipment transfers from the shuttle to the station.
NASA Astrophysics Data System (ADS)
Zender, J.; Berghmans, D.; Bloomfield, D. S.; Cabanas Parada, C.; Dammasch, I.; De Groof, A.; D'Huys, E.; Dominique, M.; Gallagher, P.; Giordanengo, B.; Higgins, P. A.; Hochedez, J.-F.; Yalim, M. S.; Nicula, B.; Pylyser, E.; Sanchez-Duarte, L.; Schwehm, G.; Seaton, D. B.; Stanger, A.; Stegen, K.; Willems, S.
2013-08-01
The PROBA2 Science Centre (P2SC) is a small-scale science operations centre supporting the Sun observation instruments onboard PROBA2: the EUV imager Sun Watcher using APS detectors and image Processing (SWAP) and Large-Yield Radiometer (LYRA). PROBA2 is one of ESA's small, low-cost Projects for Onboard Autonomy (PROBA) and part of ESA's In-Orbit Technology Demonstration Programme. The P2SC is hosted at the Royal Observatory of Belgium, co-located with both Principal Investigator teams. The P2SC tasks cover science planning, instrument commanding, instrument monitoring, data processing, support of outreach activities, and distribution of science data products. PROBA missions aim for a high degree of autonomy at mission and system level, including the science operations centre. The autonomy and flexibility of the P2SC is reached by a set of web-based interfaces allowing the operators as well as the instrument teams to monitor quasi-continuously the status of the operations, allowing a quick reaction to solar events. In addition, several new concepts are implemented at instrument, spacecraft, and ground-segment levels allowing a high degree of flexibility in the operations of the instruments. This article explains the key concepts of the P2SC, emphasising the automation and the flexibility achieved in the commanding as well as the data-processing chain.
Flight demonstration of a self repairing flight control system in a NASA F-15 fighter aircraft
NASA Technical Reports Server (NTRS)
Urnes, James M.; Stewart, James; Eslinger, Robert
1990-01-01
Battle damage causing loss of control capability can compromise mission objectives and even result in aircraft loss. The Self Repairing Flight Control System (SRFCS) flight development program directly addresses this issue with a flight control system design that measures the damage and immediately refines the control system commands to preserve mission potential. The system diagnostics process detects in flight the type of faults that are difficult to isolate post flight, and thus cause excessive ground maintenance time and cost. The control systems of fighter aircraft have the control power and surface displacement to maneuver the aircraft in a very large flight envelope with a wide variation in airspeed and g maneuvering conditions, with surplus force capacity available from each control surface. Digital flight control processors are designed to include built-in status of the control system components, as well as sensor information on aircraft control maneuver commands and response. In the event of failure or loss of a control surface, the SRFCS utilizes this capability to reconfigure control commands to the remaining control surfaces, thus preserving maneuvering response. Correct post-flight repair is the key to low maintainability support costs and high aircraft mission readiness. The SRFCS utilizes the large data base available with digital flight control systems to diagnose faults. Built-in-test data and sensor data are used as inputs to an Onboard Expert System process to accurately identify failed components for post-flight maintenance action. This diagnostic technique has the advantage of functioning during flight, and so is especially useful in identifying intermittent faults that are present only during maneuver g loads or high hydraulic flow requirements. A flight system was developed to test the reconfiguration and onboard maintenance diagnostics concepts on a NASA F-15 fighter aircraft.
STS-107 Payload Commander Michael Anderson during TCDT M113 training activities
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- -- STS-107 Payload Commander Michael Anderson takes a break during training on the operation of an M113 armored personnel carrier during Terminal Countdown Demonstration Test activities, a standard part of launch preparations. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia.
International Space Station (ISS)
2003-10-16
The Soyuz TMA-3 spacecraft and its booster rocket (rear view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: "NASA/Bill Ingalls"
International Space Station (ISS)
2003-10-16
The Soyuz TMA-3 spacecraft and its booster rocket (front view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: "NASA/Bill Ingalls"
2004-10-04
Expedition 10 Flight Engineer and Soyuz Commander Salizhan Sharipov donned his launch and entry suit and climbed aboard the Soyuz TMA-5 spacecraft Friday, October 5, 2004 at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)
Expedition-8 Crew Members Portrait
NASA Technical Reports Server (NTRS)
2003-01-01
This is a portrait of the Expedition-8 two man crew. Pictured left is Cosmonaut Alexander Y, Kaleri, Soyuz Commander and flight engineer; and Michael C. Foale (right), Expedition-8 Mission Commander and NASA ISS Science Officer. The crew posed for this portrait while training at the Gagarin Cosmonaut Training Center in Star City, Russia. The two were launched for the International Space Station (ISS) aboard a Soyuz TMA-3 spacecraft from the Baikonur Cosmodrome, Kazakhstan, along with European Space Agency (ESA) Astronaut Pedro Duque of Spain, on October 18, 2003.
1990-06-01
SMCAR-CCB-TL AMXSY-MP, H. Cohen Watervliet, NY 12189-4050 1 Cdr, USATECOM ATTN: AMSTE- TD Commander 3 Cdr, CRDEC, AMCCOM US Army Armament, Munitions ATIN...Laboratory Command Armament RD&E Center ATTN: SLCTO (Marcos Sola) US Army AMCCOM 2800 Powder Mill Road ATTN: SMCAR- TDS (Vic Lindner) Adelphi, MD 20783-1145...ASQNC-ELC-1-T, Myer Center US Army AMCCOM Fort Monmouth, NJ 07703-5000 ATTN: SMCAR- TD (Jim Killen) Picatinny Arsenal, NJ 07806-5000 14 DISTRIBUTION
2013-04-11
of loss of or a decreased level of consciousness (LOC) -Any loss of memory for events immediately before or after the injury [post-traumatic amnesia ...diagnosis and is unlikely to change within the medical community. Symptoms of PTSD and TBI Symptom ASD and PTSD TBI Dissociation Emotional... Amnesia Present Present Reexperiencing Recurrent images Present Present Nightmares Present NA Distress on reminders
2003-05-05
Expedition 6 Commander Ken Bowersox, left and NASA International Space Station Science Officer Don Pettit speak during a press conference at the Gagarin Cosmonaut Training Center in Star City, Russia, Thursday, May 6, 2003. Photo Credit: (NASA/Bill Ingalls)
CDR Frank De Winne during MSRR Commissioning Activities
2009-10-14
ISS021-E-006193 (14 Oct. 2009) --- European Space Agency astronaut Frank De Winne, Expedition 21 commander, works with a Materials Science Laboratory (MSL) chamber in the Destiny laboratory of the International Space Station.
Expedition 9 Preflight Activities
2004-04-13
NASA Science Officer Mike Fincke, left and Expedition 9 Commander Gennady Padalka sign books, envelops and mementoes in the space museum located at the Baikonur Cosmodrome, Wednesday, April, 14, 2004, in Baikonur, Kazakhstan. Photo Credit: (NASA/Bill Ingalls)
Video- Astronauts Don Pettit and Ken Bowersox Paint Water Onboard the International Space Station
NASA Technical Reports Server (NTRS)
2003-01-01
Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. Science begets art in this video as Dr. Pettit and commander Ken Bowersox demonstrate two dimensional diffusion using food coloring in a film of water when they created an intriguing birdlike image. Dr. Pettit wonders aloud 'It makes us wonder what Matisse could do with a medium like this.'
2. Looking glass aircraft with open main entry door and ...
2. Looking glass aircraft with open main entry door and cockpit hatch. View to south. - Offutt Air Force Base, Looking Glass Airborne Command Post, Looking Glass Aircraft, On Operational Apron covering northeast half of Project Looking Glass Historic District, Bellevue, Sarpy County, NE
6. Detail of forward fuselage showing open cockpit hatch and ...
6. Detail of forward fuselage showing open cockpit hatch and ladder. View to southeast. - Offutt Air Force Base, Looking Glass Airborne Command Post, Looking Glass Aircraft, On Operational Apron covering northeast half of Project Looking Glass Historic District, Bellevue, Sarpy County, NE
1. Northeast front and southeast side of original section. Addition ...
1. Northeast front and southeast side of original section. Addition to rear view to west. - Offutt Air Force Base, Looking Glass Airborne Command Post, Aerospace Ground Equipment (AGE) Storage Facility, Far Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE
4. Northeast front and northwest side of original section and ...
4. Northeast front and northwest side of original section and addition. View to south. - Offutt Air Force Base, Looking Glass Airborne Command Post, Aerospace Ground Equipment (AGE) Storage Facility, Far Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE
MSRR Rack Materials Science Research Rack
NASA Technical Reports Server (NTRS)
Reagan, Shawn
2017-01-01
The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and the European Space Agency (ESA) for materials science investigations on the International Space Station (ISS). The MSRR is managed at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The MSRR facility subsystems were manufactured by Teledyne Brown Engineering (TBE) and integrated with the ESA/EADS-Astrium developed Materials Science Laboratory (MSL) at the MSFC Space Station Integration and Test Facility (SSITF) as part of the Systems Development Operations Support (SDOS) contract. MSRR was launched on STS-128 in August 2009, and is currently installed in the U. S. Destiny Laboratory Module on the ISS. Materials science is an integral part of developing new, safer, stronger, more durable materials for use throughout everyday life. The goal of studying materials processing in space is to develop a better understanding of the chemical and physical mechanisms involved, and how they differ in the microgravity environment of space. To that end, the MSRR accommodates advanced investigations in the microgravity environment of the ISS for basic materials science research in areas such as solidification of metals and alloys. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials Science Laboratory (MSL) which accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample-Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400 C. Once an SCA is installed, the experiment can be run by automatic command or science conducted via telemetry commands from the ground. This facility is available to support materials science investigations through programs such as the US National Laboratory, Technology Development, NASA Research Announcements, and others. TBE and MSFC are currently developing NASA Sample Cartridge Assemblies (SCA's) with a planned availability for launch in 2017.
Navy Manpower Planning and Programming: Basis for Systems Examination
1974-10-01
IRE5EARCH AND DEVEl. INAVAL RESEARCH] CHIEF OF NAVAL OPERATIONS OFFICE CHIIf OF NAVAL OPERATIONS NAVAL MATERIAL COMMAND •LitMARTERS NAVAL MATERIAL...DIVISION COMPENSATION BRANCH MANPOWER PROGRAMMING ■RANCH JOURNAL/TRADE TALK BRANCH 06A ASSISTANT FOR COMPUTER SCIENCES SYSTEMS DEVELOPMENT BRANCH...Assistant Director, Life Sciences , Air Force Office of Scientific Research Technical Library, Air Force Human Resources Laboratory, Lackland Air Force Base
Accuracy of 3D Imaging Software in Cephalometric Analysis
2013-06-21
submitted to the Faculty of the Comprehensive Dentistry Graduate Program Naval Postgraduate Dental School Uniformed Services University of the Health...Sciences in partial fulfillment of the requirements of the degree of Master of Science in Oral Biology June 2013 Naval Postgraduate Dental ...Master’s thesis of Bracken Robert Godfrey Lieutenant Commander, Dental Corps, U.S. Navy has been approved by the Examining Committee for the
2012-03-22
Faculty Department of Operational Sciences Graduate School of Engineering and Management Air Force Institute of Technology Air University...Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Operations...this project was well defined. I would also like to thank my reader, Dr. Joseph Pignatiello, for his technical insights and helpful comments. Thanks
The RITE Approach to Agile Acquisition
2013-04-01
SSCPAC. He currently provides project management and technical support to the Global Command and Control System–Joint (GCCS-J) Integrated Imagery and...the Strike Planning and Execution Systems Program Office (PMA-281). Boyce has a Bachelor of Science degree in information systems management and is...has since provided dedicated professional service to the USAF, NAVSUP, and SSCPAC. Roussel has a Bachelor of Science degree in management and a Master
LRN, ERN:, & BERN @ Wireless Integrating the Sciences (WITS) Theatre
NASA Technical Reports Server (NTRS)
Hilliard, L.; Campbell, B.; Foody, M.; Klitsner, D.
2010-01-01
In order to develop a call to action for a learning tool that would work to best teach Science Technology Engineering and Math (STEM), the NASA Goddard team will partner with the inventor of Bop It!, an interactive game of verbs and following instructions; and Global Imagination, the developers of Magic Planet. In this paper Decision-making Orbital Health! (DOH!) will be described as a game derived from the basic functions necessary for Bop lt!, a familiar game. that will ask the educational audience to respond to changing commands to Bop It!, Twist It!, and Squeeze It! The success of the new version of the game, will be that the Earth will be making these commands from Dynamic Planet, and the crowd assembled can play wirelessly. Wireless Integrating The Sciences (WITS) Theatre : A balanced approach will describe how the communities local to Goddard and perhaps San Francisco will develop curriculum that helps kids teach kids with an engaging game and a STEM message. The performing arts will be employed to make it entertaining and appropriate to the size of the gathering, and the students educational level.
NASA Technical Reports Server (NTRS)
Allard, Dan; Deforrest, Lloyd
2014-01-01
Flight software parameters enable space mission operators fine-tuned control over flight system configurations, enabling rapid and dynamic changes to ongoing science activities in a much more flexible manner than can be accomplished with (otherwise broadly used) configuration file based approaches. The Mars Science Laboratory (MSL), Curiosity, makes extensive use of parameters to support complex, daily activities via commanded changes to said parameters in memory. However, as the loss of Mars Global Surveyor (MGS) in 2006 demonstrated, flight system management by parameters brings with it risks, including the possibility of losing track of the flight system configuration and the threat of invalid command executions. To mitigate this risk a growing number of missions have funded efforts to implement parameter tracking parameter state software tools and services including MSL and the Soil Moisture Active Passive (SMAP) mission. This paper will discuss the engineering challenges and resulting software architecture of MSL's onboard parameter state tracking software and discuss the road forward to make parameter management tools suitable for use on multiple missions.
NASA Technical Reports Server (NTRS)
Arozullah, Mohammed
1991-01-01
The Platform Data Management System (DMS) collects Housekeeping (H/K), Payload (P/L) Engineering, and Payload Science data from various subsystems and payloads on the platform for transmission to the ground through the downlink via TDRSS. The DMS also distributes command data received from the ground to various subsystems and payloads. In addition, DMS distributes timing and safemode data. The function of collection and distribution of various types of data is performed by the Command and Data Handling (C&DH) subsystem of DMS. The C&DH subsystem uses for this purpose a number of data buses namely, Housekeeping, Payload Engineering, Payload Science, and Time and Safemode buses. Out of these buses, the H/K, P/L Engineering, and P/L Science buses are planned to be implemented by using MIL-STD 1553 bus. Most of the period covered was spent in developing a queue theoretic model of the 1553 Bus as used in the DMS. The aim is to use this model to test the performance and suitability of the 1553 Bus to the DMS under a number of alternative design scenarios.
STS 107 Shuttle Press Kit: Providing 24/7 Space Science Research
NASA Technical Reports Server (NTRS)
2002-01-01
Space shuttle mission STS-107, the 28th flight of the space shuttle Columbia and the 113th shuttle mission to date, will give more than 70 international scientists access to both the microgravity environment of space and a set of seven human researchers for 16 uninterrupted days. Columbia's 16-day mission is dedicated to a mixed complement of competitively selected and commercially sponsored research in the space, life and physical sciences. An international crew of seven, including the first Israeli astronaut, will work 24 hours a day in two alternating shifts to carry out experiments in the areas of astronaut health and safety; advanced technology development; and Earth and space sciences. When Columbia is launched from Kennedy Space Center's Launch Pad 39A it will carry a SPACEHAB Research Double Module (RDM) in its payload bay. The RDM is a pressurized environment that is accessible to the crew while in orbit via a tunnel from the shuttle's middeck. Together, the RDM and the middeck will accommodate the majority of the mission's payloads/experiments. STS-107 marks the first flight of the RDM, though SPACEHAB Modules and Cargo Carriers have flown on 17 previous space shuttle missions. Astronaut Rick Husband (Colonel, USAF) will command STS-107 and will be joined on Columbia's flight deck by pilot William 'Willie' McCool (Commander, USN). Columbia will be crewed by Mission Specialist 2 (Flight Engineer) Kalpana Chawla (Ph.D.), Mission Specialist 3 (Payload Commander) Michael Anderson (Lieutenant Colonel, USAF), Mission Specialist 1 David Brown (Captain, USN), Mission Specialist 4 Laurel Clark (Commander, USN) and Payload Specialist 1 Ilan Ramon (Colonel, Israeli Air Force), the first Israeli astronaut. STS-107 marks Husband's second flight into space - he served as pilot during STS-96, a 10-day mission that saw the first shuttle docking with the International Space Station. Husband served as Chief of Safety for the Astronaut Office until his selection to command the STS-107 crew. Anderson and Chawla will also be making their second spaceflights. Anderson first flew on STS-89 in January 1998 (the eighth Shuttle-Mir docking mission) while Chawla flew on STS-87 in November 1997 (the fourth U.S. Microgravity Payload flight). McCool, Brown, Clark and Ramon will be making their first flights into space.
Closing the uplink/downlink loop on the new Horizons Mission to Pluto
NASA Astrophysics Data System (ADS)
Peterson, Joseph G.; Birath, Emma; Carcich, Brian; Harch, Ann
Commanding the payload on a spacecraft (“ uplink” sequencing and command generation) and processing the instrument data returned (“ downlink” data processing) are two primary functions of Science Operations on a mission. While vitally important, it is sometimes surprisingly difficult to connect data returned from a spacecraft to the corresponding commanding and sequencing information that created the data, especially when data processing is done via an automated science data pipeline and not via a manual process with humans in the loop. For a variety of reasons it is necessary to make such a connection and close this loop. Perhaps the most important reason is to ensure that all data asked for has arrived safely on the ground. This is especially critical when the mission must erase parts of the spacecraft memory to make room for new data; mistakes here can result in permanent loss of data. Additionally, there are often key pieces of information (such as intended observation target or certain instrument modes that are not included in housekeeping, etc.) that are known only at the time of commanding and never makes it down in the telemetry. Because missions like New Horizons strive to be frugal with how much telemetry is sent back to Earth, and the telemetry may not include unambiguous identifiers (like observation ids, etc.), connecting downlinked data with uplink command information in an automated way can require creative approaches and heuristics. In this paper, we describe how these challenges were overcome on the New Horizons Mission to Pluto. The system developed involves ingesting uplink information into a database and automatically correlating it with downlinked data products. This allows for more useful data searches and the ability to attach the original intent of each observation to the processed science data. Also a new data tracking tool is now being developed to help in planning data playback from the spacecraft and to ensu- e data is verified on the ground before being erased from spacecraft memory. The development of these tools and techniques have also uncovered powerful lessons-learned for future missions. At the early stages of the design of a mission's dataflow, the allocation of a few more bytes of telemetry can go a long way toward making the uplink to downlink loop even easier to close on the ground, simplifying ground systems for future missions.
75 FR 68773 - Meeting of the Ocean Research and Resources Advisory Panel
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-09
... Consortium for Ocean Leadership, 1201 New York Avenue, NW., 4th Floor, Washington, DC 20005. FOR FURTHER... science and management communities. Dated: November 2, 2010. D.J. Werner, Lieutenant Commander, Office of...
PDS4: Harnessing the Power of Generate and Apache Velocity
NASA Astrophysics Data System (ADS)
Padams, J.; Cayanan, M.; Hardman, S.
2018-04-01
The PDS4 Generate Tool is a Java-based command-line tool developed by the Cartography and Imaging Sciences Nodes (PDSIMG) for generating PDS4 XML labels, from Apache Velocity templates and input metadata.
General purpose simulation system of the data management system for Space Shuttle mission 18
NASA Technical Reports Server (NTRS)
Bengtson, N. M.; Mellichamp, J. M.; Smith, O. C.
1976-01-01
A simulation program for the flow of data through the Data Management System of Spacelab and Space Shuttle was presented. The science, engineering, command and guidance, navigation and control data were included. The programming language used was General Purpose Simulation System V (OS). The science and engineering data flow was modeled from its origin at the experiments and subsystems to transmission from Space Shuttle. Command data flow was modeled from the point of reception onboard and from the CDMS Control Panel to the experiments and subsystems. The GN&C data flow model handled data between the General Purpose Computer and the experiments and subsystems. Mission 18 was the particular flight chosen for simulation. The general structure of the program is presented, followed by a user's manual. Input data required to make runs are discussed followed by identification of the output statistics. The appendices contain a detailed model configuration, program listing and results.
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- STS-107 Commander Rick D. Husband (left) and Pilot William C. McCool train in the SPACHEAB Double Module that will fly on their mission. Husband, McCool and other crew members Payload Commander Michael P. Anderson; Mission Specialists Laurel Blair Salton Clark and David M. Brown; and Payload Specialist Ilan Ramon, of Israel, are at SPACEHAB, Cape Canaveral, Fla., to take part in Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., members of the STS-107 crew discuss the experiments in the Spacehab module. Seated, in the foreground, is Mission Specialist Laurel Blair Salton Clark; standing behind her are Commander Rick Douglas Husband and Mission Specialist Kalpana Chawla. They and other crew members Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists David M. Brown and Ilan Ramon, of Israel, are at SPACEHAB for Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., the STS-107 crew takes part in Crew Equipment Interface Test (CEIT) activities. From left are Mission Specialist Laurel Blair Salton Clark, Commander Rick Douglas Husband, Payload Specialist Ilan Ramon, of Israel, and Payload Commander Michael P. Anderson. A trainer is at far right. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Pilot William C. McCool and Mission Specialists Kalpana Chawla and David M. Brown. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., STS-107 Payload Specialist Ilan Ramon (foreground), of Israel, and Mission Specialist Kalpana Chawla (background) check out experiments inside the Spacehab module. They and other crew members are taking part in Crew Equipment Interface Test (CEIT) activities that enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. . Other STS-107 crew members are Commander Rick Douglas Husband, Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists Laurel Blair Salton Clark and David M. Brown. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- STS-107 Payload Specialist Ilan Ramon, of Israel, manipulates a piece of equipment in the Spacehab module. He and other crew members are taking part in Crew Equipment Interface Test (CEIT) activities at SPACEHAB, Cape Canaveral, Fla. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband, Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists Kalpana Chawla, Laurel Blair Salton Clark and David M. Brown. STS-107 is scheduled for launch May 23, 2002
ERIC Educational Resources Information Center
Homer, Matt; Ryder, Jim; Banner, Indira
2014-01-01
Increasing post-compulsory participation in science and science-related subjects is seen as a key education policy priority in England and more widely. This paper uses descriptive analysis of national data to investigate the effects of science attainment at 16, gender, socio-economic status, and school science pathway on progression into post-16…
Literature review on medical incident command.
Rimstad, Rune; Braut, Geir Sverre
2015-04-01
It is not known what constitutes the optimal emergency management system, nor is there a consensus on how effectiveness and efficiency in emergency response should be measured or evaluated. Literature on the role and tasks of commanders in the prehospital emergency services in the setting of mass-casualty incidents has not been summarized and published. This comprehensive literature review addresses some of the needs for future research in emergency management through three research questions: (1) What are the basic assumptions underlying incident command systems (ICSs)? (2) What are the tasks of ambulance and medical commanders in the field? And (3) How can field commanders' performances be measured and assessed? A systematic literature search in MEDLINE, PubMed, PsycINFO, Embase, Cochrane Central Register of Controlled Trials, Cochrane Library, ISI Web of Science, Scopus, International Security & Counter Terrorism Reference Center, Current Controlled Trials, and PROSPERO covering January 1, 1990 through March 1, 2014 was conducted. Reference lists of included literature were hand searched. Included papers were analyzed using Framework synthesis. The literature search identified 6,049 unique records, of which, 76 articles and books where included in qualitative synthesis. Most ICSs are described commonly as hierarchical, bureaucratic, and based on military principles. These assumptions are contested strongly, as is the applicability of such systems. Linking of the chains of command in cooperating agencies is a basic difficulty. Incident command systems are flexible in the sense that the organization may be expanded as needed. Commanders may command by direction, by planning, or by influence. Commanders' tasks may be summarized as: conducting scene assessment, developing an action plan, distributing resources, monitoring operations, and making decisions. There is considerable variation between authors in nomenclature and what tasks are included or highlighted. There are no widely acknowledged measurement tools of commanders' performances, though several performance indicators have been suggested. The competence and experience of the commanders, upon which an efficient ICS has to rely, cannot be compensated significantly by plans and procedures, or even by guidance from superior organizational elements such as coordination centers. This study finds that neither a certain system or structure, or a specific set of plans, are better than others, nor can it conclude what system prerequisites are necessary or sufficient for efficient incident management. Commanders need to be sure about their authority, responsibility, and the functional demands posed upon them.
A new approach to UNESCO-IOC Post-Tsunami Field Surveys
NASA Astrophysics Data System (ADS)
Kong, L. S.; Steffen, J.; Dominey-Howes, D.; Biukoto, L.; Titimaea, A.; Thaman, R.; Vaa, R.
2009-12-01
The International Tsunami Survey Team (ITST-Samoa, Oct 14-23, 2009), and the Report presented to the Government of Samoa (GoS) immediately upon conclusion, was an unprecedented science effort, setting a benchmark for future coordinated international post-tsunami science surveys that will support national early recovery efforts, and through tsunami research, improve tsunami mitigation and preparedness and so build a stronger resilience of coastal communities. By working together, we achieved outcomes much stronger and more valuable than any one of us could produce alone. For the first time, strong principles of professional conduct, mutual respect, collaboration, partnership, and concern for the welfare of the affected communities, were explictly embeded in the work plan. The 29 September 2009 regional tsunami resulted in loss of life and damage to human infrastructure and environmental systems. Common to many tsunamis, international scientists expressed the intent to undertake science assessments. Traditionally, these surveys, sometimes under UNESCO-IOC auspices, have been single-discipline, and conducted individually with moderate government coordination, so that afterward, the country was left with a large integration task to produce a single coherent study. This changed in Samoa, where an integrated and coordinated approach emerged. The ITST-Samoa was comprised of more than 60 scientists (seismologists, geologists, engineers, social scientists, modellers) from Australia, Fiji, French-Polynesia, Italy, Japan, New Zealand and USA who volunteered to work in collaboration with the GoS, Samoa Red Cross Society, Samoa scientists, and non-government representatives. They worked as one survey team to collect data and assist the GoS to prioritise short- and long-term risk reduction strategies. Their novel work (1) partnered with a regional university to include South Pacific expertise and with the GoS to ensure that (a) international scientists worked in a culturally-sensitive and appropriate way and, (b) outputs achieved were relevant to both GoS and ITST scientists; (2) was interdisciplinary and multisectoral to capture a thorough understanding; and (3) used a ‘coupled human-environment systems framework’ to examine vulnerability and resilience before, during and after the tsunami. ITST succeeded because of (1) the scientists’ strong desire to share their knowledge; (2) GoS’s belief that science will improve disaster risk reduction practices; (3) immediate engagement of UN and regional organizations to provide an umbrella framework for working together; (4) local support to provide the ITST’s command center and; (5) dedicated Science Coordinators to manage the scientific planning, logistics, information sharing, and Report preparation. In 2010, UNESCO/IOC will revise its Post-Tsunami Field Survey Guide to document ITST-Samoa best practices and so provide guidance for future International Tsunami Survey Teams.
75 FR 2117 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-14
... Force, 30 Space Communications Squadron, Building 12000, Room 104, 867 Washington Ave., Suite 205... Wing Space Communications Squadron, 867 Washington Avenue, Suite 200-1, Vandenberg Air Force Base... Superintendent, 30 Space Wing Command Post 867 Washington Ave, Suite 205, Vandenberg Air Force Base, California...
Detail of one way mirror, mail slot, and electrical box ...
Detail of one way mirror, mail slot, and electrical box at sentry post no. 3, top of east stairs near the end of second floor corridor - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA
Ride Dynamics and Evaluation of Human Exposure to Whole Body Vibration. Change 1
2012-04-03
vehicle specification and/or the detailed test plan. This (half-round obstacle) accelerometer will be low-pass filtered ( post test ) at 30 Hz...Engineers TARADCOM Tank-Automotive Research and Development Command TOP Test Operations Procedure VDV Vibration Dose Value WBV Whole Body...
78 FR 70540 - Meeting of the National Commission on the Structure of the Air Force
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-26
... information. Agenda: The updated agenda items were: --The role of airpower in the post-Afghanistan national... Superiority, Air Mobility, Global Precision Attack, Nuclear Deterrence Operations, Command and Control... such as modernization readiness, procurement, manpower, research development test and evaluation...
International HRD Perspectives.
ERIC Educational Resources Information Center
1999
The first of the four papers in this symposium, "Towards a Meaningful HRD [Human Resource Development] Function in the Post-Command Economies of Central and Eastern Europe" (Devi Jankowicz), examines the existing knowledge-base among managers who are to be trained as HRD practitioners and suggests that efforts may be constrained by…
22. Detail of interior corner showing truss system, dock no. ...
22. Detail of interior corner showing truss system, dock no. 492. View to south. - Offutt Air Force Base, Looking Glass Airborne Command Post, Nose Docks, On either side of Hangar Access Apron at Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE
A Tale of Two Design Efforts (and why they both failed in Afghanistan)
2011-07-07
talked about and heard presentations on critical and systems thinking, emergence, complexity theory, and different philosophies like post- positivism and...not what the command even wanted to hear. First, quantitative assessments were easier to understand for outside audiences. Second, the current
12. Interior view of battle staff compartment showing the general's ...
12. Interior view of battle staff compartment showing the general's chair. View toward front of aircraft. - Offutt Air Force Base, Looking Glass Airborne Command Post, Looking Glass Aircraft, On Operational Apron covering northeast half of Project Looking Glass Historic District, Bellevue, Sarpy County, NE
Astronauts Cockrell, Shepherd and Polansky during hatch opening
2001-02-11
STS98-E-5130 (11 February 2001) --- The crews of Atlantis and the International Space Station open the Destiny laboratory on February 11 in this digital still camera view. From the left are astronauts Kenneth D. Cockrell, STS-98 commander; William M. (Bill) Shepherd, Expedition One commander; and Mark L. Polansky, STS-98 pilot. Later, the astronauts and cosmonauts spent the first full day of what are planned to be years of work ahead inside the orbiting science and command center. After Shepherd opened the Destiny hatch, he and Cockrell ventured inside at 8:38 a.m. (CST). As depicted in subsequent digital images in this series, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crew also continued equipment transfers from the shuttle to the station.
Astronauts Cockrell, Shepherd and Polansky during hatch opening
2001-02-11
STS98-E-5131 (11 February 2001) --- The crews of Atlantis and the International Space Station open the Destiny laboratory on February 11 in this digital still camera view. From the left are astronauts Kenneth D. Cockrell, STS-98 commander; William M. (Bill) Shepherd, Expedition One commander; and Mark L. Polansky, STS-98 pilot. Later, the astronauts and cosmonauts spent the first full day of what are planned to be years of work ahead inside the orbiting science and command center. After Shepherd opened the Destiny hatch, he and Cockrell ventured inside at 8:38 a.m. (CST). As depicted in subsequent digital images in this series, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crew also continued equipment transfers from the shuttle to the station.
GES DISC Data Recipes in Jupyter Notebooks
NASA Astrophysics Data System (ADS)
Li, A.; Banavige, B.; Garimella, K.; Rice, J.; Shen, S.; Liu, Z.
2017-12-01
The Earth Science Data and Information System (ESDIS) Project manages twelve Distributed Active Archive Centers (DAACs) which are geographically dispersed across the United States. The DAACs are responsible for ingesting, processing, archiving, and distributing Earth science data produced from various sources (satellites, aircraft, field measurements, etc.). In response to projections of an exponential increase in data production, there has been a recent effort to prototype various DAAC activities in the cloud computing environment. This, in turn, led to the creation of an initiative, called the Cloud Analysis Toolkit to Enable Earth Science (CATEES), to develop a Python software package in order to transition Earth science data processing to the cloud. This project, in particular, supports CATEES and has two primary goals. One, transition data recipes created by the Goddard Earth Science Data and Information Service Center (GES DISC) DAAC into an interactive and educational environment using Jupyter Notebooks. Two, acclimate Earth scientists to cloud computing. To accomplish these goals, we create Jupyter Notebooks to compartmentalize the different steps of data analysis and help users obtain and parse data from the command line. We also develop a Docker container, comprised of Jupyter Notebooks, Python library dependencies, and command line tools, and configure it into an easy to deploy package. The end result is an end-to-end product that simulates the use case of end users working in the cloud computing environment.
Enhanced science capability on the International Space Station
NASA Astrophysics Data System (ADS)
Felice, Ronald R.; Kienlen, Mike
2002-12-01
It is inevitable that the International Space Station (ISS) will play a significant role in the conduct of science in space. However, in order to provide this service to a wide and broad community and to perform it cost effectively, alternative concepts must be considered to complement NASA"s Institutional capability. Currently science payload forward and return data services must compete for higher priority ISS infrastructure support requirements. Furthermore, initial astronaut crews will be limited to a single shift. Much of their time and activities will be required to meet their physical needs (exercise, recreation, etc.), station maintenance, and station operations, leaving precious little time to actively conduct science payload operations. ISS construction plans include the provisioning of several truss mounted, space-hardened pallets, both zenith and nadir facing. The ISS pallets will provide a platform to conduct both earth and space sciences. Additionally, the same pallets can be used for life and material sciences, as astronauts could place and retrieve sealed canisters for long-term micro-gravity exposure. Thus the pallets provide great potential for enhancing ISS science return. This significant addition to ISS payload capacity has the potential to exacerbate priorities and service contention factors within the exiting institution. In order to have it all, i.e., more science and less contention, the pallets must be data smart and operate autonomously so that NASA institutional services are not additionally taxed. Specifically, the "Enhanced Science Capability on the International Space Station" concept involves placing data handling and spread spectrum X-band communications capabilities directly on ISS pallets. Spread spectrum techniques are considered as a means of discriminating between different pallets as well as to eliminate RFI. The data and RF systems, similar to that of "free flyers", include a fully functional command and data handling system, providing, in part, science solid state recorders and instrument command management sub-systems. This, together with just one direct-to-ground based X-Band station co-located with a science payload operations center provides for a direct data path to ground, bypassing NASA institutions. The science center exists to receive user service requests, perform required constraint checks necessary for safe instrument operations, and to disseminate user science data. Payload commands can be up-linked directly or, if required, relayed through the existing NASA institution. The concept is modular for the downlink Earth terminals; in that multiple downlink X-band ground stations can be utilized throughout the world. This has applications for Earth science data direct to regional centers similar to those services provided by the EOS Terra spacecraft. However, for the purposes of this concept, just one downlink site was selected in order to define the worst-case data acquisition scenario necessary to ascertain concept feasibility. The paper demonstrates that the concept is feasible and can lead to a design that significantly reduces operational dependency on the NASA institutions and astronauts while significantly increasing ISS science operational efficiency and access.
Spitzer Space Telescope Sequencing Operations Software, Strategies, and Lessons Learned
NASA Technical Reports Server (NTRS)
Bliss, David A.
2006-01-01
The Space Infrared Telescope Facility (SIRTF) was launched in August, 2003, and renamed to the Spitzer Space Telescope in 2004. Two years of observing the universe in the wavelength range from 3 to 180 microns has yielded enormous scientific discoveries. Since this magnificent observatory has a limited lifetime, maximizing science viewing efficiency (ie, maximizing time spent executing activities directly related to science observations) was the key operational objective. The strategy employed for maximizing science viewing efficiency was to optimize spacecraft flexibility, adaptability, and use of observation time. The selected approach involved implementation of a multi-engine sequencing architecture coupled with nondeterministic spacecraft and science execution times. This approach, though effective, added much complexity to uplink operations and sequence development. The Jet Propulsion Laboratory (JPL) manages Spitzer s operations. As part of the uplink process, Spitzer s Mission Sequence Team (MST) was tasked with processing observatory inputs from the Spitzer Science Center (SSC) into efficiently integrated, constraint-checked, and modeled review and command products which accommodated the complexity of non-deterministic spacecraft and science event executions without increasing operations costs. The MST developed processes, scripts, and participated in the adaptation of multi-mission core software to enable rapid processing of complex sequences. The MST was also tasked with developing a Downlink Keyword File (DKF) which could instruct Deep Space Network (DSN) stations on how and when to configure themselves to receive Spitzer science data. As MST and uplink operations developed, important lessons were learned that should be applied to future missions, especially those missions which employ command-intensive operations via a multi-engine sequence architecture.
ISTP Science Data Systems and Products
NASA Astrophysics Data System (ADS)
Mish, William H.; Green, James L.; Reph, Mary G.; Peredo, Mauricio
1995-02-01
The International Solar-Terrestrial Physics (ISTP) program will provide simultaneous coordinated scientific measurements from most of the major areas of geospace including specific locations on the Earth's surface. This paper describes the comprehensive ISTP ground science data handling system which has been developed to promote optimal mission planning and efficient data processing, analysis and distribution. The essential components of this ground system are the ISTP Central Data Handling Facility (CDHF), the Information Processing Division's Data Distribution Facility (DDF), the ISTP/Global Geospace Science (GGS) Science Planning and Operations Facility (SPOF) and the NASA Data Archive and Distribution Service (NDADS). The ISTP CDHF is the one place in the program where measurements from this wide variety of geospace and ground-based instrumentation and theoretical studies are brought together. Subsequently, these data will be distributed, along with ancillary data, in a unified fashion to the ISTP Principal Investigator (PI) and Co-Investigator (CoI) teams for analysis on their local systems. The CDHF ingests the telemetry streams, orbit, attitude, and command history from the GEOTAIL, WIND, POLAR, SOHO, and IMP-8 Spacecraft; computes summary data sets, called Key Parameters (KPs), for each scientific instrument; ingests pre-computed KPs from other spacecraft and ground basel investigations; provides a computational platform for parameterized modeling; and provides a number of ‘data services” for the ISTP community of investigators. The DDF organizes the KPs, decommutated telemetry, and associated ancillary data into products for duistribution to the ISTP community on CD-ROMs. The SPOF is the component of the GGS program responsible for the development and coordination of ISTP science planning operations. The SPOF operates under the direction of the ISTP Project Scientist and is responsible for the development and coordination of the science plan for ISTP spacecraft. Instrument command requests for the WIND and POLAR investigations are submitted by the PIs to the SPOF where they are checked for science conflicts, forwarded to the GSFC Command Management Syntem/Payload Operations Control Center (CMS/POCC) for engineering conflict validation, and finally incorporated into the conflict-free science operations plan. Conflict resolution is accomplished through iteration between the PIs, SPOF and CMS and in consultation with the Project Scientist when necessary. The long term archival of ISTP KP and level-zero data will be undertaken by NASA's National Space Science Data Center using the NASA Data Archive and Distribution Service (NDADS). This on-line archive facility will provide rapid access to archived KPs and event data and includes security features to restrict access to the data during the time they are proprietary.
CALIPSO Instrument Operational
Atmospheric Science Data Center
2014-03-05
... being briefly in data acquisition mode, the CALIPSO payload computer (PLC) was commanded OFF due to another solar event earlier this ... remain above the 10MeV threshold for laser operations. Science data is not acquired while the payload is in SAFE mode. ...
STS-58 crewmembers participate in baseline data collection
1993-09-29
S93-45376 (29 Sept 1993) --- Astronaut Rhea Seddon, STS-58 payload commander, participates in data collection for neurovestibular functions. The data collection process was in preparation for the Spacelab Life Sciences (SLS-2) flight scheduled for next month.
Expedition 11 Preflight training
2004-06-24
JSC2004-E-26778 (24 June 2004) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russias Federal Space Agency, participates in medical training at Johnson Space Center (JSC). Space Medicine Instructor Tyler N. Carruth with Wyle Life Sciences assisted Krikalev.
Code of Federal Regulations, 2014 CFR
2014-10-01
... now or hereafter amended. Recognized Classification Society means the American Bureau of Shipping or other classification society recognized by the Commandant. Rules of the Road means the statutory and... operation and the sea, including seamanship, navigation, oceanography, other nautical and marine sciences...
Code of Federal Regulations, 2010 CFR
2010-10-01
... now or hereafter amended. Recognized Classification Society means the American Bureau of Shipping or other classification society recognized by the Commandant. Rules of the Road means the statutory and... operation and the sea, including seamanship, navigation, oceanography, other nautical and marine sciences...
Code of Federal Regulations, 2011 CFR
2011-10-01
... now or hereafter amended. Recognized Classification Society means the American Bureau of Shipping or other classification society recognized by the Commandant. Rules of the Road means the statutory and... operation and the sea, including seamanship, navigation, oceanography, other nautical and marine sciences...
Code of Federal Regulations, 2013 CFR
2013-10-01
... now or hereafter amended. Recognized Classification Society means the American Bureau of Shipping or other classification society recognized by the Commandant. Rules of the Road means the statutory and... operation and the sea, including seamanship, navigation, oceanography, other nautical and marine sciences...
USSR Report, Life Sciences, Biomedical and Behavioral Sciences, No. 39
1983-08-02
professional " handwriting ." Commanders of advance units [chasti] and subunits [podrazdeleniya], when analyzing high-altitude flights and pilot actions...in morbidity levels from 1966 to 1980 were much greater in children than in adults , This has been particularly true for older schoolchildren in...recent times. Children contacted viral hepatitis 3,4 to 6,5 times more frequently than adults . Half of all cases occur from September to December
2016-06-01
CTRAM). by Jared Cameron Beck, DMD Lieutenant Commander, Dental Corps United States Navy A Thesis submitted to the Faculty of the...Periodontics Graduate Program Naval Postgraduate Dental School Uniformed Services University of the Health Sciences in partial fulfillment of the...requirements for the degree of Master of Science in Oral Biology June 2016 Naval Postgraduate Dental School Uniformed Services
2000-12-06
KENNEDY SPACE CENTER, FLA. -- STS-107 Pilot William C. “Willie” McCool (left) and Commander Rick D. Husband look over equipment for their mission. They and other crew members are taking part in In-Flight Maintenance training. Research mission STS-107, scheduled to launch July 19, 2001, will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science
2000-12-06
KENNEDY SPACE CENTER, FLA. -- STS-107 Pilot William C. “Willie” McCool (left) and Commander Rick D. Husband look over equipment for their mission. They and other crew members are taking part in In-Flight Maintenance training. Research mission STS-107, scheduled to launch July 19, 2001, will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science
Strategic Landpower and the Arabian Gulf
2013-01-01
1st Armored Division, based in Fort Bliss , Texas, has been aligned with US Central Command and has played an important role in the Eager Lion...Trainers,” Washington Post, June 27, 2013. 46 Tim Ripley, Middle East Airpower in the 21st Century (South Yorkshire, UK: Pen and Sword, 2010), 173, 188
19. Interior view showing flight simulator partition and rear overhead ...
19. Interior view showing flight simulator partition and rear overhead door, dock no. 493. View to south. - Offutt Air Force Base, Looking Glass Airborne Command Post, Nose Docks, On either side of Hangar Access Apron at Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE
Liberation and Franco-American Relations in Post-War Cherbourg
2008-06-13
minister of war, François Michel le Tellier Louvois, countermanded his sovereign’s orders and suspended the defense plans, demolished the castle and...American Twelfth Army Group was the responsibility of the Communications Zone, or COMZ, commanded by Major General John Clifford Hodges Lee (see figure
1. Southwest front, dock no. 491. Aircraft tail extends through ...
1. Southwest front, dock no. 491. Aircraft tail extends through gasket in center hangar doors. View to east. - Offutt Air Force Base, Looking Glass Airborne Command Post, Nose Docks, On either side of Hangar Access Apron at Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE
The Evolution of Current Command Relationships in Amphibious Operations Doctrine
2013-04-08
post World War I British Empire. They pressed on, however, despite extremely limited funding and inability to test their doctrine, and spent much...The levels of cooperation that exist are now firmly cemented in the minds of those in uniform today and the caustic service in-fighting for
Army Communicator. Volume 31, Number 1, Winter 2006
2006-01-01
material does not represent official policy, thinking, or endorsement by an agency of the U.S. Army. This publication contains no advertising . U.S...exercise, to simu- late the bandwidth capacity of a Joint Node Network command post node or an ATM Moblie Subscriber Equipment node. These links were
1998-04-17
STS-90 Mission Commander Richard Searfoss sits in a chair during suitup activities in the Operations and Checkout Building. Searfoss and the rest of his flight crew will shortly depart for Launch Pad 39B, where the Space Shuttle Columbia awaits a second liftoff attempt at 2:19 p.m. EDT. His third trip into space, Searfoss commands this life sciences research flight that will focus on the most complex and least understood part of the human body the nervous system. Neurolab will examine the effects of spaceflight on the brain, spinal cord, peripheral nerves and sensory organs in the human body
2004-10-08
Expedition 10 Commander and NASA Science Officer Leroy Chiao, center and Flight Engineer and Soyuz Commander Salizhan Sharipov toured a museum bearing the name of historic Russian rocket designer Sergei Korolev October 9, 2004 at the Baikonur Cosmodrome in Kazakhstan in advance of their liftoff to the International Space Station October 14. The traditional visit included the signing of their names in commemorative books and a wall at the museum, and touring the cottages nearby where Korolev and Yuri Gagarin slept on the eve of Gagarin's launch April 12, 1961 to become the first human in space. Photo Credit: (NASA/Bill Ingalls)
2016-08-11
STS083-S-007 (4 April 1997)--- The Space Shuttle Columbia heads toward Earth-orbit from Launch Pad 39A at 2:20:32 p.m. (EST), April 4, 1997, at the Kennedy Space Center (KSC). Onboard the spacecraft to support the Microgravity Science Laboratory 1 (MSL-1) mission were astronauts James D. Halsell, commander; Susan L. Still, pilot; Janice E. Voss, payload commander; Michael L. Gernhardt and Donald A. Thomas, both mission specialists; along with payload specialists Roger K. Crouch and Gregory T. Linteris. A problem with a fuel cell caused the crew to cut the mission short and return to Earth on April 8, 1997.
2005-04-15
Expedition 11 Commander Sergei Krikalev, Flight Engineer and NASA Science Officer John Phillips and European Space Agency astronaut Roberto Vittori of Italy blast off aboard the Soyuz TMA-6 spacecraft from the Baikonur Cosmodrome in Kazakhstan, Friday, April 15, 2005, for a two-day trip to the International Space Station. Krikalev and Phillips will spend six months on the Station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the Station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)
Expedition 11 Press Conference
2005-04-13
Expedition 11 Flight Engineer and NASA Science Officer John Phillips is seen during a press conference, Thursday, April 14, 2005, in Baikonur, Kazakhstan. Phillips, Expedition 11 Commander Sergei Krikalev and, European Space Agency astronaut Roberto Vittori, of Italy, are scheduled to launch aboard a Soyuz TMA-6 spacecraft April 15. Krikalev and Phillips will spend six months on the station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)
Expedition 11 Press Conference
2005-04-13
Expedition 11 Flight Engineer and NASA Science Officer John Phillips speaks to the press, Thursday, April 14, 2005, in Baikonur, Kazakhstan. Phillips, Expedition 11 Commander Sergei Krikalev and European Space Agency astronaut Roberto Vittori, of Italy, are scheduled to launch aboard a Soyuz TMA-6 spacecraft April 15. Krikalev and Phillips will spend six months on the station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)
2005-04-13
The Soyuz TMA-6 sits on the pad ready for launch, Thursday, April 14, 2005, at the Baikonur Cosmodrome in Kazakhstan. Expedition 11 crew Commander Sergei Krikalev along with Flight Engineer and NASA Science Officer John Phillips and European Space Agency Astronaut Roberto Vittori, of Italy, will launch April 15, 2005. Krikalev and Phillips will spend six months on the station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the Station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)
2005-04-15
Expedition 11 Commander Sergei Krikalev, Flight Engineer and NASA Science Officer John Phillips and European Space Agency astronaut Roberto Vittori, of Italy, blast off aboard the Soyuz TMA-6 spacecraft from the Baikonur Cosmodrome in Kazakhstan, Friday, April 15, 2005, for a two-day trip to the International Space Station. Krikalev and Phillips will spend six months on the Station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the Station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)
Expedition 11 Press Conference
2005-04-13
Expedition 11 Commander Sergei Krikalev speaks to the press, Thursday, April 14, 2005, in Baikonur, Kazakhstan. Kiralev, Flight Engineer and NASA Science Officer John Phillips and European Space Agency astronaut Roberto Vittori, of Italy, are scheduled to launch aboard a Soyuz TMA-6 spacecraft April 15. Krikalev and Phillips will spend six months on the station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)
Boutiques: a flexible framework to integrate command-line applications in computing platforms.
Glatard, Tristan; Kiar, Gregory; Aumentado-Armstrong, Tristan; Beck, Natacha; Bellec, Pierre; Bernard, Rémi; Bonnet, Axel; Brown, Shawn T; Camarasu-Pop, Sorina; Cervenansky, Frédéric; Das, Samir; Ferreira da Silva, Rafael; Flandin, Guillaume; Girard, Pascal; Gorgolewski, Krzysztof J; Guttmann, Charles R G; Hayot-Sasson, Valérie; Quirion, Pierre-Olivier; Rioux, Pierre; Rousseau, Marc-Étienne; Evans, Alan C
2018-05-01
We present Boutiques, a system to automatically publish, integrate, and execute command-line applications across computational platforms. Boutiques applications are installed through software containers described in a rich and flexible JSON language. A set of core tools facilitates the construction, validation, import, execution, and publishing of applications. Boutiques is currently supported by several distinct virtual research platforms, and it has been used to describe dozens of applications in the neuroinformatics domain. We expect Boutiques to improve the quality of application integration in computational platforms, to reduce redundancy of effort, to contribute to computational reproducibility, and to foster Open Science.
STS-107 Commander Rick Husband takes a break during TCDT M113 training
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- STS-107 Commander Rick Husband takes a break during training on the operation of an M113 armored personnel carrier during Terminal Countdown Demonstration Test activities, a standard part of launch preparations. Instructor George Hoggard looks on over Husband's shoulder. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia.
STS-112 Flight Day 7 Highlights
NASA Astrophysics Data System (ADS)
2002-10-01
On this seventh day of STS-112 mission members of the crew (Commander Jeff Ashby; Pilot Pam Melroy; Mission Specialist Sandy Magnus, Piers Sellers, Dave Wolf, and Fyodor Yurchikhin) along with the Expedition Five crew (Commander Valery Korzun; Flight Engineer Peggy Whitson, and Sergei Treschev) are seen answering questions during the mission's press interview and photo opportunity. They answered various questions regarding the mission's objectives, the onboard science experiments, the extravehicular activities (EVAs) and the effects of living in space. Shots of the test deployment of the S1 truss radiator and Canadarm rotor joint are also shown.
STS-112 Flight Day 7 Highlights
NASA Technical Reports Server (NTRS)
2002-01-01
On this seventh day of STS-112 mission members of the crew (Commander Jeff Ashby; Pilot Pam Melroy; Mission Specialist Sandy Magnus, Piers Sellers, Dave Wolf, and Fyodor Yurchikhin) along with the Expedition Five crew (Commander Valery Korzun; Flight Engineer Peggy Whitson, and Sergei Treschev) are seen answering questions during the mission's press interview and photo opportunity. They answered various questions regarding the mission's objectives, the onboard science experiments, the extravehicular activities (EVAs) and the effects of living in space. Shots of the test deployment of the S1 truss radiator and Canadarm rotor joint are also shown.
Soyuz TMA-3 and booster rocket transport and raise on launch pad at Baikonur Cosmodrome
2003-10-15
JSC2003-E-59146 (16 October 2003) --- The Soyuz TMA-3 spacecraft and its booster rocket were transported on a rail car to its launch pad and raised to its vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003, in preparation for liftoff October 18 to carry astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer; cosmonaut Alexander Kaleri, Soyuz commander and flight engineer, representing Rosaviakosmos; and European Space Agency (ESA) astronaut Pedro Duque of Spain to the International Space Station (ISS). Photo Credit: "NASA/Bill Ingalls"
Soyuz TMA-3 and booster rocket transport and raise on launch pad at Baikonur Cosmodrome
2003-10-15
JSC2003-E-59150 (16 October 2003) --- The Soyuz TMA-3 spacecraft and its booster rocket were transported on a rail car to its launch pad and raised to its vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003, in preparation for liftoff October 18 to carry astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer; cosmonaut Alexander Kaleri, Soyuz commander and flight engineer, representing Rosaviakosmos; and European Space Agency (ESA) astronaut Pedro Duque of Spain to the International Space Station (ISS). Photo Credit: "NASA/Bill Ingalls"
Soyuz TMA-3 and booster rocket transport and raise on launch pad at Baikonur Cosmodrome
2003-10-15
JSC2003-E-59158 (16 October 2003) --- The Soyuz TMA-3 spacecraft and its booster rocket were transported on a rail car to its launch pad and raised to its vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003, in preparation for liftoff October 18 to carry astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer; cosmonaut Alexander Kaleri, Soyuz commander and flight engineer, representing Rosaviakosmos; and European Space Agency (ESA) astronaut Pedro Duque of Spain to the International Space Station (ISS). Photo Credit: "NASA/Bill Ingalls"
STS-107 Mission Specialist David Brown arrives at KSC for TCDT
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- STS-107 Mission Specialist David Brown arrives at KSC to take part in Terminal Countdown Demonstration Test activities, which include a simulated launch countdown. Other crew members are Commander Rick Husband, Pilot William 'Willie' McCool, Payload Commander Michael Anderson, Mission Specialists Kalpana Chawla and Laurel Clark and Payload Specialist Ilan Ramon (the first Israeli astronaut). STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is scheduled for Jan. 16, 2003.
STS-107 Mission Specialist Laurel Clark arrives at KSC for TCDT
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- STS-107 Mission Specialist Laurel Clark arrives at KSC to take part in Terminal Countdown Demonstration Test activities, which include a simulated launch countdown. Other crew members are Commander Rick Husband, Pilot William 'Willie' McCool, Payload Commander Michael Anderson, Mission Specialists Kalpana Chawla and David Brown, and Payload Specialist Ilan Ramon, the first Israeli astronaut. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is scheduled for Jan. 16, 2003.
STS-107 Payload Specialist Ilan Ramon arrives at KSC for TCDT
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - STS-107 Payload Specialist Ilan Ramon (the first Israeli astronaut) arrives at KSC to take part in Terminal Countdown Demonstration Test activities, which include a simulated launch countdown. Other crew members are Commander Rick Husband, Pilot William 'Willie' McCool, Payload Commander Michael Anderson, Mission Specialists Kalpana Chawla, David Brown and Laurel Clark. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is scheduled for Jan. 16, 2003.
STS-107 Mission Specialist Kalpana Chawla arrives at KSC for TCDT
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - STS-107 Mission Specialist Kalpana Chawla arrives at KSC to take part in Terminal Countdown Demonstration Test activities, which include a simulated launch countdown. Other crew members are Commander Rick Husband, Pilot William 'Willie' McCool, Payload Commander Michael Anderson, Mission Specialists David Brown and Laurel Clark and Payload Specialist Ilan Ramon (the first Israeli astronaut). STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is scheduled for Jan. 16, 2003.
2004-10-08
Expedition 10 Flight Engineer and Soyuz Commander Salizhan Sharipov, left, Expedition 10 Commander and NASA Science Officer Leroy Chiao and Russian Space Forces cosmonaut Yuri Shargin are given a review of the GPS and Satellite phone systems after having conducted a final inspection of their Soyuz TMA-5 spacecraft on Saturday, October 9, 2004, at the Baikonur Cosmodrome in Kazakhstan in preparation for their launch October 14 to the International Space Station. The Soyuz vehicle will be mated to its booster rocket October 11 in preparation for its rollout to the Central Asian launch pad October 12. Photo Credit: (NASA/Bill Ingalls)
2004-10-04
Russian Space Forces cosmonaut Yuri Shargin, center, and Expedition 10 Flight Engineer and Soyuz Commander Salizhan Sharipov donned their launch and entry suits and climbed aboard the Soyuz TMA-5 spacecraft Friday, October 5, 2004 at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)
Cloud Geometry Analysis of the Smoke Week III Obscuration Trials.
1982-01-01
GRAPIC 1LJu 4 Cf . .444,44 44- 0. 15, 25, TltME( SErs AOEDET. . **** *HEI HT0F CENTER OP MASS ABOVE DET. PT 42 SMOKE III EVENT # 07 1313 Z 08-12-80 STATION...PORTION OF CLOUD ATMOSPHEdIC SCIENCES LABORATORY WHITE SANDS MISSILE RANGE, N.M. 119 CLI-J000000 ) .0 0 1a 40 M M M MMMMMMMM ul zo w -ZIxJ z z w 0 L- CF ... CF -R (CPT James M. Watson) Dugway, UT 84022 Port Sill, OK 73503 Commander Commandant US Army Dugway Proving Ground US Army Field Artillery School ATTN
1997-03-14
A member of the STS-83 flight crew enters the crew hatch of the Space Shuttle Columbia with the help of the white room crew during Terminal Countdown Demonstration Test (TCDT) exercises for that mission. Members of the white room crew are (from left): Steve Crosbie, Rene Arriens and Bob Saulnier. The STS-83 crew members for the 16-day Microgravity Science Laboratory-1 (MSL-1) mission are: Mission Commander James D. Halsell, Jr.; Pilot Susan L. Still; Payload Commander Janice Voss; Mission Specialists Michael L. Gernhardt and Donald A. Thomas; and Payload Specialists Gregory T. Linteris and Roger K. Crouch
Soyuz Spacecraft Transported to Launch Pad
NASA Technical Reports Server (NTRS)
2003-01-01
The Soyuz TMA-3 spacecraft and its booster rocket (front view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: 'NASA/Bill Ingalls'
Soyuz Spacecraft Transported to Launch Pad
NASA Technical Reports Server (NTRS)
2003-01-01
The Soyuz TMA-3 spacecraft and its booster rocket (rear view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: 'NASA/Bill Ingalls'
The "Post-Post Period" and Environmental Education Research
ERIC Educational Resources Information Center
McKenzie, Marcia
2005-01-01
Described as "post-experimental" and of the "post-post period," the current moment in social science research is typified by multi-voiced texts, researcher reflexivity, cultural criticism, and experimental works; characteristics in keeping with post-structurally informed understandings of social science research as contingent, evolving and messy.…
Design decisions from the history of the EUVE science payload
NASA Technical Reports Server (NTRS)
Marchant, W.
1993-01-01
Some of the design issues that arose during the development of the EUVE science payload and solutions to the problems involved are examined. In particular, attention is given to the use of parallel and serial busses, the selection of the the ROM approach for software storage and execution, implementation of memory error detection and correction, and the selection of command structures. The early design decisions paid off in the timely delivery of the scientific payload and in the successful completion of the survey phase of the EUVE science mission.
Agreements/subagreements Applicable to Wallops, 12 Nov. 1991
NASA Technical Reports Server (NTRS)
1991-01-01
The status of space science agreements are noted. A general overview of the Wallops Flight Facility (WFF) is given. The geography, history, and mission of the facility are briefly surveyed. Brief accounts are given of NASA earth science activities at the WFF, including atmospheric dynamics, atmospheric optics, ocean physics, microwave altimetry, ocean color research, wind-wave-current interaction, flight support activities, the Sounding Rocket Program, and the NASA Balloon Program. Also discussed are the WFF launch range, the research airport, aircraft airborne science, telemetry, data systems, communications, and command and control.
Design decisions from the history of the EUVE science payload
NASA Astrophysics Data System (ADS)
Marchant, W.
1993-09-01
Some of the design issues that arose during the development of the EUVE science payload and solutions to the problems involved are examined. In particular, attention is given to the use of parallel and serial busses, the selection of the the ROM approach for software storage and execution, implementation of memory error detection and correction, and the selection of command structures. The early design decisions paid off in the timely delivery of the scientific payload and in the successful completion of the survey phase of the EUVE science mission.
Astronaut Owen Garriott trims hair of Astronaut Alan Bean
NASA Technical Reports Server (NTRS)
1973-01-01
Scientist-Astronaut Owen K. Garriott, Skylab 3 science pilot, trims the hair of Astronaut Alan L. Bean, commander, in this on-board photograph from the Skylab Orbital Workshop (OWS). Bean holds a vacuum hose to gather in loose hair.
2003-05-05
Expedition 6 Flight Engineer Nikolai Budarin, left, Commander Ken Bowersox and International Space Station Science Officer Don Pettit, right, pose for photos at a press conference at the Gagarin Cosmonaut Training Center in Star City, Russia, Thursday, May 6, 2003. Photo Credit: (NASA/Bill Ingalls)
2003-05-05
Expedition 6 Flight Engineer Nikolai Budarin, left, Commander Ken Bowersox and NASA International Space Station Science Officer Don Pettit, right, answer questions during a press conference at the Gagarin Cosmonaut Training Center in Star City, Russia, Thursday, May 6, 2003. Photo Credit: (NASA/Bill Ingalls)
Burbank performs maintenance on the light cover for the MSG
2012-01-16
ISS030-E-155913 (16 Jan. 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, performs in-flight maintenance on the front stray light cover for the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.
Burbank performs maintenance on the light cover for the MSG
2012-01-16
ISS030-E-155912 (16 Jan. 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, performs in-flight maintenance on the front stray light cover for the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.
Post flight press conference for the STS-7 mission
NASA Technical Reports Server (NTRS)
1983-01-01
Two of the three mission specialists for STS-7 field questions from the press during the post-flight press conference in JSC's main auditorium on July 1, 1983. Left to right are John M. Fabian and Dr. Norman E. Thagard (35419); Portrait view of Fabian during the STS-7 post-flight press conference (35420); Portrait view of mission specialist Dr. Sally K. Ride during the STS-7 post-flight press conference (35421); Portrait view of STS-7 pilot Frederick H. Hauck during the post-flight press conference (35422); Portrait view of STS-7 crew commander Robert L. Crippen during the post-flight press conference (35423); Three STS-7 crew members listen to questions from news reporters. They are, left to right, Crippen, Hauck, and Ride (35424); The first five person shuttle crew and first woman crew member greet the news media. Members are, left to right, Crippen, Hauck, Ride, Fabian and Thagard (35425).
At the Crossroads: The Impact of New Irish Science Curricula on First Year Post-Primary Students
ERIC Educational Resources Information Center
Varley, Janet Penelope; Murphy, Cliona; Veale, Orlaith
2013-01-01
In Ireland, new science curricula were introduced at primary and early post-primary levels in 2003, in an effort to reverse declining interest and enrolment in science. This paper reports on a national study that explored first year post-primary students' experiences of and attitudes towards school science under these new curricula. Data were…
View of Skylab space station cluster in Earth orbit from CSM
2008-08-18
SL4-143-4706 (8 Feb. 1974) --- An overhead view of the Skylab space station cluster in Earth orbit as photographed from the Skylab 4 Command and Service Modules (CSM) during the final fly-around by the CSM before returning home. The space station is contrasted against a cloud-covered Earth. Note the solar shield which was deployed by the second crew of Skylab and from which a micro meteoroid shield has been missing since the cluster was launched on May 14, 1973. The Orbital Workshop (OWS) solar panel on the left side was also lost on workshop launch day. Inside the Command Module (CM) when this picture was made were astronaut Gerald P. Carr, commander; scientist-astronaut Edward G. Gibson, science pilot; and astronaut William R. Pogue, pilot. The crew used a 70mm hand-held Hasselblad camera to take this photograph. Photo credit: NASA
Expedition One crewmembers with IMAX camera
2001-02-11
STS98-E-5167 (11 February 2001) --- Astronaut William M. (Bill) Shepherd (left), Expedition One commander, with the help of cosmonaut Sergei K. Krikalev, films activity onboard the newly attached Destiny laboratory. The crews of Atlantis and the International Space Station on February 11 opened the Destiny laboratory and spent the first full day of what are planned to be years of work ahead inside the orbiting science and command center. Shepherd opened the Destiny hatch, and he and Shuttle commander Kenneth D. Cockrell ventured inside at 8:38 a.m. (CST). Members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crew also continued equipment transfers from the shuttle to the station and filmed several scenes onboard the station using an IMAX camera. This scene was recorded with a digital still camera.
Hatch leading into U.S. Laboratory / Destiny module
2001-02-11
STS98-E-5114 (11 February 2001) --- This medium close-up shot, photographed with a digital still camera, shows Unity's closed hatch to the newly delivered Destiny laboratory. The crews of Atlantis and the International Space Station opened the laboratory, shortly after this photo was made on Feb. 11, and the astronauts and cosmonauts spent the first full day of what are planned to be years of work ahead inside the orbiting science and command center. Station commander William M. (Bill) Shepherd opened the Destiny hatch, and he and shuttle commander Kenneth D. Cockrell ventured inside at 8:38 a.m. (CST), Feb. 11. As depicted in subsequent digital images in this series, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crew also continued equipment transfers from the shuttle to the station.
Autonomous mission planning and scheduling: Innovative, integrated, responsive
NASA Technical Reports Server (NTRS)
Sary, Charisse; Liu, Simon; Hull, Larry; Davis, Randy
1994-01-01
Autonomous mission scheduling, a new concept for NASA ground data systems, is a decentralized and distributed approach to scientific spacecraft planning, scheduling, and command management. Systems and services are provided that enable investigators to operate their own instruments. In autonomous mission scheduling, separate nodes exist for each instrument and one or more operations nodes exist for the spacecraft. Each node is responsible for its own operations which include planning, scheduling, and commanding; and for resolving conflicts with other nodes. One or more database servers accessible to all nodes enable each to share mission and science planning, scheduling, and commanding information. The architecture for autonomous mission scheduling is based upon a realistic mix of state-of-the-art and emerging technology and services, e.g., high performance individual workstations, high speed communications, client-server computing, and relational databases. The concept is particularly suited to the smaller, less complex missions of the future.
NASA Technical Reports Server (NTRS)
1969-01-01
Postflight analysis of Apollo 8 mission. Apollo 8 was the second manned flight in the program and the first manned lunar orbit mission. The crew were Frank Borman, Commander; James A. Lovell, Command Module Pilot; and William A. Anders, Lunar Module Pilot. The Apollo 8 space vehicle was launched on time from Kennedy Space Center, Florida, at 7:51:00 AM, EST, on December 21, 1968. Following a nominal boost phase, the spacecraft and S-IVB combination was inserted - into a parking orbit of 98 by 103 nautical miles. After a post-insertion checkout of spacecraft systems, the 319-second translunar injection maneuver was initiated at 2:50:37 by reignition of the S-IVB engine.
COS FUV Recovery after Anomalous Shutdown
NASA Astrophysics Data System (ADS)
Wheeler, Thomas
2012-10-01
This proposal consists of the steps for turning on and ramping up the COS FUV high voltage in a conservative manner after a HV anomalous shutdown by executing a "reduced set" of visits from Cycle 19 Proposal 12810. The nature of the shutdown, i.e., over-light, HV current transient {"crackle"}, ion feedback {induced by a high energy particle}, or field emission {possibly caused by dust or other particulate on the QE grid or other close-by structure or hardware}, and the value of the commanded HV at the time of the shutdown will determine what visits are executed. Because of gain sag, commanded HV settings updates may be required. First, prior to execution of this proposal or selected visits from this proposal, all preliminary steps should be exercised to gather the necessary diagnostic data, e.g., science data evaluation {if a science exposure was in progress and the science data is available}, memory dumps {DCE, EXEC RAM, and possibly the CS BUFFER}, engineering telemetry, or other information that might provide insight as to the nature of the shutdown and estimated count rate. The complete step-by-step procedure is detailed in the Observing Description, but in summary, the following is done:Day 01 activities, visits 01-07, contain both QE grid off and on HV ramping to HVLow {100/100} with diagnostics {DCE dumps} and darks to exclude QE grid involvement in the shutdown. Subsequent to day 01, all HV ramping will be with the QE grid on with the same diagnostics and exposures. All days end with the setting of COS event flag 3 to prevent any FUV HV commanding.Time is allotted for cognizant detector and COS instrument scientist and engineers to examine data dumps, science exposures, and engineering telemetry. If all is well, the go-ahead will be given to clear flag 3 for the next day's visits.This proposal is modeled after the Cycle 19 Proposal 12718.
COS FUV Recovery after Anomalous Shutdown
NASA Astrophysics Data System (ADS)
Wheeler, Thomas
2013-10-01
This proposal consists of the steps for turning on and ramping up the COS FUV high voltage in a safe and conservative manner after a HV anomalous shutdown by executing a "reduced set" of visits from Cycle 19 Proposal 12810. The nature of the shutdown, i.e., over-light, HV current transient {"crackle"}, ion feedback {induced by a high energy particle}, or field emission {possibly caused by dust or other particulate on the QE grid or other close-by structure or hardware}, and the value of the commanded HV at the time of the shutdown will determine what visits are executed. Because of gain sag, commanded HV settings updates may be required. First, prior to execution of this proposal or selected visits from this proposal, all preliminary steps should be exercised to gather the necessary diagnostic data, e.g., science data evaluation {if a science exposure was in progress and the science data is available}, memory dumps {DCE, EXEC RAM, and possibly the CS BUFFER}, engineering telemetry, or other information that might provide insight as to the nature of the shutdown and estimated count rate. The complete step-by-step procedure is detailed in the Observing Description, but in summary, the following is done:Day 01 activities, visits 01-07, contain both QE grid off and on HV ramping to HVLow {100/100} with diagnostics {DCE dumps} and darks to exclude QE grid involvement in the shutdown. Subsequent to day 01, all HV ramping will be with the QE grid on with the same diagnostics and exposures. All days end with the setting of COS event flag 3 to prevent any FUV HV commanding.Time is allotted for cognizant detector and COS instrument scientist and engineers to examine data dumps, science exposures, and engineering telemetry. If all is well, the go-ahead will be given to clear flag 3 for the next day's visits.This proposal is modeled after the Cycle 20 Proposal 13129.
1994-07-08
KENNEDY SPACE CENTER, FLA. - The second International Microgravity Laboratory-2 (IML-2) is off to an ontime start as the Space Shuttle Columbia lifts off from Launch Pad 39A at 12:43:00 p.m. EDT. On board are a crew of seven and more than 80 investigations developed by more than 200 scientists from 13 countries. The IML-2 complement includes materials science, bioprocessing, space and radiation biology, and human physiology experiments that will be carried out over the course of the 14-day flight. The commander of Space Shuttle Mission STS-65 is Robert D. Cabana. James D. Halsell Jr. is the pilot; the payload commander is Richard J. Hieb; the three mission specialists are Carl E. Walz, Leroy Chiao and Donald A. Thomas. Dr. Chiaki Mukai, representing NASDA, the National Space Development Agency of Japan, is the payload specialist. Mukai becomes the first Japanese woman to fly into space.
The Scintillation Prediction Observations Research Task (SPORT) Mission
NASA Technical Reports Server (NTRS)
Spann, James; Swenson, Charles; Durao, Otavio; Loures, Luis; Heelis, Rod; Bishop, Rebecca; Le, Guan; Abdu, Mangalathayil; Krause, Linda; Denardin, Clezio;
2017-01-01
SPORT is a science mission using a 6U CubeSat and integrated ground network that will (1) advance understanding and (2) enable improved predictions of scintillation occurrence that impact GPS signals and radio communications. This is the science of Space Weather. SPORT is an international partnership with NASA, U.S. institutions, the Brazilian National Institute for Space Research (INPE), and the Technical Aeronautics Institute under the Brazilian Air Force Command Department (DCTA/ITA).
Battalion Command Group Performance in Simulated Combat
1979-03-01
public release; distribution unlinrited. ARI Research Reports and Technicai,, Papaers are -6tended",for sponsors of R&D0,tasks-and other, research and...FORT LEAVENWORTH, KANSAS DD C _UN 19 1979 ’I •U. S. Army Research Institute for the Behavioral and Social Sciences March 1979 Approved for public...release; distribution unlimited. -0’. S, ARMY RESEARCH INSTITUTE FOR T-HE BEHAVIORAL AND-SOCIAL SCIENCES A Field -Operating, Agency under’,the
AIR FORCE CYBER MISSION ASSURANCE SOURCES OF MISSION UNCERTAINTY
2017-04-06
Army’s Command and General Staff College at Fort Leavenworth, Kansas. Lt Col Herwick holds a bachelor of science degree in Computer Science from the...United States Air Force Academy and a master’s degree in Computer Resources and Information Management from Webster University. iii Abstract...vocabulary and while it is common to use conversationally, that usage is not always based on specific definitions. As a result, it finds common usage in
1983-08-01
chromosomes were tested from the concurrent negative control. This sample size was adequate for analysis using the Fisher’s Exact test ( personal communication...study may be regarded as adequate ( personal communication - Dr. Gildengorin, Statistician, Information Sciences, Letterman Army Institute of Research...Health Sciences 0917 Arlington Road Bethesda MD 20014 CM nd Commander US Army Euvaoomens Hygine Agency US Army Research Institute Abardan Proving Ground MD
Foale conducts MSG setup for PFMI experiment in U.S. Lab during Expedition 8
2003-11-28
ISS008-E-06301 (28 November 2003) --- Astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer, installs equipment in the Microgravity Science Glovebox (MSG) for the Pore Formation and Mobility Investigation (PFMI) experiment in the Destiny laboratory on the International Space Station (ISS). This experiment studies how bubbles form in metal and crystal samples, thus deteriorating the samples strength and usefulness in experiments.
Foale conducts MSG setup for PFMI experiment in U.S. Lab during Expedition 8
2003-11-28
ISS008-E-06309 (28 November 2003) --- Astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer, installs equipment in the Microgravity Science Glovebox (MSG) for the Pore Formation and Mobility Investigation (PFMI) experiment in the Destiny laboratory on the International Space Station (ISS). This experiment studies how bubbles form in metal and crystal samples, thus deteriorating the samples strength and usefulness in experiments.
Foale conducts MSG setup for PFMI experiment in U.S. Lab during Expedition 8
2003-11-28
ISS008-E-06300 (28 November 2003) --- Astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer, installs equipment in the Microgravity Science Glovebox (MSG) for the Pore Formation and Mobility Investigation (PFMI) experiment in the Destiny laboratory on the International Space Station (ISS). This experiment studies how bubbles form in metal and crystal samples, thus deteriorating the samples strength and usefulness in experiments.
1993-09-01
Chiras , Daniel D. Environmental Science . Redwood City, California: The Benjamin/Cummings Publishing Company, Inc., 1991. Cummings-Saxton, J., L...Engineering of the Air Force Institute of Technology Air University In Partial Fulfillment of the Requirements for the Degree of Master of Science in...Engineering and Environmental Management Raymond A. Sable, B. Architecture Captain, USAF, R.A. September 1993 Approved for public release; distribution
International Acquisition Programs: Variables Beyond Cost, Schedule and Performance
2015-02-17
Academy with a Bachelor of Science Degree in Human Factors Engineering and a Masters of Operational Art and Science from Air Command and Staff...Lt Col, USAF A Research Report Submitted to the Faculty In Partial Fulfillment of the Graduation Requirements Advisor: Col Kenneth Tatum 17...5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS
Extreme Ultraviolet Explorer Science Operation Center
NASA Technical Reports Server (NTRS)
Wong, G. S.; Kronberg, F. A.; Meriwether, H. D.; Wong, L. S.; Grassi, C. L.
1993-01-01
The EUVE Science Operations Center (ESOC) is a satellite payload operations center for the Extreme Ultraviolet Explorer project, located on the Berkeley campus of the University of California. The ESOC has the primary responsibility for commanding the EUVE telescopes and monitoring their telemetry. The ESOC is one of a very few university-based satellite operations facilities operating with NASA. This article describes the history, operation, and advantages of the ESOC as an on-campus operations center.
2000-12-06
KENNEDY SPACE CENTER, FLA. -- Members of the STS-107 crew take part in In-Flight Maintenance training for their mission. Looking over an OSTEO experiment are Mission Specialist Laurel Clark (left) and Commander Rick d. Husband. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
2000-12-06
KENNEDY SPACE CENTER, FLA. -- Members of the STS-107 crew take part in In-Flight Maintenance training for their mission. Looking over an OSTEO experiment are Mission Specialist Laurel Clark (left) and Commander Rick d. Husband. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
NASA Technical Reports Server (NTRS)
Wiley, Lowell F.
1985-01-01
The purpose of this requirements document is to develop the foundation for concept development for the Life Sciences Research Facility (LSRF) on the Space Station. These requirements are developed from the perspective of a Space Station laboratory module outfitter. Science and mission requirements including those related to specimens are set forth. System requirements, including those for support, are detailed. Functional and design requirements are covered in the areas of structures, mechanisms, electrical power, thermal systems, data management system, life support, and habitability. Finally, interface requirements for the Command Module and Logistics Module are described.
2012-12-31
View of Command and Monitoring Panel (CMP),and Power Distribution and Conversion Box (PDC),on the Microgravity Science Glovebox (MSG) rack during Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions 3 (InSPACE-3) Experiment,in the U.S. Laboratory. Photo was taken during Expedition 34.
View from airlock hatch looking down length of Orbiting Workshop
NASA Technical Reports Server (NTRS)
1974-01-01
Photograph taken from the hatch into the airlock module looking the length of the Skylab Orbital Workshop. Skylab 4 Scientist-Astronaut Edward G. Gibson, science pilot, and Astronaut Gerald P. Carr, commander, look up the passageway with trash bags around them.
Chiao watches a water bubble float in the SM taken during Expedition 10
2005-01-15
ISS010-E-13569 (15 January 2005) --- Astronaut Leroy Chiao, Expedition 10 commander and NASA ISS science officer, watches a water bubble float between him and the camera, showing his image refracted, on the International Space Station (ISS).
Chiao watches a water bubble float in the SM taken during Expedition 10
2005-01-15
ISS010-E-13562 (15 January 2005) --- Astronaut Leroy Chiao, Expedition 10 commander and NASA Space Station science officer, watches a water bubble float between himself and the camera in the Zvezda Service Module, showing his image refracted.
McArthur photographs BCAT-3 samples during Expedition 12
2005-11-11
ISS012-E-07685 (11 Nov. 2005) --- Astronaut William S. (Bill) McArthur Jr., Expedition 12 commander and NASA space station science officer, photographs Binary Colloidal Alloy Test-3 (BCAT-3) experiment samples in the Destiny laboratory of the international space station.
McArthur exercises on the CEVIS on Expedition 12
2006-01-03
ISS012-E-14206 (3 Jan. 2006) --- Astronaut William S. (Bill) McArthur Jr., Expedition 13 commander and NASA space station science officer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.
TVIS belt inspection on Expedition 12
2006-02-13
ISS012-E-18210 (13 Feb. 2006) --- Astronaut William S. (Bill) McArthur, Expedition 12 commander and NASA space station science officer, works with the Treadmill Vibration Isolation System (TVIS) during in-flight maintenance (IFM) in the Zvezda Service Module of the International Space Station.
2003-05-06
May 6, 2003. Star City, Russia. Expedition Six Flight Engineer Nikolai Budarin (L), Commander Ken Bowersox (C), and NASA ISS Science Officer Don Pettit (R) pose for photos at a Press Conference at the Gagarin Cosmonaut Training Center in Star City, Russia. Photo Credit: "NASA/Bill Ingalls"
2003-05-06
May 6, 2003. Star City, Russia. Expedition Six Flight Engineer Nikolai Budarin (L), Commander Ken Bowersox (C), and NASA ISS Science Officer Don Pettit (R) pose for photos at a Press Conference at the Gagarin Cosmonaut Training Center in Star City, Russia. Photo Credit: "NASA/Bill Ingalls"
78 FR 22527 - Army Science Board Request for Information on Technology and Core Competencies
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-16
...); Edgewood Chemical Biological Command (ECBC); Natick Soldier Research, Development & Engineering Center...; C4ISR; Night Vision; Chemical/Biological Warfare; and Soldier Systems. The study will focus on...); Armament Research, Development & Engineering Center (ARDEC); Aviation & Missile Research, Development...
Code of Federal Regulations, 2012 CFR
2012-10-01
... under section 501(a) of such Code, as now or hereafter amended. Recognized Classification Society means the American Bureau of Shipping or other classification society recognized by the Commandant. Rules of..., oceanography, other nautical and marine sciences, and maritime history and literature. In conjunction with any...
The future of naval ocean science research
NASA Astrophysics Data System (ADS)
Orcutt, John A.; Brink, Kenneth
The Ocean Studies Board (OSB) of the National Research Council reviewed the changing role of basic ocean science research in the Navy at a recent board meeting. The OSB was joined by Gerald Cann, assistant secretary of the Navy for research, development, and acquisition; Geoffrey Chesbrough, oceanographer of the Navy; Arthur Bisson, deputy assistant secretary of the Navy for antisubmarine warfare; Robert Winokur, technical director of the Office of the Oceanographer of the Navy; Bruce Robinson, director of the new science directorate at the Office of Naval Research (ONR); and Paul Gaffney, commanding officer of the Naval Research Laboratory (NRL). The past 2-3 years have brought great changes to the Navy's mission with the dissolution of the former Soviet Union and challenges presented by conflicts in newly independent states and developing nations. The new mission was recently enunciated in a white paper, “From the Sea: A New Direction for the Naval Service,” which is signed by the secretary of the Navy, the chief of naval operations, and the commandant of the Marine Corps. It departs from previous plans by proposing a heavier emphasis on amphibious operations and makes few statements about the traditional Navy mission of sea-lane control.
Design Study for Project on Standard Operating Procedures for Technical Library Services.
ERIC Educational Resources Information Center
Libbey, Miles A.; And Others
The overall objective of the Technical Information Support Activities (TISA) Project is the production of a "Post Commander's Handbook." The handbook will be instrumental in achieving greater utilization of available technical information resources to assist army scientists and engineers engaged in the support of army combat and other…
8. Photographic copy of construction drawing 1976 (original drawing located ...
8. Photographic copy of construction drawing 1976 (original drawing located in Building 301, Offutt AFB, Bellevue, Nebraska). Floor plan of entire building. - Offutt Air Force Base, Looking Glass Airborne Command Post, Aerospace Ground Equipment (AGE) Storage Facility, Far Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE
Impact of Latino Parent Engagement on Student Academic Achievement: A Pilot Study
ERIC Educational Resources Information Center
Araque, Juan Carlos; Wietstock, Cathy; Cova, Heather M.; Zepeda, Steffanie
2017-01-01
The current pilot study examines the impact of the "Ten Education Commandments for Parents" program on (1) new immigrant Latino parents' knowledge of the U.S. public education system, (2) parent engagement, and (3) their children's academic achievement. Utilizing a pre-experimental, pre- and post-test research design, four schools with…
Automating Command Post and Battle Staff Operations at the USAF 45th Space Wing
2006-10-01
services that can be registered in UDDI directories. It will also be possible to locate relevant data by using Wave’s federated search capabilities...Data is made accessible through federated search and web services provided by Wave. Data is made understandable because it is presented in the
77 FR 12066 - Collection of Information Under Review by Office of Management and Budget
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-28
... holidays. OIRA posts its decisions on ICRs online at http://www.reginfo.gov/public/do/PRAMain after the... Command, Control, Communications, Computers and Information Technology. [FR Doc. 2012-4607 Filed 2-27-12... DEPARTMENT OF HOMELAND SECURITY Coast Guard [USCG-2011-1061] Collection of Information Under...
STS-112 crew post-landing briefing for the media
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- The STS-112 crew takes part in a post-landing briefing for the media. Moderating, at left, is George Diller, with the NASA News Center. The crew, from left, are Commander Jeffrey Ashby, Pilot Pamela Melroy and Mission Specialists David Wolf, Sandra Magnus, Piers Sellers and cosmonaut Fyodor Yurchikhin. Mission STS-112 was the 15th assembly flight to the International Space Station, installing the S1 truss. The landing was the 60th at KSC in the history of the Shuttle program.
STS-4 post flight crew debriefing in JSC conference room
NASA Technical Reports Server (NTRS)
1982-01-01
STS-4 Commander Ken Mattingly and Pilot Henry Hartsfield discuss mission events with astronauts and administrators during a post flight crew debriefing held in a JSC conference room. Seated around the conference table clockwise (from lower left) are astronaut William B. Lenoir, Hartsfield, Mattingly, astronaut Robert F. Overmyer, astronaut S. David Griggs, astronaut Karol J. Bobko, astronaut John W. Young, administrator George W. Abbey, and astronaut Vance D. Brand. On the perimeter of the room are astronaut George D. Nelson (left) and astronaut Francis (Dick) Scobee (right).
Automatic Command Sequence Generation
NASA Technical Reports Server (NTRS)
Fisher, Forest; Gladded, Roy; Khanampompan, Teerapat
2007-01-01
Automatic Sequence Generator (Autogen) Version 3.0 software automatically generates command sequences for the Mars Reconnaissance Orbiter (MRO) and several other JPL spacecraft operated by the multi-mission support team. Autogen uses standard JPL sequencing tools like APGEN, ASP, SEQGEN, and the DOM database to automate the generation of uplink command products, Spacecraft Command Message Format (SCMF) files, and the corresponding ground command products, DSN Keywords Files (DKF). Autogen supports all the major multi-mission mission phases including the cruise, aerobraking, mapping/science, and relay mission phases. Autogen is a Perl script, which functions within the mission operations UNIX environment. It consists of two parts: a set of model files and the autogen Perl script. Autogen encodes the behaviors of the system into a model and encodes algorithms for context sensitive customizations of the modeled behaviors. The model includes knowledge of different mission phases and how the resultant command products must differ for these phases. The executable software portion of Autogen, automates the setup and use of APGEN for constructing a spacecraft activity sequence file (SASF). The setup includes file retrieval through the DOM (Distributed Object Manager), an object database used to store project files. This step retrieves all the needed input files for generating the command products. Depending on the mission phase, Autogen also uses the ASP (Automated Sequence Processor) and SEQGEN to generate the command product sent to the spacecraft. Autogen also provides the means for customizing sequences through the use of configuration files. By automating the majority of the sequencing generation process, Autogen eliminates many sequence generation errors commonly introduced by manually constructing spacecraft command sequences. Through the layering of commands into the sequence by a series of scheduling algorithms, users are able to rapidly and reliably construct the desired uplink command products. With the aid of Autogen, sequences may be produced in a matter of hours instead of weeks, with a significant reduction in the number of people on the sequence team. As a result, the uplink product generation process is significantly streamlined and mission risk is significantly reduced. Autogen is used for operations of MRO, Mars Global Surveyor (MGS), Mars Exploration Rover (MER), Mars Odyssey, and will be used for operations of Phoenix. Autogen Version 3.0 is the operational version of Autogen including the MRO adaptation for the cruise mission phase, and was also used for development of the aerobraking and mapping mission phases for MRO.
Science Planning and Orbit Classification for Solar Probe Plus
NASA Astrophysics Data System (ADS)
Kusterer, M. B.; Fox, N. J.; Rodgers, D. J.; Turner, F. S.
2016-12-01
There are a number of challenges for the Science Planning Team (SPT) of the Solar Probe Plus (SPP) Mission. Since SPP is using a decoupled payload operations approach, tight coordination between the mission operations and payload teams will be required. The payload teams must manage the volume of data that they write to the spacecraft solid-state recorders (SSR) for their individual instruments for downlink to the ground. Making this process more difficult, the geometry of the celestial bodies and the spacecraft during some of the SPP mission orbits cause limited uplink and downlink opportunities. The payload teams will also be required to coordinate power on opportunities, command uplink opportunities, and data transfers from instrument memory to the spacecraft SSR with the operation team. The SPT also intend to coordinate observations with other spacecraft and ground based systems. To solve these challenges, detailed orbit activity planning is required in advance for each orbit. An orbit planning process is being created to facilitate the coordination of spacecraft and payload activities for each orbit. An interactive Science Planning Tool is being designed to integrate the payload data volume and priority allocations, spacecraft ephemeris, attitude, downlink and uplink schedules, spacecraft and payload activities, and other spacecraft ephemeris. It will be used during science planning to select the instrument data priorities and data volumes that satisfy the orbit data volume constraints and power on, command uplink and data transfer time periods. To aid in the initial stages of science planning we have created an orbit classification scheme based on downlink availability and significant science events. Different types of challenges arise in the management of science data driven by orbital geometry and operational constraints, and this scheme attempts to identify the patterns that emerge.
Tools virtualization for command and control systems
NASA Astrophysics Data System (ADS)
Piszczek, Marek; Maciejewski, Marcin; Pomianek, Mateusz; Szustakowski, Mieczysław
2017-10-01
Information management is an inseparable part of the command process. The result is that the person making decisions at the command post interacts with data providing devices in various ways. Tools virtualization process can introduce a number of significant modifications in the design of solutions for management and command. The general idea involves replacing physical devices user interface with their digital representation (so-called Virtual instruments). A more advanced level of the systems "digitalization" is to use the mixed reality environments. In solutions using Augmented reality (AR) customized HMI is displayed to the operator when he approaches to each device. Identification of device is done by image recognition of photo codes. Visualization is achieved by (optical) see-through head mounted display (HMD). Control can be done for example by means of a handheld touch panel. Using the immersive virtual environment, the command center can be digitally reconstructed. Workstation requires only VR system (HMD) and access to information network. Operator can interact with devices in such a way as it would perform in real world (for example with the virtual hands). Because of their procedures (an analysis of central vision, eye tracking) MR systems offers another useful feature of reducing requirements for system data throughput. Due to the fact that at the moment we focus on the single device. Experiments carried out using Moverio BT-200 and SteamVR systems and the results of experimental application testing clearly indicate the ability to create a fully functional information system with the use of mixed reality technology.
Official STS-67 preflight crew portrait
NASA Technical Reports Server (NTRS)
1995-01-01
Official STS-67 preflight crew portrait. In front are astronauts (left to right) Stephen S. Oswald, mission commander; Tamara E. Jernigan, payload commander; and William G. Gregory, pilot. In the back are (left to right) Ronald A. Parise, payload specialist; astronauts Wendy B. Lawrence, and John Grunsfeld, both mission specialists; and Samuel T. Durrance, payload specialist. Dr. Durrance is a research scientist in the Department of Physics and Astronomy at Johns Hopkins University, Baltimore, Maryland. Dr. Parise is a senior scientist in the Space Observatories Department, Computer Sciences Corporation, Silver Spring, Maryland. Both payload specialists flew aboard the Space Shuttle Columbia for STS-35/ASTRO-1 mission in December 1990.
2004-10-08
Expedition 10 Commander and NASA Science Officer Leroy Chiao, right, Flight Engineer and Soyuz Commander Salizhan Sharipov and Russian Space Forces cosmonaut Yuri Shargin, left, toured a museum bearing the name of historic Russian rocket designer Sergei Korolev, Saturday, October 9, 2004, at the Baikonur Cosmodrome in Kazakhstan in advance of their liftoff to the International Space Station October 14. The traditional visit included the signing of their names in commemorative books and a wall at the museum, and touring the cottages nearby where Korolev and Yuri Gagarin slept on the eve of Gagarin's launch April 12, 1961 to become the first human in space. Photo Credit: (NASA/Bill Ingalls)
2016-08-11
STS083-S-003 (4 April 1997)--- With the Atlantic Ocean in the background, the Space Shuttle Columbia heads toward Earth-orbit from Launch Pad 39A at 2:20:32 p.m. (EST), April 4, 1997, from the Kennedy Space Center (KSC). Onboard the spacecraft to support the Microgravity Science Laboratory 1 (MSL-1) mission were astronauts James D. Halsell, commander; Susan L. Still, pilot; Janice E. Voss, payload commander; Michael L. Gernhardt and Donald A. Thomas, both mission specialists; along with payload specialists Roger K. Crouch and Gregory T. Linteris. A problem with a fuel cell caused the crew to cut the mission short and return to Earth on April 8, 1997.
Expedition 11 Press Conference
2005-04-13
Expedition 11 Flight Engineer and NASA Science Officer John Phillips, left, crew Commander Sergei Krikalev and European Space Agency Astronaut Roberto Vittori, of Italy, join together at a press conference, Thursday, April 14, 2005, prior to their April 15 launch aboard the Soyuz TMA-6 spacecraft from the Baikonur Cosmodrome in Kazakhstan. Krikalev and Phillips will spend six months on the station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the Station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)
1973-11-08
S73-36451 (25 Sept. 1973) --- The three crewmen of the Skylab 3 mission are seen aboard the prime recovery ship, USS New Orleans, following their successful 59-day visit to the Skylab space station in Earth orbit. They are, left to right, astronaut Jack R. Lousma, pilot; scientist-astronaut Owen K. Garriott, science pilot; and astronaut Alan L. Bean, commander. The Skylab 3 Command Module with the three crewmen aboard splashed down in the Pacific about 230 miles southwest of San Diego, California. They are seated atop a platform of a fork-lift dolly. Recovery support personnel are wearing face masks to prevent exposing the crewmen to disease. Photo credit: NASA
STS-107 crew photo during TCDT before launch
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - During Terminal Countdown Demonstration Test activities at the launch pad, the STS-107 crew pauses for a group photo. From left are Payload Commander Michael Anderson, Commander Rick Husband, Mission Specialist Laurel Clark, Pilot William 'Willie' McCool, and Mission Specialists Ilan Ramon, Kalpana Chawla and David Brown. Behind them is Space Shuttle Columbia. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia. .
STS-107 Commander Rick Husband during TCDT M113 training activities
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- STS-107 Commander Rick Husband operates an M113 armored personnel carrier during Terminal Countdown Demonstration Test activities, a standard part of launch preparations. From left, Payload Specialist Ilan Ramon, the first Israeli astronaut, Instructor George Hoggard, and Mission Specialists Laurel Clark (face obscured) and Kalpana Chawla enjoy the ride in the background. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia.
STS-99 Commander Kregel poses with EARTHKAM camera on OV-105's flight deck
2000-03-30
STS099-314-035 (11-22 February 2000) ---Astronaut Kevin R. Kregel, mission commander, works with camera equipment, which was used for the EarthKAM project. The camera stayed busy throughout the 11-day mission taking vertical imagery of the Earth points of opportunity for the project. Students across the United States and in France, Germany and Japan took photos throughout the STS-99 mission. And they are using these new photos, plus all the images already available in the EarthKAM system, to enhance their classroom learning in Earth and space science, social studies, geography, mathematics and more.
Boutiques: a flexible framework to integrate command-line applications in computing platforms
Glatard, Tristan; Kiar, Gregory; Aumentado-Armstrong, Tristan; Beck, Natacha; Bellec, Pierre; Bernard, Rémi; Bonnet, Axel; Brown, Shawn T; Camarasu-Pop, Sorina; Cervenansky, Frédéric; Das, Samir; Ferreira da Silva, Rafael; Flandin, Guillaume; Girard, Pascal; Gorgolewski, Krzysztof J; Guttmann, Charles R G; Hayot-Sasson, Valérie; Quirion, Pierre-Olivier; Rioux, Pierre; Rousseau, Marc-Étienne; Evans, Alan C
2018-01-01
Abstract We present Boutiques, a system to automatically publish, integrate, and execute command-line applications across computational platforms. Boutiques applications are installed through software containers described in a rich and flexible JSON language. A set of core tools facilitates the construction, validation, import, execution, and publishing of applications. Boutiques is currently supported by several distinct virtual research platforms, and it has been used to describe dozens of applications in the neuroinformatics domain. We expect Boutiques to improve the quality of application integration in computational platforms, to reduce redundancy of effort, to contribute to computational reproducibility, and to foster Open Science. PMID:29718199
STS-114 Discovery's approach for docking
2005-07-28
ISS011-E-11255 (28 July 2005) --- Space shuttle Discovery was about 600 feet from the international space station when cosmonaut Sergei K. Krikalev, Expedition 11 commander, and astronaut John L. Phillips, NASA science officer and flight engineer, photographed the spacecraft as it approached the station and performed a backflip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 commander, guided the shuttle through the flip. The photos will be analyzed by engineers on the ground as additional data to evaluate the condition of Discoverys heat shield. The Italian-built Raffaello Multi-Purpose Logistics Module (MPLM) is visible in the cargo bay.
SpaceX CRS-12 "What's on Board?" Science Briefing
2017-08-13
John London, an engineer for the U.S. Army Space and Missile Defense Command, left, and Chip Hardy, Kestrel Eye program manager for the U.S. Army Space and Missile Defense Command, speak to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Aug. 14 atop a SpaceX Falcon 9 rocket on the company's 12th Commercial Resupply Services mission to the space station.
STS-66 landing at Edwards Air Force Base
1994-11-14
STS066-S-039 (14 November 1994) --- The drag chute is fully deployed as the Space Shuttle Atlantis heads toward a stop at Edwards Air Force Base in southern California, ending a successful 10 day, 22 hour and 34 minute space mission. Landing occurred at 7:34 a.m. (PST), November 14, 1994. Onboard were astronauts Donald R. McMonagle, commander; Curtis L. Brown, Jr., pilot; Ellen S. Ochoa, payload commander; Scott E. Parazynski and Joseph R. Tanner, both mission specialists, along with European Space Agency (ESA) mission specialist Jean-Francois Clervoy. The crew supported the Atmospheric Laboratory for Applications and Science (ATLAS-3) mission.
STS-55 Columbia, Orbiter Vehicle (OV) 102, lifts off from KSC LC Pad 39A
1993-04-26
STS055-S-052 (26 April 1993) --- A wide shot shows the STS-55 launch at the Kennedy Space Center. Carrying an international crew of seven and a science laboratory, the Space Shuttle Columbia was on its way for a nine-day Earth-orbital mission in support of the Spacelab D-2 mission. Onboard were astronauts Steven R. Nagel, mission commander; Terence T. (Tom) Henricks, pilot; Jerry L. Ross, payload commander; Charles J. Precourt and Bernard A. Harris Jr., mission specialists; along with German payload specialists Hans Schlegel and Ulrich Walter. Liftoff occurred at 10:50 a.m. (EDT), April 26, 1993.
Lopez-Alegria performs EMCS-EC replace activity in Destiny laboratory module
2006-12-29
ISS014-E-10647 (29 Dec. 2006) --- Astronaut Michael E. Lopez-Alegria, Expedition 14 commander and NASA space station science officer, performs the European Modular Cultivation System (EMSC) -- Experiment Container (EC) replacement in the Destiny laboratory of the International Space Station.
Lopez-Alegria performs EMCS-EC replace activity in Destiny laboratory module
2006-12-29
ISS014-E-10639 (29 Dec. 2006) --- Astronaut Michael E. Lopez-Alegria, Expedition 14 commander and NASA space station science officer, performs the European Modular Cultivation System (EMSC) -- Experiment Container (EC) replacement in the Destiny laboratory of the International Space Station.
Dynamic Interactions for Network Visualization and Simulation
2009-03-01
projects.htm, Site accessed January 5, 2009. 12. John S. Weir, Major, USAF, Mediated User-Simulator Interactive Command with Visualization ( MUSIC -V). Master’s...Computing Sciences in Colleges, December 2005). 14. Enrique Campos -Nanez, “nscript user manual,” Department of System Engineer- ing University of
McArthur runs on the TVIS during Expedition 12
2005-10-19
ISS012-E-05937 (19 Oct. 2005) --- Astronaut William S. McArthur Jr., Expedition 12 commander and NASA science officer, equipped with a bungee harness, exercises on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the international space station.
McArthur runs the Half Marathon onboard the ISS on Expedition 12
2006-01-15
ISS012-E-15158 (15 Jan. 2006) --- Astronaut William S. (Bill) McArthur, Jr., Expedition 12 commander and NASA space station science officer, exercises on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station.
32 CFR Appendix F to Part 651 - Glossary
Code of Federal Regulations, 2013 CFR
2013-07-01
.... ASA(AL&T) Assistant Secretary of the Army (Acquisition, Logistics, and Technology). ASA(FM) Assistant.../Cost Analysis. EICS Environmental Impact Computer System. EIFS Economic Impact Forecast System. EIS... Record of Non-Applicability. RSC Regional Support Command. S&T Science and Technology. SA Secretary of...
32 CFR Appendix F to Part 651 - Glossary
Code of Federal Regulations, 2012 CFR
2012-07-01
.... ASA(AL&T) Assistant Secretary of the Army (Acquisition, Logistics, and Technology). ASA(FM) Assistant.../Cost Analysis. EICS Environmental Impact Computer System. EIFS Economic Impact Forecast System. EIS... Record of Non-Applicability. RSC Regional Support Command. S&T Science and Technology. SA Secretary of...
32 CFR Appendix F to Part 651 - Glossary
Code of Federal Regulations, 2014 CFR
2014-07-01
.... ASA(AL&T) Assistant Secretary of the Army (Acquisition, Logistics, and Technology). ASA(FM) Assistant.../Cost Analysis. EICS Environmental Impact Computer System. EIFS Economic Impact Forecast System. EIS... Record of Non-Applicability. RSC Regional Support Command. S&T Science and Technology. SA Secretary of...
Expedition 9 Preflight Activities
2004-04-13
European Space Agency astronaut Andre Kuipers of the Netherlands, left, NASA Science Officer Mike Fincke, center and Expedition 9 Commander Gennady Padalka sign books, envelops and mementos in the space museum located at the Baikonur Cosmodrome, Wednesday, April, 14, 2004, in Baikonur, Kazakhstan. Photo Credit: "NASA/Bill Ingalls"
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Kalpana Chawla checks out items stored in the Spacehab module. Behind her, left, is Payload Specialist Ilan Ramon, of Israel, looking over a piece of equipment. At right is a trainer. The crew is taking part in Crew Equipment Interface Test (CEIT) activities at SPACEHAB, Port Canaveral, Fla. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband, Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists Laurel Blair Salton Clark and David M. Brown. STS-107 is scheduled for launch May 23, 2002