ERIC Educational Resources Information Center
Canbazoglu Bilici, Sedef; Guzey, S. Selcen; Yamak, Havva
2016-01-01
Background: Technological pedagogical content knowledge (TPACK) is critical for effective teaching with technology. However, generally science teacher education programs do not help pre-service teachers develop TPACK. Purpose: The purpose of this study was to assess pre-service science teachers' TPACK over a semester-long Science Methods. Sample:…
ERIC Educational Resources Information Center
Williams, John; Eames, Chris; Hume, Anne; Lockley, John
2012-01-01
Background: This research addressed the key area of early career teacher education and aimed to explore the use of a "content representation" (CoRe) as a mediational tool to develop early career secondary teacher pedagogical content knowledge (PCK). This study was situated in the subject areas of science and technology, where sound…
Factors Influencing Science Content Accuracy in Elementary Inquiry Science Lessons
NASA Astrophysics Data System (ADS)
Nowicki, Barbara L.; Sullivan-Watts, Barbara; Shim, Minsuk K.; Young, Betty; Pockalny, Robert
2013-06-01
Elementary teachers face increasing demands to engage children in authentic science process and argument while simultaneously preparing them with knowledge of science facts, vocabulary, and concepts. This reform is particularly challenging due to concerns that elementary teachers lack adequate science background to teach science accurately. This study examined 81 in-classroom inquiry science lessons for preservice education majors and their cooperating teachers to determine the accuracy of the science content delivered in elementary classrooms. Our results showed that 74 % of experienced teachers and 50 % of student teachers presented science lessons with greater than 90 % accuracy. Eleven of the 81 lessons (9 preservice, 2 cooperating teachers) failed to deliver accurate science content to the class. Science content accuracy was highly correlated with the use of kit-based resources supported with professional development, a preference for teaching science, and grade level. There was no correlation between the accuracy of science content and some common measures of teacher content knowledge (i.e., number of college science courses, science grades, or scores on a general science content test). Our study concluded that when provided with high quality curricular materials and targeted professional development, elementary teachers learn needed science content and present it accurately to their students.
Teachers' perceptions on primary science teaching
NASA Astrophysics Data System (ADS)
Kijkuakul, Sirinapa
2018-01-01
This qualitative research aimed to review what primary teachers think about how to teach science in rural school contexts. Three primary schools in Thailand were purposively chosen for this study. Eleven primary science teachers of these schools were the research participants. Questionnaires, interviews, and observations were implemented to reveal the primary school teachers' educational backgrounds, science teaching context, and need for self-driven professional development. Content and discourse analysis indicated that the non-science educational background and the science teaching context implied a need for self-driven professional development. The non-science educational background teachers were generally unfamiliar with the current national science curriculum, and that they would not be comfortable when the researcher observed their science teaching practice. They also believed that experimentation was the only one strategy for teaching science, and that the priority for their teaching support was teaching media rather than their understanding of scientific concepts or teaching strategies. As implication of this research, subsequent developments on science teacher profession in rural context, therefore, need to promote teachers' understandings of nature of science and technological and pedagogical content knowledge. In addition, they should be challenged to practice on critically participatory action research for academic growth and professional learning community.
ERIC Educational Resources Information Center
PORTER, T.R.
SELECTED ARTICLES THAT APPEARED IN "THE SCIENCE TEACHER" DURING THE PERIOD 1960-1966 ARE INCLUDED IN THIS SUPPLEMENTARY REFERENCE FOR HIGH SCHOOL BIOLOGY TEACHERS. SUBDIVISIONS ARE (1) CONTENT BACKGROUND FOR TEACHERS, (2) CURRICULUM, AND (3) CLASSROOM IDEAS. CONTENT ARTICLES ARE PRIMARILY CONCERNED WITH THOSE ASPECTS OF BIOLOGY THAT ARE…
Factors Influencing Science Content Accuracy in Elementary Inquiry Science Lessons
ERIC Educational Resources Information Center
Nowicki, Barbara L.; Sullivan-Watts, Barbara; Shim, Minsuk K.; Young, Betty; Pockalny, Robert
2013-01-01
Elementary teachers face increasing demands to engage children in authentic science process and argument while simultaneously preparing them with knowledge of science facts, vocabulary, and concepts. This reform is particularly challenging due to concerns that elementary teachers lack adequate science background to teach science accurately. This…
Elementary Content Specialization: Models, Affordances, and Constraints
ERIC Educational Resources Information Center
Markworth, Kimberly A.; Brobst, Joseph; Ohana, Chris; Parker, Ruth
2016-01-01
Background: This study investigates the models of elementary content specialization (ECS) in elementary mathematics and science and the affordances and constraints related to ECS--both generally and in relation to specific models. Elementary content specialists are defined as full-time classroom teachers who are responsible for content instruction…
Eighth Grade Marine Science; Resource Units.
ERIC Educational Resources Information Center
Butler, Edwin B.
A resource unit on the marine sciences is described. Designed for eighth-grade students with some basic science background, the unit can be taught in a minimum of four weeks. Content includes emphasis on the biological, chemical, and physical sciences. Each lesson contains objectives, goals, materials, and follow-up activities (often an…
Teacher Students' Dilemmas When Teaching Science through Inquiry
ERIC Educational Resources Information Center
Krämer, Philipp; Nessler, Stefan H.; Schlüter, Kirsten
2015-01-01
Background: Inquiry-based science education (IBSE) is suitable to teach scientific contents as well as to foster scientific skills. Similar conclusions are drawn by studies with respect to scientific literacy, motivational aspects, vocabulary knowledge, conceptual understandings, critical thinking, and attitudes toward science. Nevertheless, IBSE…
Science Fiction: The Academic Awakening.
ERIC Educational Resources Information Center
McNelly, Willis E., Ed.
This book provides background information on science fiction for teachers of English at any level who are approaching science fiction for the first time. Contents are: an introduction by W.E. McNelly; "SF in the Classroom" by J. Williamson; "Second Thoughts on the Course in Science Fiction" by M.R. Hillegas; "Flatland and Beyond: Characterization…
ERIC Educational Resources Information Center
Supprakob, Surayot; Faikhamta, Chatree; Suwanruji, Potjanart
2016-01-01
Pedagogical content knowledge for teaching the nature of science (PCK for NOS) has attracted interest in recent decades. This study investigated the PCK for NOS of six novice chemistry teachers with various educational backgrounds. An interpretive case study was performed. Multiple data sources including classroom observations, field notes,…
ERIC Educational Resources Information Center
Knaggs, Christine M.; Sondergeld, Toni A.
2015-01-01
Academic science achievement of U.S. students has raised concerns regarding our ability as a nation to compete in a global economy. Additionally, research has shown that many elementary teachers have weak science content backgrounds and had poor/negative experiences as students of science, resulting in a lack of confidence regarding teaching…
Talk Like a Scientist! Simple "Frames" to Scaffold the Language of Science
ERIC Educational Resources Information Center
Hoffman, Lisa
2013-01-01
This article shares a teaching strategy for science teachers to use when supporting language development among English language learners. Students from other language backgrounds who are learning English need to learn both grade-level academic content and the language necessary to express scientific concepts. However, most science teachers are not…
ERIC Educational Resources Information Center
Yoon, Susan A.; Yom, Jessica Koehler; Yang, Zhitong; Liu, Lei
2017-01-01
Background: Recent research investigating the conditions under which science teachers can successfully implement science education reforms suggests that focusing only on professional development to improve content knowledge and teaching skills--often referred to as human capital--may not be enough. Increasingly, possessing social capital, defined…
ERIC Educational Resources Information Center
Camp, Carole Ann, Ed.
This booklet, one of six in the Living Things Science series, presents activities about diversity and classification of living things which address basic "Benchmarks" suggested by the American Association for the Advancement of Science for the Living Environment for grades 3-5. Contents include background information, vocabulary (in…
ERIC Educational Resources Information Center
Camp, Carole Ann, Ed.
This booklet, one of six in the Living Things Science series, presents activities about evolution which address basic "Benchmarks" suggested by the American Association for the Advancement of Science for the Living Environment for grades 3-5. Contents include background information, vocabulary (in English and Spanish), materials,…
ERIC Educational Resources Information Center
Camp, Carole Ann, Ed.
This booklet, one of six in the Living Things Science series, presents activities about cells which address basic "Benchmarks" suggested by the American Association for the Advancement of Science for the Living Environment for grades 3-5. Contents include background information, vocabulary (in English and Spanish), materials, procedures,…
ERIC Educational Resources Information Center
Camp, Carole Ann, Ed.
This booklet, one of six in the Living Things Science series, presents activities about ecosystems which address basic "Benchmarks" suggested by the American Association for the Advancement of Science for the Living Environment for grades 3-5. Contents include background information, vocabulary (in English and Spanish), materials,…
ERIC Educational Resources Information Center
Aflalo, Ester
2014-01-01
Background: Understanding the nature of science (NOS) has been a key objective in teaching sciences for many years. Despite the importance of this goal it is, until this day, a complex challenge that we are far from achieving. Purpose: The study was conducted in order to further the understanding of the NOS amongst preservice teachers. It explores…
ERIC Educational Resources Information Center
Ellis, James D.; Maxwell, Donald E.
The purposes of the Colorado Science Teaching Enhancement Program (CO-STEP) are to improve the background in science content and the instructional skills of teachers in grades four through six throughout Colorado and to support the implementation of effective instruction. A network of six Teacher Development Centers in Colorado coordinate teacher…
ERIC Educational Resources Information Center
Camp, Carole Ann, Ed.
This booklet, one of six in the Living Things Science series, presents activities about matter and energy which address basic "Benchmarks" suggested by the American Association for the Advancement of Science for the Living Environment for grades 3-5. Contents include background information, vocabulary (in English and Spanish), materials,…
ERIC Educational Resources Information Center
Camp, Carole Ann, Ed.
This booklet, one of six in the Living Things Science series, presents activities about heredity and genetics which address basic "Benchmarks" suggested by the American Association for the Advancement of Science for the Living Environment for grades 3-5. Contents include background information, vocabulary (in English and Spanish),…
An In-Class Discussion Activity on the Nature of Science and Intelligent Design
NASA Astrophysics Data System (ADS)
Thomas, Brian C.
2009-02-01
In this paper I describe an in-class discussion activity aimed at helping elementary education majors in a physical science course think about issues surrounding the inclusion of "Intelligent Design" in public school science standards. I discuss the background instruction given, the content of the activity, and some results from its use in class.
An In-Class Discussion Activity on the Nature of Science and Intelligent Design
ERIC Educational Resources Information Center
Thomas, Brian C.
2009-01-01
In this paper I describe an in-class discussion activity aimed at helping elementary education majors in a physical science course think about issues surrounding the inclusion of "Intelligent Design" in public school science standards. I discuss the background instruction given, the content of the activity, and some results from its use in class.
ERIC Educational Resources Information Center
Marulcu, Ismail; Barnett, Michael
2016-01-01
Background: Elementary Science Education is struggling with multiple challenges. National and State test results confirm the need for deeper understanding in elementary science education. Moreover, national policy statements and researchers call for increased exposure to engineering and technology in elementary science education. The basic…
NASA Astrophysics Data System (ADS)
Canbazoglu Bilici, Sedef; Selcen Guzey, S.; Yamak, Havva
2016-05-01
Background: Technological pedagogical content knowledge (TPACK) is critical for effective teaching with technology. However, generally science teacher education programs do not help pre-service teachers develop TPACK. Purpose: The purpose of this study was to assess pre-service science teachers' TPACK over a semester-long Science Methods. Sample: Twenty-seven pre-service science teachers took the course toward the end of their four-year teacher education program. Design and method: The study employed the case study methodology. Lesson plans and microteaching observations were used as data collection tools. Technological Pedagogical Content Knowledge-based lesson plan assessment instrument (TPACK-LpAI) and Technological Pedagogical Content Knowledge Observation Protocol (TPACK-OP) were used to analyze data obtained from observations and lesson plans. Results: The results showed that the TPACK-focused Science Methods course had an impact on pre-service teachers' TPACK to varying degrees. Most importantly, the course helped teachers gain knowledge of effective usage of educational technology tools. Conclusion: Teacher education programs should provide opportunities to pre-service teachers to develop their TPACK so that they can effectively integrate technology into their teaching.
Discovering Science from an Armchair: Popular Science in British Magazines of the Interwar Years.
Bowler, Peter J
2016-01-01
Analysing the contents of magazines published with the stated intention of conveying information about science and technology to the public provides a mechanism for evaluation what counted as 'popular science'. This article presents numerical surveys of the contents of three magazines published in inter-war Britain (Discovery, Conquest and Armchair Science) and offers an evaluation of the results. The problem of defining relevant topic-categories is addressed, both direct and indirect strategies being employed to ensure that the topics correspond to what the editors and publishers took to be the principal areas of science and technology of interest to their readers. Analysis of the results of the surveys reveals different editorial policies depending on the backgrounds of the publishers and their anticipated readerships. The strong focus of the two most populist magazines on applied science and 'hobbyist' topics such as natural history, radio and motoring is noted and contrasted with the very limited coverage of theoretical science. In conclusion, a survey of changes in the contents over the periods of publication is used to identify trends in the coverage of science during this period.
Relationship between "Form" and "Content" in Science Writing among English Language Learners
ERIC Educational Resources Information Center
Lee, Okhee; Penfield, Randall D.; Buxton, Cory A.
2011-01-01
Background/Context: While different instructional approaches have been proposed to integrate academic content and English proficiency for English language learning (ELL) students, studies examining the magnitude of the relationship are non-existent. This study examined the relationship between the "form" (i.e., conventions, organization, and…
The Microscope and Nineteenth Century Education.
ERIC Educational Resources Information Center
Milacek, Barbara Roads
Studied were (1) the evolving use of the microscope in science education, and (2) its relationship to the changing teaching methods, content, and emphases of science courses and to the prevailing philosophies of education of nineteenth century American colleges. To establish the necessary background, the evolution and availability of the…
2013-01-01
Background People who identity as lesbian, gay, bisexual and transgender (LGBT) have specific health needs. Sexual orientation and gender identity are social determinants of health, as homophobia and heteronormativity persist as prejudices in society. LGBT patients often experience discrimination and prejudice in health care settings. While recent South African policies recognise the need for providing LGBT specific health care, no curricula for teaching about LGBT health related issues exist in South African health sciences faculties. This study aimed to determine the extent to which LGBT health related content is taught in the University of Cape Town’s medical curriculum. Methods A curriculum mapping exercise was conducted through an online survey of all academic staff at the UCT health sciences faculty, determining LGBT health related content, pedagogical methodology and assessment. Results 127 academics, across 31 divisions and research units in the Faculty of Health Sciences, responded to the survey, of which 93 completed the questionnaire. Ten taught some content related to LGBT health in the MBChB curriculum. No LGBT health related content was taught in the allied health sciences curricula. The MBChB curriculum provided no opportunity for students to challenge their own attitudes towards LGBT patients, and key LGBT health topics such as safer sex, mental health, substance abuse and adolescent health were not addressed. Conclusion At present, UCTs health sciences curricula do not adequately address LGBT specific health issues. Where LGBT health related content is taught in the MBChB curriculum, it is largely discretionary, unsystematic and not incorporated into the overarching structure. Coordinated initiatives to integrate LGBT health related content into all health sciences curricula should be supported, and follow an approach that challenges students to develop professional attitudes and behaviour concerning care for patients from LGBT backgrounds, as well as providing them with specific LGBT health knowledge. Educating health professions students on the health needs of LGBT people is essential to improving this population’s health by providing competent and non-judgmental care. PMID:24373219
Ranger, Mathieu; Bultitude, Karen
2014-01-01
With at least 150 million professional and amateur blogs on the Internet, blogging offers a potentially powerful tool for engaging large and diverse audiences with science. This article investigates science blogging practices to uncover key trends, including bloggers’ self-perceptions of their role. Interviews with seven of the most popular science bloggers revealed them to be driven by intrinsic personal motivations. Wishing to pursue their love of writing and share their passion for science, they produce content suitable for niche audiences of science enthusiasts, although they do not assume background scientific knowledge. A content analysis of 1000 blog posts and comparison with the most popular blogs on the Internet further confirmed this result and additionally identified key factors that affect science blog popularity, including update frequency, topic diversity and the inclusion of non-text elements (especially images and video). PMID:25361791
Ranger, Mathieu; Bultitude, Karen
2016-04-01
With at least 150 million professional and amateur blogs on the Internet, blogging offers a potentially powerful tool for engaging large and diverse audiences with science. This article investigates science blogging practices to uncover key trends, including bloggers' self-perceptions of their role. Interviews with seven of the most popular science bloggers revealed them to be driven by intrinsic personal motivations. Wishing to pursue their love of writing and share their passion for science, they produce content suitable for niche audiences of science enthusiasts, although they do not assume background scientific knowledge. A content analysis of 1000 blog posts and comparison with the most popular blogs on the Internet further confirmed this result and additionally identified key factors that affect science blog popularity, including update frequency, topic diversity and the inclusion of non-text elements (especially images and video). © The Author(s) 2014.
21st Century Pedagogical Content Knowledge and Science Teaching and Learning
ERIC Educational Resources Information Center
Slough, Scott; Chamblee, Gregory
2017-01-01
Technological Pedagogical Content Knowledge (TPACK) is a theoretical framework that has enjoyed widespread applications as it applies to the integration of technology in the teaching and learning process. This paper reviews the background for TPACK, discusses some of its limitations, and reviews and introduces a new theoretical framework, 21st…
ERIC Educational Resources Information Center
Schauer, Alexandria; Cotner, Sehoya; Moore, Randy
2014-01-01
Students regard evolutionary theory differently than science in general. Students' reported confidence in their ability to understand science in general (e.g., posing scientific questions, interpreting tables and graphs, and understanding the content of their biology course) significantly outweighed their confidence in understanding evolution. We…
Inventing Toys: Kids Having Fun Learning Science.
ERIC Educational Resources Information Center
Sobey, Ed
This book presents detailed teaching ideas on integrating inventing into grades 4-6 science classrooms. The contents of the book is divided into three sections. Part 1 provides theoretical and pedagogical background information to teachers on the structure of inventing and the structure of experience. Part 2 presents six detailed workshops: (1)…
NASA Astrophysics Data System (ADS)
Gochis, E. E.; Huntoon, J. E.
2015-12-01
Mi-STAR (Michigan Science Teaching and Assessment Reform, http://mi-star.mtu.edu/) was funded by the Herbert H. and Grace A. Dow Foundation to reform K-12 science education to present science as an integrated body of knowledge that is applied to address societal issues. To achieve this goal, Mi-STAR is developing an integrated science curriculum for the middle grades that will be aligned with the Next Generation Science Standards (NGSS). Similar to the geosciences, the curriculum requires the integration of science, engineering and math content to explore 21st-century issues and demonstrates how these concepts can be used in service of society. The curriculum is based on the Mi-STAR Unit Specification Chart which pairs interdisciplinary themes with bundled NGSS Performance Expectations. Each unit is developed by a collaborative team of K-12 teachers, university STEM content experts and science education experts. Prior to developing a unit, each member on the team attends the on-line Mi-STAR Academy, completing 18+ hours of professional development (PD). This on-line PD program familiarizes teachers and experts with necessary pedagogical and content background knowledge, including NGSS and three-dimensional learning. With this background, teams use a staged, backwards design process to craft a multi-week unit based on a series of performance based tasks, or 'challenges' that engage students in actively doing science and engineering. Each unit includes Disciplinary Core Ideas from multiple disciplines, which focus on local and familiar examples that demonstrate the relevance of science in student's lives. Performance-based assessments are interwoven throughout the unit. Mi-STAR units will go through extensive pilot testing in several school districts across the state of Michigan. Additionally, the Mi-STAR program will develop teacher professional development programs to support implementation of the curriculum and design a pre-service teacher program in integrated science. We will share preliminary results on the collaborative Mi-STAR process of designing integrated science curriculum to address NGSS.
NASA Astrophysics Data System (ADS)
Demetrius, Olive Joyce
The purpose of this study was to examine the relationships between Junior High School students' (8th and 9th grades) background variables (e.g. cognitive factors, prior knowledge, preference for science versus non-science activities, formal and informal activities) and structure of information recall of biological content. In addition, this study will illustrate how flow maps, a graphic display, designed to represent the sequential flow and cross linkage of ideas in information recalled by the learner can be used as a tool for analyzing science learning data. The participants (46 junior high school students) were taught a lesson on the human digestive system during which they were shown a model of the human torso. Their pattern of information recall was determined by using an interview technique to elicit their understanding of the functional anatomy of the human digestive system. The taped responses were later transcribed for construction of the flow map. The interview was also used to assess knowledge recall of biological content. The flow map, science interest questionnaire and the cognitive operations (based on content analysis of student's narrative) were used to analyze data from each respondent. This is a case study using individual subjects and interview techniques. The findings of this study are: (1) Based on flow map data higher academic ability students have more networking of ideas than low ability students. (2) A large percentage of 9th grade low ability students intend to pursue science/applied science course work after leaving school but they lack well organized ways of representing science knowledge in memory. (3) Content analysis of the narratives shows that students with more complex ideational networks use higher order cognitive thought processes compared to those with less networking of ideas. If students are to make a successful transition from low academic performance to high academic performance it seems that more emphasis should be placed on information networking skills. This is specifically likely to be productive for student currently performing on low academic ability levels and yet have high aspirations for pursuing science as a career.
NASA Astrophysics Data System (ADS)
Larrinaga McGee, Patria Maria
Current education reform calls for excellence, access, and equity in all areas of instruction, including science and literacy. Historically, persons of diverse backgrounds or with disabilities have been underrepresented in science. Gaps are evident between the science and literacy achievement of diverse students and their mainstream peers. The purpose of this study was to document, describe, and examine patterns of development and change in the science learning and literacy performance of Hispanic students. The two major questions of this study were: (1) How is science content knowledge, as evident in oral and written formats, manifested in the performance of typically developing, at-risk, and disabled non-English language background (NELB) students? and (2) What are the patterns of literacy performance in science, and as evident in oral and written formats, among typically developing, at-risk, and disabled NELB students? This case study was part of a larger research project, the Promise Project, undertaken at the University of Miami, Coral Gables, Florida, under the sponsorship of the National Science Foundation. The study involved 24 fourth-grade students in seven classrooms located in Promise Project schools where teachers were provided with training and materials for instruction on two units of science content: Matter and Weather. Four students were selected from among the fourth-graders for a closer analysis of their performance. Qualitative and quantitative data analysis methods were used to document, describe, and examine specific events or phenomena in the processes of science learning and literacy development. Important findings were related to (a) gains in science learning and literacy development, (b) students' science learning and literacy development needs, and (c) general and idiosyncratic attitudes toward science and literacy. Five patterns of science "explanations" identified indicated a developmental cognitive/linguistic trajectory in science learning. Students' learning needs appeared related to (a) depth of science knowledge, and (b) written communication in science. Students' performances and attitudes suggested a continuum of readiness for science inquiry. Differences in performances and attitudes revealed curricular, personal, social, cultural, cognitive, metacognitive, and linguistic aspects that could impact science learning and literacy development. Implications for instruction and assessment were discussed. Suggestions for further research were presented.
ERIC Educational Resources Information Center
Rivers, Kenyatta O.; Perkins, Rosalie A.; Carson, Cecyle P.
2009-01-01
Background: Formal training in dealing with death and dying issues is not a standard content area in communication sciences and disorders programmes' curricula. At the same time, it cannot be presumed that pre-professional students' personal background equips them to deal with these issues. Aim: To investigate the perceptions of pre-professional…
Elementary student teachers' science content representations
NASA Astrophysics Data System (ADS)
Zembal-Saul, Carla; Krajcik, Joseph; Blumenfeld, Phyllis
2002-08-01
This purpose of this study was to examine the ways in which three prospective teachers who had early opportunities to teach science would approach representing science content within the context of their student teaching experiences. The study is framed in the literature on pedagogical content knowledge and learning to teach. A situated perspective on cognition is applied to better understand the influence of context and the role of the cooperating teacher. The three participants were enrolled in an experimental teacher preparation program designed to enhance the teaching of science at the elementary level. Qualitative case study design guided the collection, organization, and analysis of data. Multiple forms of data associated with student teachers' content representations were collected, including audiotaped planning and reflection interviews, written lesson plans and reflections, and videotaped teaching experiences. Broad analysis categories were developed and refined around the subconstructs of content representation (i.e., knowledge of instructional strategies that promote learning and knowledge of students and their requirements for meaningful science learning). Findings suggest that when prospective teachers are provided with opportunities to apply and reflect substantively on their developing considerations for supporting children's science learning, they are able to maintain a subject matter emphasis. However, in the absence of such opportunities, student teachers abandon their subject matter emphasis, even when they have had extensive background and experiences addressing subject-specific considerations for teaching and learning.
ERIC Educational Resources Information Center
Sartorius, Tara Cady
2002-01-01
Describes the artwork, "In the Garden" (Romare Bearden), focusing on its content and use of color. Provides background information on Bearden. Includes activities in mathematics, earth sciences, art history, religion and language arts, visual arts, and the Internet. (CMK)
NASA Astrophysics Data System (ADS)
Purwianingsih, W.; Mardiyah, A.
2018-05-01
Pedagogical Content Knowledge (PCK) is a blend of content knowledge and pedagogy knowledge, which can illustrate the ability of teachers to design and to teach a content by accessing what they knows about the material, students, curriculum and how best to teach the content. Description of PCK ability of science teachers can be accessed through an analysis of their ability to plan and reflect on learning. This study aims to provide an overview of teachers’ PCK skills on environmental pollution materials through use of Content Representation (CoRe) and Pedagogical and Professional-experience Repertoires (PaP-eRs). Descriptive method used in this study with six of science teachers on 7th class from three different schools as subject. The results show that teachers’ PCK skills in planning through CoRe and reflecting through PaP-eRs are in fairly good category. The teacher’s ability in implementing environmental pollution learning materials is in good category. However, there is still a discrepancy between planning through CoRe and the implementation of classroom learning. The teacher’s PCK is influenced by teaching experience and educational background.
ERIC Educational Resources Information Center
Krepf, Matthias; Plöger, Wilfried; Scholl, Daniel; Seifert, Andreas
2018-01-01
In the current debate on pedagogical content knowledge (PCK), the term is used to refer to the context-specific knowledge that teachers activate when reflecting on practice. Against the background of this debate, we conducted an empirical study and sought to answer the question of which knowledge experts and novices activated in assessing a…
ERIC Educational Resources Information Center
Tynan, Richard; Jones, Robert Bryn; Mallaburn, Andrea; Clays, Ken
2016-01-01
Subject knowledge enhancement (SKE) courses are one option open in England to graduates with a science background whose first degree content is judged to be insufficient to train to become chemistry or physics teachers. Previous articles in "School Science Review" have discussed the structure of one type of extended SKE course offered at…
ERIC Educational Resources Information Center
Nehring, Andreas; Nowak, Kathrin H.; zu Belzen, Annette Upmeier; Tiemann, Rüdiger
2015-01-01
Research on predictors of achievement in science is often targeted on more traditional content-based assessments and single student characteristics. At the same time, the development of skills in the field of scientific inquiry constitutes a focal point of interest for science education. Against this background, the purpose of this study was to…
NASA Astrophysics Data System (ADS)
Hedley, Mikell Lynne
2008-10-01
The purpose of the study was to use geospatial technologies to improve the spatial abilities and specific atmospheric science content knowledge of students in high schools and junior highs in primarily high-needs schools. These technologies include remote sensing, geographic information systems, and global positioning systems. The program involved training the teachers in the use of the technologies at a five-day institute. Scientists who use the technologies in their research taught the basics of their use and scientific background. Standards-based activities were used to integrate the technologies in the classroom setting. Students were tested before any instruction in the technologies and then tested two other times. They used the technologies in field data collection and used that data in an inquiry-based project. Their projects were presented at a mini-science conference with scientists, teachers, parents, and other students in attendance. Significant differences were noted from pre-test to second post-test in the test in both the spatial abilities and science section. There was a gain in both spatial abilities and in specific atmospheric science content knowledge.
NASA Astrophysics Data System (ADS)
Lawton, Brandon L.; Rhue, Timothy; Smith, Denise A.; Squires, Gordon K.; Biferno, Anya A.; Lestition, Kathleen; Cominsky, Lynn R.; Godfrey, John; Lee, Janice C.; Manning, Colleen
2018-06-01
NASA's Universe of Learning creates and delivers science-driven, audience-driven resources and experiences designed to engage and immerse learners of all ages and backgrounds in exploring the universe for themselves. The project is the result of a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, Jet Propulsion Laboratory, Smithsonian Astrophysical Observatory, and Sonoma State University, and is one of 27 competitively-selected cooperative agreements within the NASA Science Mission Directorate STEM Activation program. The NASA's Universe of Learning team draws upon cutting-edge science and works closely with Subject Matter Experts (scientists and engineers) from across the NASA Astrophysics Physics of the Cosmos, Cosmic Origins, and Exoplanet Exploration themes. As one example, NASA’s Universe of Learning program is uniquely able to provide informal learning venues with a direct connection to the science of NASA astrophysics via the ViewSpace platform. ViewSpace is a modular multimedia exhibit where people explore the latest discoveries in our quest to understand the universe. Hours of awe-inspiring video content connect users’ lives with an understanding of our planet and the wonders of the universe. This experience is rooted in informal learning, astronomy, and earth science. Scientists and educators are intimately involved in the production of ViewSpace material. ViewSpace engages visitors of varying backgrounds and experience at museums, science centers, planetariums, and libraries across the United States. In addition to creating content, the Universe of Learning team is updating the ViewSpace platform to provide for additional functionality, including the introduction of digital interactives to make ViewSpace a multi-modal learning experience. During this presentation we will share the ViewSpace platform, explain how Subject Matter Experts are critical in creating content for ViewSpace, and how we are addressing audience needs and using evaluation to support a dedicated user base across the country.
NASA Astrophysics Data System (ADS)
Goodale, T. A.
2016-02-01
Overview This paper presentation shares findings from a granted funded project that sought to expand teacher content knowledge and pedagogy within the fields of marine science and coastal resource management through the implementation of classroom citizen science projects. A secondary goal was to increase middle and high school student interest and participation in marine science and natural resources research. Background A local science & engineering fair has seen a rapid decline in secondary student participants in the past four years. Research has demonstrated that when students are a part of a system of knowledge production (citizen science) they become much more aware, involved and conscious of scientific concepts compared to traditional school laboratory and nature of science activities. This project's primary objectives were to: (a) enhance teacher content expertise in marine science, (b) enrich teacher professional learning, (c) support citizen science classroom projects and inspire student activism and marine science engagement. Methods Project goals were addressed through classroom and meaningful outdoor educational experiences that put content knowledge into field based practices. Teachers learned to apply thier expanded content knowlege through classroom citizen science projects that focus on marine resource conservation issues such as fisheries management, water quality, turtle nesting and biodiversity of coastal ecosystems. These projects would eventually become potential topics of citizen science research topics for their students to pursue. Upon completion of their professional development, participants were urged to establish student Marine Science clubs with the goal of mentoring student submissions into the local science fair. Supplemental awards were possible for the students of project participants. Findings Based on project measures participants significantly increased their knowledge and awareness of presented material marine science and coastal resources. 11/14 teacher participants established citizen science clubs that focused on marine related issues. Science fair participation increased by 42% and of those students whose mentor teacher was a project participant 90% stated they would likely pursue a marine science related major in college.
Tibell, Lena A E; Rundgren, Carl-Johan
2010-01-01
Molecular life science is one of the fastest-growing fields of scientific and technical innovation, and biotechnology has profound effects on many aspects of daily life-often with deep, ethical dimensions. At the same time, the content is inherently complex, highly abstract, and deeply rooted in diverse disciplines ranging from "pure sciences," such as math, chemistry, and physics, through "applied sciences," such as medicine and agriculture, to subjects that are traditionally within the remit of humanities, notably philosophy and ethics. Together, these features pose diverse, important, and exciting challenges for tomorrow's teachers and educational establishments. With backgrounds in molecular life science research and secondary life science teaching, we (Tibell and Rundgren, respectively) bring different experiences, perspectives, concerns, and awareness of these issues. Taking the nature of the discipline as a starting point, we highlight important facets of molecular life science that are both characteristic of the domain and challenging for learning and education. Of these challenges, we focus most detail on content, reasoning difficulties, and communication issues. We also discuss implications for education research and teaching in the molecular life sciences.
NASA Astrophysics Data System (ADS)
Larsen, Kristine
2017-01-01
The Disciplinary Core Ideas (DCI) of the Next Generation Science Standards (NGSS) are grouped into the broad disciplinary areas of Physical Sciences, Life Sciences, Earth and Space Sciences, and Engineering, Technology and Application of Science, and feature learning progressions based on endpoint targets for each grade band. Since the Middle School DCIs build on the expected learning achievements to be reached by the end of Fifth Grade, and High School DCI similarly build on the expected learning achievements expected for the end of Eighth Grade, the Middle School grade band is of particular importance as the bridge between the Elementary and High School curriculum. In states where there is not a special Middle School Certification many of these science classes are taught by teachers prepared to teach at the Elementary level (and who may have limited content background). As a result, some pre-service and in-service teachers have expressed reduced self-confidence in both their own science content knowledge and their ability to apply it in the NGSS-based classroom, while decades of research has demonstrated the pervasiveness of science misconceptions among teachers. Thus the adoption of NGSS has the potential to drive talented teachers out of the profession who feel that they are ill-prepared for this sweeping transition. The key is providing rigorous education in both content and pedagogy for pre-service teachers and quality targeted professional development for in-service teachers. This report focuses on the Middle School Space Sciences grade band DCIs and presents research on specific difficulties, misconceptions and uncertainties with the material demonstrated by pre-service education students over the past four years in a required university science content course, as well as two year-long granted workshop series for current Middle School teachers. This information is relevant to the development of both new content courses aligned with NGSS for pre-service teachers and professional development for in-service teachers.
Background Material for the Human Studies Review Board's Review of Hansson and Roos 1987
Journal article and details of EPA's science and ethics reviews of the study by Hansson and Roos from 1987: The Effect of Fluoride and Calcium on Spinal Bone Mineral Content: A Controlled, Prospective (3 Years) Study.
Data Content and Exchange in General Practice: a Review
Kalankesh, Leila R; Farahbakhsh, Mostafa; Rahimi, Niloofar
2014-01-01
Background: efficient communication of data is inevitable requirement for general practice. Any issue in data content and its exchange among GP and other related entities hinders continuity of patient care. Methods: literature search for this review was conducted on three electronic databases including Medline, Scopus and Science Direct. Results: through reviewing papers, we extracted information on the GP data content, use cases of GP information exchange, its participants, tools and methods, incentives and barriers. Conclusion: considering importance of data content and exchange for GP systems, it seems that more research is needed to be conducted toward providing a comprehensive framework for data content and exchange in GP systems. PMID:25648317
Songs of the Universe - The AstroCappella Project
NASA Astrophysics Data System (ADS)
Boyd, P. T.; Smale, K. M.; Smale, A. P.
2004-12-01
The AstroCappella Project is a classroom-ready collection of upbeat pop songs, lesson plans, and background information, all rich in science content. It was developed as a collaboration between working research astronomers, educators, and a contemporary vocal band. A multimedia music CD ("AstroCappella 2.0") has been produced containing 13 astronomically correct songs with original lyrics and music. Song topics range from the Sun, Moon, planets and small bodies of the Solar System, through the Doppler shift, the nearest stars, and extra-solar planets, to radio astronomy, X-ray astronomy, and the Hubble Space Telescope and Swift astronomy satellites. The CD also contains extensive CD-ROM materials including science background information, curriculum notes, lesson plans and activities for each song, images, movies, and slide shows. The songs and accompanying information have been extensively field-tested, and align to the K-12 National Science Education Standards. The AstroCappella materials are in widespread use in classrooms and homes across the US, and are supplemented with frequent live performances and teacher workshops. We describe here the history, content, and educational strategy behind the AstroCappella Project, and the plans for its future development.
The Advanced Technology Environmental Education Center Summer Fellows Institute.
ERIC Educational Resources Information Center
Depken, Diane E.; Zeman, Catherine L.; Lensch, Ellen Kabat; Brown, Edward J.
2002-01-01
Describes the background, activities, and outcomes of the Advanced Technology Environmental Education Center (ATEEC) and its Summer Fellows Institutes as a model for disciplinary and cross-disciplinary infusion of environmental science and technology content, curriculum, and methods into the classroom. Presents experiences, themes, and activities…
Müller, Alexandra
2013-12-27
People who identity as lesbian, gay, bisexual and transgender (LGBT) have specific health needs. Sexual orientation and gender identity are social determinants of health, as homophobia and heteronormativity persist as prejudices in society. LGBT patients often experience discrimination and prejudice in health care settings. While recent South African policies recognise the need for providing LGBT specific health care, no curricula for teaching about LGBT health related issues exist in South African health sciences faculties. This study aimed to determine the extent to which LGBT health related content is taught in the University of Cape Town's medical curriculum. A curriculum mapping exercise was conducted through an online survey of all academic staff at the UCT health sciences faculty, determining LGBT health related content, pedagogical methodology and assessment. 127 academics, across 31 divisions and research units in the Faculty of Health Sciences, responded to the survey, of which 93 completed the questionnaire. Ten taught some content related to LGBT health in the MBChB curriculum. No LGBT health related content was taught in the allied health sciences curricula. The MBChB curriculum provided no opportunity for students to challenge their own attitudes towards LGBT patients, and key LGBT health topics such as safer sex, mental health, substance abuse and adolescent health were not addressed. At present, UCTs health sciences curricula do not adequately address LGBT specific health issues. Where LGBT health related content is taught in the MBChB curriculum, it is largely discretionary, unsystematic and not incorporated into the overarching structure. Coordinated initiatives to integrate LGBT health related content into all health sciences curricula should be supported, and follow an approach that challenges students to develop professional attitudes and behaviour concerning care for patients from LGBT backgrounds, as well as providing them with specific LGBT health knowledge. Educating health professions students on the health needs of LGBT people is essential to improving this population's health by providing competent and non-judgmental care.
Rundgren, Carl-Johan
2010-01-01
Molecular life science is one of the fastest-growing fields of scientific and technical innovation, and biotechnology has profound effects on many aspects of daily life—often with deep, ethical dimensions. At the same time, the content is inherently complex, highly abstract, and deeply rooted in diverse disciplines ranging from “pure sciences,” such as math, chemistry, and physics, through “applied sciences,” such as medicine and agriculture, to subjects that are traditionally within the remit of humanities, notably philosophy and ethics. Together, these features pose diverse, important, and exciting challenges for tomorrow's teachers and educational establishments. With backgrounds in molecular life science research and secondary life science teaching, we (Tibell and Rundgren, respectively) bring different experiences, perspectives, concerns, and awareness of these issues. Taking the nature of the discipline as a starting point, we highlight important facets of molecular life science that are both characteristic of the domain and challenging for learning and education. Of these challenges, we focus most detail on content, reasoning difficulties, and communication issues. We also discuss implications for education research and teaching in the molecular life sciences. PMID:20194805
Teaching Evolution: A Heuristic Study of Personal and Cultural Dissonance
ERIC Educational Resources Information Center
Grimes, Larry G.
2012-01-01
Darwinian evolution is a robustly supported scientific theory. Yet creationists continue to challenge its teaching in American public schools. Biology teachers in all 50 states are responsible for teaching science content standards that include evolution. As products of their backgrounds and affiliations teachers bring personal attitudes and…
Teaching Ecological Concepts with Mud Dauber Nests.
ERIC Educational Resources Information Center
Matthews, Robert W.; Matthews, Janice R.
1999-01-01
Contends that mud dauber nests--which are widely available, safe, inexpensive, and easy to use--offer a novel and highly motivating way to teach ecological concepts to life science students at many grade levels. Presents background information for teachers, details classroom-tested methods for nest dissection, provides keys to nest contents, and…
GUIDE FOR SOCIAL STUDIES AND SCIENCE-HEALTH, FIRST YEAR. JUNIOR HIGH SCHOOL SPECIAL CURRICULUM.
ERIC Educational Resources Information Center
STINCHCOMB, KOMA D.; AND OTHERS
THIS CURRICULUM GUIDE FOR JUNIOR HIGH EDUCABLE MENTALLY HANDICAPPED STUDENTS PROVIDES INFORMATION ON TEACHING PROCEDURES, SUGGESTIONS FOR PLANNING SUPPLEMENTAL UNITS, TYPES OF LESSONS, AND EVALUATION. INDIVIDUAL UNITS INCLUDE THE INFORMATION CONTENT, SUGGESTIONS FOR BACKGROUND STUDY, SPECIFIC TEACHING PLANS, DISCUSSION QUESTIONS, ASSIGNMENTS,…
From teachers' perspective: Implementation of literacy materials in middle school science
NASA Astrophysics Data System (ADS)
Weingartner, Judith A.
Documentation of adolescents' difficulty in comprehending textbooks spans a century. For just as long, researchers have advocated that explicit instruction of reading strategies can help students' comprehension of text; many have recommended that the best place to teach these strategies is within the content classroom (science, math, etc.), and taught by the content teacher. Despite this research, reading strategy instruction in content classrooms is not a common occurrence. In a large district with 300 middle school science teachers, some science teachers expressed concern about their students' reading difficulties with the district's science text. In response to those concerns, the middle school science coordinator organized a small committee to develop the Reading Strategies Handbook for Middle School Science for Teachers (the Handbook), believing that this tool would guide teachers' in implementing the Handbook's reading strategies and improve students' comprehension of the text. This was a qualitative study that explored 11 middle school science teachers' responses to implementing the Handbook. Data for this study were gathered through an e-mailed questionnaire, a classroom visitation, and one interview with each teacher participant. The study found that teachers' varied backgrounds influenced their beliefs about teaching and learning, and impacted their classroom practices. Teachers faced their district's expectations to implement reading strategies in the Handbook with minimal support and cited influences beyond their control that created tension with their decision whether to implement the Handbook. Teachers commented that a "one size fits all" curriculum and textbook-specific issues influenced their degree of using the Handbook's reading strategies. In addition, teachers identified time and pressure to cover curriculum as obstacles to implementing the Handbook. Implications of these findings include: (a) Professional development studies related to content literacy are needed that include attention to teachers' beliefs and attitudes, and (b) Policy makers need to direct funding for the professional development needs of content-area teachers.
NASA Astrophysics Data System (ADS)
Sasser, Selena Kay
This study examined the effects of differing amounts of structure within the problem based learning instructional model on elementary preservice teachers' science teaching efficacy beliefs, including personal science teaching efficacy and science teaching outcome expectancy, and content knowledge acquisition. This study involved sixty (60) undergraduate elementary preservice teachers enrolled in three sections of elementary science methods classes at a large Midwestern research university. This study used a quasi-experimental nonequivalent design to collect and analyze both quantitative and qualitative data. Participants completed instruments designed to assess science teaching efficacy beliefs, science background, and demographic data. Quantitative data from pre and posttests was obtained using the science teaching efficacy belief instrument-preservice (STEBI-B) developed by Enochs and Riggs (1990) and modified by Bleicher (2004). Data collection instruments also included a demographic questionnaire, an analytic rubric, and a structured interview; both created by the researcher. Quantitative data was analyzed by conducting ANCOVA, paired samples t-test, and independent samples t-test. Qualitative data was analyzed using coding and themes. Each of the treatment groups received the same problem scenario, one group experienced a more structured PBL setting, and one group experienced a limited structure PBL setting. Research personnel administered pre and posttests to determine the elementary preservice teachers' science teaching efficacy beliefs. The results show elementary preservice teachers'science teaching efficacy beliefs can be influence by the problem based learning instructional model. This study did not find that the amount of structure in the form of core ideas to consider and resources for further research increased science teaching efficacy beliefs in this sample. Results from the science content knowledge rubric indicated that structure can increase science content knowledge in this sample. Qualitative data from the tutor, fidelity raters, and interviews indicated the participants were excited about the problem and were interested in the science content knowledge related to the problem. They also indicated they were motivated to continue informal study in the problem area. Participants indicated, during the interview, their initial frustration with the lack of knowledge gained from the tutor; however, indicated this led to more learning on their part. This study will contribute to the overall knowledge of problem based learning and its structures, science teaching efficacy beliefs of elementary preservice teachers, and to current teaching and learning practices.
Using Literacy Techniques to Teach Astronomy to Non-Science Majors
NASA Astrophysics Data System (ADS)
Garland, C. A.; Ratay, D. L.
We discuss an introductory-level college astronomy class that significantly relied on reading and writing assignments to deliver basic content knowledge and provide a basis for deeper analysis of the material. As opposed to the traditional problem-set method of homework, students were required to read popular articles from magazines and newspapers related to the content presented in class, and then prepare responses. These responses ranged from methodological analyzes to using the readings to create original science journalism. Additional forms of assessment indicated that students benefited from this type of course design. We propose that given the background of students in this type of course, our course design is better suited to engage students in the material and provides a valid alternative method of assessment.
NASA Astrophysics Data System (ADS)
Williams, John; Eames, Chris; Hume, Anne; Lockley, John
2012-11-01
Background: This research addressed the key area of early career teacher education and aimed to explore the use of a 'content representation' (CoRe) as a mediational tool to develop early career secondary teacher pedagogical content knowledge (PCK). This study was situated in the subject areas of science and technology, where sound teacher knowledge is particularly important to student engagement. Purpose: The study was designed to examine whether such a tool (a CoRe), co-designed by an early career secondary teacher with expert content and pedagogy specialists, can enhance the PCK of early career teachers. The research questions were: How can experts in content and pedagogy work together with early career teachers to develop one science topic CoRe and one technology topic CoRe to support the development of PCK for early career secondary teachers? How does the use of a collaboratively designed CoRe affect the planning of an early career secondary teacher in science or technology? How has engagement in the development and use of an expert-informed CoRe developed an early career teacher's PCK? Sample: The research design incorporated a unique partnership between two expert classroom teachers, two content experts, four early career teachers, and four researchers experienced in science and technology education. Design: This study employed an interpretivist-based methodology and an action research approach within a four-case study design. Data were gathered using qualitative research methods focused on semi-structured interviews, observations and document analysis. Results: The study indicated that CoRes, developed through this collaborative process, helped the early career teachers focus on the big picture of the topic, emphasize particularly relevant areas of content and consider alternative ways of planning for their teaching. Conclusions: This paper presents an analysis of the process of CoRe development by the teacher-expert partnerships and the effect that had on the early career teachers' PCK. In addition, as the same tools and methodology were applied to both a science and a technology teaching context, differences between the two learning areas are discussed.
NASA Astrophysics Data System (ADS)
Chordnork, Boonliang; Yuenyong, Chokchai
2018-01-01
This aim of this research was to investigate primary school science teachers understanding and teaching practice as well as the influence on teaching and learning a topic like global warming. The participants were four primary science teachers, who were not graduated in science education. Methodology was the case study method, which was under the qualitative research regarded from interpretive paradigm. Data were collected by openended questionnaire, semi-structure interview, and document colleting. The questionnaire examined teachers' background, teachers' understanding of problems and threats of science teaching, desiring of development their PCK, sharing the teaching approaches, and their ideas of strength and weakness. a semi-structured interview was conducted based on the approach for capturing PCK of Loughran [23] content representation (CoRe). And, the document was collected to clarify what evidence which was invented to effect on students' learning. These document included lesson plan, students' task, and painting about global warming, science projects, the picture of activities of science learning, the exercise and test. Data analysis employed multiple approach of evidence looking an issue from each primary science teachers and used triangulation method to analyze the data with aiming to make meaning of teachers' representation of teaching practice. These included descriptive statistics, CoRe interpretation, and document analysis. The results show that teachers had misunderstanding of science teaching practice and they has articulated the pedagogical content knowledge in terms of assessment, goal of teaching and linking to the context of socio cultural. In contrast, knowledge and belief of curriculum, students' understanding of content global warming, and strategies of teaching were articulated indistinct by non-graduate science teacher. Constructing opportunities for personal development, the curiosity of the student learning center, and linking context of socio-culture were the creative factor in the teaching global warming. On the other hand, the teachers had an idea that lack of technology and the defect of child's intelligence were hinder factors teaching global warming.
Examining Curricular Integration Strategies To Optimize Learning Of The Anatomical Sciences
NASA Astrophysics Data System (ADS)
Lisk, Kristina Adriana Ayako
Background: Integration of basic and clinical science knowledge is essential to clinical practice. Although the importance of these two knowledge domains is well-recognized, successfully supporting the development of learners' integrated basic and clinical science knowledge, remains an educational challenge. In this dissertation, I examine curricular integration strategies to optimize learning of the anatomical sciences. Objectives: The studies were designed to achieve the following research aims: 1) to objectively identify clinically relevant content for an integrated musculoskeletal anatomy curriculum; 2) to examine the value of integrated anatomy and clinical science instruction compared to clinical science instruction alone on novices' diagnostic accuracy and diagnostic reasoning process; 3) to compare the effect of integrating and segregating anatomy and clinical science instruction along with a learning strategy (self-explanation) on novices' diagnostic accuracy. Methods: A modified Delphi was used to objectively select clinically relevant content for an integrated musculoskeletal anatomy curriculum. Two experimental studies were created to compare different instructional strategies to optimize learning of the curricular content. In both of these studies, novice learners were taught the clinical features of musculoskeletal pathologies using different learning approaches. Diagnostic performance was measured immediately after instruction and one-week later. Results: The results show that the Delphi method is an effective strategy to select clinically relevant content for integrated anatomy curricula. The findings also demonstrate that novices who were explicitly taught the clinical features of musculoskeletal diseases using causal basic science descriptions had superior diagnostic accuracy and a better understanding of the relative importance of key clinical features for disease categories. Conclusions: This research demonstrates how integration strategies can be applied at multiple levels of the curriculum. Further, this work shows the value of cognitive integration of anatomy and clinical science and it emphasizes the importance of purposefully linking the anatomical and clinical sciences in day-to-day teaching.
ERIC Educational Resources Information Center
Nehm, Ross H.; Kim, Sun Young; Sheppard, Keith
2009-01-01
Despite considerable focus on evolution knowledge-belief relationships, little research has targeted populations with strong content backgrounds, such as undergraduate degrees in biology. This study (1) measured precertified biology and non-biology teachers' (n = 167) knowledge of evolution and the nature of science; (2) quantified teacher…
Emotions in Prospective Secondary Teachers When Teaching Science Content, Distinguishing by Gender
ERIC Educational Resources Information Center
Borrachero, Ana Belén; Brígido, María; Mellado, Lucía; Costillo, Emilio; Mellado, Vicente
2014-01-01
Background: Until recently, the affective components of education had long been undervalued. Today, one finds ever more studies on cognitive and affective interrelationships that are lending support to the idea that affect and cognition are best understood when viewed as independent and complementary mental functions. Purpose: The present work…
AdaMeasure: An Implementation of the Halstead and Henry Metrics.
1987-06-01
of Departne t o Computer Science Kneale T..Nar4 ___. Dean of Information and Policy bScic:-n-- 2 Allr ABSTRACT I A software metric is a tool that...CONTENTS INTRODUCTION AND BACKGROUND ......................... 6 A. DEFINITIONS ..................................................... 6 B. SALLIE HENRY’S...METRIC.................................... 6 C. INFORMATION FLOW .......................................... 7 D. RELATIONS
NASA Astrophysics Data System (ADS)
Dabney, Katherine Patricia Traudel
Science, technology, engineering, and mathematics (STEM) education has become a critical focus in the United States due to economic concerns and public policy (National Academy of Sciences, 2007; U.S. Department of Education, 2006). Part of this focus has been an emphasis on encouraging and evaluating career choice and persistence factors among underrepresented groups such as females in the physical sciences (Hill et al., 2010; National Academy of Sciences, 2007). The majority of existing STEM research studies compare women to men, yet a paucity of research exists that examines what differentiates female career choice within the physical sciences. In light of these research trends and recommendations, this study examines the following questions: 1. On average, do females who select chemistry or physics doctoral programs differ in their reported personal motivations and background factors prior to entering the field? 2. Do such variables as racial and ethnic background, age, highest level of education completed by guardians/parents, citizenship status, family interest in science, first interest in general science, first interest in the physical sciences, average grades in high school and undergraduate studies in the physical sciences, and experiences in undergraduate physical science courses explain a significant amount of variance in female physical scientists' years to Ph.D. completion? These questions are analyzed using variables from the Project Crossover Survey dataset through a subset of female physical science doctoral students and scientists. Logistic regression analyses are performed to uncover what differentiates women in the physical sciences based on their background, interest, academic achievement, and experiences ranging prior to elementary school through postsecondary education. Significant variables that positively predict a career choice in chemistry or physics include content specific high school and undergraduate academic achievement and positive undergraduate experiences. Two multiple regression models, one composed of female chemists and one of female physicists, examine significant predictors that positively associated with time to doctoral degree completion. The models account for little differentiation in the outcome of time to doctoral completion. In addition, significant predictors are based on demographic and achievement factors that were not paralleled in the two multiple regressions.
A Space Science Teacher Professional Development Program
NASA Astrophysics Data System (ADS)
Limaye, Sanjay S.; Pertzborn, Rosalyn A.
Recent adoption of state/national science education standards by school districts in the US has created a need for effective teacher professional development in space science at elementary middle and high school level. Particularly at the elementary and middle school levels majority of teachers teaching the Astronomy/Space Science content have had little education in the area regardless of when they obtained their certification. To meet this growing need the Office of Space Science Education has developed a program to offer teachers background content knowledge through summer workshops and periodic school year meetings for a small number of teachers from Wisconsin and Illinois. The program has included lectures by experts tours of observatories (professional and amateur) science museums and planetariums and on-line learning. A highlight of the program has been introducing teachers to hands-on observing through remotely accessible telescopes. Another aspect has been to make them aware of the many resources available to them through NASA missions. The most significant benefit for the teachers however has been the creation of a peer group and the support it offers in sharing curriculum and lesson plans. This effort has been supported by a NASA/IDEAS grant
NASA Astrophysics Data System (ADS)
Huffman, L. T.
2017-12-01
The School of Ice (SOI) program from the US Ice Drilling Program Office (IDPO) is designed for college faculty who teach at minority-serving institutions or historically black colleges and universities, but lessons learned transfer easily to any science course based on current research. The institute builds participants' background knowledge about ice core science and climate change while also providing experiences with activities and labs for transferring information to their students. After three years of highly successful workshops, our model has provided valuable lessons for creating powerful experiences for participants. This presentation will identify some of the key ideas including pairing researchers and educators as presenters; creating leadership teams capitalizing on partner strengths; building a science community willing to participate in education and outreach; and building participants' science content background knowledge and confidence while providing them with teaching models for transferring the knowledge to their students. Another important element is to demand teacher buy-in to ensure replication and dissemination. Also, IDPO's drilling technologies make it an ideal platform for intertwining engineering concepts and practices with science research to meet new science standards. In this session, we will share results of the institute evaluations including the impact on the educators as well as longitudinal analysis of data from interviews with past participants concerning continued impacts on their teaching, their courses and their students. Faculty who have attended this institute in the last three years have reported increases in their understanding of the content and how to teach it. They also report increased confidence in their ability to teach ice core science and climate change concepts. Elements of these successful workshops can inform both the development of college professional development and student courses, as well as the creation of successful education and outreach programs for science research teams wanting to increase broader impacts of their research results.
NASA Astrophysics Data System (ADS)
Marulcu, Ismail; Barnett, Michael
2016-01-01
Background: Elementary Science Education is struggling with multiple challenges. National and State test results confirm the need for deeper understanding in elementary science education. Moreover, national policy statements and researchers call for increased exposure to engineering and technology in elementary science education. The basic motivation of this study is to suggest a solution to both improving elementary science education and increasing exposure to engineering and technology in it. Purpose/Hypothesis: This mixed-method study examined the impact of an engineering design-based curriculum compared to an inquiry-based curriculum on fifth graders' content learning of simple machines. We hypothesize that the LEGO-engineering design unit is as successful as the inquiry-based unit in terms of students' science content learning of simple machines. Design/Method: We used a mixed-methods approach to investigate our research questions; we compared the control and the experimental groups' scores from the tests and interviews by using Analysis of Covariance (ANCOVA) and compared each group's pre- and post-scores by using paired t-tests. Results: Our findings from the paired t-tests show that both the experimental and comparison groups significantly improved their scores from the pre-test to post-test on the multiple-choice, open-ended, and interview items. Moreover, ANCOVA results show that students in the experimental group, who learned simple machines with the design-based unit, performed significantly better on the interview questions. Conclusions: Our analyses revealed that the design-based Design a people mover: Simple machines unit was, if not better, as successful as the inquiry-based FOSS Levers and pulleys unit in terms of students' science content learning.
Using High Level Literacy Techniques to Teach Astronomy to Non-Science Majors
NASA Astrophysics Data System (ADS)
Garland, C. A.; Ratay, D. L.
2005-12-01
We present a discussion of an introductory-level college astronomy class which significantly relied on reading and writing assignments to deliver basic content knowledge and provide a basis for deeper analysis of the material. As opposed to the traditional problem-set method of homework, students were required to read popular articles from magazines and newspapers related to the content presented in class and then prepare responses. Responses ranged from methodological analysis to using the readings to create original science journalism. Other forms of assessment indicated that students benefitted from this type of course design. We propose that given the background of students in this type of course, the course design is better suited to engage students in the material and provides a better assessment of student achievement.
ERIC Educational Resources Information Center
Margulies, Barry J.; Ghent, Cynthia A.
2005-01-01
Medical Microbiology is a content-intensive course that requires a large time commitment from the students. Students are typically biology or prenursing majors, including students headed for professional schools, such as medical school and pharmacy school. This group is somewhat diverse in terms of background science coursework, so it can be…
NASA Astrophysics Data System (ADS)
Bulunuz, Mizrap
Inquiry-based science instruction is a major goal of science education reform. However, there is little research examining how preservice elementary teachers might be motivated to teach through inquiry. This quantitative study was designed to examine the role of background experiences and an inquiry science methods course on interest in science and interest in teaching science. The course included many activities and assignments at varying levels of inquiry, designed to teach content and inquiry methods and to model effective teaching. The study involved analyses of surveys completed by students in the course on their experiences with science before, during, and at the end of the course. The following questions guided the design of this study and analysis of the data: (1) What science background experiences (school, home, and informal education) do participants have and how do those experiences affect initial interest in science? (2) Among the hands-on activities in the methods course, is there a relationship between level of inquiry of the activity and the motivational quality (interesting, fun, and learning) of the activity? (3) Does the course affect participants' interest and attitude toward science? (4) What aspects of the course contribute to participants' interest in teaching science and choice to teach science? Descriptive and inferential analysis of a background survey revealed that participants with high and low initial interest in science differed significantly on remembering about elementary school science and involvement in science related activities in childhood/youth. Analysis of daily ratings of each hands-on activity on motivational qualities (fun, interest, and learning) indicated that there were significant differences in motivational quality of the activities by level of inquiry with higher levels of inquiry rated more positively. Pre/post surveys indicated that participants increased in interest in science and a number of variables reflecting more positive feelings about science and science teaching. Regression analysis found that the best predictors for interest in teaching science were experiencing fun activities in the science methods course followed by the interest participants brought to the course. This study highlights the motivational aspects of the methods course in developing interest in science and interest in teaching science.
The Integration of Javanese Indigenous Knowledge in Biology Learning Resources Development
NASA Astrophysics Data System (ADS)
Anazifa, D.; Hadi, R. F.
2017-02-01
The student’s difficulties in learning and understanding Biology concepts are caused by the adoption of scientific phenomenon that not suitable with the environment they live in. Students who comes from the Javanese background sometimes find the Biology concepts hard to understand. Science content that comes from the West sometimes is not suitable with the student’s background, because the cultural and geographical background that underlining the science development are different. It can potentially cause the clash in constructing knowledge of students. The proportion of western knowledge and indigenous knowledge has to be balanced, in order to give the scientific rationale of the natural phenomenon that faced by students in everyday life. The ethnoscience experienced by student is still in the form of concrete experience as a result of the interaction with the nature. As one of the largest tribe in Indonesia, Javanese has many unique cultures that can be adopted in science classroom especially in Biology class. The role on ethnoscience in the context of developing Biology learning resources is to connect the science concept with the real world situation. By considering indigenous knowledge as one of learning resources, teachers can start to adjust the Javanese indigenous knowledge into the curriculum. This paper is literature review which will present the background, rationale, and procedure in integrating Javanese indigenous knowledge into Biology classroom as learning resources. The integration of Javanese indigenous knowledge in Biology learning resources development is necessary in order to connect the Biology concept into real situation.
Aliens are us. An innovative course in astrobiology
NASA Astrophysics Data System (ADS)
Oliveira, Carlos F.; Barufaldi, James P.
2009-01-01
We live in a scientific world; paradoxically, the scientific literacy of the population is minimal at best. Science is an ongoing process, a human endeavour; paradoxically, students tend to believe that science is a finished enterprise. Many non-science major students are not motivated in science classes; paradoxically, there is a public fascination with the possibility of life in the Universe, which is nowadays a scientific endeavour. An astrobiology course was developed at the Center for Science and Mathematics Education at The University of Texas at Austin to address these paradoxes and includes the following objectives: (a) to improve scientific literacy; (b) to demonstrate that science is a work in progress; (c) to enhance the inherent interdisciplinary aspect of science; (d) to demonstrate that science is embedded in society and relates with several social sciences; (e) to improve the content knowledge about the nature of science; (f) to illustrate how engaging learning science can be; and (g) to draw from the intrinsic motivation already incorporated in the general population. The course has been offered, taught and revised for the past three years. The informal course student feedback has been very positive and encouraging. The purpose of this paper is to provide a general overview of the course. In addition, the course's background, content, themes and mode of delivery are outlined, discussed and analysed in this paper. This paper subscribes to an educational philosophy that focuses on the multidisciplinary nature of science and includes critical thinking-based teaching strategies using the dynamic discipline of astrobiology.
NASA Astrophysics Data System (ADS)
Green, Joel D.; Smith, Denise A.; Lawton, Brandon L.; Jirdeh, Hussein; Meinke, Bonnie K.
2016-01-01
The James Webb Space Telescope is the successor to the Hubble Space Telescope. STScI and the Office of Public Outreach are committed to bringing awareness of the technology, the excitement, and the future science potential of this great observatory to the public, to educators and students, and to the scientific community, prior to its 2018 launch. The challenges in ensuring the high profile of JWST (understanding the infrared, the vast distance to the telescope's final position, and the unfamiliar science territory) requires us to lay the proper background. We currently engage the full range of the public and scientific communities using a variety of high impact, memorable initiatives, in combination with modern technologies to extend reach, linking the science goals of Webb to the ongoing discoveries being made by Hubble. We have injected Webb-specific content into ongoing E/PO programs: for example, simulated scientifically inspired but aesthetic JWST scenes, illustrating the differences between JWST and previous missions; partnering with high impact science communicators such as MinutePhysics to produce timely and concise content; educational materials in vast networks of schools through products like the Star Witness News.
AstroCappella: Songs of the Universe
NASA Astrophysics Data System (ADS)
Boyd, P. T.; Smale, A. P.; Smale, K. M.
2008-11-01
The AstroCappella Project is a classroom-ready collection of upbeat pop songs, lesson plans, and background information, all rich in science content. It was developed as a collaboration between working research astronomers, educators, and a contemporary vocal band, The Chromatics. A multimedia music CD, ``AstroCappella 2.0,'' has been produced containing 13 astronomically correct songs with original lyrics and music. Song topics range from the Sun, Moon, planets and small bodies of the Solar System, through the Doppler shift, the nearest stars, and extra-solar planets, to radio and X-ray astronomy. The CD also contains extensive CD-ROM materials including science background information, curriculum notes, lesson plans and activities for each song, images, movies, and slide shows. The songs and accompanying information have been extensively field-tested, and align to the K--12 National Science Education Standards. The AstroCappella materials are in widespread use in classrooms and homes across the U.S., and are supplemented with frequent live performances and teacher workshops.
NASA Astrophysics Data System (ADS)
Winn, Kathleen Mary
The Next Generation Science Standards (NGSS) are the newest K-12 science content standards created by a coalition of educators, scientists, and researchers available for adoption by states and schools. Principals are important actors during policy implementation especially since principals are charged with assuming the role of an instructional leader for their teachers in all subject areas. Science poses a unique challenge to the elementary curricular landscape because traditionally, elementary teachers report low levels of self-efficacy in the subject. Support in this area therefore becomes important for a successful integration of a new science education agenda. This study analyzed self-reported survey data from public elementary principals (N=667) to address the following three research questions: (1) What type of science backgrounds do elementary principals have? (2) What indicators predict if elementary principals will engage in instructional leadership behaviors in science? (3) Does self-efficacy mediate the relationship between science background and a capacity for instructional leadership in science? The survey data were analyzed quantitatively. Descriptive statistics address the first research question and inferential statistics (hierarchal regression analysis and a mediation analysis) answer the second and third research questions.The sample data show that about 21% of elementary principals have a formal science degree and 26% have a degree in a STEM field. Most principals have not had recent experience teaching science, nor were they every exclusively a science teacher. The analyses suggests that demographic, experiential, and self-efficacy variables predict instructional leadership practices in science.
ERIC Educational Resources Information Center
Garrett, Gordon Ronald
The purposes of this study are (1) to determine whether college students who have taken Biological Sciences Curriculum Study (BSCS) High School Biology attain significantly different grades in college biology courses at the University of Missouri than do college students who have taken a non-BSCS high school biology course, and (2) to determine if…
Bringing the Science of JWST to the Public
NASA Astrophysics Data System (ADS)
Green, Joel D.; Smith, Denise A.; Lawton, Brandon L.; Meinke, Bonnie K.; Jirdeh, Hussein
2017-01-01
The James Webb Space Telescope is the successor to the Hubble Space Telescope. STScI and the Office of Public Outreach are committed to bringing awareness of the technology, the excitement, and the future science potential of this great observatory to the public and to the scientific community, prior to its 2018 launch. The challenges in ensuring the high profile of JWST (understanding the infrared, the vast distance to the telescope's final position, and the unfamiliar science territory) requires us to lay the proper background, particularly in the area of spectroscopy. We currently engage the full range of the public and scientific communities using a variety of high impact, memorable initiatives, in combination with modern technologies to extend reach, linking the science goals of Webb to the ongoing discoveries being made by Hubble. Webbtelescope.org, the public hub for scientific information related to JWST, is now open. We have injected Webb-specific content into ongoing outreach programs: for example, partnering with high impact science communicators such as MinutePhysics to produce timely and concise content; partnering with musicians and artists to link science and art. Augmented reality apps showcase NASA’s telescopes in a format usable by anyone with a smartphone, and visuals from increasingly affordable 3D VR technologies.
Windows to the Universe: Earth Science Enterprise Education Program
NASA Technical Reports Server (NTRS)
2004-01-01
Over the past year, Windows to the Universe has continued a multifaceted program of support to the Earth Science Enterprise Education program. Areas of activity include continued maintenance of the W2U website and user traffic analysis, development of new and revised content and activities on the website, implementation of new tools to facilitate website development and maintenance, response to users questions and comments, professional development for educators through workshops at the National Science Teachers Association meetings and at NCAR, and dissemination of information about the project through materials distribution at NSTAs, AGUs, AMS and other venues. This report provides some background on the project and summarizes progress for the third and final year of the project.
NASA Astrophysics Data System (ADS)
Taylor, Peter; Lee, Stuart H.; Tal, Tali
2006-12-01
In response to Tali and Yarden's presentation of their efforts to teach socioscientific issues, the discussants address issues of authentic versus simulated activities; teachers as learners or co-creators with their students; educating people to contribute to science-based decisionmaking; the development of such socioscientific competence; the relationship between group or participatory processes and individual development; framing real world cases for every age of student; making space to delve into the historical and social background to any scientific theory, practice, or application; educating teachers who can coach students in socioscientific inquiry; and facing off against the traditional and resurgent emphasis on highstakes, content-oriented testing of students in science.
The Windows to the Universe Project: Using the Internet to Support K-12 Science Education
NASA Astrophysics Data System (ADS)
Gardiner, L.; Johnson, R.; Bergman, J.; Russell, R.; Genyuk, J.; La Grave, M.
2003-12-01
The World Wide Web can be a powerful tool for reaching the public as well as students and teachers around the world, supporting both formal and informal science education. The Windows to the Universe Project, initiated in 1995, provides a case study of approaches for the use of the web to support earth and space science education and literacy efforts. Through the use of innovative approaches such as easy to use design, multi-level content, and science concepts presented in a broader background context that includes connections to culture and the humanities, Windows to the Universe is an accessible format for individuals of various ages and learning styles. A large global audience regularly uses the web site to learn about earth and space science as well as related humanities content such as myths from around the world. User surveys show that the site has over 4 millions users per year, 65 percent of which are K-12 teachers and students. Approximately 46 percent of users access the site once per week or more. Recently, we have had the opportunity to expand our efforts while we continue to update existing content based on new scientific findings and events. Earth science content on Windows to the Universe is currently growing with a new geology section and development efforts are underway to expand our space weather content with a new curriculum. Educational games allow users to learn about space in a playful context, and an online journaling tool further integrates literacy into the learning experience. In addition, we are currently translating the entire Windows to the Universe web site into Spanish. We have included educators in the project as co-designers from its inception, and by aggressively utilizing and providing professional development opportunities for teachers, the web site is now used in thousands of classrooms around the world. In the past year we have continued to support K-12 educators by adding to our suite of classroom activities and leading professional development workshops and short courses. Core funding for the project is provided from the NASA Office of Space Science Information Technology Research Program, the NASA Earth Science Enterprise Education Program, and the National Science Foundation.
Using insects for STEM outreach: Development and evaluation of the UA Insect Discovery Program
NASA Astrophysics Data System (ADS)
Beal, Benjamin D.
Science and technology impact most aspects of modern daily life. It is therefore important to create a scientifically literate society. Since the majority of Americans do not take college-level science courses, strong K-12 science education is essential. At the K-5 level, however, many teachers lack the time, resources and background for effective science teaching. Elementary teachers and students may benefit from scientist-led outreach programs created by Cooperative Extension or other institutions. One example is the University of Arizona Insect Discovery Program, which provides short-duration programing that uses insects to support science content learning, teach critical thinking and spark interest in science. We conducted evaluations of the Insect Discovery programming to determine whether the activities offered were accomplishing program goals. Pre-post tests, post program questionnaires for teachers, and novel assessments of children's drawings were used as assessment tools. Assessments were complicated by the short duration of the program interactions with the children as well as their limited literacy. In spite of these difficulties, results of the pre-post tests indicated a significant impact on content knowledge and critical thinking skills. Based on post-program teacher questionnaires, positive impacts on interest in science learning were noted as much as a month after the children participated in the program. New programming and resources developed to widen the potential for impact are also described.
Integrating the New Generation Science Standards (NGSS) into K- 6 teacher training and curricula
NASA Astrophysics Data System (ADS)
Pinter, S.; Carlson, S. J.
2017-12-01
The Next Generation Science Standards is an initiative, adopted by 26 states, to set national education standards that are "rich in content and practice, arranged in a coherent manner across disciplines and grades to provide all students an internationally benchmarked science education." Educators now must integrate these standards into existing curricula. Many grade-school (K-6) teachers face a particularly daunting task, as they were traditionally not required to teach science or only at a rudimentary level. The majority of K-6 teachers enter teaching from non-science disciplines, making this transition even more difficult. Since the NGSS emphasizes integrated and coherent progression of knowledge from grade to grade, prospective K-6 teachers must be able to deliver science with confidence and enthusiasm to their students. CalTeach/MAST (Mathematics and Science Teaching Program) at the University of California Davis, has created a two-quarter sequence of integrated science courses for undergraduate students majoring in non-STEM disciplines and intending to pursue multiple-subject K-6 credentials. The UCD integrated science course provides future primary school teachers with a basic, but comprehensive background in the physical and earth/space sciences. Key tools are taught for improving teaching methods, investigating complex science ideas, and solving problems relevant to students' life experiences that require scientific or technological knowledge. This approach allows prospective K-6 teachers to explore more effectively the connections between the disciplinary core ideas, crosscutting concepts, and scientific and engineering practices, as outlined in the NGSS. In addition, they develop a core set of science teaching skills based on inquiry activities and guided lab discussions. With this course, we deliver a solid science background to prospective K-6 teachers and facilitate their ability to teach science following the standards as articulated in the NGSS.
NASA Astrophysics Data System (ADS)
Develaki, Maria
2017-11-01
Scientific reasoning is particularly pertinent to science education since it is closely related to the content and methodologies of science and contributes to scientific literacy. Much of the research in science education investigates the appropriate framework and teaching methods and tools needed to promote students' ability to reason and evaluate in a scientific way. This paper aims (a) to contribute to an extended understanding of the nature and pedagogical importance of model-based reasoning and (b) to exemplify how using computer simulations can support students' model-based reasoning. We provide first a background for both scientific reasoning and computer simulations, based on the relevant philosophical views and the related educational discussion. This background suggests that the model-based framework provides an epistemologically valid and pedagogically appropriate basis for teaching scientific reasoning and for helping students develop sounder reasoning and decision-taking abilities and explains how using computer simulations can foster these abilities. We then provide some examples illustrating the use of computer simulations to support model-based reasoning and evaluation activities in the classroom. The examples reflect the procedure and criteria for evaluating models in science and demonstrate the educational advantages of their application in classroom reasoning activities.
NASA Astrophysics Data System (ADS)
Tuck Bonner, Natalie Christine
A teacher's sense of {instructional} efficacy has been considered a critical variable in student academic performance. Researchers Tschannen-Moran and Hoy Woolfolk (2001, p.783) defined teachers' {instructional} efficacy as a teacher's judgment of his or her capabilities to bring about desired outcomes of student engagement and learning, even among those students who may be difficult or unmotivated. There has been a substantial amount of research which reveals a strong correlation among teacher efficacy, teaching performance, and student achievement (Goddard & Goddard, et.al., 2000; Hackett; Hackett, 1995; Pajares, 1997 as cited in Villereal, 2005). This research study explored the content area of science and teacher's personal perception of their competency level in teaching science to all learners regardless of socio-economic, ethnicity/race or gender for grade levels Pre-K to 12. Lewthwaite states that a science teacher's personal teacher attributes or intrinsic factors such as science teaching self-efficacy, professional science knowledge, science teaching, instructional methodologies, interest in science, and motivation to teach science are critical dimensions and noted barriers in the delivery of science programs on elementary level campuses (Lewthwaite, Stableford & Fisher, 2001). This study focused on teacher instructional efficacy issues which may affect diverse learners' classroom and state-mandated assessment academic performance outcomes. A SPSS analysis of data was obtained from the following teacher survey instruments: The Bandura Teacher Efficacy Scale, the SEBEST, and the SETAKIST. Research findings revealed that a majority of science teachers surveyed believe they can effectively teach learners of diverse backgrounds, but responded with a sense of lower efficaciousness in teaching English Language Learners. There was also a statistically significant difference found between a state science organization and a national science organization's instructional efficacy beliefs in effectively teaching science content to females.
Sitzman, Kathleen L; Jensen, Andrea; Chan, Sang
The aim was to examine the usefulness of a massive open online course (MOOC) on caring and mindfulness to a broad international audience that included nurses, allied health professionals, and others. MOOCs in higher education have been evident since 2008. Very few MOOCs on nursing topics have appeared since that time. Exploration was needed regarding how MOOCs could be employed to share nursing knowledge with national and international communities. Two "Caring Science, Mindful Practice" MOOC sessions were examined. Demographics, learner satisfaction, course flow, and perceived usefulness of content were analyzed. Learners from varied backgrounds participated. Higher than expected course activity levels and completion rates suggested effective learner engagement. Excellent course ratings demonstrated that content and delivery methods were effective. Active learners communicated specific plans to apply new knowledge in the future. MOOCs facilitate learning where participants learn about topics of interest in nursing and beyond.
Reporting Science and Conflicts of Interest in the Lay Press
Cook, Daniel M.; Boyd, Elizabeth A.; Grossmann, Claudia; Bero, Lisa A.
2007-01-01
Background Forthright reporting of financial ties and conflicts of interest of researchers is associated with public trust in and esteem for the scientific enterprise. Methods/Principal Findings We searched Lexis/Nexis Academic News for the top news stories in science published in 2004 and 2005. We conducted a content analysis of 1152 newspaper stories. Funders of the research were identified in 38% of stories, financial ties of the researchers were reported in 11% of stories, and 5% reported financial ties of sources quoted. Of 73 stories not reporting on financial ties, 27% had financial ties publicly disclosed in scholarly journals. Conclusions/Significance Because science journalists often did not report conflict of interest information, adherence to gold-standard recommendations for science journalism was low. Journalists work under many different constraints, but nonetheless news reports of scientific research were incomplete, potentially eroding public trust in science. PMID:18060060
Science Questions for the Post-SIRTF and Herschel Era
NASA Technical Reports Server (NTRS)
Werner, Michael
2004-01-01
The contents include the following: 1. SIRTF. Long wavelength surveys planned for SIRTF. Galaxy Discovery Rates for Future Missions. Impact of SIRTF s Improved Resolution at 160um: Resolving the Background. 2. Polarimetry. Submillimeter Polarimetry - The State of Play. Magnetic Vectors Across the Orion Molecular Cloud Core. Neutral and Ionized Molecular Spectral Lines. Variation of Polarization With Wavelength. The Polarization Spectrum. Submillimeter Polarimetry - Looking Ahead. 3.Confusion. Confusion at 500, 600 micron. 4. Extragalactic Science. Do Massive Black Holes and Galaxy Bulges form Together? 5. Galactic Science. Can We See the First Generations of Stars and Metal Formation? The Birth of Planets and the Origins of Life. Spatial Resolution at 100 microns. Far-ir/Sub-mm Transitions of Linear Carbon Clusters. Predicted Spectra of Glycine.
NASA Astrophysics Data System (ADS)
Ceglie, Robert
2013-02-01
This study explores the influence of religion as a support factor for a group of Latina and African-American women majoring in science. The current project is a part of a larger study that investigated persistence factors of underrepresented woman who were enrolled as science majors at United States colleges and universities. This paper focuses on one theme that emerged among six participants who disclosed how religion was a significant influence on their persistence in science fields. The strength and support offered by religious values is certainly not specific to science content; however, the support received from their beliefs highlights a potential area for further exploration. Given the importance of increasing participation by students from diverse backgrounds into science fields, it is critical to recognize how some of these differences may be the key factors influencing the way these students look at the world. This study offers evidence that science educators need to consider what role religious beliefs have for students who may be considering science or science education as a future career, particularly for those students from underrepresented groups.
ERIC Educational Resources Information Center
Solano-Flores, Guillermo; Wang, Chao
2015-01-01
Background: While illustrations are widely used in international test comparisons, very scant research has been conducted on their design and on their influence on student performance. It is not clear how the features of illustration act in combination supporting students' access to the content of items or increasing their interpretation demands.…
Science learning, group membership, and identity in an urban middle school
NASA Astrophysics Data System (ADS)
Olitsky, Stacy I.
2005-12-01
The issue of inequalities in science education outcomes among students from different racial and socioeconomic backgrounds in the U.S. is related not only to access to resources, but also to schools' inability to facilitate students developing identities associated with science. While some of the obstacles to identity development in science relate to issues over which teachers and students have limited control, others are more amenable to local efforts toward change. This dissertation describes an interpretive case study of a racially, ethnically, and socio-economically diverse eighth grade science classroom in an urban magnet school in order to explore the relationship between school and classroom structures, student and teacher agency in enacting positive changes within classrooms, and identity formation in science. The results of this study indicate that structural issues such as the high status ascribed to science, the school's selection process, discourses surrounding the purposes of learning, resource inequalities, and negative stereotype threat can contribute to classroom interactions in which some students' claims to membership in a community centered on science are rejected, thereby interfering with group membership. While some teacher practices accentuated the impacts of these structures, others, such as de-emphasizing standardized tasks and providing students with opportunities to make unique, science-related contributions reduced them. In addition, the teacher's strategies when she was teaching out of field, which included positioning herself as a learner and making visible her "backstage" performance of exploring ideas and accessing resources were associated with a greater diversity of students participating. Further, students were able to develop interest and a sense of solidarity surrounding even new, abstract content when such content became associated with successful interaction rituals during which science language and procedures served as a mutual focus and there were sufficient opportunities for physical and emotional entrainment. Overall, the results of this study suggest that by focusing on efforts to promote classroom interactions that students will experience as successful regardless of content, teachers can facilitate a supportive environment in which students feel comfortable experimenting with using science language, asking questions, and supporting each others' learning, thereby developing a sense of solidarity and identity surrounding science.
NASA Astrophysics Data System (ADS)
Hendrick, M. Georgeann
The course content for middle school physical science in Virginia is defined by the Standards of Learning. These eleven categories include topics in scientific experimentation, the nature of matter, chemistry and physics. Content knowledge is essential if teachers are to provide effective teaching, which includes analogies, illustrations, examples, and most importantly, hands-on experimentation. One means of assessing teacher content knowledge is by determining their academic major and minor. Teachers lacking a major or minor in the classes they teach are defined as "out-of-field" by Ingersoll (1996). When he examined data for middle school physical science teachers, 74% were "out-of-field." This survey study had two major facets. First, Virginia teachers were asked to assess their content knowledge in all eleven categories. They were also asked to provide descriptive and demographic data about themselves (including their academic degrees) and their schools. Secondly, the teachers were asked for their professional development preferences as well as organizational logistics including location, time, other participants, and use of technology. The survey was mailed to each school containing an eighth grade within the Commonwealth. The survey response rate was 73%. The data was analyzed descriptively and analytically, using frequency, percentages, T-tests, and ANOVA. Three major findings emerged. (1) The three areas which teachers assessed as lowest content knowledge included PS.11 (Electricity and Magnetism), PS.9 (Light), and PS.8 (Sound). These exactly match the three topics most desired for professional development. (2) Based on Ingersoll's definition, 68% of Virginia's teachers are providing "out-of-field" instruction. In addition, teachers with fewer years of teaching experience or mixed assignments, and/or those teaching in smaller, more rural schools report lower content knowledge. (3) Teachers desire professional development in all eleven categories. They are especially interested in programs which provide hands-on materials. Programs should be organized locally, enabling them to create collaborative teams. This study highlights the importance of professional development support for teachers who often lack an in-depth academic background in the physical sciences. This teacher input should inform program developers. In addition, inquiry into changing student SOL scores after teachers attend such programs could continue this line of inquiry.
Zhang, Weiwanqi; Ouyang, Zhen; Zhao, Ming; Wei, Yuan; Peng, Huasheng; Wang, Qiang; Guo, Ling
2015-01-01
Background: Atractylodes lancea (Thunb.) DC., is an important medicinal plant in China. Recently, researches of A. Lancea were focused on chemical composition and genetics, only a few were concerned with soil factors. Objective: The aim was to discuss the relationship between geo-herbalism of A. Lancea (Thunb.) DC. and inorganic elements in soil. Materials and Methods: The contents of 15 kinds of inorganic elements in the rhizoma of A. Lancea (Thunb.) DC. and soils from various regions were determined with inductively coupled plasma-optical emission spectrometer and the data were analyzed with Statistical Package for the Social Sciences 20.0 software. Results: The contents of inorganic elements in rhizoma of A. Lancea and in soil with different geological background were different. The soils in the famous region contained high aluminum, iron, sodium and low sulfur content. The rhizoma of A. Lancea contained high aluminum, lithium, manganese and low iron, sulfur content. The famous-region crude drugs had a strong tendency to accumulate selenium, manganese. Ten characteristic elements of A. Lancea were K, Ca, S, Al, Li, Ti, Mn, Pb, Ni, SE. Conclusion: The contents of inorganic elements in rhizoma of A. Lancea showed a significant positive interrelationship with those in soil. It was identified that inorganic elements play an important role in forming authenticity A. Lancea (Thunb.) DC. PMID:25829773
Using texts in science education: cognitive processes and knowledge representation.
van den Broek, Paul
2010-04-23
Texts form a powerful tool in teaching concepts and principles in science. How do readers extract information from a text, and what are the limitations in this process? Central to comprehension of and learning from a text is the construction of a coherent mental representation that integrates the textual information and relevant background knowledge. This representation engenders learning if it expands the reader's existing knowledge base or if it corrects misconceptions in this knowledge base. The Landscape Model captures the reading process and the influences of reader characteristics (such as working-memory capacity, reading goal, prior knowledge, and inferential skills) and text characteristics (such as content/structure of presented information, processing demands, and textual cues). The model suggests factors that can optimize--or jeopardize--learning science from text.
NASA Astrophysics Data System (ADS)
Tagawa, S.; Okuda, Y.; Hideki, M.; Cross, S. J.; Tazawa, K.; Hirose, K.
2016-12-01
Massive open online courses (MOOC or MOOCs) have attracted world-wide attention as a new digital educational tool. However, utilizing MOOCs for teaching geoscience and for outreach activity are limited so far. Mainly due to the fact that few MOOCs are available on this topic. The following questions are usually asked before undertaking MOOC development. How many students will potentially enroll in a course and what kind of background knowledge do they have? What is the best way to market the course and let them learn concepts easily? How will the instructor or staff manage discussion boards and answer questions? And, more simply, is a MOOC an effective educational or outreach tool? Recently, Tokyo Institute of Technology (Tokyo Tech) offered our first MOOC on "Deep Earth Science" on edX, which is one of the largest worldwide MOOC platforms. This brand new course was released in the Fall of 2015 and will re-open during the winter of 2016. This course contained materials such as structure of inside of the Earth, internal temperature of the earth and how it is estimated, chemical compositions and dynamics inside the earth. Although this course mainly dealt with pure scientific research content, over 5,000 students from 156 countries enrolled and 4 % of them earned a certificate of completion. In this presentation, we will share a case study based upon what we learned from offering "Deep Earth Science". At first, we will give brief introduction of our course. Then, we want to introduce tips to make a better MOOC by focusing on 1) students' motivation on studying, scientific literacy background, and completion rate, 2) offering engaging content and utilization of surveys, and 3) discussion board moderation. In the end, we will discuss advantages of utilizing a MOOC as an effective educational tool for geoscience. We welcome your ideas on MOOCs and suggestions on revising the course content.
NASA Astrophysics Data System (ADS)
Fuselier, Linda; Murphy, Claudia; Bender, Anita; Creel Falcón, Kandace
2015-01-01
Background and purpose:The purpose of this exploratory case study is to describe how scholars negotiated disciplinary divides to develop and communicate to their students an understanding of the basic features of scientific knowledge. Our goals were to examine boundary crossing in interdisciplinary collaboration and to assess the efficacy of adding science content to an introductory Women's Studies course. Sample:We studied a collaboration between faculty in Biology and Women's Studies and evaluated science modules in a Women's Studies course at a regional four-year university in the Midwestern USA. The study included 186 student participants over three semesters and four faculty from Philosophy, Women's Studies and Biology. Design and method:Women's Studies and Biology faculty collaborated to design and implement science content learning modules that included the case of women and science in an introductory Women's Studies course. Qualitative data collected from faculty participants in the form of peer debrief sessions and narrative reflections were used to examine the process of interdisciplinary collaboration. Students exposed to curriculum changes were administered pre- and post-lesson surveys to evaluate their understanding of issues faced by women in science careers, the nature of science, and interest in science studies. Data from collaborators, student journal reflections, and pre-/post-lesson surveys were considered together in an evaluation of how knowledge of science was understood and taught in a Women's Studies course over a longitudinal study of three semesters. Results:We found evidence of discipline-based challenges to interdisciplinarity and disciplinary boundary crossing among collaborators. Three themes emerged from our collaboration: challenges posed by disciplinary differences, creation of a space for interdisciplinary work, and evidence of boundary crossing. Student participants exhibited more prior knowledge of Women's Studies content than nature of science but showed learning in the areas of scientific literacy and the understanding of issues related to women in science careers. Student understanding of science content was enhanced by the participation of a woman scientist in the learning module. Conclusion:This case study illustrates how creating an inclusive space for interdisciplinary collaboration led to successful curriculum transformation and academic boundary crossing by faculty participants. Success is evident in the legacy of interdisciplinarity in the curriculum and learning gains by students. Use of a feminist science studies framework was successful at helping students learn about the influence of values on science and the tentative nature of scientific conclusions. It was less successful in teaching the distinction between science and other ways of knowing and the conception that science is an evidence-based approach to understanding the natural world. This study highlights the importance of interdisciplinary teams of faculty members collaborating to help students learn about science by modeling that there are multiple ways of knowing.
NASA Astrophysics Data System (ADS)
Brooks, Kristine M.
The goal of science education is the preparation of scientifically literate students (Abd-El-Khalick & Lederman, 2000, & American Association for the Advancement of Science (AAAS), 1990). In order to instruct students in the nature of science with its history, development, methods and applications, science teachers use textbooks as the primary organizer for the curriculum (Chippetta, Ganesh, Lee, & Phillips, 2006). Science textbooks are the dominant instructional tool that exerts great influence on instructional content and its delivery (Wang, 1998). Science and science literacy requires acquiring knowledge about the natural world and understanding its application in society, or, in other words, the nature of science. An understanding of the nature of science is an important part of science literacy (Abd-El-Khalik & Lederman, 2000, & AAAS, 1990). The nature of science has four basic themes or dimensions: science as a body of knowledge, science as a way of thinking, science as a way of investigating, and science with its interaction with technology and society (Chippetta & Koballa, 2006). Textbooks must relay and incorporate these themes to promote science literacy. The results from this content analysis provide further insights into science textbooks and their content with regard to the inclusion of the nature of science and ethnic diversity. Science textbooks usually downplay human influences (Clough & Olson, 2004) whether as part of the nature of science with its historical development or its interaction with societies of diverse cultures. Minority students are underperforming in science and science is divided on ethnic, linguistic, and gender identity (Brown, 2005). Greater representations of diversity in curriculum materials enable minority students to identify with science (Nines, 2000). Textbooks, with their influence on curriculum and presentation, must include links for science and students of diverse cultures. What is the balance of the four aspects of the nature of science and what is the balance of ethnic diversity in the participants in science (students and scientists) in physical science textbooks? To establish an answer to these questions, this investigation used content analysis. For the balance of the four aspects of the nature of science, the analysis was conducted on random page samples of five physical science textbooks. A random sampling of the pages within the physical science textbooks should be sufficient to represent the content of the textbooks (Garcia, 1985). For the balance of ethnic diversity of the participants in science, the analysis was conducted on all pictures or drawings of students and scientists within the content of the five textbooks. One of these IPC books is under current use in a large, local school district and the other four were published during the same, or similar, year. Coding procedures for the sample used two sets of coders. One set of coders have previously analyzed for the nature of science in a study on middle school science textbooks (Phillips, 2006) and the coders for ethnic diversity are public school teachers who have worked with ethnically diverse students for over ten years. Both sets of coders were trained and the reliability of their coding checked before coding the five textbooks. To check for inter-coder reliability, percent agreement, Cohen's kappa and Krippendorff's alpha were calculated. The results from this study indicate that science as a body of knowledge and science as a way of investigating are the prevalent themes of the nature of science in the five physical science textbooks. This investigation also found that there is an imbalance in the ethnic diversity of students and scientists portrayed within the chapters of the physical science textbooks studied. This imbalance reflects ratios that are neither equally balanced nor in align with the U.S. Census. Given that textbooks are the main sources of information in most classrooms, the imbalance of the nature of science could provide the students, and the teachers, with an incomplete perception and understanding of the nature of science. This imbalance could also provide the students with inadequate skills to develop and process science information and apply it to their world. The ethnic diversity portrayed in the physical science textbooks provides an inadequate link between the students' ethnic backgrounds and the ethnic diversity of the participants of science. Educators and publishers should provide science textbooks that incorporate all four aspects of the nature of science to a degree that science is perceived as more than just facts and information. Science must be recognized as a way of investigating, a way of thinking, and a way of applying knowledge to society. Further, in order to recognize all people who take part in science, students and scientists from a variety of ethnic groups should be portrayed in the physical science textbooks.
A brief simulation intervention increasing basic science and clinical knowledge.
Sheakley, Maria L; Gilbert, Gregory E; Leighton, Kim; Hall, Maureen; Callender, Diana; Pederson, David
2016-01-01
Background The United States Medical Licensing Examination (USMLE) is increasing clinical content on the Step 1 exam; thus, inclusion of clinical applications within the basic science curriculum is crucial. Including simulation activities during basic science years bridges the knowledge gap between basic science content and clinical application. Purpose To evaluate the effects of a one-off, 1-hour cardiovascular simulation intervention on a summative assessment after adjusting for relevant demographic and academic predictors. Methods This study was a non-randomized study using historical controls to evaluate curricular change. The control group received lecture (n l =515) and the intervention group received lecture plus a simulation exercise (n l+s =1,066). Assessment included summative exam questions (n=4) that were scored as pass/fail (≥75%). USMLE-style assessment questions were identical for both cohorts. Descriptive statistics for variables are presented and odds of passage calculated using logistic regression. Results Undergraduate grade point ratio, MCAT-BS, MCAT-PS, age, attendance at an academic review program, and gender were significant predictors of summative exam passage. Students receiving the intervention were significantly more likely to pass the summative exam than students receiving lecture only (P=0.0003). Discussion Simulation plus lecture increases short-term understanding as tested by a written exam. A longitudinal study is needed to assess the effect of a brief simulation intervention on long-term retention of clinical concepts in a basic science curriculum.
NASA Astrophysics Data System (ADS)
Ritter, Jennifer M.
1999-12-01
The purpose of this study was to develop, validate and establish the reliability of an instrument to assess the self-efficacy beliefs of prospective elementary teachers with regards to science teaching and learning for diverse learners. The study used Bandura's theoretical framework, in that the instrument would use the self-efficacy construct to explore the beliefs of prospective elementary science teachers with regards to science teaching and learning to diverse learners: specifically the two dimensions of self-efficacy beliefs defined by Bandura (1977): personal self-efficacy and outcome expectancy. A seven step plan was designed and followed in the process of developing the instrument, which was titled the Self-Efficacy Beliefs about Equitable Science Teaching or SEBEST. Diverse learners as recognized by Science for All Americans (1989) are "those who in the past who have largely been bypassed in science and mathematics education: ethnic and language minorities and girls" (p. xviii). That definition was extended by this researcher to include children from low socioeconomic backgrounds based on the research by Gomez and Tabachnick (1992). The SEBEST was administered to 226 prospective elementary teachers at The Pennsylvania State University. Using the results from factor analyses, Coefficient Alpha, and Chi-Square a 34 item instrument was found to achieve the greatest balance across the construct validity, reliability and item balance with the content matrix. The 34 item SEBEST was found to load purely on four factors across the content matrix thus providing evidence construct validity. The Coefficient Alpha reliability for the 34 item SEBEST was .90 and .82 for the PSE sub-scale and .78 for the OE sub-scale. A Chi-Square test (X2 = 2.7 1, df = 7, p > .05) was used to confirm that the 34 items were balanced across the Personal Self-Efficacy/Outcome Expectancy and Ethnicity/LanguageMinority/Gender Socioeconomic Status/dimensions of the content matrix. Based on the standardized development procedures used and the associated evidence, the SEBEST appears to be a content and construct valid instrument, with high internal reliability and moderate test-retest reliability qualities, for use with prospective elementary teachers to assess self-efficacy beliefs for teaching and learning science for diverse learners.
Living microorganisms change the information (Shannon) content of a geophysical system.
Tang, Fiona H M; Maggi, Federico
2017-06-12
The detection of microbial colonization in geophysical systems is becoming of interest in various disciplines of Earth and planetary sciences, including microbial ecology, biogeochemistry, geomicrobiology, and astrobiology. Microorganisms are often observed to colonize mineral surfaces, modify the reactivity of minerals either through the attachment of their own biomass or the glueing of mineral particles with their mucilaginous metabolites, and alter both the physical and chemical components of a geophysical system. Here, we hypothesise that microorganisms engineer their habitat, causing a substantial change to the information content embedded in geophysical measures (e.g., particle size and space-filling capacity). After proving this hypothesis, we introduce and test a systematic method that exploits this change in information content to detect microbial colonization in geophysical systems. Effectiveness and robustness of this method are tested using a mineral sediment suspension as a model geophysical system; tests are carried out against 105 experiments conducted with different suspension types (i.e., pure mineral and microbially-colonized) subject to different abiotic conditions, including various nutrient and mineral concentrations, and different background entropy production rates. Results reveal that this method can systematically detect microbial colonization with less than 10% error in geophysical systems with low-entropy background production rate.
A Radio Astronomy Curriculum for the Middle School Classroom
NASA Astrophysics Data System (ADS)
Davis, J.; Finley, D. G.
2000-12-01
In the summer of 2000, two teachers working on a Masters of Science Teaching program at New Mexico Institute of Mining and Technology, spent eight weeks as interns at the Array Operations Center for the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, under the auspices of the National Science Foundation's (NSF) Research Experience for Teachers (RET) program. The resulting projects will directly benefit students in the indvidual classrooms, as well as provide an easy-to-access resource for other educators. One of the products is a Radio Astronomy Curriculum for upper middle school classes. Radio astronomy images, based on scientific research results using NRAO's Very Large Array, are featured on trading cards which include an explanation, a ``web challenge'', and in some cases, a comparison of radio and optical images. Each trading card has corresponding lesson plans with background information about the images and astronomy concepts needed to do the lessons. Comparison of optical and radio astronomy is used as much as possible to explain the information from research using visible and radio wavelengths. New Mexico's Content Standards and Benchmarks (developed using national standards) for science education was used as a guide for the activities. The three strands of science listed in the standards, Unifying Concepts and Processes, Science as Inquiry, and Science Content are addressed in the lessons. Higher level thinking and problem solving skills are featured throughout the curriculum. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The NSF's RET program is gratefully acknowledged.
Exploring Preschool Children’s Science Content Knowledge
Guo, Ying; Piasta, Shayne B.; Bowles, Ryan P.
2014-01-01
Research Findings The purpose of this study was to describe children’s science content knowledge and examine the early predictors of science content knowledge in a sample of 194 typically developing preschool children. Children’s science content knowledge was assessed in the fall (Time 1) and spring (Time 2) of the preschool year. Results showed that children exhibited significant gains in science content knowledge over the course of the preschool year. Hierarchical linear modeling results indicated that the level of maternal education (i.e., holding at least a bachelor’s degree) significantly predicted children’s Time 1 science content knowledge. Children’s cognitive, math, and language skills at Time 1 were all significant concurrent predictors of Time 1 science content knowledge. However, only Time 1 math skills significantly predicted residualized gains in science content knowledge (i.e., Time 2 scores with Time 1 scores as covariates). Practice or Policy Factors related to individual differences in young children’s science content knowledge may be important for early childhood educators to consider in their efforts to provide more support to children who may need help with science learning. PMID:25541574
NASA Astrophysics Data System (ADS)
Garcia, Yeni Violeta
The inclusion of learners from underrepresented background in biology field research experiences has not been widely explored in the literature. Increased access and equity to experiences for groups historically underrepresented in science, technology, engineering, and mathematics (STEM) has been identified as a priority for many, yet little is known about the components these experiences should have and what types of transformations participants undergo as a result of these experiences. This dissertation explored the systemic creation of an intervention purposely designed to serve middle school girls from underrepresented backgrounds, the implementation of such intervention, and effect on the girls' science competence and science confidence. El Espejo, Spanish for "The Mirror," was an ongoing field ecology research program for middle schools girls founded in 2009 at a local interdisciplinary learning center. Girls from all walks of life had the opportunity to be apprentice researchers and to work with scientists and science educators from the local community. All activities were strategically designed to promote student-led inquiry, career awareness, cultural awareness, and opportunities for research and mentorship for girls from underrepresented backgrounds. An increased understanding of if, how, and why this experience was perceived by the girls to be life changing was of importance to add to the conversations that seek ways to inspire and prepare this generation of students to be the next generation of scientists. The study built on systems theory, and on theories that were embedded in the participants' system: critical race theory, identity theory, and experiential learning theory, grounded in the context of the lived experiences of girls from underrepresented backgrounds. The girls' experiences were captured through journals, observer participant notes, photo-documentation, artifacts (posters, videos) created by the girls, and by using science perception tools as well as ecological knowledge tools to gage change in perceptions before and after the program. Research questions centered on understanding what key components were necessary to inspire and motivate the girls to ask questions about the natural world, exploring ecological knowledge as a component of scientific literacy, and on understanding science identity formation as an integrated process. Analyses of qualitative and quantitative data occurred through a systems lens to explore the intersection of experience, identity, place, science knowledge, and science perceptions for the girls in this environment. The findings indicate that the program was successful in changing the perceptions of science the girls had at the beginning of the program compared to the end of the program. The experience was overall successful as evidenced by the experiences, stories, and insights from the eight case studies examined in depth. All case study participants indicated a continued interest in science or a newly discovered interest in science related topics that they had not considered before the program. The pre-post content test was not indicative of the concepts the girls learned through the process of scientific inquiry. These findings have implications for the design, implementation, and evaluation of current and future interventions that seek to provide opportunities for underrepresented populations, for the facilitators, classroom teachers, parents, community members, and policy makers vested in providing a space where creation, innovation, and transformation of experience can take place. This is a pivotal undertaking to inspire and prepare girls from underrepresented backgrounds to be leaders in STEM.
Sizing the science data processing requirements for EOS
NASA Technical Reports Server (NTRS)
Wharton, Stephen W.; Chang, Hyo D.; Krupp, Brian; Lu, Yun-Chi
1991-01-01
The methodology used in the compilation and synthesis of baseline science requirements associated with the 30 + EOS (Earth Observing System) instruments and over 2,400 EOS data products (both output and required input) proposed by EOS investigators is discussed. A brief background on EOS and the EOS Data and Information System (EOSDIS) is presented, and the approach is outlined in terms of a multilayer model. The methodology used to compile, synthesize, and tabulate requirements within the model is described. The principal benefit of this approach is the reduction of effort needed to update the analysis and maintain the accuracy of the science data processing requirements in response to changes in EOS platforms, instruments, data products, processing center allocations, or other model input parameters. The spreadsheets used in the model provide a compact representation, thereby facilitating review and presentation of the information content.
Media and the making of scientists
NASA Astrophysics Data System (ADS)
O'Keeffe, Moira
This dissertation explores how scientists and science students respond to fictional, visual media about science. I consider how scientists think about images of science in relation to their own career paths from childhood onwards. I am especially interested in the possibility that entertainment media can inspire young people to learn about science. Such inspiration is badly needed, as schools are failing to provide it. Science education in the United States is in a state of crisis. Studies repeatedly find low levels of science literacy in the U.S. This bleak situation exists during a boom in the popularity of science-oriented television shows and science fiction movies. How might entertainment media play a role in helping young people engage with science? To grapple with these questions, I interviewed a total of fifty scientists and students interested in science careers, representing a variety of scientific fields and demographic backgrounds, and with varying levels of interest in science fiction. Most respondents described becoming attracted to the sciences at a young age, and many were able to identify specific sources for this interest. The fact that interest in the sciences begins early in life, demonstrates a potentially important role for fictional media in the process of inspiration, perhaps especially for children without access to real-life scientists. One key aspect to the appeal of fiction about science is how scientists are portrayed as characters. Scientists from groups traditionally under-represented in the sciences often sought out fictional characters with whom they could identify, and viewers from all backgrounds preferred well-rounded characters to the extreme stereotypes of mad or dorky scientists. Genre is another aspect of appeal. Some respondents identified a specific role for science fiction: conveying a sense of wonder. Visual media introduce viewers to the beauty of science. Special effects, in particular, allow viewers to explore the unknown. Advocates of informal science learning initiatives suggest that media can be used as a tool for teaching science content. The potential of entertainment media to provide a sense of wonder is a powerful aspect of its potential to inspire the next generation of scientists.
High School Teachers and Students Knowledge and Views about Climate Change, a Nice NASA Example
NASA Astrophysics Data System (ADS)
Bleicher, R. E.; Lambert, J. L.
2014-12-01
One factor for some Americans being confused about climate change is their lack of understanding its underlying science concepts (Somerville & Hassol, 2011). In spite of this, climate change has been under-emphasized in school curricula (Bardsley & Bardsley, 2007). This is an important challenge for science educators, especially given the increasing public awareness of climate change impacts in their everyday lives (NCADAC, 2013).One way to address this challenge is to involve teachers in professional learning projects with the expectation that their enhanced content and pedagogical knowledge about climate change will transfer into more effective instruction resulting in increased student learning. For teacher educators, this translates into providing vibrant professional learning activities that energize and engage science teachers to develop interesting lessons that stimulate their students to learn important science concepts and develop positive attitudes to science. This study examined content knowledge and views about climate change of 33 high school science teachers and their1050 students who participated in lessons developed in a NASA-funded professional learning project. The teachers participated in a seven-day climate change summer institute and received in-classroom follow-up support throughout the school year. Teacher data sources included a background survey (undergraduate majors, number of years teaching science), science teaching self-efficacy (STEBI-A) scores, Climate Science Inventory of Knowledge (CSIK), and Six-America's Views on Climate Change. Student data included journal entries, and pre-post measures using the CSIK and Six-Americas instruments. T-tests and ANOVA showed that both students and their teachers increased in climate science knowledge. Teachers' views about climate change were more aligned to climate scientists' views. Teachers also increased in their science teaching self-efficacy and those with higher self-efficacy demonstrated higher climate change science knowledge. In addition to these data, the professional learning model and examples of the hands-on activities utilized by teachers will be shared in this presentation. The Logic Model is included below to provide an overall picture of the project.
Golband, Farnoosh; Hosseini, Agha Fatemeh; Mojtahedzadeh, Rita; Mirhosseini, Fakhrossadat; Bigdeli, Shoaleh
2014-01-01
E-learning as an educational approach has been adopted by diverse educational and academic centers worldwide as it facilitates learning in facing the challenges of the new era in education. Considering the significance of virtual education and its growing practice, it is of vital importance to examine its components for promoting and maintaining success. This analytical cross-sectional study was an attempt to determine the relationship between four factors of content, educator, learner and system, and effective e-learning in terms of demographic variables, including age, gender, educational background, and marital status of postgraduate master's students (MSc) studying at virtual faculty of Tehran University of Medical Sciences. The sample was selected by census (n=60); a demographic data gathering tool and a researcher-made questionnaire were used to collect data. The face and content validity of both tools were confirmed and the results were analyzed by descriptive statistics (frequency, percentile, standard deviation and mean) and inferential statistics (independent t-test, Scheffe's test, one-way ANOVA and Pearson correlation test) by using SPSS (V.16). The present study revealed that There was no statistically significant relationship between age and marital status and effective e-learning (P>0.05); whereas, there was a statistically significant difference between gender and educational background with effective e-learning (P<0.05). Knowing the extent to which these factors can influence effective e-learning can help managers and designers to make the right decisions about educational components of e-learning, i.e. content, educator, system and learner and improve them to create a more productive learning environment for learners.
NASA Astrophysics Data System (ADS)
Tai, Robert H.
Current science educational practice is coming under heavy criticism based on the dismaying results of the Third International Mathematics and Science Study of 1998, the latest in a series of large scale surveys; and from research showing the appallingly low representation of females in science-related fields. These critical evaluations serve to draw attention to science literacy in general and lack of persistence among females in particular, two issues that relate closely to the "preparation for future study" goal held by many high school science teachers. In other words, these teachers often seek to promote future success and to prevent future failure in their students' academic careers. This thesis studies the connection between the teaching practices recommended by reformers and researchers for high school teachers, and their students' subsequent college physics performance. The teaching practices studied were: laboratory experiences, class discussion experiences, content coverage, and reliance on textbooks. This study analyzed a survey of 1500 students from 16 different lecture-format college physics courses at 14 different universities. Using hierarchical linear modeling, this study accounted for course-level variables (Calculus-based/Non-calculus course type, professor's gender, and university selectivity). This study controlled for the student's parents education, high school science/mathematics achievement, high school calculus background, and racial background. In addition, the interactions between gender and both pedagogical/curricular and course-level variables were analyzed. The results indicated that teaching fewer topics in greater depth in high school physics appeared to be helpful to college physics students. An interaction between college course type and content coverage showed that students in Calculus-based physics reaped even greater benefits from a depth-oriented curriculum. Also students with fewer labs per month in high school physics appeared to perform better in college physics than did students with many more labs per month. The only significant interaction was between gender and Calculus-based/Non-calculus college course type. Females appeared to do better on average than their males counterparts in Non-calculus physics, but this trend is clearly reversed for Calculus-based physics. This is a disturbing result for educators who have worked to promote persistence among women in engineering and science research. Recommendations are included for high school physics teachers, students and their parents, and college physics instructors.
NASA Astrophysics Data System (ADS)
Wang, Bo
2018-04-01
Based on the digitized information and network, digital campus is an integration of teaching, management, science and research, life service and technology service, and it is one of the current mainstream construction form of campus function. This paper regarded the "mobile computing" core digital environment construction development as the background, explored the multiple management system technology content design and achievement of multimedia classrooms in digital campus and scientifically proved the technology superiority of management system.
NASA Astrophysics Data System (ADS)
Bednarski, M.; Larsen, K.
2008-11-01
Astronomy activities often pose problems for in-service teachers, especially at the elementary level, as many do not have a solid content background. Often astronomy instruction revolves around reading and answering questions. This is not an effective way to work with abstract concepts or engage students, and also fails to meet the standards of inquiry-based instruction recommended by the National Science Teachers Association and national and state standards. Science museums and planetariums bring unique and exciting perspectives to astronomy education. However, bringing students to the museum can sometimes be perceived as only a ``cool field trip.'' With mounting pressure for teachers to teach to the new standardized tests demanded by No Child Left Behind, and shrinking school budgets, field trips are rapidly becoming an endangered species. Coordinating museum, science center, and planetarium offerings with national and state science standards can renew interest in (and perceived relevance of) field trips. Therefore, university faculty, in-service teachers, and museum/planetarium staff can form successful partnerships which can both improve student learning and increase attendance at informal education science events and facilities. This workshop will first briefly introduce participants to national and representative state standards as well as research on in-service teachers' astronomy content knowledge and the educational value of field trips. For the majority of the workshop, participants will engage in the actual steps of coordinating, planning, and writing inquiry-based astronomy curriculum embedded performance tasks that collectively meet the learning needs of students in elementary, middle, or high school.
Identification of the Most Critical Content Knowledge Base for Middle School Science Teachers
ERIC Educational Resources Information Center
Saderholm, Jon C.; Tretter, Thomas R.
2008-01-01
Much has been said about what science content students need to learn (e.g., "Benchmarks for Science Literacy, National Science Education Standards"). Less has been said about what science content teachers need to know to teach the content students are expected to learn. This study analyzed four standards documents and assessment frameworks to…
NASA Astrophysics Data System (ADS)
Wade, P.; Courtney, A.
2010-12-01
Students enrolled in an undergraduate non-science majors’ Energy Perspectives course created 10-15 minute video documentaries on topics related to Energy Resources and the Environment. Video project topics included wave, biodiesel, clean coal, hydro, solar and “off-the-grid” energy technologies. No student had any prior experience with creating video projects. Students had Liberal Arts academic backgrounds that included Anthropology, Theater Arts, International Studies, English and Early Childhood Education. Students were required to: 1) select a topic, 2) conduct research, 3) write a narrative, 4) construct a project storyboard, 5) shoot or acquire video and photos (from legal sources), 6) record the narrative, and 7) construct the video documentary. This study describes the instructional approach of using student created video documentaries as projects in an undergraduate non-science majors’ science course. Two knowledge survey instruments were used for assessment purposes. Each instrument was administered Pre-, Mid- and Post course. One survey focused on the skills necessary to research and produce video documentaries. Results showed students acquired enhanced technology skills especially with regard to research techniques, writing skills and video editing. The second survey assessed students’ content knowledge acquired from each documentary. Results indicated students’ increased their content knowledge of energy resource topics. Students reported very favorable evaluations concerning their experience with creating “Ken Burns” video project documentaries.
Minority students in the science classroom: Issues of language, class, race, culture and pedagogy
NASA Astrophysics Data System (ADS)
Sweeney, Aldrin Edward
A considerable proportion of the educationally at-risk students in the K-12 public education system is composed of minority students, either in terms of cultural background, linguistic background, and frequently, both. In particular, satisfactory levels of achievement in science are not being attained by these students. The concerns of this study center on examining and understanding the reasons underlying this situation, with a view to suggesting how these problems of underachievement in science might be addressed. Previous and ongoing educational research concerning these issues suggest that such underachievement may be due to current pedagogical practices which seem to actively discourage these students from achieving any significant measure of academic, educational or professional success. The purpose of this study is thus to explore the beliefs and pedagogical practices of science teachers as they relate to minority students, especially those minority students for whom English is not a first language and who have limited English proficiency (LEP). In the course of this study, the terminology 'minority students' will refer to and be inclusive of cultural and/or language minorities, i.e. those students who differ from the mainstream white American student in terms of cultural background and a native language other than English. Culturally derived usages of non-standard forms of English (e.g. Black English Vernacular) also will be subsumed within this definition of cultural and language minority students. Particular attention will be given to emergent issues relating to current pedagogical practices, also to the science teacher beliefs and epistemological rationales underlying such practices. In exploring these beliefs and pedagogical practices, the study also will seek to delineate and to understand the various problems which are being encountered in the teaching of science to minority students. As the result of exploring the beliefs and pedagogical practices of science teachers as they relate to minority students, it is intended that the completed study will contribute toward the development and elaboration of a substantive pedagogical content knowledge base for science teachers of cultural and language minority students. It is anticipated that the development of such a knowledge base will be of practical assistance to science teachers in their pedagogical decisions such that a greater inclusion of these students in the science discourse community may be attained.
Astronomy: social background of students of the integrated high school
NASA Astrophysics Data System (ADS)
Voelzke, M. R.; Barbosa, J. I. L.
2017-07-01
Astronomy-related contents exist in almost all levels of basic education in Brazil and are also frequently disseminated through mass media. Thus, students form their own explanations about the phenomena studied by this science. Therefore, this work has the objective of identifying the possible social background of the Integrated High School students on the term Astronomy. It is a research of a basic nature, descriptive, and for that reason a quali-quantitative approach was adopted; the procedures to obtain the data were effected in the form of a survey. The results show that the tested students have a social background about the object Astronomy, which is on the one hand fortified by elements they have made or which is part of the experience lived by the respondents within the formal space of education, and on the other hand based on elements possibly disseminated through the mass media.
NASA Astrophysics Data System (ADS)
Incikabi, Lutfi; Serin, Mehmet Koray
2017-08-01
Most science departments offer compulsory mathematics courses to their students with the expectation that students can apply their experience from the mathematics courses to other fields of study, including science. The current study first aims to investigate the views of pre-service science teachers of science-teaching preparation degrees and their expectations regarding the difficulty level of mathematics courses in science-teaching education programmes. Second, the study investigates changes and the reasons behind the changes in their interest regarding mathematics after completing these courses. Third, the current study seeks to reveal undergraduate science teachers' opinions regarding the contribution of undergraduate mathematics courses to their professional development. Being qualitative in nature, this study was a case study. According to the results, almost all of the students considered that undergraduate mathematics courses were 'difficult' because of the complex and intensive content of the courses and their poor background mathematical knowledge. Moreover, the majority of science undergraduates mentioned that mathematics would contribute to their professional development as a science teacher. On the other hand, they declared a negative change in their attitude towards mathematics after completing the mathematics courses due to continuous failure at mathematics and their teachers' lack of knowledge in terms of teaching mathematics.
ERIC Educational Resources Information Center
Cwik, Lawrence C.
2012-01-01
This study is a quantitative investigation of the relation of middle school science teachers' attitudes and beliefs about inquiry-based instruction to their accumulated amounts of science content preparation, content and pedagogical professional development, and their pedagogical content knowledge. Numerous researchers have found that even though…
NASA Astrophysics Data System (ADS)
Heh, Peter
The current study examined the validation and alignment of the PASA-Science by determining whether the alternate science assessment anchors linked to the regular education science anchors; whether the PASA-Science assessment items are science; whether the PASA-Science assessment items linked to the alternate science eligible content, and what PASA-Science assessment content was considered important by parents and teachers. Special education and science education university faculty determined all but one alternate science assessment anchor linked to the regular science assessment anchors. Special education and science education teachers determined that the PASA-Science assessment items are indeed science and linked to the alternate science eligible content. Finally, parents and teachers indicated the most important science content assessed in the PASA-Science involved safety and independence.
Earth Science Resource Teachers: A Mentor Program for NASA's Explorer Schools
NASA Astrophysics Data System (ADS)
Ireton, F.; Owens, A.; Steffen, P. L.
2004-12-01
Each year, the NASA Explorer Schools (NES) program establishes a three-year partnership between NASA and 50 school teams, consisting of teachers and education administrators from diverse communities across the country. While partnered with NASA, NES teams acquire and use new teaching resources and technology tools for grades 4 - 9 using NASA's unique content, experts and other resources. Schools in the program are eligible to receive funding (pending budget approval) over the three-year period to purchase technology tools that support science and mathematics instruction. Explorer School teams attend a one-week summer institute at one of NASA's field centers each summer. The weeklong institutes are designed to introduce the teachers and administrators to the wealth of NASA information and resources available and to provide them with content background on NASA's exploration programs. During the 2004 summer institutes at Goddard Space Flight Center (GSFC) the National Earth Science Teachers Association (NESTA) entered into a pilot program with NES to test the feasibility of master teachers serving as mentors for the NES teams. Five master teachers were selected as Earth Science Resource Teachers (ESRT) from an application pool and attended the NES workshop at GSFC. During the workshop they participated in the program along side the NES teams which provided the opportunity for them to meet the teams and develop a rapport. Over the next year the ESRT will be in communication with the NES teams to offer suggestions on classroom management, content issues, classroom resources, and will be able to assist them in meeting the goals of NES. This paper will discuss the planning, selection, participation, outcomes, costs, and suggestions for future ESRT mentorship programs.
Exploring Preschool Children's Science Content Knowledge
ERIC Educational Resources Information Center
Guo, Ying; Piasta, Shayne B.; Bowles, Ryan P.
2015-01-01
Research Findings: The purpose of this study was to describe children's science content knowledge and examine the early predictors of science content knowledge in a sample of 194 typically developing preschool children. Children's science content knowledge was assessed in the fall (Time 1) and spring (Time 2) of the preschool year. Results showed…
Self-Directed Learning to Improve Science Content Knowledge for Teachers
ERIC Educational Resources Information Center
van Garderen, Delinda; Hanuscin, Deborah; Thomas, Cathy Newman; Stormont, Melissa; Lee, Eun J.
2017-01-01
Students with disabilities often struggle in science and underperform in this important content area when compared to their typical peers. Unfortunately, many special educators have had little preparation to develop science content knowledge or skills in methods for teaching science. Despite their lack of content knowledge, special educators are…
NASA Astrophysics Data System (ADS)
Yerrick, Randy; Johnson, Joseph
2011-12-01
The purpose of this study was to explore the nature of requisite teacher knowledge for teaching lower-track science students. Using video accounts, student focus groups, and teacher reflections researchers documented missteps, dead-ends, and unfruitful trajectories informed by the teacher's incoming knowledge and compared these instances to necessary modifications informed by students' voices and cultural artifacts. Our study revealed the shifting nature of sociocultural and pedagogical content knowledge of the teacher immersed in a context unlike that he experienced as a student. Results showed that teachers of majority backgrounds could learn to teach diverse students with at least moderate success from the perspective of their students. Implications for research and teacher education in diverse settings are discussed.
ERIC Educational Resources Information Center
McAdaragh, Mary Kathleen
This study examined the effects of an advance organizer and background experience in science on the attainment of science concepts. Ninth-grade earth science students (N=90) were given the Dubbins Earth Science Test (DEST) and a Science Background Experience Inventory (SBEI) developed by the author. They were then placed into high, medium, and low…
NASA Astrophysics Data System (ADS)
Logerwell, Mollianne G.
The purpose of this study was to investigate the impact of a summer science camp teaching experience on preservice elementary teachers' science teaching efficacy, science content knowledge, and understanding of the nature of science. Master's degree students enrolled in the elementary Fairfax Partnership Schools (FPS, n = 21) cohort served as the treatment group, while those enrolled in the Loudoun Partnership Schools (LPS, n = 15) and Professional Development Schools (PDS, n = 24) cohorts at George Mason University served as the control groups. The treatment group planned for and taught a two-week inquiry- and problem-based summer science camp as part of their science methods course, while the control groups did not. The Science Teaching Efficacy Belief Instrument (STEBI), a science content assessment, a personal data questionnaire, and a modified version of the Views of Nature of Science Questionnaire (VNOS-C) were administered to the participants at the beginning and end of their science methods course. Analyses revealed significant increases for the FPS group in general science teaching efficacy, personal science teaching efficacy, science teaching outcome expectancy, general science knowledge, biology content knowledge, chemistry content knowledge, and understanding of NOS; the LPS group in general science teaching efficacy, personal science teaching efficacy, chemistry content knowledge, and understanding of NOS; and, the PDS group in general science teaching efficacy, personal science teaching efficacy, and chemistry content knowledge. Additionally, the FPS group had significantly higher general science teaching efficacy than both control groups, personal science teaching efficacy than the PDS group, and understanding of NOS than the LPS group. Overall, the findings indicate that course length is not as important for developing preservice teachers' teaching efficacy and understanding of content as having connected, authentic field-based teaching experiences that are based on best-practices research and coupled with methodological instruction.
NASA Astrophysics Data System (ADS)
Edgar, L. A.; Anderson, R. B.; Gaither, T. A.; Milazzo, M. P.; Vaughan, R. G.; Rubino-Hare, L.; Clark, J.; Ryan, S.
2017-12-01
"Water in the Solar System" is an out-of-school time (OST) science education activity for middle school students that was developed as part of the Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) project. The PLANETS project was selected in support of the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice, with the goal of developing and disseminating OST curriculum and related professional development modules that integrate planetary science, technology, and engineering. "Water in the Solar System" is a science activity that addresses the abundance and availability of water in the solar system. The activity consists of three exercises based on the following guiding questions: 1) How much water is there on the Earth? 2) Where can you find water in the solar system? and 3) What properties affect whether or not water can be used by astronauts? The three exercises involve a scaling relationship demonstration about the abundance of useable water on Earth, a card game to explore where water is found in the solar system, and a hands-on exercise to investigate pH and salinity. Through these activities students learn that although there is a lot of water on Earth, most of it is not in a form that is accessible for humans to use. They also learn that most water in the solar system is actually farther from the sun, and that properties such as salinity and pH affect whether water can be used by humans. In addition to content for students, the activity includes background information for educators, and links to in-depth descriptions of the science content. "Water in the Solar System" was developed through collaboration between subject matter experts at the USGS Astrogeology Science Center, and curriculum and professional development experts in the Center for Science Teaching and Learning at Northern Arizona University. Here we describe our process of curriculum development, education objectives of "Water in the Solar System" and lessons learned.
NASA Astrophysics Data System (ADS)
McIntosh Ciechanowski, Kathryn E.
Driven by questions surrounding the documented "fourth-grade slump" in student test scores and about the content learning of English language learners, this dissertation examines the science and social studies literacy practices of third grade bilingual Latino/as in an urban school. Using qualitative and quantitative methods, I examined three questions: (a) What content area demands are evident in instruction and in the assigned texts that children read? (b) What sociocultural knowledge do students draw on in the reading and writing of content area texts? How does it shape their reading and writing? and (c) What linguistic knowledge do students draw on in the reading and writing of content area texts? How does it shape their reading and writing? These questions are premised on three key tenets from the extant research literature. First, research has documented that middle grade students struggle to make sense of content texts, which could be caused by not only a scarcity of expository texts in early grades but also by discipline-specific demands in the content texts. Second, although all students may struggle to read specialized texts, students from non-mainstream backgrounds may struggle more because they do not possess the social and linguistic capital valued in mainstream schools. Third, sociocultural research has documented the importance of social and cultural funds of knowledge in classroom learning and knowledge construction. Guided by these tenets, I observed for six months in 2 classes and recorded field notes, interviewed participants, collected artifacts, and conducted pre- and post-unit assessments. Analytic methods included quantitative evaluation of assessments and constant comparative and discourse analyses. Findings indicate that the textbooks posed linguistic and conceptual demands and represented multiple discourses including the discourses of the natural and social sciences. To make sense of texts, students drew from various sociocultural resources such as popular culture, family, and children's literature. The teacher was more likely to take up these resources (although briefly) when they tightly aligned with instructional goals. Bilingual students faced great complexity as they drew upon linguistic resources to learn technical language and content in two languages and within multiple academic and everyday discourses.
Alignment of Content and Pedagogy in an Earth Systems Course for Pre-Service Middle School Teachers
NASA Astrophysics Data System (ADS)
Cole, T.; Teed, R.; Slattery, W.
2006-12-01
In 2003 the Ohio Department of Education developed the Ohio K-12 Science Content Standards. These new science standards substantially tracked the goals and objectives of The National Research Council's National Science Education Standards. The Ohio K-12 Science Content Standards followed the National Standards in the content areas of Physical Science, Life Science and Earth and Space Science. At the same time, the state's K-12 schools were gearing up for a new high school graduation requirement, the successful passing of a high-stakes Ohio Graduation Test, given during a student's tenth grade year. Earth and Space science questions make up approximately one third of the science test items. To make it more likely that teachers have the requisite science content knowledge Ohio has recently changed from certification of K-12 teachers to a more content rich licensure standard. This new licensure requirement splits the older certification designation of K-8 into the elementary and middle school licensure areas. Under the new licensure requirements middle school licensure candidates wishing to earn a science concentration now have to take 15 semester hours of content class work in Science. The Ohio Department of Education has strongly suggested that teacher preparation institutions develop new courses for middle school educators in all four areas of concentration, including science. In response to this call for new courses science education faculty in all science areas worked together to develop a comprehensive suite of courses that would target the science content standards guidelines in the state and national standards. The newly developed Earth and Space science course is titled Earth Systems. The course carries 4.5quarter hours of credit and is intended expressly for pre-service middle school (grades 4- 9) science teachers. The content is structured around three modules of study that are designed to develop interdisciplinary science content within the context of past, present and future Earth Systems science. Because the course is created for pre-service teachers, the class models the jigsaw teaching technique, an effective and age-appropriate method of science instruction. This enables pre-service teachers to experience a technique they can use in their own classroom. Course content is aligned with all state and national 4-10 Earth/Space Science standards, which supports pre- service Middle School Science teachers by covering the content areas tested in the Praxis Middle School Science test, a requirement for graduation with licensure from Wright State University. It also helps the pre- service teachers gain experience with the content that they will need to teach to their K-12 students, so they will be able to pass the high-stakes Ohio Graduation Test. Assessment of the Earth Systems course suggests that the course leads to increased science content knowledge that leads to success in passing the Praxis Middle Childhood Science Test, and that the pedagogy modeled in the course is used by the pre- service teachers in their own K-12 teaching upon graduation.
Shahhosseini, Zohreh; Danesh, Mahmonier
2014-01-01
Background: University faculty members of different disciplines in any country, by giving better quality services, will further accelerate the development of their respective countries. This study aims to explore the experiences of faculty members about their professional challenges. Aim: In this qualitative study, which was conducted in 2013, fifteen faculty members in the departments of clinical and basic sciences of Mazandaran university of Medical Sciences in northern Iran were chosen for semi-structured in-depth interviews by purposive sampling method. All tape-recorded data were fully transcribed and content analysis was performed. Results: After immersion and data analysis, three main themes were emerged including: “Imbalances in academic members’ tasks in different areas”, “Weakness of evaluation and promotion system” and “Failure to provide the infrastructure educational facilities”. The main themes and sub-themes are explained by the help of participants’ direct quotations. Conclusions: This study suggested that it is better to take effective measures to improve the faculty members’ situation and therefore increase their efficiency, effectiveness and productivity. PMID:24825939
ERIC Educational Resources Information Center
Lewis, Anna
2008-01-01
This study examined science textbooks over time to better understand the "science content" expectations that the U.S. educational system deems appropriate for 8th and 9th grade science students. The study attempted to answer the questions: (1) What specific science content has been presented via the textbook from 1952 to 2008? (2) Within…
Evaluation of a statewide science inservice and outreach program: Teacher and student outcomes
NASA Astrophysics Data System (ADS)
Lott, Kimberly Hardiman
Alabama Science in Motion (ASIM) is a statewide in-service and outreach program designed to provide in-service training for teachers in technology and content knowledge. ASIM is also designed to increase student interest in science and future science careers. The goals of ASIM include: to complement, enhance and facilitate implementation of the Alabama Course of Study: Science, to increase student interest in science and scientific careers, and to provide high school science teachers with curriculum development and staff development opportunities that will enhance their subject-content expertise, technology background, and instructional skills. This study was conducted to evaluate the goals and other measurable outcomes of the chemistry component of ASIM. Data were collected from 19 chemistry teachers and 182 students that participated in ASIM and 6 chemistry teachers and 42 students that do not participate in ASIM using both surveys and student records. Pre-treatment Chi-Square tests revealed that the teachers did not differ in years of chemistry teaching experience, major in college, and number of classes other than chemistry taught. Pre-treatment Chi-Square tests revealed that the students did not differ in age, ethnicity, school classification, or school type. The teacher survey used measured attitudes towards inquiry-based teaching, frequency of technology used by teacher self-report and perceived teaching ability of chemistry topics from the Alabama Course of Study-Science. The student surveys used were the Test of Science Related Attitudes (TOSRA) and a modified version of the Test of Integrated Process Skills (TIPS). The students' science scores from the Stanford Achievement Test (SAT-9) were also obtained from student records. Analysis of teacher data using a MANOVA design revealed that participation in ASIM had a significantly positive effect on teacher attitude towards inquiry-based teaching and the frequency of technology used; however, there was no significant effect on the perceived teaching ability of topics from the Alabama Course of Study-Science. Similar analysis of student data revealed that participation in ASIM had a significantly positive effect on student process skills acquisition and science achievement, but there were no significant effects on science attitudes.
Teacher students' dilemmas when teaching science through inquiry
NASA Astrophysics Data System (ADS)
Krämer, Philipp; Nessler, Stefan H.; Schlüter, Kirsten
2015-09-01
Background: Inquiry-based science education (IBSE) is suitable to teach scientific contents as well as to foster scientific skills. Similar conclusions are drawn by studies with respect to scientific literacy, motivational aspects, vocabulary knowledge, conceptual understandings, critical thinking, and attitudes toward science. Nevertheless, IBSE is rarely adopted in schools. Often barriers for teachers account for this lack, with the result that even good teachers struggle to teach science as inquiry. More importantly, studies indicate that several barriers and constraints could be ascribed to problems teacher students have at the university stage. Purpose: The purpose of this explorative investigation is to examine the problems teacher students have when teaching science through inquiry. In order to draw a holistic picture of these problems, we identified problems from three different points of view leading to the research question: What problems regarding IBSE do teacher students have from an objective, a subjective, and a self-reflective perspective? Design & method: Using video analysis and observation tools as well as qualitative content analysis and open questionnaires we identified problems from each perspective. Results: The objectively stated problems comprise the lack of essential features of IBSE especially concerning 'Supporting pupils' own investigations' and 'Guiding analysis and conclusions.' The subjectively perceived problems comprise concerns about 'Teachers' abilities' and 'Pupils' abilities,' 'Differentiated instruction' and institutional frame 'Conditions' while the self-reflectively noticed problems mainly comprise concerns about 'Allowing inquiry,' 'Instructional Aspects,' and 'Pupils' behavior.' Conclusions: Each of the three different perspectives provides plenty of problems, partially overlapping, partially complementing one another, and partially revealing completely new problems. Consequently, teacher educators have to consider these three perspectives.
NASA Astrophysics Data System (ADS)
Bednarski, Marsha; Larsen, K.
2008-05-01
Astronomy activities often pose problems for in-service teachers, especially at the elementary level, as many do not have a solid content background. Often astronomy instruction revolves around reading and answering questions. This is not an effective way to work with abstract concepts or engage students, and also fails to meet the standards of inquiry-based instruction recommended by the National Science Teachers Association and national and state standards. Science museums and planetariums bring unique and exciting perspectives to astronomy education. However, bringing students to the museum can sometimes be perceived as only a "cool field trip.” With mounting pressure for teachers to teach to the new standardized tests demanded by No Child Left Behind, and shrinking school budgets, field trips are rapidly becoming an endangered species. Coordinating museum, science center, and planetarium offerings with national and state science standards can renew interest in (and perceived relevance of) field trips. Therefore, university faculty, in-service teachers, and museum/planetarium staff can form successful partnerships which can both improve student learning and increase attendance at informal education science events and facilities. This workshop will first briefly introduce participants to national and representative state standards as well as research on in-service teachers’ astronomy content knowledge and the educational value of field trips. For the majority of the workshop, participants will engage in the actual steps of coordinating, planning, and writing inquiry-based astronomy curriculum embedded performance tasks that collectively meet the learning needs of students in elementary, middle, or high school. Participants are encouraged to bring a copy of their own state standards (available on their state's Department of Education website) for their preferred target age group.
Di Martino, G; Fleming, H; Kamp, M; Lussier, F
2017-11-28
The 2017 Faraday Discussion on Surface Enhanced Raman Scattering (SERS) attracted more than a hundred delegates from a broad spectrum of backgrounds and experience levels, bringing together leading scientists involved in the long living field of SERS. The meeting gave an overview of the liveliness of the topic, characterised by open questions and fascinating science still to discover. In the following, we discuss the topics covered during this meeting and briefly highlight the content of each presentation.
The Nation's Report Card Science 2009 State Snapshot Report. DoDEA. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. DoDEA. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. New Hampshire. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
The Nation's Report Card Science 2009 State Snapshot Report. New Mexico. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. New Mexico. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Colorado. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Colorado. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter,…
The Nation's Report Card Science 2009 State Snapshot Report. Hawaii. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Wisconsin. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Ohio. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Florida. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Ohio. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Arizona. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Mississippi. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Alabama. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Michigan. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Arkansas. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Georgia. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Oklahoma. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. New Jersey. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Missouri. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Illinois. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Idaho. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. South Dakota. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Louisiana. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. New Jersey. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Maine. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Wisconsin. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Connecticut. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Montana. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Maryland. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Mississippi. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Maryland. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Tennessee. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Hawaii. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Wyoming. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Minnesota. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. New York. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Louisiana. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Illinois. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Indiana. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Oregon. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Connecticut. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Oregon. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Idaho. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Alabama. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Arizona. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. New York. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Iowa. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Delaware. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. West Virginia. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Florida. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter,…
The Nation's Report Card Science 2009 State Snapshot Report. North Dakota. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. California. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Rhode Island. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Minnesota. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. North Carolina. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Utah. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. North Dakota. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. California. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Kentucky. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Pennsylvania. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Oklahoma. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. South Carolina. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Maine. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Tennessee. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Rhode Island. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Texas. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Iowa. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Washington. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. New Hampshire. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Massachusetts. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Washington. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Arkansas. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Georgia. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Indiana. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Missouri. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. West Virginia. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Montana. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Nevada. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Massachusetts. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
NASA Astrophysics Data System (ADS)
Cooke-Nieves, Natasha Anika
Science education research has consistently shown that elementary teachers have a low self-efficacy and background knowledge to teach science. When they teach science, there is a lack of field experiences and inquiry-based instruction at the elementary level due to limited resources, both material and pedagogical. This study focused on an analysis of a professional development (PD) model designed by the author known as the Collaborative Diagonal Learning Network (CDLN). The purpose of this study was to examine elementary school teacher participants pedagogical content knowledge related to their experiences in a CDLN model. The CDLN model taught formal and informal instruction using a science coach and an informal educational institution. Another purpose for this research included a theoretical analysis of the CDLN model to see if its design enabled teachers to expand their resource knowledge of available science education materials. The four-month-long study used qualitative data obtained during an in-service professional development program facilitated by a science coach and educators from a large natural history museum. Using case study as the research design, four elementary school teachers were asked to evaluate the effectiveness of their science coach and museum educator workshop sessions. During the duration of this study, semi-structured individual/group interviews and open-ended pre/post PD questionnaires were used. Other data sources included researcher field notes from lesson observations, museum field trips, audio-recorded workshop sessions, email correspondence, and teacher-created artifacts. The data were analyzed using a constructivist grounded theory approach. Themes that emerged included increased self-efficacy; increased pedagogical content knowledge; increased knowledge of museum education resources and access; creation of a professional learning community; and increased knowledge of science notebooking. Implications for formal and informal professional development in elementary science reform are offered. It is suggested that researchers investigate collaborative coaching through the lenses of organizational learning network theory, and develop professional learning communities with formal and informal educators; and that professional developers in city school systems and informal science institutions work in concert to produce more effective elementary teachers who not only love science but love teaching it.
Characterizing the (Perceived) Newsworthiness of Health Science Articles: A Data-Driven Approach
Willis, Erin; Paul, Michael J; Elhadad, Noémie; Wallace, Byron C
2016-01-01
Background Health science findings are primarily disseminated through manuscript publications. Information subsidies are used to communicate newsworthy findings to journalists in an effort to earn mass media coverage and further disseminate health science research to mass audiences. Journal editors and news journalists then select which news stories receive coverage and thus public attention. Objective This study aims to identify attributes of published health science articles that correlate with (1) journal editor issuance of press releases and (2) mainstream media coverage. Methods We constructed four novel datasets to identify factors that correlate with press release issuance and media coverage. These corpora include thousands of published articles, subsets of which received press release or mainstream media coverage. We used statistical machine learning methods to identify correlations between words in the science abstracts and press release issuance and media coverage. Further, we used a topic modeling-based machine learning approach to uncover latent topics predictive of the perceived newsworthiness of science articles. Results Both press release issuance for, and media coverage of, health science articles are predictable from corresponding journal article content. For the former task, we achieved average areas under the curve (AUCs) of 0.666 (SD 0.019) and 0.882 (SD 0.018) on two separate datasets, comprising 3024 and 10,760 articles, respectively. For the latter task, models realized mean AUCs of 0.591 (SD 0.044) and 0.783 (SD 0.022) on two datasets—in this case containing 422 and 28,910 pairs, respectively. We reported most-predictive words and topics for press release or news coverage. Conclusions We have presented a novel data-driven characterization of content that renders health science “newsworthy.” The analysis provides new insights into the news coverage selection process. For example, it appears epidemiological papers concerning common behaviors (eg, alcohol consumption) tend to receive media attention. PMID:27658571
NASA Astrophysics Data System (ADS)
Staudigel, H.; Helly, M.; Massel Symons, C.; Koppers, A.; Helly, J.; Miller, S.
2005-12-01
The Enduring Resources in Earth Science Education (ERESE) project promotes inquiry based teaching of plate tectonics through professional development and distribution of digital library objects in the National Science Digital Library network. The overall ERESE goal is to bridge the gap between the scientists and educators, and our experience has shown that much can be gained by establishing a close collaboration between all parties involved in earth science education, from high school student to teacher -educator, and scientist. These collaborations yield substantial gains in terms of effective educational approaches, contents selection, and to produce an authentic class room research experience. ERESE professional development workshops promote a model of inquiry-based teaching that keeps the educator as far in the background as possible, while empowering the student to carry out a maximally independent inquiry. Key components in this process are: (1) use of a well selected provocative phenomenon to promote student's curiosity and to start the inquiry process, (2) care in the student guidance towards selection and formulation of a researchable question, (3) the involvement of teachers and scientists, in a close collaboration (4) teaching resource development with a strong feed-back from professional development workshops and classroom practice, (5) integration of science inquiry resources on all expert levels providing an environment that allows continuous access to science information from the most basic to the full scale science level. We expanded ERESE resource development into a volcanology field class on Hawaii to produce a website and digital library contents including field reports, exercises and images and field data. We further expanded our resource development through the participation of three high school students in a three-week seagoing expedition to the Samoan Archipelago. The high school seniors maintained a live expedition website and they participated in all science activities. Their work impacted ERESE by the development of digital resources, and introducing peer - mentoring into the inquiry process.
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
Weld, Jeffrey; Funk, Lucas
2005-01-01
Inquiry Into Life Science is a content biology course expressly for the fulfillment of the General Education life science laboratory course requirement of elementary education majors at this university. The course is modeled on the Teaching Standards and Content Standards of the National Science Education Standards [National Research Council.…
ERIC Educational Resources Information Center
Ma, Yongjun; Wan, Yanlan
2017-01-01
Based on previous international studies, a content analysis scheme has been designed and used from the perspective of culture to study the history of science (HOS) in science textbooks. Nineteen sets of Chinese science textbooks have been analyzed. It has been found that there are noticeable changes in the quantity, content, layout, presentation,…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
Adaptive removal of background and white space from document images using seam categorization
NASA Astrophysics Data System (ADS)
Fillion, Claude; Fan, Zhigang; Monga, Vishal
2011-03-01
Document images are obtained regularly by rasterization of document content and as scans of printed documents. Resizing via background and white space removal is often desired for better consumption of these images, whether on displays or in print. While white space and background are easy to identify in images, existing methods such as naïve removal and content aware resizing (seam carving) each have limitations that can lead to undesirable artifacts, such as uneven spacing between lines of text or poor arrangement of content. An adaptive method based on image content is hence needed. In this paper we propose an adaptive method to intelligently remove white space and background content from document images. Document images are different from pictorial images in structure. They typically contain objects (text letters, pictures and graphics) separated by uniform background, which include both white paper space and other uniform color background. Pixels in uniform background regions are excellent candidates for deletion if resizing is required, as they introduce less change in document content and style, compared with deletion of object pixels. We propose a background deletion method that exploits both local and global context. The method aims to retain the document structural information and image quality.
CTE Teachers' Perspectives on the Process of CTE and Science Content Integration: A Grounded Theory
NASA Astrophysics Data System (ADS)
Spindler, Matthew Kenneth
The integration of career and technical education (CTE) and academic curricular content that capitalizes on natural and inherent connections represents a challenge for CTE professionals. The research question that was used to guide the current study was: What are CTE teachers' perspectives of and experiences with the process of CTE and science content integration? And more specifically, to generate a grounded theory which explicates the process of CTE and science content integration from the perspective of CTE teachers. The CTE teachers expressed that the process of CTE and science content integration was a process of evolutionizing. From the perspective of the CTE teachers involved integrating CTE and science content resulted in their programs of study being adapted into something different than they were before the process of integration was begun. The CTE teachers revealed that the evolutions in their programs of study and themselves were associated with three other categories within the grounded theory: (a) connecting; (b) enacting; and (c) futuring. The process of CTE and science content integration represents a deep and complex episode for CTE teachers. The process of CTE and science content integration requires connecting to others, putting ideas into action, and an orienting towards the future.
Inquiry and groups: student interactions in cooperative inquiry-based science
NASA Astrophysics Data System (ADS)
Woods-McConney, Amanda; Wosnitza, Marold; Sturrock, Keryn L.
2016-03-01
Science education research has recommended cooperative inquiry based science in the primary science context for more than two decades but after more than 20 years, student achievement in science has not substantially improved. This study, through direct observation and analysis, investigated content-related student interactions in an authentic inquiry based primary science class setting. Thirty-one upper primary students were videotaped working in cooperative inquiry based science activities. Cooperative talk and negotiation of the science content was analysed to identify any high-level group interactions. The data show that while all groups have incidences of high-level content-related group interactions, the frequency and duration of these interactions were limited. No specific pattern of preceding events was identified and no episodes of high-level content-related group interactions were immediately preceded by the teacher's interactions with the groups. This in situ study demonstrated that even without any kind of scaffolding, specific skills in knowing how to implement cooperative inquiry based science, high-level content-related group interactions did occur very briefly. Support for teachers to develop their knowledge and skills in facilitating cooperative inquiry based science learning is warranted to ensure that high-level content-related group interactions and the associated conceptual learning are not left to chance in science classrooms.
ERIC Educational Resources Information Center
Diamond, Brandon S.; Maerten-Rivera, Jaime; Rohrer, Rose Elizabeth; Lee, Okhee
2014-01-01
Teacher knowledge of science content is an important but under-studied construct. A curricular and professional development intervention consisting of a fifth grade science curriculum, teacher workshops, and school site support was studied to determine its effect on teachers' science content knowledge as measured by a science knowledge test,…
ERIC Educational Resources Information Center
Michel, Hanno; Neumann, Irene
2016-01-01
Besides viewing knowledge about the nature of science (NOS) as important for its own value with respect to scientific literacy, an adequate understanding of NOS is expected to improve science content learning by fostering the ability to interrelate scientific concepts and, thus, coherently acquire scientific content knowledge. However, there is a…
A case study: The original intentions of the designers of the science content standards
NASA Astrophysics Data System (ADS)
Eucker, Penelope Hudson
This case study research examined the original intentions of the designers of the science content standards in the historical context of educational reforms and legislation. The content standards are the keystone of standards-based education. Originally, national science content standards were part of a cohesive program to increase the occurrence of quality science K--12. Through assessment policies set into motion by state and federal legislation, science curriculum is increasingly fixed and standardized. Scripting teachers is becoming more common. Unintended outcomes of standards-based education are prevalent in all classrooms. Recording the original intentions of the designers of the science content standards in a historical context is significant to document their beliefs and purposes. The shared beliefs of the six scholars included: (a) science had become overstuffed curriculum with students learning very few concepts; (b) science teachers required assistance to decide which concepts are most important for students to learn; (c) standards-based education will most likely endure for a very long time; (d) science is a specific way of knowing and inquiry must be part of science instruction; (e) few teachers teach to the science content standards. The scholars disagreed about whether the power to decide what to teach had moved from the classroom to the legislators and if standards-based education has preferentially helped some groups of students while diminishing the science education of others. Implications from the findings reveal the tension between a defined science content and the resultant assessment template that further trims the instructional range offered. Foreshadowing of increasing trend toward profits made from testing companies as state and federal legislation increase mandated assessments. Significantly, the educational research that clearly demonstrate many pathways lead to educated students such as the Eight-Year Study were suppressed in favor of the bi-partisan supported standards-based education. One of the stated goals of standards-based education was equity. With documented corrupted curriculum sometimes devoid of all science, equity remains an elusive goal. This research documents the original intentions of the designers of the science content standards. The story continues to unfold with new state and federal legislation as teachers attempt to teach the mandated content standards.
Improving Reading in Science. Second Edition. Reading Aids Series; An IRA Service Bulletin.
ERIC Educational Resources Information Center
Thelen, Judith N.
Based on the idea that reading instruction in science means teaching simultaneously the science content and the reading and reasoning processes by which that content is learned, this booklet offers practical and theoretical suggestions for science teachers to help students improve their content area comprehension. Chapters discuss the following…
Making Sense of New Science Assessments
ERIC Educational Resources Information Center
Pellegrino, James W.
2016-01-01
What we choose to assess in science is what will end up being the focus of instruction. US science standards once treated content and inquiry as fairly separate strands of science learning, with content standards stating what students should know and inquiry standards stating what they should be able to do. In its content coverage, these standards…
NASA Astrophysics Data System (ADS)
Jetty, Lauren E.
The purpose of this two-phase, sequential explanatory mixed-methods study was to understand and explain the variation seen in secondary science teachers' enactment of reform-based instructional practices. Utilizing teacher socialization theory, this mixed-methods analysis was conducted to determine the relative influence of secondary science teachers' characteristics, backgrounds and experiences across their teacher development to explain the range of teaching practices exhibited by graduates from three reform-oriented teacher preparation programs. Data for this study were obtained from the Investigating the Meaningfulness of Preservice Programs Across the Continuum of Teaching (IMPPACT) Project, a multi-university, longitudinal study funded by NSF. In the first quantitative phase of the study, data for the sample (N=120) were collected from three surveys from the IMPPACT Project database. Hierarchical multiple regression analysis was used to examine the separate as well as the combined influence of factors such as teachers' personal and professional background characteristics, beliefs about reform-based science teaching, feelings of preparedness to teach science, school context, school culture and climate of professional learning, and influences of the policy environment on the teachers' use of reform-based instructional practices. Findings indicate three blocks of variables, professional background, beliefs/efficacy, and local school context added significant contribution to explaining nearly 38% of the variation in secondary science teachers' use of reform-based instructional practices. The five variables that significantly contributed to explaining variation in teachers' use of reform-based instructional practices in the full model were, university of teacher preparation, sense of preparation for teaching science, the quality of professional development, science content focused professional, and the perceived level of professional autonomy. Using the results from phase one, the second qualitative phase selected six case study teachers based on their levels of reform-based teaching practices to highlight teachers across the range of practices from low, average, to high levels of implementation. Using multiple interview sources, phase two helped to further explain the variation in levels of reform-based practices. Themes related to teachers' backgrounds, local contexts, and state policy environments were developed as they related to teachers' socialization experiences across these contexts. The results of the qualitative analysis identified the following factors differentiating teachers who enacted reform-based instructional practices from those who did not: 1) extensive science research experiences prior to their preservice teacher preparation; 2) the structure and quality of their field placements; 3) developing and valuing a research-based understanding of teaching and learning as a result of their preservice teacher preparation experiences; 4) the professional culture of their school context where there was support for a high degree of professional autonomy and receiving support from "educational companions" with a specific focus on teacher pedagogy to support student learning; and 5) a greater sense of agency to navigate their districts' interpretation and implementation of state polices. Implications for key stakeholders as well as directions for future research are discussed.
Science communication on YouTube: Factors that affect channel and video popularity.
Welbourne, Dustin J; Grant, Will J
2016-08-01
YouTube has become one of the largest websites on the Internet. Among its many genres, both professional and amateur science communicators compete for audience attention. This article provides the first overview of science communication on YouTube and examines content factors that affect the popularity of science communication videos on the site. A content analysis of 390 videos from 39 YouTube channels was conducted. Although professionally generated content is superior in number, user-generated content was significantly more popular. Furthermore, videos that had consistent science communicators were more popular than those without a regular communicator. This study represents an important first step to understand content factors, which increases the channel and video popularity of science communication on YouTube. © The Author(s) 2015.
Preservice Science Teachers' Science Teaching Orientations and Beliefs about Science
ERIC Educational Resources Information Center
Kind, Vanessa
2016-01-01
This paper offers clarification of science teacher orientations as a potential component of pedagogical content knowledge. Science teaching orientations and beliefs about science held by 237 preservice science teachers were gathered via content-specific vignettes and questionnaire, respectively, prior to participation in a UK-based teacher…
NASA Astrophysics Data System (ADS)
Thongnoppakun, Warangkana; Yuenyong, Chokchai
2018-01-01
Pedagogical content knowledge (PCK) is an essential kind of knowledge that teacher have for teaching particular content to particular students for enhance students' understanding, therefore, teachers with adequate PCK can give content to their students in an understandable way rather than transfer subject matter knowledge to learner. This study explored science student teachers' PCK for teaching science using Content representation base methodology. Research participants were 68 4th year science student teachers from department of General Science, faculty of Education, Phuket Rajabhat University. PCK conceptualization for teaching science by Magnusson et al. (1999) was applied as a theoretical framework in this study. In this study, Content representation (CoRe) by Loughran et al. (2004) was employed as research methodology in the lesson preparation process. In addition, CoRe consisted of eight questions (CoRe prompts) that designed to elicit and portray teacher's PCK for teaching science. Data were collected from science student teachers' CoRes design for teaching a given topic and student grade. Science student teachers asked to create CoRes design for teaching in topic `Motion in one direction' for 7th grade student and further class discussion. Science student teachers mostly created a same group of science concepts according to subunits of school science textbook rather than planned and arranged content to support students' understanding. Furthermore, they described about the effect of student's prior knowledge and learning difficulties such as students' knowledge of Scalar and Vector quantity; and calculating skill. These responses portrayed science student teacher's knowledge of students' understanding of science and their content knowledge. However, they still have inadequate knowledge of instructional strategies and activities for enhance student learning. In summary, CoRes design can represented holistic overviews of science student teachers' PCK related to the teaching of a particular topic and also support them to gain more understanding about how to teach for understanding. Research implications are given for teacher education and educational research to offer a potential way to enhance science student teachers' PCK for teaching science and support their professional learning.
Engaging teachers & students in geosciences by exploring local geoheritage sites
NASA Astrophysics Data System (ADS)
Gochis, E. E.; Gierke, J. S.
2014-12-01
Understanding geoscience concepts and the interactions of Earth system processes in one's own community has the potential to foster sound decision making for environmental, economic and social wellbeing. School-age children are an appropriate target audience for improving Earth Science literacy and attitudes towards scientific practices. However, many teachers charged with geoscience instruction lack awareness of local geological significant examples or the pedagogical ability to integrate place-based examples into their classroom practice. This situation is further complicated because many teachers of Earth science lack a firm background in geoscience course work. Strategies for effective K-12 teacher professional development programs that promote Earth Science literacy by integrating inquiry-based investigations of local and regional geoheritage sites into standards based curriculum were developed and tested with teachers at a rural school on the Hannahville Indian Reservation located in Michigan's Upper Peninsula. The workshops initiated long-term partnerships between classroom teachers and geoscience experts. We hypothesize that this model of professional development, where teachers of school-age children are prepared to teach local examples of earth system science, will lead to increased engagement in Earth Science content and increased awareness of local geoscience examples by K-12 students and the public.
NASA Astrophysics Data System (ADS)
Hernandez, Cecilia M.
2011-12-01
Complex social, racial, economic, and political issues involved in the practice of teaching today require beginning teachers to be informed, skilled, and culturally responsive when entering the classroom. Teacher educators must educate future teachers in ways that will help them teach all children regardless of language, cultural background, or prior knowledge. The purpose of this study was to explore the extent to which culturally and linguistically diverse (CLD) novice teachers described and demonstrated culturally responsive teaching strategies using their students' cultural and academic profiles to inform practice in science and mathematics instruction. This qualitative exploratory case study considered the culturally responsive teaching practices of 12, non-traditional, Latina/o students as they progressed through a distance-based collaborative teacher education program. Qualitative techniques used throughout this exploratory case study investigated cultural responsiveness of these student teachers as they demonstrated their abilities to: a) integrate content and facilitate knowledge construction; b) illustrate social justice and prejudice reduction; and c) develop students academically. In conclusion, student teachers participating in this study demonstrated their ability to integrate content by: (1) including content from other cultures, (2) building positive teacher-student relationships, and (3) holding high expectations for all students. They also demonstrated their ability to facilitate knowledge construction by building on what students knew. Since there is not sufficient data to support the student teachers' abilities to assist students in learning to be critical, independent thinkers who are open to other ways of knowing, no conclusions regarding this subcategory could be drawn. Student teachers in this study illustrated prejudice reduction by: (1) using native language support to assist students in learning and understanding science and math content, (2) fostering positive student-student interactions, and (3) creating a safe learning environment. Results also indicated that these student teachers demonstrated their ability to develop students academically by creating opportunities for learning in the classroom through their knowledge of students and by the use of research-based instructional strategies. However, based on the data collected as part of this study, the student teachers' abilities to illustrate or model social justice during science and math instruction were not demonstrated.
AstroCappella: Songs of the Universe
NASA Astrophysics Data System (ADS)
Boyd, Patricia T.; Smale, A. P.; Smale, K. M.
2008-05-01
The AstroCappella Project is a classroom-ready collection of upbeat pop songs, lesson plans, and background information, all rich in science content. It was developed as a collaboration between working research astronomers, educators, and an established contemporary vocal band, The Chromatics. A multimedia music CD, "AstroCappella 2.0", has been produced containing 13 astronomically correct songs with original lyrics and music. Song topics range from the Sun, Moon, planets and small bodies of the Solar System, through the Doppler shift, the nearest stars, and extra-solar planets, to radio and X-ray astronomy. The CD also contains extensive CD-ROM materials including science background information, curriculum notes, lesson plans and activities for each song, images, movies, and slide shows. The songs and accompanying information have been extensively field-tested, and align to the K-12 National Science Education Standards. The AstroCappella materials are in widespread use in classrooms and homes across the US, and are supplemented with frequent live performances and teacher workshops. Full information can be found at http://www.astrocappella.com. Since the release of AstroCappella 2.0, additional songs have been written for missions as diverse as Messenger ("Messenger to Mercury") and AIM ("Noctilucent Cloud"; with music video available on YouTube). Now, to commemorate IYA, and in collaboration with the Johannes Kepler Project, the Chromatics are continuing their mission to spread science through a cappella and a cappella through science by creating a new original song celebrating the discoveries of the telescope, from Galileo's first glimpse of mountains and craters on the moon to the detection of planets around nearby stars and the expansion of the Universe."
ERIC Educational Resources Information Center
Satilmis, Yilmaz; Yakup, Doganay; Selim, Guvercin; Aybarsha, Islam
2015-01-01
This study investigates three models of content-based instruction in teaching concepts and terms of natural sciences in order to increase the efficiency of teaching these kinds of concepts in realization and to prove that the content-based instruction is a teaching strategy that helps students understand concepts of natural sciences. Content-based…
ERIC Educational Resources Information Center
Maza, Paul; Miller, Allison; Carson, Brian; Hermanson, John
2018-01-01
Learning and retaining science content may be increased by applying the basic science material to real-world situations. Discussing cases with students during lectures and having them participate in laboratory exercises where they apply the science content to practical situations increases students' interest and enthusiasm. A summer course in…
ERIC Educational Resources Information Center
Gess-Newsome, Julie, Ed.; Lederman, Norman G., Ed.
This book presents both historic and current conceptions and practical implications of pedagogical content knowledge (PCK). The content is divided into four sections: (1) introduction; (2) literature; (3) emerging lines of research in science teacher education; and (4) impacts of PCK on the development of science teacher education programs.…
Inquiry-Based Science and Technology Enrichment Program for Middle School-Aged Female Students
NASA Astrophysics Data System (ADS)
Kim, Hanna
2016-04-01
This study investigates the effects of an intensive 1-week Inquiry-Based Science and Technology Enrichment Program (InSTEP) designed for middle school-aged female students. InSTEP uses a guided/open inquiry approach that is deepened and redefined as eight sciences and engineering practices in the Next Generation Science Standards, which aimed at increasing female students' interest in science and science-related careers. This study examined the effectiveness of InSTEP on 123 female students' pre-assessment and post-assessment changes in attitudes toward science and content knowledge of selected science concepts. An attitude survey, a science content test with multiple-choice questions, written assignments, and interviews to collect data were all used to measure students' attitudes and content knowledge. A within-group, repeated measure design was conducted, and the results indicated that at the post-intervention level, InSTEP increased the participants' positive attitudes toward science, science-related careers, and content knowledge of selected science concepts.
Core Professionalism Education in Surgery: A Systematic Review
Sarıoğlu Büke, Akile; Karabilgin Öztürkçü, Özlem Sürel; Yılmaz, Yusuf; Sayek, İskender
2018-01-01
Background: Professionalism education is one of the major elements of surgical residency education. Aims: To evaluate the studies on core professionalism education programs in surgical professionalism education. Study Design: Systematic review. Methods: This systematic literature review was performed to analyze core professionalism programs for surgical residency education published in English with at least three of the following features: program developmental model/instructional design method, aims and competencies, methods of teaching, methods of assessment, and program evaluation model or method. A total of 27083 articles were retrieved using EBSCOHOST, PubMed, Science Direct, Web of Science, and manual search. Results: Eight articles met the selection criteria. The instructional design method was presented in only one article, which described the Analysis, Design, Development, Implementation, and Evaluation model. Six articles were based on the Accreditation Council for Graduate Medical Education criterion, although there was significant variability in content. The most common teaching method was role modeling with scenario- and case-based learning. A wide range of assessment methods for evaluating professionalism education were reported. The Kirkpatrick model was reported in one article as a method for program evaluation. Conclusion: It is suggested that for a core surgical professionalism education program, developmental/instructional design model, aims and competencies, content, teaching methods, assessment methods, and program evaluation methods/models should be well defined, and the content should be comparable. PMID:29553464
NASA Astrophysics Data System (ADS)
Oberrecht, Stephen Patrick
Because of cultural and linguistic influences on science learning involving students from diverse cultural and linguistic backgrounds, calls have been made for teachers to enact teaching that is sensitive to these students' backgrounds. However, most of the research involving such students has tended to focus on students at elementary grade levels from predominantly two linguistic backgrounds, Hispanic and Haitian Creole, learning science concepts mainly in the life sciences. Also, most of the studies examined classroom interactions between teachers and the students and among students. Not much attention had been paid to how students talk about ideas inherent in scientific phenomena in an outside-the-classroom context and much less on how that talk relates to that of the classroom. Thus, this research extends knowledge in the area of science learning involving students learning science in a language other than their first language to include students from a language background other than Hispanic and Haitian Creole at not only the high school level but also their learning of ideas in a content area other than the life science (i.e., the physical sciences). More importantly, this research extends knowledge in the area by relating science learning outside and inside the classroom. This dissertation describes this exploratory research project that adopted a case study strategy. The research involved seven Form Two (tenth grade) students (three boys and four girls) from one public, mixed gender day secondary school in rural Kenya. I collected data from the students through focus group discussions as they engaged in talking about ideas inherent in selected physical science phenomena and activities they encountered in their everyday lives, as well as learned about in their science classrooms. I supplemented these data with data from one-on-one semi-structured interviews with two teachers (one for chemistry and one for physics) on their teaching of ideas investigated in this research, the secondary school syllabus (KIE, 2002) as well as the students' responses to questions on teacher-made assessments involving the ideas investigated. Three main findings emerged through this research. The findings are: (1) the students adopted everyday ways of making sense of the world (i.e., everyday language and everyday observations) in talking about ideas investigated both outside- and inside-the-classroom contexts, (2) cultural knowledge emerged from the student's talk related to the nature and form of lightning different from that emphasized in science, and (3) students who may initially seem uninterested in participating in discussions involving science ideas showed possibilities for participation in such discussions. Drawing on the work of scholars such as Aikenhead (2001), Ballenger (1997), Brock-Utne (2007), Herbel-Eisenmann (2002) and Warren et al. (2001), I argue that students' everyday ways of makings sense of the world are rich starting points from which to leverage students towards meaningful learning in science. However, this may happen only if instructional materials such as the syllabus are explicit in not only giving examples of phenomena and students' experiences with them in outside the classroom contexts, but also acknowledging that possibilities exist for cultural understanding and talk about ideas inherent in the phenomena involving ideas students learn about in their science classrooms.
Factors influencing the results of faculty evaluation in Isfahan University of Medical Sciences.
Kamali, Farahnaz; Yamani, Nikoo; Changiz, Tahereh; Zoubin, Fatemeh
2018-01-01
This study aimed to explore factors influencing the results of faculty member evaluation from the viewpoints of faculty members affiliated with Isfahan University of Medical Sciences, Isfahan, Iran. This qualitative study was done using a conventional content analysis method. Participants were faculty members of Isfahan University of Medical Sciences who, considering maximum variation in sampling, were chosen with a purposive sampling method. Semi-structured interviews were held with 11 faculty members until data saturation was reached. The interviews were transcribed verbatim and analyzed with conventional content analysis method for theme development. Further, the MAXQDA software was used for data management. The data analysis led to the development of two main themes, namely, "characteristics of the educational system" and "characteristics of the faculty member evaluation system." The first main theme consists of three categories, i.e. "characteristics of influential people in evaluation," "features of the courses," and "background characteristics." The other theme has the following as its categories: "evaluation methods," "evaluation tools," "evaluation process," and "application of evaluation results." Each category will have its subcategories. Many factors affect the evaluation of faculty members that should be taken into account by educational policymakers for improving the quality of the educational process. In addition to the factors that directly influence the educational system, methodological problems in the evaluation system need special attention.
Developing pre-service science teachers' pedagogical content knowledge by using training program
NASA Astrophysics Data System (ADS)
Udomkan, Watinee; Suwannoi, Paisan
2018-01-01
A training program was developed for enhancing pre-service science teachers' pedagogical content knowledge (PCK). The pre-service science teachers are able to: understand science curriculum, knowledge of assessment in science, knowledge of students' understanding of science, instructional strategies and orientations towards science teaching, which is conceptualized as PCK [5]. This study examined the preservice science teachers' understandings and their practices which include five pre-service science teachers' PCK. In this study, the participants demonstrated their PCK through the process of the training program by writing content representations (CoRes), preparing the lesson plans, micro-teaching, and actual teaching respectively. All pre-service science teachers' performs were collected by classroom observations. Then, they were interviewed. The results showed that the pre-service science teachers progressively developed knowledge components of PCK. Micro-teaching is the key activities for developing PCK. However, they had some difficulties in their classroom teaching. They required of sufficient ability to design appropriate instructional strategies and assessment activities for teaching. Blending content and pedagogy is also a matter of great concern. The implication of this study was that science educators can enhance pre-service science teachers' PCK by fostering their better understandings of the instructional strategies, assessment activities and blending between content and pedagogy in their classroom.
Teacher Professional Development that Makes an Impact
NASA Astrophysics Data System (ADS)
Borrego, H.; Ellins, K. K.
2012-12-01
Through four years of participation in the TeXas Earth and Space Science (TXESS) Revolution, an NSF-sponsored teacher professional development project, my knowledge of earth science and new pedagogical approaches has improved dramatically. In addition, I have received instructional materials, and learned how to access high quality online resources and use a variety of web-based tools. As a consequence, I have developed the confidence to use the TXESS model to deliver earth science professional development that makes an impact to other teachers in the Rio Grande Valley region of South Texas. In this session, I will share my experiences as an earth science professional development provider and describe how I have used my own learning to help both teachers and students become more earth science literate. Earth science test scores at the elementary and secondary level throughout South Texas are consistently low in comparison to other regional areas in the state. The majority of the teachers lack the content-knowledge, confidence, or experience to teach earth science. My background as teacher combined with the TXESS Revolution experience helped me to understand the needs of these teachers and to identify teaching resources that would be useful to them. Using educational resources provided by the TXESS Revolution I have offered professional development topics such as Energy, Geologic Time and Stratigraphy, Water and the Cryosphere, Plate Tectonics, and Climate to about 125 South Texas elementary and middle school teachers. These trainings have helped improve the content knowledge of South Texas teachers and given them tools that they can use to guide student learning through authentic scientific research. In addition to providing professional development to teachers, I have been recruited to serve as the representative of the Offshore Energy Center for South Texas. This curriculum complements the TXESS Revolution educational resources by expanding the Energy education. The partnership with Offshore Energy is financing the framework for developing more training. More than 15 school districts in South Texas will have the opportunity to participate in this program
NASA Astrophysics Data System (ADS)
McGinty, A. B.
1982-04-01
Contents: The Air Force Geophysics Laboratory; Aeronomy Division--Upper Atmosphere Composition, Middle Atmosphere Effects, Atmospheric UV Radiation, Satellite Accelerometer Density Measurement, Theoretical Density Studies, Chemical Transport Models, Turbulence and Forcing Functions, Atmospheric Ion Chemistry, Energy Budget Campaign, Kwajalein Reference Atmospheres, 1979, Satellite Studies of the Neutral Atmosphere, Satellite Studies of the Ionosphere, Aerospace Instrumentation Division--Sounding Rocket Program, Satellite Support, Rocket and Satellite Instrumentation; Space Physics Division--Solar Research, Solar Radio Research, Environmental Effects on Space Systems, Solar Proton Event Studies, Defense Meteorological Satellite Program, Ionospheric Effects Research, Spacecraft Charging Technology; Meteorology Division--Cloud Physics, Ground-Based Remote-Sensing Techniques, Mesoscale Observing and Forecasting, Design Climatology, Aircraft Icing Program, Atmospheric Dynamics; Terrestrial Sciences Division--Geodesy and Gravity, Geokinetics; Optical Physics Division--Atmospheric Transmission, Remote Sensing, INfrared Background; and Appendices.
ERIC Educational Resources Information Center
Mikeska, Jamie N.; Phelps, Geoffrey; Croft, Andrew J.
2017-01-01
This report describes efforts by a group of science teachers, teacher educators, researchers, and content specialists to conceptualize, develop, and pilot practice-based assessment items designed to measure elementary science teachers' content knowledge for teaching (CKT). The report documents the framework used to specify the content-specific…
NASA Astrophysics Data System (ADS)
Kim, Hanna
2011-12-01
This study investigated the effectiveness of a guided inquiry integrated with technology, in terms of female middle-school students' attitudes toward science/scientists and content knowledge regarding selective science concepts (e.g., Greenhouse Effect, Air/Water Quality, Alternative Energy, and Human Health). Thirty-five female students who were entering eighth grade attended an intensive, 1-week Inquiry-Based Science and Technology Enrichment Program which used a main theme, "Green Earth Enhanced with Inquiry and Technology." We used pre- and post-attitude surveys, pre- and post-science content knowledge tests, and selective interviews to collect data and measure changes in students' attitudes and content knowledge. The study results indicated that at the post-intervention measures, participants significantly improved their attitudes toward science and science-related careers and increased their content knowledge of selected science concepts ( p < .05).
The Structure of the EU Mediasphere
Flaounas, Ilias; Turchi, Marco; Ali, Omar; Fyson, Nick; De Bie, Tijl; Mosdell, Nick; Lewis, Justin; Cristianini, Nello
2010-01-01
Background A trend towards automation of scientific research has recently resulted in what has been termed “data-driven inquiry” in various disciplines, including physics and biology. The automation of many tasks has been identified as a possible future also for the humanities and the social sciences, particularly in those disciplines concerned with the analysis of text, due to the recent availability of millions of books and news articles in digital format. In the social sciences, the analysis of news media is done largely by hand and in a hypothesis-driven fashion: the scholar needs to formulate a very specific assumption about the patterns that might be in the data, and then set out to verify if they are present or not. Methodology/Principal Findings In this study, we report what we think is the first large scale content-analysis of cross-linguistic text in the social sciences, by using various artificial intelligence techniques. We analyse 1.3 M news articles in 22 languages detecting a clear structure in the choice of stories covered by the various outlets. This is significantly affected by objective national, geographic, economic and cultural relations among outlets and countries, e.g., outlets from countries sharing strong economic ties are more likely to cover the same stories. We also show that the deviation from average content is significantly correlated with membership to the eurozone, as well as with the year of accession to the EU. Conclusions/Significance While independently making a multitude of small editorial decisions, the leading media of the 27 EU countries, over a period of six months, shaped the contents of the EU mediasphere in a way that reflects its deep geographic, economic and cultural relations. Detecting these subtle signals in a statistically rigorous way would be out of the reach of traditional methods. This analysis demonstrates the power of the available methods for significant automation of media content analysis. PMID:21170383
NASA Astrophysics Data System (ADS)
Papadouris, Nicos; Constantinou, Constantinos P.
2017-04-01
Promoting facility with content knowledge is one of the most important objectives of science teaching. Conventionally, the focus for this objective is placed on the substantive side of content knowledge (e.g. science concepts/laws), whereas its epistemic or ontological aspects (e.g. why do we construct concepts?) rarely receive explicit attention. In this article, we develop a theoretical argument for the value of elevating the attention paid to the epistemic/ontological aspects of content knowledge and integrating them with its substantive side. Our argument is structured in two parts. The first unpacks the epistemic/ontological aspects of content knowledge and their role in science. For this, we focus on two specific aspects (i.e. ontological status and epistemic value of science concepts), which we elaborate in the context of two particular content domains, namely magnetism and energy. The second part of the argument highlights the potential of discourse on epistemic/ontological aspects to facilitate learning in science. We delineate how such discourse could (a) promote coherent conceptual understanding, (b) foster a productive epistemological stance towards science learning, and (c) enhance students' appreciation of ideas associated with the nature of science. The article concludes with a discussion of ensuing implications for science education.
NASA Astrophysics Data System (ADS)
Madsen, J.; Allen, D.; Donham, R.; Fifield, S.; Ford, D.; Shipman, H.; Dagher, Z.
2007-12-01
University of Delaware faculty in the geological sciences, biological sciences, and the physics and astronomy departments have partnered with faculty and researchers from the school of education to form a continuum for K- 8 pre-service teacher preparation in science. The goal of the continuum is to develop integrated understandings of content and pedagogy so that these future teachers can effectively use inquiry-based approaches in teaching science in their classrooms. Throughout the continuum where earth science content appears an earth system science approach, with emphasis on inquiry-based activities, is employed. The continuum for K-8 pre-service teachers includes a gateway content course in the earth, life, or physical sciences taken during the freshman year followed by integrated science content and methods courses taken during the sophomore year. These integrated courses, called the Science Semester, were designed and implemented with funding from the National Science Foundation. During the Science Semester, traditional content and pedagogy subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based science. Students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. They also critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning during the Science Semester. The PBL activities that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in a PBL investigation that focuses on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. Those students seeking secondary certification in science will enroll, as a bridge toward their student teaching experience, in an additional content course within a science discipline that is concurrently taught with a science methods course. Emphasizing inquiry-based activities, these bridge courses also focus on developing integrated understandings of the sciences. The continuum extends beyond the student teaching experience by tracking cohorts of science teachers during their in-service years. With funding from the National Science Foundation's Teacher Professional Continuum program, we are conducting research on this inquiry-based professional development approach for K-8 teachers across this continuum.
Smith, Vincent S; Rycroft, Simon D; Harman, Kehan T; Scott, Ben; Roberts, David
2009-01-01
Background Natural History science is characterised by a single immense goal (to document, describe and synthesise all facets pertaining to the diversity of life) that can only be addressed through a seemingly infinite series of smaller studies. The discipline's failure to meaningfully connect these small studies with natural history's goal has made it hard to demonstrate the value of natural history to a wider scientific community. Digital technologies provide the means to bridge this gap. Results We describe the system architecture and template design of "Scratchpads", a data-publishing framework for groups of people to create their own social networks supporting natural history science. Scratchpads cater to the particular needs of individual research communities through a common database and system architecture. This is flexible and scalable enough to support multiple networks, each with its own choice of features, visual design, and constituent data. Our data model supports web services on standardised data elements that might be used by related initiatives such as GBIF and the Encyclopedia of Life. A Scratchpad allows users to organise data around user-defined or imported ontologies, including biological classifications. Automated semantic annotation and indexing is applied to all content, allowing users to navigate intuitively and curate diverse biological data, including content drawn from third party resources. A system of archiving citable pages allows stable referencing with unique identifiers and provides credit to contributors through normal citation processes. Conclusion Our framework currently serves more than 1,100 registered users across 100 sites, spanning academic, amateur and citizen-science audiences. These users have generated more than 130,000 nodes of content in the first two years of use. The template of our architecture may serve as a model to other research communities developing data publishing frameworks outside biodiversity research. PMID:19900302
Assessing and Addressing Students' Scientific Literacy Needs in Physical Geology
NASA Astrophysics Data System (ADS)
Campbell-Stone, E. A.; Myers, J. D.
2005-12-01
Exacting excellence equally from university students around the globe can be accomplished by providing all students with necessary background tools to achieve mastery of their courses, even if those tools are not part of normal content. As instructors we hope to see our students grasp the substance of our courses, make mental connections between course material and practical applications, and use this knowledge to make informed decisions as citizens. Yet many educators have found that students enter university-level introductory courses in mathematics, science and engineering without adequate academic preparation. As part of a FIPSE-funded project at the University of Wyoming, the instructors of the Physical Geology course have taken a new approach to tackling the problem of lack of scientific/mathematic skills in incoming students. Instead of assuming that students should already know or will learn these skills on their own, they assess students' needs and provide them the opportunity to master scientific literacies as they learn geologic content. In the introductory geology course, instructors identified two categories of literacies, or basic skills that are necessary for academic success and citizen participation. Fundamental literacies include performing simple quantitative calculations, making qualitative assessments, and reading and analyzing tables and graphs. Technical literacies are those specific to understanding geology, and comprise the ability to read maps, visualize changes through time, and conceptualize in three dimensions. Because these skills are most easily taught in lab, the in-house lab manual was rewritten to be both literacy- and content-based. Early labs include simple exercises addressing literacies in the context of geological science, and each subsequent lab repeats exposure to literacies, but at increasing levels of difficulty. Resources available to assist students with literacy mastery include individual instruction, a detailed appendix to the lab manual explaining simple tasks such as converting units, and web-based resources. To document the progress of this program, students take pre- and post-course surveys assessing their grasp of the literacies. The surveys gather data on demographics, background, level of interest, level of confidence, understanding, and willingness to complete additional problem sets. This information has been integral in identifying areas of greatest weakness, least interest, and in gauging how backgrounds, expectations, and students' confidence affect their performance.
ERIC Educational Resources Information Center
Kinghorn, Brian Edward
2013-01-01
Subject-specific content knowledge is crucial for effective science teaching, yet many teachers are entering the field not fully equipped with all the science content knowledge they need to effectively teach the subject. Learning from practice is one approach to bridging the gap between what practicing teachers know and what they need to know.…
ERIC Educational Resources Information Center
Peters, Erin E.
2012-01-01
Knowledge about the nature of science has been advocated as an important component of science because it provides a framework on which the students can incorporate content knowledge. However, little empirical evidence has been provided that links nature of science knowledge with content knowledge. The purpose of this mixed method study was to…
Trends of Science Education Research: An Automatic Content Analysis
ERIC Educational Resources Information Center
Chang, Yueh-Hsia; Chang, Chun-Yen; Tseng, Yuen-Hsien
2010-01-01
This study used scientometric methods to conduct an automatic content analysis on the development trends of science education research from the published articles in the four journals of "International Journal of Science Education, Journal of Research in Science Teaching, Research in Science Education, and Science Education" from 1990 to 2007. The…
NASA Astrophysics Data System (ADS)
Smith, Vivian Lee
Science fairs have a long history in American education. They play an important role for establishing inquiry-based experiences in a science classroom. Students may be more motivated to learn science content when they are allowed to choose their own science fair topics. The purpose of this study was to examine Deaf college students' perceptions and experiences regarding science fair participation during primary and/or secondary school and determine the influence of science fair involvement on the development of language skills, writing skills, and higher order thinking skills as well as its impact on choice of a STEM major. This study examined responses from Deaf students attending Gallaudet University and National Technical Institute for the Deaf (NTID) majoring in a Science, Technology, Engineering, or Math (STEM) field. An electronic questionnaire and a semi-structured interview were used to collect data. The electronic questionnaire was divided into two strands: demographics and science fair experience. Twenty-one respondents participated in the questionnaire and ten participants were interviewed. A cross-case analysis revealed communication was the key to a successful science fair experience. Findings showed the educational background of participants influenced their perspective regarding the experience of a science fair. When communicating through American Sign Language, the science fair experience was more positive. When communicating through an interpreter or having no interpreter at all, the science fair experience was viewed in a negative light. The use of science fairs to enhance language development, writing skills, and higher order thinking skills was supported. Teachers and parents were strong influences for Deaf students participating in a science fair. Participation in a science fair did influence students to choose a STEM major but there were other considerations as well.
A Background in Science: What Science Means for Australian Society
ERIC Educational Resources Information Center
Harris, Kerri-Lee
2012-01-01
Prior to this research little was known about the ways in which people draw upon their science backgrounds. An earlier CSHE [Centre for the Study of Higher Education] study for the ACDS [Australian Council of Deans of Science] examined employment outcomes and confirmed that many science graduates pursue careers outside scientific research. There…
NASA Astrophysics Data System (ADS)
Hoffman, Joseph Loris
1999-11-01
This study examined the information-seeking strategies and science content understandings learners developed as a result of using on-line resources in the University of Michigan Digital Library and on the World Wide Web. Eight pairs of sixth grade students from two teachers' classrooms were observed during inquiries for astronomy, ecology, geology, and weather, and a final transfer task assessed learners' capabilities at the end of the school year. Data included video recordings of students' screen activity and conversations, journals and completed activity sheets, final artifacts, and semi-structured interviews. Learners' information-seeking strategies included activities related to asking, planning, tool usage, searching, assessing, synthesizing, writing, and creating. Analysis of data found a majority of learners posed meaningful, openended questions, used technological tools appropriately, developed pertinent search topics, were thoughtful in queries to the digital library, browsed sites purposefully to locate information, and constructed artifacts with novel formats. Students faced challenges when planning activities, assessing resources, and synthesizing information. Possible explanations were posed linking pedagogical practices with learners' growth and use of inquiry strategies. Data from classroom-lab video and teacher interviews showed varying degrees of student scaffolding: development and critique of initial questions, utilization of search tools, use of journals for reflection on activities, and requirements for final artifacts. Science content understandings included recalling information, offering explanations, articulating relationships, and extending explanations. A majority of learners constructed partial understandings limited to information recall and simple explanations, and these occasionally contained inaccurate conceptualizations. Web site design features had some influence on the construction of learners' content understandings. Analysis of data suggests sites with high quality general design, navigation, and content helped to foster the construction of broad and accurate understandings, while context and interactivity had less impact. However, student engagement with inquiry strategies had a greater impact on the construction of understandings. Gaining accurate and in-depth understandings from on-line resources is a complex process for young learners. Teachers can support students by helping them engage in all phases of the information-seeking process, locate useful information with prescreened resources, build background understanding with off-line instruction, and process new information deeply through extending writing and conversation.
NASA Astrophysics Data System (ADS)
Sanborn, Stephen
Many high school science departments are responding to changes in state standards with respect to both curricular content and instructional practices. In the typical American high school organization, the academic department head is ideally positioned to influence change in the instructional practices of teachers within the department. Even though science department heads are well situated to provide leadership during this period of transition, the literature has not addressed the question of how well science department heads believe they can provide instructional leadership for all of the teachers in their department, whether they are teaching within and outside of the head's own sub-discipline. Nor is it known how science department heads view the role of pedagogical content knowledge in teaching different science disciplines. Using an online survey comprised of 26 objective questions and one open response question, a 54-respondent sample of science department heads provided no strong consensus regarding their beliefs about the role of pedagogical content knowledge in science instruction. However, science department heads expressed a significant difference in their views about their capacity to provide instructional leadership for teachers sharing their science content area compared to teachers instructing other science content areas. Given wide-spread science education reform efforts introduced in response to the Next Generation Science Standards, these findings may serve to provide some direction for determining how to best support the work of science department heads as they strive to provide instructional leadership for the teachers in their departments.
NASA Astrophysics Data System (ADS)
Hueni, Joneen A. Stone
The purpose of this study was to increase the understanding of how teachers perceive their implementation of pedagogical change during and after their involvement in a yearlong staff development project in the Rice Model Lab (RML). The following questions were used to guide the inquiry: (1) How do participants of the RML describe their involvement with pedagogical change? (2) How do participants of the RML perceive their ability to handle a different pedagogical approach to classroom instruction? (3) How do participants describe their usage of different pedagogical approaches once they leave the RML and return to their own classrooms? The RML is a joint venture between Rice University and the Houston Independent School District. Annually, eight middle school science teachers spend a year's sabbatical in the RML engaged in learning about educational research and pedagogy. The teachers have opportunities to prepare and teach lessons to one class using their new knowledge and skills. Operational for seven years, the RML was chosen as the context and provided the fifteen participants. Participants chosen included previous and current RML program members with varying amounts of teaching experience. This inquiry was an ethnographic study in which the participants responded to open-ended questions about their experiences with pedagogical change. Data, collected during the 1997--1998 school year, included formal and informal interviews; portfolio and reflective journal entries; and observations of group interactions during meetings, social events, workshops, and activities at the RML. The collected data were analyzed by the qualitative procedures of unitization and constant comparative methods to reveal categories of similarity. The categories of collaboration, learner-centered instruction, grounding in classroom practice, feelings of stress, time, support, and increased content knowledge emerged from the analysis of unitized data. The emergent categories interlocked with a series of factors that a literature search identified as facilitating the implementation of pedagogical change. An unexpected finding in this study was the participants' strong science content backgrounds. Many science staff development programs provide content in an attempt to improve science education; providing staff development in pedagogy may be a more appropriate use of staff development monies.
NASA Astrophysics Data System (ADS)
Viorica Diaconu, Dana; Radigan, Judy; Suskavcevic, Milijana; Nichol, Carolyn
2012-04-01
A teacher professional development program for in-service elementary school science teachers, the Rice Elementary Model Science Lab (REMSL), was developed for urban school districts serving predominately high-poverty, high-minority students. Teachers with diverse skills and science capacities came together in Professional Learning Communities, one full day each week throughout an academic year, to create a classroom culture for science instruction. Approximately 80 teachers each year received professional development in science content and pedagogy using the same inquiry-based constructivist methods that the teachers were expected to use in their classrooms. During this four-year study, scientists and educators worked with elementary teachers in a year-long model science lab environment to provide science content and science pedagogy. The effectiveness of the program was measured using a mix of quantitative and qualitative methods that allowed the researchers to triangulate the findings from quantitative measures, such as content test and surveys, with the emerging themes from the qualitative instruments, such as class observations and participant interviews. Results showed that, in all four years, teachers from the REMSL Treatment group have significantly increased their science content knowledge (p < 0.05). During the last two years, their gains in science content knowledge, use of inquiry-based instruction and leadership skills were significantly higher than those of the Control group teachers' (p < 0.01, p < 0.001 and p < 0.05, respectively). Three themes resonated in the interviews with participants: science content knowledge growth, constructivist pedagogy and leadership skills.
ERIC Educational Resources Information Center
Moseley, Christine; Utley, Juliana
2006-01-01
The purpose of this study was to determine the effect of an earth systems science course (integrated mathematics and science content) on preservice elementary teachers' mathematics and science teaching efficacy. Paired t-tests revealed that the personal mathematics and science teaching efficacy and science teaching outcome expectancy significantly…
Rock-Solid Support: Florida District Weighs Effectiveness of Science Professional Learning
ERIC Educational Resources Information Center
Shear, Linda; Penuel, William R.
2010-01-01
The best science teachers are not only experts in teaching and knowledgeable about science content, but they are also great at teaching science. They have specialized teaching knowledge, including knowledge of effective pedagogical practices in science, student difficulties with understanding content, and curricular purposes. As a result,…
Valid and Reliable Science Content Assessments for Science Teachers
ERIC Educational Resources Information Center
Tretter, Thomas R.; Brown, Sherri L.; Bush, William S.; Saderholm, Jon C.; Holmes, Vicki-Lynn
2013-01-01
Science teachers' content knowledge is an important influence on student learning, highlighting an ongoing need for programs, and assessments of those programs, designed to support teacher learning of science. Valid and reliable assessments of teacher science knowledge are needed for direct measurement of this crucial variable. This paper…
ERIC Educational Resources Information Center
Cite, Suleyman; Lee, Eun; Menon, Deepika; Hanuscin, Deborah L.
2017-01-01
While there is a growing literature focused on doctoral preparation for teaching about science teaching, rarely have recommendations extended to preparation for teaching science content to teachers. We three doctoral students employ self-study as a research methodology to investigate our developing pedagogical content knowledge for teaching…
Earth Science Content Guidelines Grades K-12.
ERIC Educational Resources Information Center
American Geological Inst., Alexandria, VA.
Teams of teachers, other science educators, and scientists selected from a national search for project writers have proposed using the following set of questions to guide the inclusion of earth science content into the kindergarten through grade 12 curriculum. The Essential Questions are organized in a K-12 sequence by six content areas: (1) Solid…
ERIC Educational Resources Information Center
North, Sarah
2005-01-01
This article reports the findings of a 3 year research project which investigated disciplinary variation in student writing. Within an Open University course in the history of science, students from an arts background were found to achieve significantly higher grades than those from a science background. Textual and interview data suggest that…
ERIC Educational Resources Information Center
Ercikan, Kadriye; Chen, Michelle Y.; Lyons-Thomas, Juliette; Goodrich, Shawna; Sandilands, Debra; Roth, Wolff-Michael; Simon, Marielle
2015-01-01
The purpose of this research is to examine the comparability of mathematics and science scores for students from English language backgrounds (ELB) and non-English language backgrounds (NELB). We examine the relationship between English reading proficiency and performance on mathematics and science assessments in Australia, Canada, the United…
2013-05-01
Background, and Bibliography, (New York: Nova Science Pub Inc, 2002), 72. 46 components, the first in 1993 and later in 1997, to discuss the...8 George Bennett, The United States Army: Issues, Background, and Bibliography, (New York: Nova Science Pub Inc, 2002), 71...George Bennett, The United States Army: Issues, Background, and Bibliography, (New York: Nova Science Pub Inc, 2002), 74. 11 Angelo, M. Reserve
Preparing perservice teachers to teach elementary school science
NASA Astrophysics Data System (ADS)
Lewis, Amy D.
The development of scientifically literate citizens begins in the elementary school. Yet elementary school teachers are ill prepared to teach science (Trygstad, Smith, Banilower, Nelson, & Horizon Research, Inc., 2013). The research base on teacher preparation finds that programs designed to prepare elementary teachers are inadequate in providing both the content knowledge and pedagogical content knowledge necessary to teach science effectively (Baumgartner, 2010; Bodzin & Beerer, 2003; Bulunuz & Jarrett 2009). This mixed methods study examined what happened when a science methods course was interactively co-taught by an expert in elementary teaching methods and a physics expert. This study also aimed to discover what aspects of the curriculum pre-service teachers (PSTs) said helped them in developing their understanding of science content and scientific reasoning, and how to implement inquiry practices to teach science. A nested case study of three PSTs provided descriptive portraits of student experiences in the class. A whole class case analysis was used to examine what PSTs learned in terms of science, scientific reasoning skills, and pedagogical content knowledge (PCK) from their experiences in the course. It was found that students often conflated science content with the experiences they had in learning the content. Although PSTs felt the interactive co-teaching model effectively created a balance between theory and practice, it was their experiences doing science--conducting physical experiments, developing and discussing scientific models, and the use of inquiry-based instruction--that they credited for their learning. Even with careful curriculum planning, and a course purposely designed to bridge the theory to practice gap, this study found one semester-long methods course to be insufficient in providing the vast content knowledge and PCK elementary school science teachers need.
NASA Astrophysics Data System (ADS)
Cobabe-Ammann, E.; Jakosky, B.
2007-12-01
Historically, there has been a delineation between those activities that promote the education of the general public (formal and information education) and those that involve journalists and the media (public affairs). However, over the last several years, there has been recognition that in the interest of "full spectrum science communication", journalists, who deliver more than 85% of the science news and content to the general public, may be legitimately seen as an audience for education activities. The goal of these activities is not primarily to promote a specific story, event or theme, but instead to broaden and deepen journalists' understanding of space science and to promote increased communication and understanding among journalists, scientists and educators. In the last several years, the Laboratory for Atmospheric and Space Physics has initiated workshops for the professional development of journalists as a cornerstone of its Education program. To date, workshops have covered Mars System Science, Life in Extreme Environments, Extrasolar Planets, Out Planets, and soon, the Role of Uncertainty in Climate Change. These programs bring together 20 elite journalists from both print and broadcast and 6-8 internationally recognized scientists in a 3-4 day encounter. Evaluation of past workshops suggests that the journalists not only feel that these workshops are a worthwhile use of their time, but that they impact the quality of their writing. Several indicated that the quality of the writing and its content had been noticed by their editor and allowed them to more easily 'pitch' space science stories when they were in the news. Many, including several regional journalists, commented that the workshop provided a level of background information that would help them for years to come. In this talk, we present the LASP media workshop model, talk about editorial barriers for journalists and the impact of the workshops, and discuss lessons learned that increase participation by the nation's leading media outlets.
NASA Astrophysics Data System (ADS)
Ciceri, Piera
2017-04-01
Taking pictures has become a daily action for young. Photography is an essential component of many areas of science, has played a crucial role in the study of anatomy, botany, archeology, ... Still today it is a "scientific tool" in the school textbooks: pictures describe, make reality larger or smaller, faster or slower, show evidence and experimental results. But a photograph has the ability to move, engage and inspire viewers. That means that a photograph can build an emotional bridge between science and people. People and students can get closer to science through beautiful, evocative and expressive shot. In this project students are involved in taking pictures with a scientific and aesthetic content looking around, setting an experiment, watching nature, playing with light, point of wiew, colors and perspective. They have to write a short text and a title that explains the scientific content, why and how they have taken the picture. Both description and title should let increase curiosity, could looks fun or stress artistic aspects. Student show their shots in an official public event in Milan managed by a committee of science and photograph experts and in a local event to parents and local community. "Shots of science" is a project promoted by the italian national association "Scienza under 18", the Physic Department of "Università degli Studi di Milano" and the "Museo di fotografia contemporanea" of Cinisello Balsamo (MI) that help students in discussing about scientific and artistic aspects of their shots. This project contributes to develop digital skills (such as to manage digital images, to share documents, to learn about copyright and creative commons license), communication skills (such as to write a caption, public speaking, to use a picture to communicate), collaboration skills (such as to work with pairs, to respect scheduled times, to be positive in giving and taking into account suggestions) and artistic skills (to learn how to compose a good image, proportions, background, point of view, light, contrast, to be creative).
The Sunnel: Engaging Visitors in Solar Research via a Tunnel Through the Sun
NASA Astrophysics Data System (ADS)
DeMuth, Nora H.; Walker, C. E.
2006-12-01
The publicly accessible hallway space inside the McMath-Pierce Solar Telescope building on Kitt Peak has great untapped potential to house a display that would be relevant and understandable to KPNO visitors without the need for mediation or further explanation. An effective display would unite background content on solar physics and astronomy, and information on current solar research techniques and results in an accessible way that would excite and engage visitors. Considering these requirements, we created a concept currently dubbed the Sunnel (for “Sun-tunnel”). The Sunnel consists of two 95by 13-foot murals of the layers of the Sun stretching down the visitor hallway in the McMath-Pierce Solar Telescope. Temperatures of the layers are represented by the colors of the peak in the corresponding black-body curves, and solar features such as sunspots and pressure waves are represented by abstract designs flowing along the walls. A photon path will be laid on the floor using tiles, and several posters highlighting current solar research and background science content relevant to solar research will be displayed on one wall. An audio tour featuring interviews with solar researchers guides visitors along the Sunnel, engaging them and supporting deeper appreciation of the solar research. Installation of the murals is scheduled for early 2007, just in time to celebrate the International Heliophysical Year. DeMuth's research was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation through Scientific Program Order No. 3 (AST-0243875) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF.
Using Writing and Culture to Teach Science Content to Preservice Teachers
ERIC Educational Resources Information Center
Saint-Hilaire, Line Augustin
2013-01-01
This article describes how the incorporation of a writing assignment, creating a book about culture and science, into the syllabus of methods science course for preservice teachers, was used to foster science content learning. Preservice teachers were actively and purposely engaged in science learning through the generation of a book about a…
Changes in Science Teaching Self-Efficacy among Primary Teacher Education Students
ERIC Educational Resources Information Center
Palmer, David; Dixon, Jeanette; Archer, Jennifer
2015-01-01
Many preservice primary teachers have low self-efficacy for science teaching. Although science methods courses have often been shown to enhance self-efficacy, science content courses have been relatively ineffective in this respect. This study investigated whether a tailored science content course would enhance self-efficacy. The participants were…
ERIC Educational Resources Information Center
Kirst, Scott; Flood, Tim
2017-01-01
The integration of an undergraduate science content course and science methods course into a single combined course for preservice teachers, including a precourse field experience, was undertaken at a small, liberal arts college. The conceptual framework for this new delivery system was grounded in the "Next Generation Science Standards…
NASA Astrophysics Data System (ADS)
Marion, Virginia Frances
1998-12-01
The goal of Project Inquiry, a two-year long multiphase study, was to transform the delivery of science instruction from a traditional, textbook driven delivery approach to a hands-on, minds-on, constructivist approach. Teachers from a midwestern urban school district were trained in constructivism while learning physics concepts and content through guided inquiry instruction in collaborative groups. The objectives aimed to increase teachers' content expertise and science teaching efficacy, as well as to have teachers become better facilitators of learning. Phase two of the three phases of Project Inquiry was the focus of this study. Fifty-seven teachers participated in Phase two, which began with an intense two week summer institute in 1995. A longitudinal time-series (OxOO), quasi-experimental research design was used to investigate the relationship between science teaching efficacy scores and gains in physics content knowledge. The data consisted of: (a) six sets of pre and post physics content knowledge test scores (electricity, magnetism, matter and balance); (b) three sets of STEBI-A (inservice), Science Teaching Efficacy Belief Instrument scores, a pre to post, pre to follow-up, and post to follow-up; and (c) demographic variables that were used as covariates, grade taught, years of experience, and postbaccalaureate training. Using the general linear model with an Alpha level of.05, and testing the hypothesized relationships, results indicated that although there were significant positive gains in content knowledge (p =.000) and science teaching efficacy (p =.000), the overall average gains in physics content knowledge were not predictive of gains in either Personal Science Teaching Efficacy or Science Outcome Expectancy. Post hoc analysis used individual content gain scores, in regression models that included the three covariates: grade taught, years of experience, and post baccalaureate training, to test the relationship between knowledge gains and efficacy gains. A series of interactions between significant content areas and the covariates was also run. Science Teaching Outcome Expectancy and Personal Science Teaching Efficacy showed different relationships with the predictor variables. Though gains in specific content areas were related to gains in Science Teaching Outcome Expectancy and Personal Science Teaching Efficacy, gains in Personal Science Teaching Efficacy were further modified by the covariates. These results may reflect not only a more complex relationship between content knowledge gain and Personal Science Teaching Efficacy but also the complex nature of the construct. Evaluation of the physics content knowledge tests revealed that the tests were not valid for evaluating 35 of the 37 identified learning objectives. Although the data did not render valid results, it does give insights into possible relationships that may exist given a more stringent investigation with a valid instrument to measure content knowledge gains. In addition, this study demonstrated the importance of considering the likelihood of interactions among a given set of variables and the covariates. The findings also suggest the possible value of considering the psychological factors associated with the change process when planning professional development programs.
ERIC Educational Resources Information Center
Murphy, Cliona; Smith, Greg
2012-01-01
Many primary school teachers have insufficient content and pedagogical knowledge of science. This lack of knowledge can often lead to a lack of confidence and competence in teaching science. This article explores the impact of a year-long science methodology (curriculum science) course on second year Bachelor of Education (BEd) students'…
Skills Required for Nursing Career Advancement: A Qualitative Study
Sheikhi, Mohammad Reza; Fallahi-Khoshnab, Masoud; Mohammadi, Farahnaz; Oskouie, Fatemeh
2016-01-01
Background Nurses require certain skills for progression in their field. Identifying these skills can provide the context for nursing career advancement. Objectives This study aimed to identify the skills needed for nurses’ career advancement. Materials and Methods A qualitative approach using content analysis was adopted to study a purposive sample of eighteen nurses working in teaching hospitals affiliated with the Qazvin, Shahid Beheshti, and Iran Universities of Medical Sciences. The data were collected through semi-structured interviews, and analyzed using conventional content analysis. Results The three themes extracted from the data included interpersonal capabilities, competency for career success, and personal capacities. The results showed that acquiring a variety of skills is essential for career advancement. Conclusions The findings showed that personal, interpersonal, and functional skills can facilitate nurses’ career advancement. The effects of these skills on career advancement depend on a variety of conditions that require further studies. PMID:27556054
Neural correlates of nondual awareness in meditation.
Josipovic, Zoran
2014-01-01
Dualities such as self versus other, good versus bad, and in-group versus out-group are pervasive features of human experience, structuring the majority of cognitive and affective processes. Yet, an entirely different way of experiencing, one in which such dualities are relaxed rather than fortified, is also available. It depends on recognizing, within the stream of our consciousness, the nondual awareness (NDA)--a background awareness that precedes conceptualization and intention and that can contextualize various perceptual, affective, or cognitive contents without fragmenting the field of experience into habitual dualities. This paper introduces NDA as experienced in Tibetan Buddhist meditation and reviews the results of our study on the influence of NDA on anticorrelated intrinsic and extrinsic networks in the brain. Also discussed are preliminary data from a current study of NDA with minimized phenomenal content that points to involvement of a precuneus network in NDA. © 2013 New York Academy of Sciences.
Teacher content knowledge in the context of science education reform
NASA Astrophysics Data System (ADS)
Doby, Janice Kay
1997-12-01
The decline of science education in elementary schools has been well documented. While numerous efforts have been made for the purpose of reforming science education, most of those efforts have targeted science programs, assessment techniques, and setting national, state, and local standards, stressing teacher accountability for meeting those standards. However, inadequate science content knowledge of preservice teachers limits their ability to master effective teaching strategies, and also may foster negative attitudes toward science and science teaching. It is, therefore, highly unlikely that any significant reform in science education will be realized until this major underlying problem is addressed and resolved. The purpose of this study was to examine the effects of an experimental elementary science methods course, which employs the use of laser videodisc technology and instructional implications from cognitive science and instructional design, in terms of preservice teacher gains in Earth and physical science content knowledge and locus of control in science. The experimental elementary science methods course was compared to a more traditional approach to the same course which focused primarily on methods of teaching in the physical sciences and other science domains. The experimental and traditional groups were compared before and after treatment in terms of preservice teachers' content knowledge in Earth and physical science and locus ofcontrol in science. Results indicated that the experimental and traditional groups were comparable prior to treatment. The experimental group (89 preservice teachers) responded correctly to 45% of the items on the Elementary Science Concepts Test (ESCT) pretest and the traditional group (78 preservice teachers) responded correctly to 42% of the pretest items, the difference between groups being nonsignificant. Further, the experimental and traditional groups scored similarly on the pre-assessment of locus of control in science with scores on the Preservice Teacher Information and Science Opinion Questionnaire (ISOQ) of 162.12 and 163.65, respectively, the difference also being nonsignificant. The pre- and post-administrations of both the ESCT and ISOQ were all found to be statistically significant (F (4, 162) = 271.18343, p<0.05) in predicting group membership. Analyses of variance indicated significantly greater gains in Earth and physical science content knowledge (F (1,165) = 743.7746, p<0.025) and locus of control in science (F (1,165) = 45.7477, p<0.025) for the experimental group compared to the traditional group. A significant difference (F = (2,162) = 31.82279, p<0.05) was found between the combined effect of locus of control in science and Earth and physical science content knowledge in respect to treatment, indicating that the curriculum and instructional design of the experimental course significantly influenced preservice teachers' science content knowledge and locus of control in science. Suggestions for further research included: (a) determining whether the results of this present research may also apply to inservice teachers, (b) determining the effects of such preservice and inservice training on actual classroom practice, (c) relating increased science knowledge with improvement in science lesson planning and mastery of pedagogical skills, and (d) more detailed analysis of instructional implications from cognitive science and instructional design in regard to their application to the teaching of science (as well as other content areas).
The role of inspiration in scientific scholarship and discovery: views of theistic scientists.
O'Grady, Kari A; Richards, P Scott
2011-01-01
This qualitative research study examined the ways those who identify themselves as theistic scientists and scholars experience inspiration, as defined as divine guidance or influence, in their scientific scholarship and discovery. It also explored participants' beliefs about how scientists and scholars can seek and prepare to receive inspiration in their work. Open-ended surveys of 450 participants from the behavioral and natural sciences and from a variety of religious backgrounds were analyzed for content themes in the areas of experiences with inspiration, preparing to receive inspiration, and further thoughts on inspiration in science. The themes extracted indicated that these scientists and scholars have experienced inspiration throughout all stages of the research process. They also believe that certain practices and virtues, such as openness to inspiration and nurturing a relationship with God, can help scientists and scholars be more prepared to receive inspiration in their work. Copyright © 2011 Elsevier Inc. All rights reserved.
International Educational Interactions and Students' Critical Consciousness: A Pilot Study.
Aldrich, Rebecca M; Grajo, Lenin C
Online technologies facilitate connections between students around the world, but their impact on occupational science and occupational therapy students' critical consciousness about culture is underexplored. In this article we present research on five groups of occupational science and occupational therapy students across two cohorts at one Midwestern university. We used a pretest-posttest group design and the Multicultural Experiences Questionnaire to investigate the potential influence of students' exposure to international educational interactions on their multicultural experiences and desires. Of 157 students surveyed, those who experienced the greatest number of international educational interactions demonstrated statistically significant increases in their desire to become acquainted with other people of different backgrounds and to explore their own prejudices and biases. Given the transformative potential of international educational interactions, future research must assess the ways in which such interactions affect critical cultural consciousness apart from other educational content and design. Copyright © 2017 by the American Occupational Therapy Association, Inc.
Impact of Secondary Students' Content Knowledge on Their Communication Skills in Science
ERIC Educational Resources Information Center
Kulgemeyer, Christoph
2018-01-01
The "expert blind spot" (EBS) hypothesis implies that even some experts with a high content knowledge might have problems in science communication because they are using the structure of the content rather than their addressee's prerequisites as an orientation. But is that also true for students? Explaining science to peers is a crucial…
Science Content Standards for California Public Schools: Kindergarten through Grade Twelve.
ERIC Educational Resources Information Center
Bruton, Sheila, Ed.; Ong, Faye, Ed.; Geeting, Greg, Ed.
This document represents the content of science education in California and includes the essential skills and knowledge students will need to be scientifically literate citizens in the 21st century. The standards include grade-level specific content for kindergarten through grade 8. A significant feature is the focus on earth science in the 6th…
ERIC Educational Resources Information Center
Papadouris, Nicos; Constantinou, Constantinos P.
2017-01-01
Promoting facility with content knowledge is one of the most important objectives of science teaching. Conventionally, the focus for this objective is placed on the substantive side of content knowledge (e.g. science concepts/laws), whereas its epistemic or ontological aspects (e.g. why do we construct concepts?) rarely receive explicit attention.…
ERIC Educational Resources Information Center
Fowler, Samantha R.
2009-01-01
The purpose of this study was to explore the evolution science content used during college students' negotiation of biology-based socioscientific issues (SSI) and examine how it related to students' conceptual understanding and acceptance of biological evolution. Specific research questions were, (1a) what specific evolutionary science content do…
NASA Astrophysics Data System (ADS)
Ochsner, Karl
Students are moving away from content consumption to content production. Short movies are uploaded onto video social networking sites and shared around the world. Unfortunately they usually contain little to no educational value, lack a narrative and are rarely created in the science classroom. According to new Arizona Technology standards and ISTE NET*S, along with the framework from the Partnership for 21st Century Learning Standards, our society demands students not only to learn curriculum, but to think critically, problem solve effectively, and become adept at communicating and collaborating. Didactic digital movie making in the science classroom may be one way that these twenty-first century learning skills may be implemented. An action research study using a mixed-methods approach to collect data was used to investigate if didactic moviemaking can help eighth grade students learn physical science content while incorporating 21st century learning skills of collaboration, communication, problem solving and critical thinking skills through their group production. Over a five week period, students researched lessons, wrote scripts, acted, video recorded and edited a didactic movie that contained a narrative plot to teach a science strand from the Arizona State Standards in physical science. A pretest/posttest science content test and KWL chart was given before and after the innovation to measure content learned by the students. Students then took a 21st Century Learning Skills Student Survey to measure how much they perceived that communication, collaboration, problem solving and critical thinking were taking place during the production. An open ended survey and a focus group of four students were used for qualitative analysis. Three science teachers used a project evaluation rubric to measure science content and production values from the movies. Triangulating the science content test, KWL chart, open ended questions and the project evaluation rubric, it appeared that science content was gained from this project. Students felt motivated to learn and had positive experience. Students also felt that the repetition of production and watching their movies helped them remember science. Students also perceived that creating the didactic digital movie helped them use collaboration, communication, problem solving and critical thinking skills throughout their production.
A Philosophical Approach to Describing Science Content: An Example From Geologic Classification.
ERIC Educational Resources Information Center
Finley, Fred N.
1981-01-01
Examines how research of philosophers of science may be useful to science education researchers and curriculum developers in the development of descriptions of science content related to classification schemes. Provides examples of concept analysis of two igneous rock classification schemes. (DS)
Implementing Elementary School Next Generation Science Standards
ERIC Educational Resources Information Center
Kennedy, Katheryn B.
2017-01-01
Implementation of the Next Generation Science Standards requires developing elementary teacher content and pedagogical content knowledge of science and engineering concepts. Teacher preparation for this undertaking appears inadequate with little known about how in-service Mid-Atlantic urban elementary science teachers approach this task. The…
NASA Astrophysics Data System (ADS)
Deal, Debby
Concern with science literacy and how to achieve it has a long history in our education system. The goals and definitions established by the National Science Education Standards (1996) suggest that if we are to successfully prepare students for the information age, science education must blend the natural and social sciences. However, research indicates that connections between hands-on science and literacy, as a tool for processing information, do not regularly occur during school science instruction. This case study explored the use of literacy by a second year teacher in a fifth grade class during consecutive science units on chemistry and liquids. The research questions focused on how and why the teacher and students used literacy during science and how and why the teacher and selected focus students believed literacy influenced their learning in science. Data was collected through classroom observations and multiple interviews with the teacher and selected focus students. Interview data was analyzed and coded using an iterative process. Field notes and student artifacts were used to triangulate the data. The study found that the teacher and students used reading and writing to record and acquire content knowledge, learn to be organized, and to facilitate assessment. Although the teacher had learned content literacy strategies in her pre-service program, she did not implement them in the classroom and her practice seemed to reflect her limited science content knowledge and understanding of the nature of science. The focus students believed that recording and studying notes, reading books, drawing, and reading study guides helped them learn science. The findings suggest the following implications: (1) More data is needed on the relationship between teaching approach, science content knowledge, and beliefs about science. (2) Elementary student voices make a valuable contribution to our understanding of science learning. (3) Pre-service candidates should have multiple opportunities to explicitly reflect on their beliefs about literacy, the nature of science, and learning in general. (4) Science methods classes should balance content, beliefs and attitudes related to science, and content literacy strategies.
PUMAS: Practical Uses of Math And Science
NASA Astrophysics Data System (ADS)
Kahn, R. A.
2009-12-01
For more than ten years, PUMAS has provided a forum for disseminating peer-reviewed examples of Practical Uses of Math And Science, aimed at helping pre-college teachers enrich their presentation of math and science topics. Contributors include scientists, engineers, and content experts from many disciplines. The innovative ideas in PUMAS examples tend to be treasures, containing the ‘sparks’ of understanding that comes only from having real-life experience with the material. Examples can be essays, anecdotes, problems, demonstrations, or activities, and can be written in any style that serves the material well. They are keyed to the National Standards and Benchmarks, which provide the critical connection to K-12 curriculum guidelines, and the peer-review process involves at least one scientist with a relevant background, and at least one teacher at an appropriate grade level. The PUMAS Web Site has recently been upgraded. It is now a NASA-wide facility, recognized by both the National Science Teachers Association (NSTA) and the National Council of Teachers of Mathematics (NCTM). This presentation will describe and illustrate the operation of PUMAS, will highlight a few of our many treasures, and will appeal to scientists interested in contributing meaningfully to pre-college education to consider submitting examples to PUMAS.
Bech, Mickael; Arendt, Jacob N; Kronborg, Christian; Lauridsen, Jørgen T
2010-12-13
The distribution of power in the Danish health care sector is debated. It is often claimed that persons with a social science background have taken over the most powerful positions. The aim of this study was to test whether doctors have lost their power to people with a background in economic, political science and law. Data of the 100 most powerful people in the health care sector published yearly by the newspaper "Dagens Medicin" from the period 2000-2010 was analysed using multiple regression. The primary independent variable was whether the person was a doctor or had a background in social science. Among the top 10 and the top 30 persons with a background in social science dominated over doctors. In the full top 100 list there was an equal number of doctors and social science educated. There was a tendency in the period that the number of social science educated increased whereas the number of doctors decreased. The multiple regressions showed that there was no difference in the two groups' relative power. Also, it was shown that the two groups' relative power varied in the period but showed the same pattern of variation. Persons with a background in social science seem not to have taken over power from doctors in the health care sector. Both groups have lost power in the period - but to whom is still an unanswered question.
The Evolution of Inquiry Activities in the Akamai Observatory Short Course, 2004-2009
NASA Astrophysics Data System (ADS)
Rice, E. L.; McElwain, M.; Sonnett, S.; Rafelski, M.
2010-12-01
The Akamai Observatory Short Course (AOSC) is a five-day course of activities designed to prepare college students majoring in science, technology, engineering, and mathematics (STEM) fields for internships at observatories on the Big Island of Hawai'i. The design and implementation of inquiry-based activities in the AOSC have evolved considerably over the six years of the course. The content goals have always focused on the basic understanding of light and optics necessary to understand telescopes, but the scientific process goals gradually evolved to reflect the increasingly recognized importance of engineering design skills for successful observatory internships. In 2004 the inquiry-based activities were limited to one well-established Color, Light, and Spectra activity. In subsequent years more activities were customized and expanded upon to reflect the learners' diverse academic backgrounds, the developing goals of the short course, and feedback from internship hosts. The most recent inquiry, the Design and Build a Telescope activity, engaged students in designing and building a simple telescope, emphasizing science and engineering process skills in addition to science content. This activity was influenced by the Mission Design activity, added in 2006, that incorporated the application of inquiry-based learning to the engineering design process and allowed students to draw upon their diverse prior knowledge and experience. In this paper we describe the inquiry-based activities in the AOSC in the context of its year-to-year evolution, including the conceptual and pragmatic changes to the short course that influenced the evolution.
Factors influencing the results of faculty evaluation in Isfahan University of Medical Sciences
Kamali, Farahnaz; Yamani, Nikoo; Changiz, Tahereh; Zoubin, Fatemeh
2018-01-01
OBJECTIVE: This study aimed to explore factors influencing the results of faculty member evaluation from the viewpoints of faculty members affiliated with Isfahan University of Medical Sciences, Isfahan, Iran. MATERIALS AND METHODS: This qualitative study was done using a conventional content analysis method. Participants were faculty members of Isfahan University of Medical Sciences who, considering maximum variation in sampling, were chosen with a purposive sampling method. Semi-structured interviews were held with 11 faculty members until data saturation was reached. The interviews were transcribed verbatim and analyzed with conventional content analysis method for theme development. Further, the MAXQDA software was used for data management. RESULTS: The data analysis led to the development of two main themes, namely, “characteristics of the educational system” and “characteristics of the faculty member evaluation system.” The first main theme consists of three categories, i.e. “characteristics of influential people in evaluation,” “features of the courses,” and “background characteristics.” The other theme has the following as its categories: “evaluation methods,” “evaluation tools,” “evaluation process,” and “application of evaluation results.” Each category will have its subcategories. CONCLUSIONS: Many factors affect the evaluation of faculty members that should be taken into account by educational policymakers for improving the quality of the educational process. In addition to the factors that directly influence the educational system, methodological problems in the evaluation system need special attention. PMID:29417073
NASA Astrophysics Data System (ADS)
Fowler, Samantha R.
The purpose of this study was to explore the evolution science content used during college students' negotiation of biology-based socioscientific issues (SSI) and examine how it related to students' conceptual understanding and acceptance of biological evolution. Specific research questions were, (1a) what specific evolutionary science content do college students evoke during SSI negotiation, (1b) what is the depth of the evolutionary science content reflected in college students. SSI negotiation, and (2) what is the nature of the interaction between evolution understanding and evolution acceptance as they relate to depth of use of evolution content during SSI negotiation? The Socioscientific Issues Questionnaire (SSI-Q) was developed using inductive data analysis to examine science content use and to develop a rubric for measuring depth of evolutionary science content use during SSI negotiation. Sixty upper level undergraduate biology and non-biology majors completed the SSI-Q and also the Conceptual Inventory of Natural Selection (CINS: Anderson, Fisher, & Norman, 2002) to measure evolution understanding and the Measure of Acceptance of the Theory of Evolution (MATE: Rutledge & Warden, 1999) to measure evolution acceptance. A multiple regression analysis tested for interaction effects between the predictor variables, evolution understanding and evolution acceptance. Results indicate that college students primarily use science concepts related to evolution to negotiate biology-based SSI: variation in a population, inheritance of traits, differential success, and change through time. The hypothesis that the extent of one's acceptance of evolution is a mitigating factor in how evolution content is evoked during SSI negotiation was supported by the data. This was seen in that evolution was the predominant science content used by participants for each of the three SSI scenarios used in this study and used consistently throughout the three SSI scenarios. In addition to its potential to assess aspects of argumentation, a modification of the SSI-Q could be used for further study about students' misconceptions about evolution or scientific literacy, if it is defined as one's tendency to utilize science content during a decision-making process within an SSI context.
NASA Astrophysics Data System (ADS)
Drechsel, Barbara; Carstensen, Claus; Prenzel, Manfred
2011-01-01
This paper focuses interest in science as one of the attitudinal aspects of scientific literacy. Large-scale data from the Programme for International Student Assessment (PISA) 2006 are analysed in order to describe student interest more precisely. So far the analyses have provided a general indicator of interest, aggregated over all contexts and contents in the science test. With its innovative approach PISA embeds interest items within the cognitive test unit and its contents and contexts. The main difference from conventional interest measures is that in most questionnaires, a relatively small number of interest items cover broad fields of contents and contexts. The science units represent a number of systematically differentiated scientific contexts and contents. The units' stimulus texts allow for concrete descriptions of relevant content aspects, applications, and contexts. In the analyses, multidimensional item response models are applied in order to disentangle student interest. The results indicate that multidimensional models fit the data. A two-dimensional model separating interest into two different knowledge of science dimensions described in the PISA science framework is further analysed with respect to gender, performance differences, and country. The findings give a comprehensive description of students' interest in science. The paper deals with methodological problems and describes requirements of the test construction for further assessments. The results are discussed with regard to their significance for science education.
Student-Centered Learning in an Earth Science, Preservice, Teacher-Education Course
ERIC Educational Resources Information Center
Avard, Margaret
2009-01-01
In an effort to get elementary teachers to teach more science in the classroom, a required preservice science education course was designed to promote the use of hands-on teaching techniques. This paper describes course content and activities for an innovative, student-centered, Earth science class. However, any science-content course could be…
ERIC Educational Resources Information Center
Simpson, Ronald D.
1974-01-01
Three elementary school science curriculum projects, Elementary Science Study (ESS), Science - A Process Approach (S-APA), and Science Curriculum Improvement Study (SCIS), are compared concerning the biologic content each project contains. The reviewer found a lack of activities designed to represent functions at the cellular level. Two projects…
A Model for Effective Professional Development of Formal Science Educators
NASA Astrophysics Data System (ADS)
Bleacher, L.; Jones, A. P.; Farrell, W. M.
2015-12-01
The Lunar Workshops for Educators (LWE) series was developed by the Lunar Reconnaissance Orbiter (LRO) education team in 2010 to provide professional development on lunar science and exploration concepts for grades 6-9 science teachers. Over 300 educators have been trained to date. The LWE model incorporates best practices from pedagogical research of science education, thoughtful integration of scientists and engineer subject matter experts for both content presentations and informal networking with educators, access to NASA-unique facilities, hands-on and data-rich activities aligned with education standards, exposure to the practice of science, tools for addressing common misconceptions, follow-up with participants, and extensive evaluation. Evaluation of the LWE model via pre- and post-assessments, daily workshop surveys, and follow-up surveys at 6-month and 1-year intervals indicate that the LWE are extremely effective in increasing educators' content knowledge, confidence in incorporating content into the classroom, understanding of the practice of science, and ability to address common student misconceptions. In order to address the efficacy of the LWE model for other science content areas, the Dynamic Response of Environments at Asteroids, the Moon, and moons of Mars (DREAM2) education team, funded by NASA's Solar System Exploration Research Virtual Institute, developed and ran a pilot workshop called Dream2Explore at NASA's Goddard Space Flight Center in June, 2015. Dream2Explore utilized the LWE model, but incorporated content related to the science and exploration of asteroids and the moons of Mars. Evaluation results indicate that the LWE model was effectively used for educator professional development on non-lunar content. We will present more detail on the LWE model, evaluation results from the Dream2Explore pilot workshop, and suggestions for the application of the model with other science content for robust educator professional development.
A Model for Effective Professional Development of Formal Science Educators
NASA Technical Reports Server (NTRS)
Bleacher, L. V.; Jones, A. J. P.; Farrell, W. M.
2015-01-01
The Lunar Workshops for Educators (LWE) series was developed by the Lunar Reconnaissance Orbiter (LRO) education team in 2010 to provide professional development on lunar science and exploration concepts for grades 6-9 science teachers. Over 300 educators have been trained to date. The LWE model incorporates best practices from pedagogical research of science education, thoughtful integration of scientists and engineer subject matter experts for both content presentations and informal networking with educators, access to NASA-unique facilities, hands-on and data-rich activities aligned with education standards, exposure to the practice of science, tools for addressing common misconceptions, follow-up with participants, and extensive evaluation. Evaluation of the LWE model via pre- and post-assessments, daily workshop surveys, and follow-up surveys at 6-month and 1-year intervals indicate that the LWE are extremely effective in increasing educators' content knowledge, confidence in incorporating content into the classroom, understanding of the practice of science, and ability to address common student misconceptions. In order to address the efficacy of the LWE model for other science content areas, the Dynamic Response of Environments at Asteroids, the Moon, and moons of Mars (DREAM2) education team, funded by NASA's Solar System Exploration Research Virtual Institute, developed and ran a pilot workshop called Dream2Explore at NASA's Goddard Space Flight Center in June, 2015. Dream2Explore utilized the LWE model, but incorporated content related to the science and exploration of asteroids and the moons of Mars. Evaluation results indicate that the LWE model was effectively used for educator professional development on non-lunar content. We will present more detail on the LWE model, evaluation results from the Dream2Explore pilot workshop, and suggestions for the application of the model with other science content for robust educator professional development.
Multilingual Content Extraction Extended with Background Knowledge for Military Intelligence
2011-06-01
extended with background knowledge (WordNet [Fel98], YAGO [SKW08]) so that new conclusions (logical inferences) can be drawn. For this purpose theorem...such formalized content is extended with background knowledge (WordNet, YAGO ) so that new conclusions (logical inferences) can be drawn. Our aim is to...External Knowledge Formulas Transformation FOLE MRS to FOLE WordNet OpenCyc ... YAGO Logical Calculation Knowledge Background Knowledge Axioms Background
ERIC Educational Resources Information Center
Love, Tyler S.
2015-01-01
With the recent release of the "Next Generation Science Standards" (NGSS) (NGSS Lead States, 2014b) science educators were expected to teach engineering content and practices within their curricula. However, technology and engineering (T&E) educators have been expected to teach content and practices from engineering and other…
ERIC Educational Resources Information Center
Li, Yufeng; Xiong, Jianwen
2012-01-01
Scientific inquiry is one of the science curriculum content, "Scientific inquiry" - Pedagogical Content Knowledge is the face of scientific inquiry and teachers - of course pedagogical content knowledge and scientific inquiry a teaching practice with more direct expertise. Pre-service teacher training phase of acquisition of knowledge is…
Science-for-Teaching Discourse in Science Teachers' Professional Learning Communities
ERIC Educational Resources Information Center
Lohwasser, Karin
2013-01-01
Professional learning communities (PLCs) provide an increasingly common structure for teachers' professional development. The effectiveness of PLCs depends on the content and quality of the participants' discourse. This dissertation was conducted to add to an understanding of the science content needed to prepare to teach science, and the…
Teaching Science Fiction to Science and Technology Majors.
ERIC Educational Resources Information Center
Diaconoff, Ted
This paper describes the content and implementation of a course designed to teach science and technology majors about science fiction. Although many students had expressed little interest in the imaginative world of literature, the scientific content of the texts used attracted their attention and legitimized their involvement in something outside…
Improving Reading in Science. Reading Aids Series.
ERIC Educational Resources Information Center
Thelen, Judith
The material in this monograph is based on the idea that science content and the reading and reasoning processes for learning may be taught simultaneously in the science classroom. Topics of the six chapters are: distinguishing between content and process, developmental and functional reading; diagnosis in teaching science; preparatory activities…
Teaching the Human Dimension of Science
ERIC Educational Resources Information Center
Farland-Smith, Donna; McComas, William
2009-01-01
Teachers have the important responsibility of providing students with accurate and engaging science content while also helping them establish authentic views of scientists. Though there are numerous curriculum materials to assist in the teaching of science content, the authors have found that methods and materials to teach science as a human…
Exploring Nature through a New Lens
ERIC Educational Resources Information Center
Deaton, Cynthia; Hardin, Catherine
2014-01-01
One way to encourage students to interact with science content and materials is to make science relevant and meaningful. By focusing on the school yard as the context for science lessons and activities, teachers can incorporate students' interest in learning outdoors and help students make connections between science content discussed in…
Training on intellectual disability in health sciences: the European perspective
Salvador-Carulla, Luis; Martínez-Leal, Rafael; Heyler, Carla; Alvarez-Galvez, Javier; Veenstra, Marja Y.; García-Ibáñez, Jose; Carpenter, Sylvia; Bertelli, Marco; Munir, Kerim; Torr, Jennifer; Van Schrojenstein Lantman-de Valk, Henny M. J.
2015-01-01
Background Intellectual disability (ID) has consequences at all stages of life, requires high service provision and leads to high health and societal costs. However, ID is largely disregarded as a health issue by national and international organisations, as are training in ID and in the health aspects of ID at every level of the education system. Specific aim This paper aims to (1) update the current information about availability of training and education in ID and related health issues in Europe with a particular focus in mental health; and (2) to identify opportunities arising from the initial process of educational harmonization in Europe to include ID contents in health sciences curricula and professional training. Method We carried out a systematic search of scientific databases and websites, as well as policy and research reports from the European Commission, European Council and WHO. Furthermore, we contacted key international organisations related to health education and/or ID in Europe, as well as other regional institutions. Results ID modules and contents are minimal in the revised health sciences curricula and publications on ID training in Europe are equally scarce. European countries report few undergraduate and graduate training modules in ID, even in key specialties such as paediatrics. Within the health sector, ID programmes focus mainly on psychiatry and psychology. Conclusion The poor availability of ID training in health sciences is a matter of concern. However, the current European policy on training provides an opportunity to promote ID in the curricula of programmes at all levels. This strategy should address all professionals working in ID and it should increase the focus on ID relative to other developmental disorders at all stages of life. PMID:25705375
Reversing the Downward Spiral of Science Instruction in K-2 Classrooms
NASA Astrophysics Data System (ADS)
Sandholtz, Judith Haymore; Ringstaff, Cathy
2011-10-01
This study investigated the extent to which teacher professional development led to changes in science instruction in K-2 classrooms in rural school districts. The research specifically examined changes in (a) teachers' content knowledge in science; (b) teachers' self-efficacy related to teaching science; (c) classroom instructional time allotted to science; and (d) instructional strategies used in science. The study also investigated contextual factors contributing to or hindering changes in science instruction. Data sources included a teacher survey, a self-efficacy assessment, content knowledge tests, interviews, and classroom observations. After one year in the program, teachers showed increased content knowledge and self-efficacy in teaching science; they spent more instructional time on science and began using different instructional strategies. Key contextual factors included curricular demands, resources, administrative support, and support from other teachers.
Nimmo, J.R.
2010-01-01
Germann's (2010) comment helpfully presents supporting evidence that I have missed, notes items that need clarification or correction, and stimulates discussion of what is needed for improved theory of unsaturated flow. Several points from this comment relate not only to specific features of the content of my paper (Nimmo, 2010), but also to the broader question of what methodology is appropriate for developing an applied earth science. Accordingly, before addressing specific points that Germann identified, I present here some considerations of purpose and background relevant to evaluation of the unsaturated flow model of Nimmo (2010).
Kosobuski, Anna Wirta; Whitney, Abigail; Skildum, Andrew; Prunuske, Amy
2017-01-01
ABSTRACT Background and objectives: A four-week interdisciplinary pre-matriculation program for Native American and rural medical students was created and its impact on students’ transition to medical school was assessed. The program extends the goals of many pre-matriculation programs by aiming to increase not only students’ understanding of basic science knowledge, but also to build student self-efficacy through practice with medical school curricular elements while developing their academic support networks. Design: A mixed method evaluation was used to determine whether the goals of the program were achieved (n = 22). Student knowledge gains and retention of the microbiology content were assessed using a microbiology concept inventory. Students participated in focus groups to identify the benefits of participating in the program as well as the key components of the program that benefitted the students. Results: Program participants showed retention of microbiology content and increased confidence about the overall medical school experience after participating in the summer program. Conclusions: By nurturing self-efficacy, participation in a pre-matriculation program supported medical students from Native American and rural backgrounds during their transition to medical school. Abbreviations: CAIMH: Center of American Indian and Minority Health; MCAT: Medical College Admission Test; PBL: Problem based learning; UM MSD: University of Minnesota Medical School Duluth PMID:28178916
ERIC Educational Resources Information Center
Jack, Brady Michael; Lee, Ling; Yang, Kuay-Keng; Lin, Huann-shyang
2017-01-01
This study showcases the Science for Citizenship Model (SCM) as a new instructional methodology for presenting, to secondary students, science-related technology content related to the use of science in society not taught in the science curriculum, and a new approach for assessing the intercorrelations among three independent variables (benefits,…
NASA Astrophysics Data System (ADS)
Schoedinger, S. E.; Weiss, E. L.
2016-12-01
K-5 science teachers, who often lack a science background, have been tasked with a huge challenge in implementing NGSS—to completely change their instructional approach from one that views science as a body of knowledge to be imparted to one that is epistemic in nature. We have found that providing high-quality professional learning (PL) experiences is often not enough and that teachers must have instructional materials that align with their instructional goals. We describe a case study in which the Lawrence Hall of Science (the Hall) used the Hall-developed Ocean Sciences Sequence for Grades 3-5 (OSS 3-5) to support a rigorous PL program for grade 3-5 teachers focused on the NGSS science and engineering practice, engaging in argument from evidence. Developed prior to the release of NGSS, the Ocean Literacy Framework and the NGSS precursor, A Framework for K-12 Science Education, informed the content and instructional approaches of OSS 3-5. OSS 3-5 provides a substantial focus on making evidence-based explanations (and other science practices), while building students' ocean sciences content knowledge. From 2013-2015, the Hall engaged cohorts of teachers in a rigorous PL experience focused on engaging in argument from evidence. During the summer, teachers attended a week-long institute, in which exemplar activities from OSS 3-5 were used to model instructional practices to support arguing from evidence and related practices, e.g., developing and using models and constructing explanations. Immediately afterward, teachers enacted what they'd learned during a two-week summer school practicum. Here, they team-taught the OSS 3-5 curriculum, participated in video reflection groups, and received coaching and just-in-time input from instructors. In the subsequent academic year, many teachers began by teaching OSS 3-5 so that they could practice engaging students in argumentation in curriculum they'd already used for that purpose. Throughout the year, teachers participated in four follow-up PL sessions, which included planning time. Project staff found that teachers struggled to find and/or create appropriate opportunities to engage students in argumentation when using the district-adopted curriculum, which was not created with these goals in mind.
ERIC Educational Resources Information Center
Bergman, Daniel J.; Morphew, Jason
2015-01-01
The preparation of elementary teachers to successfully teach science in their classrooms is a central issue in science education. The teacher preparation program at a large Midwestern university was modified to include a new science content course aimed at this need. A pre-/postassessment research model involved participants (N = 154) completing a…
ERIC Educational Resources Information Center
Pringle, Rose M.; Dawson, Kara; Ritzhaupt, Albert D.
2015-01-01
In this study, we examined how teachers involved in a yearlong technology integration initiative planned to enact technological, pedagogical, and content practices in science lessons. These science teachers, engaged in an initiative to integrate educational technology in inquiry-based science lessons, provided a total of 525 lesson plans for this…
ERIC Educational Resources Information Center
Hechter, Richard P.; Guy, Mark
2010-01-01
This article reports the phases of design and use of video editing technology as a medium for creatively expressing science content knowledge in an elementary science methods course. Teacher candidates communicated their understanding of standards-based core science concepts through the creation of original digital movies. The movies were assigned…
ERIC Educational Resources Information Center
Rink, Otho P.
To investigate the effects of background music on perception and retention of a dramatic television presentation's cognitive content, 107 English literature students were randomly assigned to one of five background treatments for a play. Four of the videotaped presentations included background music; Shostakovich's Symphony No. 6; Japanese jazz;…
NASA SMD STEM Activation: Enabling NASA Science Experts and Content into the Learning Environment
NASA Astrophysics Data System (ADS)
Hasan, Hashima; Erickson, Kristen
2018-01-01
The NASA Science Mission Directorate (SMD) restructured its efforts to enhance learning in science, technology, engineering, and mathematics (STEM) content areas through a cooperative agreement notice issued in 2015. This effort resulted in the competitive selection of 27 organizations to implement a strategic approach that leverages SMD’s unique assets. Three of these are exclusively directed towards Astrophysics. These unique assets include SMD’s science and engineering content and Science Discipline Subject Matter Experts. Awardees began their work during 2016 and span all areas of Earth and space science and the audiences NASA SMD intends to reach. The goal of the restructured STEM Activation program is to further enable NASA science experts and content into the learning environment more effectively and efficiently with learners of all ages. The objectives are to enable STEM education, improve US scientific literacy, advance national educational goals, and leverage efforts through partnerships. This presentation will provide an overview of the NASA SMD STEM Activation landscape and its commitment to meeting user needs.
ERIC Educational Resources Information Center
Gallagher, James J., Ed.; Dawson, George, Ed.
The impact of cultural background on science learning is explored in this compilation of papers and reports from an inter-American Seminar on science education. For the purposes of enriching science program planning, teacher education, research, and practice in the schools, varying ideas are offered on the effects of cultural background on science…
ERIC Educational Resources Information Center
Henze, Ineke; van Driel, Jan H.; Verloop, Nico
2008-01-01
This paper investigates the developing pedagogical content knowledge (PCK) of nine experienced science teachers in their first few years of teaching a new science syllabus in the Dutch secondary education system. We aimed to identify the content and structure of the PCK for a specific topic in the new syllabus, "Models of the Solar System and…
NASA Astrophysics Data System (ADS)
Harrell, Pamela; Subramaniam, Karthigeyan
2015-09-01
Background and purpose: The purpose of this study was to investigate and identify the nature and the interrelatedness of pre-service teachers' misconceptions and scientific concepts for explaining dissolving before, during, and after a 5E learning cycle lesson on dissolving, the intervention. Sample, design, and methods: Guided by Vygotsky's theory of concept development, the study focused specifically on the spontaneous, and spontaneous pseudo-concepts held by the 61 elementary pre-service teachers during a 15-week science methods course. Data included concept maps, interview transcripts, written artifacts, drawings, and narratives, and were thematically analyzed to classify concepts and interrelatedness. Results: Results of the study showed that spontaneous pseudo-concepts (1) dominated pre-service teachers' understandings about dissolving throughout the study, and (2) were simply associated with scientific concepts during and after the intervention. Conclusion: Collectively, the results indicated that the pre-service teachers' did not acquire a unified system of knowledge about dissolving that could be characterized as abstract, generalizable, and hierarchical. Implications include the need for (1) familiarity with pre-service teachers' prior knowledge about science content; (2) a variety of formative assessments to assess their misconceptions; (3) emphasizing the importance of dialectical method for concept development during instruction; and (4) skillful content instructors.
NASA Astrophysics Data System (ADS)
Bruno, B. C.; Wren, J. L.; Ayau, J. F.
2013-12-01
Ocean TECH (Technology Expands Career Horizons) is a new initiative funded by NSF/GeoEd to stimulate interest in ocean, earth and environmental science careers - and the college majors that lead to such careers - among Hawaii's underrepresented students in grades 6-14. The Ocean TECH project features hands-on ocean science and technology and interactions with career professionals. Ocean TECH builds upon Ocean FEST (Families Exploring Science Together), a previous NSF/OEDG project aimed at teaching fun hands-on science in culturally and locally relevant ways to Hawaii's elementary school students and their families. Ocean FEST was rigorously evaluated (including cognitive pre-testing developed in partnership with external evaluators) and shown to be successful both in teaching science content and changing attitudes toward ocean, earth and environmental science careers. Over the course of the four-year grant, Ocean FEST reached 20,99 students and adults, including 636 classroom teachers and other volunteers who assisted with program delivery, most of whom were from underrepresented groups. For more info on Ocean FEST: http://oceanfest.soest.hawaii.edu/ Ocean TECH events have various formats, but common themes include: (1) Using technology as a hook to engage students in ocean, earth and environmental science. (2) Bringing middle school through community college students to college campuses, where they engage in hands-on science activities and learn about college majors. (3) Drawing direct links between the students' hands-on science activities and the research currently occurring at the UH Manoa's School of Ocean and Earth Science and Technology (SOEST), such as C-MORE and HOT research. (4) Respecting and valuing students' local knowledge and experiences. (5) Explicitly showing, through concrete examples, how becoming an ocean, earth or environmental scientist addresses would beneit Hawaii (6) Having graduate students from diverse backgrounds serve as instructors and undergraduates from diverse backgrounds serve as teaching assistants. Pre-college and community college students can more easily relate to these young role models, which can make pursuing an ocean or earth science career seem more attainable. (7) Organizing career fairs and informal career mixers, to promote one-on-one interactions between students of all ages and diverse career professionals in a range of ocean, earth and environmental science occupations. (8) Forming relationships with minority-serving recruiting organizations and programs to ensure we reach our intended audience. Through such partnerships, we have reached students from underrepresented communities in Hawai';i and throughout the Pacific.
Identifying Mathematics Content and Integrating It into Science Instruction
ERIC Educational Resources Information Center
Schwols, Amitra; Miller, Kirsten Brush
2012-01-01
Science teachers know that the mathematics concepts taught in the Common Core are critical for students' understanding of science. But what can a teacher do when his/her students lack the necessary mathematics skills to master science content? There may be other reasons besides students not paying attention in their math courses. Maybe the…
Marrying Content and Process in Computer Science Education
ERIC Educational Resources Information Center
Zendler, A.; Spannagel, C.; Klaudt, D.
2011-01-01
Constructivist approaches to computer science education emphasize that as well as knowledge, thinking skills and processes are involved in active knowledge construction. K-12 computer science curricula must not be based on fashions and trends, but on contents and processes that are observable in various domains of computer science, that can be…
Comfort and Content: Considerations for Informal Science Professional Development
ERIC Educational Resources Information Center
Holliday, Gary M.; Lederman, Norman G.; Lederman, Judith S.
2014-01-01
This study looked at a life science course that was offered at and taught by education staff of a large informal science institution (ISI) located in the Midwest. The curriculum, materials, and agendas for the course were developed by education staff and complemented a permanent life science exhibition. The researcher developed a content test…
ERIC Educational Resources Information Center
Benedict-Chambers, Amanda; Kademian, Sylvie M.; Davis, Elizabeth A.; Palincsar, Annemarie Sullivan
2017-01-01
Science education reforms articulate a vision of ambitious science teaching where teachers engage students in sensemaking discussions and emphasise the integration of scientific practices with science content. Learning to teach in this way is complex, and there are few examples of sensemaking discussions in schools where textbook lessons and…
Undergraduate Teaching in the Animal Sciences, Proceedings of a Conference.
ERIC Educational Resources Information Center
Commission on Education in Agriculture and Natural Resources, Washington, DC.
The proceedings of a conference which reviewed the content of undergraduate animal science curricula, content of courses in the animal sciences, and methods and materials used in undergraduate teaching in the animal sciences are presented in this bulletin. These individual papers are included: Trends in Animal Agriculture and the Future of…
Interaction between Science Teaching Orientation and Pedagogical Content Knowledge Components
ERIC Educational Resources Information Center
Demirdögen, Betül
2016-01-01
The purpose of this case study is to delve into the complexities of how preservice science teachers' science teaching orientations, viewed as an interrelated set of beliefs, interact with the other components of pedagogical content knowledge (PCK). Eight preservice science teachers participated in the study. Qualitative data were collected in the…
A Standards-Based Content Analysis of Selected Biological Science Websites
ERIC Educational Resources Information Center
Stewart, Joy E.
2010-01-01
The purpose of this study was to analyze the biology content, instructional strategies, and assessment methods of 100 biological science websites that were appropriate for Grade 12 educational purposes. For the analysis of each website, an instrument, developed from the National Science Education Standards (NSES) for Grade 12 Life Science coupled…
Ponzio, Nicholas M.; Alder, Janet; Nucci, Mary; Dannenfelser, David; Hilton, Holly; Linardopoulos, Nikolaos; Lutz, Carol
2018-01-01
Doctoral students in science disciplines spend countless hours learning how to conduct cutting-edge research but very little time learning to communicate the nature and significance of their science to people outside their field. To narrow this disparity, we created an unusual course titled Communicating Science for doctoral science trainees at Rutgers University. Our goal was to help students develop an advanced ability to communicate their research clearly and accurately and to emphasize its value and significance to diverse audiences. Course design included classroom instruction supplemented with improvisation, video recordings, and ample opportunity for students to practice and receive immediate, constructive feedback in a supportive environment. A multidisciplinary faculty with expertise in science, education, communication, and theater arts taught this course. PhD students came from diverse scientific disciplines, ranging from biology and chemistry to civil engineering. Students also completed a capstone project in which they worked with a professional in the academic or private sector to explore a possible career aspiration. Assessment was in the form of feedback on students’ oral and poster presentations, and written abstracts about their research. Student evaluations and comments about course format and content were mostly positive and also provided input for ways to improve the course. We discovered that the diversity of scientific backgrounds among our students enhanced their ability to learn how to communicate their science to others outside their disciplines. We are leveraging the success of our initial course offering to reach other student and faculty groups at Rutgers. PMID:29904514
NASA Astrophysics Data System (ADS)
Lyons, Cheryl
Reasoning about systems is necessary for understanding many modern issues that face society and is important for future scientists and all citizens. Systems thinking may allow students to make connections and identify common themes between seemingly different situations and phenomena, and is relevant to the focus on cross-cutting concepts in science emphasized in the Framework for K-12 Science Education Standards (NRC, 2011) and Next Generation Science Standards (Achieve, 2013). At the same time, there is emerging empirical and theoretical support in science education for fostering the development of science reasoning alongside content understanding, as opposed to the perspective that reasoning occurs after a certain threshold of content mastery has been achieved. However, existing research on systems thinking has treated this reasoning as a set of universal skills and neglected the role of content, or has conceptualized a progression in which content mastery precedes systems reasoning without consideration of rudimentary forms of reasoning. This study focused on describing individual variations in the ways that 8th and 9th grade students reason about changes in a system over time to identify characteristics of systems and pre-systems thinking and to investigate the relationship between this reasoning and the students' application of content. This study found a generally linear relationship between content and reasoning, with interesting deviations from this trend among students who demonstrated at least a moderate level of content understanding but had not yet achieved mastery. Four profiles of this relationship emerged which warrant different instructional support. Implications are presented for science educators and developers of curricula and assessments. This includes recommendations for learning objectives, the design of written curriculum materials, and the development of assessments that aim to promote and measure reasoning about systems in science.
ERIC Educational Resources Information Center
Fraser, William J.
2017-01-01
This article focuses on the dilemmas science educators face when having to introduce Pedagogical Content Knowledge (PCK) to science student teachers in a predominantly paper-based distance learning environment. It draws on the premise that science education is bound by the Nature of Science (NOS), and by the Nature of Scientific Inquiry (NOSI).…
ERIC Educational Resources Information Center
Wan, Zhi Hong; Wong, Siu Ling; Wei, Bing; Zhan, Ying
2013-01-01
Drawing from the phenomenographic perspective, an exploratory study investigated Chinese teacher educators' conceptions of teaching Nature of Science (NOS) to pre-service science teachers through semi-structured interviews. Five key dimensions emerged from the data. This paper focuses on the dimension, "NOS content to be taught to pre-service…
NASA Astrophysics Data System (ADS)
Delgato, Margaret H.
The purpose of this investigation was to determine the extent to which multicultural science education, including indigenous knowledge representations, had been infused within the content of high school biology textbooks. The study evaluated the textbook as an instructional tool and framework for multicultural science education instruction by comparing the mainstream content to indigenous knowledge perspectives portrayed in the student and teacher editions of 34 textbooks adopted in Florida within the last four adoption cycles occurring from 1990 to 2006. The investigation involved a content analysis framed from a mixed methods approach. Emphasis was placed, in consideration of the research questions and practicality of interpreting text with the potential for multiple meanings, within qualitative methods. The investigation incorporated five strategies to assess the extent of multicultural content: (1) calculation of frequency of indigenous representations through the use of a tally; (2) assessment of content in the teacher editions by coding the degree of incorporation of multicultural content; (3) development of an archaeology of statements to determine the ways in which indigenous representations were incorporated into the content; (4) use of the Evaluation Coefficient Analysis (ECO) to determine extent of multicultural terminologies within content; and (5) analysis of visuals and illustrations to gauge percentages of depictions of minority groups. Results indicated no solid trend in an increase of inclusion of multicultural content over the last four adoption cycles. Efforts at most reduced the inclusion of indigenous representations and other multicultural content to the level of the teacher edition distributed among the teacher-interleafed pages or as annotations in the margins. Degree of support of multicultural content to the specific goals and objectives remained limited across all four of the adoption cycles represented in the study. Emphasis on standardized testing appeared in the six textbooks representing the most recent adoption cycle. Recommendations included increased efforts to identify quality of content by including input from scholars in the field of multicultural education as well as indigenous peoples in the creation of textbook content. Recommendations also included further clarification of the definition of science within multicultural science education frameworks, indigenous knowledge as compared to Western science and pseudoscienc e, and scientific literacy as a central focus to a multicultural science education meant to address the needs of an increasingly diverse student population and prime-age workforce.
Preservice Elementary Teachers' Science Self-Efficacy Beliefs and Science Content Knowledge
NASA Astrophysics Data System (ADS)
Menon, Deepika; Sadler, Troy D.
2016-10-01
Self-efficacy beliefs that relate to teachers' motivation and performance have been an important area of concern for preservice teacher education. Research suggests high-quality science coursework has the potential to shape preservice teachers' science self-efficacy beliefs. However, there are few studies examining the relationship between science self-efficacy beliefs and science content knowledge. The purpose of this mixed methods study is to investigate changes in preservice teachers' science self-efficacy beliefs and science content knowledge and the relationship between the two variables as they co-evolve in a specialized science content course. Results from pre- and post-course administrations of the Science Teaching Efficacy Belief Instrument-B (Bleicher, 2004) and a physical science concept test along with semi-structured interviews, classroom observations and artifacts served as data sources for the study. The 18 participants belonged to three groups representing low, medium and high initial levels of self-efficacy beliefs. A repeated measures multivariate analysis of variance design was used to test the significance of differences between the pre- and post-surveys across time. Results indicated statistically significant gains in participants' science self-efficacy beliefs and science conceptual understandings. Additionally, a positive moderate relationship between gains in science conceptual understandings and gains in personal science teaching efficacy beliefs was found. Qualitative analysis of the participants' responses indicated positive shifts in their science teacher self-image and they credited their experiences in the course as sources of new levels of confidence to teach science. The study includes implications for preservice teacher education programs, science teacher education, and research.
NASA Astrophysics Data System (ADS)
Martin, Lynn A.
The purpose of this study was to examine the relationship between teachers' self-reported preparedness for teaching science content and their instructional practices to the science achievement of eighth grade science students in the United States as demonstrated by TIMSS 2007. Six hundred eighty-seven eighth grade science teachers in the United States representing 7,377 students responded to the TIMSS 2007 questionnaire about their instructional preparedness and their instructional practices. Quantitative data were reported. Through correlation analysis, the researcher found statistically significant positive relationships emerge between eighth grade science teachers' main area of study and their self-reported beliefs about their preparedness to teach that same content area. Another correlation analysis found a statistically significant negative relationship existed between teachers' self-reported use of inquiry-based instruction and preparedness to teach chemistry, physics and earth science. Another correlation analysis discovered a statistically significant positive relationship existed between physics preparedness and student science achievement. Finally, a correlation analysis found a statistically significant positive relationship existed between science teachers' self-reported implementation of inquiry-based instructional practices and student achievement. The data findings support the conclusion that teachers who have feelings of preparedness to teach science content and implement more inquiry-based instruction and less didactic instruction produce high achieving science students. As science teachers obtain the appropriate knowledge in science content and pedagogy, science teachers will feel prepared and will implement inquiry-based instruction in science classrooms.
NASA Astrophysics Data System (ADS)
Phillips, Marianne C.
Science teachers rely heavily on their textbooks; for many, it is the only curriculum they use (Weiss, 1993). Therefore, it is important these materials convey an accurate conception of the nature of science. Science for All Americans (AAAS, 1990) and the National Science Education Standards (NRC, 1996) call for teaching students about the nature of science. Including the nature of science throughout science textbooks will produce scientifically literate citizens (Driver and others, 1993) with an improved ability to make informed decisions (McComas, 1998). Teaching the nature of science supports the successful learning of science content and process (Driver and others, 1996), and bridges the gap between the two cultures of practicing scientists and school science (Sorsby, 2000). Do middle school science textbooks provide a balanced presentation of the nature of science throughout their text? To determine the answer, this investigation used a content analysis technique to analyze a random sample from the introduction chapter and the rest of the textbook chapters from twelve middle school science textbooks for the four aspects of the nature of science (Chiappetta, Fillman, & Sethna, 2004). Scoring procedures were used to determine interrater agreement using both Cohen's kappa (kappa) and Krippendorff's alpha (alpha). Kappa values were determined to be fair to excellent beyond chance among the three coders. The resulting values for Krippendorff's alpha ranged from acceptable (alpha > .80) to unacceptable (alpha < .67). The results from this content analysis indicated little change from previous studies in the balance for the themes of the nature of science. This investigation found the sixth-grade, seventh-grade, and eighth-grade science textbooks adopted by Texas to have unbalanced presentations for the four aspects of the nature of science. In addition, it found these middle school science textbooks are not balanced across programs. This imbalance is providing students with a rudimentary and fragmented view of how science works, despite the fact that science impacts every aspect of life (McComas, 1998). Given the impact of textbooks on learning, it is recommended that teachers be informed of these shortcomings to enable them to supplement content where it is lacking.
Teaching and Learning Science Through Song: Exploring the experiences of students and teachers
NASA Astrophysics Data System (ADS)
Governor, Donna; Hall, Jori; Jackson, David
2013-12-01
This qualitative, multi-case study explored the use of science-content music for teaching and learning in six middle school science classrooms. The researcher sought to understand how teachers made use of content-rich songs for teaching science, how they impacted student engagement and learning, and what the experiences of these teachers and students suggested about using songs for middle school classroom science instruction. Data gathered included three teacher interviews, one classroom observation and a student focus-group discussion from each of six cases. The data from each unit of analysis were examined independently and then synthesized in a multi-case analysis, resulting in a number of merged findings, or assertions, about the experience. The results of this study indicated that teachers used content-rich music to enhance student understanding of concepts in science by developing content-based vocabulary, providing students with alternative examples and explanations of concepts, and as a sense-making experience to help build conceptual understanding. The use of science-content songs engaged students by providing both situational and personal interest, and provided a mnemonic device for remembering key concepts in science. The use of songs has relevance from a constructivist approach as they were used to help students build meaning; from a socio-cultural perspective in terms of student engagement; and from a cognitive viewpoint in that in these cases they helped students make connections in learning. The results of this research have implications for science teachers and the science education community in developing new instructional strategies for the middle school science classroom.
NASA Astrophysics Data System (ADS)
Reichhart, Lea
2013-12-01
Astrophysical observations give convincing evidence for a vast non-baryonic component, the so-called dark matter, accounting for over 20% of the overall content of our Universe. Direct dark matter search experiments explore the possibility of interactions of these dark matter particles with ordinary baryonic matter via elastic scattering resulting in single nuclear recoils. The ZEPLIN-III detector operated on the basis of a dualphase (liquid/gas) xenon target, recording events in two separate response channels { scintillation and ionisation. These allow discrimination between electron recoils (from background radiation) and the signal expected from Weakly Interacting Massive Particle (WIMP) elastic scatters. Following a productive first exposure, the detector was upgraded with a new array of ultra-low background photomultiplier tubes, reducing the electron recoil background by over an order of magnitude. A second major upgrade to the detector was the incorporation of a tonne-scale active veto detector system, surrounding the WIMP target. Calibration and science data taken in coincidence with ZEPLIN-III showed rejection of up to 30% of the dominant electron recoil background and over 60% of neutron induced nuclear recoils. Data taking for the second science run finished in May 2011 with a total accrued raw fiducial exposure of 1,344 kg days. With this extensive data set, from over 300 days of run time, a limit on the spin-independent WIMP-nucleon cross-section of 4.8 10-8 pb near 50 GeV/c2 WIMP mass with 90% confidence was set. This result combined with the first science run of ZEPLIN-III excludes the scalar cross-section above 3.9 10-8 pb. Studying the background data taken by the veto detector allowed a calculation of the neutron yield induced by high energy cosmic-ray muons in lead of (5.8 0.2) 10-3 neutrons/muon/(g/cm2) for a mean muon energy of 260 GeV. Measurements of this kind are of great importance for large scale direct dark matter search experiments and future rare event searches in general. Finally, this work includes a comprehensive measurement of the energy dependent quenching factor for low energy nuclear recoils in a plastic scintillator, such as from the ZEPLIN-III veto detector, increasing accuracy for future simulation packages featuring large scale plastic scintillator detector systems.
Design and validation of a standards-based science teacher efficacy instrument
NASA Astrophysics Data System (ADS)
Kerr, Patricia Reda
National standards for K--12 science education address all aspects of science education, with their main emphasis on curriculum---both science subject matter and the process involved in doing science. Standards for science teacher education programs have been developing along a parallel plane, as is self-efficacy research involving classroom teachers. Generally, studies about efficacy have been dichotomous---basing the theoretical underpinnings on the work of either Rotter's Locus of Control theory or on Bandura's explanations of efficacy beliefs and outcome expectancy. This study brings all three threads together---K--12 science standards, teacher education standards, and efficacy beliefs---in an instrument designed to measure science teacher efficacy with items based on identified critical attributes of standards-based science teaching and learning. Based on Bandura's explanation of efficacy being task-specific and having outcome expectancy, a developmental, systematic progression from standards-based strategies and activities to tasks to critical attributes was used to craft items for a standards-based science teacher efficacy instrument. Demographic questions related to school characteristics, teacher characteristics, preservice background, science teaching experience, and post-certification professional development were included in the instrument. The instrument was completed by 102 middle level science teachers, with complete data for 87 teachers. A principal components analysis of the science teachers' responses to the instrument resulted in two components: Standards-Based Science Teacher Efficacy: Beliefs About Teaching (BAT, reliability = .92) and Standards-Based Science Teacher Efficacy: Beliefs About Student Achievement (BASA, reliability = .82). Variables that were characteristic of professional development activities, science content preparation, and school environment were identified as members of the sets of variables predicting the BAT and BASA subscales. Correlations were computed for BAT, BASA, and demographic variables to identify relationships between teacher efficacy, teacher characteristics, and school characteristics. Further research is recommended to refine the instrument and apply its use to a larger sample of science teachers. Its further development also has significance for the enhancement of science teacher education programs.
Preschoolers' Recall of Science Content from Educational Videos Presented with and without Songs
ERIC Educational Resources Information Center
Schechter, Rachel L.
2013-01-01
This experimental investigation evaluated the impact of educational songs on a child's ability to recall scientific content from an educational television program. Preschoolers' comprehension of the educational content was examined by measuring children's ability to recall the featured science content (the function of a pulley and…
ERIC Educational Resources Information Center
Lochmiller, Chad R.; Acker-Hocevar, Michele
2016-01-01
We drew upon sense making and leadership content knowledge to explore how high school administrators' understanding of content areas informed their leadership. We used math and science to illustrate our interpretations, noting that other content areas may pose different challenges. We found that principals' limited understanding of these content…
ERIC Educational Resources Information Center
Shea, Nicole A.
2015-01-01
Access to science information via communications in the media is rapidly becoming a central means for the public to gain knowledge about scientific advancements. However, little is known about what content knowledge is essential for understanding issues presented in news media. Very few empirical studies attempt to bridge science communication and…
ERIC Educational Resources Information Center
Schneider, Rebecca M.; Plasman, Kellie
2011-01-01
Learning progressions are the successively more sophisticated ways of thinking about an idea that follow one another over a broad span of time. This review examines the research on science teachers' pedagogical content knowledge (PCK) in order to refine ideas about science teacher learning progressions and how to support them. Research published…
Teaching and Learning Science through Song: Exploring the Experiences of Students and Teachers
ERIC Educational Resources Information Center
Governor, Donna; Hall, Jori; Jackson, David
2013-01-01
This qualitative, multi-case study explored the use of science-content music for teaching and learning in six middle school science classrooms. The researcher sought to understand how teachers made use of content-rich songs for teaching science, how they impacted student engagement and learning, and what the experiences of these teachers and…
ERIC Educational Resources Information Center
Sadler, Troy D.; Romine, William L.; Topçu, Mustafa Sami
2016-01-01
Science educators have presented numerous conceptual and theoretical arguments in favor of teaching science through the exploration of socio-scientific issues (SSI). However, the empirical knowledge base regarding the extent to which SSI-based instruction supports student learning of science content is limited both in terms of the number of…
ERIC Educational Resources Information Center
Cavlazoglu, Baki; Stuessy, Carol L.
2017-01-01
Stakeholders in STEM education have called for integrating engineering content knowledge into STEM-content classrooms. To answer the call, stakeholders in science education announced a new framework, Next Generation Science Standards, which focuses on the integration of science and engineering in K-12 science education. However, research indicates…
Redesigning Problem-Based Learning in the Knowledge Creation Paradigm for School Science Learning
ERIC Educational Resources Information Center
Yeo, Jennifer; Tan, Seng Chee
2014-01-01
The introduction of problem-based learning into K-12 science classrooms faces the challenge of achieving the dual goal of learning science content and developing problem-solving skills. To overcome this content-process tension in science classrooms, we employed the knowledge-creation approach as a boundary object between the two seemingly…
ERIC Educational Resources Information Center
Guzey, S. Selcen; Roehrig, Gillian H.
2009-01-01
This study examines the development of technology, pedagogy, and content knowledge (TPACK) in four in-service secondary science teachers as they participated in a professional development program focusing on technology integration into K-12 classrooms to support science as inquiry teaching. In the program, probeware, mind-mapping tools (CMaps),…
ERIC Educational Resources Information Center
Kanter, David E.
2010-01-01
Project-based science curricula can improve students' usable or meaningful understanding of the science content underlying a project. However, such curricula designed around "performances" wherein students design or make something do not always do this. We researched ways to design performance project-based science curricula (pPBSc) to better…
Colorado Model Content Standards: Science
ERIC Educational Resources Information Center
Colorado Department of Education, 2007
2007-01-01
The Colorado Model Content Standards for Science specify what all students should know and be able to do in science as a result of their school studies. Specific expectations are given for students completing grades K-2, 3-5, 6-8, and 9-12. Five standards outline the essential level of science knowledge and skills needed by Colorado citizens to…
ERIC Educational Resources Information Center
Desouza, Josephine M. Shireen; Jereb, Jill
2000-01-01
Explains the process of teaching about force, inertia, gravity, and friction to kindergarten students using the Reggio Emilia Approach. Incorporates writing, reading, counting, building vocabulary, and developing science and social skills. Addresses the Science as Inquiry Content Standard A and Physical Science Content Standard B of the National…
Science-for-Teaching Discourse in Science Teachers' Professional Learning Communities
NASA Astrophysics Data System (ADS)
Lohwasser, Karin
Professional learning communities (PLCs) provide an increasingly common structure for teachers' professional development. The effectiveness of PLCs depends on the content and quality of the participants' discourse. This dissertation was conducted to add to an understanding of the science content needed to prepare to teach science, and the discourse characteristics that create learning opportunities in teachers' PLCs. To this end, this study examined how middle school science teachers in three PLCs addressed science-for-teaching, and to what effect. Insight into discourse about content knowledge for teaching in PLCs has implications for the analysis, interpretation, and support of teachers' professional discourse, their collaborative learning, and consequently their improvement of practice. This dissertation looked closely at the hybrid space between teachers' knowledge of students, of teaching, and of science, and how this space was explored in the discourse among teachers, and between teachers and science experts. At the center of the study were observations of three 2-day PLC cycles in which participants worked together to improve the way they taught their curriculum. Two of the PLC cycles were supported, in part, by a science expert who helped the teachers explore the science they needed for teaching. The third PLC worked without such support. The following overarching questions were explored in the three articles of this dissertation: (1) What kind of science knowledge did teachers discuss in preparation for teaching? (2) How did the teachers talk about content knowledge for science teaching, and to what effect for their teaching practice? (3) How did collaborating teachers' discursive accountabilities provide opportunities for furthering the teachers' content knowledge for science teaching? The teachers' discourse during the 2-day collaboration cycles was analyzed and interpreted based on a sociocultural framework that included concepts from the practice-based theory of content knowledge for teaching developed by D. L. Ball, Thames, and Phelps (2008) and the Accountable Talk framework by Michaels, O'Connor, & Resnick (2008). The study's findings could provide justification for and ideas on how to provide targeted support for PLCs to make teachers' work on science knowledge more applicable to lesson planning, teaching, and student learning.
Science As A Second Language: Acquiring Fluency through Science Enterprises
NASA Astrophysics Data System (ADS)
Shope, R.; EcoVoices Expedition Team
2013-05-01
Science Enterprises are problems that students genuinely want to solve, questions that students genuinely want to answer, that naturally entail reading, writing, investigation, and discussion. Engaging students in personally-relevant science enterprises provides both a diagnostic opportunity and a context for providing students the comprehensible input they need. We can differentiate instruction by creating science enterprise zones that are set up for the incremental increase in challenge for the students. Comprehensible input makes reachable, those just-out-of-reach concepts in the mix of the familiar and the new. EcoVoices takes students on field research expeditions within an urban natural area, the San Gabriel River Discovery Center. This project engages students in science enterprises focused on understanding ecosystems, ecosystem services, and the dynamics of climate change. A sister program, EcoVoces, has been launched in Mexico, in collaboration with the Universidad Loyola del Pacífico. 1) The ED3U Science Inquiry Model, a learning cycle model that accounts for conceptual change: Explore { Diagnose, Design, Discuss } Use. 2) The ¿NQUIRY Wheel, a compass of scientific inquiry strategies; 3) Inquiry Science Expeditions, a way of laying out a science learning environment, emulating a field and lab research collaboratory; 4) The Science Educative Experience Scale, a diagnostic measure of the quality of the science learning experience; and 5) Mimedia de la Ciencia, participatory enactment of science concepts using techniques of mime and improvisational theater. BACKGROUND: Science has become a vehicle for teaching reading, writing, and other communication skills, across the curriculum. This new emphasis creates renewed motivation for Scientists and Science Educators to work collaboratively to explore the common ground between acquiring science understanding and language acquisition theory. Language Acquisition is an informal process that occurs in the midst of exploring, solving problems, seeking answers to questions, playing, reading for pleasure, conversing, discussing, where the focus is not specifically on language development, but on the activity, which is of interest to the participant. Language Learning is a formal education process, the language arts aspect of the school day: the direct teaching of reading, writing, grammar, spelling, and speaking. Fluency results primarily from language acquisition and secondarily from language learning. We can view the problem of science education and communication as similar to language acquisition. Science Learning is a formal education process, the school science aspect of the school day: the direct teaching of standards-aligned science content. Science Acquisition is an informal process that occurs in the midst of exploring, solving problems, seeking answers to questions, playing, experimenting for pleasure, conversing, discussing, where the focus is not specifically on science content development, but on the inquiry activity, driven by the curiosity of the participant. Treating Science as a Second Language shifts the evaluation of science learning to include gauging the extent to which students choose to deepen their pursuit of science learning.
Relationship between students' understandings of nature of science and instructional context
NASA Astrophysics Data System (ADS)
Khishfe, Rola Fouad
The study investigated and compared two different instructional approaches (integrated and nonintegrated), which address the explicit teaching of nature of science (NOS), in relation to improving students' understanding of NOS. Participants were three teachers and their students---a total of 129---which comprised six groups of 89 ninth and 40 10th/11th graders. Each teacher taught two intact sections of the same grade level within a specific science discipline (environmental science, chemistry, or biology). The treatment for all groups spanned five to six weeks and involved teaching a unit, which included both the regular science content and NOS. Participants in each of the two intact classes were taught by the same teacher about their regular science content, with the difference being the context in which NOS was explicitly taught (integrated or nonintegrated). In the integrated group, NOS instruction was related to the science content addressed in the unit. In the nonintegrated group, NOS was taught through a set of generic (non content-embedded) activities that specifically addressed NOS aspects and were "interspersed" across the science content addressed in the unit. An open-ended questionnaire, in conjunction with semi-structured interviews, was used to assess participants' views prior to and following instruction. Data analysis involved a systematic process consistent with analytic induction. Results showed general improvements in participants' views of NOS regardless of whether or not NOS was integrated within the regular science content. The results of this study do not support the appealing assumption held by many science educators that integrating NOS within the context of the science content would better enhance the learning of NOS. However, the results suggest the possibility of an interaction between the type of change (naive to transitional, transitional to informed, naive to informed, no changes, regression) in students' views and the explicit instructional approach (integrated or nonintegrated) to teach NOS. Moreover, the findings suggest the transferability of NOS understandings among various contexts, with the consequence that learning NOS might not be context-dependent. Implications for the teaching and learning of NOS are discussed.
ERIC Educational Resources Information Center
Gropen, Jess; Kook, Janna F.; Hoisington, Cindy; Clark-Chiarelli, Nancy
2017-01-01
Young children are able to benefit from early science teaching but many preschool teachers have not had opportunities to deepen their own understanding of science or to develop their pedagogical content knowledge (PCK) in relation to specific science topics and concepts. This study presents the results of efficacy research on Foundations of…
Read, retrieve, connect and use: An intervention strategy for science and scientific literacy
NASA Astrophysics Data System (ADS)
Monahan, Kerryane T.
American students underachieve on local, state, national, and international assessments of science. Student performance on standardized assessments has driven numerous educational reforms including No Child Left Behind and Race to the Top with a resulting increased focus on student achievement. Local districts and schools struggle with how to improve student achievement in order to meet the requirements of state and federal legislation. International and national government officials extoll the value of science in driving the economic prosperity of a nation adding increased pressure to improve science scores in the United States. Moreover, to be effective decision-makers personally and within a democracy, citizens must be scientifically literate. Read, Retrieve, Connect and Use (RRCU) is an instructional strategy that combined state biology content standards, with the new Common Core Standards for Literacy in Science through evidenced-based literacy strategies recommended by the National Reading Panel. This study aimed to assess the efficacy of an intervention, RRCU to improve science content knowledge and literacy skills in Biology and Language Arts. The findings identified reading skill, as measured by FCAT Reading as predictive of Biology test scores indicating a close relationship between reading comprehension and the ability to learn and be assessed on science content knowledge. The data did not indicate RRCU was an effective means of improving student science content knowledge or literacy skills. However, teachers responded positively to the strategy as a means to reinforce content knowledge and support literacy skills. Future recommendations include improving the study design and expanding the use of the strategy to middle school to build a foundation of effective literacy skills students can use to cope with the depth and complexity of science content at the high school level.
ERIC Educational Resources Information Center
Msimanga, Audrey; Denley, Paul; Gumede, Nhlakanipho
2017-01-01
One of the objectives of the South African science curriculum is to provide equal access to science for students from all backgrounds. However, this goal remains elusive as many students, particularly those from low socio-economic backgrounds, continue to perform poorly in science. One of the reasons for the persistent differential achievement in…
Bioinformatics in high school biology curricula: a study of state science standards.
Wefer, Stephen H; Sheppard, Keith
2008-01-01
The proliferation of bioinformatics in modern biology marks a modern revolution in science that promises to influence science education at all levels. This study analyzed secondary school science standards of 49 U.S. states (Iowa has no science framework) and the District of Columbia for content related to bioinformatics. The bioinformatics content of each state's biology standards was analyzed and categorized into nine areas: Human Genome Project/genomics, forensics, evolution, classification, nucleotide variations, medicine, computer use, agriculture/food technology, and science technology and society/socioscientific issues. Findings indicated a generally low representation of bioinformatics-related content, which varied substantially across the different areas, with Human Genome Project/genomics and computer use being the lowest (8%), and evolution being the highest (64%) among states' science frameworks. This essay concludes with recommendations for reworking/rewording existing standards to facilitate the goal of promoting science literacy among secondary school students.
NASA Astrophysics Data System (ADS)
Yenni, Rita; Hernani, Widodo, Ari
2017-05-01
The study aims to determine the increasing of students' science literacy skills on content aspects and competency of science by using Integrated Science teaching materials based Socio-scientific Issues (SSI) for environmental pollution theme. The method used in the study is quasi-experiment with nonequivalent pretest and posttest control group design. The students of experimental class used teaching materials based SSI, whereas the students of control class were still using the usual textbooks. The result of this study showed a significant difference between the value of N-gain of experimental class and control class, whichalso occurred in every indicator of content aspects and competency of science. This result indicates that using of Integrated Science teaching materials based SSI can improve content aspect and competency of science and can be used as teaching materials alternative in teaching of Integrated Science.
Bioinformatics in High School Biology Curricula: A Study of State Science Standards
Sheppard, Keith
2008-01-01
The proliferation of bioinformatics in modern biology marks a modern revolution in science that promises to influence science education at all levels. This study analyzed secondary school science standards of 49 U.S. states (Iowa has no science framework) and the District of Columbia for content related to bioinformatics. The bioinformatics content of each state's biology standards was analyzed and categorized into nine areas: Human Genome Project/genomics, forensics, evolution, classification, nucleotide variations, medicine, computer use, agriculture/food technology, and science technology and society/socioscientific issues. Findings indicated a generally low representation of bioinformatics-related content, which varied substantially across the different areas, with Human Genome Project/genomics and computer use being the lowest (8%), and evolution being the highest (64%) among states' science frameworks. This essay concludes with recommendations for reworking/rewording existing standards to facilitate the goal of promoting science literacy among secondary school students. PMID:18316818
Online sea ice data platform: www.seaiceportal.de
NASA Astrophysics Data System (ADS)
Nicolaus, Marcel; Asseng, Jölund; Bartsch, Annekathrin; Bräuer, Benny; Fritzsch, Bernadette; Grosfeld, Klaus; Hendricks, Stefan; Hiller, Wolfgang; Heygster, Georg; Krumpen, Thomas; Melsheimer, Christian; Ricker, Robert; Treffeisen, Renate; Weigelt, Marietta; Nicolaus, Anja; Lemke, Peter
2016-04-01
There is an increasing public interest in sea ice information from both Polar Regions, which requires up-to-date background information and data sets at different levels for various target groups. In order to serve this interest and need, seaiceportal.de (originally: meereisportal.de) was developed as a comprehensive German knowledge platform on sea ice and its snow cover in the Arctic and Antarctic. It was launched in April 2013. Since then, the content and selection of data sets increased and the data portal received increasing attention, also from the international science community. Meanwhile, we are providing near-real time and archive data of many key parameters of sea ice and its snow cover. The data sets result from measurements acquired by various platforms as well as numerical simulations. Satellite observations of sea ice concentration, freeboard, thickness and drift are available as gridded data sets. Sea ice and snow temperatures and thickness as well as atmospheric parameters are available from autonomous platforms (buoys). Additional ship observations, ice station measurements, and mooring time series are compiled as data collections over the last decade. In parallel, we are continuously extending our meta-data and uncertainty information for all data sets. In addition to the data portal, seaiceportal.de provides general comprehensive background information on sea ice and snow as well as expert statements on recent observations and developments. This content is mostly in German in order to complement the various existing international sites for the German speaking public. We will present the portal, its content and function, but we are also asking for direct user feedback.
,.widget-content .chart-row a:visited,.widget-content .chart-row a:active{color:#000;float:left;width:200px a:active :nth-child(3n-2){clear:both}.widget-content .chart-row:hover{background-color:#ccc;-webkit-border ;background-position:center center}span.title{float:left;clear:both}#message{font-weight:700;color:#555;text
NASA Astrophysics Data System (ADS)
Cervato, C.; Jach, J. Y.; Ridky, R.
2003-12-01
Introductory Earth science courses are undergoing pedagogical changes in universities across the country and are focusing more than ever on the non-science majors. Increasing enrollment of non-science majors in these introductory Earth science courses demands a new look at what is being taught and how the content can be objectively chosen. Assessing the content and effectiveness of these courses requires a quantitative investigation of introductory Earth science topics and their relevance to current issues and concerns. Relevance of Earth science topics can be linked to improved students' attitude toward science and a deeper understanding of concepts. We have used the Internet based national news search-engine LexisNexis Academic Universe (http://www.lexisnexis.org/) to select the occurrence of Earth science terms over the last 12 months, five and ten years both regionally and nationally. This database of term occurrences is being used to examine how Earth sciences have evolved in the news through the last 10 years and is also compared with textbook contents and course syllabi from randomly selected introductory earth science courses across the nation. These data constitute the quantitative foundation for this study and are being used to evaluate the relevance of introductory earth science course content. The relevance of introductory course content and current real-world issues to student attitudes is a crucial factor when considering changes in course curricula and pedagogy. We have examined students' conception of the nature of science and attitudes towards science and learning science using a Likert-scale assessment instrument in the fall 2002 Geology 100 classes at Iowa State University. A pre-test and post-test were administered to see if the students' attitudes changed during the semester using as reference a control group comprised of geoscience undergraduate and graduate students, and faculty. The results of the attitude survey have been analyzed in terms of student demographics and socioeconomic variables (e.g., year in school, gender).
Emotions in prospective secondary teachers when teaching science content, distinguishing by gender
NASA Astrophysics Data System (ADS)
Belén Borrachero, Ana; Brígido, María; Mellado, Lucía; Costillo, Emilio; Mellado, Vicente
2014-05-01
Background:Until recently, the affective components of education had long been undervalued. Today, one finds ever more studies on cognitive and affective interrelationships that are lending support to the idea that affect and cognition are best understood when viewed as independent and complementary mental functions. Purpose:The present work analyses the emotions of prospective secondary education teachers, distinguishing them by gender, in relation to the teaching of Biology, Geology, Physics and Chemistry in order to contribute to designing subsequent interventions targeted at improving science teachers' occupational health. Sample:The total sample consisted of 178 students (53 male and 125 female) of the post-graduate teaching certificate course at the University of Extremadura, all of whom were prospective secondary school teachers. We also worked with a sub-sample of 66 Science and Engineering graduates (33 male and 33 female). Design and methods:A questionnaire was prepared that includes items on each of the emotions that the prospective teacher might feel when teaching the science content of the proposed courses. The chi-squared test was used to determine whether a relationship exists between emotions and the variable gender when it came to their teaching Biology, Geology, Physics and Chemistry at the compulsory secondary education level. Results:The results showed that the male teachers more frequently report positive emotions than the female. The latter manifested an increase in negative emotions in teaching Geology, Physics and Chemistry content. And the study of the sub-sample showed positive emotions are more frequently reported than negative ones in all four subjects, with this being particularly so in Biology. Conclusions:The study of emotions is vital in the educational formation of prospective secondary teachers. These students will soon face day-to-day life in the classroom, and many of them, especially the women, declare themselves to be emotionally vulnerable, since they describe themselves as experiencing stronger negative emotions. It is essential to provide prospective secondary teachers with a program of support and monitoring during their teaching practice so as to foster awareness of their emotions towards science and its learning. The aim must be to enhance their capacity for self-regulation and control to change those emotions, and to consolidate healthy habits.
National Workshop on Astrobiology: The Life Science Involvement of AAS I Laben
NASA Astrophysics Data System (ADS)
Adami, Giorgio
2006-12-01
The search for traces of past and present life is a complex and multidisciplinary research activity involving several scientific heritages and a specific industrial ability for planetary exploration. Laben was established in 1958 to design and manufacture electronic instruments for research in nuclear physics. In the mid 2004 the company was merged with Alenia Spazio. It is now part of Alcatel Alenia Space, a French Italian joint venture. Alcatel Alenia Space Italia SpA is a Finmeccanica Company. Currently the plant of Vimodrone provides a wide heritage in life science oriented to space application. The experience in Space Life Science is consolidated in the following research areas:
NASA Astrophysics Data System (ADS)
Nehring, Andreas; Nowak, Kathrin H.; Belzen, Annette Upmeier zu; Tiemann, Rüdiger
2015-06-01
Research on predictors of achievement in science is often targeted on more traditional content-based assessments and single student characteristics. At the same time, the development of skills in the field of scientific inquiry constitutes a focal point of interest for science education. Against this background, the purpose of this study was to investigate to which extent multiple student characteristics contribute to skills of scientific inquiry. Based on a theoretical framework describing nine epistemological acts, we constructed and administered a multiple-choice test that assesses these skills in lower and upper secondary school level (n = 780). The test items contained problem-solving situations that occur during chemical investigations in school and had to be solved by choosing an appropriate inquiry procedure. We collected further data on 12 cognitive, motivational, and sociodemographic variables such as conceptual knowledge, enjoyment of chemistry, or language spoken at home. Plausible values were drawn to quantify students' inquiry skills. The results show that students' characteristics predict their inquiry skills to a large extent (55%), whereas 9 out of 12 variables contribute significantly on a multivariate level. The influence of sociodemographic traits such as gender or the social background becomes non-significant after controlling for cognitive and motivational variables. Furthermore, the performance advance of students from upper secondary school level can be explained by controlling for cognitive covariates. We discuss our findings with regard to curricular aspects and raise the question whether the inquiry skills can be considered as an autonomous trait in science education research.
NASA Astrophysics Data System (ADS)
Buckingham, Thomas
Recent statements from teachers of English and literacy (NCTE, 2007) have voiced the failure of schools to help minority students and ELLs close the literacy achievement gap and the responsibility of all teachers to help with this endeavor. Central to this effort in secondary schools are the content area teachers, as their subjects constitute the bulk of school day instruction. While there have been small studies and field reports of what content teachers are or are not teaching in the way of literacy instruction (Fisher and Ivey, 2005; Verplaste, 1996, 1998; Vacca and Vacca 1989), researchers have not had success measuring the literacy practices of content area teachers in a broad-based study. This study focuses specifically on what many researchers in both the content literacy and ESL fields have emphasized for promoting literacy in the classroom---teaching metacognitive strategies. Twelve metacognitive functions derived from a literacy strategies handbook are employed as a means to ascertain strategy usage within the lessons whether specifically known content strategies are named or not. The initial analysis is performed on over 100 lesson plans hosted at four prominent university science education sites, all within a five year period (2003-7). In addition to the lesson plan analysis, a review of 100 articles taken from five on-line science education journals reveal what the science education field addresses this issue. Findings suggest that while 80% of science teachers include some type of strategic teaching and learning in their lessons, only about 20% of science teachers explicitly utilize strategies as listed in content literacy manuals and promoted by literacy and ESL experts. Rather, most science teachers implicitly include these strategies within their lessons and/or promote their own subject-specific strategies in content teaching. Analysis of science education research and publications shows that there is a focus on literacy and specifically strategic learning; however, the evidence does not suggest that science teachers necessarily follow these suggested offerings---even when it comes to their own national organization's offerings in this area.
NASA Astrophysics Data System (ADS)
Dietz, Laura
The Science Teaching Advancement through Modeling Physical Science (STAMPS) professional development workshop was evaluated for effectiveness in improving teachers' and students' content knowledge. Previous research has shown modeling to be an effective method of instruction for improving student and teacher content knowledge, evidenced by assessment scores. Data includes teacher scores on the Force Concept Inventory (FCI; Hestenes, Wells, & Swackhamer, 1992) and the Chemistry Concept Inventory (CCI; Jenkins, Birk, Bauer, Krause, & Pavelich, 2004), as well as student scores on a physics and chemistry assessment. Quantitative data is supported by teacher responses to a post workshop survey and classroom observations. Evaluation of the data shows that the STAMPS professional development workshop was successful in improving both student and teacher content knowledge. Conclusions and suggestions for future study are also included.
Science as a Second Language: Acquiring Fluency through Science Enterprises
NASA Astrophysics Data System (ADS)
Shope, R. E.
2012-12-01
Science Enterprises are problems that students genuinely want to solve, questions that students genuinely want to answer, that naturally entail reading, writing, exploration, investigation, and discussion. Engaging students in personally-relevant science enterprises provides both a diagnostic opportunity and a context for providing students the comprehensible input they need. We can differentiate instruction by creating science enterprise zones that are set up for the incremental increase in challenge for the students. Comprehensible input makes reachable, those just-out-of-reach concepts in the mix of the familiar and the new. We explore a series of science enterprise tools that have been developed and implemented in the context of informal science education projects that have reached over 10,000 urban youth in the Greater Los Angles area over the past six years. 1) The ED3U Science Inquiry Model, a learning cycle model that accounts for conceptual change; 2) The ¿NQUIRY Wheel, a compass of scientific inquiry strategies; 3) Inquiry Science Expeditions, a way of laying out a science learning environment, emulating a field and lab research collaboratory; 4) The Science Educative Experience Scale, a diagnostic measure of the quality of the science learning experience; and 5) Science Mimes, participatory enactment of science understanding. Practical examples of Science Enterprises will be presented, including a range of projects: Watershed Ecology; Astrobiology; Mars Rovers; Planetary Science; Icy Worlds. BACKGROUND: Language Acquisition is an informal process that occurs in the midst of exploring, solving problems, seeking answers to questions, playing, reading for pleasure, conversing, discussing, where the focus is not specifically on language development, but on the activity, which is of interest to the participant. Language Learning is a formal education process, the language arts aspect of the school day: the direct teaching of reading, writing, grammar, spelling, and speaking. Fluency results primarily from language acquisition and secondarily from language learning. We can view the problem of science education and communication as similar to language acquisition. Science Learning is a formal education process, the school science aspect of the school day: the direct teaching of standards-aligned science content. Science Acquisition is an informal process that occurs in the midst of exploring, solving problems, seeking answers to questions, playing, experimenting for pleasure, conversing, discussing, where the focus is not specifically on science content development, but on the inquiry activity, driven by the curiosity of the participant. Comprehensible input refers to the premise that we acquire language in the midst of activity when we understand the message; that is, when we understand what we hear or what we read or what we see. Acquisition is caused by comprehensible input as it occurs in the midst of a rich environment of language activity while doing something of interest to the learner. Providing comprehensible input is not the same as oversimplifying or "dumbing down." It is devising ways to create conditions where the interest of the learner is piqued.
Fun Science: The Use of Variable Manipulation to Avoid Content Instruction
NASA Astrophysics Data System (ADS)
Peters-Burton, Erin E.; Hiller, Suzanne E.
2013-02-01
This study examined the beliefs and rationale pre-service elementary teachers used to choose activities for upper-elementary students in a 1-week intensive science camp. Six undergraduate elementary pre-service teachers were observed as they took a semester-long science methods class that culminated in a 1-week science camp. This qualitative, phenomenological study found that counselors chose activities with the possibility of fun being a priority rather than teaching content, even after they were confronted with campers who demanded more content. Additionally, all six of the counselors agreed that activities involving variable manipulation were the most successful, even though content knowledge was not required to complete the activities. The counselors felt the variable manipulation activities were successful because students were constructing products and therefore getting to the end of the activity. Implications include building an awareness of the complexity of self-efficacy of science teaching and outcome expectancy to improve teacher education programs.
ERIC Educational Resources Information Center
Nilsson, Pernilla; Vikström, Anna
2015-01-01
One way for teachers to develop their professional knowledge, which also focuses on specific science content and the ways students learn, is through being involved in researching their own practice. The aim of this study was to examine how science teachers changed (or not) their professional knowledge of teaching after inquiring into their own…
ERIC Educational Resources Information Center
Majetic, Cassie; Pellegrino, Catherine
2014-01-01
The skill set associated with lifelong scientific literacy often includes the ability to decode the content and accuracy of scientific research as presented in the media. However, students often find decoding science in the media difficult, due to limited content knowledge and shifting definitions of accuracy. Faculty have developed a variety of…
ERIC Educational Resources Information Center
Gerde, Hope K.; Pierce, Steven J.; Lee, Kyungsook; Van Egeren, Laurie A.
2018-01-01
Research Findings: Quality early science education is important for addressing the low science achievement, compared to international peers, of elementary students in the United States. Teachers' beliefs about their skills in a content area, that is, their content self-efficacy is important because it has implications for teaching practice and…
ERIC Educational Resources Information Center
Neutze, Donna Lee
2008-01-01
Educators, students, and parents are among those who have stereotypical preconceived ideas about science and scientists. The study reports on a content analysis of graphic images in 303 of the "Outstanding Science Trade Books for Students K-12" from the years 1973 through 2005. Using quantitative and qualitative content analysis, all of the images…
ERIC Educational Resources Information Center
Madden, Lauren; Peel, Anne; Watson, Heather
2014-01-01
As teachers begin to implement the Common Core State Standards (CCSS) and Next Generation Science Standards (NGSS), they are challenged to focus on informational texts across the disciplines and engage children in critical thinking about complex scientific ideas. In this article, we present an integrated science-language arts lesson that explores…
NASA Astrophysics Data System (ADS)
Sabel, Jaime L.; Forbes, Cory T.; Zangori, Laura
2015-06-01
To support elementary students' learning of core, standards-based life science concepts highlighted in the Next Generation Science Standards, prospective elementary teachers should develop an understanding of life science concepts and learn to apply their content knowledge in instructional practice to craft elementary science learning environments grounded in students' thinking. To do so, teachers must learn to use high-leverage instructional practices, such as formative assessment, to engage students in scientific practices and connect instruction to students' ideas. However, teachers may not understand formative assessment or possess sufficient science content knowledge to effectively engage in related instructional practices. To address these needs, we developed and conducted research within an innovative course for preservice elementary teachers built upon two pillars—life science concepts and formative assessment. An embedded mixed methods study was used to evaluate the effect of the intervention on preservice teachers' (n = 49) content knowledge and ability to engage in formative assessment practices for science. Findings showed that increased life content knowledge over the semester helped preservice teachers engage more productively in anticipating and evaluating students' ideas, but not in identifying effective instructional strategies to respond to those ideas.
Both Theory and Practice: Science Literacy Instruction and Theories of Reading
ERIC Educational Resources Information Center
Wright, Katherine Landau; Franks, Amanda D.; Kuo, Li-Jen; McTigue, Erin M.; Serrano, Jiniva
2016-01-01
Many journal articles detail recommendations to naturally integrate literacy instruction into content-area classes, particularly science, claiming that such instructional practices will support both literacy and content-knowledge acquisition. This begs the question, are the literacy strategies recommended for content-area instruction founded in…
ERIC Educational Resources Information Center
Mujtaba, Tamjid; Sheldrake, Richard; Reiss, Michael J.; Simon, Shirley
2018-01-01
There is a widespread concern that relatively few students, especially those from disadvantaged backgrounds, continue to study chemistry and other science subjects after compulsory education. Yet it remains unclear how different aspects of students' background and home context, their own attitudes and beliefs, and their experiences of particular…
History, Philosophy, and Science in a Social Perspective: A Pedagogical Project
NASA Astrophysics Data System (ADS)
Guerra, Andreia; Braga, Marco; Reis, José Claudio
2013-06-01
Various studies have promoted instruction in the history and philosophy of science (HPS) in science classes, but the best way of putting this perspective into practice remains undetermined. To contribute to this issue, we developed a pedagogical project in some high schools in Brazil that aimed to present science content using an historical-philosophical approach focusing on the HPS from a social perspective. The content was developed broadly, highlighting the dialogues between science and the cultures in which scientific knowledge was accumulated. The results of the first stage of project implementation show that some strategies efficiently encouraged student discussion about science using an historical-philosophical approach. One successful strategy was the use of artistic material, such as movies and plays. The creative language and images in these elements allowed teachers to broaden historical-philosophical discussions without compromising science content. This project shows that a social approach to the HPS stimulates interdisciplinary discussions in science classes, enabling students to reflect on the nature of science.
Ellaway, Rachel H; Bates, Amanda; Girard, Suzanne; Buitenhuis, Deanna; Lee, Kyle; Warton, Aidan; Russell, Steve; Caines, Jill; Traficante, Eric; Graves, Lisa
2014-07-01
Medical schools have tended to admit students with strong backgrounds in the biomedical sciences. Previous studies have shown that those with backgrounds in the social sciences can be as successful in medical school as those with science backgrounds. However, the experience of being a 'non-science' student over time has not been well described. A mixed-methods study was developed and run with the aim of elucidating the personal experiences of science and non-science students at our institution. Data were generated from a student survey that focused on participants' self-identification as science or non-science students, and on their sense of preparedness and stress, and from a series of student focus groups exploring participants' experiences of science and non-science issues in all aspects of their training. Descriptive statistics were generated for structured survey data. Focus group data and unstructured survey data were analysed to identify common themes. End-of-module and end-of-year examination data for the four class cohorts in the programme were also analysed to compare science and non-science student performance over time. There were clear differences between the experiences and performance of science and non-science students. We found dichotomies in students' self-reported sense of preparedness and stress levels, and marked differences in their examination performance, which diminished over time to converge around the third year of their studies. Combining science and non-science students in the same class affected the students to different extents and in different ways. The potential disruption of mixing science and non-science students diminished as their levels of performance converged. The psychosocial stress experienced by non-science students and the challenges it posed, in both their academic and their personal lives, have implications for how such students should be supported, and how curricula can be configured to afford quality learning for all medical students. © 2014 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Galliher, Renee V.; Rivas-Drake, Deborah; Dubow, Eric F.
2017-01-01
This introductory summary provides an overview of the content of the special issue entitled "Identity Development Process and Content: Toward an Integrated and Contextualized Science of Identity." The 16 theoretical and empirical articles that comprise this special issue were selected to highlight innovative methodologies, theoretical…
de Oliveira, Vinicius Henrique; de Abreu, Cleide Aparecida; Coelho, Ricardo Marques; Melo, Leônidas Carrijo Azevedo
2014-03-01
Proper assessment of soil cadmium (Cd) concentrations is essential to establish legislative limits. The present study aimed to assess background Cd concentrations in soils from the state of São Paulo, Brazil, and to correlate such concentrations with several soil attributes. The topsoil samples (n = 191) were assessed for total Cd contents and for other metals using the USEPA 3051A method. The background concentration was determined according to the third quartile (75th). Principal component analysis, Spearman correlation, and multiple regressions between Cd contents and other soil attributes (pH, cation exchange capacity (CEC), clay content, sum of bases, organic matter, and total Fe, Al, Zn, and Pb levels) were performed. The mean Cd concentration of all 191 samples was 0.4 mg kg(-1), and the background concentration was 0.5 mg kg(-1). After the samples were grouped by parent material (rock origin) and soil type, the background Cd content varied, i.e., soils from igneous, metamorphic, and sedimentary rocks harbored 1.5, 0.4, and 0.2 mg kg(-1) of Cd, respectively. The background Cd content in Oxisols (0.8 mg kg(-1)) was higher than in Ultisols (0.3 mg kg(-1)). Multiple regression demonstrated that Fe was primarily attributed to the natural Cd contents in the soils (R (2) = 0.79). Instead of a single Cd background concentration value representing all São Paulo soils, we propose that the concentrations should be specific for at least Oxisols and Ultisols, which are the primary soil types.
NASA Astrophysics Data System (ADS)
Lundqvist, Eva; Sund, Per
2016-11-01
There is an ongoing discussion about what content that should be taught in science education and there are different views among teachers about what represent good science content. However, teachers are not isolated individuals making their own interpretations, but are part of institutionalised systems building on patterns in the selection of teaching goals and content. Earlier research shows that teachers teach in alignment with different selective traditions, which can be understood as well-developed teaching habits. Individual teachers seem to develop their personal habits on the basis of the contextual situations created by earlier generations of teachers. In order to find out which content teachers find representative for science education, we asked nine teachers to take part in group interviews to talk about what they value as "good" science content. The participants were grouped according to their selective traditions expressed in earlier studies. The method was used to dynamically explore, challenge and highlight teachers' views. The starting point for the group discussions is national tests in science. In Sweden, national tests in biology, physics and chemistry were introduced in secondary school science (year 9) in 2009. One overarching aim of these tests is to support the implementation of the science curricula and to include for example knowledge about socio-scientific issues (SSI). The content of the tests can consequently be seen as important for teachers to consider. The findings show that `resistance' to including SSI is not just an issue for individual teachers. As individuals teachers can create many kinds of obstacles, but still be interested in integrating SSI in their science teaching. However, in group discussions the teachers tend to collectively adopt the scientific rational discourse. This discourse is what joins them and creates their common identity as science teachers. In turn, they seek to free scientific knowledge from social knowledge and thereby make assessment easier.
Exploring the Meaning and Use of Science Content Integration
NASA Astrophysics Data System (ADS)
Garner, Jason L.
Science content integration, or the simultaneous teaching of science with other subjects during learning activities, has been explored by multiple studies. However, due to a lack of consensus on its definition, it was difficult for educators in a local school district to discuss and evaluate the effectiveness of this instructional technique. This qualitative collective case study, based on a constructivist theoretical foundation, centered on the questions of how teachers defined and used science content integration, and perceptions of impediments to its use. Participants were five teachers in a suburban elementary school. The sources of data for this study were interviews, audio recordings of lessons, and teacher documents in the form of lesson plans. Data analysis was conducted through multiple coding procedures, allowing the emergence of themes. Data analysis showed that participants' beliefs and practices differed according to age levels and developmental needs of their students. Implications for positive social change include building from this study to provide content integration-based professional development, common planning time, and suitable materials to improve teachers' capacity to integrate science content into instruction.
Elementary Teachers' Perceptions of Teaching Science to Improve Student Content Knowledge
NASA Astrophysics Data System (ADS)
Stephenson, Robert L.
The majority of Grade 5 students demonstrate limited science knowledge on state assessments. This trend has been documented since 2010 with no evidence of improvement. Because state accountability formulas include proficiency scores and carry sanctions against districts that fail to meet proficiency thresholds, improved student performance in science is an important issue to school districts. The purpose of this study was to explore elementary teachers' perceptions about their students' science knowledge, the strategies used to teach science, the barriers affecting science teaching, and the self-efficacy beliefs teachers maintain for teaching science. This study, guided by Vygotsky's social constructivist theory and Bandura's concept of self-efficacy, was a bounded instrumental case study in which 15 participants, required to be teaching K-5 elementary science in the county, were interviewed. An analytic technique was used to review the qualitative interview data through open coding, clustering, and analytical coding resulting in identified categorical themes that addressed the research questions. Key findings reflect students' limited content knowledge in earth and physical science. Teachers identified barriers including limited science instructional time, poor curricular resources, few professional learning opportunities, concern about new state standards, and a lack of teaching confidence. To improve student content knowledge, teachers identified the need for professional development. The project is a professional development series provided by a regional education service agency for K-5 teachers to experience science and engineering 3-dimensional learning. Area students will demonstrate deeper science content knowledge and benefit from improved science instructional practice and learning opportunities to become science problem solvers and innovative contributors to society.
Physics for Occupational Therapy Majors Program
NASA Astrophysics Data System (ADS)
Singh Aurora, Tarlok
1998-03-01
In Spring 1996, a one semester course - "Survey of Physics" - was taught for students majoring in Occupational Therapy (O. T.), in contrast to the two semester physics sequence for all other health science majors. The course was designed to expose the students to the concept of physics, develop problem solving skills and to emphasize the importance of physics to O.T. In developing the course content, students' preparedness in mathematics and the perceived future applications of physics in O. T. was taken in to consideration, and steps were taken to remedy the deficiencies in students' background. The course was comprised of lecture, laboratory, and considerable self study due to the time constraints, and these will be described.
KC-135 and Other Microgravity Simulations
NASA Technical Reports Server (NTRS)
Skinner, Noel C.
1999-01-01
This document represents a summary of medical and scientific evaluations conducted aboard the KC-135 from June 20, 1998 to June 20, 1999. Included is a general overview of KC-135 activities manifested and coordinated by the Life Sciences Research Laboratories. A collection of brief reports that describes tests conducted aboard the KC-135 follows the overview. Principal investigators and test engineers contributed significantly to the content of the report describing their particular experiment or hardware evaluation. Although this document follows general guidelines, each report format may vary to accommodate differences in experiment design and procedures. This document concludes with an appendix that provides background information concerning the KC-135 and the Reduced-Gravity Program.
ERIC Educational Resources Information Center
Kern, Cynthia Lee
2013-01-01
Scientific inscriptions--graphs, diagrams, and data--and argumentation are integral to generating and communicating scientific understanding. Scientific inscriptions and argumentation are also important to learning science. However, previous research has indicated that learners struggle to understand and learn science content represented in…
Cell Phones Transform a Science Methods Course
ERIC Educational Resources Information Center
Madden, Lauren
2012-01-01
A science methods instructor intentionally encouraged cell phone use for class work to discover how cell phones can be used as research tools to enhance the content and engage the students. The anecdotal evidence suggested that students who used their smartphones as research tools experienced the science content and pedagogical information…
Chemistry Vocabulary Attainment among Higher Secondary Students
ERIC Educational Resources Information Center
Gafoor, K. Abdul; Greeshma, K.
2014-01-01
In the context of growing empirical evidence to lack of clear understanding of the language of the science content, undesirable student outcomes including difficulty in learning science and a lack of interest with their science content area, and chemistry being particularly loaded with specialized terminology of its own, this study analyzed the…
Energy matters: An investigation of drama pedagogy in the science classroom
NASA Astrophysics Data System (ADS)
Alrutz, Megan
The purpose of this study is to explore and document how informal and improvisational drama techniques affect student learning in the science classroom. While implementing a drama-based science unit, I examined multiple notions of learning, including, but not limited to, traditional notions of achievement, student understanding, student participation in the science classroom, and student engagement with, and knowledge of, science content. Employing an interpretivist research methodology, as outlined by Fredrick Erickson for qualitative analysis in the classroom, I collected data through personal observations; student and teacher interviews; written, artistic and performed class work; video-recorded class work; written tests; and questionnaires. In analyzing the data, I found strong support for student engagement during drama-based science instruction. The drama-based lessons provided structures that drew students into lessons, created enthusiasm for the science curriculum, and encouraged meaningful engagement with, and connections to, the science content, including the application and synthesis of science concepts and skills. By making student contributions essential to each of the lessons, and by challenging students to justify, explain, and clarify their understandings within a dramatic scenario, the classroom facilitators created a conducive learning environment that included both support for student ideas and intellectual rigor. The integration of drama-based pedagogy most affected student access to science learning and content. Students' participation levels, as well as their interest in both science and drama, increased during this drama-based science unit. In addition, the drama-based lessons accommodated multiple learning styles and interests, improving students' access to science content and perceptions of their learning experience and abilities. Finally, while the drama-based science lessons provided multiple opportunities for solidifying understanding of the science content, the data also revealed missed opportunities for sense-making within the delivery of several drama-based science lessons. In conclusion, this study demonstrates how the integration of drama and science prepares students for seeking, accessing, and organizing information in different ways, providing multiple means for students to build knowledge and understanding for actively participating in the changing world around us.
ERIC Educational Resources Information Center
Council of Chief State School Officers, 2009
2009-01-01
In Fall 2008, the Council of Chief State School Officers (CCSSO) conducted an alignment content analysis of the 2007 TIMSS Mathematics and Science education assessments for students at grades 4 and 8 and the 2006 PISA Mathematics and Science Literacy assessments for students at age 15 (i.e., TIMSS--Trends in Mathematics and Science Study,…
ERIC Educational Resources Information Center
Santau, Alexandra O.; Maerten-Rivera, Jaime L.; Bovis, Stephanie; Orend, Jacob
2014-01-01
Since the beginning of the reform movement in science education, there has been concern that elementary teachers lack the science content knowledge (SCK) needed to engage students in authentic scientific inquiry. This study included 19 preservice elementary teachers and examined the development of their SCK within the context of a uniquely…
NASA Astrophysics Data System (ADS)
Agustin, R. R.; Liliasari; Sinaga, P.; Rochintaniawati, D.
2018-05-01
The use of technology into science learning encounters problems. One of the problem is teachers’ less technological pedagogical and content knowledge (TPACK) on the implementation of technology itself. The purpose of this study was to investigate science teachers’ experience in using digital technology into science classroom. Through this study science teachers’ technological knowledge (TK) and technological content knowledge (TCK) can be unpacked. Descriptive method was used to depict science teachers’ TK and TCK through questionnaire that consisted of 20 questions. Subjects of this study were 25 science teachers in Bandung, Indonesia. The study was conducted in the context of teacher professional training. Result shows that science teachers still have less TK, yet they have high TCK. The teachers consider characteristics of concepts as main aspect for implementing technology into science teaching. This finding describes teachers’ high technological content knowledge. Meanwhile, science teachers’ technological knowledge was found to be still low since only few of them who can exemplify digital technology that can be implemented into several science concept. Therefore, training about technology implementation into science teaching and learning is necessary as a means to improve teachers’ technological knowledge.
NASA Astrophysics Data System (ADS)
Powers, S. E.
2001-12-01
An NSF-funded project-based program was implemented by Clarkson University in 2000 to increase the interest and knowledge of middle school students in science, math and technology through the solution of an environmental problem that is relevant to their local school community. Clarkson students developed curricula for 7th and 8th grade science and technology classes and then worked with the middle school students throughout the year to reduce to transform solid waste into healthy soil for plant growth. The solution to this problem provided a vehicle to teach fundamental science and math content as well as the process of doing science and solving problems. Placing college science and engineering students in the classroom proved to be a great mechanism for engaging students in science topics and providing mentoring experiences that differ greatly from those that a practicing professional can provide. It is clear, however, that the students must be well prepared for this experience to maximize the benefits of university - school district partnership programs. The objective of this presentation will be to describe the training program that has been developed to prepare Clarkson students to work effectively in middle school classrooms. The Clarkson students are trained for their classroom experiences during the summer before they enter the classroom. They receive three credits for the training, curriculum development, and teaching efforts. It is expected that the students have the necessary background in science and technology to teach themselves the content and environmental relevance of the problem they will be teaching. Lectures and workshops focus on how to transform this knowledge into a project-based curriculum that meets the needs of the teachers, while also exciting the students. Lecture/workshops include: team work; components of an effective class and teacher; project planning and management; problem solving process; inquiry based learning, deductive/inductive learning; creating unit/lesson plan; defining learning objectives; incorporating mentoring into program; NYS standards and science exam; and, assessment techniques. Journals are used to encourage the fellows to reflect on their learning and own educational experiences. An evaluation of the program by both Clarkson students and their partner teachers indicated that this training was appropriate for the students to enter the classroom as professional scientists and engineers. Their classroom interaction skills improved throughout the year.
Promotion of scientific literacy: Bangladeshi teachers' perspectives and practices
NASA Astrophysics Data System (ADS)
Sarkar, Mahbub; Corrigan, Deborah
2014-05-01
Background: In Bangladesh, a common science curriculum caters for all students at the junior secondary level. Since this curriculum is for all students, its aims are both to build a strong foundation in science while still providing students with the opportunities to use science in everyday life - an aim consistent with the notion of scientific literacy. Purpose: This paper reports Bangladeshi science teachers' perspectives and practices in regard to the promotion of scientific literacy. Sample: Six science teachers representing a range of geographical locations, school types with different class sizes, lengths of teaching experience and educational qualifications. Design and method: This study employed a case study approach. The six teachers and their associated science classes (including students) were considered as six cases. Data were gathered through observing the teachers' science lessons, interviewing them twice - once before and once after the lesson observation, and interviewing their students in focus groups. Results: This study reveals that participating teachers held a range of perspectives on scientific literacy, including some naïve perspectives. In addition, their perspectives were often not seen to be realised in the classroom as for teachers the emphasis of learning science was more traditional in nature. Many of their teaching practices promoted a culture of academic science that resulted in students' difficulty in finding connections between the science they study in school and their everyday lives. This research also identified the tension which teachers encountered between their religious values and science values while they were teaching science in a culture with a religious tradition. Conclusions: The professional development practice for science teachers in Bangladesh with its emphasis on developing science content knowledge may limit the scope for promoting the concepts of scientific literacy. Opportunities for developing pedagogic knowledge is also limited and consequently impacts on teachers' ability to develop the concepts of scientific literacy and learn how to teach for its promotion.
Math and Science Gateways to California's Fastest Growing Careers
ERIC Educational Resources Information Center
EdSource, 2008
2008-01-01
Some students--and parents--think math and science are not too important for their future. As everyday life becomes more dependent on technology, most people will need a better background in math and science to succeed in today's global economy. To get high-paying jobs in some of California's fastest-growing occupations, a strong background in…
ERIC Educational Resources Information Center
Garcia, Yeni Violeta
2013-01-01
The inclusion of learners from underrepresented background in biology field research experiences has not been widely explored in the literature. Increased access and equity to experiences for groups historically underrepresented in science, technology, engineering, and mathematics (STEM) has been identified as a priority for many, yet little is…
NASA Astrophysics Data System (ADS)
Grabau, Larry J.
Science achievement of U.S. students has lagged significantly behind other nations; educational reformers have suggested science engagement may enhance this critical measure. The 2006 Program for International Student Assessment (PISA) was science-focused and measured science achievement along with nine aspects of science engagement: science self-efficacy, science self-concept, enjoyment of science, general interest in learning science, instrumental motivation for science, future-oriented science motivation, general value of science, personal value of science, and science-related activities. I used multilevel modeling techniques to address both aspects of science engagement and science achievement as outcome variables in the context of student background and school characteristics. Treating aspects of science engagement as outcome variables provided tests for approaches for their enhancement; meanwhile, treating science achievement as the outcome variable provided tests for the influence of the aspects of science engagement on science achievement under appropriate controls. When aspects of science engagement were treated as outcome variables, gender and father's SES had frequent (significant) influences, as did science teaching strategies which focused on applications or models and hands-on activities over-and-above influences of student background and other school characteristics. When science achievement was treated as the outcome variable, each aspect of science engagement was significant, and eight had medium or large effect sizes (future-oriented science motivation was the exception). The science teaching strategy which involved hands-on activities frequently enhanced science achievement over-and-above influences of student background and other school characteristics. Policy recommendations for U.S. science educators included enhancing eight aspects of science engagement and implementing two specific science teaching strategies (focus on applications or models and hands-on activities). Focused implementation of these research findings could enhance both science engagement and science achievement of U.S. students. I identified five keylimitations of my research project: the age of the dataset, the lack of racial/ethnic identifiers, the low proportion of student-level variance accounted for by multilevel models with aspects of science engagement as outcome variables, the lack of class-level measures, and the lack of inclusion of students' epistemological and fixed/flexible beliefs. These limitations provide opportunities for further investigations into these critical issues in science education.
Nurse Leaders’ Experiences of Implementing Career Advancement Programs for Nurses in Iran
Sheikhi, Mohammad Reza; Khoshknab, Masoud Fallahi; Mohammadi, Farahnaz; Oskouie, Fatemeh
2015-01-01
Background and purpose: Career advancement programs are currently implemented in many countries. In Iran, the first career advancement program was Nurses’ Career Advancement Pathway. The purpose of this study was to explore nurse leaders’ experiences about implementing the Nurses’ Career Advancement Pathway program in Iran. Methods: This exploratory qualitative study was conducted in 2013. Sixteen nurse managers were recruited from the teaching hospitals affiliated to Shahid Behesthi, Qazvin, and Iran Universities of Medical Sciences in Iran. Participants were recruited using purposive sampling method. Study data were collected through in-depth semi-structured interviews. The conventional content analysis approach was used for data analysis. Results: participants’ experiences about implementing the Nurses’ Career Advancement Pathway fell into three main categories including: a) the shortcomings of performance evaluation, b) greater emphasis on point accumulation, c) the advancement-latitude mismatch. Conclusion: The Nurses’ Career Advancement pathway has several shortcomings regarding both its content and its implementation. Therefore, it is recommended to revise the program. PMID:26156907
Making Cosmic Connections in the Nature of Science
NASA Astrophysics Data System (ADS)
Androes, D. L.
2011-09-01
Presenting the rich heritage of astronomy includes exposing the process of science, warts and all. In the quest to comprehensively cover science content, the nature of science is often neglected. A cursory inclusion of the nature of science generally showcases in the lives and times of the Copernican Revolution - and rightly so. Astronomy owes its mark of fame in all other disciplines to the radical shift in thinking about our place in the cosmos that occurred in the late 1500s and early 1600s. However, the nature of science offers a much broader range of connections between science objectives and course content.
Transmedia Storytelling in Science Communication: One Subject, Multiple Media, Multiple Stories
NASA Astrophysics Data System (ADS)
Unger, M.; Moloney, K.
2012-12-01
Each communication medium has particular storytelling strengths. For example, video is particularly good at illustrating a progression of events, text at background and context, and games at describing systems. In what USC's Prof. Henry Jenkins described as "transmedia storytelling," multiple media are used simultaneously, in an expansive rather than repetitive way, to better tell a single, complex story. The audience is given multiple entry points to the story, and the story is exposed to diverse and dispersed audiences, ultimately engaging a broader public. We will examine the effectiveness of a transmedia approach to communicating scientific and other complex concepts to a broad and diverse audience. Using the recently developed Educational Visitor Center at the NCAR-Wyoming Supercomputing Center as a case study, we will evaluate the reach of various means of presenting information about the geosciences, climate change and computational science. These will include an assessment of video, mechanical and digital interactive elements, animated movie segments, web-based content, photography, scientific visualizations, printed material and docent-led activities.
Physics of non-Newtonian fluids and interdisciplinary relations (biology and criminology)
NASA Astrophysics Data System (ADS)
Holubova, R.
2018-03-01
The aim of the paper is the presentation of an interdisciplinary topic that allows applying content knowledge in physics, mathematics and biology in real life environment. Students use to play games and view crime scenes but in common they have little knowledge about the science used during crime scene investigation. In this paper the science background of blood spatter analysis is presented—the physics of non-Newtonian fluids, the biology of blood and mathematics—the measurement and calculation of the angle of inpact, the relationship between height and spatter diameter. This topic was choosen according to the analysis of interviews with secondary and high school learners realized at four schools in Moravia, Czech Republic. The topic can be taught at secondary schools so as at a higher level at high schools. Hands-on activities are included. The teaching strategy supports group work. The appropriateness and reasonableness of the topic was checked in the real teaching process and the activities have had a positive feedback.
Norfolk State University Research Experience in Earth System Science
NASA Technical Reports Server (NTRS)
Chaudhury, Raj
2002-01-01
The truly interdisciplinary nature of Earth System Science lends itself to the creation of research teams comprised of people with different scientific and technical backgrounds. In the annals of Earth System Science (ESS) education, the lack of an academic major in the discipline might be seen as a barrier to the involvement of undergraduates in the overall ESS-enterprise. This issue is further compounded at minority-serving institutions by the rarity of departments dedicated to Atmospheric Science, Oceanography or even the geosciences. At Norfolk State University, a Historically Black College, a six week, NASA-supported, summer undergraduate research program (REESS - Research Experience in Earth System Science) is creating a model that involves students with majors in diverse scientific disciplines in authentic ESS research coupled with a structured education program. The project is part of a wider effort at the University to enhance undergraduate education by identifying specific areas of student weaknesses regarding the content and process of science. A pre- and post-assessment test, which is focused on some fundamental topics in global climate change, is given to all participants as part of the evaluation of the program. Student attitudes towards the subject and the program's approach are also surveyed at the end of the research experience. In 2002, 11 undergraduates participated in REESS and were educated in the informed use of some of the vast remote sensing resources available through NASA's Earth Science Enterprise (ESE). The program ran from June 3rd through July 12, 2002. This was the final year of the project.
Game-Based Learning in Science Education: A Review of Relevant Research
NASA Astrophysics Data System (ADS)
Li, Ming-Chaun; Tsai, Chin-Chung
2013-12-01
The purpose of this study is to review empirical research articles regarding game-based science learning (GBSL) published from 2000 to 2011. Thirty-one articles were identified through the Web of Science and SCOPUS databases. A qualitative content analysis technique was adopted to analyze the research purposes and designs, game design and implementation, theoretical backgrounds and learning foci of these reviewed studies. The theories and models employed by these studies were classified into four theoretical foundations including cognitivism, constructivism, the socio-cultural perspective, and enactivism. The results indicate that cognitivism and constructivism were the major theoretical foundations employed by the GBSL researchers and that the socio-cultural perspective and enactivism are two emerging theoretical paradigms that have started to draw attention from GBSL researchers in recent years. The analysis of the learning foci showed that most of the digital games were utilized to promote scientific knowledge/concept learning, while less than one-third were implemented to facilitate the students' problem-solving skills. Only a few studies explored the GBSL outcomes from the aspects of scientific processes, affect, engagement, and socio-contextual learning. Suggestions are made to extend the current GBSL research to address the affective and socio-contextual aspects of science learning. The roles of digital games as tutor, tool, and tutee for science education are discussed, while the potentials of digital games to bridge science learning between real and virtual worlds, to promote collaborative problem-solving, to provide affective learning environments, and to facilitate science learning for younger students are also addressed.
Earth Science Literacy: Building Community Consensus
NASA Astrophysics Data System (ADS)
Wysession, M.; Ladue, N.; Budd, D.; Campbell, K.; Conklin, M.; Lewis, G.; Raynolds, R.; Ridky, R.; Ross, R.; Taber, J.; Tewksbury, B.; Tuddenham, P.
2008-12-01
During 2008, the Earth Sciences Literacy Initiative (ESLI) constructed a framework of earth science "Big Ideas" and "Supporting Concepts". Following the examples of recent literacy efforts in the ocean, atmosphere and climate research communities, ESLI has distilled the fundamental understandings of the earth science community into a document that all members of the community will be able to refer to when working with educators, policy-makers, the press and members of the general public. This document is currently in draft form for review and will be published for public distribution in 2009. ESLI began with the construction of an organizing committee of a dozen people who represent a wide array of earth science backgrounds. This group then organized and ran two workshops in 2008: a 2-week online content workshop and a 3-day intensive writing workshop. For both workshops, participants were chosen so as to cover the full breadth of earth science related to the solid earth, surficial processes, and fresh-water hydrology. The asynchronous online workshop included 350 scientists and educators participating from around the world and was a powerful way to gather ideas and information while retaining a written record of all interactions. The writing workshop included 35 scientists, educators and agency representatives to codify the extensive input of the online workshop. Since September, 2008, drafts of the ESLI literacy framework have been circulated through many different channels to make sure that the document accurately reflects the current understandings of earth scientists and to ensure that it is widely accepted and adopted by the earth science communities.
NASA Astrophysics Data System (ADS)
Hanuscin, Deborah L.
This research examined the development of practicing K--8 teachers' views of the nature of science (NOS) within a physical science content course. Reforms in science education have called for the teaching of science as inquiry. In order to achieve the vision of the reforms, teachers must understand science, both a body of knowledge and as a process, but also the very nature of science itself-or the values and assumptions inherent in the construction of scientific knowledge. NOS has been deemed a critical component of scientific literacy, with implications for making informed decisions about scientific claims. Research has indicated that despite the emphasis of reforms, teachers generally do not possess accurate views of NOS. Recent work in science education has led to the recommendation that efforts undertaken within teacher education programs to improve teachers' understanding of NOS can be enhanced through relevant coursework in other academic areas, including the sciences. The purpose of this dissertation was to provide an empirical basis for this recommendation, by examining the development of teachers' views of NOS within a physical science content course. To this end, the researcher employed qualitative methodology including participant observation, interview, document analysis, and questionnaire to assess teacher participants' views of the nature of science and the impact of their experience in the content course on these views. As a result of this research, implications for both the course design and science teacher education have been described. In addition, various aspects of the community of practice that characterizes the classroom that inhibit the development of understandings about the nature of science are identified. It is argued that instruction in NOS should be approached from the perspective that builds bridges between the communities of practice of learners and of scientists.
Teaching the process of science: faculty perceptions and an effective methodology.
Coil, David; Wenderoth, Mary Pat; Cunningham, Matthew; Dirks, Clarissa
2010-01-01
Most scientific endeavors require science process skills such as data interpretation, problem solving, experimental design, scientific writing, oral communication, collaborative work, and critical analysis of primary literature. These are the fundamental skills upon which the conceptual framework of scientific expertise is built. Unfortunately, most college science departments lack a formalized curriculum for teaching undergraduates science process skills. However, evidence strongly suggests that explicitly teaching undergraduates skills early in their education may enhance their understanding of science content. Our research reveals that faculty overwhelming support teaching undergraduates science process skills but typically do not spend enough time teaching skills due to the perceived need to cover content. To encourage faculty to address this issue, we provide our pedagogical philosophies, methods, and materials for teaching science process skills to freshman pursuing life science majors. We build upon previous work, showing student learning gains in both reading primary literature and scientific writing, and share student perspectives about a course where teaching the process of science, not content, was the focus. We recommend a wider implementation of courses that teach undergraduates science process skills early in their studies with the goals of improving student success and retention in the sciences and enhancing general science literacy.
Teaching the Process of Science: Faculty Perceptions and an Effective Methodology
Coil, David; Wenderoth, Mary Pat; Cunningham, Matthew
2010-01-01
Most scientific endeavors require science process skills such as data interpretation, problem solving, experimental design, scientific writing, oral communication, collaborative work, and critical analysis of primary literature. These are the fundamental skills upon which the conceptual framework of scientific expertise is built. Unfortunately, most college science departments lack a formalized curriculum for teaching undergraduates science process skills. However, evidence strongly suggests that explicitly teaching undergraduates skills early in their education may enhance their understanding of science content. Our research reveals that faculty overwhelming support teaching undergraduates science process skills but typically do not spend enough time teaching skills due to the perceived need to cover content. To encourage faculty to address this issue, we provide our pedagogical philosophies, methods, and materials for teaching science process skills to freshman pursuing life science majors. We build upon previous work, showing student learning gains in both reading primary literature and scientific writing, and share student perspectives about a course where teaching the process of science, not content, was the focus. We recommend a wider implementation of courses that teach undergraduates science process skills early in their studies with the goals of improving student success and retention in the sciences and enhancing general science literacy. PMID:21123699
Developing Preservice Teachers' Knowledge of Science Teaching Through Video Clubs
NASA Astrophysics Data System (ADS)
Johnson, Heather J.; Cotterman, Michelle E.
2015-06-01
Though an adequate understanding of content is a natural prerequisite of teaching (Carlsen in Journal of Research in Science Teaching 30:471-481, 1993), teachers also need to be able to interpret content in ways that facilitate student learning. How to best support novice teachers in developing and refining their content knowledge for teaching is a crucial and ongoing question for preservice teacher educators. Recently, video clubs are being explored as potential contexts for teacher learning (Barnhart & van Es in Teaching and Teacher Education 45:83-93, 2015; Sherin & Han in Teaching and Teacher Education 20:163-183, 2004). We hypothesized that pairing video clubs with student teaching experiences would provide a forum for preservice teachers to discuss issues relevant to their professional trajectory through exposure to models of peer teaching and opportunities to reflect on practice. In this study, we explored how secondary science preservice teachers used video club to restructure their overall science knowledge into science knowledge for teaching. Our findings suggest that video clubs allowed preservice teachers to access and leverage student thinking and instructional resources to deepen their understanding of science content and trajectories for science learning.
Developing Preservice Teachers' Knowledge of Science Teaching through Video Clubs
ERIC Educational Resources Information Center
Johnson, Heather J.; Cotterman, Michelle E.
2015-01-01
Though an adequate understanding of content is a natural prerequisite of teaching (Carlsen in "Journal of Research in Science Teaching" 30:471-481, 1993), teachers also need to be able to interpret content in ways that facilitate student learning. How to best support novice teachers in developing and refining their content knowledge for…
ERIC Educational Resources Information Center
Bates, John A.; And Others
As part of an ongoing study of the content knowledge, instructional beliefs, and instructional practices of middle school, high school, and college science teachers, the hypothesis that there are systematic differences across academic levels in these teachers' conceptual understanding of the same content-specific subjects was studied. Eight middle…
ERIC Educational Resources Information Center
Jappinen, Aini-Kristiina
2005-01-01
This paper presents a study on thinking and learning processes of mathematics and science in teaching through a foreign language, in Finland. The entity of thinking and content learning processes is, in this study, considered as cognitional development. Teaching through a foreign language is here called Content and Language Integrated Learning or…
Preservice Science and Technology Teachers' Pedagogical Content Knowledge on Cell Topics
ERIC Educational Resources Information Center
Usak, Muhammet
2009-01-01
The purpose of this study is to explain prospective science and technology teachers' pedagogical content knowledge (PCK) about the cell. Lesson preparation, laboratory plan, interview with teacher candidates, and concept mapping were used to collect the data for prospective teacher's PCK. The study was conducted with six prospective science and…
ERIC Educational Resources Information Center
Chuck, Jo-Anne
2011-01-01
Science students leaving undergraduate programs are entering the biotechnology industry where they are presented with issues which require integration of science content. Students find this difficult as through-out their studies, most content is limited to a single subdiscipline (e.g., biochemistry, immunology). In addition, students need…
Applying the Think-Aloud Strategy to Improve Reading Comprehension of Science Content
ERIC Educational Resources Information Center
Jackson, Virginie
2016-01-01
This research was designed to investigate the effectiveness of using the think-aloud strategy to improve the reading comprehension in the content area of science. Based on state standards assessments, many early elementary grade students who were considered fluent readers struggled with evaluative science comprehension. In this quasi-experimental…
Three-Year High School Science Core Curriculum: A Framework.
ERIC Educational Resources Information Center
Bardeen, Marjorie; Freeman, Wade; Lederman, Leon; Marshall, Stephanie; Thompson, Bruce; Young, M. Jean
It is time to start a complete re-structuring of the high school science sequence: new content, new instructional materials, new laboratories, new assessment tools, and new teacher preparation. This white paper initiates re-structuring by proposing organization, pedagogy, and content for a new sequence of science courses. The proposal respects the…
Assessing New Zealand High School Science Teachers' Technological Pedagogical Content Knowledge
ERIC Educational Resources Information Center
Owusu, Kofi Acheaw; Conner, Lindsey; Astall, Chris
2015-01-01
Technological pedagogical content knowledge (TPACK) is the knowledge required for effective technology integration in teaching. In this study, New Zealand high school science teachers' TPACK was assessed through an online survey. The data and its analysis revealed that New Zealand's high school science teachers in general had a high perception of…
Content Structure in Science Instructional Materials and Knowledge Structure in Students' Memories.
ERIC Educational Resources Information Center
Champagne, Audrey B.; And Others
The research reported in this paper concerns the design of instructional materials that represent the content structure of a science discipline and the development of methods of probing and representing the knowledge structure in a student's memory. The science discipline selected for the study was geology. Specifically, the conceptual structures…
ERIC Educational Resources Information Center
Weizman, Ayelet; Covitt, Beth A.; Koehler, Matthew J.; Lundeberg, Mary A.; Oslund, Joy A.; Low, Mark R.; Eberhardt, Janet; Urban-Lurain, Mark
2008-01-01
In this study we measured changes in science teachers' conceptual science understanding (content knowledge) and pedagogical content knowledge (PCK) while participating in a problem-based learning (PBL) model of professional development. Teachers participated in a two-week long workshop followed by nine monthly meetings during one academic year…
The Effect of Physical Activity on Science Competence and Attitude towards Science Content
ERIC Educational Resources Information Center
Klinkenborg, Ann Maria
2011-01-01
This study examines the effect of physical activity on science instruction. To combat the implications of physical inactivity, schools need to be willing to consider all possible opportunities for students to engage in moderate-to-vigorous physical activity (MVPA). Integrating physical activity with traditional classroom content is one…
ERIC Educational Resources Information Center
Bektas, Oktay
2015-01-01
This study investigated pre-service science teachers' pedagogical content knowledge in the physics, chemistry, and biology topics. These topics were the light and sound, the physical and chemical changes, and reproduction, growth, and evolution. Qualitative research design was utilized. Data were collected from 33 pre-service science teachers…
ERIC Educational Resources Information Center
Mustafa, Mohamed Elfatih I.
2016-01-01
This study investigated the conditions and situations offered by Experiencing Inquiry Model (EIM) for developing science teacher's Technological Pedagogical Content Knowledge (TPACK). Also, the study explored the opportunities offered by EIM strategy in enhancing science teacher's abilities to design technology-based inquiry activities for science…
Improving Low-Income Preschoolers' Word and World Knowledge: The Effects of Content-Rich Instruction
ERIC Educational Resources Information Center
Neuman, Susan B.; Kaefer, Tanya; Pinkham, Ashley M.
2016-01-01
This study examined the efficacy of a shared book-reading approach to integrating literacy and science instruction. The purpose was to determine whether teaching science vocabulary using information text could improve low-income preschoolers' word knowledge, conceptual development, and content knowledge in the life sciences. Teachers in 17…
ERIC Educational Resources Information Center
Bahcivan, Eralp; Cobern, William W.
2016-01-01
This study investigated comprehensive science teaching belief systems and their relation to science teachers' pedagogical content knowledge and teaching practices. Rokeach's (1968) belief system was used as a framework for representing the hierarchy among in-service teachers' teaching beliefs. This study employed a multiple case study design with…
Popular Media in the Biology Classroom: Viewing Popular Science Skeptically
ERIC Educational Resources Information Center
Gardner, Grant E.; Jones, M. Gail; Ferzli, Miriam
2009-01-01
It can be argued that the responsibilities of biology educators to their students extend far beyond the delivery of science content. Educators are also charged with ensuring that students do not temporarily memorize the information, but actively integrate it into their daily lives. Personal integration of science content should prepare students to…
NASA Astrophysics Data System (ADS)
Stofflett, René T.; Stoddart, Trish
This research examined the relationship between content instruction and the development of elementary teacher candidates' understanding of conceptual change pedagogy. Undergraduate students (n = 27) enrolled in two sections of a science methods course received content instruction through either traditional or conceptual change methods, followed by instruction about conceptual change pedagogy. Candidates were interviewed pre- and postinstruction about their content and pedagogical knowledge and also wrote conceptual change lessons. Twelve of the 27 subjects were videotaped teaching in the field. Results indicate that prior to instruction, most candidates had weak content knowledge and held traditional pedagogical conceptions. After instruction, students in the conceptual change group had significantly larger gains in their content knowledge than those in the traditional group, gave qualitatively stronger pedagogical responses, and used conceptual change strategies more consistently in practice. These results indicate that personal experience of learning science content through conceptual change methods facilitated the development of understanding and use of conceptual change pedagogy in teaching practice. Thus if conceptual change methods are to be incorporated into teacher candidates' repertoire, science content courses that students take prior to teacher education should be taught using conceptual change pedagogy. In addition, courses in science education should use pedagogy more in line with that taught in methods courses.
Forensic nursing science knowledge and competency: the use of simulation.
Drake, Stacy A; Langford, Rae; Young, Anne; Ayers, Constance
2015-01-01
Forensic nursing is a nursing specialty that provides services to a variety of patient populations who have experienced violence, including interpersonal violence, sudden or unexpected death, and motor vehicle collisions. However, many critical care nurses have received the background knowledge or practical skills required to provide the level of care required by many forensic patients. The purpose of this study was to determine whether differences in knowledge or practical competence exist between participants using 2 different learning modalities: medium fidelity simulation versus face-to-face lecture. Participants who were enrolled in an elective online forensic nursing science course were randomly assigned to an intervention or control group. The 18 intervention group participants were given three 2-hour forensic simulation sessions in the laboratory. The 17 control group participants attended 3 face-to-face lectures covering forensic science topics. All study participants also received the same forensic course content via the online Blackboard platform. No significant differences were found between the 2 groups in either knowledge or practical competency. The lack of results may have been heavily influenced by the small sample size, which resulted in insufficient power to detect possible differences.
NASA Astrophysics Data System (ADS)
Barron, Paul E.
In the last half century, public awareness of issues such as population growth, environmental pollution and the threat of nuclear war has pressured science education to reform to increase student social responsibility. The emerging Science-Technology-Society (STS) movement addressed these concerns by developing numerous strategies and curricula. Considerable diagnostic research has been conducted on student knowledge of the nature of science, but not on the wider scope of STS content (e.g., the nature of science and technology and their interactions with society). However, researchers have not widely studied the impact of comprehensive STS curricula on students' knowledge of STS content nor the nature of STS teaching practice that influenced this knowledge gain. This study examined student success and teacher performance in a special STS course in Ontario, Canada. Research questions focused on the STS content knowledge gain by students completing this course and the impact of the STS teachers' teaching practices on this knowledge gain. Student data were collected using pre-course and post-course assessments of students' STS content knowledge. Teacher data were obtained using semi-structured interviews, classroom observations and videotapes. Statistical analysis indicated that, after completing the STS course, students significantly increased their STS content knowledge as measured by the Views on Science Technology Society instrument. Gender and academic achievement had no significant impact on this knowledge gain, implying that this course, as taught by these teachers, could appeal to a wide range of students as a general education course. The second part of the study indicated that detailed research is needed on the relationship between STS teaching practice and student STS content knowledge gain. The small sample size prevents generalizations but initial indications show that factors such constructivist teaching practices and strong teacher STS content knowledge may generate greater student knowledge gains than didactic teaching and weak teacher STS content knowledge. In this limited sample, it was found that constructivist teaching practice can overcome weak teacher STS content knowledge in increasing student STS content knowledge. In addition, other factors such as problem-solving and decision-making skills need to be studied as part of an overall framework for STS teaching.
NASA Astrophysics Data System (ADS)
Marcucci, Emma; Slivinski, Carolyn; Lawton, Brandon L.; Smith, Denise A.; Squires, Gordon K.; Biferno, Anya A.; Lestition, Kathleen; Cominsky, Lynn R.; Lee, Janice C.; Rivera, Thalia; Walker, Allyson; Spisak, Marilyn
2018-06-01
NASA's Universe of Learning creates and delivers science-driven, audience-driven resources and experiences designed to engage and immerse learners of all ages and backgrounds in exploring the universe for themselves. The project is a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, Jet Propulsion Laboratory, Smithsonian Astrophysical Observatory, and Sonoma State University and is part of the NASA SMD Science Activation Collective. The NASA’s Universe of Learning projects pull on the expertise of subject matter experts (scientist and engineers) from across the broad range of NASA Astrophysics themes and missions. One such project, which draws strongly on the expertise of the community, is the NASA’s Universe of Learning Science Briefings, which is done in collaboration with the NASA Museum Alliance. This collaboration presents a monthly hour-long discussion on relevant NASA astrophysics topics or events to an audience composed largely of informal educators from informal learning environments. These professional learning opportunities use experts and resources within the astronomical community to support increased interest and engagement of the informal learning community in NASA Astrophysics-related concepts and events. Briefings are designed to create a foundation for this audience using (1) broad science themes, (2) special events, or (3) breaking science news. The NASA’s Universe of Learning team engages subject matter experts to be speakers and present their science at these briefings to provide a direct connection to NASA Astrophysics science and provide the audience an opportunity to interact directly with scientists and engineers involved in NASA missions. To maximize the usefulness of the Museum Alliance Science Briefings, each briefing highlights resources related to the science theme to support informal educators in incorporating science content into their venues and/or interactions with the public. During this presentation, learn how you can help contribute to the NASA’s Universe of Learning and take part in Science Briefings.
NASA Astrophysics Data System (ADS)
Holliday, Gary M.
The Contextual Model of Learning (CML; Falk & Dierking, 1992, 2000) and reform documents have emphasized the unique learning environments that ISIs provide and the social aspects of that learning. As a result, individuals are able to use "each other as vehicles for reinforcing beliefs and meaning making" (Kisiel, 2003, p. 3). This study looked at two science content courses that were taught over two years by education staff of a large science and technology museum located in the Midwest. Data from six courses, with 187 participating elementary and middle school teachers, included content tests, portfolios and graduate credit assignments, daily and final evaluations of the course, as well as audio and video recordings of teachers while they were interacting with exhibits or engaged in an exhibit related activity. Results of this study found that PD educators' use of exhibits during both courses did not fully take into account the sociocultural context of CML and did not incorporate opportunities for discourse into the course instruction. However, when PD staff did make explicit connections between exhibits, science content, and activities, participants were more likely to be involved in in-depth, content related and pedagogical conversations while engaged in the courses. At the same time, even though teachers were very satisfied with the courses and felt that PD staff was effective in their instruction, participating teachers did not increase their science content knowledge even when explicit content connections were made to exhibits. It was unclear what outcomes the PD educators expect or want for their teacher students other than relaying content in a didactic manner (which was a secondary concern), sparking an interest in science, and providing many hands-on activities to bring back to the classroom. There is a need for a standardized professional development program for ISI educators and a need for restructuring ISI professional development so that it will address elementary and middle school teachers' need for science content. Further, developing instructional strategies for informal sites will be important since the learning potential that can be found through exhibits and exhibitions are not being fully realized.
NASA Astrophysics Data System (ADS)
Keller, Stacy Kathryn
This study examined how intermediate elementary students' mathematics and science background knowledge affected their interpretation of line graphs and how their interpretations were affected by graph question levels. A purposive sample of 14 6th-grade students engaged in think aloud interviews (Ericsson & Simon, 1993) while completing an excerpted Test of Graphing in Science (TOGS) (McKenzie & Padilla, 1986). Hand gestures were video recorded. Student performance on the TOGS was assessed using an assessment rubric created from previously cited factors affecting students' graphing ability. Factors were categorized using Bertin's (1983) three graph question levels. The assessment rubric was validated by Padilla and a veteran mathematics and science teacher. Observational notes were also collected. Data were analyzed using Roth and Bowen's semiotic process of reading graphs (2001). Key findings from this analysis included differences in the use of heuristics, self-generated questions, science knowledge, and self-motivation. Students with higher prior achievement used a greater number and variety of heuristics and more often chose appropriate heuristics. They also monitored their understanding of the question and the adequacy of their strategy and answer by asking themselves questions. Most used their science knowledge spontaneously to check their understanding of the question and the adequacy of their answers. Students with lower and moderate prior achievement favored one heuristic even when it was not useful for answering the question and rarely asked their own questions. In some cases, if students with lower prior achievement had thought about their answers in the context of their science knowledge, they would have been able to recognize their errors. One student with lower prior achievement motivated herself when she thought the questions were too difficult. In addition, students answered the TOGS in one of three ways: as if they were mathematics word problems, science data to be analyzed, or they were confused and had to guess. A second set of findings corroborated how science background knowledge affected graph interpretation: correct science knowledge supported students' reasoning, but it was not necessary to answer any question correctly; correct science knowledge could not compensate for incomplete mathematics knowledge; and incorrect science knowledge often distracted students when they tried to use it while answering a question. Finally, using Roth and Bowen's (2001) two-stage semiotic model of reading graphs, representative vignettes showed emerging patterns from the study. This study added to our understanding of the role of science content knowledge during line graph interpretation, highlighted the importance of heuristics and mathematics procedural knowledge, and documented the importance of perception attentions, motivation, and students' self-generated questions. Recommendations were made for future research in line graph interpretation in mathematics and science education and for improving instruction in this area.
NASA Astrophysics Data System (ADS)
Aldrich, Lynn Karter
1997-09-01
Concerns about the teaching of science in elementary grades have led in recent years to studies of teacher efficacy beliefs, their relation to teaching behaviors, and mechanisms which promote positive changes in those beliefs. The purpose of this study was to determine if science teaching efficacy beliefs of preservice elementary teachers are changed by a process emphasis physical science course and by a content emphasis physical science course and to compare these two effects. The STEBI-B instrument was given as a pretest at the beginning and a posttest at the conclusion of semester physical science courses to 94 subjects in a small liberal arts-based college. The STEBI-B instrument was also given as a pretest at the beginning and a posttest at the conclusion of semester science teaching methods courses to 61 subjects at the same college. No significant change occurred in the outcome expectancy subscale for the content emphasis course, the process emphasis course, or the science methods course. No significant change occurred in the self-efficacy subscale for the content emphasis course. A significant increase occurred in the self-efficacy subscale for the process emphasis course and the science methods course. When the process emphasis subjects were broken down into subgroups based on when the methods course was taken, a significant increase was found only for the subgroups who had previously taken or were concurrently taking a methods course with the physical science course. No significant difference was found in either outcome expectancy or self-efficacy between the content emphasis and process emphasis with ANCOVA using the pretest STEBI-B subscale as a covariate. The results suggest that a physical science course which emphasizes science process by using an integrated approach of lecture, hands-on activities and discussion may result in increased science teaching self-efficacy beliefs for preservice elementary teachers. The results also suggest that these changes in self-efficacy beliefs may not occur if the process emphasis physical science course is taken prior to a science teaching methods course.
Inquiry-based science: Preparing human capital for the 21 st century and beyond
NASA Astrophysics Data System (ADS)
Boyd, Yolanda F.
High school students need to graduate with 21st century skills to be college and career ready and to be competitive in a global marketplace. A positive trend exists favoring inquiry-based instructional practices that purportedly not only increase science content knowledge, but also 21 st century skill development. A suburban school district, Areal Township (pseudonym), implemented an inquiry-based science program based on this trend; however, the degree to which the program has been meeting students' needs for science content knowledge and 21st century skills development has not been explored. If we were to understand the process by which an inquiry-based science program contributes to attainment of science content and 21st century skill development, then we might be able to improve the delivery of the program and provide a model to be adopted by other schools. Therefore, the purpose of this descriptive case study was to engage with multiple stakeholders to formatively assess the successes and obstacles for helping students to achieve science content and 21st century skills through an inquiry-based curriculum. Using constructivist theory, this study aimed to address the following central research question: How does the implementation of an inquiry-based program within the Areal Township School District (ATSD) support the acquisition of science content knowledge and the development of 21st century skills? This study found that 21st century skill development is embedded in inquiry-based instructional practices. These practices engage students in meaningful learning that spirals in content and is measured using diverse assessments. Time to do inquiry-based science and adequate time for collegial collaboration were obstacles for educators in grades K-5. Other obstacles were turnkey professional development and a lack of ongoing program monitoring, as a result of imposed extrinsic factors from state and federal mandates. Lastly, it was discovered that not all parts of the curriculum adopted a full inquiry-based approach.
NASA Astrophysics Data System (ADS)
Guertin, L. A.; Tait, K.
2015-12-01
The Pennsylvania Earth Science Teachers Association (PAESTA) recently initiated a podcasting series "You Asked, We Answered!" for K-12 teachers to increase their science content knowledge through short audio podcasts, supplemented with relevant resources. The 2015-2016 PAESTA President Kathy Tait generated the idea of tapping in to the content expertise of higher education faculty, post-doctoral researchers, and graduate students to assist K-12 teachers with increasing their own Earth and space content knowledge. As time and resources for professional development are decreasing for K-12 teachers, PAESTA is committed to not only providing curricular resources through our online database of inquiry-based exercises in the PAESTA Classroom, but providing an opportunity to learn science content from professionals in an audio format.Our goal at PAESTA has been to release at least one new podcast per month that answers the questions asked by PAESTA members. Each podcast is recorded by an Earth/space science professional with content expertise and placed online with supporting images, links, and relevant exercises found in the PAESTA Classroom. Each podcast is available through the PAESTA website (http://www.paesta.psu.edu/podcasts) and PAESTA iTunes channel (https://itunes.apple.com/us/podcast/paesta-podcasts/id1017828453). For ADA compliance, the PAESTA website has a transcript for each audio file. In order to provide these podcasts, we need the participation of both K-12 teachers and science professionals. On the PAESTA Podcast website, K-12 teachers can submit discipline questions for us to pass along to our content experts, questions relating to the "what" and "how" of the Earth and space sciences, as well as questions about Earth and space science careers. We ask science professionals for help in answering the questions posed by teachers. We include online instructions and tips to help scientists generate their podcast and supporting materials.
NASA Astrophysics Data System (ADS)
Fredrick, L. Denise
The focus of this study was to investigate college students' perception of high school and college introductory science learning experiences related to persistence in science as a major area of study in college. The study included students' perceptions of the following areas of science education: (1) teacher interpersonal relationship with students, (2) teacher personality styles, (3) teacher knowledge of the content, (4) instructional methods, and (5) science course content. A survey research design was employed in the investigative study to collect and analyze data. One hundred ninety two students participated in the research study. A survey instrument entitled Science Education Perception Survey was used to collect data. The researcher sought to reject or support three null hypotheses as related to participants' perceptions of high school and college introductory science education experiences. Using binomial regression analysis, this study analyzed differences between students persisting in science and students not persisting in science as a major. The quantitative research indicated that significant differences exist between persistence in science as a major and high school science teacher traits and college introductory science instructional methods. Although these variables were found to be significant predictors, the percent variance was low and should be considered closely before concluded these as strong predictors of persistence. Major findings of the qualitative component indicated that students perceived that: (a) interest in high school science course content and high school science teacher personality and interpersonal relationships had the greatest effect on students' choice of major area of study; (b) interest in college introductory science course content had the greatest effect on students' choice of major area of study; (c) students recalled laboratory activities and overall good teaching as most meaningful to their high school science educational experiences and (d) students recalled laboratory activities and lectures linking practical application of science knowledge as meaningful to their college introductory science education experiences.
NASA Astrophysics Data System (ADS)
Chin, Chi-Chin
2005-10-01
Scientific literacy and attitudes toward science play an important role in human daily lives. The purpose of this study was to investigate whether first-year pre-service teachers in colleges in Taiwan have a satisfactory level of scientific literacy. The domains of scientific literacy selected in this study include: (1) science content; (2) the interaction between science, technology and society (STS); (3) the nature of science; and (4) attitudes toward science. In this study, the instruments used were Chinese translations of the Test of Basic Scientific Literacy (TBSL) and the Test of Science-related Attitudes. Elementary education majors (n = 141) and science education majors (n = 138) from four teachers’ colleges responded to these instruments. The statistical results from the tests revealed that, in general, the basic scientific literacy of first-year pre-service teachers was at a satisfactory level. Of the six scales covered in this study, the pre-service teachers displayed the highest literacy in health science, STS, and life science. Literacy in the areas of the nature of science and earth science was rated lowest. The results also showed that science education majors scored significantly higher in physical science, life science, nature of science, science content, and the TBSL than elementary science majors. Males performed better than females in earth science, life science, science content, and the TBSL. Next, elementary education majors responded with more “don’t know” responses than science education majors. In general, the pre-service teachers were moderately positive in terms of attitudes toward science while science education majors had more positive attitudes toward science. There was no significant difference in attitudes between genders. Previous experience in science indicated more positive attitudes toward science. The results from stepwise regression revealed that STS, the nature of science, and attitudes toward science could explain 50.6% and 60.2% variance in science content in elementary education and science education majors, respectively. For science education majors, the first three scales—the nature of science, health science and physical science—determined basic scientific literacy. However, for elementary education majors, the top three factors were physical science, life science and the nature of science. Based on these results, several strategies for developing the professional abilities of science teachers have been recommended for inclusion in pre-service programs.
Science Teachers’ Pedagogical Content Knowledge and Integrated Approach
NASA Astrophysics Data System (ADS)
Adi Putra, M. J.; Widodo, A.; Sopandi, W.
2017-09-01
The integrated approach refers to the stages of pupils’ psychological development. Unfortunately, the competences which are designed into the curriculum is not appropriate with the child development. This Manuscript presents PCK (pedagogical content knowledge) of teachers who teach science content utilizing an integrated approach. The data has been collected by using CoRe, PaP-eR, and interviews from six elementary teachers who teach science. The paper informs that high and stable teacher PCKs have an impact on how teachers present integrated teaching. Because it is influenced by the selection of important content that must be submitted to the students, the depth of the content, the reasons for choosing the teaching procedures and some other things. So for teachers to be able to integrate teaching, they should have a balanced PCK.
Determining discourses: Constraints and resources influencing early career science teachers
NASA Astrophysics Data System (ADS)
Grindstaff, Kelly E.
This study explores the thinking and practices of five early-career teachers of grades eight to ten science, in relation to their histories, schools, students, and larger cultural and political forces. All the teachers are young women, two in their fourth year of teaching, who teach together in an affluent suburb, along with one first-year teacher. The other two are first-year teachers who teach in an urban setting. All of these teachers most closely associated good science teaching with forming relationships with students. They filtered science content through a lens of relevance (mostly to everyday life) and interest for students. Thus they filtered science content through a commitment to serving students, which makes sense since I argue that the primary motivations for teaching had more to do with working with students and helping people than the disciplines of science. Thus, within the discourse of the supremacy of curriculum and the prevalence of testing, these teachers enact hybrid practices which focus on covering content -- to help ensure the success of students -- and on relevance and interest, which has more to do with teaching styles and personality than disciplines of science. Ideas of good teaching are not very focused on science, which contradicts the type of support they seek and utilize around science content. This presents a challenge to pre- and in-service education and support to question what student success means, what concern for students entails and how to connect caring and concern for students with science.
Socioscientific Argumentation: The effects of content knowledge and morality
NASA Astrophysics Data System (ADS)
Sadler, Troy D.; Donnelly, Lisa A.
2006-10-01
Broad support exists within the science education community for the incorporation of socioscientific issues (SSI) and argumentation in the science curriculum. This study investigates how content knowledge and morality contribute to the quality of SSI argumentation among high school students. We employed a mixed-methods approach: 56 participants completed tests of content knowledge and moral reasoning as well as interviews, related to SSI topics, which were scored based on a rubric for argumentation quality. Multiple regression analyses revealed no statistically significant relationships among content knowledge, moral reasoning, and argumentation quality. Qualitative analyses of the interview transcripts supported the quantitative results in that participants very infrequently revealed patterns of content knowledge application. However, most of the participants did perceive the SSI as moral problems. We propose a “Threshold Model of Knowledge Transfer” to account for the relationship between content knowledge and argumentation quality. Implications for science education are discussed.
Klisch, Yvonne; Miller, Leslie M.; Beier, Margaret E.; Wang, Shu
2012-01-01
A multimedia game was designed to serve as a dual-purpose intervention that aligned with National Science Content Standards, while also conveying knowledge about the consequences of alcohol consumption for a secondary school audience. A tertiary goal was to positively impact adolescents' attitudes toward science through career role-play experiences within the game. In a pretest/delayed posttest design, middle and high school students, both male and female, demonstrated significant gains on measures of content knowledge and attitudes toward science. The best predictors of these outcomes were the players' ratings of the game's usability and satisfaction with the game. The outcomes suggest that game interventions can successfully teach standards-based science content, target age-appropriate health messages, and impact students' attitudes toward science. PMID:22383621
Klisch, Yvonne; Miller, Leslie M; Beier, Margaret E; Wang, Shu
2012-01-01
A multimedia game was designed to serve as a dual-purpose intervention that aligned with National Science Content Standards, while also conveying knowledge about the consequences of alcohol consumption for a secondary school audience. A tertiary goal was to positively impact adolescents' attitudes toward science through career role-play experiences within the game. In a pretest/delayed posttest design, middle and high school students, both male and female, demonstrated significant gains on measures of content knowledge and attitudes toward science. The best predictors of these outcomes were the players' ratings of the game's usability and satisfaction with the game. The outcomes suggest that game interventions can successfully teach standards-based science content, target age-appropriate health messages, and impact students' attitudes toward science.
NASA Astrophysics Data System (ADS)
Houseal, Ana K.
Engaging elementary students in science through inquiry-based methodologies is at the center of science education reform efforts (AAAS, 1989, NRC 1996, 2000). Through scientific problem solving, students can learn that science is more than just learning facts and concepts (NRC, 2000) The process of scientific inquiry, as a way of approaching scientific problem solving, can be taught to students through experiential, authentic (or real-world) science experiences. Student-teacher-scientist partnerships (STSPs) are one vehicle used to connect students to these science experiences with practicing research scientists. However, the literature on STSPs demonstrates they are fraught with challenges and very little is known of their effects on teachers' and students' content knowledge growth or changes in their attitudes about science and scientists. This study addressed these two areas by researching a particular STSP. The STSP, called Students, Teachers, and Rangers and Research Scientists (STaRRS), designed to be incorporated into the existing long-standing education program Expedition: Yellowstone! (E:Y!) was the focus of this study. For teachers, a pre-test, intervention, post-test research design addressing content knowledge gains, attitude changes, and pedagogical changes was used. A quasi-experimental pre- post-test design using treatment and comparison groups of students addressed content knowledge gains and attitude changes. Findings provided evidence of significant positive shifts in teachers' attitudes regarding science and scientists, and trends of shifting pedagogical choices made by teachers. Students showed significant content knowledge gains and an increased positive attitude regarding their perceptions of scientists.
ERIC Educational Resources Information Center
Love, Tyler S.; Wells, John G.; Parkes, Kelly A.
2017-01-01
A modified Reformed Teaching Observation Protocol (RTOP) (Piburn & Sawada, 2000) instrument was used to separately examine eight technology and engineering (T&E) educators' teaching of science, and T&E content and practices, as called for by the "Standards for Technological Literacy: Content for the Study of Technology"…
ERIC Educational Resources Information Center
Yahaya, Jamil Mikhail; Nurulazam, Ahmad; Karpudewan, Mageswary
2016-01-01
A socioscientific issues integrated instruction was used in the study to resolve college students attitude towards sexually-themed science content. Some 200 college students participated in the study as experimental and control groups. The former consisting of 98 students from one college was taught the content using the socioscientific issues…
ERIC Educational Resources Information Center
Klosterman, Michelle L.; Sadler, Troy D.
2010-01-01
This study explored the impact of using a socioscientific issue (SSI) based curriculum on developing science content knowledge. Using a multi-level assessment design, student content knowledge gains were measured before and after implementation of a three-week unit on global warming (a prominent SSI) that explored both the relevant science content…
Science Sampler: The Use of Stations to Develop Inquiry Skills and Content for Rock Hounds
ERIC Educational Resources Information Center
Veal, William R.; Chandler, Anna T.
2008-01-01
Teaching the rock cycle can overwhelm even the most enthusiastic rock hound. As middle school science teachers, we constantly struggle with an appropriate balance between Earth system content and experiential activities. The authors have found that stations can be successfully employed to teach rock cycle content while reinforcing development of…
"Here, There, and Everywhere": Connecting Science Across The Universe
NASA Astrophysics Data System (ADS)
Watzke, Megan; Slane, P. O.; Arcand, K. K.; Lestition, K.; Edmonds, P.; Tucker, W. H.
2013-04-01
"Here, There, and Everywhere" (HTE) is a program -- conceived and developed by the Chandra Education and Public Outreach group -- that consists of a series of exhibitions, posters, and supporting hands-on activities that utilize analogies in the teaching of science, engineering, and technology to provide multi-generational and family-friendly content in English and Spanish to small community centers, libraries, under-resourced small science centers. The purpose of the program is to connect crosscutting science content (in Earth, atmospheric and planetary sciences and astrophysics) with everyday phenomena, helping to demonstrate the universality of physical laws and the connection between our everyday world and the universe as a whole to members of the public who may not identify strongly with science. The program utilizes multimodal content delivery (physical exhibits and handouts, interpretive stations, facilitated activities for educators as well as online materials) hosted by under-served locations as identified by previous partnerships as well as through advertisement of opportunities.
ERIC Educational Resources Information Center
Baker, Dale R.; Lewis, Elizabeth B.; Uysal, Sibel; Purzer, Senay; Lang, Michael; Baker, Perry
2011-01-01
This study describes the effect of embedding content in the Communication in Inquiry Science Project professional development model for science and language arts teachers. The model uses four components of successful professional development (content focus, active learning, extended duration, participation by teams of teachers from the same school…
ERIC Educational Resources Information Center
Park, Soonhye; Chen, Ying-Chih
2012-01-01
This study explored the nature of the integration of the five components of pedagogical content knowledge (PCK): (a) Orientations toward Teaching Science, (b) Knowledge of Student Understanding, (c) Knowledge of Instructional Strategies and Representations, (d) Knowledge of Science Curriculum, and (e) Knowledge of Assessment of Science Learning.…
Integrating Social Justice with Mathematics and Science: An Analysis of Student Teacher Lessons
ERIC Educational Resources Information Center
Garii, Barbara; Rule, Audrey C.
2009-01-01
Student teachers have difficulty planning lessons that fully integrate social justice with mathematics/science content. This study was a content analysis of 26 poster presentations of mathematics or science lessons incorporating social justice issues made by student teachers (20F, 6M) at a mid-sized college in central New York State. The presented…
ERIC Educational Resources Information Center
Spooner, Fred; Knight, Vicki; Browder, Diane; Jimenez, Bree; DiBiase, Warren
2011-01-01
A comprehensive review of the literature was conducted for articles published between 1985 and May 2009 to (a) examine the degree to which science content was taught to students with severe developmental disabilities and (b) and evaluate instructional procedures in science as evidence-based practices. The review was organized by a conceptual model…
ERIC Educational Resources Information Center
Wandersee, James H.; Clary, Renee M.
2007-01-01
This is an in-depth content analysis of an exemplary outdoor science signage system. The authors offer useful criteria for assessing the quality of the "opportunity to learn" within science signage systems in informal educational sites. This research may be helpful in the design or improvement of trailside interpretive signage systems.
A Mixed Methods Content Analysis of the Research Literature in Science Education
ERIC Educational Resources Information Center
Schram, Asta B.
2014-01-01
In recent years, more and more researchers in science education have been turning to the practice of combining qualitative and quantitative methods in the same study. This approach of using mixed methods creates possibilities to study the various issues that science educators encounter in more depth. In this content analysis, I evaluated 18…
ERIC Educational Resources Information Center
Tekin, Nurcan; Aslan, Oktay; Yilmaz, Suleyman
2016-01-01
Socioscientific issues (SSIs) have gained recently more importance in science education. SSIs are an important component of scientific literacy. SSIs are social dilemmas including conceptual or technological links to science. The present study aims to determine SSIs related research trends via content analyses of the articles published from 2004…
ERIC Educational Resources Information Center
Delgato, Margaret H.
2009-01-01
The purpose of this investigation was to determine the extent to which multicultural science education, including indigenous knowledge representations, had been infused within the content of high school biology textbooks. The study evaluated the textbook as an instructional tool and framework for multicultural science education instruction by…
Schaufele, Fred
2013-01-01
Förster resonance energy transfer (FRET) between fluorescent proteins (FPs) provides insights into the proximities and orientations of FPs as surrogates of the biochemical interactions and structures of the factors to which the FPs are genetically fused. As powerful as FRET methods are, technical issues have impeded their broad adoption in the biologic sciences. One hurdle to accurate and reproducible FRET microscopy measurement stems from variable fluorescence backgrounds both within a field and between different fields. Those variations introduce errors into the precise quantification of fluorescence levels on which the quantitative accuracy of FRET measurement is highly dependent. This measurement error is particularly problematic for screening campaigns since minimal well-to-well variation is necessary to faithfully identify wells with altered values. High content screening depends also upon maximizing the numbers of cells imaged, which is best achieved by low magnification high throughput microscopy. But, low magnification introduces flat-field correction issues that degrade the accuracy of background correction to cause poor reproducibility in FRET measurement. For live cell imaging, fluorescence of cell culture media in the fluorescence collection channels for the FPs commonly used for FRET analysis is a high source of background error. These signal-to-noise problems are compounded by the desire to express proteins at biologically meaningful levels that may only be marginally above the strong fluorescence background. Here, techniques are presented that correct for background fluctuations. Accurate calculation of FRET is realized even from images in which a non-flat background is 10-fold higher than the signal. PMID:23927839
NASA Astrophysics Data System (ADS)
Boyd, K.; Balgopal, M.; Birner, T.
2015-12-01
Educational outreach programs led by scientists or scientific organizations can introduce participants to science content, increase their interest in science, and help them understand the nature of science (NOS). Much of atmospheric science (AS) educational outreach to date has concentrated on teacher professional development programs, but there is still a need to study how students react to classroom programs led by scientists. The purpose of this research project is to examine student engagement with AS and NOS content when presented by a university atmospheric scientist or an Earth system science teacher. The guiding research question was: how do students interact with science experts in their classrooms compared to their teachers when learning about Earth science and NOS? The outreach program was developed by an AS faculty member and was implemented in a local 10th grade Earth Science class. The presenter used historical stories of discoveries to introduce concepts about the middle atmosphere and climate circulations, reinforcing the NOS in his interactive presentations. On a separate day the teacher implemented a lesson on plate tectonics grounded in NOS. A case study analysis is being conducted using videotaped presentations on Earth science and NOS by the teacher and the scientist, pre- and post- questionnaires, and teacher and scientist interviews in order to determine patterns in student-presenter discourse, the levels of presenters' inquiry-based questioning, and the depth of student responses around Earth science content and NOS. Preliminary results from video analysis indicate that the scientist used higher inquiry-based questioning strategies compared to the teacher; however the teacher was able to go into more depth on a topic with the lesson. Scientists must consider whether the trade-offs warrant focusing their outreach efforts on content professional development for teachers or content outreach for K-12 students.
NASA Astrophysics Data System (ADS)
Huang, Fang
This study examines elementary science content standards curriculum coherence between the People's Republic of China and the United States of America. Three aspects of curriculum coherence are examined in this study: topic inclusion, topic duration, and curriculum structure. Specifically this study centers on the following research questions: (1) What science knowledge is intended for elementary students in each country? (2) How long each topic stays in the curriculum? (3) How these topics sequence and connect with each other? (4) And finally, what is the implication for elementary science curriculum development? Four intended science curriculum frameworks were selected respectively for each country. A technique of General Topic Trace Mapping (GTTM) was applied to generate the composite science content standards out of the selected curriculum for each country. In comparison, the composite USA and Chinese elementary science content standards form a stark contrast: a bunch of broad topics vs. a focus on a set of key topics at each grade; an average of 3.4 year topic duration vs. an average of 1.68 year topic duration; a stress on connections among related ideas vs. a discrete disposition of related ideas; laundry list topic organization vs. hierarchical organization of science topics. In analyzing the interrelationships among these characteristics, this study reached implications for developing coherent science content standards: First, for the overall curriculum, the topic inclusion should reflect the logical and sequential nature of knowledge in science. Second, for each grade level, less, rather than more science topics should be focused. Third, however, it should be clarified that a balance should be made between curriculum breadth and depth by considering student needs, subject matter, and child development. Fourth, the topic duration should not be too long. The lengthy topic duration tends to undermine links among ideas as well as lead to superficial treatment of topics.
From learning science to teaching science: What transfers?
NASA Astrophysics Data System (ADS)
Harlow, Danielle Boyd
As educational researchers and teacher educators, we have the responsibility to help teachers gain the skills and knowledge necessary to provide meaningful learning activities for their students. For elementary school science, this means helping teachers create situations in which children can participate in the practices associated with scientific inquiry. Through the framework of transfer I investigated how a professional development course based on an inquiry-based physics curriculum influenced five elementary teachers teaching practices and identified the factors that led to or hindered this transfer. In this study, evidence of transfer consisted of episodes where the teachers used the ideas learned in the physics course to solve new problems such as transforming activities to be appropriate for their students and responding to unexpected students' ideas. The findings of this study highlight the many different ways that teachers use what they learn in content courses to teach science to elementary children. While some teachers transferred pedagogical practices along with the content, others transformed the content to be useful in already existing pedagogical frameworks, and still others show little or no evidence of transfer. What the teachers transferred depended upon their existing teaching context as well as their prior ideas about teaching science and physics content. Specifically, the findings of this study suggest that the teachers transferred only what they sought from the course. One implication of this study is that the sort of science training we provide teachers can affect far more than just the teachers' conceptual understanding of science and performance on written conceptual exams. Science courses have the potential to impact the sort of science education that K-5 children receive in elementary classrooms in terms of the topics taught but the way that science is represented. An additional implication is that teaching science to teachers in ways that help teachers consider how the content is useful in their classroom may facilitate transfer.
Teaching science content in nursing programs in Australia: a cross-sectional survey of academics.
Birks, Melanie; Ralph, Nicholas; Cant, Robyn; Hillman, Elspeth; Chun Tie, Ylona
2015-01-01
Professional nursing practice is informed by biological, social and behavioural sciences. In undergraduate pre-registration nursing programs, biological sciences typically include anatomy, physiology, microbiology, chemistry, physics and pharmacology. The current gap in the literature results in a lack of information about the content and depth of biological sciences being taught in nursing curricula. The aim of this study was to establish what priority is given to the teaching of science topics in these programs in order to inform an understanding of the relative importance placed on this subject area in contemporary nursing education. This study employed a cross-sectional survey method. This paper reports on the first phase of a larger project examining science content in nursing programs. An existing questionnaire was modified and delivered online for completion by academics who teach science to nurses in these programs. This paper reports on the relative priority given by respondents to the teaching of 177 topics contained in the questionnaire. Of the relatively small population of academics who teach science to nursing students, thirty (n = 30) completed the survey. Findings indicate strong support for the teaching of science in these programs, with particular priority given to the basic concepts of bioscience and gross system anatomy. Of concern, most science subject areas outside of these domains were ranked as being of moderate or low priority. While the small sample size limited the conclusions able to be drawn from this study, the findings supported previous studies that indicated inadequacies in the teaching of science content in nursing curricula. Nevertheless, these findings have raised questions about the current philosophy that underpins nursing education in Australia and whether existing practices are clearly focused on preparing students for the demands of contemporary nursing practice. Academics responsible for the design and implementation of nursing curricula are encouraged to review the content of current programs in light of the findings of this research.
Online Sea Ice Knowledge and Data Platform: www.seaiceportal.de
NASA Astrophysics Data System (ADS)
Treffeisen, R. E.; Nicolaus, M.; Bartsch, A.; Fritzsch, B.; Grosfeld, K.; Haas, C.; Hendricks, S.; Heygster, G.; Hiller, W.; Krumpen, T.; Melsheimer, C.; Nicolaus, A.; Ricker, R.; Weigelt, M.
2016-12-01
There is an increasing public interest in sea ice information from both Polar Regions, which requires up-to-date background information and data sets at different levels for various target groups. In order to serve this interest and need, seaiceportal.de (originally: meereisportal.de) was developed as a comprehensive German knowledge platform on sea ice and its snow cover in the Arctic and Antarctic. It was launched in April 2013. Since then, the content and selection of data sets increased and the data portal received increasing attention, also from the international science community. Meanwhile, we are providing near-real time and archived data of many key parameters of sea ice and its snow cover. The data sets result from measurements acquired by various platforms as well as numerical simulations. Satellite observations (e.g., AMSR2, CryoSat-2 and SMOS) of sea ice concentration, freeboard, thickness and drift are available as gridded data sets. Sea ice and snow temperatures and thickness as well as atmospheric parameters are available from autonomous ice-tethered platforms (buoys). Additional ship observations, ice station measurements, and mooring time series are compiled as data collections over the last decade. In parallel, we are continuously extending our meta-data and uncertainty information for all data sets. In addition to the data portal, seaiceportal.de provides general comprehensive background information on sea ice and snow as well as expert statements on recent observations and developments. This content is mostly in German in order to complement the various existing international sites for the German speaking public. We will present the portal, its content and function, but we are also asking for direct user feedback and are open for potential new partners.
NASA Astrophysics Data System (ADS)
Mujtaba, Tamjid; Sheldrake, Richard; Reiss, Michael J.; Simon, Shirley
2018-04-01
There is a widespread concern that relatively few students, especially those from disadvantaged backgrounds, continue to study chemistry and other science subjects after compulsory education. Yet it remains unclear how different aspects of students' background and home context, their own attitudes and beliefs, and their experiences of particular teaching approaches in school might limit or facilitate their studying aspirations; concurrently, less research has specifically focused on and surveyed disadvantaged students. In order to gain more insight, 4780 students were surveyed, covering those in Year 7 (age 11-12 years) and in Year 8 (age 12-13) from schools in England with high proportions of those from disadvantaged backgrounds. Predictive modelling highlighted that the students' aspirations to study non-compulsory science in the future, and to study the particular subject of chemistry, were strongly associated with their extrinsic motivation towards science (their perceived utility of science, considered as a means to gain particular careers or skills), their intrinsic interest in science, and their engagement in extra-curricular activities. Additionally, their self-concept beliefs (their confidence in their own abilities in science), some teaching approaches, and encouragement from teachers and family alongside family science capital had smaller but still relevant associations.