Massachusetts Science and Technology Engineering Curriculum Framework
ERIC Educational Resources Information Center
Massachusetts Department of Education, 2006
2006-01-01
This 2006 "Massachusetts Science and Technology/Engineering Curriculum Framework" provides a guide for teachers and curriculum coordinators regarding specific content to be taught from PreK through high school. Following this "Organization" chapter, the "Framework" contains the following sections: (1) Philosophy and…
ERIC Educational Resources Information Center
Palmer, Jackie; Powell, Mary Jo
The Laboratory Network Program and the National Network of Eisenhower Mathematics and Science Regional Consortia, operating as the Curriculum Frameworks Task Force, jointly convened a group of educators involved in implementing state-level mathematics or science curriculum frameworks (CF). The Hilton Head (South Carolina) conference had a dual…
History and Social Science Curriculum Framework.
ERIC Educational Resources Information Center
Massachusetts State Dept. of Education, Boston.
This curriculum framework represents the first statewide guideline for learning, teaching, and assessment in history and social science for the Commonwealth of Massachusetts's public schools. The framework is based on sound research and effective practice and reflects a vision of how classrooms can and should look to assist all students to achieve…
Science Curriculum Components Favored by Taiwanese Biology Teachers
NASA Astrophysics Data System (ADS)
Lin, Chen-Yung; Hu, Reping; Changlai, Miao-Li
2005-09-01
The new 1-9 curriculum framework in Taiwan provides a remarkable change from previous frameworks in terms of the coverage of content and the powers of teachers. This study employs a modified repertory grid technique to investigate biology teachers' preferences with regard to six curriculum components. One hundred and eighty-five in-service and pre-service biology teachers were asked to determine which science curriculum components they liked and disliked most of all to include in their biology classes. The data show that the rank order of these science curriculum components, from top to bottom, was as follows: application of science, manipulation skills, scientific concepts, social/ethical issues, problem-solving skills, and the history of science. They also showed that pre-service biology teachers, as compared with in-service biology teachers, favored problem-solving skills significantly more than manipulative skills, while in-service biology teachers, as compared with pre-service biology teachers, favored manipulative skills significantly more than problem-solving skills. Some recommendations for ensuring the successful implementation of the Taiwanese 1-9 curriculum framework are also proposed.
ERIC Educational Resources Information Center
Jacobs, Cecelia; And Others
The Science of Alcohol Curriculum for American Indians uses the Medicine Circle and the "new science paradigm" to study the science of alcohol through a culturally relevant holistic approach. Intended for teachers and other educational personnel involved with American Indians, this curriculum presents a framework for alcohol education…
ERIC Educational Resources Information Center
Jacobs, Cecelia; And Others
The Science of Alcohol Curriculum for American Indians uses the Medicine Circle and the "new science paradigm" to study the science of alcohol through a culturally relevant holistic approach. Intended for teachers and other educational personnel involved with American Indians, this curriculum aims to present a framework for alcohol…
ERIC Educational Resources Information Center
Lindberg, Andrew; And Others
This study guide is part of a curriculum entitled Science and Engineering Technician (SET) Curriculum, a program of studies which integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology. The purpose of this national curriculum development project was to provide a framework for…
A K-6 Computational Thinking Curriculum Framework: Implications for Teacher Knowledge
ERIC Educational Resources Information Center
Angeli, Charoula; Voogt, Joke; Fluck, Andrew; Webb, Mary; Cox, Margaret; Malyn-Smith, Joyce; Zagami, Jason
2016-01-01
Adding computer science as a separate school subject to the core K-6 curriculum is a complex issue with educational challenges. The authors herein address two of these challenges: (1) the design of the curriculum based on a generic computational thinking framework, and (2) the knowledge teachers need to teach the curriculum. The first issue is…
Development of a flexible higher education curriculum framework for geographic information science
NASA Astrophysics Data System (ADS)
Veenendaal, B.
2014-04-01
A wide range of geographic information science (GIScience) educational programs currently exist, the oldest now over 25 years. Offerings vary from those specifically focussed on geographic information science, to those that utilise geographic information systems in various applications and disciplines. Over the past two decades, there have been a number of initiatives to design curricula for GIScience, including the NCGIA Core Curriculum, GIS&T Body of Knowledge and the Geospatial Technology Competency Model developments. The rapid developments in geospatial technology, applications and organisations means that curricula need to constantly be updated and developed to maintain currency and relevance. This paper reviews the curriculum initiatives and outlines a new and flexible GIScience higher education curriculum framework which complements and utilises existing curricula. This new framework was applied to the GIScience programs at Curtin University in Perth, Australia which has surpassed 25 years of GIScience education. Some of the results of applying this framework are outlined and discussed.
Science Curriculum Design: Views from a Psychological Framework.
ERIC Educational Resources Information Center
Linn, Marcia C.
It is now almost universally acknowledged that science education must be rejuvenated to serve the needs of American society. An emerging science of science education based on recent advances in psychological research could make this rejuvenation dramatic. Four aspects of psychological research relevant to science curriculum design are discussed:…
ERIC Educational Resources Information Center
Debarger, Angela Haydel; Penuel, William R.; Moorthy, Savitha; Beauvineau, Yves; Kennedy, Cathleen A.; Boscardin, Christy Kim
2017-01-01
In this paper, we investigate the potential and conditions for using curriculum adaptation to support reform of science teaching and learning. With each wave of reform in science education, curriculum has played a central role and the contemporary wave focused on implementation of the principles and vision of the "Framework for K-12 Science…
A Comparative Analysis of PISA Scientific Literacy Framework in Finnish and Thai Science Curricula
ERIC Educational Resources Information Center
Sothayapetch, Pavinee; Lavonen, Jari; Juuti, Kalle
2013-01-01
A curriculum is a master plan that regulates teaching and learning. This paper compares Finnish and Thai primary school level science curricula to the PISA 2006 Scientific Literacy Framework. Curriculum comparison was made following the procedure of deductive content analysis. In the analysis, there were four main categories adopted from PISA…
The New NGSS Classroom: A Curriculum Framework for Project-Based Science Learning
ERIC Educational Resources Information Center
Holthuis, Nicole; Deutscher, Rebecca; Schultz, Susan E.; Jamshidi, Arash
2018-01-01
As schools work to implement the Next Generation Science Standards (NGSS), a team at Stanford University found that project-based learning is an effective framework for engaging students. The team used project-based learning, group activities, and performance-based assessments to design an effective, engaging curriculum. Over a three-year period,…
ERIC Educational Resources Information Center
Seleti, Yonah
Seen as a vehicle for transforming the pre-tertiary education and training system of South Africa, the new Curriculum Framework of 1997 looks to empower people for participation in a democratic society. This paper contends that, although the Curriculum Framework policy document articulates the need for a partnership between parents, teachers, the…
NASA Astrophysics Data System (ADS)
Hằng, Ngô Vũ Thu; Meijer, Marijn Roland; Bulte, Astrid M. W.; Pilot, Albert
2017-09-01
The implementation of social constructivist approaches to learning science in primary education in Vietnamese culture as an example of Confucian heritage culture remains challenging and problematic. This theoretical paper focuses on the initial phase of a design-based research approach; that is, the description of the design of a formal, written curriculum for primary science education in which features of social constructivist approaches to learning are synthesized with essential aspects of Vietnamese culture. The written design comprises learning aims, a framework that is the synthesis of learning functions, learning settings and educational expectations for learning phases, and exemplary curriculum units. Learning aims are formulated to comprehensively develop scientific knowledge, skills, and attitudes toward science for primary students. Derived from these learning aims, the designed framework consists of four learning phases respectively labeled as Engagement, Experience, Exchange, and Follow-up. The designed framework refers to knowledge of the "nature of science" education and characteristics of Vietnamese culture as an example of Confucian heritage culture. The curriculum design aims to serve as an educational product that addresses previously analyzed problems of primary science education in the Vietnamese culture in a globalizing world.
ERIC Educational Resources Information Center
Verma, Satish
A summary of an Extension Education dissertation on a study to develop a framework of curriculum and learning theory features, to determine needs of Extension agents, and to show its application to dairy science is presented. Tyler's rationale for deriving educational objectives (curriculum theory) and Bloom's taxonomy of cognitive behavior…
Science Curriculum. Kindergarten through Grade Twelve.
ERIC Educational Resources Information Center
Fitchburg State Coll., MA. Dept. of Special Education.
This science curriculum guide provides a framework for science teachers of grades K-12 in the Leominster Public School System, Massachusetts. It represents the efforts of teachers and higher education faculty. An introductory section provides a philosophical statement on the nature of science and perspectives in the learning and teaching of…
Science Curriculum Components Favored by Taiwanese Biology Teachers
ERIC Educational Resources Information Center
Lin, Chen-Yung; Hu, Reping; Changlai, Miao-Li
2005-01-01
The new 1?9 curriculum framework in Taiwan provides a remarkable change from previous frameworks in terms of the coverage of content and the powers of teachers. This study employs a modified repertory grid technique to investigate biology teachers' preferences with regard to six curriculum components. One hundred and eighty-five in-service and…
Analyzing Science Activities in Force and Motion Concepts: A Design of an Immersion Unit
ERIC Educational Resources Information Center
Ayar, Mehmet C.; Aydeniz, Mehmet; Yalvac, Bugrahan
2015-01-01
In this paper, we analyze the science activities offered at 7th grade in the Turkish science and technology curriculum along with addressing the curriculum's original intent. We refer to several science education researchers' ideas, including Chinn & Malhotra's (Science Education, 86:175--218, 2002) theoretical framework and Edelson's (1998)…
Engaging Young Children in Collective Curriculum Design
ERIC Educational Resources Information Center
Goulart, Maria Ines Mafra; Roth, Wolff-Michael
2010-01-01
In this study we investigate how 5-year-old children in Brazil and their teachers collectively design science curriculum. More specifically, we develop an agency|structure dialectic as a framework to describe this collective praxis in which science curriculum may emerge as the result of children-teacher transactions rather than as a result of…
ERIC Educational Resources Information Center
Doabler, Christian T.; Clarke, Ben; Fien, Hank; Baker, Scott K.; Kosty, Derek B.; Cary, Mari Strand
2015-01-01
The production of an effective mathematics curriculum begins with a scientific development, evaluation, and revision framework. The purpose of this study was to conduct an initial investigation of a recently developed Tier 2 mathematics curriculum designed to improve the outcomes of first grade students at risk for mathematics difficulties (MD).…
An Academic/Vocational Curriculum Partnership: Home Economics and Science.
ERIC Educational Resources Information Center
Smith, Frances M.; Hausafus, Cheryl O.
1993-01-01
Proposes middle-school curriculum integrating two diverse disciplines (home economics and science), incorporates social issues, and deals with fundamental concerns of young adolescents. Three major areas are included in framework: food additives for appeal, science of textile fibers, and chemistry of household cleaning. All should be taught by…
ERIC Educational Resources Information Center
Cole, Henry P.
This paper examines the sequence and hierarchy of objectives in the American Association for the Advancement of Science (AAAS) "Science--A Process Approach" curriculum. The work of Piaget, Bruner forms a framework from which the learning objectives and tasks in the AAAS science curriculum are examined. The points of correspondence…
ERIC Educational Resources Information Center
Hickman, Faith M.; And Others
The Science/Technology/Society (STS) theme describes a contemporary trend in education which focuses on the teaching of issues such as air quality, nuclear power, land use, and water resources but justification for including STS in the high school core curriculum has a precedence based on historical connections among science, technology, and…
ERIC Educational Resources Information Center
Ogunniyi, M. B.
2011-01-01
The mandate of the new South African curriculum for educators to enact a science-indigenous knowledge curriculum in their classrooms is not only challenging to their cosmological beliefs, it is equally challenging to their instructional practices. This is because science educators (teachers) in South Africa have been schooled largely in western…
The Next Generation Science Standards: A Focus on Physical Science
ERIC Educational Resources Information Center
Krajcik, Joe
2013-01-01
This article describes ways to adapt U.S. science curriculum to the U.S. National Research Council (NRC) "Framework for K-12 Science Education" and "Next Generation of Science Standards" (NGSS), noting their focus on teaching the physical sciences. The overall goal of the Framework and NGSS is to help all learners develop the…
ERIC Educational Resources Information Center
Sun, Daner; Looi, Chee-Kit; Wu, Longkai; Xie, Wenting
2016-01-01
With advancements made in mobile technology, increasing emphasis has been paid to how to leverage the affordances of mobile technology to improve science learning and instruction. This paper reports on a science curriculum supported by an inquiry-based framework and mobile technologies. It was developed by teachers and researchers in a multiyear…
ERIC Educational Resources Information Center
Ballinger, Jack T.; Wolf, Lawrence J.
This study guide is part of a program of studies entitled the Science and Engineering Technician (SET) Curriculum developed to provide a framework for training technicians in the use of electronic instruments and their applications. This interdisciplinary course of study integrates elements from the disciplines of chemistry, physics, mathematics,…
ERIC Educational Resources Information Center
Nargund-Joshi, Vanashri
2012-01-01
This study explores the concepts and behaviors, otherwise referred to as "orientations", of six Indian science teachers and the alignment of these orientations to the 2005 India National Curriculum Framework (NCF-2005). Differences in teachers' orientations across grade bands (elementary, middle, and secondary) and school types (public…
The Nation's Report Card Science 2009 State Snapshot Report. DoDEA. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. DoDEA. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. New Hampshire. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
The Nation's Report Card Science 2009 State Snapshot Report. New Mexico. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. New Mexico. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Colorado. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Colorado. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter,…
The Nation's Report Card Science 2009 State Snapshot Report. Hawaii. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Wisconsin. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Ohio. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Florida. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Ohio. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Arizona. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Mississippi. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Alabama. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Michigan. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Arkansas. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Georgia. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Oklahoma. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. New Jersey. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Missouri. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Illinois. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Idaho. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. South Dakota. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Louisiana. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. New Jersey. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Maine. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Wisconsin. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Connecticut. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Montana. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Maryland. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Mississippi. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Maryland. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Tennessee. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Hawaii. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Wyoming. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Minnesota. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. New York. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Louisiana. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Illinois. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Indiana. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Oregon. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Connecticut. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Oregon. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Idaho. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Alabama. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Arizona. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. New York. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Iowa. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Delaware. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. West Virginia. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Florida. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter,…
The Nation's Report Card Science 2009 State Snapshot Report. North Dakota. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. California. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Rhode Island. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Minnesota. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. North Carolina. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Utah. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. North Dakota. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. California. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Kentucky. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Pennsylvania. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Oklahoma. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. South Carolina. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Maine. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Tennessee. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Rhode Island. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Texas. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Iowa. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Washington. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. New Hampshire. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Massachusetts. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Washington. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Arkansas. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Georgia. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Indiana. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Missouri. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. West Virginia. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Montana. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Nevada. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Massachusetts. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
Sneider, Cary; Stephenson, Chris; Schafer, Bruce; Flick, Larry
2014-01-01
A "Framework for K-12 Science Education" identified eight practices as "essential elements of the K-12 science and engineering curriculum" (NRC 2012, p. 49). Most of the practices, such as Developing and Using Models, Planning and Carrying Out Investigations, and Analyzing and Interpreting Data, are well known among science…
ERIC Educational Resources Information Center
Erduran, Sibel; Dagher, Zoubeida R.
2014-01-01
The Irish national discourse on curriculum and assessment reform at the Junior Cycle level has been fraught with controversy in the past two years. The introduction of the new curriculum and assessment framework in 2012 by the then Minister of Education, Ruairi Quinn has led to significant media coverage and teacher union response. In this paper,…
ERIC Educational Resources Information Center
Monroy, Carlos; Rangel, Virginia Snodgrass; Whitaker, Reid
2014-01-01
In this paper, we discuss a scalable approach for integrating learning analytics into an online K-12 science curriculum. A description of the curriculum and the underlying pedagogical framework is followed by a discussion of the challenges to be tackled as part of this integration. We include examples of data visualization based on teacher usage…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
NASA Astrophysics Data System (ADS)
Symeonidis, Iphigenia Sofia
This paper aims to elucidate guiding concepts for the design of powerful undergraduate bioinformatics degrees which will lead to a conceptual framework for the curriculum. "Powerful" here should be understood as having truly bioinformatics objectives rather than enrichment of existing computer science or life science degrees on which bioinformatics degrees are often based. As such, the conceptual framework will be one which aims to demonstrate intellectual honesty in regards to the field of bioinformatics. A synthesis/conceptual analysis approach was followed as elaborated by Hurd (1983). The approach takes into account the following: bioinfonnatics educational needs and goals as expressed by different authorities, five undergraduate bioinformatics degrees case-studies, educational implications of bioinformatics as a technoscience and approaches to curriculum design promoting interdisciplinarity and integration. Given these considerations, guiding concepts emerged and a conceptual framework was elaborated. The practice of bioinformatics was given a closer look, which led to defining tool-integration skills and tool-thinking capacity as crucial areas of the bioinformatics activities spectrum. It was argued, finally, that a process-based curriculum as a variation of a concept-based curriculum (where the concepts are processes) might be more conducive to the teaching of bioinformatics given a foundational first year of integrated science education as envisioned by Bialek and Botstein (2004). Furthermore, the curriculum design needs to define new avenues of communication and learning which bypass the traditional disciplinary barriers of academic settings as undertaken by Tador and Tidmor (2005) for graduate studies.
NASA Astrophysics Data System (ADS)
Pritchard, Russell D.
This study was designed to determine the strength of the relationship between a nation's human capital in the form of the "Notions of Science" (NOS) and the growth rate of gross domestic product per capita for 43 countries during the years 1988 through 1998. This relationship was studied from two perspectives: first, the study sought to determine if there was a significant relationship between a country's NOS and its growth rate in gross domestic per capita; second, the study sought to determine if the NOS had a greater relationship with the growth rate of gross domestic product per capita than a more commonly used measure of human capital, amount of schooling. The NOS for the participating countries were proxied by the percentage of a country's science curriculum devoted to teaching the NOS. The science curricula used in this study were obtained from the International Association for the Evaluation of Educational Achievement's (IEA) Curriculum Frameworks for Mathematics and Science. These curricular frameworks were written as one part of the Third International Math and Science Study (TIMSS). The NOS were extracted from the science curriculum frameworks through the construction of a content-by-cognitive-behavior-grid. The categories, or codes, for the NOS used in this grid were based on the work of Clarence Irving Lewis in Mind and the World Order. Holding several other explanatory variables constant, the NOS percentage for each country were regressed against each country's average growth rate of gross domestic product per capita for the period of 1988 through 1998. The results indicate that there was not a significant relationship between human capital, as proxied by the percentage of the curriculum devoted to the notions of science, and a country's economic growth rate. Because the regression coefficient for the NOS was not statistically significant, this study was not able to determine if the NOS had a stronger relationship with growth in GDP per capita than years of schooling.
ERIC Educational Resources Information Center
Kind, Per Morten
2013-01-01
The paper analyzes conceptualizations in the science frameworks in three large-scale assessments, Trends in Mathematics and Science Study (TIMSS), Programme for International Student Assessment (PISA), and National Assessment of Educational Progress (NAEP). The assessments have a shared history, but have developed different conceptualizations. The…
ERIC Educational Resources Information Center
Jacobs, Cecelia; Smiley-Marquez, Carolyna
People generally learn best when information is presented to them in a culturally and socially relevant context or framework. This issue is addressed by the Science of Alcohol Curriculum for American Indians through the use of the Medicine Circle, a model that represents the concepts of wholeness, interconnectedness, and balance in a manner…
ERIC Educational Resources Information Center
American Indian Science and Engineering Society, Boulder, CO.
This curriculum provides American Indian youth with a framework for learning about the effects of alcohol on the body and the community. The curriculum stresses the development of scientific thinking skills and was designed for upper elementary and middle level students. The guide consists of four units: How Does Alcohol Circulate through the Body…
Science Education as Public and Social Wealth: The Notion of Citizenship from a European Perspective
ERIC Educational Resources Information Center
Siatras, Anastasios; Koumaras, Panagiotis
2013-01-01
In this paper, (a) we present a framework for developing a science content (i.e., science concepts, scientific methods, scientific mindset, and problem-solving strategies for socio-scientific issues) used to design the new Cypriot science curriculum aiming at ensuring a democratic and human society, (b) we use the previous framework to explore the…
Carroll County hands-on elementary science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herlocker, H.G.; Dunkleberger, G.L.
1994-12-31
Carroll County Hands-on Elementary Science is a nationally recognized Elementary Science Curriculum which has been disseminated in forty states, Puerto Rico, The Virgin Islands, Saipan, and Samoa. The curriculum is a non-textbook, process-based, constructivist approach to teaching science. Unique features of this curriculum include its teacher-written daily lesson plan format, its complete kit of science supplies, and its complete set of Spanish materials. In order to be included by the National Diffusion Network, Hands-on Elementary Science collected data to support the following claims: the program enhances teacher and student attitudes toward science; the program changes both the amount and themore » type of science instruction; the program is adaptable and transportable; the teacher training component is effective. The poster display will feature sample activities, data which demonstrates the effectiveness of the staff development plan, and samples which show the degree to which the program supports selected state curriculum frameworks.« less
Towards a Philosophically and a Pedagogically Reasonable Nature of Science Curriculum
NASA Astrophysics Data System (ADS)
Yacoubian, Hagop Azad
This study, primarily theoretical in nature, explores a philosophically and pedagogically reasonable way of addressing nature of science (NOS) in school science. NOS encompasses what science is and how scientific knowledge develops. I critically evaluate consensus frameworks of NOS in school science, which converge contentious philosophical viewpoints into general NOS-related ideas. I argue that they (1) lack clarity in terms of how NOS-related ideas could be applied for various ends, (2) portray a distorted image of the substantive content of NOS and the process of its development, and (3) lack a developmental trajectory for how to address NOS at different grade levels. As a remedy to these problems, I envision a NOS curriculum that (1) explicates and targets both NOS as an educational end and NOS as a means for socioscientific decision making, (2) has critical thinking as its foundational pillar, and (3) provides a developmental pathway for NOS learning using critical thinking as a progression unit. Next, I illustrate a framework for addressing NOS in school science referred to as the critical thinking—nature of science (CT-NOS) framework. This framework brings together the first two of the three elements envisioned in the NOS curriculum. I address the third element by situating the CT-NOS framework in a developmental context, borrowing from the literature on learning progressions in science and using critical thinking as a progression unit. Finally, I present an empirical study of experienced secondary science teachers’ views of a NOS lesson prepared using the CT-NOS framework. The teachers attended a professional development workshop at which the lesson, and the characteristics of the CT-NOS framework, were presented. The analysis of the qualitative data revealed that most teachers found the lesson to be somewhat feasible for a secondary science classroom, useful or somewhat useful to their students, and interesting. The teachers focused on 14 features of the lesson in their judgments and recommendations. The study revealed a number of teacher challenges generally related to critical thinking and its teaching as well as to the distinction between critical thinking about NOS and critical thinking with NOS.
ERIC Educational Resources Information Center
Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.
This document, which is intended for use by community and junior colleges throughout Mississippi, contains curriculum frameworks for the course sequences in the state's funeral services technology program. Presented in the introduction are a program description and suggested course sequence. Section I lists baseline competencies for the funeral…
Teaching And Learning Tectonics With Web-GIS
NASA Astrophysics Data System (ADS)
Anastasio, D. J.; Sahagian, D. L.; Bodzin, A.; Teletzke, A. L.; Rutzmoser, S.; Cirucci, L.; Bressler, D.; Burrows, J. E.
2012-12-01
Tectonics is a new curriculum enhancement consisting of six Web GIS investigations designed to augment a traditional middle school Earth science curriculum. The investigations are aligned to Disciplinary Core Ideas: Earth and Space Science from the National Research Council's (2012) Framework for K-12 Science Education and to tectonics benchmark ideas articulated in the AAAS Project 2061 (2007) Atlas of Science Literacy. The curriculum emphasizes geospatial thinking and scientific inquiry and consists of the following modules: Geohazards, which plate boundary is closest to me? How do we recognize plate boundaries? How does thermal energy move around the Earth? What happens when plates diverge? What happens when plate move sideways past each other? What happens when plates collide? The Web GIS interface uses JavaScript for simplicity, intuition, and convenience for implementation on a variety of platforms making it easier for diverse middle school learners and their teachers to conduct authentic Earth science investigations, including multidisciplinary visualization, analysis, and synthesis of data. Instructional adaptations allow students who are English language learners, have disabilities, or are reluctant readers to perform advanced desktop GIS functions including spatial analysis, map visualization and query. The Web GIS interface integrates graphics, multimedia, and animation in addition to newly developed features, which allow users to explore and discover geospatial patterns that would not be easily visible using typical classroom instructional materials. The Tectonics curriculum uses a spatial learning design model that incorporates a related set of frameworks and design principles. The framework builds on the work of other successful technology-integrated curriculum projects and includes, alignment of materials and assessments with learning goals, casting key ideas in real-world problems, engaging students in scientific practices that foster the use of key ideas, uses geospatial technology, and supports for teachers in adopting and implementing GIS and inquiry-based activities.
The Use of Ethical Frameworks for Implementing Science as a Human Endeavour in Year 10 Biology
ERIC Educational Resources Information Center
Yap, Siew Fong; Dawson, Vaille
2014-01-01
This research focuses on the use of ethical frameworks as a pedagogical model for socio-scientific education in implementing the "Science as a Human Endeavour" (SHE) strand of the Australian Curriculum: Science in a Year 10 biology class in a Christian college in metropolitan Perth, Western Australia. Using a case study approach, a mixed…
ERIC Educational Resources Information Center
Chunrasaksakun, Chunwadee
2015-01-01
The aim of this study is to investigate the effects of training teachers to enhance their students' achievements in water resource and disaster course and to compare the effects of using the curriculum framework between training teachers or using curriculum framework in the secondary schools in Khon Kaen Province of Thailand. It was found that the…
ERIC Educational Resources Information Center
Maloy, Robert W.; Poirier, Michelle; Smith, Hilary K.; Edwards, Sharon A.
2010-01-01
This article explores using a wiki, one of the newest forms of interactive computer-based technology, as a resource for teaching the Massachusetts K-12 History and Social Science Curriculum Framework, a set of state-mandated learning standards. Wikis are web pages that can be easily edited by multiple authors. They invite active involvement by…
NASA Astrophysics Data System (ADS)
Sun, Daner; Looi, Chee-Kit; Wu, Longkai; Xie, Wenting
2016-08-01
With advancements made in mobile technology, increasing emphasis has been paid to how to leverage the affordances of mobile technology to improve science learning and instruction. This paper reports on a science curriculum supported by an inquiry-based framework and mobile technologies. It was developed by teachers and researchers in a multiyear program of school-based research. The foci of this paper is on the design principles of the curriculum and its enactment, and the establishment of a teacher learning community. Through elucidating the design features of the innovative curriculum and evaluating teacher and student involvement in science instruction and learning, we introduce the science curriculum, called Mobilized 5E Science Curriculum (M5ESC), and present a representative case study of how one experienced teacher and her class adopted the curriculum. The findings indicate the intervention promoted this teacher's questioning competency, enabled her to interact with students frequently and flexibly in class, and supported her technology use for promoting different levels of cognition. Student learning was also improved in terms of test achievement and activity performance in and out of the classroom. We propose that the study can be used to guide the learning design of mobile technology-supported curricula, as well as teacher professional development for curriculum enactment.
Content Area Literacy: Individualizing Student Instruction in Second-Grade Science
ERIC Educational Resources Information Center
Connor, Carol McDonald; Kaya, Sibel; Luck, Melissa; Toste, Jessica R.; Canto, Angela; Rice, Diana; Tani, Novell; Underwood, Phyllis S.
2010-01-01
This study describes a second-grade science curriculum designed to individualize student instruction (ISI-Science) so that students, regardless of initial science and literacy skills, gain science knowledge and reading skills. ISI-Science relies on the 5-E Learning Cycle as a framework and incorporates flexible, homogeneous, literacy skills-based…
Next Generation Science Partnerships
NASA Astrophysics Data System (ADS)
Magnusson, J.
2016-02-01
I will provide an overview of the Next Generation Science Standards (NGSS) and demonstrate how scientists and educators can use these standards to strengthen and enhance their collaborations. The NGSS are rich in content and practice and provide all students with an internationally-benchmarked science education. Using these state-led standards to guide outreach efforts can help develop and sustain effective and mutually beneficial teacher-researcher partnerships. Aligning outreach with the three dimensions of the standards can help make research relevant for target audiences by intentionally addressing the science practices, cross-cutting concepts, and disciplinary core ideas of the K-12 science curriculum that drives instruction and assessment. Collaborations between researchers and educators that are based on this science framework are more sustainable because they address the needs of both scientists and educators. Educators are better able to utilize science content that aligns with their curriculum. Scientists who learn about the NGSS can better understand the frameworks under which educators work, which can lead to more extensive and focused outreach with teachers as partners. Based on this model, the International Ocean Discovery Program (IODP) develops its education materials in conjunction with scientists and educators to produce accurate, standards-aligned activities and curriculum-based interactions with researchers. I will highlight examples of IODP's current, successful teacher-researcher collaborations that are intentionally aligned with the NGSS.
ERIC Educational Resources Information Center
Seethaler, Sherry; Linn, Marcia
2004-01-01
To understand how students learn about science controversy, this study examines students' reasoning about tradeoffs in the context of a technology-enhanced curriculum about genetically modified food. The curriculum was designed and refined based on the Scaffolded Knowledge Integration Framework to help students sort and integrate their initial…
Developing a Phonological Awareness Curriculum: Reflections on an Implementation Science Framework
ERIC Educational Resources Information Center
Goldstein, Howard; Olszewski, Arnold
2015-01-01
Purpose: This article describes the process of developing and implementing a supplemental early literacy curriculum designed for preschoolers demonstrating delays in literacy development. Method: Intervention research and implementation research have traditionally been viewed as sequential processes. This article illustrates a process of…
Gonzalo, Jed D; Haidet, Paul; Papp, Klara K; Wolpaw, Daniel R; Moser, Eileen; Wittenstein, Robin D; Wolpaw, Terry
2017-01-01
In the face of a fragmented and poorly performing health care delivery system, medical education in the United States is poised for disruption. Despite broad-based recommendations to better align physician training with societal needs, adaptive change has been slow. Traditionally, medical education has focused on the basic and clinical sciences, largely removed from the newer systems sciences such as population health, policy, financing, health care delivery, and teamwork. In this article, authors examine the current state of medical education with respect to systems sciences and propose a new framework for educating physicians in adapting to and practicing in systems-based environments. Specifically, the authors propose an educational shift from a two-pillar framework to a three-pillar framework where basic, clinical, and systems sciences are interdependent. In this new three-pillar framework, students not only learn the interconnectivity in the basic, clinical, and systems sciences but also uncover relevance and meaning in their education through authentic, value-added, and patient-centered roles as navigators within the health care system. Authors describe the Systems Navigation Curriculum, currently implemented for all students at the Penn State College of Medicine, as an example of this three-pillar educational model. Simple adjustments, such as including occasional systems topics in medical curriculum, will not foster graduates prepared to practice in the 21st-century health care system. Adequate preparation requires an explicit focus on the systems sciences as a vital and equal component of physician education.
The New Curriculum Standards for Astronomy in the United States
NASA Astrophysics Data System (ADS)
Schleigh, Sharon P.; Slater, Stephanie J.; Slater, Timothy F.; Stork, Debra J.
2015-12-01
There is widespread interest in constraining the wide range and vast domain of the possible topics one might teach about astronomy into a manageable framework. Although there is no mandated national curriculum in the United States, an analysis of the three recent national efforts to create an age-appropriate sequence of astronomy concepts to be taught in primary and secondary schools reveals a considerable lack of consensus of which concepts are most age-appropriate and which topics should be covered. The most recent standardization framework for US science education, the Next Generation Science Standards, suggests that most astronomy concepts should be taught only in the last years of one’s education; however, the framework has been met with considerable criticism. A comparison of astronomy learning frameworks in the United States, and a brief discussion of their criticisms, might provide international astronomy educators with comparison data in formulating recommendations in their own regions.
NASA Astrophysics Data System (ADS)
Huang, Fang
This study examines elementary science content standards curriculum coherence between the People's Republic of China and the United States of America. Three aspects of curriculum coherence are examined in this study: topic inclusion, topic duration, and curriculum structure. Specifically this study centers on the following research questions: (1) What science knowledge is intended for elementary students in each country? (2) How long each topic stays in the curriculum? (3) How these topics sequence and connect with each other? (4) And finally, what is the implication for elementary science curriculum development? Four intended science curriculum frameworks were selected respectively for each country. A technique of General Topic Trace Mapping (GTTM) was applied to generate the composite science content standards out of the selected curriculum for each country. In comparison, the composite USA and Chinese elementary science content standards form a stark contrast: a bunch of broad topics vs. a focus on a set of key topics at each grade; an average of 3.4 year topic duration vs. an average of 1.68 year topic duration; a stress on connections among related ideas vs. a discrete disposition of related ideas; laundry list topic organization vs. hierarchical organization of science topics. In analyzing the interrelationships among these characteristics, this study reached implications for developing coherent science content standards: First, for the overall curriculum, the topic inclusion should reflect the logical and sequential nature of knowledge in science. Second, for each grade level, less, rather than more science topics should be focused. Third, however, it should be clarified that a balance should be made between curriculum breadth and depth by considering student needs, subject matter, and child development. Fourth, the topic duration should not be too long. The lengthy topic duration tends to undermine links among ideas as well as lead to superficial treatment of topics.
ERIC Educational Resources Information Center
Bowen, Barbara Lynn
This study presents a holistic framework which can be used as a basis for decision-making at various points in the curriculum-instruction development process as described by Johnson in a work published in 1967. The proposed framework has conceptual bases in the work of Thomas S. Kuhn and David P. Ausubel and utilizes the work of several perceptual…
NASA Astrophysics Data System (ADS)
Weiss, E.; Skene, J.; Tran, L.
2011-12-01
Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, there are few high quality curricula available to teachers that address these topics in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8 aims to address this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. The Ocean Sciences Sequence for Grades 6-8 is developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified GEMS (Great Explorations in Math & Science) curriculum development team. Scientists are active partners throughout the whole development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. As with all GEMS Sequences, the Ocean Sciences Sequence for Grades 6-8 is designed to provide significant scientific and educational depth, systematic assessments and informational readings, and incorporate new learning technologies. The goal is to focus strategically and effectively on the core concepts within ocean and climate sciences that students need to understand. This curriculum is designed in accordance with the latest research from the learning sciences, and provides numerous opportunities for students to develop inquiry skills and abilities as they learn about the practice of science through hands-on activities. The Ocean Sciences Sequence for Grades 6-8 addresses in depth a significant number of national, state, and district standards and benchmarks. It aligns with the Ocean Literacy and Climate Literacy Frameworks, as well as multiple core ideas in the new National Academy of Sciences Framework for K-12 Science Education. In brief, the curriculum comprises 33 45-minute sessions organized into three thematic units that are each driven by an exploratory question: Unit 1 (11 sessions)-How do the ocean and atmosphere interact?; Unit 2 (8 sessions)-How does carbon flow through the ocean, land, and atmosphere?; and Unit 3 (12 sessions)-What are the causes and effects of climate change? The curriculum deliberately explores the ocean and climate as global systems, and challenges students to use scientific evidence to make explanations about climate change. The Ocean Sciences Sequence for Grades 6-8 is currently being classroom tested by teachers across the United States in a wide variety of classroom settings. Evaluation is also being undertaken to determine the efficacy of the sequence in addressing the curriculum's learning goals.
Understanding How Adolescents with Reading Difficulties Utilize Technology-Based Tools
ERIC Educational Resources Information Center
Marino, Matthew T.
2009-01-01
This article reports the findings from a study that examined how adolescent students with reading difficulties utilized cognitive tools that were embedded in a technology-based middle school science curriculum. The curriculum contained salient features of the Universal Design for Learning (UDL) theoretical framework. Sixteen general education…
ERIC Educational Resources Information Center
Franzen, Susan; Bannon, Colleen M.
2016-01-01
The ACRL's "Framework for Information Literacy for Higher Education" offers the opportunity to rethink information literacy teaching and curriculum. However, the ACRL's rescinded "Information Literacy Competency Standards for Higher Education" correlate with the preferred research and decision-making model of the health…
NASA Astrophysics Data System (ADS)
Veenendaal, B.
2014-04-01
A wide range of geographic information science (GIScience) educational programs currently exist, the oldest now over 25 years. Offerings vary from those specifically focussed on geographic information science, to those that utilise geographic information systems in various applications and disciplines. Over the past two decades, there have been a number of initiatives to design curricula for GIScience, including the NCGIA Core Curriculum, GIS&T Body of Knowledge and the Geospatial Technology Competency Model developments. The rapid developments in geospatial technology, applications and organisations have added to the challenges that higher educational institutions face in order to ensure that GIScience education is relevant and responsive to the changing needs of students and industry. This paper discusses some of the challenges being faced in higher education in general, and GIScience education in particular, and outlines a flexible higher education curriculum framework for GIScience.
Affordances of ICT in Science Learning: Implications for an Integrated Pedagogy. Research Report
ERIC Educational Resources Information Center
Webb, Mary E.
2005-01-01
This paper presents an analysis of how affordances of ICT-rich environments identified from a recent review of the research literature can support students in learning science in schools within a proposed framework for pedagogical practice in science education. Furthermore other pedagogical and curriculum innovations in science education…
Earth Science Education for the 21st Century: A Planning Guide.
ERIC Educational Resources Information Center
American Geological Inst., Alexandria, VA.
In response to the growing national concern about precollege science education, this guide was developed to assist school administrators, curriculum planners, teachers, and scientists in incorporating earth science in K-12 science curricula. The guide is divided into four main sections that provide a framework for planning and implementing earth…
Gender, Science, & the Undergraduate Curriculum. Building Two-Way Streets.
ERIC Educational Resources Information Center
Musil, Caryn McTighe, Ed.
In the essays in this book interdisciplinary groups of scholars and teachers explore ways to integrate the feminist science studies scholarship into the teaching of basic science and how to insert more basic science into the teaching of women's studies. The essays of part 1, New Courses and New Intellectual Frameworks: Transforming Courses in…
Relativism, Values and Morals in the New Zealand Curriculum Framework
NASA Astrophysics Data System (ADS)
Jorgensen, Lone Morris; Ryan, Sueann
The New Zealand Curriculum Framework, 1993, is the official document for teaching, learning and assessment in New Zealand schools. It consists of a set of curriculum statements, which define the learning principles, achievement aims and essential skills for seven learning areas. It also indicates the place of attitudes and values in the school curriculum. This paper investigates the requirements for teaching attitudes, values and ethics in the curriculum statements for Science, Biology and Technology. The question is raised whether the teaching of skills for resolving moral and ethical dilemmas are required by the official education standards in New Zealand, and internationally. The paper reports on a survey done on pre-service teacher trainees of their understanding of these requirements. Implications for courses that might need to be provided in future pre-service teacher education programmes are briefly discussed.
Engineering Design Skills Coverage in K-12 Engineering Program Curriculum Materials in the USA
ERIC Educational Resources Information Center
Chabalengula, Vivien M.; Mumba, Frackson
2017-01-01
The current "K-12 Science Education framework" and "Next Generation Science Standards" (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed…
A Curriculum Innovation Framework for Science, Technology and Mathematics Education
ERIC Educational Resources Information Center
Tytler, Russell; Symington, David; Smith, Craig
2011-01-01
There is growing concern about falling levels of student engagement with school science, as evidenced by studies of student attitudes, and decreasing participation at the post compulsory level. One major response to this, the Australian School Innovation in Science, Technology and Mathematics (ASISTM) initiative, involves partnerships between…
ERIC Educational Resources Information Center
du Plessis, H.; van Niekerk, A.
2012-01-01
Geographical information science (GISc) is one of the fastest growing industries worldwide. Being a relatively new discipline, universities often provide training as part of geography, surveying, town planning, environmental and computer science programmes. This complicates professional accreditation assessments as the content, outcomes, extent…
NASA Astrophysics Data System (ADS)
Dentzau, Michael W.
2014-03-01
This commentary seeks to expand the dialogue on place-based science education presented in Katie Lynn Brkich's article, where the connections fifth grade students make between their formal earth science curriculum and their lived experiences are highlighted. The disconnect between the curriculum the students are offered and their immediate environment is clear, and we are presented with examples of how they strive to make connections between the content and what they are familiar with—namely their surroundings. "Place" is identified as a term with complex meanings and interpretations, even in the scope of place-based science education, and understanding how the term is used in any given scenario is essential to understanding the implications of place-based education. Is place used as a location, locale or a sense of place? To understand "place" is to acknowledge that for the individual, it is highly situational, cultural and personal. It is just such attributes that make place-based education appealing, and potentially powerful, pedagogically on one hand, yet complex for implementation on the other. The argument is posed that place is particularly important in the context of education about the environment, which in its simplest manifestation, connects formal science curriculum to resources that are local and tangible to students. The incorporation of place in such a framework seeks to bridge the gap between formal school science subjects and students' lived experiences, yet acknowledges the tensions that can arise between accommodating place meanings and the desire to acculturate students into the language of the scientific community. The disconnect between guiding policy frameworks and the reality of the Next Generation Science Standards is addressed opening an avenue for further discussion of the importance of socio-cultural frameworks of science learning in an ever increasing era of accountability.
Defining a competency framework: the first step toward competency-based medical education.
Mirzazadeh, Azim; Mortaz Hejri, Sara; Jalili, Mohammad; Asghari, Fariba; Labaf, Ali; Sedaghat Siyahkal, Mojtaba; Afshari, Ali; Saleh, Narges
2014-01-01
Despite the existence of a large variety of competency frameworks for medical graduates, there is no agreement on a single set of outcomes. Different countries have attempted to define their own set of competencies to respond to their local situations. This article reports the process of developing medical graduates' competency framework as the first step in the curriculum reform in Tehran University of Medical Sciences (TUMS). A participatory approach was applied to develop a competency framework in Tehran University of Medical Sciences (TUMS). Following literature review, nominal group meetings with students and faculty members were held to generate the initial list of expectations, and 9 domains was proposed. Then, domains were reviewed, and one of the domains was removed. The competency framework was sent to Curriculum Reform Committee for consideration and approval, where it was decided to distribute electronic and paper forms among all faculty members and ask them for their comments. Following incorporating some of the modifications, the document was approved by the committee. The TUMS competency framework consists of 8 domains: Clinical skills; Communication skills; Patient management; Health promotion and disease prevention; Personal development; Professionalism, medical ethics and law; Decision making, reasoning and problem-solving; and Health system and the corresponding role of physicians. Development of a competency framework through a participatory approach was the first step towards curriculum reform in TUMS, aligned with local needs and conditions. The lessons learned through the process may be useful for similar projects in the future.
Language Choice for Science Education: Policy and Practice
ERIC Educational Resources Information Center
Mifsud, Jordan; Farrugia, Josette
2017-01-01
The Maltese National Minimum Curriculum published in 1999 sought to strengthen bilingualism by reinforcing the practice of teaching and assessing some subjects in English and others in Maltese. It also pointed out that code-switching should only be used in cases of severe pedagogical difficulties. As a new National Curriculum Framework was being…
Using a Backward Design Approach to Embed Assessment in Teaching
ERIC Educational Resources Information Center
Whitehouse, Mary
2014-01-01
Backward design provides a framework for curriculum planning that can be used at unit, course or school level. The approach places assessment at the heart of the planning process. In this article the ideas of backward design are outlined and their application to a current curriculum development project, York Science, is described.
NASA Astrophysics Data System (ADS)
Tzou, Carrie Teh-Li
Science education reform emphasizes learning science through inquiry as a way to engage students in the processes of science at the same time that they learn scientific concepts. However, inquiry involves practices that are challenging for students because they have underlying norms with which students may be unfamiliar. We therefore cannot expect students to know how to engage in such practices simply by giving them opportunities to do so, especially if the norms for inquiry practices violate traditional classroom norms for engaging with scientific ideas. Teachers therefore play a key role in communicating expectations for inquiry. In this dissertation, I present an analytical framework for characterizing two teachers' enactments of an inquiry curriculum. This framework, based on Gee's (1996) notion of Discourses, describes inquiry practices in terms of three dimensions: cognitive, social, and linguistic. I argue that each of these dimensions presents challenges to students and, therefore, sites at which teachers' support is important for students' participation in inquiry practices. I use this framework to analyze two teachers' support of inquiry practices as they enact an inquiry-based curriculum. I explore three questions in my study: (1) what is the nature of teachers' support of inquiry practices? (2) how do teachers accomplish goals along multiple dimensions of inquiry?, and (3) what aspects of inquiry are in tension and how can we describe teachers' practice in terms of the tradeoff spaces between elements of inquiry in tension? In order to study these questions, I studied two eighth grade teachers who both enacted the same inquiry-based science curriculum developed by me and others in the context of a large design-based research project called IQWST (Investigating and Questioning my World through Science and Technology. I found that the teachers provided support for inquiry along all three dimensions, sometimes in ways in which the dimensions were synergistic and sometimes in ways in which the dimensions were in tension. These findings have implications for the design of inquiry science learning environments and for our understanding of what it means for teachers to be "cultural brokers" between students' everyday experiences and classroom science inquiry.
NASA Astrophysics Data System (ADS)
Matthews, Kelly E.; Firn, Jennifer; Schmidt, Susanne; Whelan, Karen
2017-04-01
This study investigated students' perceptions of their graduate learning outcomes including content knowledge, communication, writing, teamwork, quantitative skills, and ethical thinking in two Australian universities. One university has a traditional discipline-orientated curriculum and the other, an interdisciplinary curriculum in the entry semester of first year. The Science Students Skills Inventory asked students (n = 613) in first and final years to rate their perceptions of the importance of developing graduate learning outcomes within the programme; how much they improved their graduate learning outcomes throughout their undergraduate science programme; how much they saw learning outcomes included in the programme; and how confident they were about their learning outcomes. A framework of progressive curriculum development was adopted to interpret results. Students in the discipline-oriented degree programme reported higher perceptions of scientific content knowledge and ethical thinking while students from the interdisciplinary curriculum indicated higher perceptions of oral communication and teamwork. Implications for curriculum development include ensuring progressive development from first to third years, a need for enhanced focus on scientific ethics, and career opportunities from first year onwards.
Health Science Education. Vocational Education Program Courses Standards.
ERIC Educational Resources Information Center
Florida State Dept. of Education, Tallahassee. Div. of Applied Tech., Adult, and Community Education.
This document contains vocational education program course standards (curriculum frameworks and student performance standards) for exploratory courses, practical arts courses, and job preparatory programs offered at the secondary and postsecondary level as part of the health science education component of Florida's comprehensive vocational…
TIMSS 2011 Assessment Frameworks
ERIC Educational Resources Information Center
Mullis, Ina V. S.; Martin, Michael O.; Ruddock, Graham J.; O'Sullivan, Christine Y.; Preuschoff, Corinna
2009-01-01
Because of the educational importance of mathematics and science, IEA's (International Association for the Evaluation of Educational Achievement) Trends in International Mathematics and Science Study, widely known as TIMSS, is dedicated to providing countries with information to improve teaching and learning in these curriculum areas. Conducted…
Three-Year High School Science Core Curriculum: A Framework.
ERIC Educational Resources Information Center
Bardeen, Marjorie; Freeman, Wade; Lederman, Leon; Marshall, Stephanie; Thompson, Bruce; Young, M. Jean
It is time to start a complete re-structuring of the high school science sequence: new content, new instructional materials, new laboratories, new assessment tools, and new teacher preparation. This white paper initiates re-structuring by proposing organization, pedagogy, and content for a new sequence of science courses. The proposal respects the…
Scientific Literacy and the South African School Curriculum
ERIC Educational Resources Information Center
Lelliott, Anthony
2014-01-01
The notion of scientific literacy is contested terrain, particularly when the term is used in school curricula. Using a scientific literacy framework of Vision I (covers science products and processes) and Vision II (based on science-related situations as a starting point for discussion), the article analyses the Natural Science (grades 7-9)…
Equity in Science at South African Schools: A pious platitude or an achievable goal?
NASA Astrophysics Data System (ADS)
Dewnarain Ramnarain, Umesh
2011-07-01
The apartheid policies in South Africa had a marked influence on the accessibility and quality of school science experienced by the different race groups. African learners in particular were seriously disadvantaged in this regard. The issues of equity and redress were foremost in transformation of the education system, and the accompanying curriculum reform. This paper reports on equity in terms of equality of outputs and equality of inputs in South African school science, with a particular focus on the implementation of practical science investigations. This was a qualitative case study of two teachers on their implementation of science investigations at two schools, one a township school, previously designated for black children, and the other a former Model C school, previously reserved for white children. My study was guided by the curriculum implementation framework by Rogan and Grayson in trying to understand the practice of these teachers at schools located in contextually diverse communities. The framework helped profile the implementation of science investigations and also enabled me to explore the factors which are able to support or hinder this implementation.
Exploring the Solar System: A Literature Unit within a Whole Language Context.
ERIC Educational Resources Information Center
Sandel, Lenore
A useful framework for literature-based instruction is the curriculum related literature unit which provides a total resource for content area teaching. Such a unit could be based on the science curriculum, "Exploring the Solar System," and could be developed thematically through topics of space or the solar system. The teacher's initial…
ERIC Educational Resources Information Center
Harris, Christopher J.; Penuel, William R.; D'Angelo, Cynthia M.; DeBarger, Angela Haydel; Gallagher, Lawrence P.; Kennedy, Cathleen A.; Cheng, Britte Haugen; Krajcik, Joseph S.
2015-01-01
The "Framework for K-12 Science Education" (National Research Council, 2012) sets an ambitious vision for science learning by emphasizing that for students to achieve proficiency in science they will need to participate in the authentic practices of scientists. To realize this vision, all students will need opportunities to learn from…
ERIC Educational Resources Information Center
Tao, Ying; Oliver, Mary; Venville, Grady
2012-01-01
The purpose of this research was to explore the long-term outcomes of either participating or not participating in early childhood science education on grade 6 students' conceptual understanding of science. The research is situated in a conceptual framework that evokes Piagetian developmental levels as both potential curriculum constraints and…
Family and Consumer Sciences Education. Vocational Education Program Courses Standards.
ERIC Educational Resources Information Center
Florida State Dept. of Education, Tallahassee. Div. of Applied Tech., Adult, and Community Education.
This document contains vocational education program course standards (curriculum frameworks and student performance standards) for exploratory courses, practical arts courses, and job preparatory programs offered at the secondary and postsecondary level as part of the family and consumer sciences component of Florida's comprehensive vocational…
The Teaching of Crystallography to Materials Scientists and Engineers.
ERIC Educational Resources Information Center
Wuensch, Bernhardt J.
1988-01-01
Provides a framework of the disciplines of materials science and engineering as they have developed. Discusses the philosophy, content, and approach to teaching these courses. Indicates the range of crystallographic topics contained in the materials science and engineering curriculum at the Massachussetts Institute of Technology. (CW)
ERIC Educational Resources Information Center
Delgato, Margaret H.
2009-01-01
The purpose of this investigation was to determine the extent to which multicultural science education, including indigenous knowledge representations, had been infused within the content of high school biology textbooks. The study evaluated the textbook as an instructional tool and framework for multicultural science education instruction by…
ERIC Educational Resources Information Center
Chatila, Hanadi
2016-01-01
The preparation of scientifically literate citizens able to use science in their daily life is becoming a major goal in science education. In light of this, Boujaoude (2002) developed a framework to investigate the balance of scientific literacy themes within the Lebanese school science curriculum. He reported the neglect of "science as a way…
Engineering design skills coverage in K-12 engineering program curriculum materials in the USA
NASA Astrophysics Data System (ADS)
Chabalengula, Vivien M.; Mumba, Frackson
2017-11-01
The current K-12 Science Education framework and Next Generation Science Standards (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed curriculum materials that are being used in K-12 settings. However, little is known about the nature and extent to which engineering design skills outlined in NGSS are addressed in these K-12 engineering education programme curriculum materials. We analysed nine K-12 engineering education programmes for the nature and extent of engineering design skills coverage. Results show that developing possible solutions and actual designing of prototypes were the highly covered engineering design skills; specification of clear goals, criteria, and constraints received medium coverage; defining and identifying an engineering problem; optimising the design solution; and demonstrating how a prototype works, and making iterations to improve designs were lowly covered. These trends were similar across grade levels and across discipline-specific curriculum materials. These results have implications on engineering design-integrated science teaching and learning in K-12 settings.
Networked Environments that Create Hybrid Spaces for Learning Science
ERIC Educational Resources Information Center
Otrel-Cass, Kathrin; Khoo, Elaine; Cowie, Bronwen
2014-01-01
Networked learning environments that embed the essence of the Community of Inquiry (CoI) framework utilise pedagogies that encourage dialogic practices. This can be of significance for classroom teaching across all curriculum areas. In science education, networked environments are thought to support student investigations of scientific problems,…
ERIC Educational Resources Information Center
Soh, Leen-Kiat; Samal, Ashok; Nugent, Gwen
2007-01-01
This paper describes the Reinventing Computer Science Curriculum Project at the University of Nebraska-Lincoln. Motivated by rapid and significant changes in the information technology and computing areas, high diversity in student aptitudes, and high dropout rates, the project designed and implemented an integrated instructional/research…
Leveraging Cognitive Science Underpinnings to Enhance NGSS Astronomy Concepts
NASA Astrophysics Data System (ADS)
Slater, Stephanie; Slater, Timothy F.
2014-06-01
National-scale science education reform efforts have been hampered by highly fragmented frameworks and standards that vary considerably from one state to the next. In an effort to improve the quality of science education across the nation’s K-12 schools, the 2013 Next Generation Science Standards (NGSS) have been designed to guide states in specifying the learning targets and performance expectations of all K-12 students. The NGSS is designed to reflect the 2011 Framework for K-12 Science Education developed by the National Research Council of the National Academy of Sciences. As teachers, curriculum developers, and assessment experts begin to implement the NGSS in specific geographical and socio-economic contexts, moving beyond an examination of common student misconceptions and reasoning difficulties to delineate the specific cognitive sources of those difficulties, and the specific interventions that can serve as countermeasures, should be a fruitful next step. While astronomy education researchers have already documented challenges in teaching system processes that operate with the space system, solar system, and interconnected Earth science systems, we are far from a thorough understanding of student thinking in astronomy. Many of these ideas can be better taught-and tested-by carefully examining the underlying cognitive science including learners’ difficulties with spatial thinking and the prescribed astronomy and space science concepts. The NGSS may prove to be useful as a framework for next steps in the cognitive science within astronomy, and this work may benefit from deliberate collaborations between education researchers, curriculum developers, and those who engage in teacher professional development.
Reconceptualizing the Nature of Science for Science Education
NASA Astrophysics Data System (ADS)
Dagher, Zoubeida R.; Erduran, Sibel
2016-03-01
Two fundamental questions about science are relevant for science educators: (a) What is the nature of science? and (b) what aspects of nature of science should be taught and learned? They are fundamental because they pertain to how science gets to be framed as a school subject and determines what aspects of it are worthy of inclusion in school science. This conceptual article re-examines extant notions of nature of science and proposes an expanded version of the Family Resemblance Approach (FRA), originally developed by Irzik and Nola (International handbook of research in history, philosophy and science teaching. Springer, Dordrecht, pp 999-1021, 2014) in which they view science as a cognitive-epistemic and as an institutional-social system. The conceptual basis of the expanded FRA is described and justified in this article based on a detailed account published elsewhere (Erduran and Dagher in Reconceptualizing the nature of science for science education: scientific knowledge, practices and other family categories. Springer, Dordrecht, 2014a). The expanded FRA provides a useful framework for organizing science curriculum and instruction and gives rise to generative visual tools that support the implementation of a richer understanding of and about science. The practical implications for this approach have been incorporated into analysis of curriculum policy documents, curriculum implementation resources, textbook analysis and teacher education settings.
ERIC Educational Resources Information Center
White, Timothy; Wymore, Adam; Dere, Ashlee; Hoffman, Adam; Washburne, James; Conklin, Martha
2017-01-01
Earth's critical zone (CZ) is the uppermost layer of Earth's continents, which supports ecosystems and humans alike. CZ science aims to understand how interactions among rock, soil, water, air, and terrestrial organisms influence Earth as a habitable system. Thus, CZ science provides the framework for a holistic-systems approach to teaching Earth…
ERIC Educational Resources Information Center
Ratcliffe, Mary; Millar, Robin
2009-01-01
The framework developed for the PISA 2006 science survey starts from everyday contexts in which citizens encounter scientific issues and knowledge claims. Recent curriculum changes in England, making possible the introduction of courses for 15- to 16-year olds with an explicit "scientific literacy" emphasis, are based on a very similar…
ERIC Educational Resources Information Center
Azios, Maria Leticia; And Others
This course guide is intended for classroom use by teachers of secondary level science to Spanish-speaking students of English as a second language (ESL). Both science instruction and acquisition of English scientific terminology are emphasized, within the framework of increasing overall student proficiency in English. The book is prefaced with a…
ERIC Educational Resources Information Center
Tournaki, Nelly; Lyublinskaya, Irina
2014-01-01
This study examined the development of Technological Pedagogical And Content Knowledge (TPACK) in mathematics and science of pre-service special education teachers via one course. The course focused on the three domains of knowledge related specifically to integrating instructional technology into mathematics and science teaching and learning…
NASA Astrophysics Data System (ADS)
Meier, Lori T.
2012-11-01
This ethnographic case study investigated the science practices of teachers at one public elementary magnet school in light of how school culture influenced science curriculum design and instruction. The purpose of the study was to address how school culture impacted the school's overall treatment of science as a viable content area. Key informant teachers were interviewed to explore their personal beliefs and values, teaching, access to materials, and views of the adopted integrated thematic curriculum model and magnet structure. The resulting data, triangulated with informal observation and artifact collection, were analyzed using a theoretical framework that emphasized five interdependent school culture indicators (values, beliefs, practices, materials, and problems). Findings suggest that the school's culture adversely influenced the treatment of science.
Achieving a coherent curriculum in second grade: Science as the organizer
NASA Astrophysics Data System (ADS)
Park Rogers, Meredith A.
The purpose of this study was to examine how a team of four second grade teachers used their approach to teaching science as a means for designing and implementing a coherent curriculum. Within this study, curriculum coherency refers to making logical instructional connections that are both visible and explicit for students. A teacher using a common teaching strategy or critical thinking skills in such a way that the commonalities between subject areas are clearly demonstrated to students is one example of curriculum coherency. The research framework guiding this study was phenomenology; I used a case study method for data analysis. The primary data source was field notes gathered during 10 weeks of classroom observations. Secondary data sources included observations of team meetings, two sets of interviews with each of the four teachers, an interview with the school principal, and artifacts used and developed by the teachers. An analysis of the data led me to interpret the following findings: (1) the teachers viewed science as a tool to motivate their students to learn and believed in teaching science through an inquiry-based approach; (2) they described science inquiry as a process of thinking organized around questions, and saw their teaching role as shifting between guided and open classroom inquiry; (3) they taught all subjects using an inquiry-based approach, emphasized the process skills associated with doing scientific inquiry, and consistently used the language of the process skills throughout their instruction of all disciplines; (4) their team's collaborative approach played a significant role in achieving their vision of a coherent curriculum; the successfulness of their collaboration relied on the unique contributions of each member and her commitment to professional development. This study demonstrates how an inquiry-based science curriculum can provide educators with an effective model for designing and implementing a coherent curriculum. Furthermore, the findings have implications for elementary preservice and inservice programs with respect to using science teaching as a foundation for developing curriculum coherency.
Using "Ethics Labs" to Set a Framework for Ethical Discussion in an Undergraduate Science Course
ERIC Educational Resources Information Center
Smith, Kelly; Wueste, Daniel; Frugoli, Julia
2007-01-01
Teaching ethics across the curriculum is a strategy adopted by many universities. One of the fundamental aims of teaching ethics across the curriculum is to get students to see ethics as truly relevant to the subjects they are studying. Ideally, students will come to see that ethics is a thread woven deeply in the fabric of all knowledge and…
ERIC Educational Resources Information Center
Kister, Joanna
In the metascientific theory of Jurgen Habermas are perspectives going beyond the present way of viewing knowledge and inquiry. Applied to curriculum, this theory provides a conceptual framework for expanding the present technical model. The purpose of this study is to provide technical and interpretive data about home and family life which are…
ERIC Educational Resources Information Center
Rosetti, Pamela; Byrd, Jenean; West, Brenda; Bigham, Melody
2008-01-01
Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…
Transformative Multicultural Science Curriculum: A Case Study of Middle School Robotics
ERIC Educational Resources Information Center
Grimes, Mary Katheryn
2012-01-01
Multicultural Science has been a topic of research and discourse over the past several years. However, most of the literature concerning this topic (or paradigm) has centered on programs in tribal or Indigenous schools. Under the framework of instructional congruence, this case study explored how elementary and middle school students in a…
Donovan, D. A.; Atkins, L. J.; Salter, I. Y.; Gallagher, D. J.; Kratz, R. F.; Rousseau, J. V.; Nelson, G. D.
2013-01-01
We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life sciences context. While some approaches were easily adapted, others provided significant challenges. Among these challenges were: representations of energy, introducing definitions, the placement of Scientists’ Ideas, and the replicability of data. In modifying the curriculum to address these challenges, we have come to see them as speaking to deeper differences between the disciplines, namely that introductory physics—for example, Newton's laws, magnetism, light—is a science of pairwise interaction, while introductory biology—for example, photosynthesis, evolution, cycling of matter in ecosystems—is a science of linked processes, and we suggest that this is how the two disciplines are presented in introductory classes. We illustrate this tension through an analysis of our adaptations of the physics curriculum for instruction on the cycling of matter and energy; we show that modifications of the physics curriculum to address the biological framework promotes strong gains in student understanding of these topics, as evidenced by analysis of student work. PMID:23737629
Donovan, D A; Atkins, L J; Salter, I Y; Gallagher, D J; Kratz, R F; Rousseau, J V; Nelson, G D
2013-06-01
We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life sciences context. While some approaches were easily adapted, others provided significant challenges. Among these challenges were: representations of energy, introducing definitions, the placement of Scientists' Ideas, and the replicability of data. In modifying the curriculum to address these challenges, we have come to see them as speaking to deeper differences between the disciplines, namely that introductory physics--for example, Newton's laws, magnetism, light--is a science of pairwise interaction, while introductory biology--for example, photosynthesis, evolution, cycling of matter in ecosystems--is a science of linked processes, and we suggest that this is how the two disciplines are presented in introductory classes. We illustrate this tension through an analysis of our adaptations of the physics curriculum for instruction on the cycling of matter and energy; we show that modifications of the physics curriculum to address the biological framework promotes strong gains in student understanding of these topics, as evidenced by analysis of student work.
SU-F-E-08: Medical Physics as a Teaching Tool for High School Science Curriculum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckley, L
Purpose: Delivering high school science curriculum in a timely manner and in way that is accessible to all students is a challenge for teachers. Although many high schools offer career workshops, these are typically directed at senior students and do not relate directly to details of the curriculum. The objective of this initiative was to create a series of lectures that use medical physics to relate many aspects of the high school science curriculum to tangible clinical applications and to introduce students to alternate pathways into a career in health sciences. Methods: A series of lectures has been developed basedmore » on the Ontario High School Science Curriculum. Each lecture uses a career in radiotherapy medical physics as the framework for discussion of topics specific to the high school course being addressed. Results: At present, these lectures have been delivered in five area high schools to students ranging from sophomores to seniors. Survey documents are given to the students before and after the lecture to assess their awareness of careers in health care, applications of physics and their general interest in the subject areas. As expected, students have limited up front awareness of the wide variety of health related career paths. The idea of combining a career lecture with topics specific to the classroom curriculum has been well-received by teachers and students alike. Conclusion: Career talks for high school students are useful for students contemplating their post- secondary career path. Relating career discussion with direct course curriculum makes their studies more relevant and engaging. Students aspiring to a career in health sciences often focus their studies on life sciences due to limited knowledge of potential careers. An early introduction to medical physics presents them with an alternate path through the physical sciences into health care.« less
Infusing Climate and Energy Literacy Throughout the Curriculum: Challenges and Opportunities
NASA Astrophysics Data System (ADS)
McCaffrey, M. S.
2012-12-01
Climate change and human activities, particularly fossil fuel energy consumption-- both related and crosscutting concepts vital to addressing 21st century societal challenges-- are largely missing from traditional science education curriculum and standards. Whether due to deliberate misinformation, efforts to "teach the controversy", lack of teacher training and professional development or availability of engaging resources, students have for decades graduated from high school and even college without learning the basics of how human activities, particularly our reliance on fossil fuels, impact the environment in general and climate system in particular. The Climate Literacy, Energy Literacy and related frameworks and curriculum, as well as the Next Generation Science Standards (NGSS) and other innovative initiatives, provide new tools for educators and learners that hold strong potential for helping infuse these important topics across the curriculum and thereby better prepare society to minimize human impacts on the planet and prepare for changes that are already well underway.
Gouvea, Julia Svoboda; Sawtelle, Vashti; Geller, Benjamin D; Turpen, Chandra
2013-06-01
The national conversation around undergraduate science instruction is calling for increased interdisciplinarity. As these calls increase, there is a need to consider the learning objectives of interdisciplinary science courses and how to design curricula to support those objectives. We present a framework that can help support interdisciplinary design research. We developed this framework in an introductory physics for life sciences majors (IPLS) course for which we designed a series of interdisciplinary tasks that bridge physics and biology. We illustrate how this framework can be used to describe the variation in the nature and degree of interdisciplinary interaction in tasks, to aid in redesigning tasks to better align with interdisciplinary learning objectives, and finally, to articulate design conjectures that posit how different characteristics of these tasks might support or impede interdisciplinary learning objectives. This framework will be useful for both curriculum designers and education researchers seeking to understand, in more concrete terms, what interdisciplinary learning means and how integrated science curricula can be designed to support interdisciplinary learning objectives.
Gouvea, Julia Svoboda; Sawtelle, Vashti; Geller, Benjamin D.; Turpen, Chandra
2013-01-01
The national conversation around undergraduate science instruction is calling for increased interdisciplinarity. As these calls increase, there is a need to consider the learning objectives of interdisciplinary science courses and how to design curricula to support those objectives. We present a framework that can help support interdisciplinary design research. We developed this framework in an introductory physics for life sciences majors (IPLS) course for which we designed a series of interdisciplinary tasks that bridge physics and biology. We illustrate how this framework can be used to describe the variation in the nature and degree of interdisciplinary interaction in tasks, to aid in redesigning tasks to better align with interdisciplinary learning objectives, and finally, to articulate design conjectures that posit how different characteristics of these tasks might support or impede interdisciplinary learning objectives. This framework will be useful for both curriculum designers and education researchers seeking to understand, in more concrete terms, what interdisciplinary learning means and how integrated science curricula can be designed to support interdisciplinary learning objectives. PMID:23737627
NASA Astrophysics Data System (ADS)
Price, Robert John
The elementary school teacher's personal understanding of science has not been a primary focus of consideration in educational reform discussions. This study examines how four elementary school teachers have constructed their personal understanding of science. The purpose of this study is to explore core understandings about science held by these teachers, and to examine the origins of these ideas. This study assumes that a teacher's understanding of science is unique and constructed on personal experiences affected by influences. This study further explores the relationship of the teachers understanding to the school's stated curriculum. The theoretical framework of this research recognizes three guiding assumptions: science exists as a set of ideas that have developed over time through competing discourses; the teacher plays an important role in the implementation of the science curriculum; and the guiding influences of a teacher's understanding of science are associated with power that emerges from discourse. The methodology in this qualitative study is closely associated with narrative inquiry. Data collection methods include a questionnaire, focus group sessions, and individual interviews. Teachers' stories were collected through collaborative interview opportunities between the researcher and the participants. The findings are presented through the narratives of the four teachers, and are organized through the guiding influences, and talk related to the stated science curriculum. The teachers' talk can be categorized by three broad guiding influences: family, education, and an image of science. The talk related to the stated curriculum illustrates both conflicts, and a relationship between the teachers' understanding of science and the curriculum. The finding of this study provides evidence that each teacher's understanding of science is unique and developed over time. Additionally, this understanding plays a role in how the stated curriculum is discussed and understood. This investigation recommends that teachers' personal understanding of science, as revealed through narrative inquiry, becomes a focus in developing new educational opportunities for elementary school teachers. This study further recommends challenging a hegemony related to positivism that exists in science curricula, and the addition of the valued voice of elementary teachers to the discourse of science education.
NASA Astrophysics Data System (ADS)
Lambert, J. L.; Bleicher, R. E.; Edwards, A.; Henderson, A.
2012-12-01
In science education, climate change is an issue that is especially useful for teaching concepts spanning several fields of science, as well the nature and practices of science. In response, we are developing a NASA-funded curriculum, titled Climate Science Investigations (CSI): South Florida, that teaches high school and first-year undergraduate level students how to analyze and use scientific data answer questions about climate change. To create an effective curriculum, we integrated lessons learned from our educational research conducted within our elementary science methods courses (Lambert, Lindgren, & Bleicher, 2012). For the past few years, we have been integrating climate science in our courses as a way to teach standards across several science disciplines and assessing our preservice teachers' gains in knowledge over the semesters. More recently, given the media attention and reports on the public's shift in opinion toward being more skeptical (Kellstedt, Zahran, & Vedlitz, 2008; Washington & Cook, 2011), we have assessed our students' perceptions about climate change and implemented strategies to help students use evidence-based scientific argumentation to address common claims of climate skeptics. In our elementary science methods courses, we framed climate change as a crosscutting theme, as well as a core idea, in the Next Generation Science Standards. We proposed that the issue and science of climate change would help preservice teachers not only become more interested in the topic, but also be more prepared to teach core science concepts spanning several disciplines (physical, life, and earth sciences). We also thought that highlighting the "practice of scientific inquiry" by teaching students to develop evidence-based arguments would help the preservice teachers become more analytical and able to differentiate scientific evidence from opinions, which could ultimately influence their perceptions on climate change. Lessons learned from our preservice teachers' conceptions and perceptions about climate change, as well as the difficulties in engaging in evidence-based argumentation, have informed and enhanced the framework for development of the CSI: South Florida curriculum. The modules are sequenced according to the proposed learning progression. First, students are introduced to the nature of science and Earth's energy balance. Students then investigate the temporal and spatial temperature data to answer the question of whether Earth is warming. Students also compare natural and anthropogenic causes of climate change, investigate the various observed and projected consequences of climate change in the fourth module, and examine ways to mitigate the effects of and adapt to climate change. Finally, students learn how to refute skeptics' claims by providing counter evidence and reasoning of why the skeptics' claim is not the appropriate explanation. This paper describes our conceptual framework for teaching students how to address the skeptics' claims using the content learned in the CSI: South Florida curriculum and evidence-based argumentation.
Civil Rights Questions: Where Race, Economics, and Criminal Justice Intersect.
ERIC Educational Resources Information Center
Dutton, Marghi
This curriculum unit on civil rights questions in the United States was developed as a history-social science project at San Jose State University. The unit is intended for high school students and needs one or two class periods to complete. It provides the teacher with a rationale, a framework, history-social science standards, student outcomes,…
ERIC Educational Resources Information Center
Fraser, Sharon P.
2016-01-01
In the past 30 years, pedagogical content knowledge (PCK) frameworks have become important constructs in educational research undertaken in the school education system and a focus for research for curriculum and teacher education researchers. As regards science, PCK research has been plentiful, but thus far, the concept of PCK (significantly…
ERIC Educational Resources Information Center
Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.
This document, which reflects Mississippi's statutory requirement that instructional programs be based on core curricula and performance-based assessment, contains outlines of the instructional units required in local instructional management plans and daily lesson plans for family and consumer sciences and related technology (enrichment).…
NASA Astrophysics Data System (ADS)
Miller, Brant Gregory
Mainstream curricula have struggled to provide American Indian students with meaningful learning experiences. This research project studied a novel approach to engaging students with science, technology, engineering, and mathematics (STEM) content through a culturally-based context. The traditional American Indian game of Snow Snakes (shushumeg in Ojibwe) presented a highly engaging context for delivering STEM content. Through the engaging context of snow snakes, the designed STEM curriculum explicitly applied mathematics (scaling and data), and science (force and motion) to an engineering prototype iteration that used available materials and tools (technology) for success. It was hypothesized that by engaging students through the carefully integrated STEM curriculum, driven by the culturally based context of snow snakes, students would exhibit an increase in science agency and achievement. The overarching research question explored for this study was: How does a culturally-based and integrated STEM curriculum impact student's science agency? Associated sub-questions were: (1) What does science agency look like for 6th grade students? (2) What key experiences are involved in the development of science agency through a culturally-based STEM curriculum context? And (3) What are the impacts on the community associated with the implementation of a culturally-based STEM curriculum? A case study research design was implemented for this research. Yin (2003) defines a case study as investigating a phenomenon (e.g. science agency) which occurs within authentic contexts (e.g. snow snakes, Adventure Learning, and Eagle Soaring School) especially when the boundaries between phenomenon and context are unclear. For this case study Eagle Soaring School acted as the bounded case with students from the 6th grade class representing the embedded units. Science agency was the theoretical framework for data analysis. Major findings were categorized as science and STEM learning, agency, and community impact. Concerning agency, students displayed science agency through: connecting snow snake experiences to outside contexts; students emerging as leaders; and students commanding a facility with science. This research lays the foundation for future inquiry into the development of science agency in students using culturally-based contexts.
Brewer, Margo
2016-09-01
Creating a vision (visioning) and sensemaking have been described as key leadership practices in the leadership literature. A vision provides clarity, motivation, and direction for staff, and is essential particularly in times of significant change. Closely related to visioning is sensemaking (the organisation of stimuli into a framework allowing people to understand, explain, attribute, extrapolate, and predict). The application of these strategies to leadership within the interprofessional field is yet to be scrutinised. This study examines an interprofessional capability framework as a visioning and sensemaking tool for use by leaders within a university health science curriculum. Interviews with 11 faculty members revealed that the framework had been embedded across multiple years and contexts within the curriculum. Furthermore, a range of responses to the framework were evoked in relation to its use to make sense of interprofessional practice and to provide a vision, guide, and focus for faculty. Overall the findings indicate that the framework can function as both a visioning and sensemaking tool.
Assessing Climate Misconceptions of Middle School Learners and Teachers
NASA Astrophysics Data System (ADS)
Sahagian, D. L.; Anastasio, D. J.; Bodzin, A.; Cirucci, L.; Bressler, D.; Dempsey, C.; Peffer, T.
2012-12-01
Middle School students and their teachers are among the many populations in the U.S. with misconceptions regarding the science or even reality of climate change. Teaching climate change science in schools is of paramount importance since all school-age children will eventually assume responsibility for the management and policy-making decisions of our planet. The recently published Framework for K-12 Science Education (National Research Council, 2012) emphasizes the importance of students understanding global climate change and its impacts on society. A preliminary assessment of over a thousand urban middles school students found the following from pretests prior to a climate literacy curriculum: - Do not understand that climate occurs on a time scale of decades (most think it is weeks or months) -Do not know the main atmospheric contributors to global warming -Do not understand the role of greenhouse gases as major contributors to increasing Earth's surface temperature -Do not understand the role of water vapor to trap heat and add to the greenhouse effect -Cannot identify some of the human activities that increase the amount of CO2 -Cannot identify sources of carbon emissions produced by US citizens -Cannot describe human activities that are causing the long-term increase of carbon -dioxide levels over the last 100 years -Cannot describe carbon reduction strategies that are feasible for lowering the levels of carbon dioxide in the atmosphere To address the lack of a well-designed middle school science climate change curriculum that can be used to help teachers promote the teaching and learning of important climate change concepts, we developed a 20-day Environmental Literacy and Inquiry (ELI): Climate Change curriculum in partnership with a local school district. Comprehension increased significantly from pre- to post-test after enactment of the ELI curriculum in the classrooms. This work is part of an ongoing systemic curriculum reform initiative to promote (1) environmental literacy and inquiry and (2) foster the development of geospatial thinking and reasoning using geospatial technologies as an essential component of the middle school science curriculum. The curriculum is designed to align instructional materials and assessments with learning goals. The following frameworks were used to provide guidelines for the climate change science content in addition to the science inquiry upon which schools must focus: Climate Literacy: The Essential Principles of Climate Sciences (U.S. Global Change Research Program, 2009) and the AAAS Project 2061 Communicating and Learning About Global Climate Change (AAAS, 2007). The curriculum is a coherent sequence of learning activities that include climate change investigations with Google Earth, Web-based interactivities that include an online carbon emissions calculator and a Web-based geologic time-line, and inquiry-based ("hands-on") laboratories. The climate change science topics include the atmosphere, Earth system energy balance, weather, greenhouse gases, paleoclimatology, and "humans and climate". It is hoped that with a solid foundation of climate science in the classroom, middle school learners will be in a position to evaluate new scientific discoveries, emerging data sets, and reasonably assess information and misinformation by which they are surrounded on a daily basis.
Queer (v.) queer (v.): biology as curriculum, pedagogy, and being albeit queer (v.)
NASA Astrophysics Data System (ADS)
Broadway, Francis S.
2011-06-01
In order to advance the purpose of education as creating a sustainable world yet to be imagined, educationally, queer (v.) queer (v.) expounds curriculum, pedagogy and being, which has roots in sexuality—the public face of the private confluence of sexuality, gender, race and class, are a necessary framework for queer. If queer is a complicated conversation of strangers' eros, then queer facilitates the creation of space, revolution and transformation. In other words, queer, for science education, is more than increasing and privileging the heteronormative and non-heteronormative science content that extends capitalism's hegemony, but rather science as the dignity, identity, and loving and caring of and by one's self and fellow human beings as strangers.
Critical Zone Science as a Multidisciplinary Framework for Teaching Earth Science and Sustainability
NASA Astrophysics Data System (ADS)
Wymore, A.; White, T. S.; Dere, A. L. D.; Hoffman, A.; Washburne, J. C.; Conklin, M. H.
2016-12-01
The Earth's Critical Zone (CZ) is the terrestrial portion of the continents ranging from the top of the vegetative canopy down through soil and bedrock to the lowest extent of freely circulating groundwater. The primary objective of CZ science is to characterize and understand how the reciprocal interactions among rock, soil, water, air and terrestrial organisms influence the Earth as a habitable environment. Thus it is a highly multidisciplinary science that incorporates the biological, hydrological, geological and atmospheric sciences and provides a holistic approach to teaching Earth system science. Here we share highlights from a full-semester university curriculum that introduces upper-division Environmental Science, Geology, Hydrology and Earth Science students to CZ science. We emphasize how a CZ framework is appropriate to teach concepts across the scientific disciplines, concepts of sustainability, and how CZ science serves as a useful approach to solving humanities' grand challenges.
NASA Astrophysics Data System (ADS)
Mulkey, S. S.
2012-12-01
Interdisciplinary programming in higher education is accepted as necessary for effective instructional delivery of complex environmental problems. Difficulties in sharing resources among disciplinary units and the need for students to sequentially access information from different disciplines limit the effectiveness of this approach. In contrast, transdisciplinary programming requires that the perspectives of various disciplines be simultaneously integrated in problem-focused pedagogy. Unity College, an environmental college in Maine, has recently adopted Sustainability Science (sensu U.S. National Academy of Science) as a framework for transdisciplinary pedagogy throughout all of its degree programs. Sustainability Science is a promising alternative framework that focuses on the dynamics of coupled human-natural systems and is defined by the problems that it addresses rather than by the disciplines it employs. Students are empowered to become brokers of knowledge, while faculty perform a curatorial role to provide students with networked resources generally external to the classroom. Although the transdisciplinary framework is effective for delivery of Sustainability Science in upper division and capstone courses, we propose this approach also for elements of our general education curriculum during the first two years of our baccalaureate programs. Classroom time is liberated for experiential student engagement and recitation. Our experience suggests that transdisciplinary programming can provide students with critical thinking skills and thus enhance the postgraduate value of their baccalaureate degree. We are coordinating the development of this distinctive curriculum delivery with a marketing program that will make Unity College accessible to a wider range of clientele. Our implementation of transdisciplinary programming will occur over a four-year period and requires explicit and fundamental change in essentially all aspects of College administration and academics.
NASA Astrophysics Data System (ADS)
Larson, Teresa
2011-12-01
This self-study examines my experiences with implementing an inquiry-based version of a chemistry course (Chemistry 299) designed for elementary education majors. The inquiry-based curriculum design and teaching strategies that I implement in Chemistry 299 is the focus of this study. Since my previous education and professional experiences were in the physical sciences, I position myself in this study as a scientist who engages in self-study as a form of professional development for the purpose of developing an inquiry-based curriculum and instructional practices. My research provides an inside perspective of the curriculum development process. This process involves implementing the inquiry-oriented ideas and knowledge I acquired in my graduate studies to design the curriculum and influence my teaching practice. My analysis of the curriculum and my instruction is guided by two questions: What are the strengths and weaknesses of the inquiry-based Chemistry 299 curriculum design? What does the process of developing my inquiry-based teaching practice entail and what makes is challenging? Schwab's (1973) The Practical 3: Translation into Curriculum serves as the theoretical framework for this study because of the emphasis Schwab places on combining theoretical and practical knowledge in the curriculum development process and because of the way he characterizes the curriculum. The findings in this study are separated into curriculum and instruction domains. First, the Chemistry 299 curriculum was designed to make the epistemological practices of scientists "accessible" to students by emphasizing epistemic development with respect to their ideas about scientific inquiry and science learning. Using student learning as a gauge for progress, I identify specific design elements that developed transferable inquiry skills as a means to support scientific literacy and pre-service teacher education. Second, the instruction-related findings built upon the insight I gained through my analysis of the curriculum. The data reveals four areas of inner conflict I dealt with throughout the study that related to underlying beliefs I held about science teaching and learning. The implications of the study position the Chemistry 299 curriculum in the field and speak to issues related to developing science courses for elementary education majors and professional development for scientists.
ERIC Educational Resources Information Center
Barradell, Sarah; Peseta, Tai
2017-01-01
The idea of threshold concepts (TC) has been well received across the higher education community. However the concept's framework is still evolving and the literature uses the framework in different ways. Just over a decade since the idea first captured interest, it is opportune to explore the nature of that discourse, and the kinds of enquiry…
NASA Astrophysics Data System (ADS)
Lyons, D. J.; Slater, S. J.; Slater, T. F.
2011-12-01
Exploring the impact of a novel inquiry-based earth and space science laboratory curriculum designed using the Backwards Faded Scaffolding inquiry teaching framework on non-science majoring undergraduate students' views of the nature of scientific inquiry (NOSI), this study focused on two aspects of NOSI: The Distinction between Data and Evidence (DvE), and The Multiple Methods of Science (MMS). In the first stage, student participant views of NOSI were measured using the VOSI-4 research instrument before and after the intervention. In the second stage, the quantitative results were used to strategically design a qualitative investigation, in which the four lab instructors were interviewed about their observations of how the student participants interacted with the intervention curriculum as compared to traditional lab activities, as well as their suggestions as to how the curriculum may or may not have contributed to the results of the first stage. These interviews were summarized and analyzed for common themes as to how the intervention curriculum influenced the students' understandings of the two aspect of NOSI. According to the results of a Wilcoxon Signed Rank test, there was a significant shift in the distributions of both samples toward a more informed understanding of DvE after the intervention curriculum was administered, while there was no significant change in either direction for understanding of MMS. The results of the instructor interview analysis suggested that the intervention curriculum provided multiple opportunities for students to evaluate and determine the relevance of data in the context of producing evidence-based conclusions directly related to specific research questions, thereby supporting the development of more informed views of DvE.
NASA Astrophysics Data System (ADS)
Halversen, C.; Weiss, E. L.; Pedemonte, S.
2016-02-01
Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, few high quality curriculum materials exist that address climate change in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8: The Ocean-Atmosphere Connection and Climate Change (OSS) addresses this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. OSS was developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified curriculum development team. Scientists were active partners throughout the entire development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. The goal was to focus strategically and effectively on core concepts within ocean and climate sciences that students should understand. OSS was designed in accordance with the latest research from the learning sciences and provides numerous opportunities for students to develop facility with science practices by "doing" science.Through hands-on activities, technology, informational readings, and embedded assessments, OSS deeply addresses a significant number of standards from the Next Generation Science Standards and is being used by many teachers as they explore the shifts required by NGSS. It also aligns with the Ocean Literacy and Climate Literacy Frameworks. OSS comprises 33 45-minute sessions organized into three thematic units, each driven by an exploratory question: (1) How do the ocean and atmosphere interact?; (2) How does carbon flow through the ocean, land, and atmosphere?; and (3) What are the causes and effects of climate change? The curriculum deliberately explores the ocean and climate as global systems and challenges students to use scientific evidence to make explanations about climate change.
ERIC Educational Resources Information Center
Davis, Stephen
1987-01-01
Discusses the importance of interpretive programs in the Northern Territory of Australia. Describes the typical interpretive approach of local school science curricula, which serve 20,000 Aboriginal children. Addresses the curriculum framework, learning strategies, and process skill development, illustrating them through a lesson on mangroves. (TW)
Elementary Integrated Curriculum Framework
ERIC Educational Resources Information Center
Montgomery County Public Schools, 2010
2010-01-01
The Elementary Integrated Curriculum (EIC) Framework is the guiding curriculum document for the Elementary Integrated Curriculum and represents the elementary portion of the Montgomery County (Maryland) Public Schools (MCPS) Pre-K-12 Curriculum Frameworks. The EIC Framework contains the detailed indicators and objectives that describe what…
NASA Astrophysics Data System (ADS)
Lewis, Jenny
2014-02-01
This paper explores knowledge and understanding of basic genetics and gene technologies in school students who have been taught to a `science for all' National Curriculum and compares 482 students in 1995 (gene technology was a new and rapidly developing area of science with potential to impact on everyday life; the first cohort of students had been taught to the National Curriculum for Science) with 154 students in 2011 (genomics had replaced gene technology as a rapidly developing area of science with potential to impact on everyday life; science as a core subject within the National Curriculum was well established). These studies used the same questions, with the same age group (14-16) across the same (full) ability range; in addition the 2011 sample were asked about stem cells, stem cell technology and epigenetics. Students in 2011 showed: better knowledge of basic genetics but continuing difficulty in developing coherent explanatory frameworks; a good understanding of the nature of stem cells but no understanding of the process by which such cells become specialised; better understanding of different genetic technologies but also a wider range of misunderstandings and confusions (both between different genetic technologies and with other biological processes); continuing difficulty in evaluating potential veracity of short `news' items but greater awareness of ethical issues and the range of factors (including knowledge of genetics) which could be drawn on when justifying a view or coming to a decision. Implications for a `science for all' curriculum are considered.
ERIC Educational Resources Information Center
Nelson, Bernard W.
This study proposes that the Claremont Colleges establish a College of the Health Sciences. This college would admit students following their graduation from high school and grant the M.D. degree in 6 years. The curriculum that is proposed is constructed about a framework of human biology, an interdisciplinary program for the teaching of biology…
ERIC Educational Resources Information Center
Tao, Ying; Oliver, Mary; Venville, Grady
2013-01-01
Set in the context of today's globalized approaches to curriculum reform, the purpose of this study was to compare the teaching and learning of science in Chinese and Australian Grade 6 classrooms. A conceptual framework based on notions of culture and socioeconomic status informed the research design. Case study participants were three teachers…
ERIC Educational Resources Information Center
DeBarger, Angela Haydel; Penuel, William R.; Harris, Christopher J.; Kennedy, Cathleen A.
2016-01-01
Evaluators must employ research designs that generate compelling evidence related to the worth or value of programs, of which assessment data often play a critical role. This article focuses on assessment design in the context of evaluation. It describes the process of using the Framework for K-12 Science Education and Next Generation Science…
ERIC Educational Resources Information Center
Paige, Kathryn; Zeegers, Yvonne; Lloyd, David; Roetman, Philip
2016-01-01
This paper reports on an action research-based professional learning programme (PLP) in which early career teachers volunteered to identify and then research an aspect of their science teaching practice. The PLP was facilitated by academics from the School of Education and the Barbara Hardy Institute at the University of South Australia. The…
ERIC Educational Resources Information Center
Arthur, Jan; Blackwell, Michelle; Clemmer, Phyllis; Cocroft, Shunda; Everett, Laurelie; Green, Coretta; West, Brenda; Yarbrough, Ruthie
2002-01-01
Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…
NASA Astrophysics Data System (ADS)
Houle, Meredith
2008-10-01
This multiple case study examined how three urban science teachers used curriculum materials designed educatively. Educative curriculum materials have been suggested as one way to support science teacher learning, particularly around new innovations and new pedagogies and to support teachers in evaluating and modifying materials to meet the needs of their students (Davis & Krajcik, 2005). While not a substitute for professional development, educative curriculum materials may provide an opportunity to support teachers' enactment and learning in the classroom context (Davis & Krajcik, 2005; Remillard, 2005; Schneider & Krajcik, 2002). However, little work has examined how science teachers interact with written curriculum materials to design classroom instruction. Grounded in sociocultural analysis, this study takes the theoretical stance that teachers and curriculum materials are engaged in a dynamic and participatory relationship from which the planned and enacted curriculum emerges (Remillard, 2005). Teaching is therefore a design activity where teachers rely on their personal resources and the curricular resources to construct and shape their students' learning experiences (Brown, 2002). Specifically this study examines how teacher beliefs influence their reading and use of curriculum and how educative features in the written curriculum inform teachers' pedagogical decisions. Data sources included classroom observation and video, teacher interviews, and classroom artifacts. To make sense how teachers' make curricular decisions, video were analyzed using Brown's (2002) Pedagogical Design for Enactment Framework. These coded units were examined in light of the teacher interviews, classroom notes and artifacts to examine how teachers' beliefs influenced these decisions. Data sources were then reexamined for evidence of teachers' use of specific educative features. My analyses revealed that teachers' beliefs about curriculum influenced the degree to which teachers relied on their own personal resources or the curricular resources in designing the taught curriculum. Teacher experience was also found to influence the degree to which teachers relied on their personal resources. Implications for teacher learning, professional development and curriculum development are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linder-Scholer, B.
1994-12-31
An overview of SCI/MATH/MN - Minnesota`s standards-based, systemic approach to the reform and improvement of the K-12 science and mathematics education delivery system - is offered as an illustration of the challenges of aligning state educational practices with the national curriculum standards, and as a model for business involvement in state educational policy issues that will enable fundamental, across-the-system reform. SCI/MATH/MN illustrates the major challenges involved in developing a statewide vision for math and science education reform, articulating frameworks aligned with the national standards, building capacity for system-oriented change at the local level, and involving business in systemic reform.
NASA Astrophysics Data System (ADS)
Grusenmeyer, Linda Huey
This study examines the personal and curricular resources available to Delaware's elementary teachers during a time of innovative curriculum change, i.e., their knowledge, goals and beliefs regarding elementary engineering curriculum and the pedagogical support to teach two Science and Engineering Practices provided by science teaching materials. Delaware was at the forefront of K-12 STEM movement, first to adopt statewide elementary curriculum materials to complement existing science units, and one of the first to adopt the new science standards--Next Generation Science Standards. What supports were available to teachers as they adapted and adopted this new curriculum? To investigate this question, I examined (1) teachers' beliefs about engineering and the engineering curriculum, and (2) the pedagogical supports available to teachers in selected science and engineering curriculum. Teachers' knowledge, goals, and beliefs regarding Delaware's adoption of new elementary engineering curriculum were surveyed using an adapted version of the Design, Engineering, and Technology Survey (Hong, Purser, & Gardella, 2011; Yaser, Baker, Carpius, Krauss, & Roberts, 2006). Also, three open ended questions sought to reveal deeper understanding of teacher knowledge and understanding of engineering; their concerns about personal and systemic resources related to the new curriculum, its logistics, and feasibility; and their beliefs about the potential positive impact presented by the engineering education initiative. Teacher concerns were analyzed using the Concerns-Based Adoption Model (Hall & Hord, 2010). Lay understandings of engineering were analyzed by contrasting naive representations of engineering with three key characteristics of engineering adapted from an earlier study (Capobianco Diefes-Dux, Mena, & Weller, 2011). Survey findings for teachers who had attended training and those who have not yet attended professional development in the new curriculum were compared with few notable differences. Almost all elementary teacher respondents were familiar with engineering and able to define it using one or more key characteristics. They valued the inclusion of engineering in the elementary curriculum; however trained and untrained teachers reported they were not confident about teaching it and were unaware of the new standards related to engineering. Teachers saw potential advantages or benefits of the new curriculum as helping improve science and math understanding, an opportunity to increase vocational awareness, and engaging students and motivating them to learn. Most teachers saw similar barriers to implementation- lack of teacher knowledge, lack of time to learn about engineering and how to teach engineering, and lack of administrative support. Almost all were open to additional in-service training to learn more about this new curriculum. Three fifth grade science units were examined for evidence of teacher pedagogical support in teaching two Science and Engineering Practices (SEP) advocated by the Next Generation Science Standards. An analytic framework was developed based upon two NGSS SEPs: Asking questions, defining problems and Engaging in argument from evidence. Findings revealed that the kits varied greatly in their pedagogical approaches to the two SEPs and differences might be explained by each kit's underlying orientations to the teaching-learning process. Findings from these investigations have implications for the design of professional development and for engineering curricula. They highlight the importance of considering teacher beliefs about curriculum implementation and subject matter, as well as the importance of creating curriculum materials that focus teacher attention toward student thinking and the language rich science and engineering practices. Recommendations also include ongoing professional development to allow teachers time to try out and revise pedagogical routines that support the SEPs studied here.
NASA Astrophysics Data System (ADS)
Wisdom, Sonya L.
The purpose of this study was to examine how a science methods course in primary education might influence the curriculum decisions of preservice teachers in The Bahamas related to unit plan development on environmental science topics. Grounded in a social constructivist theoretical framework for teaching and learning science, this study explored the development of the confidence and competence of six preservice teachers to teach environmental science topics at the primary school level. A qualitative case study using action research methodologies was conducted. The perspectives of preservice teachers about the relevancy of methods used in a science methods course were examined as I became more reflective about my practice. Using constant comparative analysis, data from student-written documents and interviews as well as my field notes from class observations and reflective journaling were analyzed for emerging patterns and themes. Findings of the study indicated that while preservice teachers showed a slight increase in interest regarding learning and teaching environmental science, their primary focus during the course was learning effective teaching strategies in science on topics with which they already had familiarity. Simultaneously, I gained a deeper understanding of the usefulness of reflection in my practice. As a contribution to the complexity of learning to teach science at the primary school level, this study suggests some issues for consideration as preservice teachers are supported to utilize more of the national primary science curriculum in The Bahamas.
Systemic Reform of Astronomy Curriculum in the Montgomery County Public Schools
NASA Astrophysics Data System (ADS)
Szesze, M.; Kahl, S.; Janney, D.
2002-09-01
In the Montgomery County Public Schools (MCPS), the science curriculum is undergoing a comprehensive systemic review in an effort to revise the system's curriculum and the entire instructional program. As a part of this overall effort, MCPS has developed a framework for the astronomy curriculum that includes a rationale, essential indicators, and blueprints. The school system is partnering with the NASA Goddard Space Flight Center to involve professional astronomers/space scientists as content advisors to ensure science content accuracy and currency. Through this partnership, many NASA developed educational materials have been made available to the school system to assist with the instructional sequences. This new policy has resulted in the development of a clear and coherent astronomy curriculum for grades K-8. The blueprint is written in the form of a set of indicators which identify the exact skills and knowledge that need to be taught at each grade level so that students will meet and exceed state, national, and international standards. Each blueprint also includes the enduring understandings and essential questions that students should focus on for that specific unit of study, a proposed instructional sequence, and assessment and differentiation ideas. Using these blueprints, teachers will create curriculum guides that include model lessons, model assignments, concept maps, resources, assessment samples, and strategies for differentiating the curriculum to meet the needs of a wide range of learners. In addition, a 45 hour certification training course is being developed to train in service teachers in a wide range of space science disciplines from seasons to cosmology. The course is being developed and will be taught by a team composed of space scientists and master educational trainers. Pilot testing of the curriculum and the training course will begin in Fall 2002.
The Contribution of Environmental Studies Curricula to Environmental Decision Making
NASA Astrophysics Data System (ADS)
Lord, Jean
Current studies indicate that college environmental-science curriculums are often inadequate and not meaningful to college students. Yet climate change, depletion of natural resources, and loss of habitat due to human activities are among critical environmental issues. It is important that college students are prepared to address these issues after graduation. This case study attempted to discover the ways that college students perceived how participation in environmental science courses contributed to their environmental decision making and ecological intelligence. The population consisted of 15 sophomore, junior, and senior students randomly selected from a list of science students provided by the registrar. The conceptual framework that guided this study includes 5 components of ecological intelligence: biodiversity, ecological literacy, decision making skills, understanding sustainability, and systems thinking. The data collected over a period of 3 months from focus groups, individual interviews, and student discussions were transcribed and coded using typological analysis to identify students' perspectives on environmental science courses. Findings showed that college science curriculums need to incorporate students' prior environmental experiences into science courses. They should also focus on providing hands on experiences that promote application of knowledge to address environmental problems. This study may promote the implementation of integrated college science curriculums that encourage environmental, interdisciplinary, and personalized learning experiences. Implications for positive social change include college environmental studies and curricula that motivate students and engage their interest in participating in environmental activities.
NASA Astrophysics Data System (ADS)
Yamamoto, Karen Kina
This study examines the dynamics of survival and growth of curricular and instructional innovations. It focuses on the Foundational Approaches in Science Teaching (FAST) project, a long-term survivor of reform in science education. Key questions guiding this study include: (1) How did the FAST project survive over the past 30 years? (2) What elements are essential for long-term survival and growth of an innovative science program? (3) Why did the project continue to survive amidst several waves of educational reform? The core of my conceptual framework is that the odds of survival and growth of curricular and instructional innovations are increased by the extent to which resources, theory-based curriculum development processes, and professional development strategies are not only incorporated into but also interdependent within a project. With this framework as a guide, the main methods of data collection were document analysis, interviews, and observations. FAST, developed by the University of Hawaii's Curriculum Research and Development Group (CRDG), consists of a sequential and interdisciplinary middle and high school science program for students in grades 6-10. According to the results of this study, the project was able to survive by receiving constant organizational support from CRDG and a steady source of State funding through the university since 1966; it also retained a relatively small but stable staff of highly qualified project personnel. Formulated on a discipline-based theory that values development of students' intellectual capacities as the platform for curriculum research, design, and development, the FAST project translated this vision of science education into key elements of an innovative program that survived and thrived: (1) an interdisciplinary program consisting of physical, biological, and earth sciences; inquiry as content and process; history and philosophy of science; and links between and among sciences, technology, and society; and (2) teaching and learning strategies that model a community of practicing scientists. This study also identified the main elements of professional development strategies essential for an innovative project's survival and growth: linking curriculum development to required pre-implementation inservice training, engaging project personnel in both of these phases recruiting, training a cadre of experienced FAST teachers as inservice trainers, and providing follow-up professional development seminars. In conclusion, the FAST project survived mainly because the longevity of its leaders gave stability and continuity to the project. Against many odds such as limited financial resources and a small number of staff positions relative to the project's scope, the leaders managed with whatever resources were available to link theory-based curriculum development with professional development and, thereby, increase the project's chances for survival and growth.
From the Ground Up: Building an Undergraduate Earth Systems Curriculum
NASA Astrophysics Data System (ADS)
Head, W. D.; Alexander, S. E.; Moore, S. W.; Melton, F. S.
2006-12-01
It is rare that an interdisciplinary group of educators has the opportunity to design a science curriculum without the constraints of pre-existing academic departments. In 1994, California State University Monterey Bay (CSUMB) acquired 1,387 acres from the U.S. Department of the Army and began construction of a new campus. CSUMB was developed as a four-year undergraduate university distinctive in its mission to serve the diverse people of California. Inspired by the Earth System Science Education program initiated by NASA and the University Space Research Association, CSUMB embarked upon the development of an interdisciplinary Earth systems curriculum that placed a strong emphasis on experience-based learning, integration of science, policy, and technology, outreach to minority students, and partnerships with the local community. Our cornerstone program is the Bachelor of Science in Earth Systems Science & Policy. It is built on a pyramid- style framework that includes integration, systems approach, and applied technologies (base of the pyramid); junior entry course, case studies, concentrations, service learning, student internships, and research experiences (middle of the pyramid); and senior capstone projects (apex of the pyramid). However, to succeed, new and innovative programs must constantly evaluate where they have been, where they are, and where they need to go to meet the needs of their students today and their students of the future.
NASA Astrophysics Data System (ADS)
Pedemonte, S.; Weiss, E. L.
2016-02-01
Ocean and climate sciences are rarely introduced at the early elementary levels. Reasons for this vary, but include little direct attention at the national and state levels; lack of quality instructional materials; and, lack of teacher content knowledge. Recent recommendations by the National Research Council, "revise the Earth and Space sciences core ideas and grade band endpoints to include more attention to the ocean whenever possible" (NRC, 2012, p. 336) adopted in the Next Generation Science Standards (NGSS), may increase the call for ocean and climate sciences to be addressed. In response to these recommendations' and the recognition that an understanding of some of the Disciplinary Core Ideas (DCIs) would be incomplete without an understanding of processes or phenomena unique to the ocean and ocean organisms; the ocean Literacy community have created documents that show the alignment of NGSS with the Ocean Literacy Principles and Fundamental Concepts (Ocean Literacy, 2013) as well as the Ocean Literacy Scope and Sequence for Grades K-12 (Ocean Literacy, 2010), providing a solid argument for how and to what degree ocean sciences should be part of the curriculum. However, the percentage of science education curricula focused on the ocean remains very low. This session will describe a new project, that draws on the expertise of curriculum developers, ocean literacy advocates, and researchers to meet the challenges of aligning ocean sciences curriculum to NGSS, and supporting its implementation. The desired outcomes of the proposed project are to provide a rigorous standards aligned curricula that addresses all of the Life Sciences, and some Earth and Space Sciences and Engineering Design Core Ideas for Grades K and 1; and provides teachers with the support they need to understand the content and begin implementation. The process and lessons learned will be shared.
NASA Astrophysics Data System (ADS)
Manocchi-Verrino, Carol J.
A call for a new perspective of science literacy has been marked as the impetus of change in science education, suggesting that a meaning-making approach to literacy and inquiry are central to learning science. This research study explored how science literacy evolved in a classroom where this reconceptualized view of science literacy guided curriculum design and instruction. The teacher/researcher incorporated Interactive Science Notebooks (ISNs) and Interactive Reading Organizers and Comprehension Strategies (IROCS) into instructional materials. In a class consisting of 20 mainstream and special education students, this 7-week study collected data using Likert scales, stimulated recall interviews, a teacher/researcher journal, and students¡¦ position papers. A systematic design framework was used for the three-phase analysis. Hyperresearch RTM software facilitated the identification of open codes, an axial code, and frequency graphs. In order to develop insight into the relationship between questions, methods, and curriculum design recent recommendations for quality research in science education were considered in the methodology. The hypothesis formulated from the data suggests that science literacy evolves on a continuum, and the degree to which science literacy evolves on the continuum seems to be contingent upon their uses of intertextual connections and inquiry behaviors. Several notable insights emerged from the data which were used to guide curriculum, instruction, and assessment that promotes the development of science literacy in the middle school classroom. The study suggests a possible correlation between the use of intertextual connections and inquiry behaviors, and the use of a continuum in measuring the emergence of science literacy.
Grades 4-6: Arkansas Public School Course Content Guide.
ERIC Educational Resources Information Center
Arkansas State Dept. of Education, Little Rock.
Provided as a framework for use in curriculum development are Arkansas' course content guides for the intermediate elementary grades four, five, and six. At each grade level, language arts, mathematics, reading, social studies, and science skills have been identified at three instructional levels: basic, developmental, and extensional. Basic…
The Jet Principle: Technologies Provide Border Conditions for Global Learning
ERIC Educational Resources Information Center
Ahamer, Gilbert
2012-01-01
Purpose: The purpose of this paper is to first define the "jet principle" of (e-)learning as providing dynamically suitable framework conditions for enhanced learning procedures that combine views from multiple cultures of science. Second it applies this principle to the case of the "Global Studies" curriculum, a unique…
Changing Approaches--Changing Perspectives
ERIC Educational Resources Information Center
Park, Travis; Pearson, Donna; Sawyer, Jennifer
2011-01-01
Over the past seven years, research teams from the National Research Center for Career and Technical Education (NRCCTE) have been at work testing curriculum integration models. Each of three studies--Math-in-CTE, Authentic Literacy-in-CTE, and Science-in-CTE--has focused on the development of pedagogic frameworks and delivery of professional…
Metocognitive Support Accelerates Computer Assisted Learning for Novice Programmers
ERIC Educational Resources Information Center
Rum, Siti Nurulain Mohd; Ismail, Maizatul Akmar
2017-01-01
Computer programming is a part of the curriculum in computer science education, and high drop rates for this subject are a universal problem. Development of metacognitive skills, including the conceptual framework provided by socio-cognitive theories that afford reflective thinking, such as actively monitoring, evaluating, and modifying one's…
The Engineering Design Process as a Model for STEM Curriculum Design
ERIC Educational Resources Information Center
Corbett, Krystal Sno
2012-01-01
Engaging pedagogics have been proven to be effective in the promotion of deep learning for science, technology, engineering, and mathematics (STEM) students. In many cases, academic institutions have shown a desire to improve education by implementing more engaging techniques in the classroom. The research framework established in this…
Addressing Children's Alternative Frameworks of the Moon's Phases and Eclipses.
ERIC Educational Resources Information Center
Barnett, Michael; Morran, Judy
2002-01-01
Analyzes a project-based space science curriculum designed to support elementary school students in understanding complex, inter-related astronomy concepts. Uses pre- and post-interviews, examines student work, and has students complete a pre- and post-astronomy conceptual survey to assess conceptual change. Points out that instruction should…
A Framework for Curriculum Research.
ERIC Educational Resources Information Center
Kimpston, Richard D.; Rogers, Karen B.
1986-01-01
A framework for generating curriculum research is proposed from a synthesis of Dunkin and Biddle's model of teaching variables with Beauchamp's "curriculum system" planning functions. The framework systematically defines variables that delineate curriculum planning processes. (CJH)
NASA Astrophysics Data System (ADS)
Pyle, E. J.
2013-12-01
The Next Generation Science Standards (NGSS) are a step forward in ensuring that future generations of students become scientifically literate. The NGSS document builds from the National Science Education Standards (1996) and the National Assessment of Educational Progress (NAEP) science framework of 2005. Design teams for the Curriculum Framework for K-12 Science Education were to outline the essential content necessary for students' science literacy, considering the foundational knowledge and the structure of each discipline in the context of learning progressions. Once draft standards were developed, two issues emerged from their review: (a) the continual need to prune 'cherished ideas' within the content, such that only essential ideas were represented, and (b) the potential for prior conceptions of Science & Engineering Practices (SEP) and cross-cutting concepts (CCC) to limit overly constrain performance expectations. With the release of the NGSS, several challenges are emerging for geoscience education. First, the traditional emphasis of Earth science in middle school has been augmented by new standards for high school that require major syntheses of concepts. Second, the integration of SEPs into performance expectations places an increased burden on teachers and curriculum developers to organize instruction around the nature of inquiry in the geosciences. Third, work is needed to define CCCs in Earth contexts, such that the unique structure of the geosciences is best represented. To ensure that the Earth & Space Science standards are implemented through grade 12, two supporting structures must be developed. In the past, many curricular materials claimed that they adhered to the NSES, but in some cases this match was a simple word match or checklist that bore only superficial resemblance to the standards. The structure of the performance expectations is of sufficient sophistication to ensure that adherence to the standards more than a casual exercise. Claims of match must be supported not just by disciplinary core ideas, but also by SEPs and CCCs. Such a structured approach to Earth science instruction also requires specialized approaches to teacher preparation and professional development. Many teachers of Earth science are underprepared, and an examination of how Earth science teachers are prepared and supported to use to new curricular materials is also warranted. This presentation will (a) compare the structure of the NGSS and NSES for Earth & Space Science, (b) discuss the review of the NGSS drafts with respect to the intent of the Curriculum Framework, (c) provide definition to the particular challenges to instruction offered by the NGSS beyond prior instructional experience, and (d) define and reinforce concepts of what it means for curricula, instructional materials, and teacher preparation and professional development to be considered 'aligned' with the NGSS.
Connected Curriculum for sharing science with alumni, industry partners and charitable organizations
NASA Astrophysics Data System (ADS)
Tong, V.
2015-12-01
The Connected Curriculum (CC) is the institutional framework for research-based education at University College London. Undergraduate and graduate students across the research-intensive university are given the opportunities to produce inquiry-based work to connect with professors, fellow students from different faculties, alumni around the world, as well as industry partners and charitable organizations. Through the development of cross-faculty theme-based online networks, the CC encourages students and academics to share and communicate their science to a broad range of interested audience. In this presentation, I discuss how an institutional research-based education initiative can provide a powerful platform for engaging students and academics in communicating the importance and societal relevance of their scientific work to the wider world.
NASA Astrophysics Data System (ADS)
Harlow, Danielle B.
2014-02-01
This paper reports the results of an investigation of how a professional development content course based on the Physics and Everyday Thinking (PET) curriculum affected the teaching practices of five case study elementary school teachers. The findings of this study highlight different ways that teachers use what they learn in content courses to teach science to elementary children. While some teachers transferred pedagogical practices along with the content, others transformed the content to be useful in already existing pedagogical frameworks, and still others show little or no evidence of transfer. The range of transfer is explained by considering how each teacher interacted with the learning context (the PET curriculum) and their initial ideas about teaching science.
Information science for the future: an innovative nursing informatics curriculum.
Travis, L; Flatley Brennan, P
1998-04-01
Health care is increasingly driven by information, and consequently, patient care will demand effective management of information. The report of the Priority Expert Panel E: Nursing Informatics and Enhancing Clinical Care Through Nursing Informatics challenges faculty to produce baccalaureate graduates who use information technologies to improve the patient care process and change health care. The challenge is to construct an evolving nursing informatics curriculum to provide nursing professionals with the foundation for affecting health care delivery. This article discusses the design, implementation, and evaluation of an innovative nursing informatics curriculum incorporated into a baccalaureate nursing program. The basic components of the curriculum framework are information, technology, and clinical care process. The presented integrated curriculum is effective in familiarizing students with informatics and encouraging them to think critically about using informatics in practice. The two groups of students who completed the four-course sequence will be discussed.
Collaborating internationally on physician leadership development: why now?
Chan, Ming-Ka; de Camps Meschino, Diane; Dath, Deepak; Busari, Jamiu; Bohnen, Jordan David; Samson, Lindy Michelle; Matlow, Anne; Sánchez-Mendiola, Melchor
2016-07-04
Purpose This paper aims to highlight the importance of leadership development for all physicians within a competency-based medical education (CBME) framework. It describes the importance of timely international collaboration as a key strategy in promoting physician leadership development. Design/methodology/approach The paper explores published and Grey literature around physician leadership development and proposes that international collaboration will meet the expanding call for development of leadership competencies in postgraduate medical learners. Two grounding frameworks were used: complexity science supports adding physician leadership training to the current momentum of CBME adoption, and relational cultural theory supports the engagement of diverse stakeholders in multiple jurisdictions around the world to ensure inclusivity in leadership education development. Findings An international collaborative identified key insights regarding the need to frame physician leadership education within a competency-based model. Practical implications International collaboration can be a vehicle for developing a globally relevant, generalizable physician leadership curriculum. This model can be expanded to encourage innovation, scholarship and program evaluation. Originality/value A competency-based leadership development curriculum is being designed by an international collaborative. The curriculum is based on established leadership and education frameworks. The international collaboration model provides opportunities for ongoing sharing, networking and diversification.
On the road to science education for sustainability?
NASA Astrophysics Data System (ADS)
Albe, Virginie
2013-03-01
In this paper I discuss three issues relevant to the ideas introduced by Colucci-Gray, Perazzone, Dodman and Camino (2012) in their three-part paper on epistemological reflections and educational practice for science education for sustainability: (1) social studies of science for science education, (2) education for sustainability or sustainable development, and (3) curriculum studies and action-research. For the first issue, I address the need for science education efforts dedicated to an epistemological renewal to take seriously into consideration the contributions of the social studies of science. This perspective may be fruitful for an education for sustainability that also requires one to consider the political dimension of environmental issues and their intrinsic power relationships. It also encourages the abandonment of dichotomies that hamper democratic participation: experts/lay people, science/society, scientific knowledge/values, etc. For the second issue, my commentary focuses on the challenges that education for sustainability or sustainable development pose to science education with a shift from subject matter contents to socio-educative aims and socio-political actions. These challenges lead to the third issue with an invitation to apprehend science education for sustainability within the frameworks of curriculum theory and design-based research.
NASA Astrophysics Data System (ADS)
Falkner, Katrina; Vivian, Rebecca
2015-10-01
To support teachers to implement Computer Science curricula into classrooms from the very first year of school, teachers, schools and organisations seek quality curriculum resources to support implementation and teacher professional development. Until now, many Computer Science resources and outreach initiatives have targeted K-12 school-age children, with the intention to engage children and increase interest, rather than to formally teach concepts and skills. What is the educational quality of existing Computer Science resources and to what extent are they suitable for classroom learning and teaching? In this paper, an assessment framework is presented to evaluate the quality of online Computer Science resources. Further, a semi-systematic review of available online Computer Science resources was conducted to evaluate resources available for classroom learning and teaching and to identify gaps in resource availability, using the Australian curriculum as a case study analysis. The findings reveal a predominance of quality resources, however, a number of critical gaps were identified. This paper provides recommendations and guidance for the development of new and supplementary resources and future research.
Preschool Curriculum Framework.
ERIC Educational Resources Information Center
Shasta County Office of Education, Redding, CA.
Designed for use in curriculum development and as an instructional guide for preschool programs in Shasta County, California, this framework provides information on curriculum areas, developmental indicators, and appropriate activities at the preschool level. Specifically, this framework represents a resource for teachers, curriculum specialists,…
Life in the Universe: A Multidisciplinary Science Curriculum for Undergraduate Honors Students
NASA Astrophysics Data System (ADS)
Danly, L.
2004-05-01
Astrobiology provides an excellent framework for an interdisciplinary study of the sciences, especially for non-majors. To be conversant in astrobiology, one must have a basic understanding of astronomy, planetary science, geology, chemistry, biology, and environmental science. To explore the possible futures for life on Earth one must also consider political, economic, and other societal issues. And, as the questions addressed in astrobiology are also profoundly philosophical topics that have been considered by artists and writers of all cultures, the humanities also play an important role. The study of the past, present, and future possibilities for life in the universe, therefore, can offer curricular opportunities for students of all disciplines to have something to share with and something to learn from their peers. This paper describes a three-term curriculum for Honors Program students at the University of Denver that includes, among other innovations, peer learning, student goal/syllabus setting, integration of University of Denver faculty research programs, and community service.
Learning Theories 101: Application to Everyday Teaching and Scholarship
ERIC Educational Resources Information Center
Kay, Denise; Kibble, Jonathan
2016-01-01
Shifts in educational research, in how scholarship in higher education is defined, and in how funding is appropriated suggest that educators within basic science fields can benefit from increased understanding of learning theory and how it applies to classroom practice. This article uses a mock curriculum design scenario as a framework for the…
ERIC Educational Resources Information Center
University of Northern Colorado, Greeley.
This publication introduces and provides a framework for Earth Systems Education (ESE), an effort to establish within U.S. schools more effective programs designed to increase the public's understanding of the Earth system. The publication presents seven "understandings" around which curriculum can be organized and materials selected in…
ERIC Educational Resources Information Center
Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.
This document, which reflects Mississippi's statutory requirement that instructional programs be based on core curricula and performance-based assessment, contains outlines of the instructional units required in local instructional management plans and daily lesson plans for agriscience I and II. Presented first are a program description and…
Blended Learning as an Effective Pedagogical Paradigm for Biomedical Science
ERIC Educational Resources Information Center
Hartfield, Perry
2013-01-01
Blended learning combines face-to-face class based and online teaching and learning delivery in order to increase flexibility in how, when, and where students study and learn. The development, integration, and promotion of blended learning in frameworks of curriculum design can optimize the opportunities afforded by information and communication…
Becoming an Evidence-Based Practitioner: A Framework for Teacher-Researchers.
ERIC Educational Resources Information Center
McNamara, Olwen, Ed.
This book presents case studies of classroom research into the teaching and learning of English, mathematics, and sciences, drawing on the experiences of teacher researchers who, in partnership with their local education agencies and local universities, set out to intervene in key areas of the primary curriculum. After "Introduction: Inviting…
ERIC Educational Resources Information Center
Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.
This document, which reflects Mississippi's statutory requirement that instructional programs be based on core curricula and performance-based assessment, contains outlines of the instructional units required in local instructional management plans and daily lesson plans for the introduction to agriscience program. Presented first are a program…
NASA Astrophysics Data System (ADS)
Goodnough, Karen Catherine
2000-10-01
Since the publication of Frames of Mind: The Theory in Practice, multiple intelligences, theory (Gardner, 1983) has been used by practitioners in a variety of ways to make teaching and learning more meaningful. However, little attention has been focused on exploring the potential of the theory for science teaching and learning. Consequently, this research study was designed to: (1) explore Howard Gardner's theory of multiple intelligences (1983) and its merit for making science teaching and learning more meaningful; (2) provide a forum for teachers to engage in critical self-reflection about their theory and practice in science education; (3) study the process of action research in the context of science education; and (4) describe the effectiveness of collaborative action research as a framework for teacher development and curriculum development. The study reports on the experiences of four teachers (two elementary teachers, one junior high teacher, and one high school teacher) and myself, a university researcher-facilitator, as we participated in a collaborative action research project. The action research group held weekly meetings over a five-month period (January--May, 1999). The inquiry was a qualitative case study (Stake, 1994) that aimed to understand the perspectives of those directly involved. This was achieved by using multiple methods to collect data: audiotaped action research meetings, fieldnotes, semi-structured interviews, journal writing, and concept mapping. All data were analysed on an ongoing basis. Many positive outcomes resulted from the study in areas such as curriculum development, teacher development, and student learning in science. Through the process of action research, research participants became more reflective about their practice and thus, enhanced their pedagogical content knowledge (Shulman, 1987) in science. Students became more engaged in learning science, gained a greater understanding of how they learn, and experienced a science curriculum that was more relevant and personalized. In addition, the action research process provided a feasible and effective forum for both curriculum development and professional development.
NASA Astrophysics Data System (ADS)
Maury, Tracy Anne
This Capstone project examined how leaders in the Bellevue School District can increase elementary teachers' capacity for teaching inquiry-based science through the use of professional learning activities that are grounded in ideas from human learning theory. A framework for professional development was constructed and from that framework, a set of professional learning activities were developed as a means to support teacher learning while project participants piloted new curriculum called the Isopod Habitat Challenge. Teachers in the project increased their understanding of the learning theory principles of preconceptions and metacognition. Teachers did not increase their understanding of the principle of learning with understanding, although they did articulate the significance of engaging children in student-led inquiry cycles. Data from the curriculum revision and professional development project coupled with ideas from learning theory, cognition and policy implementation, and learning community literatures suggest Bellevue's leaders can encourage peer-to-peer interaction, link professional development to teachers' daily practice, and capitalize on technology as ways to increase elementary teachers' capacity for teaching inquiry-based science. These lessons also have significance for supporting teacher learning and efficacy in other subject areas and at other levels in the system.
NASA Astrophysics Data System (ADS)
Linn, Marcia C.
1995-06-01
Designing effective curricula for complex topics and incorporating technological tools is an evolving process. One important way to foster effective design is to synthesize successful practices. This paper describes a framework called scaffolded knowledge integration and illustrates how it guided the design of two successful course enhancements in the field of computer science and engineering. One course enhancement, the LISP Knowledge Integration Environment, improved learning and resulted in more gender-equitable outcomes. The second course enhancement, the spatial reasoning environment, addressed spatial reasoning in an introductory engineering course. This enhancement minimized the importance of prior knowledge of spatial reasoning and helped students develop a more comprehensive repertoire of spatial reasoning strategies. Taken together, the instructional research programs reinforce the value of the scaffolded knowledge integration framework and suggest directions for future curriculum reformers.
Cognition before curriculum: rethinking the integration of basic science and clinical learning.
Kulasegaram, Kulamakan Mahan; Martimianakis, Maria Athina; Mylopoulos, Maria; Whitehead, Cynthia R; Woods, Nicole N
2013-10-01
Integrating basic science and clinical concepts in the undergraduate medical curriculum is an important challenge for medical education. The health professions education literature includes a variety of educational strategies for integrating basic science and clinical concepts at multiple levels of the curriculum. To date, assessment of this literature has been limited. In this critical narrative review, the authors analyzed literature published in the last 30 years (1982-2012) using a previously published integration framework. They included studies that documented approaches to integration at the level of programs, courses, or teaching sessions and that aimed to improve learning outcomes. The authors evaluated these studies for evidence of successful integration and to identify factors that contribute to integration. Several strategies at the program and course level are well described but poorly evaluated. Multiple factors contribute to successful learning, so identifying how interventions at these levels result in successful integration is difficult. Evidence from session-level interventions and experimental studies suggests that integration can be achieved if learning interventions attempt to link basic and clinical science in a causal relationship. These interventions attend to how learners connect different domains of knowledge and suggest that successful integration requires learners to build cognitive associations between basic and clinical science. One way of understanding the integration of basic and clinical science is as a cognitive activity occurring within learners. This perspective suggests that learner-centered, content-focused, and session-level-oriented strategies can achieve cognitive integration.
NASA Astrophysics Data System (ADS)
Schoedinger, S. E.; Weiss, E. L.
2016-12-01
K-5 science teachers, who often lack a science background, have been tasked with a huge challenge in implementing NGSS—to completely change their instructional approach from one that views science as a body of knowledge to be imparted to one that is epistemic in nature. We have found that providing high-quality professional learning (PL) experiences is often not enough and that teachers must have instructional materials that align with their instructional goals. We describe a case study in which the Lawrence Hall of Science (the Hall) used the Hall-developed Ocean Sciences Sequence for Grades 3-5 (OSS 3-5) to support a rigorous PL program for grade 3-5 teachers focused on the NGSS science and engineering practice, engaging in argument from evidence. Developed prior to the release of NGSS, the Ocean Literacy Framework and the NGSS precursor, A Framework for K-12 Science Education, informed the content and instructional approaches of OSS 3-5. OSS 3-5 provides a substantial focus on making evidence-based explanations (and other science practices), while building students' ocean sciences content knowledge. From 2013-2015, the Hall engaged cohorts of teachers in a rigorous PL experience focused on engaging in argument from evidence. During the summer, teachers attended a week-long institute, in which exemplar activities from OSS 3-5 were used to model instructional practices to support arguing from evidence and related practices, e.g., developing and using models and constructing explanations. Immediately afterward, teachers enacted what they'd learned during a two-week summer school practicum. Here, they team-taught the OSS 3-5 curriculum, participated in video reflection groups, and received coaching and just-in-time input from instructors. In the subsequent academic year, many teachers began by teaching OSS 3-5 so that they could practice engaging students in argumentation in curriculum they'd already used for that purpose. Throughout the year, teachers participated in four follow-up PL sessions, which included planning time. Project staff found that teachers struggled to find and/or create appropriate opportunities to engage students in argumentation when using the district-adopted curriculum, which was not created with these goals in mind.
NASA Astrophysics Data System (ADS)
Saam, Julie Reinhardt
The National Science Education Standards, the National Council of Teachers of Mathematics Curriculum Standards, the Interdisciplinary Team Organization structure and the Middle School movement collectively suggest to teachers to make connections between their subject areas. This case study of a middle school mathematics teacher and science teacher utilizes the framework of teacher wisdom to bring a unique perspective to the process of developing and implementing integrated curriculum. Data collection consisted of interviews with the teachers, students, and their principal; documents such lesson plans, team meeting minutes and teacher journal entries; and field notes acquired within team meetings and classroom instruction. The interpretations of this study reveal that teacher development of integrated curriculum occurs in two ways: naturally and intentionally. The natural label used to describe when teachers comfortably share information that could serve as connections between subjects. The intentional label used to describe when the teachers purposely plan integrated lessons and units. These findings also provide an image of middle school integration. This image exhibits more than connections between subject area content; it also shows connections with away-from-school skills and events, lifeskills, and lifelong guidelines. Although these teachers found it frustrating and overwhelming to meet the many views of integration, they assembled integration curriculum that followed their philosophy of education, coincided with their personal characteristics and met the needs of their students. The interpretations of this study reveal a new model of middle school integration. Teachers can use this model as a collection of integration examples. Integration researchers can use this model as a conceptual framework to analyze the integration efforts of middle level teachers. Additional research needs to focus on: developing new modeling and evaluation tools for teachers, evaluating middle school professional development programs, investigating middle school teachers' characteristics, and continuing the study of integration's worth. The results of this study and additional research may help: (a) administrators to target specific teachers for middle school positions, (b) educators to plan and implement new programs for inservice and preservice middle school teachers, and (c) teachers to experiment with new and innovative strategies for middle school integration.
Formative Assessment Probes: Pushes and Pulls
ERIC Educational Resources Information Center
Keeley, Page
2011-01-01
When the concept of force is first taught in the elementary curriculum, it is usually introduced as a push or a pull. The recently released "A Framework for K-12 Science Education" describes grade band endpoints for the Core Idea: Motion and Stability: Forces and Interactions (NRC 2011). It states that by the end of grade 2 students should know…
Macro, Submicro, and Symbolic: The Many Faces of the Chemistry "Triplet"
ERIC Educational Resources Information Center
Talanquer, Vicente
2011-01-01
The idea that chemical knowledge can be represented in three main ways: macro, submicro, and symbolic (chemistry triplet) has become paradigmatic in chemistry and science education. It has served both as the base of theoretical frameworks that guide research in chemical education and as a central idea in various curriculum projects. However, this…
ERIC Educational Resources Information Center
Koul, Anjni
2014-01-01
The National Curriculum Framework-2005 (NCF-2005) recommends that learning of children has to shift away from methods encouraging rote memory. This is possible only if children get an opportunity to explore the surroundings themselves. In this paper the researcher shares her experiences in the use of various innovative approaches in…
ERIC Educational Resources Information Center
Armstrong, David; Cochran, Timothy; Compton, Steve; Davis, Jennifer; Edgerton, Seena Shazowee; Kisner, Christie; Lewis, Judy; Sartin, Billie Faye; Shell, Deborah
2008-01-01
As the world economy continues to evolve, businesses and industries must adopt new practices and processes in order to survive. Quality and cost control, work teams and participatory management, and an infusion of technology are transforming the way people work and do business. Employees are now expected to read, write, and communicate…
ERIC Educational Resources Information Center
Alwardt, Randi Kay
2011-01-01
This investigation examined the transition from a spiral science curriculum to a field-focus science curriculum in middle school. A spiral science curriculum focuses on a small part of each field of science during each middle school year, more of a general science concept. In contrast to that, the base of a field-focus curriculum is that each…
NASA Astrophysics Data System (ADS)
Seethaler, Sherry; Linn, Marcia
To understand how students learn about science controversy, this study examines students' reasoning about tradeoffs in the context of a technology-enhanced curriculum about genetically modified food. The curriculum was designed and refined based on the Scaffolded Knowledge Integration Framework to help students sort and integrate their initial ideas and those presented in the curriculum. Pre-test and post-test scores from 190 students show that students made significant (p < 0.0001) gains in their understanding of the genetically modified food controversy. Analyses of students' final papers, in which they took and defended a position on what type of agricultural practice should be used in their geographical region, showed that students were able to provide evidence both for and against their positions, but were less explicit about how they weighed these tradeoffs. These results provide important insights into students' thinking and have implications for curricular design.
Integrating information literacy across a BSN curriculum.
Flood, Lisa Sue; Gasiewicz, Nanci; Delpier, Terry
2010-02-01
Although research regarding effective informatics teaching strategies is sparse and informatics competencies have not yet been finalized, nurse educators have been challenged to include informatics throughout the curriculum. Nurse educators are confronted with how best to incorporate informatics into an already burgeoning curriculum. This article offers a systematic approach to incorporating information literacy, a vital component of informatics, across a baccalaureate of science in nursing curriculum. Motivated by the Institute of Medicine report, guided by the initial Technology Informatics Guiding Education Reform competency framework, and using the specific Quality and Safety Education for Nurses informatics competencies, the proposed integrated approach emphasizes clinical applications. The five assignments are designed to incrementally increase students' abilities to recognize the need for information (i.e., knowledge); advance students' abilities to locate, evaluate, and use information (i.e., skills); and foster a positive appreciation for information literacy (i.e., attitudes) when planning safe, effective patient care. Copyright 2010, SLACK Incorporated.
Islamic values in the Kuwaiti curriculum
NASA Astrophysics Data System (ADS)
Alshahen, Ghanim A.
This study investigated the influence of Islamic values on the curriculum, in particular the Islamic studies and science curricula. Three questionnaires were developed, validated, and used to investigate teachers' and pupils' attitudes toward Islamic values in the curriculum. Four main sections deal with Islamic values in the Islamic studies and science curricula, namely: Islamic values in the textbook, teaching Islamic values, the relationship between Islamic values and the science curriculum, and the Islamic values model. Two instruments were used in this study: questionnaires and interviews. Both qualitative and quantitative data were generated from the sample, which consisted of Islamic studies and science teachers and supervisors in intermediate schools, and pupils studying in the eighth grade in intermediate schools. In the last case, the data were gathered by questionnaire only. The interviews and questionnaires provided explanatory data. The research was carried out in three phases, considering respectively 55 Islamic studies teachers, 55 science teachers who teach the eighth grade in intermediate schools, and 786 pupils who study in the eighth grade in 20 schools. In each school, the researcher selected two classes. This thesis consists of eight chapters. Chapter One provides a general introduction and highlights the general framework of this study. Chapter Two is concerned with the development of the education system in Kuwait and the objectives of the Islamic studies and science curricula in the intermediate stage. Chapter Three presents the conceptions of values, the Islamic values model, and Islamic values in the curriculum. Chapter Four describes the objectives of the study, and its research design methods and procedures used to develop the instruments. The sampling procedure, the data collection procedures, and the statistical methods used to analyse the data are also described. Chapter Five presents and interprets the findings of this study. Data analysis in this chapter deals with the Islamic studies and science teachers' questionnaires and both the teachers' and supervisors' interviews. The interview findings are dealt with according to the key themes. Chapter Seven discusses the main findings related to Islamic values in both curricula. Chapter Eight reflects on the main themes of the investigation as a whole. It gives a brief description of the aims and methods of the study and sets out the major findings, their importance, and limitations. Finally, the study concludes with several recommendations and suggestions for developing Islamic values in the curriculum.
Teaching and Learning the Elements of Argumentation
NASA Astrophysics Data System (ADS)
Untereiner, Brian
Kim, Department of Curriculum and Instruction Departmental Member iii Abstract Supervisory Committee Dr. Robert Anthony, Department of Curriculum and Instruction Supervisor Dr. Mijung Kim, Department of Curriculum and Instruction Departmental Member In this study I investigated the interactions of 25 Grade 8 science students as they learned how to construct oral arguments using the Toulmin Argumentation Pattern framework. I collected the data during three recorded small group discussion sessions during a five week Earth Science unit between February and March of 2011. The first session recorded the students' discussions prior to receiving either argumentation instruction or the science concept instruction. The second session recorded their discussions after receiving an introduction to argumentation and a scaffold, but not concept instruction. During the three weeks preceding the third session, the students received additional argumentation instruction and completed one-third of the Earth Science unit. The results showed the students collectively made more arguments during each subsequent session. The students' individual arguments showed a correspondence between their purportedly most familiar topics and the most discussed topics. I also found that when students made counter arguments and/or invited or challenged group members to participate, their discussions contained comparatively more argument elements (claims, data and warrants) than discussions containing predominantly collaborative assertions. The key outcome of this study for developing students' use of the elements of argumentation during classroom discussions was to recognize and incorporate opportunities for the students to tap into their prior-knowledge. To engage students in this process, the results indicate the importance of creating time for discussions relevant to the curriculum and to the students.
Massachusetts Adult Basic Education Curriculum Framework for Mathematics and Numeracy
ERIC Educational Resources Information Center
Massachusetts Department of Education, 2005
2005-01-01
Over the past number of years, several initiatives have set the stage for writing the Massachusetts ABE (Adult Basic Education) Curriculum Frameworks for Mathematics and Numeracy. This current version of the "Massachusetts ABE Mathematics Curriculum Frameworks" is a second revision of that first framework, but it is heavily influenced by…
NASA Astrophysics Data System (ADS)
Teo, Tang Wee; Osborne, Margery
2012-09-01
In this paper, we present a microanalysis of a specialized STEM (science, technology, engineering, and mathematics) high school teacher's experience of self-initiated science inquiry curriculum reform. We examine the meanings of these two constructs: inquiry curriculum and curriculum change through the process lens of interactions, actions, and interpretations. Symbolic interactionism is the theoretical framework we used to frame our analysis of how this teacher, Darren Daley (a pseudonym) and various stakeholders purposefully and strategically engaged in "face-work" and act out lines of actions to advocate or oppose curriculum change. Symbols are used in this world of face-to-face encounters to communicate, imply, and assert, meanings through socially flexible and adjustable processes. We scrutinize how Daley (un)consciously engaged all of these to defend his decisions, actions, and outcomes and "look" to others as doing inquiry reform. The meanings of such work are not intrinsically driven or reactions to psychological and extraneous factors and forces, but emergent through interactions. The data collection methods include interviews with Daley, school administrators, students, and parents, lesson observations in Daley's class, and gathering of school website pages, brochures, and curriculum materials. We represent data in narratives describing storied history, voices, interactions, anecdotal accounts from individuals' experiences, and interpretations. The analysis and findings illuminate the nature of teacher agency—how it is reclaimed, sustained, reinforced, contested, exercised, and modified in more nuanced ways, hence offering an alternative lens to theorizing and empirically analyzing this construct.
Curriculum Policies for Students with Special Needs in Australia
ERIC Educational Resources Information Center
Aspland, Tania; Datta, Poulomee; Talukdar, Joy
2012-01-01
The curriculum policies for students with special needs across Australia have been reviewed. The Curriculum Framework in the Australian Capital Territory is used to inform their school based curriculum. The Northern Territory Curriculum Framework describes what learners are expected to achieve and what learners have achieved. The New South Wales…
Inam, Ayesha; Tariq, Pervaiz N; Zaman, Sahira
2015-06-01
Cultural adaptation of evidence-based programmes has gained importance primarily owing to its perceived impact on the established effectiveness of a programme. To date, many researchers have proposed different frameworks for systematic adaptation process. This article presents the cultural adaptation of preschool Promoting Alternative Thinking Strategies (PATHS) curriculum for Pakistani children using the heuristic framework of adaptation (Barrera & Castro, 2006). The study was completed in four steps: information gathering, preliminary adaptation design, preliminary adaptation test and adaptation refinement. Feedbacks on programme content suggested universality of the core programme components. Suggested changes were mostly surface structure: language, presentation of materials, conceptual equivalence of concepts, training needs of implementation staff and frequency of programme delivery. In-depth analysis was done to acquire cultural equivalence. Pilot testing of the outcome measures showed strong internal consistency. The results were further discussed with reference to similar work undertaken in other cultures. © 2014 International Union of Psychological Science.
Business Education. Vocational Education Program Courses Standards.
ERIC Educational Resources Information Center
Florida State Dept. of Education, Tallahassee. Div. of Vocational, Adult, and Community Education.
This document contains vocational education program courses standards (curriculum frameworks and student performance standards) for business technology education programs in Florida. Each program courses standard is composed of two parts: a curriculum framework and student performance standards. The curriculum framework includes four major…
Preservice elementary teachers learning to use curriculum materials to plan and teach science
NASA Astrophysics Data System (ADS)
Gunckel, Kristin Lee
New elementary teachers rely heavily on curriculum materials, but available science curriculum materials do not often support teachers in meeting specified learning goals, engaging students in the inquiry and application practices of science, or leveraging students' intellectual and cultural resources for learning. One approach to supporting new elementary teachers in using available science curriculum materials is to provide frameworks to scaffold preservice teachers' developing lesson planning and teaching practices. The Inquiry-Application Instructional Model (I-AIM) and the Critical Analysis and Planning (CA&P) tool were designed to scaffold preservice teachers' developing practice to use curriculum materials effectively to plan and teach science. The I-AIM identifies functions for each activity in an instructional sequence. The CA&P provides guides preservice teachers in modifying curriculum materials to better fit I-AIM and leverage students' resources for learning. This study followed three elementary preservice teachers in an intern-level science method course as they learned to use the I-AIM and CA&P to plan and teach a science unit in their field placement classrooms. Using a sociocultural perspective, this study focused on the ways that the interns used the tools and the mediators that influenced how they used the tools. A color-coding analysis procedure was developed to identify the teaching patterns in the interns' planned instructional approaches and enacted activity sequences and compare those to the patterns implied by the I-AIM and CA&P tools. Interviews with the interns were also conducted and analyzed, along with the assignments they completed for their science methods course, to gain insight into the meanings the interns made of the tools and their experiences planning and teaching science. The results show that all three interns had some successes using the I-AIM and CA&P to analyze their curriculum materials and to plan and teach science lessons. However, all three interns used the tools in different ways, and some of their ways of using the tools were different from the intentions for the tools. These differences can be accounted for by the variety of mediators that influenced the interns' use of the I-AIM and CA&P tools. These mediators were rooted in the Discourses at play in the various communities in which the interns participated during their teacher preparation program. Some of the practices and resources of these various Discourses interfered with or supported the interns' use of the I-AIM and CA&P tools. Each intern took a different trajectory through these Discourses and encountered different practices that mediated how each used the I-AIM and CA&P tools. The results of this study suggest that the goal of preparing preservice teachers to use the I-AIM and CA&P tools should be to provide preservice teachers with opportunities to use the tools and help them develop the metaknowledge about the tools necessary to critically analyze the affordances and weaknesses of different approaches to teaching science.
NASA Astrophysics Data System (ADS)
Biggers, Mandy Sue
Using a framework for variations of classroom inquiry (National Research Council [NRC], 2000, p. 29), this study explored 40 inservice elementary teachers' planning, modification, and enactment of kit-based science curriculum materials. As part of the study, a new observation protocol was modified from an existing protocol (Practices of Science Observation Protocol [P-SOP]) to measure the amount of teacher direction in science inquiry lessons (Practices of Science Observation Protocol + Directedness [P-SOPd]). An embedded mixed methods design was employed to investigate four questions: 1. How valid and reliable is the P-SOPd? 2. In what ways do inservice elementary teachers adapt existing elementary science curriculum materials across the inquiry continuum? 3. What is the relationship between the overall quality of inquiry and variations of inquiry in elementary teachers' enacted science instruction? 4. How do inservice elementary teachers' ideas about the inquiry continuum influence their adaptation of elementary science curriculum materials? Each teacher chose three lessons from a science unit for video-recorded observation, and submitted lesson plans for the three lessons. Lesson plans and videos were scored using the P-SOPd. The scores were also compared between the two protocols to determine if a correlation existed between the level of inquiry (measured on the P-SOP) and the amount of teacher direction (measured on the P-SOPd). Findings indicated no significant differences between planned and enacted lessons for the amount of teacher direction, but a correlation existed between the level of inquiry and the amount of teacher direction. In effect, the elementary teachers taught their science curriculum materials with a high level of fidelity for both the features of inquiry and the amount of teacher direction. A smaller group of three case study teachers were followed for the school year to give a more in-depth explanation of the quantitative findings. Case study findings revealed that the teachers' science instruction was teacher-directed while their conceptions of inquiry were student-directed. This study contributes to existing research on preservice teachers' learning about the continuum (Biggers & Forbes, 2012) and inservice teachers' ideas about the five features of inquiry (Biggers & Forbes, in press).
ERIC Educational Resources Information Center
Clark, John L.; And Others
This document sets out a "Framework" to underpin the development and ongoing renewal of the school curriculum in Hong Kong. It also indicates the bases on which the Framework is developed. The Framework forms the foundation of Hong Kong's Target-Oriented Curriculum (TOC) initiative and provides a useful reference for curriculum…
NASA Astrophysics Data System (ADS)
Asghar, Anila
I conducted a mixed method study to examine: How, if at all, does middle school students' understanding of the conservation of mass develop as they engage in two different chemistry curricula (an interactive chemistry curriculum, DESIGNS, aimed at helping them to understand the conservation of mass and another presenting the same concepts from a traditional approach)? How do they feel about participating in the science activities, and how, if at all, do their feelings relate to their learning? I used the framework of the Dynamic Skills theory (Fischer, 1980) as a lens through which to understand their thinking and feelings and any changes in them. The study was conducted in two Massachusetts public schools. In each school, one class followed the DESIGNS curriculum (DESIGNS II, in press), while the other followed a traditional chemistry curriculum. Each teacher in the study taught two science classes and used the DESIGNS curriculum in one class and the traditional curriculum in the other. Seventy three middle school students from the two schools participated in this study. The data was gathered through (a) a concept assessment questionnaire and (b) affective response survey (both were administered before, during, and at the end of the curriculum). Additionally, qualitative interviews were conducted with 16 selected students (four from each class) twice (before and after the curriculum). The quantitative analysis revealed that students in the DESIGNS group demonstrated greater conceptual change, on average, as compared to the traditional group. In addition, pretest score and mother's education were also found to be associated with students' learning. The pretest score was negatively associated with the conceptual gain (the lower the pretest score the higher the gain), whereas mother's education had a positive relationship with conceptual understanding. A comparison of students' affective response to their respective curriculum showed that students felt more positive towards the DESIGNS curriculum than the traditional curriculum, and the difference was statistically significant. The relationship between students' feelings and conceptual learning was statistically non-significant. The qualitative analysis entailed the developmental assessment of students' evolving understanding of conservation of mass using the Dynamic Development model. The prevalent preconceptions among the participants resonated with the relevant literature on children's scientific ideas (Dirver, 1985; Smith, 1988). The common misconceptions were: (a) air is weightless, (b) sugar gains or loses mass after dissolving, (c) melted water is heavier than frozen ice, (d) denser means heavier, and (e) pressure has mass. Some of these underlying misconceptions remained persistent in both treatment groups even after participating in the curriculum. These misconceptions influenced students' understanding of conservation of mass and they developed non-conserving frameworks. Students generally tended to focus on a single component of the system, in relation to various conservation problems, which led to a non-conserving view mostly. The findings suggest that students did not develop a generalized understanding of the conservation principle. They developed localized frameworks, which they applied inconsistently to specific conservation problems. (Abstract shortened by UMI.)
Urban 5th Graders Conceptions during a Place-Based Inquiry Unit on Watersheds
ERIC Educational Resources Information Center
Endreny, Anna Henderson
2010-01-01
This study aimed to determine how 33 urban 5th grade students' science conceptions changed during a place-based inquiry unit on watersheds. Research on watershed and place-based education was used as a framework to guide the teaching of the unit as well as the research study. A teacher-researcher designed the curriculum, taught the unit and…
Moving the Past Forward: From a Birmingham Jail to Occupy Wall Street
ERIC Educational Resources Information Center
Tieso, Carol L.
2013-01-01
What do you do with the student who says she hates history, yet watches The History Channel every night? What do you do with the student who is underachieving in social science but has visited every battlefield in Virginia? Our curriculum frameworks and pacing guides suggest a chronological, fact-based approach to teaching and learning history,…
NASA Astrophysics Data System (ADS)
Gilchrist, P. O.; Young, T. V.; Bowles, T. A.; Brady, K. P.; Grable, L. L.
2017-08-01
The purpose of this paper is to describe middle and high school science teachers' self-reported experiences learning and adopting novel optics and photonics content. The hybrid teacher professional development program design, theoretical framework, methodology, findings, and implications related to teachers' adoption decisions of optics and photonics content will be reported in the paper.
The Power of Questions to Bring Balance to the Curriculum in the Age of New Standards
ERIC Educational Resources Information Center
del Prado, Pixita; McMillen, Susan E.; Friedland, Ellen S.
2017-01-01
The Common Core State Standards (CCSS); the Next Generation Science Standards (NGSS); and the College, Career, and Civic Life (C3) Framework for Social State Standards are bringing many changes to schools and classrooms across the United States. This article suggests using the power of questions to make connections across seemingly disparate…
ERIC Educational Resources Information Center
Blank, Rolf K.; Smithson, John
2010-01-01
Beginning in summer 2009, the complete set of NAEP student assessment items for grades 4 and 8 Science and Reading 2009 assessments were analyzed for comparison to the National Assessment of Educational Progress (NAEP) Item Specifications which are based on the NAEP Assessment Frameworks for these subjects (National Assessment Governing Board,…
ERIC Educational Resources Information Center
Anderson, Larry; Dickerson, Octavia; Harvey, Bill; Moore, Tony
2009-01-01
As the world economy continues to evolve, businesses and industries must adopt new practices and processes in order to survive. Quality and cost control, work teams and participatory management, and an infusion of technology are transforming the way people work and do business. Employees are now expected to read, write, and communicate…
ERIC Educational Resources Information Center
Miller, Luke C.; Mittleman, Joel
2012-01-01
The "High Schools That Work" school improvement initiative is the nation's largest comprehensive school reform model with over a thousand schools adopting its framework. The initiative's premise is that all students can meet the demands of a college preparatory curriculum if provided the right supports. Analyzing over a decade of data on student…
ERIC Educational Resources Information Center
Biggers, Mandy Sue
2013-01-01
Using a framework for variations of classroom inquiry (National Research Council [NRC], 2000, p. 29), this study explored 40 inservice elementary teachers' planning, modification, and enactment of kit-based science curriculum materials. As part of the study, a new observation protocol was modified from an existing protocol (Practices of…
NASA Astrophysics Data System (ADS)
Valdez, Joaquin G.
The purpose of this qualitative study was to examine the influence of globalization and the foreign direct investment (FDI) of multinational corporations (MNCs) on the curriculum in schools in Costa Rica. The study focused primarily on Science, Technology, Engineering and Mathematics (STEM), Project-Based Learning (PBL), 21st century skills, and the national science and technology fair. The high influx of MNCs such as Intel has changed the global and educational culture of the country increasing the number of knowledge-based workers in Costa Rica. As a result, policy changes have been instituted in education to mirror the demands of sustaining the country's global economy. This study was supported by the creation of three research questions that would attempt to answer 1) the extent that teachers implementing STEM curriculum trace their practices back to policy, globalization, and multinational corporations as well as the extent to which the economic growth of Costa Rica and STEM education are related, 2) how mandating the national science and technology fair has influenced 21st century skills through project-based learning and the use of technology by teachers and its impact on curriculum and instruction, and 3) how has the national science and technology fair policy changed the value of STEM education for students, teachers, and educational leaders. To further understand the outcome of this study, four theoretical frameworks were applied that included, Spring's theory of world educational culture, Friedman's world flatteners, Wagner's 21st century skills and partnerships for 21st century skills, and Slough and Milam's STEM project-based learning theoretical framework. Each framework was applied to support the changes to the educational system; survival skills necessary to compete in the global job market; application of 21st century skills in the classroom and in the science projects students created. A research team comprised of 14 doctoral students, led by Dr. Michael Escalante, studied the influence of globalization and FDI on MNCs on the educational system in Costa Rica. Data collection for this qualitative case study included the use of various instruments including surveys, interviews, and observations. A total of 20 participants were interviewed and 174 students and 33 teachers were surveyed in support of the findings for this study. The use of multiple sources helped to triangulate the data and increase the validity of the findings.
Connecting mathematics learning through spatial reasoning
NASA Astrophysics Data System (ADS)
Mulligan, Joanne; Woolcott, Geoffrey; Mitchelmore, Michael; Davis, Brent
2018-03-01
Spatial reasoning, an emerging transdisciplinary area of interest to mathematics education research, is proving integral to all human learning. It is particularly critical to science, technology, engineering and mathematics (STEM) fields. This project will create an innovative knowledge framework based on spatial reasoning that identifies new pathways for mathematics learning, pedagogy and curriculum. Novel analytical tools will map the unknown complex systems linking spatial and mathematical concepts. It will involve the design, implementation and evaluation of a Spatial Reasoning Mathematics Program (SRMP) in Grades 3 to 5. Benefits will be seen through development of critical spatial skills for students, increased teacher capability and informed policy and curriculum across STEM education.
NASA Astrophysics Data System (ADS)
Briseno, Luis Miguel
This paper reflects future direction for early Science Technology Engineering and Mathematics (STEM) education, science in particular. Washington State stakeholders use guidelines including: standards, curriculums and assessments to gauge young children's development and learning, in early childhood education (ECE). Next Generation Science Standards (NGSS), and the Framework for K-12 programs (National Research Council, 2011) emphasizes the need for reconfiguration of standards: "Too often standards are a long list of detailed and disconnected facts... this approach alienates young people, it also leaves them with fragments of knowledge and little sense of the inherent logic and consistency of science and of its universality." NGSS' position elevates the concern and need for learners to experience teaching and learning from intentionally designed cohesive curriculum units, rather than as a series of unrelated and isolated lessons. To introduce the argument the present study seeks to examine Washington State early learning standards. To evaluate this need, I examined balance and coverage/depth. Analysis measures the level of continuum in high-quality guidelines from which Washington State operates to serve its youngest citizens and their families.
Conceptions of scientific literacy: Reactionaries in ascendency in the state of Victoria
NASA Astrophysics Data System (ADS)
Cross, Rober
1995-06-01
Schooling as much as any other social activity is determined by ideology. The introduction of the Victorian Curriculum & Standards Framework is a case in point. The alliance between the new Victorian State government and traditionalists has “reformed” the schooling of science. Evidence is presented that points to a return to a conception of scientific literacy in which the central mythology of value-free science is the guiding principle. Here is a vision for an “educated” Australia, which begs the question: Whose Australia?
Professional Learning Communities (PLCs) as a Means for School-Based Science Curriculum Change
NASA Astrophysics Data System (ADS)
Browne, Christi L.
The challenge of school-based science curriculum change and educational reform is often presented to science teachers and departments who are not necessarily prepared for the complexity of considerations that change movements require. The development of a Professional Learning Community (PLC) focused on a science department's curriculum change efforts, may provide the necessary tools to foster sustainable school-based curriculum science changes. This research presents a case study of an evolving science department PLC consisting of 10 middle school science teachers from the same middle school and their efforts of school-based science curriculum change. A transformative mixed model case study with qualitative data and deepened by quantitative analysis, was chosen to guide the investigation. Collected data worked to document the essential developmental steps, the occurrence and frequency of the five essential dimensions of successful PLCs, and the influences the science department PLC had on the middle school science department's progression through school-based science curriculum change, and the barriers, struggles and inhibiting actions of the science department PLC. Findings indicated that a science department PLC was unique in that it allowed for a focal science departmental lens of science curriculum change to be applied to the structure and function of the PLC and therefore the process, proceedings, and results were directly aligned to and driven by the science department. The science PLC, while logically difficult to set-up and maintain, became a professional science forum where the middle school science teachers were exposed to new science teaching and learning knowledge, explored new science standards, discussed effects on student science learning, designed and critically analyzed science curriculum change application. Conclusions resulted in the science department PLC as an identified tool providing the ability for science departmental actions to lead to outcomes of science curriculum change improvements with the consideration but not the dictation of the larger school community and state agendas. Thus, the study's results work to fuse previously separated research on general PLCs and curriculum change efforts into a cohesive understanding of the unexplored potential of a science PLC and school-based science curriculum change.
NASA Astrophysics Data System (ADS)
Fraser, Sharon P.
2016-02-01
In the past 30 years, pedagogical content knowledge (PCK) frameworks have become important constructs in educational research undertaken in the school education system and a focus for research for curriculum and teacher education researchers. As regards science, PCK research has been plentiful, but thus far, the concept of PCK (significantly enhanced since its proposal) has only been validated in the school context (Kindergarten to Grade 12). Within this environment, however, it has proven to be a very useful construct for understanding teacher practice and contributing to the improvement of teacher education courses. Knowledge about whether PCK is useful as a conceptual framework for science lecturers (teachers) working in higher education is as yet unknown and represents a gap in the research literature; the research outlined here is a first step in exploring its usefulness in this context. This paper provides an analysis of data obtained from semi-structured interviews conducted with nine Australian science university lecturers from various disciplines and levels of seniority and experience of tertiary teaching, as well as an academic developer skilled in facilitating science academics' understanding of pedagogy in higher education. The research aimed to investigate the extent to which one version of a school-based science PCK framework resonated with the pedagogical thinking of university science lecturers and the ways in which it could influence their teaching practice.
The Impact of Agricultural Science Education on Performance in a Biology Course
NASA Astrophysics Data System (ADS)
Ernest, Byron L.
The lack of student achievement in science is often cited in U.S. educational reports. At the study site, low student achievement in science has been an ongoing concern for administrators. The purpose of this mixed methods study was to investigate the impact of agricultural science education on student performance in a Biology course. Vygotsky's constructivist theory and Gardner's multiple intelligences theory provided the framework for the study. The quantitative research question examined the relationship between the completion of Fundamentals of Agriculture Science and Business course and student performance in Biology I. Teacher perceptions and experiences regarding the integration of science and agricultural curriculum and traditional science curriculum were examined qualitatively. A sequential explanatory design was employed using 3 years of data collected from 486 high school students and interviews with 10 teachers. Point-biserial correlation and chi square tests revealed statistically significant relationships between whether or not students completed Fundamentals of Agriculture Science and Business and Biology I course performance, as measured by the end of course assessment and the course grade. In the qualitative sequence, typological and inductive data analyses were applied to the interview data, and themes of student impact and teacher experience emerged. Social change implications may be possible through improved science education for students in this program. Agriculture science courses may be used to facilitate learning of complex science concepts, designing teacher collaboration and professional development for teaching science in a relevant context, and resultant improved student performance in science.
Engaging Students In The Science Of Climate Change
NASA Astrophysics Data System (ADS)
Rhew, R. C.; Halversen, C.; Weiss, E.; Pedemonte, S.; Weirman, T.
2013-12-01
Climate change is arguably the defining environmental issue of our generation. It is thus increasingly necessary for every member of the global community to understand the basic underlying science of Earth's climate system and how it is changing in order to make informed, evidence-based decisions about how we will respond individually and as a society. Through exploration of the inextricable interconnection between Earth's ocean, atmosphere and climate, we believe students will be better prepared to tackle the complex issues surrounding the causes and effects of climate change and evaluate possible solutions. If students are also given opportunities to gather evidence from real data and use scientific argumentation to make evidence-based explanations about climate change, not only will they gain an increased understanding of the science concepts and science practices, the students will better comprehend the nature of climate change science. Engaging in argument from evidence is a scientific practice not only emphasized in the Framework for K-12 Science Education and the Next Generation Science Standards (NGSS), but also emphasized in the Common Core State Standards for English Language Arts & Literacy in History/Social Studies and Science (CCSS). This significant overlap between NGSS and CCSS has implications for science and language arts classrooms, and should influence how we support and build students' expertise with this practice of sciences. The featured exemplary curricula supports middle school educators as they address climate change in their classrooms. The exemplar we will use is the NOAA-funded Ocean Sciences Sequence (OSS) for Grades 6-8: The ocean-atmosphere connection and climate change, which are curriculum units that deliver rich science content correlated to the Next Generation Science Standards (NGSS) Disciplinary Core Ideas and an emphasis on the Practices of Science, as called for in NGSS and the Framework. Designed in accordance with the latest research on learning this curriculum provides numerous opportunities for students to use real data to make evidence-based explanations. During the session, we will discuss ways in which students can use scientific data related to climate change as evidence in their construction of scientific arguments.
Explorations of Tenth-Grade STS[E] Curricula across Three Provincial Political Landscapes
NASA Astrophysics Data System (ADS)
Phillips, Christina Ann
This thesis focuses on explorations of science, technology, society and the environment (i.e., STS[E]) outcomes/expectations in tenth-grade level science curricula across three Canadian provinces (i.e., Alberta, Manitoba & Ontario) with distinctive provincial political environments at the time of curriculum construction and/or implementation. Document analysis, discourse analysis and a range of theoretical frameworks (i.e., Levinson, 2010; Pedretti & Nazir, 2011 & Krathwohl, 2002) were used to aid in explorations of STS[E] curriculum segments and discourses in each provincial region. More detailed analysis and thematic exploration is presented for each unit associated with climate change as some interesting patterns emerged following initial analysis. My findings are presented as three comparative case studies and represent a small and original contribution to the large body of scholarly research devoted to studies of STS[E] education, where each province represents a unique case that has been explored regarding some aspects the STS[E] curriculum outcomes/expectations and general political culture as well as some other theoretical factors. Findings from this study indicate that Alberta's STS[E] outcomes may be related to Levinson's (2010) 'deliberative' citizenship focus. The following currents from Pedretti and Nazir (2011) appear to be emphasized: logical reasoning, historical, application & design and socio-cultural aligned outcomes when STS[E] is considered as an entity separate from the Alberta curriculum combination of STS and Knowledge. Ontario's STS[E] expectations may align with Levinson's (2010) 'deliberative' or in some select cases a 'deliberative'/'praxis' framework category with some emphasis related to logical reasoning and socio-cultural awareness (Pedretti & Nazir, 2011) in their STS[E] curriculum. The Manitoba STS[E] outcomes may be aligned with a more 'deliberative' approach with some associations that could intersect with the framework categories of 'praxis' or possibly 'dissent and conflict' (Levinson, 2010) and the logical reasoning, socio-cultural and socio-ecojustice currents (Pedretti & Nazir, 2011). General provincial political culture seems to play a limited role in the STS[E] outcomes/expectations as the provinces studied here all tend to align with Levinson's (2010) deliberative citizenship stance (i.e., to varying degrees), with some caveats as explored throughout these cases. A chapter on cross-case analysis follows the three central cases and focuses on the following categories that emerged from this research: STS[E] ontology; STS[E] & citizenship and socio-economic thematic explorations. The final chapter of this thesis focuses on some additional factors and theoretical explorations that may shape STS[E] curricula such as cultural-geographic considerations; educational-political interactions during curriculum construction processes and possible influences from academic scientists. This chapter also provides some recommendations for curriculum development as aligned with case study approaches and provides insights regarding possibilities for future research.
ERIC Educational Resources Information Center
Walker, Dana; Huerta, Mario
This curriculum unit is designed to give primary school students foreign language experiences and also to support the cultural literacy strand of the California State History-Social Science Framework. The unit is part of an elementary literature series which utilizes quality primary source literature from various world regions and countries and…
ERIC Educational Resources Information Center
Vincent, Shirley; Focht, Will
2009-01-01
Purpose: This study is the first of a five-phase research project sponsored by the Council of Environmental Deans and Directors (CEDD), an organization of environmental program managers operating under the umbrella of the National Council for Science and the Environment. The purpose of the project is to determine if a consensus on core…
Teacher Perceptions of Inquiry and STEM Education in Bangladesh
NASA Astrophysics Data System (ADS)
Shahidullah, Kazi K.
This dissertation reports lower secondary science teachers perceptions of current practice in Dhaka, Bangladesh concerning inquiry and STEM Education in order to establish a baseline of data for reform of science education in Bangladesh. Bangladesh has been trying to incorporate inquiry-based science curricula since the 1970s. Over time, the science curricula also aligned with different international science education movements such as Science for All, Scientific Literacy, Science, Technology, and Society. Science, Technology, Engineering, and Mathematics (STEM) is the most recent science education movement in international science education. This study explored current practices and perceptions of lower secondary science teachers in order to establish a baseline of current practice so that future reform recommendations may be pursued and recommendations made for Bangladesh to overcome the inquiry-based challenges and to incorporate new STEM-based science education trends happening in the US and throughout the world. The study explored science teachers perceptions and readiness to transform their science classrooms based on self-reported survey. The survey utilized Likert-type scale with range 1 (very strongly disagree) to 6 (very strongly agree) among four hundred lower secondary science teachers, teacher training college faculty, and university faculty. The data is presented in four different categories: curriculum, instruction, assessment, and professional development. Results indicated that the participants understand and practice a certain level of inquiry in their science classrooms, though they do not have adequate professional development. Participants also stated that they do not have sufficient instructional materials and the curriculum is not articulated enough to support inquiry. On the other hand, the participants reported that they understand and practice a certain degree of inquiry and STEM-based science education, but they also state that the current curriculum and instructional materials are not sufficient to practice inquiry nor to integrate more than one or two disciplines with science as is required in STEM integrated teaching. Finally, this study recommends a framework for science education reform for Bangladesh based upon a combination of successful international science education reformation practices.
NASA Astrophysics Data System (ADS)
Toupin, C.; Bean, J. R.; Gavenus, K.; Johnson, H.; Toupin, S.
2017-12-01
With the copious amount of science and pseudoscience reported on by non-experts in the media, it is critical for educators to help students develop into scientifically literate citizens. One of the most direct ways to help students develop deep scientific understanding and the skills to critically question the information they encounter is to bring science into their daily experiences and to contextualize scientific inquiry within the classroom. Our work aims to use a systems-based models approach to engage students in science, in both formal and informal contexts. Using the Understanding Global Change (UGC) and the Understanding Science models developed at the Museum of Paleontology at UC Berkeley, high school students from Arizona were tasked with developing a viable citizen science program for use at the Center for Alaskan Coastal Studies in Homer, Alaska. Experts used the UGC model to help students define why they were doing the work, and give context to the importance of citizen science. Empowered with an understanding of the scientific process, excited by the purpose of their work and how it could contribute to the scientific community, students whole-heartedly worked together to develop intertidal monitoring protocols for two locations while staying at Peterson Bay Field Station, Homer. Students, instructors, and scientists used system models to communicate and discuss their understanding of the biological, physical, and chemical processes in Kachemak Bay. This systems-based models approach is also being used in an integrative high school physics, chemistry, and biology curriculum in a truly unprecedented manner. Using the Understanding Global Change framework to organize curriculum scope and sequence, the course addresses how the earth systems work, how interdisciplinary science knowledge is necessary to understand those systems, and how scientists and students can measure changes within those systems.
Surviving the Implementation of a New Science Curriculum
NASA Astrophysics Data System (ADS)
Lowe, Beverly; Appleton, Ken
2015-12-01
Queensland schools are currently teaching with the first National Curriculum for Australia. This new curriculum was one of a number of political responses to address the recurring low scores in literacy, mathematics, and science that continue to hold Australia in poor international rankings. Teachers have spent 2 years getting to know the new science curriculum through meetings, training, and exploring the new Australian curriculum documents. This article examines the support and preparation for implementation provided in two regional schools, with a closer look at six specific teachers and their science teaching practices as they attempted to implement the new science curriculum. The use of a survey, field observations, and interviews revealed the schools' preparation practices and the teachers' practices, including the support provided to implement the new science curriculum. A description and analysis of school support and preparation as well as teachers' views of their experiences implementing the new science curriculum reveal both achievements and shortcomings. Problematic issues for the two schools and teachers include time to read and comprehend the curriculum documents and content expectations as well as time to train and change the current processes effectively. The case teachers' experiences reveal implications for the successful and effective implementation of new curriculum and curriculum reform.
Socioscientific Issues and Multidisciplinarity in School Science Textbooks
NASA Astrophysics Data System (ADS)
Morris, Helen
2014-05-01
The inclusion of socioscientific issues (SSIs) in the science curriculum is a well-established trend internationally. Apart from claims about its innate value, one of the rationales for this approach is its potential for helping to counter declining interest and participation. SSIs involve the use of science and are of interest to society, also raising ethical and moral dilemmas. Introducing such problems presents a significant and usually cross-disciplinary challenge to curriculum developers and teachers. The aim of this paper is to examine how this challenge has been met when judged against contemporary views of the issues concerned. It first explores how SSIs have been interpreted in an important and innovative science course for students aged 14-16 in England, entitled Twenty First Century Science. This paper analyses the Twenty First Century Science textbooks, focusing in detail on two SSIs, reproductive genetic technology and climate change. For each of these issues, the key ideas present in the social science literature surrounding the problems are outlined. This review is then used as an analytical framework to examine how the issues are presented in the textbooks. It is argued in this paper that the perspectives the textbooks take on these issues largely do not include perspectives from social science disciplines. It goes on to suggest that the development of future SSI-based curricula needs to take account of these wider, often interdisciplinary, perspectives.
NASA Astrophysics Data System (ADS)
Debari, S. M.; Bachmann, J.; Dougan, B.; Fackler-Adams, B.; Kratz, R.; Linneman, S.; Plake, T.; Smith, B.
2008-12-01
A new curriculum for an introductory geology course, Geology and Everyday Thinking (GET), incorporates the key research findings of How People Learn (NAS, 1999), and is based on the pedagogical approach of Physics and Everyday Thinking (PET; http://petproject.sdsu.edu/). These key findings have profound implications for developing teaching strategies that promote student learning. They suggest that for learning to occur: 1) students' preconceptions must be engaged, 2) students must be able to build their own conceptual framework, and 3) students must be given an opportunity to reflect on their learning (metacognition). Our curriculum has been carefully constructed into cycles that apply these key findings while exploring a key geologic concept. Each cycle engages students' 'Initial Ideas' about these concepts (and continuously revisits those Initial Ideas), sequentially builds upon concepts in a logical framework, and requires reflective writing. The curriculum employs questioning, small group work, and small and large class discussions. Students construct concepts by doing inquiry lab activities, but embedded group discussions that promote discourse and questioning among students is a crucial tool in the sense-making and solidification of those concepts. The questioning and discourse occur throughout each module so that students' preconceptions about a particular concept are brought out early on, and are revisited and challenged again as students construct their new understanding. Whiteboarding, or the process of sharing small-group ideas to a larger group, is the primary method of generating discussion. The instructor's role as facilitator and questioner is the cornerstone in this process. The primary audience for this course is future elementary teachers, who are required take a year-long science sequence. The year-long sequence includes physics (PET), geology (GET), and a correlative new curriculum in biology (BET). Class size is limited to 24 students, and the sequence is taught at a 4-year university as well as at four regional feeder community colleges. These courses model an inquiry-based teaching methodology that our pre-service teachers will use to teach science to their future students. Both quantitative and qualitative assessment data collected from our students show impressive gains both in attitudes about science and science content, especially compared to larger lecture-based introductory courses.
NASA Astrophysics Data System (ADS)
Zimmerman, Timothy David
2005-11-01
Students and citizens need to apply science to important issues every day. Yet the design of science curricula that foster integration of science and everyday decisions is not well understood. For example, can curricula be designed that help learners apply scientific reasons for choosing only environmentally sustainable seafood for dinner? Learners must develop integrated understandings of scientific principles, prior experiences, and current decisions in order to comprehend how everyday decisions impact environmental resources. In order to investigate how such integrated understandings can be promoted within school science classes, research was conducted with an inquiry-oriented curriculum that utilizes technology and a visit to an informal learning environment (aquarium) to promote the integration of scientific principles (adaptation) with environmental stewardship. This research used a knowledge integration approach to teaching and learning that provided a framework for promoting the application of science to environmental issues. Marine biology, often forsaken in classrooms for terrestrial biology, served as the scientific context for the curriculum. The curriculum design incorporated a three-phase pedagogical strategy and new technology tools to help students integrate knowledge and experiences across the classroom and aquarium learning environments. The research design and assessment protocols included comparisons among and within student populations using two versions of the curriculum: an issue-based version and a principle-based version. These inquiry curricula were tested with sophomore biology students attending a marine-focused academy within a coastal California high school. Pretest-posttest outcomes were compared between and within the curricular treatments. Additionally, comparisons were made between the inquiry groups and seniors in an Advanced Placement biology course who attend the same high school. Results indicate that the inquiry curricula enabled students to integrate and apply knowledge of evolutionary biology to real-world environmental stewardship issues. Over the course of the curriculum, students' ideas became more scientifically normative and tended to focus around concepts of natural selection. Students using the inquiry curricula outperformed the Advanced Placement biology students on several measures, including knowledge of evolutionary biology. These results have implications for designing science curricula that seek to promote the application of science to environmental stewardship and integrate formal and informal learning environments.
[The 2010 curriculum of the faculty of medicine at the National University of Mexico].
Sánchez-Mendiola, Melchor; Durante-Montiel, Irene; Morales-López, Sara; Lozano-Sánchez, Rogelio; Martínez-González, Adrián; Graue Wiechers, Enrique
2011-01-01
The 2010 undergraduate medical degree curriculum at the faculty of medicine of the Universidad Nacional Autonoma de Mexico (UNAM) constitutes an important curricular reform of medical education in our country. It is the result of an institutional reflective process and academic dialog, which culminated in its approval by UNAM’s Academic Council for the Biology, Chemistry, and Health Sciences areas on February 2nd, 2010. Some distinguishing characteristics of the new academic curriculum are: organization by courses with a focus on outcome competencies; three curricular axes that link three knowledge areas; four educational phases with achievement profiles; new courses (biomedical informatics, basic-clinical and clinical-basic integration, among others); and core curriculum. The aforementioned curriculum was decided within a framework of effective teaching strategies, competency oriented learning assessment methods, restructuring of the training of teaching staff, and establishment of a curriculum committee follow-up and evaluation of the program. Curricular change in medical education is a complex process through which the institution can achieve its mission and vision. This change process faces challenges and opportunities, and requires strategic planning with long-term foresight to guarantee a successful dynamic transition for students, teachers, and for the institution itself.
NASA Astrophysics Data System (ADS)
Shume, Teresa Jayne
The purpose of this qualitative case study was to describe seven elementary teachers' conceptions of environmental literacy in relationship to a tall grass prairie restoration project and to explore ways in which the tall grass prairie restoration project for third grade contributed to enhancing educational learning experiences. The research questions were: 1. What are teachers' conceptions of environmental literacy for third grade students? 2. How does the prairie restoration trip contribute to teachers' capacity to teach for environmental literacy of third grade students? 3. What is the pedagogical value of the prairie restoration project? The theoretical frameworks underpinning this study were David Sobel's (1996) model for developmental progression in children's relationships with nature, and the North American Environmental Education Association's (2011) framework for environmental literacy. The first assertion derived from thematic data analysis of interviews, field trip observations, classroom observations, and artifacts was, The participating teachers' visions of environmental literacy for third grade students included components that spanned across a developmentally appropriate progression from cultivating empathy for living things, to fueling discovery of nature, to fostering a sense of responsibility toward the natural world . Components of environmental literacy described by teachers included being at ease in the natural environment, appreciation and respect, wonder and curiosity, awareness and interdependence, sense of agency, responsibility and service, and environmental knowledge. The second assertion stemming from thematic data analysis was, The prairie restoration project and related curriculum have pedagogical value that included and exceeded addressing state science standards. In addition to addressing state science standards identified by teachers, the curriculum related to the prairie restoration project served as an agent of curricular cohesion to integrate a variety of subject areas, developed scientific ways of thinking, provided life experience for children, and fostered authentic learning experiences through concrete connections. It also provided a means to enhance the presence of science and social studies in elementary curriculum. Themes emerging from qualitative data analysis resonated with Sobel's model of progressive stages in children's relationships with nature, and resulted in a tool potentially useful for design of elementary curriculum aimed at developing environmental literacy.
NASA Astrophysics Data System (ADS)
Seagroves, S.; Hunter, L.
2010-12-01
The Akamai Workforce Initiative (AWI) is an interdisciplinary effort to improve science/engineering education in the state of Hawai'i, and to train a diverse population of local students in the skills needed for a high-tech economy. In 2009, the AWI undertook a survey of industry partners on Maui and the Big Island of Hawai'i to develop an engineering technology skills framework that will guide curriculum development at the U. of Hawai'i - Maui (formerly Maui Community College). This engineering skills framework builds directly on past engineering-education developments within the Center for Adaptive Optics Professional Development Program, and draws on curriculum development frameworks and engineering skills standards from the literature. Coupling that previous work with reviews of past Akamai Internship projects and information from previous conversations with the local high-tech community led to a structured-interview format where engineers and managers could contribute meaningful commentary to this framework. By incorporating these local high-tech companies' needs for entry-level engineers and technicians, a skills framework emerges that is unique and illuminating. Two surprising features arise in this framework: (1) "technician-like" skills of making existing technology work are on similar footing with "engineer-like" skills of creating new technology; in fact, both engineers and technicians at these workplaces use both sets of skills; and (2) project management skills are emphasized by employers even for entry-level positions.
Toward a Unified Science Curriculum.
ERIC Educational Resources Information Center
Showalter, Victor M.
The two major models of science curriculum change, textbook revision and national curriculum projects, are derived from, and reinforce, the present curriculum structure. This is undesirable in a time of increasing fluidity and change, because adaptation to new situations is difficult. Unified science, based on the premise that science is a unity,…
ERIC Educational Resources Information Center
Klebansky, Anna; Fraser, Sharon P.
2013-01-01
This paper details a conceptual framework that situates curriculum design for information literacy and lifelong learning, through a cohesive developmental information literacy based model for learning, at the core of teacher education courses at UTAS. The implementation of the framework facilitates curriculum design that systematically,…
A Need for a Framework for Curriculum Evaluation in Oman
ERIC Educational Resources Information Center
Al-Jardani, Khalid Salim; Siraj, Saedah; Abedalaziz, Nabeel
2012-01-01
The field of curriculum evaluation is a key part of the educational process. This means that this area needs to be developed continuously and requires ongoing research. This paper highlights curriculum evaluation in Oman, different evaluation procedures and methods and instruments used. The need for a framework for curriculum evaluation is a vital…
Transformative Multicultural Science curriculum: A case study of middle school robotics
NASA Astrophysics Data System (ADS)
Grimes, Mary Katheryn
Multicultural Science has been a topic of research and discourse over the past several years. However, most of the literature concerning this topic (or paradigm) has centered on programs in tribal or Indigenous schools. Under the framework of instructional congruence, this case study explored how elementary and middle school students in a culturally diverse charter school responded to a Multicultural Science program. Furthermore, this research sought to better understand the dynamics of teaching and learning strategies used within the paradigm of Multicultural Science. The school's Robotics class, a class typically stereotyped as fitting within the misconceptions associated with the Western Modern Science paradigm, was the center of this case study. A triangulation of data consisted of class observations throughout two semesters; pre and post student science attitude surveys; and interviews with individual students, Robotic student teams, the Robotics class instructor, and school administration. Three themes emerged from the data that conceptualized the influence of a Multicultural Science curriculum with ethnically diverse students in a charter school's Robotics class. Results included the students' perceptions of a connection between science (i.e., Robotics) and their personal lives, a positive growth in the students' attitude toward science (and engineering), and a sense of personal empowerment toward being successful in science. However, also evident in the findings were the students' stereotypical attitudes toward science (and scientists) and their lack of understanding of the Nature of Science. Implications from this study include suggestions toward the development of Multicultural Science curricula in public schools. Modifications in university science methods courses to include the Multicultural Science paradigm are also suggested.
The Extra Strand of the Maori Science Curriculum
ERIC Educational Resources Information Center
Stewart, Georgina
2011-01-01
This paper comments on the process of re-development of the Maori-medium Science (Putaiao) curriculum, as part of overall curriculum development in Aotearoa New Zealand. A significant difference from the English Science curriculum was the addition of an "extra strand" covering the history and philosophy of science. It is recommended that…
Science Curriculum Resource Handbook: A Practical Guide for K-12 Science Curriculum.
ERIC Educational Resources Information Center
Cheek, Dennis W., Ed.; And Others
This handbook is one of a series of practical references for curriculum developers, education faculty, veteran teachers, and student teachers. The handbook is designed to provide basic information on the background of the science curriculum, and current information on publications, standards, and special materials for K-12 science. Part 1 contains…
Learning theories 101: application to everyday teaching and scholarship.
Kay, Denise; Kibble, Jonathan
2016-03-01
Shifts in educational research, in how scholarship in higher education is defined, and in how funding is appropriated suggest that educators within basic science fields can benefit from increased understanding of learning theory and how it applies to classroom practice. This article uses a mock curriculum design scenario as a framework for the introduction of five major learning theories. Foundational constructs and principles from each theory and how they apply to the proposed curriculum designs are described. A summative table that includes basic principles, constructs, and classroom applications as well as the role of the teacher and learner is also provided for each theory. Copyright © 2016 The American Physiological Society.
Language of poverty strategies: Implemented in the urban elementary science classroom
NASA Astrophysics Data System (ADS)
Jeanpierre, Bobby Jo
2000-08-01
This research study reports the results of school-based staff development models used at three urban elementary schools that had liaison teachers assisting classroom teachers in implementing instructional strategies in science teaching from "Language of Poverty," a curriculum framework designed to address the academic needs of disadvantaged students. The case study of two urban elementary schools and six classroom teachers, and survey and interview data results of a third school, uncovered insights into several areas of science teaching in urban settings. One conclusion is that in spite of substantial allocation of resources and assistance, teachers did not translate instructional strategies from "Language of Poverty" curriculum into their classroom practices in a way that would foster urban disadvantaged students' understanding of "big science concepts." A second conclusion is that the school-based staff development models were limited in their ability to address the diverse professional needs of all of its staff. Third, as it relates to students, discipline issues occurred in these urban classrooms across ethnicity and gender. And in addition to teachers being knowledgeable of relevant social and cultural group norms' application of this knowledge in an appropriate and consistent manner is needed to effectively address discipline concerns.
Principal Leadership for Technology-enhanced Learning in Science
NASA Astrophysics Data System (ADS)
Gerard, Libby F.; Bowyer, Jane B.; Linn, Marcia C.
2008-02-01
Reforms such as technology-enhanced instruction require principal leadership. Yet, many principals report that they need help to guide implementation of science and technology reforms. We identify strategies for helping principals provide this leadership. A two-phase design is employed. In the first phase we elicit principals' varied ideas about the Technology-enhanced Learning in Science (TELS) curriculum materials being implemented by teachers in their schools, and in the second phase we engage principals in a leadership workshop designed based on the ideas they generated. Analysis uses an emergent coding scheme to categorize principals' ideas, and a knowledge integration framework to capture the development of these ideas. The analysis suggests that principals frame their thinking about the implementation of TELS in terms of: principal leadership, curriculum, educational policy, teacher learning, student outcomes and financial resources. They seek to improve their own knowledge to support this reform. The principals organize their ideas around individual school goals and current political issues. Principals prefer professional development activities that engage them in reviewing curricula and student work with other principals. Based on the analysis, this study offers guidelines for creating learning opportunities that enhance principals' leadership abilities in technology and science reform.
Improving Conceptual Understanding and Representation Skills Through Excel-Based Modeling
NASA Astrophysics Data System (ADS)
Malone, Kathy L.; Schunn, Christian D.; Schuchardt, Anita M.
2018-02-01
The National Research Council framework for science education and the Next Generation Science Standards have developed a need for additional research and development of curricula that is both technologically model-based and includes engineering practices. This is especially the case for biology education. This paper describes a quasi-experimental design study to test the effectiveness of a model-based curriculum focused on the concepts of natural selection and population ecology that makes use of Excel modeling tools (Modeling Instruction in Biology with Excel, MBI-E). The curriculum revolves around the bio-engineering practice of controlling an invasive species. The study takes place in the Midwest within ten high schools teaching a regular-level introductory biology class. A post-test was designed that targeted a number of common misconceptions in both concept areas as well as representational usage. The results of a post-test demonstrate that the MBI-E students significantly outperformed the traditional classes in both natural selection and population ecology concepts, thus overcoming a number of misconceptions. In addition, implementing students made use of more multiple representations as well as demonstrating greater fascination for science.
ERIC Educational Resources Information Center
Magallanes; Lavezores, Amel
2014-01-01
Curriculum reform is central to the aspirations of many developing countries as they strive to deliver a quality education to their citizens. In State Universities and Colleges in Region VI, with its remarkable achievement of a high literacy rate in a few decades, the next step is bringing its resources to bear on providing a quality education so…
An Indigenous Framework for Science, Technology, Engineering and Mathematics
NASA Astrophysics Data System (ADS)
Monette, G.
2003-12-01
The American Indian Higher Education Consortium, composed of 35 American Indian tribally-controlled Colleges and Universities in the U.S. and Canada, is leading a comprehensive effort to improve American Indian student achievement in STEM. A key component of this effort is the synthesis of indigenous ways of knowing and western education systems. This presentation will provide an overview of culturally responsive, place-based teaching, learning, and research and will discuss potential opportunities and strategies for helping to ensure that education systems and research programs reflect our diversity and respect our cultures. One example to be discussed is the NSF-funded "Tribal College Rural Systemic Initiative." Founded on the belief that all students can learn and should be given the opportunity to reach their full potential, Tribal Colleges are leading this effort to achieve successful and sustainable improvement of science, math, and technology education at the K-14 level in rural, economically disadvantaged, geographically challenged areas. Working with parents, tribal governments, schools and the private sector, the colleges are helping to implement math and science standards-based curriculum for students and standards-based assessment for schools; provide math and science standards-based professional development for teachers, administrators, and community leaders; and integrate local Native culture into math and science standards-based curriculum. The close working relationship between the Tribal Colleges and K-12 is paying off. According to the National Science Foundation, successful systemic reform has resulted in enhanced student achievement and participation in science and math; reductions in the achievement disparities among students that can be attributed to socioeconomic status, race, ethnicity, gender, or learning styles; implementation of a comprehensive, standards-based curriculum aligned with instructions and assessment; development of a coherent, consistent set of policies that supports high quality math and science education for each student; convergence of science and math resource; and broad-based support from parents and the community.
Teachers and Science Curriculum Materials: Where We Are and Where We Need to Go
ERIC Educational Resources Information Center
Davis, Elizabeth A.; Janssen, Fred J. J. M.; Van Driel, Jan H.
2016-01-01
Curriculum materials serve as a key conceptual tool for science teachers, and better understanding how science teachers use these tools could help to improve both curriculum design and theory related to teacher learning and decision-making. The authors review the literature on teachers and science curriculum materials. The review is organised…
ERIC Educational Resources Information Center
Forbes, Cory T.
2013-01-01
In this nested mixed methods study I investigate factors influencing preservice elementary teachers' adaptation of science curriculum materials to better support students' engagement in science as inquiry. Analyses focus on two "reflective teaching assignments" completed by 46 preservice elementary teachers in an undergraduate elementary science…
Curriculum Profiles: A Resource of the EDC K-12 Science Curriculum Dissemination Center
ERIC Educational Resources Information Center
Education Development Center, Inc, 2005
2005-01-01
The purpose of this document is to provide useful information for teachers and school systems engaged in the process of examining and choosing science curriculum materials appropriate for their settings. The curriculum profiles include summaries of selected programs available for K?12 science curriculum programs. Each profile describes a number of…
Curriculum Process in Science Education
NASA Astrophysics Data System (ADS)
Adamčíková, Veronika; Tarábek, Paul
2010-07-01
Physics/science education in the communicative conception is defined as the continuous transfer of the knowledge and methods of physics into the minds of individuals who have not participated in creating them. This process, called the educational communication of physics/science, is performed by various educational agents—teachers, curriculum makers, textbook designers, university teachers and does not mean only a simple transfer of information, but it also involves teaching and instruction at all levels of the school system, the study, learning, and cognition of pupils, students and all other learners, the assessment and evaluation of learning outcomes, curriculum composition and design, the production of textbooks and other means of educational communication and, in addition, university education and the further training of teachers. The educational communication is carried out by the curriculum process of physics/science, which is a sequence of variant forms of curriculum mutually interconnected by curriculum transformations. The variant forms of curriculum are as follows: conceptual curriculum, intended curriculum, project (written) curriculum, operational curriculum, implemented curriculum, and attained curriculum.
On track for success: an innovative behavioral science curriculum model.
Freedy, John R; Carek, Peter J; Dickerson, Lori M; Mallin, Robert M
2013-01-01
This article describes the behavioral science curriculum currently in place at the Trident/MUSC Family Medicine Residency Program. The Trident/MUSC Program is a 10-10-10 community-based, university-affiliated program in Charleston, South Carolina. Over the years, the Trident/MUSC residency program has graduated over 400 Family Medicine physicians. The current behavioral science curriculum consists of both required core elements (didactic lectures, clinical observation, Balint groups, and Resident Grand Rounds) as well as optional elements (longitudinal patient care experiences, elective rotations, behavioral science editorial experience, and scholars project with a behavioral science focus). All Trident/MUSC residents complete core behavioral science curriculum elements and are free to participate in none, some, or all of the optional behavioral science curriculum elements. This flexibility allows resident physicians to tailor the educational program in a manner to meet individual educational needs. The behavioral science curriculum is based upon faculty interpretation of existing "best practice" guidelines (Residency Review Committee-Family Medicine and AAFP). This article provides sufficient curriculum detail to allow the interested reader the opportunity to adapt elements of the behavioral science curriculum to other residency training programs. While this behavioral science track system is currently in an early stage of implementation, the article discusses track advantages as well as future plans to evaluate various aspects of this innovative educational approach.
Learning activism, acting with phronesis
NASA Astrophysics Data System (ADS)
Lee, Yew-Jin
2015-12-01
The article "Socio-political development of private school children mobilising for disadvantaged others" by Darren Hoeg, Natalie Lemelin, and Lawrence Bencze described a language-learning curriculum that drew on elements of Socioscientific issues and Science, Technology, Society and Environment. Results showed that with a number of enabling factors acting in concert, learning about and engagement in practical action for social justice and equity are possible. An alternative but highly compatible framework is now introduced—phronetic social research—as an action-oriented, wisdom-seeking research stance for the social sciences. By so doing, it is hoped that forms of phronetic social research can gain wider currency among those that promote activism as one of many valued outcomes of an education in science.
Contento, Isobel R; Koch, Pamela A; Lee, Heewon; Sauberli, Wendy; Calabrese-Barton, Angela
2007-01-01
The purpose of this formative evaluation was to examine the impact of an innovative inquiry-based science education curriculum for middle school students, called Choice, Control, and Change, that is designed to foster healthful eating and physical activity and a healthy weight through enhancing agency and competence. The 24-session curriculum helps students develop understandings about the interactions between biology, personal behavior, and the environment and personal agency through cognitive self-regulation skills in navigating today's complex food system and sedentary environment. An extended theory of planned behavior served as the design framework. The study used a pretest-posttest evaluation design involving 278 middle school students in 19 science classes within 5 schools. Based on paired t tests, students significantly improved on several curriculum-specific eating and physical activity behaviors: they decreased several sedentary activities and increased their frequencies of fruit and vegetable intake. They decreased the frequency of sweetened beverages, packaged snacks, and eating at a fast-food restaurant, and ate and drank smaller portions of some items. Their outcome beliefs and overall self-efficacy, but not their attitudes, became more positive. A strategy based on fostering personal agency, cognitive self-regulation, and competence can be effective in increasing healthful eating and physical activity behaviors in middle school children and should be explored further.
Enabling Wide-Scale Computer Science Education through Improved Automated Assessment Tools
NASA Astrophysics Data System (ADS)
Boe, Bryce A.
There is a proliferating demand for newly trained computer scientists as the number of computer science related jobs continues to increase. University programs will only be able to train enough new computer scientists to meet this demand when two things happen: when there are more primary and secondary school students interested in computer science, and when university departments have the resources to handle the resulting increase in enrollment. To meet these goals, significant effort is being made to both incorporate computational thinking into existing primary school education, and to support larger university computer science class sizes. We contribute to this effort through the creation and use of improved automated assessment tools. To enable wide-scale computer science education we do two things. First, we create a framework called Hairball to support the static analysis of Scratch programs targeted for fourth, fifth, and sixth grade students. Scratch is a popular building-block language utilized to pique interest in and teach the basics of computer science. We observe that Hairball allows for rapid curriculum alterations and thus contributes to wide-scale deployment of computer science curriculum. Second, we create a real-time feedback and assessment system utilized in university computer science classes to provide better feedback to students while reducing assessment time. Insights from our analysis of student submission data show that modifications to the system configuration support the way students learn and progress through course material, making it possible for instructors to tailor assignments to optimize learning in growing computer science classes.
A qualitative, phenomenological study on the lived experiences of science teachers in The Bahamas
NASA Astrophysics Data System (ADS)
Micklewhite, Thalia Vionne
This phenomenological study investigates the lived experiences and perceptions of secondary science teachers in the archipelagic country of The Bahamas and how these teachers make meaning of the secondary science program in The Bahamas through the lens of life in a democratic society. The study's purpose was to answer the question: What are the lived experiences of secondary science teachers in The Bahamas in terms of their working conditions'? Using principles of phenomenological research to approach meaning, in-depth interviewing was conducted with six secondary science teachers on four islands of The Bahamas, including the capital of New Providence. The participants and the selected islands are representative of the diversity of teachers, the population, and school climates and structures throughout the country. Narratives were obtained via three ninety-minute interviews with each participant; and thematic analysis was the instrument by which three central themes emerged. Analysis of narratives reveals that lived experience of secondary science teachers revolve around themes of: (1) The Professional Self, (2) Curriculum Leadership, and (3) Curriculum. Most participants are in the career of secondary science education as second choice but are still committed to the profession. Participants overwhelmingly commented that there was a lack of supportive frameworks for critical elements of their daily work, and a need for clear, visionary and decisive curriculum leadership by The Ministry of Education and private School Boards. Participants also desired more appropriate and alternative science curricula that would meet the need of non-academically inclined Bahamian students. Antecedent to their calls was a pressing recognition that they lacked participatory democratic voice in national secondary science education evidenced by years of unrecognized and unattended suggestions sent to those in authority. As a result of these findings, the researcher was propelled towards the need for a civic association of secondary science educators that could provide voice and recognition for secondary science educators, and founded an association named Bahamas Association of Science Educators (BASE). Further, the study findings highlight the need for the crafting of a national policy in science education which would address many of the concerns of participant secondary science teachers.
Competence-Based Pharmacy Education in the University of Helsinki
Katajavuori, Nina; Salminen, Outi; Vuorensola, Katariina; Huhtala, Helena; Vuorela, Pia; Hirvonen, Jouni
2017-01-01
In order to meet the expectations to act as an expert in the health care profession, it is of utmost importance that pharmacy education creates knowledge and skills needed in today’s working life. Thus, the planning of the curriculum should be based on relevant and up-to-date learning outcomes. In the University of Helsinki, a university wide curriculum reform called ‘the Big Wheel’ was launched in 2015. After the reform, the basic degrees of the university are two-cycle (Bachelor–Master) and competence-based, where the learning outcomes form a solid basis for the curriculum goals and implementation. In the Faculty of Pharmacy, this curriculum reform was conducted in two phases during 2012–2016. The construction of the curriculum was based on the most relevant learning outcomes concerning working life via high quality first (Bachelor of Science in Pharmacy) and second (Master of Science in Pharmacy) cycle degree programs. The reform was kicked off by interviewing all the relevant stakeholders: students, teachers, and pharmacists/experts in all the working life sectors of pharmacy. Based on these interviews, the intended learning outcomes of the Pharmacy degree programs were defined including both subject/contents-related and generic skills. The curriculum design was based on the principles of constructive alignment and new structures and methods were applied in order to foster the implementation of the learning outcomes. During the process, it became evident that a competence-based curriculum can be created only in close co-operation with the stakeholders, including teachers and students. Well-structured and facilitated co-operation amongst the teachers enabled the development of many new and innovative teaching practices. The European Union funded PHAR-QA project provided, at the same time, a highly relevant framework to compare the curriculum development in Helsinki against Europe-wide definitions of competences and learning outcomes in pharmacy education. PMID:28970441
Curriculum Implementation and Reform: Teachers' Views about Kuwait's New Science Curriculum
ERIC Educational Resources Information Center
Alshammari, Ahmad
2013-01-01
The MoE (Ministry of Education) in the state of Kuwait is starting to reform the science curriculum in all school academic stages: primary (1-5) grades, intermediate (6-9) grades, and secondary (10-12) grades. The purpose of this study was to explore the opinions of science teachers about Kuwait's new sixth and seventh grade science curriculum,…
ERIC Educational Resources Information Center
Champagne, Audrey; Albert, Anne
Activities concerning the development of the science curriculum of Project ABLE are summarized. The science curriculum attempts to relate science content to vocational areas where applicable, but emphasizes generalizations which the student will apply in his specific vocational field. Intended for 10th, 11th, and 12th grade students, the…
ERIC Educational Resources Information Center
Smith, Dorothy V.
2011-01-01
This article explores a significant shift in the science curriculum in Victoria, Australia, in the mid-1990s by using the idea of essentialism to compare two science curriculum documents that span the shift. The accounts given in these documents of desirable approaches to teaching science, science itself and the proper scope of curriculum, are…
A Mental Disabilities Curriculum Framework.
ERIC Educational Resources Information Center
Gonwa, Jim; Clary, Joan Turner
The framework is intended to help staff develop curricula for mildly mentally retarded students in special and regular education and assist both educators and parents in evaluating the curricula. Distinctions between a curriculum and a framework are made. The proposed framework describes essential skills, competencies, and concepts necessary for…
Describing content in middle school science curricula
NASA Astrophysics Data System (ADS)
Schwarz-Ballard, Jennifer A.
As researchers and designers, we intuitively recognize differences between curricula and describe them in terms of design strategy: project-based, laboratory-based, modular, traditional, and textbook, among others. We assume that practitioners recognize the differences in how each requires that students use knowledge, however these intuitive differences have not been captured or systematically described by the existing languages for describing learning goals. In this dissertation I argue that we need new ways of capturing relationships among elements of content, and propose a theory that describes some of the important differences in how students reason in differently designed curricula and activities. Educational researchers and curriculum designers have taken a variety of approaches to laying out learning goals for science. Through an analysis of existing descriptions of learning goals I argue that to describe differences in the understanding students come away with, they need to (1) be specific about the form of knowledge, (2) incorporate both the processes through which knowledge is used and its form, and (3) capture content development across a curriculum. To show the value of inquiry curricula, learning goals need to incorporate distinctions among the variety of ways we ask students to use knowledge. Here I propose the Epistemic Structures Framework as one way to describe differences in students reasoning that are not captured by existing descriptions of learning goals. The usefulness of the Epistemic Structures framework is demonstrated in the four curriculum case study examples in Part II of this work. The curricula in the case studies represent a range of content coverage, curriculum structure, and design rationale. They serve both to illustrate the Epistemic Structures analysis process and make the case that it does in fact describe learning goals in a way that captures important differences in students reasoning in differently designed curricula. Describing learning goals in terms of Epistemic Structures provides one way to define what we mean when we talk about "project-based" curricula and demonstrate its "value added" to educators, administrators and policy makers.
NASA Astrophysics Data System (ADS)
Gouvea, Julia; Passmore, Cynthia
2017-03-01
The inclusion of the practice of "developing and using models" in the Framework for K-12 Science Education and in the Next Generation Science Standards provides an opportunity for educators to examine the role this practice plays in science and how it can be leveraged in a science classroom. Drawing on conceptions of models in the philosophy of science, we bring forward an agent-based account of models and discuss the implications of this view for enacting modeling in science classrooms. Models, according to this account, can only be understood with respect to the aims and intentions of a cognitive agent (models for), not solely in terms of how they represent phenomena in the world (models of). We present this contrast as a heuristic— models of versus models for—that can be used to help educators notice and interpret how models are positioned in standards, curriculum, and classrooms.
ERIC Educational Resources Information Center
Forbes, Cory T.
2011-01-01
Curriculum materials are important resources with which teachers make pedagogical decisions about the design of science learning environments. To become well-started beginning elementary teachers capable of engaging their students in inquiry-based science, preservice elementary teachers need to learn to use science curriculum materials…
Career Orientation: Grade 7 and 8: A Unified Approach: Science Careers. Activity Manual.
ERIC Educational Resources Information Center
Cincinnati Public Schools, OH.
Career orientation in the science curriculum introduces students to science-related careers and opportunities and enables them to prepare an educational program if they choose a science career. The curriculum guide is designed to aid junior high school science teachers in relating the seventh and eighth grade science curriculum to careers in…
NASA Astrophysics Data System (ADS)
Tobias, Karen Marie
An analysis of curriculum frameworks from the fifty states to ascertain the compliance with the National Science Education Standards for integrating Science-Technology-Society (STS) themes is reported within this dissertation. Science standards for all fifty states were analyzed to determine if the STS criteria were integrated at the elementary, middle, and high school levels of education. The analysis determined the compliance level for each state, then compared each educational level to see if the compliance was similar across the levels. Compliance is important because research shows that using STS themes in the science classroom increases the student's understanding of the concepts, increases the student's problem solving skills, increases the student's self-efficacy with respect to science, and students instructed using STS themes score well on science high stakes tests. The two hypotheses for this study are: (1) There is no significant difference in the degree of compliance to Science-Technology-Society themes (derived from National Science Education Standards) between the elementary, middle, and high school levels. (2) There is no significant difference in the degree of compliance to Science-Technology-Society themes (derived from National Science Education Standards) between the elementary, middle, and high school level when examined individually. The Analysis of Variance F ratio was used to determine the variance between and within the three educational levels. This analysis addressed hypothesis one. The Analysis of Variance results refused to reject the null hypothesis, meaning there is significant difference in the compliance to STS themes between the elementary, middle and high school educational levels. The Chi-Square test was the statistical analysis used to compare the educational levels for each individual criterion. This analysis addressed hypothesis two. The Chi-Squared results showed that none of the states were equally compliant with each individual criterion across the elementary, middle, and high school levels. The National Science Education Standards were created with the input of thousands of people and over twenty scientific and educational societies. The standards were tested in numerous classrooms and showed an increase in science literacy for the students. With the No Child Left Behind legislation and Project 2061, the attainment of a science literate society will be helped by the adoption of the NSES standards and the STS themes into the American classrooms.
Redwood-Campbell, Lynda; Pakes, Barry; Rouleau, Katherine; MacDonald, Colla J; Arya, Neil; Purkey, Eva; Schultz, Karen; Dhatt, Reena; Wilson, Briana; Hadi, Abdullahel; Pottie, Kevin
2011-07-22
Recognizing the growing demand from medical students and residents for more comprehensive global health training, and the paucity of explicit curricula on such issues, global health and curriculum experts from the six Ontario Family Medicine Residency Programs worked together to design a framework for global health curricula in family medicine training programs. A working group comprised of global health educators from Ontario's six medical schools conducted a scoping review of global health curricula, competencies, and pedagogical approaches. The working group then hosted a full day meeting, inviting experts in education, clinical care, family medicine and public health, and developed a consensus process and draft framework to design global health curricula. Through a series of weekly teleconferences over the next six months, the framework was revised and used to guide the identification of enabling global health competencies (behaviours, skills and attitudes) for Canadian Family Medicine training. The main outcome was an evidence-informed interactive framework http://globalhealth.ennovativesolution.com/ to provide a shared foundation to guide the design, delivery and evaluation of global health education programs for Ontario's family medicine residency programs. The curriculum framework blended a definition and mission for global health training, core values and principles, global health competencies aligning with the Canadian Medical Education Directives for Specialists (CanMEDS) competencies, and key learning approaches. The framework guided the development of subsequent enabling competencies. The shared curriculum framework can support the design, delivery and evaluation of global health curriculum in Canada and around the world, lay the foundation for research and development, provide consistency across programmes, and support the creation of learning and evaluation tools to align with the framework. The process used to develop this framework can be applied to other aspects of residency curriculum development.
2011-01-01
Background Recognizing the growing demand from medical students and residents for more comprehensive global health training, and the paucity of explicit curricula on such issues, global health and curriculum experts from the six Ontario Family Medicine Residency Programs worked together to design a framework for global health curricula in family medicine training programs. Methods A working group comprised of global health educators from Ontario's six medical schools conducted a scoping review of global health curricula, competencies, and pedagogical approaches. The working group then hosted a full day meeting, inviting experts in education, clinical care, family medicine and public health, and developed a consensus process and draft framework to design global health curricula. Through a series of weekly teleconferences over the next six months, the framework was revised and used to guide the identification of enabling global health competencies (behaviours, skills and attitudes) for Canadian Family Medicine training. Results The main outcome was an evidence-informed interactive framework http://globalhealth.ennovativesolution.com/ to provide a shared foundation to guide the design, delivery and evaluation of global health education programs for Ontario's family medicine residency programs. The curriculum framework blended a definition and mission for global health training, core values and principles, global health competencies aligning with the Canadian Medical Education Directives for Specialists (CanMEDS) competencies, and key learning approaches. The framework guided the development of subsequent enabling competencies. Conclusions The shared curriculum framework can support the design, delivery and evaluation of global health curriculum in Canada and around the world, lay the foundation for research and development, provide consistency across programmes, and support the creation of learning and evaluation tools to align with the framework. The process used to develop this framework can be applied to other aspects of residency curriculum development. PMID:21781319
North Carolina Social Studies Curriculum 1997.
ERIC Educational Resources Information Center
North Carolina State Dept. of Public Instruction, Raleigh.
This North Carolina curriculum guide provides a social studies framework for grades K-12. Divided into overview, introduction, primary, elementary/middle, and high school sections, the guide outlines a purpose and philosophy, framework goals, rationale for social studies in the curriculum, content overview (for the disciplines of history,…
Inquiry-Based Science Education: A Scenario on Zambia's High School Science Curriculum
ERIC Educational Resources Information Center
Chabalengula, Vivien M.; Mumba, Frackson
2012-01-01
This paper is aimed at elucidating the current state of inquiry-based science education (IBSE) in Zambia's high school science curriculum. Therefore, we investigated Zambian teachers' conceptions of inquiry; determined inquiry levels in the national high school science curriculum materials, which include syllabi, textbooks and practical exams; and…
The progress test as a diagnostic tool for a new PBL curriculum.
Al Alwan, I; Al-Moamary, M; Al-Attas, N; Al Kushi, A; AlBanyan, E; Zamakhshary, M; Al Kadri, H M F; Tamim, H; Magzoub, M; Hajeer, A; Schmidt, H
2011-12-01
The College of Medicine at King Saud bin Abdulaziz University for Health Sciences (KSAU-HS) is running a PBL-based curriculum. A progress test was used to evaluate components of the basic medical and clinical sciences curriculum. To evaluate the performance of students at different levels of the college of medicine curriculum through USMLE-based test that focused on basic medical and clinical sciences topics. The USMLE-based basic medical and clinical sciences progress test has been conducted since 2007. It covers nine topics, including: anatomy; physiology; histology; epidemiology; biochemistry; behavioral sciences, pathology, pharmacology and immunology/microbiology. Here we analyzed results of three consecutive years of all students in years 1-4. There was a good correlation between progress test results and students' GPA. Progress test results in the clinical topics were better than basic medical sciences. In basic medical sciences, results of pharmacology, biochemistry, behavioral sciences and histology gave lower results than the other disciplines. Results of our progress test proved to be a useful indicator for both basic medical sciences and clinical sciences curriculum. Results are being utilized to help in modifying our curriculum.
Critical features of a curriculum in health care quality and resource management.
Norman, D K; Randall, R S; Hornsby, B J
1990-09-01
In response to mounting demands for quality and accountability in health care, a science of health care quality and resource management (QRM) has evolved, but too slowly and without the academic base needed to prepare practitioners to assume new roles and fulfill requirements to regulate their practice. To develop such a base, The University of Houston and The University of Texas Health Science Center sponsored a needs assessment survey to identify areas of knowledge and skills to be included in a master's degree curriculum in QRM. The study used a three-cycle Focus Delphi technique to secure experts' refinement of the survey instrument and consensus among participants, who included practitioner-members of the National Association of Quality Assurance Professionals (NAQAP), of health care administration educational program directors, and hospital administrators. Starting with a listing based on a competency outline obtained from NAQAP, the study identified critical learning needs and elaborated a framework with 12 broad categories and 108 specific knowledge and skill areas.
P3: a practice focused learning environment
NASA Astrophysics Data System (ADS)
Irving, Paul W.; Obsniuk, Michael J.; Caballero, Marcos D.
2017-09-01
There has been an increased focus on the integration of practices into physics curricula, with a particular emphasis on integrating computation into the undergraduate curriculum of scientists and engineers. In this paper, we present a university-level, introductory physics course for science and engineering majors at Michigan State University called P3 (projects and practices in physics) that is centred around providing introductory physics students with the opportunity to appropriate various science and engineering practices. The P3 design integrates computation with analytical problem solving and is built upon a curriculum foundation of problem-based learning, the principles of constructive alignment and the theoretical framework of community of practice. The design includes an innovative approach to computational physics instruction, instructional scaffolds, and a unique approach to assessment that enables instructors to guide students in the development of the practices of a physicist. We present the very positive student related outcomes of the design gathered via attitudinal and conceptual inventories and research interviews of students’ reflecting on their experiences in the P3 classroom.
Leading Change in the Primary Science Curriculum
ERIC Educational Resources Information Center
Waller, Nicky; Baker, Chris
2014-01-01
Nicky Waller and Chris Baker believe that change can be a good thing and explain how their training has helped others to adjust to the new science curriculum. In September 2013, teachers across England received the definitive version of the new primary curriculum "Leading Change in the Primary Science Curriculum." This course aimed to…
Science teachers' worldviews: A way to understand beliefs and practices
NASA Astrophysics Data System (ADS)
Yalaki, Yalcin
Understanding science teachers' beliefs is important for science teacher educators, because such understanding is a prerequisite for promoting change within the framework of educational reform. The worldview model developed by Graves (1981) and Beck and Cowan (1996) provides a holistic approach to understanding teachers' beliefs and values and it also provides a framework for understanding how people's worldviews change. In this study, worldviews of four science teachers were investigated within the framework of Beck and Cowan's model. Two of these teachers were high school science teachers, while the other two were middle school science teachers. One of the teachers held National Board of Professional Teaching Certification and she had 18 years of teaching experience. Another teacher was a relatively new teacher with three years of teaching experience. The third teacher had nine years of teaching experience, but when this study was conducted, it was her first year of teaching science. The other teacher had 26 years of experience with certification in all science areas. During this study, interpretative qualitative methods of data collection and analysis were used which included interviews, observations, and the use of a survey developed by Beck and Cowan (2000) called the Values Test. The results show that differing values and experiences among science teachers leads to different strategies for making sense of science teaching. The assertion that the worldview perspective provided by Beck and Cowan is a useful tool in understanding teachers' beliefs and values is made in the conclusions. Teacher educators can utilize this tool in research about teacher beliefs, in promoting change for reform, or in developing curriculum for teacher education programs. Teachers can utilize it in self-reflective practices to better understand their own beliefs, their context, and their students and ultimately improve the teaching and learning process they engage in.
ERIC Educational Resources Information Center
California State Dept. of Education, Sacramento.
This booklet describes the characteristics and role of curriculum frameworks and describes how they can be used in developing educational programs. It is designed as a guide for writers of frameworks, for educators who are responsible for implementing frameworks, or for evaluators of educational programs. It provides a concise description of the…
ERIC Educational Resources Information Center
Willness, Chelsea; Bruni-Bossio, Vince
2017-01-01
Integrating literature on entrepreneurial business models and community-based experiential learning, we propose a new framework to advance the practice of curriculum innovation. Grounded in principles of design thinking, the curriculum innovation canvas provides a human-centered, collaborative, and holistic platform for instructors, curriculum…
ERIC Educational Resources Information Center
Greenberg, Sylvia
2002-01-01
Compared the California State Framework and Head Start Performance Standards for common expectations for early childhood education curriculum. Explored relationship of curriculum and the learning styles of preschool children. Found that High/Scope and Emergent Curricula were most compatible with California framework's objective of meeting the…
Knowledge Management ERP Curriculum Design/Mapping (Theory and Development Tools)
ERIC Educational Resources Information Center
Swanson, Zane; Hepner, Michelle
2011-01-01
This study proposes a knowledge management framework for developing and managing enterprise resource planning (ERP) curriculum within business schools. Both theory and a practical implementation are addressed. The knowledge management (KM) framework has two components which utilize ERP from a big picture curriculum overview and a ground level…
A Proposed Conceptual Framework for Curriculum Design in Physical Fitness.
ERIC Educational Resources Information Center
Miller, Peter V.; Beauchamp, Larry S.
A physical fitness curriculum, designed to provide cumulative benefits in a sequential pattern, is based upon a framework of a conceptual structure. The curriculum's ultimate goal is the achievement of greater physiological efficiency through a holistic approach that would strengthen circulatory-respiratory, mechanical, and neuro-muscular…
NASA Astrophysics Data System (ADS)
Marco-Bujosa, Lisa; Levy, Abigail Jurist; McNeill, Katherine
2018-01-01
Teachers are central to providing high-quality science learning experiences called for in recent reform efforts, as their understanding of science impacts both what they teach and how they teach it. Yet, most elementary teachers do not enter the profession with a particular interest in science or expertise in science teaching. Research also indicates elementary schools present unique barriers that may inhibit science teaching. This case study utilizes the framework of identity to explore how one elementary classroom teacher's understandings of herself as a science specialist were shaped by the bilingual elementary school context as she planned for and provided reform-based science instruction. Utilizing Gee's (2000) sociocultural framework, identity was defined as consisting of four interrelated dimensions that served as analytic frames for examining how this teacher understood her new role through social positioning within her school. Findings describe the ways in which this teacher's identity as a science teacher was influenced by the school context. The case study reveals two important implications for teacher identity. First, collaboration for science teaching is essential for elementary teachers to change their practice. It can be challenging for teachers to form an identity as a science teacher in isolation. In addition, elementary teachers new to science teaching negotiate their emerging science practice with their prior experiences and the school context. For example, in the context of a bilingual school, this teacher adapted the reform-based science curriculum to better meet the unique linguistic needs of her students.
Investigating Climate Change Issues With Web-Based Geospatial Inquiry Activities
NASA Astrophysics Data System (ADS)
Dempsey, C.; Bodzin, A. M.; Sahagian, D. L.; Anastasio, D. J.; Peffer, T.; Cirucci, L.
2011-12-01
In the Environmental Literacy and Inquiry middle school Climate Change curriculum we focus on essential climate literacy principles with an emphasis on weather and climate, Earth system energy balance, greenhouse gases, paleoclimatology, and how human activities influence climate change (http://www.ei.lehigh.edu/eli/cc/). It incorporates a related set of a framework and design principles to provide guidance for the development of the geospatial technology-integrated Earth and environmental science curriculum materials. Students use virtual globes, Web-based tools including an interactive carbon calculator and geologic timeline, and inquiry-based lab activities to investigate climate change topics. The curriculum includes educative curriculum materials that are designed to promote and support teachers' learning of important climate change content and issues, geospatial pedagogical content knowledge, and geographic spatial thinking. The curriculum includes baseline instructional guidance for teachers and provides implementation and adaptation guidance for teaching with diverse learners including low-level readers, English language learners and students with disabilities. In the curriculum, students use geospatial technology tools including Google Earth with embedded spatial data to investigate global temperature changes, areas affected by climate change, evidence of climate change, and the effects of sea level rise on the existing landscape. We conducted a designed-based research implementation study with urban middle school students. Findings showed that the use of the Climate Change curriculum showed significant improvement in urban middle school students' understanding of climate change concepts.
ERIC Educational Resources Information Center
Contino, Julie; Anderson, O. Roger
2013-01-01
In New York State (NYS), Earth science teachers use the "National Science Education Standards" (NSES), the NYS "Learning Standards for Mathematics, Science and Technology" (NYS Standards), and the "Physical Setting/Earth Science Core Curriculum" (Core Curriculum) to create local curricula and daily lessons. In this…
ERIC Educational Resources Information Center
Simpson, Ronald D.
1974-01-01
Three elementary school science curriculum projects, Elementary Science Study (ESS), Science - A Process Approach (S-APA), and Science Curriculum Improvement Study (SCIS), are compared concerning the biologic content each project contains. The reviewer found a lack of activities designed to represent functions at the cellular level. Two projects…
Brunger, Fern
2016-03-01
This paper presents a pedagogical framework for teaching cross-cultural clinical ethics. The approach, offered at the intersection of anthropology and bioethics, is innovative in that it takes on the "social sciences versus bioethics" debate that has been ongoing in North America for three decades. The argument is made that this debate is flawed on both sides and, moreover, that the application of cross-cultural thinking to clinical ethics requires using the tools of the social sciences (such as the critique of the universality of the Euro-American construct of "autonomy") within (rather than in opposition to) a principles-based framework for clinical ethics. This paper introduces the curriculum and provides guidelines for how to teach cross-cultural clinical ethics. The learning points that are introduced emphasize culture in its relation to power and underscore the importance of viewing both biomedicine and bioethics as culturally constructed.
Using Bourdieu’s Theoretical Framework to Examine How the Pharmacy Educator Views Pharmacy Knowledge
2015-01-01
Objective. To explore how different pharmacy educators view pharmacy knowledge within the United Kingdom MPharm program and to relate these findings to Pierre Bourdieu’s theoretical framework. Methods. Twelve qualitative interviews were conducted with 4 faculty members from 3 different types of schools of pharmacy in the United Kingdom: a newer school, an established teaching-based school, and an established research-intensive school. Selection was based on a representation of both science-based and practice-based disciplines, gender balance, and teaching experience. Results. The interview transcripts indicated how these members of the academic community describe knowledge. There was a polarization between science-based and practice-based educators in terms of Bourdieu’s description of field, species of capital, and habitus. Conclusion. A Bourdieusian perspective on the differences among faculty member responses supports our understanding of curriculum integration and offers some practical implications for the future development of pharmacy programs. PMID:26889065
Waterfield, Jon
2015-12-25
To explore how different pharmacy educators view pharmacy knowledge within the United Kingdom MPharm program and to relate these findings to Pierre Bourdieu's theoretical framework. Twelve qualitative interviews were conducted with 4 faculty members from 3 different types of schools of pharmacy in the United Kingdom: a newer school, an established teaching-based school, and an established research-intensive school. Selection was based on a representation of both science-based and practice-based disciplines, gender balance, and teaching experience. The interview transcripts indicated how these members of the academic community describe knowledge. There was a polarization between science-based and practice-based educators in terms of Bourdieu's description of field, species of capital, and habitus. A Bourdieusian perspective on the differences among faculty member responses supports our understanding of curriculum integration and offers some practical implications for the future development of pharmacy programs.
Fort Benton Science Curriculum Outline.
ERIC Educational Resources Information Center
Fort Benton Public Schools, MT.
The science curriculum for the Fort Benton school system was developed with funds under Title III of the Elementary and Secondary Education Act to give students the background of a modern and forward-looking program in science taught in an imaginative, investigative, and inquiry-oriented fashion. The science curriculum guide outlines a planned…
Uncovering Portuguese Teachers' Difficulties in Implementing Sciences Curriculum
ERIC Educational Resources Information Center
Vasconcelos, Clara; Torres, Joana; Moutinho, Sara; Martins, Idalina; Costa, Nilza
2015-01-01
Many countries recognize the positive and effective results of improving science education through the introduction of reforms in the sciences curriculum. However, some important issues are generally neglected like, for example, the involvement of the teachers in the reform process. Taking the sciences curriculum reform under analysis and…
Water Pollution, Environmental Science Curriculum Guide Supplement.
ERIC Educational Resources Information Center
McKenna, Harold J.
This curriculum guide is a 40-day unit plan on water pollution developed, in part, from the National Science Foundation Environmental Science Institutes' Ninth Grade Environmental Science Curriculum Guide. This unit contains teacher lesson plans, suggested teacher and student modules, case studies, and activities to be developed by teachers…
Complementary Social Sciences Courses in the Alberta High School Curriculum: A Conceptual Review
ERIC Educational Resources Information Center
Staszenski, Donna; Smits, Hans
2008-01-01
In keeping with Alberta Education's goals and responsibilities to develop and evaluate curriculum and to set standards and assess outcomes, the Ministry is reviewing the status and purpose of social sciences courses as part of the high school curriculum. The present social sciences curriculum was revised in 1985. As part of the social sciences…
NASA Astrophysics Data System (ADS)
Beckford-Smart, Meredith
This study discusses the social interactions involved in teachers' enactment and use of new science curricula. The teachers studied participated in the LiFE program, a university-school partnership, which is an inquiry based science and nutrition education program. In this program fifth and sixth grade students learned science through the study of food. The program used the study of food and food systems to teach life sciences and nutrition through inquiry based studies. Through the partnership teachers received professional development which aimed to deepen their conceptual understandings of life science and develop skills in implementing inquiry-base teaching. Using qualitative research methods of ethnography and narrative inquiry to study teachers' sense-making of messages from curriculum structures, the intention was to explore how teachers' sense-making of these structures guided their classroom practices. Two research questions were addressed: (a) How do teachers make sense of curriculum given their perceptions, their school context and their curricular context; (b) What influence do their identities as science teachers/learners have on their enactment of an innovative science curriculum. I used comparative analysis to examine teacher's beliefs and identities as teachers/learners. In the process of studying these teachers an understanding of how teachers' stories and identities shape their use and enactment of science curriculum came to light. The initial analysis revealed four distinct teacher identities: (a) social responsibility teacher/learner; (b) experiential teacher/learner; (c) supportive institution teacher/learner; and (d) turning point teacher. Besides these distinct teacher identities three cross cutting themes emerged: (a) creating environments conducive to their teaching visions; (b) empowering student through science teaching; and (c) dealing with the uncertainty of teaching. The information gathered from this study will illuminate how these different teacher stories shaped their teaching practices and enactment of science curriculum. Curriculum developers and policy makers struggle to understand how their messages can be communicated clearly to their readers and users. Many argue that curriculum materials are not used the way they are intended. Others argue the messages read from policy and curriculum materials and artifacts are ambiguous and unclear. This study did not argue that teachers do not use the curriculum materials correctly. This study focused on teachers' sense-making of curriculum materials so we can get a better understanding of the role curriculum resources can play in reform.
Understanding the nature of science through the historical development of conceptual models
NASA Astrophysics Data System (ADS)
Metz, Donald J.
Understanding the nature of science has been a common goal in science education for years and continues to hold a distinct place in the recently developed Pan-Canadian science framework. Although the nature of science is often prominent in the front end of such reform documents, the implementation of these goals is presumed to be taught implicitly with the delivery of knowledge outcomes. Research strongly indicates that most students have naive conceptions about the nature of science. Surprisingly, research also clearly shows that science teachers do not fare much better, and that when they do possess adequate understanding of the nature of science it does not significantly influence their behaviour in the classroom. Norm Lederman (1998), one of the leading scholars in this field, describes two approaches advocated by curriculum reform documents to address the nature of science outcomes. The first approach suggests that students can achieve nature of science outcomes by "doing science", the second suggests that history of science can enhance students' understanding of the nature of science. While Lederman advocates the use of the history of science, he argues that these approaches are not effective when used implicitly. He recommends that an explicit approach be used (planned for, taught, assessed), but so far there have been no studies which employ this technique beyond short lessons or limited case histories. This thesis advocates an explicit approach to teaching the nature of science using the historical development of conceptual models. The research study of this thesis integrated the historical development of conceptual models with the traditional content found in a typical grade ten chemistry curriculum. Participants in the research were 74 senior 2 (grade 10) science students from four different classes in three different schools in the province of Manitoba. Prior to, and after instruction, students wrote Lederman's VNOS nature of science test. The tests were reviewed by the researcher and a nature of science profile was compiled for each student. From this profile and the student responses, 24 students (8 from each group) were selected to be interviewed. The research indicates that the HDCM unit was a successful means to improve students' understanding of models, theories, evidence, and the tentativeness of science. The manner in which students employed their examples in the post-test suggests that the historical content of the unit accounts for this change. On the relationship between laws and theories the research indicates that the view that theories advance to laws is an extremely tenacious misconception although students did seem to improve their understanding of laws and theories independently. The HDCM unit did not yield significant results in advancing students understandings of the creative and imaginative aspects of the nature of science. However, there were individual cases where progress was made which might indicate that more opportunity and a longer development time could enhance student understanding in this area. Students also indicated positive attitudes towards the inclusion of the history of science in their curriculum. The HDCM unit presented a more humanistic view of science to the students which was reflected in their interest, motivation, and responses to the curriculum. We should view this results as positive for future curriculum development in this area. Finally, the HDCM unit was shown to significantly influence one practising teacher's understanding of the nature of science.
NASA Astrophysics Data System (ADS)
Nargund-Joshi, Vanashri
This study explores the concepts and behaviors, otherwise referred to as orientations, of six Indian science teachers and the alignment of these orientations to the 2005 India National Curriculum Framework (NCF-2005). Differences in teachers' orientations across grade bands (elementary, middle, and secondary) and school types (public versus private) are also examined to determine how contextual factors may influence this alignment. First, a content analysis of the NCF-2005 was completed to identify the overarching principles of the NCF-2005 and goals specific to the teaching and learning of science. Interviews with school principals were also analyzed to understand how the goals of NCF-2005 were communicated to schools and teachers. Together, these data sources served to answer research question one. Next, profiles were created based on three interviews with each teacher and several observations of their teaching. These profiles provide a point of reference for answering the remaining three research questions. Findings include teacher's orientations falling along a continuum from traditionalist in nature to inquiry/constructivist in nature. Stark contrasts were found between traditionalist orientations and the goals of NCF-2005, with much of this contrast due to the limited pedagogical content knowledge these teachers have regarding students' scientific thinking, curriculum design, instructional strategies, and assessment. Inquiry/constructivist teachers' orientations, while more in line with reform, still have a few key areas of pedagogical content knowledge needing attention (e.g., knowledge of assessment and a variety of purposes for constructivist instructional strategies). In response to the final research question, several contextual factors contributed to teachers' orientations including environmental constraints, such as limited resources and large class sizes, cultural testing pressures, and limited accessibility to professional development. Suggestions for improving the implementation of NCF-2005 in India's classrooms are discussed according to various stakeholders (e.g., policy makers, curriculum designers, professional developers).
Learner-Driven EFL Curriculum Development at the Classroom Level
ERIC Educational Resources Information Center
Shawer, Saad; Gilmore, Deanna; Banks-Joseph, SusanRae
2009-01-01
This qualitative study examines the learner-directed motives that cause English as a Foreign Language (EFL) teachers to approach curriculum differently, as curriculum-transmitters, curriculum-developers, or curriculum-makers. This study's conceptual framework was grounded in teacher curriculum development, curriculum implementation,…
Experiencing the Implementation of New Inquiry Science Curricula
NASA Astrophysics Data System (ADS)
Ower, Peter S.
Using a phenomenological methodology, a cohort of four experienced science teachers was interviewed about their experience transitioning from traditional, teacher and fact-centered science curricula to inquiry-based curricula. Each teacher participated in two interviews that focused on their teaching backgrounds, their experience teaching the prior traditional curriculum, and their experience teaching the new inquiry-based curriculum. The findings are presented as a narrative of each teachers' experience with the new curriculum implementation. Analyzing the data revealed four key themes. 1) The teachers felt trapped by the old curriculum as it did not align with their positive views of teaching science through inquiry. 2) The teachers found a way to fit their beliefs and values into the old and new curriculum. This required changes to the curriculum. 3) The teachers attempted to make the science curriculum as meaningful as possible for their students. 4) The teachers experienced a balancing act between their beliefs and values and the various aspects of the curriculum. The revealed essence of the curriculum transition is one of freedom and reconciliation of their beliefs. The teachers experienced the implementation of the new curriculum as a way to ensure their values and beliefs of science education were embedded therein. They treated the new curriculum as a malleable structure to impart their grander ideas of science education (e.g. providing important skills for future careers, creating a sense of wonder, future problem solving) to the students. Their changes were aligned with the philosophy of the curriculum kits they were implementing. Thus, the fidelity of the curriculum's philosophy was not at risk even though the curriculum kits were not taught as written. This study showed that phenomenological methods are able to reveal the relationship between a teacher's prior experiences, values and beliefs and their current instructional philosophy in science education. An analytical diagram was developed based on this relationship and the teachers' experiences moving from a traditional to a new inquiry curricula. The diagram suggests a transition from feeling trapped in an existing curriculum that is inconsistent with teacher values to finding a fit and balance in a new curriculum that provides a better though not perfect fit. This diagram can serve as a guide for how to design future, ongoing professional development to ensure the success of an inquiry curriculum designed to replace a more traditional one and may be applicable to other teachers.
NASA Astrophysics Data System (ADS)
Hart, Paul
2002-11-01
This paper draws on the experience of the Pan-Canadian science curriculum development process as an instance of the more general problem of integrating science and environmental education. It problematizes the issue of incorporation of social and environmental dimensions within the science curriculum in terms of both policy and practice. The agenda of environmental education, as eco-philosophical and eco-political, provides a radically different base from which to explore the impact of change on science teachers and schools. Thus, the very idea of environmental education as an educational policy goal must be examined in light of conflicting agendas of science and environmental education. This paper argues that transforming structures and processes of school science to enable different teacher and student roles involves closing the gap between curriculum (policy) development and professional development as well as reconceptualizing science education, but from more overtly open moral value and political perspectives than have been considered in the literature of science education.
ERIC Educational Resources Information Center
Missouri State Dept. of Elementary and Secondary Education, Jefferson City.
This document provides supplemental assessment information to "Missouri's Framework for Curriculum Development in Health Education and Physical Education (Healthy, Active Living) K-12." The assessment annotations found in the third column of this document are intended to provide information for administrators, curriculum directors, and…
Conceptualizing Gender, Contextualizing Curriculum: A Case Study of Teacher Education Coursework
ERIC Educational Resources Information Center
Kean, M. Eli
2017-01-01
This study explores and theorizes around issues of transgender curriculum in teacher education courses. Using a conceptual framework informed by both transgender theory and curriculum theory, I propose a Critical Trans Framework to analyze what trans-related curricular materials are currently used in teacher education courses and what factors…
Relativism, Values and Morals in the New Zealand Curriculum Framework
ERIC Educational Resources Information Center
Jorgensen, Lone Morris; Ryan, SueAnn
2004-01-01
"The New Zealand Curriculum Framework", 1993, is the official document for teaching, learning and assessment in New Zealand schools. It consists of a set of curriculum statements, which define the learning principles, achievement aims and essential skills for seven learning areas. It also indicates the place of attitudes and values in…
ERIC Educational Resources Information Center
MacLean, Justine; Mulholland, Rosemary; Gray, Shirley; Horrell, Andrew
2015-01-01
Background: Curriculum for Excellence, a new national policy initiative in Scottish Schools, provides a unified curricular framework for children aged 3-18. Within this framework, Physical Education (PE) now forms part of a collective alongside physical activity and sport, subsumed by the newly created curriculum area of "Health and…
NASA Astrophysics Data System (ADS)
Lyons, Daniel J.
This study explored the impact of a novel inquiry-based astronomy laboratory curriculum designed using the Backwards Faded Scaffolding inquiry teaching framework on non-science majoring undergraduate students' views of the nature of scientific inquiry (NOSI). The study focused on two aspects of NOSI: The Distinction between Data and Evidence (DvE), and The Multiple Methods of Science (MMS). Participants were 220 predominately non-science majoring undergraduate students at a small, doctoral granting, research-extensive university in the Rocky Mountain region of the United States. The student participants were enrolled in an introductory astronomy survey course with an associated laboratory section and were selected in two samples over consecutive fall and spring semesters. The participants also included four of the graduate student instructors who taught the laboratory courses using the intervention curriculum. In the first stage, student participant views of NOSI were measured using the VOSI-4 research instrument before and after the intervention curriculum was administered. The responses were quantified, and the distributions of pre and posttest scores of both samples were separately analyzed to determine if there was a significant improvement in understanding of either of the two aspects of NOSI. The results from both samples were compared to evaluate the consistency of the results. In the second stage, the quantitative results were used to strategically design a qualitative investigation, in which the four lab instructors were interviewed about their observations of how the student participants interacted with the intervention curriculum as compared to traditional lab activities, as well as their suggestions as to how the curriculum may or may not have contributed to the results of the first stage. These interviews were summarized and analyzed for common themes as to how the intervention curriculum influenced the students' understandings of the two aspect of NOSI. According to the results of a Wilcoxon Signed Rank test, there was a significant shift in the distributions of both samples toward a more informed understanding of DvE after the intervention curriculum was administered, while there was no significant change in either direction for understanding of MMS. The results of the instructor interview analysis suggested that the intervention curriculum provided multiple opportunities for students to evaluate and determine the relevance of data in the context of producing evidence-based conclusions directly related to specific research questions, thereby supporting the development of more informed views of DvE. These results also suggested that students might not have realized that they were exclusively engaged in non-experimental type inquiries, as various research methods were not explicitly addressed. The intervention curriculum used a consistently phased stepwise format, which may also have led the students to accommodate their astronomy inquiry experiences within persistent misconceptions of "The Scientific Method" as the only valid means of constructing scientific knowledge, thereby leading to no change in understanding of MMS. The results of the study suggest that a scaffolded, inquiry-based, introductory astronomy laboratory curriculum purposefully designed and scaffolded to enhance students' understandings could be effective in enhancing undergraduate non-science majoring students' views of certain aspects of NOSI. Through scaffolding inquiry experiences that deliver multiple opportunities to engage in authentic scientific inquiries, the novel curriculum provides a valuable resource for the astronomy education community to engage students in learning experiences that reflect the contemporary views of constructivist inquiry-based learning, which focuses on the interpretation of data to create evidence in light of specific questions, as well as opportunities to engage in authentic scientific discourse. As such it can enable astronomy educators in the undergraduate teaching community to support student learning beyond astronomy content knowledge toward a more informed understanding of the process of scientific knowledge construction to the end of supporting proficiency in science and science literacy.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC.
This is a list of curriculum improvement materials produced by major course and curriculum projects supported by the National Science Foundation's Division of Pre-College Education in Science. The materials are grouped by educational level (elementary, intermediate, and secondary) and within each level by broad discipline groupings (mathematics,…
Some Trends in the Evolution of Science Curriculum Centres in Asia. Occasional Papers No. 12.
ERIC Educational Resources Information Center
Maddock, M. N.
Recent trends in science education associated with the evolution of science curriculum development centers in the Asian region are reviewed. These trends, and factors influencing them, are discussed under the following headings: science education and curriculum development centers; adaptation phase; shifts toward indigenous programs; science…
Primary Science Curriculum Guide, A. Beginning Science.
ERIC Educational Resources Information Center
Victoria Education Dept. (Australia).
Suggestions for providing science experiences for children in kindergarten and grades one and two are given in this first part of the Victorian Education Department (Australia) guide to the elementary school science curriculum. (See SE 012 720 and SE 012 721 for additional guides to this curriculum.) The suggestions are illustrated by brief case…
Using a structural competency framework to teach structural racism in pre-health education.
Metzl, Jonathan M; Petty, JuLeigh; Olowojoba, Oluwatunmise V
2018-02-01
The inclusion of structural competency training in pre-health undergraduate programs may offer significant benefits to future healthcare professionals. This paper presents the results of a comparative study of an interdisciplinary pre-health curriculum based in structural competency with a traditional premedical curriculum. The authors describe the interdisciplinary pre-health curriculum, titled Medicine, Health, and Society (MHS) at Vanderbilt University. The authors then use a new survey tool, the Structural Foundations of Health Survey, to evaluate structural skills and sensibilities. The analysis compares MHS majors (n = 185) with premed science majors (n = 63) and first-semester freshmen (n = 91), with particular attention to understanding how structural factors shape health. Research was conducted from August 2015 to December 2016. Results suggest that MHS majors identified and analyzed relationships between structural factors and health outcomes at higher rates and in deeper ways than did premed science majors and freshmen, and also demonstrated higher understanding of structural and implicit racism and health disparities. The skills that MHS students exhibited represent proficiencies increasingly stressed by the MCAT, the AAMC, and other educational bodies that emphasize how contextual factors shape expressions of health and illness. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Mansour, Nasser
2010-08-01
The failure of much curriculum innovation has been attributed to the neglect by innovators of teachers’ perceptions. The purpose of this study was to investigate inservice science teachers views of integrating Science, Technology and Society (STS) issues into the science curriculum and identify the factors that influence their decisions concerning integrating STS issues (or not). The study used mixed methods (questionnaire and interviews) with Egyptian science teachers who teach science courses for 12- to 14-year-old students. The findings indicate that unless curriculum developers take account of teachers’ beliefs and knowledge and the sociocultural factors that shape or influence those beliefs in designing and planning new STS curriculum materials, these materials are unlikely to be implemented according to their intended plan.
ERIC Educational Resources Information Center
Champagne, Audrey B., Ed.; Hornig, Leslie E., Ed.
The outgrowth of a conference on how science education can best meet the needs and expectations of society, this volume is designed to provide a source of information and ideas about the future of the school science curriculum. It contains 15 papers, including: "Critical Questions and Tentative Answers for the School Science Curriculum" (Audrey B.…
ERIC Educational Resources Information Center
Mayur, S. Desai
2013-01-01
Purpose: The purpose of this paper is to propose a framework that serves as a guide to develop a curriculum and instructional strategy that is systems oriented and student-centric. Design/methodology/approach: The framework is based on the theories in the field of education by prominent researchers. The framework is divided into four sub-systems,…
Wang, Ye
2011-01-01
Deaf and hard of hearing students, who cannot successfully access and utilize information in print, experience various difficulties in conventional science instruction, which heavily relies on lectures and textbooks. The purpose of the present review is threefold. First, an overview of inquiry-based science instruction reform, including the so-ciohistorical forces behind the movement, is presented. Then, the author examines the empirical research on science education for students who are deaf or hard of hearing from the 1970s to the present and identifies and rates inquiry-based practice. After discussing the difficulty of using science texts with deaf and hard of hearing students, the author introduces a conceptual framework that integrates inquiry-based instruction and the construct of performance literacy. She suggests that this integration should enable students who are deaf or hard of hearing to access the general education curriculum.
The Alberta K-9 Mathematics Program of Studies with Achievement Indicators
ERIC Educational Resources Information Center
Alberta Education, 2007
2007-01-01
The "Alberta K-9 Mathematics Program of Studies with Achievement Indicators" has been derived from "The Common Curriculum Framework for K-9 Mathematics: Western and Northern Canadian Protocol," May 2006 (the Common Curriculum Framework). The program of studies incorporates the conceptual framework for Kindergarten to Grade 9…
NASA Astrophysics Data System (ADS)
Haynes, James Christopher
Scope and Method of Study. The purpose of this study was to determine if a science-enhanced curriculum produced by the Center for Agricultural and Environmental Research and Training (CAERT) taught in a secondary level animal science or horticulture course would improve students' understanding of selected scientific principles significantly, when compared to students who were instructed using a traditional curriculum. A secondary purpose was to determine the effect that the science-enhanced CAERT curriculum would have on students' agricultural knowledge when compared to students who were instructed using a traditional curriculum. The design of the study was ex post facto, causal comparative because no random assignment of the treatment group occurred. Findings and Conclusions. No statistically significant difference was found between the treatment and comparison groups regarding science achievement. However, the mean score of the treatment group was slightly larger than the comparison group indicating a slightly higher achievement level; a "Small" effect size (d = .16) for this difference was calculated. It was determined that a statistically significant difference (p < .05) existed in agriculture competency scores in animal science (p = .001) and horticulture (p = .000) as a result of the treatment. Moreover, this was considered to be a "very large" effect (d = 1.18) in animal science and a "large" effect (d = .92) in horticulture. When considering student achievement in science, this study found that the use of the science-enhanced CAERT curriculum did not result in a statistically significant increase (p < .05) in student performance as determined by the TerraNova3 science proficiency examination. However, students who were instructed using the CAERT curriculum scored better overall than those who were instructed using a "traditional" curriculum.
The Development of Foreign Language Substance Group Curriculum Based on Marzano's Taxonomy
ERIC Educational Resources Information Center
Nakyam, Jirapan; Kwangsawad, Thoopthong; Sriampai, Pissamai
2013-01-01
This study was firstly aimed to develop the Foreign Language Substance Group Curriculum for enhancing students' four English skills required to promote learning in the different areas of subject. It used Marzano's Taxonomy as a framework for curriculum design. To articulate this framework, the study used content-based instruction (CBI) to pave a…
The Skills Framework for the Information Age: Engaging Stakeholders in Curriculum Design
ERIC Educational Resources Information Center
von Konsky, Brian R.; Miller, Charlynn; Jones, Asheley
2016-01-01
This paper reports on a research project, examining the role of the Skills Framework for the Information Age (SFIA) in Information and Communications Technology (ICT) curriculum design and management. A goal was to investigate how SFIA informs a top-down approach to curriculum design, beginning with a set of skills that define a particular career…
ERIC Educational Resources Information Center
Manning, Patrick R.
2012-01-01
While the U.S. Bishops' Doctrinal Elements of a Curriculum Framework provides robust content guidelines for a national high school Religion curriculum, its successful implementation will depend largely on concurrent development of, and training in, pedagogy suited to Christian education. This paper directs educators to existing catechetical…
ERIC Educational Resources Information Center
Orbe, Joymie R.; Espinosa, Allen A.; Datukan, Janir T.
2018-01-01
As the Philippines moves towards implementing the K-12 curriculum, there has been a mismatch in teacher preparation in science. The present teacher education curriculum prepares science teachers to specialise in a specific field (e.g. integrated science, biology, chemistry, and physics). However, in the K-12 curriculum, they are required to teach…
Science as the Center of a Coherent, Integrated Early Childhood Curriculum
ERIC Educational Resources Information Center
French, Lucia
2004-01-01
This article describes the ScienceStart! Curriculum, an early childhood curriculum that takes coherently organized science content as the hub of an integrated approach. ScienceStart! maps onto the typical preschool day and may be adapted for use in full-day or half-day preschool programs. It is designed to support the important developmental…
A colorful approach to teaching optics
NASA Astrophysics Data System (ADS)
Magnani, Nancy J.; Donnelly, Judith
2014-09-01
In a traditional Connecticut elementary school setting, the classroom teacher will teach language arts, social studies and science curriculum. For 5th grade, the science curriculum includes learning about the senses and moon phases, in addition to the fundamentals of light. For art, music and physical education, students are sent to teachers who have certifications in teaching these subjects. In support of the science curriculum, we have traditionally provided workshops to enhance and supplement existing science curriculum. This method of instruction has become a routine. What if we invigorate the curriculum by using visual art to teach science? Will the students achieve a greater understanding of the principals of light? In this paper, we will explore the use of art to enhance the understanding of color and light phenomena.
African Indigenous science in higher education in Uganda
NASA Astrophysics Data System (ADS)
Akena Adyanga, Francis
This study examines African Indigenous Science (AIS) in higher education in Uganda. To achieve this, I use anticolonial theory and Indigenous knowledge discursive frameworks to situate the subjugation of Indigenous science from the education system within a colonial historical context. These theories allow for a critical examination of the intersection of power relations rooted in the politics of knowledge production, validation, and dissemination, and how this process has become a systemic and complex method of subjugating one knowledge system over the other. I also employ qualitative and autoethnographic research methodologies. Using a qualitative research method, I interviewed 10 students and 10 professors from two universities in Uganda. My research was guided by the following key questions: What is African Indigenous Science? What methodology would help us to indigenize science education in Uganda? How can we work with Indigenous knowledge and anticolonial theoretical discursive frameworks to understand and challenge the dominance of Eurocentric knowledge in mainstream education? My research findings revealed that AIS can be defined in multiple ways, in other words, there is no universal definition of AIS. However, there were some common elements that my participants talked about such as: (a) knowledge by Indigenous communities developed over a long period of time through a trial and error approach to respond to the social, economic and political challenges of their society. The science practices are generational and synergistic with other disciplines such as history, spirituality, sociology, anthropology, geography, and trade among others, (b) a cumulative practice of the use, interactions with and of biotic and abiotic organism in everyday life for the continued existence of a community in its' totality. The research findings also indicate that Indigenous science is largely lacking from Uganda's education curriculum because of the influence of colonial and post-colonial education. Graduates of the colonial education system who are manning education in the country have themselves come to disdain Indigenous knowledge. The major findings from the study were: 1) participants' articulation of Indigenous science; 2) influence of organized religion on African Indigenous Science; 3) dominance of professors' foreign experiences in determining curriculum content; 4) protection of intellectual property rights for Indigenous science; and 5) collaborative research between Indigenous and Western scholars to enhance attitude change toward Indigenous science.
de Matas, Marcel; De Beer, Thomas; Folestad, Staffan; Ketolainen, Jarkko; Lindén, Hans; Lopes, João Almeida; Oostra, Wim; Weimer, Marco; Öhrngren, Per; Rantanen, Jukka
2016-07-30
The regulatory and technical landscape of the pharmaceutical field is rapidly evolving from one focused predominantly on development of small molecules, using well established manufacturing technologies towards an environment in which biologicals and complex modalities are being developed using advanced science and technology coupled with the application of modern Quality by Design (QbD) principles. In order that Europe keeps pace with these changes and sustains its position as major player in the development and commercialization of medicines, it is essential that measures are put in place to maintain a highly skilled workforce. A number of challenges however exist to equipping academic, industrial and health agency staff with the requisite knowledge, skills and experience to develop the next generation of medicines. In this regard, the EUFEPS QbD and PAT Sciences Network has proposed a structured framework for education, training and continued professional development, which comprises a number of pillars covering the fundamental principles of modern pharmaceutical development including the underpinning aspects of science, engineering and technology innovation. The framework is not prescriptive and is not aimed at describing specific course content in detail. It should however be used as a point of reference for those institutions delivering pharmaceutical based educational courses, to ensure that the necessary skills, knowledge and experience for successful pharmaceutical development are maintained. A positive start has been made and a number of examples of formal higher education courses and short training programs containing elements of this framework have been described. The ultimate vision for this framework however, is to see widespread adoption and proliferation of this curriculum with it forming the backbone of QbD and PAT science based skills development. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Science and Children, 1981
1981-01-01
Reviews four science curriculum materials. "Human Issues in Science" presents social consequences of science and technological developments. "Experiences in Science" contains duplicating masters to supplement basic science programs. "Outdoor Areas as Learning Laboratories" includes activities for local environments. "The Science Cookbook" uses…
NASA Astrophysics Data System (ADS)
Blatt, Erica N.
In recent years, the Environmental Science course has become increasingly integrated into the high school curriculum as a component of the core curriculum, an AP course, or as an elective (Edelson, 2007); however, little research has been conducted to evaluate the course's effectiveness in developing students' understanding of their relationship with the environment (Zelezny, 1999). Therefore, this ethnographic study at a public high school in the Northeastern United States focuses on the teacher's goals for the Environmental Science course, how students respond to the enactment of these objectives during activities in the classroom, and how the class impacts students' views of their relationship with the environment and their pro-environmental behavior. A sociocultural approach is utilized to explore how students' environmental identities, their interactions with the course content, as well as their social interactions affect their experiences in the Environmental Science classroom. The study's conceptual framework is based upon Kempton and Holland's (2003) stages of environmental identity development, as well as symbolic interactionist theories of emotion. The participants in this study are an Environmental Science teacher and the 10-12th grade students (N=17) in her semester-long elective, "Environmental Science." The researcher collected data for a period of six months during the spring semester of 2009, attending class on a daily basis. Data was collected through participant observation, videotaping, interviews, cogenerative dialogues, and various surveys. The objectives for the Environmental Science course explored in this research include the role of science content knowledge and critical thinking as students are exposed to new environmental information; developing students' emotional connection with environmental issues; influencing students' environmental behavior; and empowering students to feel that they can make a difference through their own actions. Through presentation of the students' reactions to their experiences in the classroom, the results of this study provide new information for educators working with students to help them define their relationship with the environment by illuminating the elements of various activities that are effective for individual students, as well as factors that may be prohibitive. Findings therefore provide insight for science teachers designing and incorporating environmental activities into the high school curriculum.
Vers une Theorie de l'Education/Apprentissage
NASA Astrophysics Data System (ADS)
Goulet, Georges
1986-12-01
The author has attempted to clarify the idea of the curriculum as a distinct area of knowledge which is characteristic of educational science within the wider framework of educational sciences. Inspired by the method of a comparative analysis which was developed by George Z. Bereday, the author analyzes the data which are used referring to a typology of definitions based on the Aristotelian idea of causality. In the article a meta-theory of the curriculum is proposed and defined based on the consensus discovered among the authors whose views are analyzed. The present curriculum is examined with respect to its original meaning as proposed by John Dewey in order to establish the process of organized and intentional education/learning. However, the plan or programme of education/learning which is often identified as the notion of the curriculum, is presented here as being only one of the parametres determining the nature of the whole process of organized education/learning. The convergence of the remaining four parametres constitutes a special process of education/learning realized to suit each learner as the beneficiary agent (learner), the initiating agent (intervener), the physical and social environment as well as the knowledge or the culture to be transmitted. The theory goes on to deal with the paradigmatic nature of the process and the four levels of intentionality characterizing the planning and actualization of each process. The theory presents the curriculum as if it were a phenomenon which functions like an open system, i.e. where the total or the `Gestalt' constitutes the realized learning by each learner, referring to the laws of equifinality and homeostasis. The article closes by presenting a spiral model which seeks to represent the web of real and perceptual influences which contribute to the learning aimed at by the whole institution of education/learning.
An Undergraduate Computer Science Curriculum for the Hearing Impaired.
ERIC Educational Resources Information Center
Perkins, A. Louise
1995-01-01
Presents an example section from a computer-science-integrated curriculum that was originally based on the Association of Computing Machinery (ACM) 1978 curriculum. The curriculum was designed to allow both instructors and students to move away from teaching and learning facts. (DDR)
Hutchison, Jacqueline Sarah
2015-01-01
This paper was initially written for a European Academy of Caring Science workshop and aimed to provide clarity and direction about Caring Science by offering some ideas emerging from the philosophy, themes, and projects of EACS. An underpinning concept for the work of the Academy is the lifeworld. The focus of the workshop was to explore the lifeworld of the patient, student, and carer. The intention was to promote discussion around the need to provide alternative ways to conceptualise caring relevant knowledge, naming phenomena and practices central to caring sciences, and the educational curriculum and its adequacy for caring science. This paper seeks to identify concepts and approaches to understanding oppression, power, and justice which enable nurses to challenge the structures in health care environments which discriminate or disempower clients. Anti-oppressive practice theory and reflexive lifeworld-led approaches to care enable nurses to be critical of their practice. A framework for teaching social justice in health care is offered to augment teaching students to challenge oppressive practice and to assist nurses to reflect and develop conceptual models to guide practices which are central to promoting caring interactions. PMID:25838944
Hutchison, Jacqueline Sarah
2015-01-01
This paper was initially written for a European Academy of Caring Science workshop and aimed to provide clarity and direction about Caring Science by offering some ideas emerging from the philosophy, themes, and projects of EACS. An underpinning concept for the work of the Academy is the lifeworld. The focus of the workshop was to explore the lifeworld of the patient, student, and carer. The intention was to promote discussion around the need to provide alternative ways to conceptualise caring relevant knowledge, naming phenomena and practices central to caring sciences, and the educational curriculum and its adequacy for caring science. This paper seeks to identify concepts and approaches to understanding oppression, power, and justice which enable nurses to challenge the structures in health care environments which discriminate or disempower clients. Anti-oppressive practice theory and reflexive lifeworld-led approaches to care enable nurses to be critical of their practice. A framework for teaching social justice in health care is offered to augment teaching students to challenge oppressive practice and to assist nurses to reflect and develop conceptual models to guide practices which are central to promoting caring interactions.
Performance-based classrooms: A case study of two elementary teachers of mathematics and science
NASA Astrophysics Data System (ADS)
Jones, Kenneth W.
This case study depicts how two elementary teachers develop classrooms devoted to performance-based instruction in mathematics and science. The purpose is to develop empirical evidence of classroom practices that leads to a conceptual framework about the nature of performance-based instruction. Performance-based assessment and instruction are defined from the literature to entail involving students in tasks that are complex and engaging, requiring them to apply knowledge and skills in authentic contexts. In elementary mathematics and science, such an approach emphasizes problem solving, exploration, inquiry, and reasoning. The body of the work examines teacher beliefs, curricular orientations, instructional strategies, assessment approaches, management and organizational skills, and interpersonal relationships. The focus throughout is on those aspects that foster student performance in elementary mathematics and science. The resulting framework describes five characteristics that contribute to performance-based classrooms: a caring classroom community, a connectionist learning theory, a thinking and doing curriculum, diverse opportunities for learning, and ongoing assessment, feedback, and adjustment. The conclusion analyzes factors external to the classroom that support or constrain the development of performance-based classrooms and discusses the implications for educational policy and further research.
NASA Astrophysics Data System (ADS)
Marshall, R. H.; Gabrys, R.
2016-12-01
NASA Goddard Space Flight Center has developed a systemic educator professional development model for the integration of NASA climate change resources into the K-12 classroom. The desired outcome of this model is to prepare teachers in STEM disciplines to be globally engaged and knowledgeable of current climate change research and its potential for content relevancy alignment to standard-based curriculum. The application and mapping of the model is based on the state education needs assessment, alignment to the Next Generation Science Standards (NGSS), and implementation framework developed by the consortium of district superintendents and their science supervisors. In this presentation, we will demonstrate best practices for extending the concept of inquiry-based and project-based learning through the integration of current NASA climate change research into curriculum unit lessons. This model includes a significant teacher development component focused on capacity development for teacher instruction and pedagogy aimed at aligning NASA climate change research to related NGSS student performance expectations and subsequent Crosscutting Concepts, Science and Engineering Practices, and Disciplinary Core Ideas, a need that was presented by the district steering committee as critical for ensuring sustainability and high-impact in the classroom. This model offers a collaborative and inclusive learning community that connects classroom teachers to NASA climate change researchers via an ongoing consultant/mentoring approach. As a result of the first year of implementation of this model, Maryland teachers are implementing NGSS unit lessons that guide students in open-ended research based on current NASA climate change research.
A Historical Analysis of the Relationship of Faith and Science and its Significance within Education
NASA Astrophysics Data System (ADS)
Yegge, John G.
Science curriculum and pedagogy are at the center of a centuries-long debate concerning the appropriate relationship of faith and science. The difficulties that science educators face seem to be based in misinformation about the historical roots of this conflict. To address that conflict, the goals of this research were to separate myth from reality and to provide a necessary context to the current tensions that are disrupting science pedagogy and curriculum content within American public schools. Working within a theoretical framework of historical literacy, this qualitative, historical analysis was a comprehensive examination of the relationship of faith and science from ancient times through the Renascence to the emergence and development of Darwinism. The historical approach methodology was utilized as a means to document the systematic examination of past events, in order to illuminate and interpret the meaning of those events. The historical record revealed that science and religion are not necessarily incompatible and that the early Christian religion provided a fertile environment in which modern science could emerge. Also noted were many instances where the record was inconsistent with what educators have commonly taught as historical fact. Finally, the complex sources of tension between modern fundamentalist Christianity and Darwinism, which has appeared as a flashpoint in public discourse within science education, were examined in depth. Based on this analysis, the study includes recommendations for educators in their approach to addressing these challenges and teaching science. This analysis can produce positive social change for educators and their students, as this information is advanced as a means to enhance historical literacy among educators and their students.
ERIC Educational Resources Information Center
Mansour, Nasser
2010-01-01
The failure of much curriculum innovation has been attributed to the neglect by innovators of teachers' perceptions. The purpose of this study was to investigate inservice science teachers views of integrating Science, Technology and Society (STS) issues into the science curriculum and identify the factors that influence their decisions concerning…
ERIC Educational Resources Information Center
Zangori, Laura; Forbes, Cory T.; Biggers, Mandy
2013-01-01
While research has shown that elementary (K-5) students are capable of engaging in the scientific practice of explanation construction, commonly-used elementary science curriculum materials may not always afford them opportunities to do so. As a result, elementary teachers must often adapt their science curriculum materials to better support…
ERIC Educational Resources Information Center
Price, Jeremy F.; McNeill, Katherine L.
2013-01-01
As knowledge of and familiarity with science becomes an increasingly important aspect of contemporary life and citizenship, efforts have been made to make the science curriculum a “lived” curriculum (Hurd, 2000), one that reaches out to the lives, communities, and experiences of students. In this research around a high school urban ecology…
Infusing Quantitative Approaches throughout the Biological Sciences Curriculum
ERIC Educational Resources Information Center
Thompson, Katerina V.; Cooke, Todd J.; Fagan, William F.; Gulick, Denny; Levy, Doron; Nelson, Kären C.; Redish, Edward F.; Smith, Robert F.; Presson, Joelle
2013-01-01
A major curriculum redesign effort at the University of Maryland is infusing all levels of our undergraduate biological sciences curriculum with increased emphasis on interdisciplinary connections and quantitative approaches. The curriculum development efforts have largely been guided by recommendations in the National Research Council's "Bio…
Traicoff, Denise A.; Suarez-Rangel, Gloria; Espinosa-Wilkins, Yescenia; Lopez, Augusto; Diaz, Anaite; Caceres, Victor
2017-01-01
Field Epidemiology Training Programs (FETPs) are recognized worldwide as an effective means to strengthen countries’ capacity in epidemiology, surveillance, and outbreak response. FETPs are field-based, with minimum classroom time and maximum time in the field, providing public health services while participants achieve competency. The Central America FETP (CAFETP) uses a three-level pyramid model: basic, intermediate, and advanced. In 2006, a multidisciplinary team used a methodical process based on adult learning practices to construct a competency-based curriculum for the CAFETP. The curriculum was designed based on the tasks related to disease surveillance and field epidemiology that public health officers would conduct at multiple levels in the system. The team used a design process that engaged subject matter experts and considered the unique perspective of each country. The designers worked backwards from the competencies to define field activities, evaluation methods, and classroom components. The 2006 pyramid curriculum has been accredited for a master’s of science in field epidemiology by the Universidad del Valle de Guatemala and has been adapted by programs around the world. The team found the time and effort spent to familiarize subject matter experts with key adult learning principles was worthwhile because it provided a common framework to approach curriculum design. Early results of the redesigned curriculum indicate that the CAFETP supports consistent quality while allowing for specific country needs. PMID:28702503
ERIC Educational Resources Information Center
Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.
This document, which is intended for use by community and junior colleges throughout Mississippi, contains curriculum frameworks for the course sequences in the banking and finance technology program. Presented in the introduction are a program description and suggested course sequence. Section I is a curriculum guide consisting of outlines for…
ERIC Educational Resources Information Center
Lotz-Sisikta, Heila; Schudel, Ingrid
2007-01-01
This article examines the practical adequacy of the recent defining of a normative framework for the South African National Curriculum Statement that focuses on the relationship between human rights, social justice and a healthy environment. This politically framed and socially critical normative framework has developed in response to…
Curriculum and Course Materials for a Forensic DNA Biology Course
ERIC Educational Resources Information Center
Elkins, Kelly M.
2014-01-01
The Forensic Science Education Programs Accreditation Commission (FEPAC) requires accredited programs offer a "coherent curriculum" to ensure each student gains a "thorough grounding of the natural…sciences." Part of this curriculum includes completion of a minimum of 15 semester-hours forensic science coursework, nine of which…
Life Science Curriculum Guide. Bulletin 1614.
ERIC Educational Resources Information Center
Louisiana State Dept. of Education, Baton Rouge. Div. of Academic Programs.
This curriculum guide, developed to establish statewide curriculum standards for the Louisiana Competency-based Education Program, contains the minimum competencies and process skills that should be included in a life science course. It consists of: (1) a rationale for an effective science program; (2) a list and description of four major goals of…
Teacher Self-Efficacy during the Implementation of a Problem-Based Science Curriculum
ERIC Educational Resources Information Center
Hodges, Charles B.; Gale, Jessica; Meng, Alicia
2016-01-01
This study was conducted to investigate eighth-grade science teachers' self-efficacy during the implementation of a new, problem-based science curriculum. The curriculum included applications of LEGO® robotics, a new technology for these teachers. Teachers' responded to structured journaling activities designed to collect information about their…
NASA Astrophysics Data System (ADS)
Bonner, Portia Selene
2001-07-01
Science education reform is one of the focal points of restructuring the educational system in the United States. However, research indicates a slow change in progression towards science literacy among secondary students. One of the factors contributing to slow change is how teachers implement the curriculum in the classroom. Three constructs are believed to be influential in curriculum implementation: educational beliefs, pedagogical knowledge and perception of the curriculum. Earlier research suggests that there is a strong correlation between teachers' educational beliefs and instructional practices. These beliefs can be predictors of preferred strategies employed in the classroom. Secondly, teachers' pedagogical knowledge, that is the ability to apply theory and appropriate strategies associated with implementing and evaluating a curriculum, contributes to implementation. Thirdly, perception or how the curriculum itself is perceived also effects implementation. Each of these constructs has been examined independently, but never the interplay of the three. The purpose of this qualitative study was to examine the interplay of teachers' educational beliefs, pedagogical content knowledge and perceptions of a science curriculum with respect to how these influence curriculum implementation. This was accomplished by investigating the emerging themes that evolved from classroom observations, transcripts from interview and supplementary data. Five high school biology teachers in an urban school system were observed for ten months for correspondence of teaching strategies to the curriculum. Teachers were interviewed formally and informally about their perceptions of science teaching, learning and the curriculum. Supplementary material such as lesson plans, course syllabus and notes from classroom observations were collected and analyzed. Data were transcribed and analyzed for recurring themes using a thematic matrix. A theoretical model was developed from the emerging themes and sub-themes that attempts to explain how teachers begin with an intended curriculum but digress to the actual curriculum. The results of this study were consistent with previous research on teachers' beliefs and pedagogy but also revealed a new model to explain the interaction of the three constructs. Each instructor held individual beliefs about science, science teaching and pedagogy. However, there was some commonality with teachers' beliefs, pedagogy and perceptions that impacted the implementation of the curriculum. It is the interplay of teachers' educational beliefs, pedagogical content knowledge and perceptions of the curriculum that determines what is taught and instructional strategies used to teach a concept.
Earth and Life Science: Eighth Grade. Curriculum Guide.
ERIC Educational Resources Information Center
Harlandale Independent School District, San Antonio, TX. Career Education Center.
The guide is arranged in vertical columns relating curriculum concepts in earth science to curriculum performance objectives, career concepts and career performance objectives, suggested teaching methods, and resource materials. The course for eighth graders attempts to place the curriculum concepts in order of increasing difficulty. Occupational…
Tsutsumi, Akizumi
2015-01-01
Behavioral science and behavioral medicine have not been systematically taught to Japanese undergraduate medical students. A working group under the auspices of Japanese Society of Behavioral Medicine developed an outcome-oriented curriculum of behavioral science/behavioral medicine through three processes: identifying the curriculum contents, holding a joint symposium with related societies, and defining outcomes and proposing a learning module. The behavioral science/behavioral medicine core curriculum consists of 11 units of lectures and four units of practical study. The working group plans to improve the current core curriculum by devising formative assessment methods so that students can learn and acquire attitude as well as the skills and knowledge necessary for student-centered clinical practice.
Science Curriculum Guide, Level 3.
ERIC Educational Resources Information Center
Newark School District, DE.
The third of four levels in a K-12 science curriculum is outlined. In Level 3 (grades 6-8), science areas include life science, earth science, and physical science (physics and chemistry). Conveniently listed are page locations for educational and instructional objectives, cross-referenced to science area (i.e., life science, animals, genetics)…
NASA Astrophysics Data System (ADS)
Schuster, D. A.; Thomas, C. W.; Smith, J. S.; Wood, E. J.; Filippelli, G. M.
2007-12-01
The importance of K-12 educational programs and resources that seek to share the science of climate change has recently come into focus. During the fall 2006 AGU meeting, we presented the conceptual framework used to guide both the curriculum and year-one programs of Students as Mentors and Owners of Geoscience and Environmental Education: The Global Warming Road Show. Currently this dynamic, three-phase, tiered mentoring program selects and empowers a diverse population of 11th and 12th grade students from a large urban high school in the Midwest to teach a curriculum on climate change to 7th graders from a local feeder school. In December 2007 we will complete year-one of the program and will present an overview of 1) students' conceptual representations of climate change, 2) the most recent curriculum and programs, and 3) the ongoing program evaluation. We will synthesize these three areas and reflect on how to improve upon year-two of both the curriculum and the program. During various stages of the program, students have constructed concept maps, written in journals, created lesson plans, and participated in focus group interviews. These materials are being analyzed to provide a brief overview of high school students' initial conceptualizations of climate change. During the intensive 2007 summer workshop, these 11th and 12th grade students were supported by university scientists and science educators, secondary science teachers, and museum educators as they attempted to better understand climate change and as they reflected on how to effectively teach this topic to 7th graders. During the fall semester of 2007, the workshop graduates are scheduled to teach 25 to 30 7th graders a five week climate unit. The program will culminate with the 11th and 12th grade student-mentors working with the 7th graders to create a "Road Show," which will be presented to other 7th and 8th graders within the same school district. To ensure that this program is current, a team of scientists and science educators supplemented and further developed a well known and tested 15-year-old curriculum (Great Explorations in Math and Science, 1990) with recent data and analysis focusing on key concepts of climate change. The updated curriculum was structured using two driving questions: - How do we know the earth has experienced climate change in the past, including the ice ages and the age of the dinosaurs? - How do we know that humans have an impact on climate? Science educators and scientists also worked together to create templates that prompted the 11th and 12th grade students to first reflect on their understandings of climate change and then on how they would teach their younger peers. As students work with experiments, data sets, and news-media articles, they are also prompted to reflect on discrepancies between primary science sources and secondary media sources (Drake and Nelson, 2005). An evaluation team observed the summer workshops, administered surveys, reviewed the adapted curriculum, and participated in planning sessions. The evaluators are in the process of analyzing these multiple indicators to examine the extent to which the program aligns with its stated goals. The initial formative evaluation findings suggest that students were active participants in the workshop and that they enjoyed their experience. Areas of year-two development include improved communication and collaboration between university and secondary school units.
NASA Astrophysics Data System (ADS)
Thorolfsson, Meyvant; Finnbogason, Gunnar E.; Macdonald, Allyson
2012-11-01
In recent decades, a consensus has emerged among educators and scientists that all compulsory school students need good science education. The debate about its purpose and nature as a school subject in an emerging information society has not been as conclusive. To further understand this, it helps to examine how the science curriculum has transformed and what forces have shaped it as a core curricular area over time. This article sheds light on the transformation of the science curriculum for compulsory schools in Iceland in force from 1960 to 2010. Using criteria based on curriculum ideologies regarding the function of learners, instructors and subject matter in the learning process and the orientation of content and product versus process and development, it offers findings from content analysis of the intended science curriculum. The official curriculum was studied and conceptualised as it has evolved over time. The curriculum developers appear to have been striving for a compromise between conflicting views, resulting in what the authors of this article conceive as a 'kaleidoscopic quilt' of ideas over the period studied.
ERIC Educational Resources Information Center
Taylor, Joseph A.; Getty, Stephen R.; Kowalski, Susan M.; Wilson, Christopher D.; Carlson, Janet; Van Scotter, Pamela
2015-01-01
This study examined the efficacy of a curriculum-based intervention for high school science students. Specifically, the intervention was two years of research-based, multidisciplinary curriculum materials for science supported by comprehensive professional development for teachers that focused on those materials. A modest positive effect was…
An overview of conceptual understanding in science education curriculum in Indonesia
NASA Astrophysics Data System (ADS)
Widiyatmoko, A.; Shimizu, K.
2018-03-01
The purpose of this article is to discuss the term of “conceptual understanding” in science education curriculum in Indonesia. The implementation of 2013 Curriculum focuses on the acquisition of contextual knowledge in respective areas and environments. The curriculum seeks to develop students' evaluation skills in three areas: attitude, technical skills, and scientific knowledge. It is based on two layers of competencies: core and basic competencies. The core competencies in the curriculum 2013 represent the ability level to achieve the gradute competency standards of a students at each grade level. There are four mandatory core competencies for all educational levels and all subjects including science, which are spiritual, social, knowledge and skills competencies. In terms of knowledge competencies, conceptual understanding is an inseparable part of science concept since conceptual understanding is one of the basic competencies in science learning. This competency is a part of science graduation standard indicated in MoEC article number 20 in 2016. Therefore, conceptual understanding is needed by students for learning science successfully.
History of Science in the Physics Curriculum: A Directed Content Analysis of Historical Sources
NASA Astrophysics Data System (ADS)
Seker, Hayati; Guney, Burcu G.
2012-05-01
Although history of science is a potential resource for instructional materials, teachers do not have a tendency to use historical materials in their lessons. Studies showed that instructional materials should be adaptable and consistent with curriculum. This study purports to examine the alignment between history of science and the curriculum in the light of the facilitator model on the use of history of science in science teaching, and to expose possible difficulties in preparing historical materials. For this purpose, qualitative content analysis method was employed. Codes and themes were defined beforehand, with respect to levels and their sublevels of the model. The analysis revealed several problems with the alignment of historical sources for the physics curriculum: limited information about scientists' personal lives, the difficulty of linking with content knowledge, the lack of emphasis on scientific process in the physics curriculum, differences between chronology and sequence of topics, the lack of information about scientists' reasoning. Based on the findings of the analysis, it would be difficult to use original historical sources; educators were needed to simplify historical knowledge within a pedagogical perspective. There is a need for historical sources, like Harvard Case Histories in Experimental Science, since appropriate historical information to the curriculum objectives can only be obtained by simplifying complex information at the origin. The curriculum should leave opportunities for educators interested in history of science, even historical sources provides legitimate amount of information for every concepts in the curriculum.
ERIC Educational Resources Information Center
Ballinger, Jack T.; Wolf, Lawrence J.
This study guide is part of an interdisciplinary program of studies entitled the Science and Engineering Technician (SET) Curriculum. This curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology with the objective of training technicians in the use of electronic…
Interest-Based Curriculum for House Care Services: Science.
ERIC Educational Resources Information Center
Natchitoches Parish School Board, LA.
The interest-based curriculum materials are designed to correlate the subjects of English, math, science, and home economics and infuse academic skills into the world of work. The House Care Science curriculum guide is divided into five units: (1) measurement, (2) household chemistry, (3) household electricity, (4) household machines, and (5)…
Science 25. Curriculum Guide. Revised.
ERIC Educational Resources Information Center
Northwest Territories Dept. of Education, Yellowknife.
This science curriculum is an activity-oriented program in which an attempt has been made to provide sufficient information for non-science specialists to enable them to offer an effective course at the grades 10 and 11 levels. This curriculum offers a solution to the unique needs of life in the Canadian Northwest Territories. The role of…
MICHIGAN SCIENCE CURRICULUM COMMITTEE JUNIOR HIGH SCHOOL PROJECT. (TITLE SUPPLIED).
ERIC Educational Resources Information Center
VAN DEVENTER, W.C.
REPORTED ARE THE RESULTS OF A CURRICULUM RESEARCH PROJECT OF THE MICHIGAN SCIENCE CURRICULUM COMMITTEE JUNIOR HIGH SCHOOL PROJECT FOR USE IN TEACHING JUNIOR HIGH SCHOOL UNIFIED SCIENCE. THE COMMITTEE USED PREVIOUS RESEARCH DATA, PARTICULARLY IN THE AREA OF INSTRUCTION AND INQUIRY TRAINING, TO DEVELOP 13 UNITS INCLUDING 55 OPEN-ENDED LABORATORY…
Improving Student Attitudes about Learning Science and Student Scientific Reasoning Skills
ERIC Educational Resources Information Center
Duncan, Douglas K.; Arthurs, Leilani
2012-01-01
Student attitudes about learning science and student ideas about the nature of science were compared at the end of two astronomy courses taught in Fall 2007, a course with a traditional astronomy curriculum and a transformed course, whose traditional astronomy curriculum was supplemented by an embedded curriculum that explicitly addressed the…
ERIC Educational Resources Information Center
Wahlstrom, Ninni
2014-01-01
In this article, the focus is on exploring the perspective of equity in curriculum. From a background of understanding curriculum as embedded in wider transnational policy movements, in this article the author suggests a framework for exploring the trajectories between equity policy and different types of curricula with implications for what…
Everly, George S; Barnett, Daniel J; Links, Jonathan M
2012-01-01
There appears to be virtual universal endorsement of the need for and value of acute "psychological first aid" (PFA) in the wake of trauma and disasters. In this paper, we describe the development of the curriculum for The Johns Hopkins RAPID-PFA model of psychological first aid. We employed an adaptation of the basic framework for the development of a clinical science as recommended by Millon which entailed: historical review, theoretical development, and content validation. The process of content validation of the RAPID-PFA curriculum entailed the assessment of attitudes (confidence in the application of PFA interventions, preparedness in the application of PFA); knowledge related to the application of immediate mental health interventions; and behavior (the ability to recognize clinical markers in the field as assessed via a videotape recognition exercise). Results of the content validation phase suggest the six-hour RAPID-PFA curriculum, initially based upon structural modeling analysis, can improve confidence in the application of PFA interventions, preparedness in the application of PFA, knowledge related to the application of immediate mental health interventions, and the ability to recognize clinical markers in the field as assessed via a videotape recognition exercise.
Did We Have Science before 1988?
ERIC Educational Resources Information Center
Peacock, Alan; Dunne, Mick
2014-01-01
In this "Primary Science" interview, science educators Alan Peacock and Mick Dunne reflect on their own experiences of what science was like in England before a National Curriculum was introduced. Among the topics covered are: earliest memories of science in school, teaching science before 1988 (pre-science curriculum for primary…
Hollinshead, Jayne; Stirling, Linda
2014-07-01
This paper describes the challenges faced by a trust in England following the introduction of the Health Visitor Implementation Plan. Two practice education facilitators designed a conceptual curriculum framework to ensure quality student health visitor education in practice. This curriculum complimented the excellent academic course already delivered by the University. A justification is provided for the design of the curriculum framework, including a rationale for the introduction of specific training sessions. Student and practice teacher feedback demonstrate the success of the introduction of this programme to ensure the development of student health visitors fit for practice. The conclusion places emphasis on the importance of continuous evaluation of the training programme to meet the needs of the students and the service.
A Planning Framework for Crafting the Required-Curriculum Phase of an MBA Program
ERIC Educational Resources Information Center
Haskins, Mark E.
2005-01-01
This article introduces a planning framework for designing that part of an MBA program during which students take the bulk, if not all, of their required courses. The framework highlights three student venues that can be jointly leveraged for enhanced student learning. Those venues are the required curriculum, students' affinity groups, and the…
ERIC Educational Resources Information Center
Feng, Annie Xuemei; Van Tassel-Baska, Joyce; Quek, Chwee; Bai, Wenyu; O'Neill, Barbara
2005-01-01
This study examines the effects over time of implementing the William and Mary language arts and science curriculum for gifted learners designed around the Integrated Curriculum Model (ICM) in one suburban school district. It also analyzes stakeholders' perceptions of the effectiveness of the curriculum. Findings suggest that gifted student…
NASA Astrophysics Data System (ADS)
Looi, Chee-Kit; Sun, Daner; Kim, Mi Song; Wen, Yun
2018-01-01
Background and purpose: To date, there has been little research on the Teacher Professional Development (TPD) for delivering a mobile technology-supported science curriculum. To address this, a TPD model for a science curriculum supported by mobile technology was developed and evaluated in this paper. The study reported focuses on the establishment of the TPD model and exploration of its impact on teacher behaviors in the curriculum implementation.
The Study of the Atmosphere in the Science Curriculum.
ERIC Educational Resources Information Center
Fisher, Brian
1998-01-01
Seeks to justify the inclusion of meteorology within the science curriculum. Reflects upon the nature of science and some current issues in science education, and examines the reality of including meteorology within worldwide science curricula. Contains 37 references. (Author/DDR)
Georgia science curriculum alignment and accountability: A blueprint for student success
NASA Astrophysics Data System (ADS)
Reining-Gray, Kimberly M.
Current trends and legislation in education indicate an increased dependency on standardized test results as a measure for learner success. This study analyzed test data in an effort to assess the impact of curriculum alignment on learner success as well as teacher perceptions of the changes in classroom instruction due to curriculum alignment. Qualitative and quantitative design methods were used to determine the impact of science curriculum alignment in grades 9-12. To determine the impact of science curriculum alignment from the Quality Core Curriculum (QCC) to the Georgia Performance Standards (GPS) test data and teacher opinion surveys from one Georgia School system were examined. Standardized test scores before and after curriculum alignment were analyzed as well as teacher perception survey data regarding the impact of curriculum change. A quantitative teacher perception survey was administered to science teachers in the school system to identify significant changes in teacher perceptions or teaching strategies following curriculum realignment. Responses to the survey were assigned Likert scale values for analysis purposes. Selected teachers were also interviewed using panel-approved questions to further determine teacher opinions of curriculum realignment and the impact on student success and teaching strategies. Results of this study indicate significant changes related to curriculum alignment. Teachers reported a positive change in teaching strategies and instructional delivery as a result of curriculum alignment and implementation. Student scores also showed improvement, but more research is recommended in this area.
ERIC Educational Resources Information Center
Appel, Gary; And Others
This guide for teaching science is Book Two in Project Life Lab's (Santa Cruz, California) three-part curriculum for a garden-based science and nutrition program for grades 2-6. The curriculum is designed for use as an integrated program, but the books can be used independently. It is suggested that the use of student journals can greatly enhance…
What Are Critical Features of Science Curriculum Materials That Impact Student and Teacher Outcomes?
ERIC Educational Resources Information Center
Roblin, Natalie Pareja; Schunn, Christian; McKenney, Susan
2018-01-01
Large investments are made in curriculum materials with the goal of supporting science education reform. However, relatively little evidence is available about what features of curriculum materials really matter to impact student and teacher learning. To address this need, the current study examined curriculum features associated with student and…
ERIC Educational Resources Information Center
Teo, Tang Wee; Osborne, Margery
2012-01-01
In this paper, we present a microanalysis of a specialized STEM (science, technology, engineering, and mathematics) high school teacher's experience of self-initiated science inquiry curriculum reform. We examine the meanings of these two constructs: "inquiry curriculum" and "curriculum change" through the process lens of interactions, actions,…
The Study of Literacy Reinforcement of Science Teachers in Implementing 2013 Curriculum
NASA Astrophysics Data System (ADS)
Dewi, W. S.; Festiyed, F.; Hamdi, H.; Sari, S. Y.
2018-04-01
This research aims to study and collect data comprehensively, new and actual about science literacy to improve the ability of educators in implementing the 2013 Curriculum at Junior High School Padang Pariaman District. The specific benefit of this research is to give description and to know the problem of science literacy problem in interaction among teacher, curriculum, facilities and infrastructure, evaluation, learning technology and students. This study uses explorative in deep study approach, studying and collecting data comprehensively from the interaction of education process components (curriculum, educator, learner, facilities and infrastructure, learning media technology, and evaluation) that influence the science literacy. This research was conducted in the districts of Padang Pariaman consisting of 17 subdistricts and 84 junior high schools managed by the government and private. The sample of this research is science teachers of Padang Pariaman District with sampling technique is stratified random sampling. The instrument used in this study is a questionnaire to the respondents. Research questionnaire data are processed by percentage techniques (quantitative). The results of this study explain that the understanding of science teachers in Padang Pariaman District towards the implementation of 2013 Curriculum is still lacking. The science teachers of Padang Pariaman District have not understood the scientific approach and the effectiveness of 2013 Curriculum in shaping the character of the students. To improve the understanding of the implementation of Curriculum 2013, it is necessary to strengthen the literacy toward science teachers at the Junior High School level in Padang Pariaman District.
ERIC Educational Resources Information Center
Ye, Lei
2013-01-01
This scale-up study investigated the impact of a teacher technology tool (Curriculum Customization Service, CCS), curriculum, and online resources on earth science teachers' attitudes, beliefs, and practices and on students' achievement and engagement with science learning. Participants included 73 teachers and over 2,000 ninth-grade students…
The Basic Science Curriculum in the 21st Century: What Needs to Be Changed?
ERIC Educational Resources Information Center
Garant, Philias R.
1986-01-01
The basic science curriculum in dental education could be improved by adopting a curriculum containing only two integrated required science courses about (1) the structure and function of the human body and (2) disease and reaction to disease in the human body. Elective graduate-level predoctoral courses would allow specialization. (MSE)
ERIC Educational Resources Information Center
Craig, Jerry; Stapleton, Jerry
This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculum. The SET Curriculum was developed for the purpose of training technicians in the use of electronic instruments and their applications. It integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology,…
Impact of the Science and Technology for Children Curriculum in the Oshkosh Area School District.
ERIC Educational Resources Information Center
Lattery, Mark Joseph; Lemberger, John; Herzog, Barbara
2002-01-01
Examines the instructional impact of National Science Resources Center's Science and Technology for Children curriculum in the Oshkosh Area School District. Results suggest that the adoption of this curriculum among experienced teachers in the district will provide little or no immediate gains on student achievement and potentially a slight…
Computer Science (CS) in the Compulsory Education Curriculum: Implications for Future Research
ERIC Educational Resources Information Center
Passey, Don
2017-01-01
The subject of computer science (CS) and computer science education (CSE) has relatively recently arisen as a subject for inclusion within the compulsory school curriculum. Up to this present time, a major focus of technologies in the school curriculum has in many countries been on applications of existing technologies into subject practice (both…
History of Science in the Physics Curriculum: A Directed Content Analysis of Historical Sources
ERIC Educational Resources Information Center
Seker, Hayati; Guney, Burcu G.
2012-01-01
Although history of science is a potential resource for instructional materials, teachers do not have a tendency to use historical materials in their lessons. Studies showed that instructional materials should be adaptable and consistent with curriculum. This study purports to examine the alignment between history of science and the curriculum in…
ERIC Educational Resources Information Center
Mannebach, Alfred J.; And Others
This guide is intended for use in teaching Connecticut's revised animal science curriculum at regional vocational agriculture centers. Like its predecessor, this curriculum includes exploratory (intended for grades 9 and 10) and specialized (intended for grades 11 and 12) animal science units and is based on the following major areas of…
ERIC Educational Resources Information Center
Baker-Doyle, Kira J.
2013-01-01
This article describes a study from the Linking Instructors Networks of Knowledge in Science Education project, which aims to examine the informal science curriculum support networks of teachers in a school-university curriculum reform partnership. We used social network analysis and qualitative methods to reveal characteristics of the informal…
ERIC Educational Resources Information Center
Gibson, Helen L.; Rea-Ramirez, Mary Anne
Most middle school science curriculum has been created to provide superficial treatment of the different subject areas (earth, life, and physical science), and in-depth coverage of very little. The Third International Mathematics and Science Study (TIMSS) criticism of the typical American school curriculum is that it is a "mile wide and an…
ERIC Educational Resources Information Center
Espin, Christine A.; Busch, Todd W.; Lembke, Erica S.; Hampton, David D.; Seo, Kyounghee; Zukowski, Beth A.
2013-01-01
The technical adequacy of curriculum-based measures in the form of short and simple vocabulary-matching probes to predict students' performance and progress in science at the secondary level was investigated. Participants were 198 seventh-grade students from 10 science classrooms. Curriculum-based measurements (CBM) were 5-min vocabulary-matching…
The Pursuit of Humanity: Curriculum Change in English School Science
ERIC Educational Resources Information Center
Donnelly, Jim; Ryder, Jim
2011-01-01
This paper is concerned with the recent history of science curriculum reform in England, though it traces these developments back to the mid-nineteenth century. It first reviews approaches to science in the curriculum until the mid-1960s, identifying the curricular settlement of the postwar years and the beginning of the so-called "swing from…
Linking Science and Statistics: Curriculum Expectations in Three Countries
ERIC Educational Resources Information Center
Watson, Jane M.
2017-01-01
This paper focuses on the curriculum links between statistics and science that teachers need to understand and apply in order to be effective teachers of the two fields of study. Meaningful statistics does not exist without context and science is the context for this paper. Although curriculum documents differ from country to country, this paper…
ERIC Educational Resources Information Center
Ballin, Amy; And Others
Designed for middle school science and social studies classes, this document is a curriculum on waste disposal. Mathematics and language skills also are incorporated into many of the activities. In the study of trash disposal, science students benefit from understanding the social issues related to the problem. Social studies students need…
The Implementation of the New Lower Secondary Science Curriculum in Three Schools in Rwanda
ERIC Educational Resources Information Center
Nsengimana, Théophile; Ozawa, Hiroaki; Chikamori, Kensuke
2014-01-01
In 2006, Rwanda began implementing an Outcomes Based Education (OBE) lower secondary science curriculum that emphasises a student-centred approach. The new curriculum was designed to transform Rwandan society from an agricultural to a knowledge-based economy, with special attention to science and technology education. Up until this point in time…
Electromagnetic Spectrum. 7th and 8th Grade Agriculture Science Curriculum. Teacher Materials.
ERIC Educational Resources Information Center
Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.
This curriculum guide, the second in a set of six, contains teacher and student materials for a unit on the electromagnetic spectrum prepared as part of a seventh- and eighth-grade agricultural science curriculum that is integrated with science instruction. The guide contains the state goals and sample learning objectives for each goal for…
46 CFR 310.59 - Courses of instruction.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Academy. Three major curriculums are offered: Nautical Science, for the preparation of deck officers... science courses prescribed by the Department of the Navy. All curriculums include general education... incorporating material from the major segments of the Academy curriculums. ...
Revisiting Curriculum Inquiry: The Role of Visual Representations
ERIC Educational Resources Information Center
Eilam, Billie; Ben-Peretz, Miriam
2010-01-01
How do visual representations (VRs) in curriculum materials influence theoretical curriculum frameworks? Suggesting that VRs' integration into curriculum materials affords a different lens for perceiving and understanding the curriculum domain, this study draws on a curricular perspective in relation to multi-representations in texts rather than…
Student Cognitive and Affective Development in the Context of Classroom-Level Curriculum Development
ERIC Educational Resources Information Center
Shawer, Saad Fathy; Gilmore, Deanna; Banks-Joseph, Susan Rae
2008-01-01
This qualitative study examined the impact of teacher curriculum approaches (curriculum-transmitter/curriculum-developer/curriculum-maker) on student cognitive change (reading, writing, speaking, and listening abilities) and their affective change (motivation and interests). This study's conceptual framework was grounded in teacher curriculum…
Integrated Medical Curriculum: Advantages and Disadvantages
Quintero, Gustavo A.; Vergel, John; Arredondo, Martha; Ariza, María-Cristina; Gómez, Paula; Pinzon-Barrios, Ana-Maria
2016-01-01
Most curricula for medical education have been integrated horizontally and vertically–-vertically between basic and clinical sciences. The Flexnerian curriculum has disappeared to permit integration between basic sciences and clinical sciences, which are taught throughout the curriculum. We have proposed a different form of integration where the horizontal axis represents the defined learning outcomes and the vertical axis represents the teaching of the sciences throughout the courses. We believe that a mere integration of basic and clinical sciences is not enough because it is necessary to emphasize the importance of humanism as well as health population sciences in medicine. It is necessary to integrate basic and clinical sciences, humanism, and health population in the vertical axis, not only in the early years but also throughout the curriculum, presupposing the use of active teaching methods based on problems or cases in small groups. PMID:29349303
ERIC Educational Resources Information Center
Gillen, Rose; And Others
1995-01-01
Presents six curriculum guides for elementary and secondary education. Subjects include interdisciplinary instruction, music, reading/language arts, science, and social studies. Each guide provides library media skills objectives, curriculum objectives, grade levels, resources, instructional roles, activity and procedures for completion, a…
NASA Technical Reports Server (NTRS)
Wilson, Eleanor
2002-01-01
The CHROME Honors Program was designed as a two-week residential program for 9th and 1Oth grade students participating in CHROME clubs. The curriculum focused on the health sciences with instruction from: (1) the science and health curriculum of the Dozoretz National Program for Minorities in Applied Sciences (DNIMAS) Program of Norfolk State University (NSU); (2) the humanities curriculum of the NSU Honors Program; (3) NASA-related curriculum in human physiology. An Advisory Committee was formed to work with the Project Coordinator in the design of the summer program.
NASA Astrophysics Data System (ADS)
Searchfield, Mary A.
In 2010 British Columbia's Ministry of Education started the process of redesigning the provincial school curriculum, Kindergarten to Grade 12. Mandatory implementation of the new curriculum was set for the 2016/17 school year for Grades K-9, and 2017/18 for Grades 10-12. With a concerted emphasis on personalized learning and through the frame of a Know-Do-Understand curriculum model, the new curriculum aims to meet the needs of today's learners, described as living in a technology-rich, fast-paced and ever-changing world, through a concept-based and competency-driven emphasis. This thesis is a critical analysis of the BC K-9 Science curriculum as written and published, looking specifically at how science is treated as a form of knowledge, its claimed presentation as a story, and on whether the intentions claimed by the designers are matched in the curriculum's final form.
NASA Astrophysics Data System (ADS)
McHugh, Luisa
Contemporary research has suggested that in order for students to compete globally in the 21st century workplace, pedagogy must shift to include the integration of science and mathematics, where teachers effectively incorporate the two disciplines seamlessly. Mathematics facilitates a deeper understanding of science concepts and has been linked to improved student perception of the integration of science and mathematics. Although there is adequate literature to substantiate students' positive responses to integration in terms of attitudes, there has been little empirical data to support significant academic improvement when both disciplines are taught in an integrated method. This research study, conducted at several school districts on Long Island and New York City, New York, examined teachers' attitudes toward integration and students' attitudes about, and achievement on assessments in, an integrated 8th grade science classroom compared to students in a non-integrated classroom. An examination of these parameters was conducted to analyze the impact of the sizeable investment of time and resources needed to teach an integrated curriculum effectively. These resources included substantial teacher training, planning time, collaboration with colleagues, and administration of student assessments. The findings suggest that students had positive outcomes associated with experiencing an integrated science and mathematics curriculum, though these were only weakly correlated with teacher confidence in implementing the integrated model successfully. The positive outcomes included the ability of students to understand scientific concepts within a concrete mathematical framework, improved confidence in applying mathematics to scientific ideas, and increased agreement with the usefulness of mathematics in interpreting science concepts. Implications of these research findings may be of benefit to educators and policymakers looking to adapt integrated curricula in order to improve the preparation of students to learn and achieve in a global society.
Student use of Web 2.0 tools to support argumentation in a high school science classroom
NASA Astrophysics Data System (ADS)
Weible, Jennifer L.
This ethnographic study is an investigation into how two classes of chemistry students (n=35) from a low-income high school with a one-to-one laptop initiative used Web 2.0 tools to support participation in the science practice of argumentation (i.e., sensemaking, articulating understandings, and persuading an audience) during a unit on alternative energy. The science curriculum utilized the Technology-Enhanced Inquiry Tools for Science Education as a pedagogical framework (Kim, Hannafin, & Bryan, 2007). Video recordings of the classroom work, small group discussions, and focus group interviews, documents, screen shots, wiki evidence, and student produced multi-media artifacts were the data analyzed for this study. Open and focused coding techniques, counts of social tags and wiki moves, and interpretive analyses were used to find patterns in the data. The study found that the tools of social bookmarking, wiki, and persuasive multimedia artifacts supported participation in argumentation. In addition, students utilized the affordances of the technologies in multiple ways to communicate, collaborate, manage the work of others, and efficiently complete their science project. This study also found that technologically enhanced science curriculum can bridge students' everyday and scientific understandings of making meaning, articulating understandings, and persuading others of their point of view. As a result, implications from this work include a set of design principles for science inquiry learning that utilize technology. This study suggests new consideration of analytical methodology that blends wiki data analytics and video data. It also suggests that utilizing technology as a bridging strategy serves two roles within classrooms: (a) deepening students' understanding of alternative energy science content and (b) supporting students as they learn to participate in the practices of argumentation.
NASA Astrophysics Data System (ADS)
Berry, Ayora
The purpose of this study was to investigate the effects of a curriculum design-based (CDB) professional development model on K-12 teachers' capacity to integrate engineering education in the classroom. This teacher professional development approach differs from other training programs where teachers learn how to use a standard curriculum and adopt it in their classrooms. In a CDB professional development model teachers actively design lessons, student resources, and assessments for their classroom instruction. In other science, technology, engineering and mathematics (STEM) disciplines, CDB professional development has been reported to (a) position teachers as architects of change, (b) provide a professional learning vehicle for educators to reflect on instructional practices and develop content knowledge, (c) inspire a sense of ownership in curriculum decision-making among teachers, and (d) use an instructional approach that is coherent with teachers' interests and professional goals. The CDB professional development program in this study used the Explore-Create-Share (ECS) framework as an instructional model to support teacher-led curriculum design and implementation. To evaluate the impact of the CDB professional development and associated ECS instructional model, three research studies were conducted. In each study, the participants completed a six-month CDB professional development program, the PTC STEM Certificate Program, that included sixty-two instructional contact hours. Participants learned about industry and education engineering concepts, tested engineering curricula, collaborated with K-12 educators and industry professionals, and developed project-based engineering curricula using the ECS framework. The first study evaluated the impact of the CDB professional development program on teachers' engineering knowledge, self-efficacy in designing engineering curriculum, and instructional practice in developing project-based engineering units. The study included twenty-six teachers and data was collected pre-, mid-, and post-program using teacher surveys and a curriculum analysis instrument. The second study evaluated teachers' perceptions of the ECS model as a curriculum authoring tool and the quality of the curriculum units they developed. The study included sixty-two participants and data was collected post-program using teacher surveys and a curriculum analysis instrument. The third study evaluated teachers' experiences implementing ECS units in the classroom with a focus on identifying the benefits, challenges and solutions associated with project-based engineering in the classroom. The study included thirty-one participants and data was collected using an open-ended survey instrument after teachers completed implementation of the ECS curriculum unit. Results of these three studies indicate that teachers can be prepared to integrate engineering in the classroom using a CDB professional development model. Teachers reported an increase in engineering content knowledge, improved their self-efficacy in curriculum planning, and developed high quality instructional units that were aligned to engineering design practices and STEM educational standards. The ECS instructional model was acknowledged as a valuable tool for developing and implementing engineering education in the classroom. Teachers reported that ECS curriculum design aligned with their teaching goals, provided a framework to integrate engineering with other subject-area concepts, and incorporated innovative teaching strategies. After implementing ECS units in the classroom, teachers reported that the ECS model engaged students in engineering design challenges that were situated in a real world context and required the application of interdisciplinary content knowledge and skills. Teachers also reported a number of challenges related to scheduling, content alignment, and access to resources. In the face of these obstacles, teachers presented a number of solutions that included optimization of one's teaching practice, being resource savvy, and adopting a growth mindset.
NASA Astrophysics Data System (ADS)
Eisenhart, Margaret
This article proposes that the organization of some college curriculum programs as well as some workplaces presents special and perhaps unnecessary obstacles to women who might pursue science or engineering. The article begins with a framework for thinking about connections between school and work in various fields. This section reveals important differences in the way college degree programs are organized and in their implications for the transition to work. Some programs, such as in physics, construct a "tight" link between school and work; others, such as in sociology, construct much looser links. The article proceeds by reviewing results of previous ethnographic research about women's actual experiences in college and work. This section suggests that during the period of transition from college to work, women face special cultural demands that interfere with their pursuit of degrees in tight programs. Joining the lessons from the two preceding sections, the argument is made that the tight organization of some college and workplace environments asks more of women than they can give and helps explain why women continue to be under represented in some fields. The argument has testable Implications for the design of curricularprogramsana'workplace environments that might attract more women (and perhaps more minorities and men) to science and engineering.
NASA Astrophysics Data System (ADS)
Jones, Carol L.
The number of computer-assisted education programs on the market is overwhelming science teachers all over the Michigan. Though the need is great, many teachers are reluctant to procure computer-assisted science education programs because they are unsure of the effectiveness of such programs. The Curriculum Alignment Toolbox (CAT) is a computer-based program, aligned to the Michigan Curriculum Framework's Benchmarks for Science Education and designed to supplement science instruction in Michigan middle schools. The purpose of this study was to evaluate the effectiveness of CAT in raising the standardized test scores of Michigan students. This study involved 419 students from one urban, one suburban and one rural middle school. Data on these students was collected from 4 sources: (1) the 8th grade Michigan Education Assessment Program (MEAP) test, (2) a 9 question, 5-point Likert-type scale student survey, (3) 4 open-response student survey questions and (4) classroom observations. Results of this study showed that the experimental group of 226 students who utilized the CAT program in addition to traditional instruction did significantly better on the Science MEAP test than the control group of 193 students who received only traditional instruction. The study also showed that the urban students from a "high needs" school seemed to benefit most from the program. Additionally, though both genders and all identified ethnic groups benefited from the program, males benefited more than females and whites, blacks and Asian/Pacific Islander students benefited more than Hispanic and multi-racial students. The CAT program's success helping raise the middle school MEAP scores may well be due to some of its components. CAT provided students with game-like experiences all based on the benchmarks required for science education and upon which the MEAP test is based. The program also provided visual and auditory stimulation as well as numerous references which students indicated they enjoyed. Additionally, as best-practice, the questioning in all the gaming within CAT did not allow a student to continue until he/she had given the correct answer, thus reinforcing the correct response.
NASA Astrophysics Data System (ADS)
Gauchat, Carrie
This study utilized both quantitative and qualitative methods in investigating how a novel science curriculum, geared towards the 21 st century student, affected skills and attitudes towards science for tenth grade students. The quantitative portion of the study was a quasi-experimental design since random groups were not possible. This portion of the study used a pretest/posttest design to measure any improvement in science skills, and a Likert scale survey to measure any improvements in students' attitudes. Statistical tests revealed no significant differences between students who received the novel curriculum versus those students who received a traditional curriculum. Both groups showed significant improvements in all skill areas. Qualitatively, the researcher used informal teacher interviews and student surveys to identify the most relevant and effective curriculum components for the 21st century student. The findings suggest that the task of creating a meaningful and relevant curriculum based on the necessary skills of this century is not an easy task. There is much more work to be done in this area, but according to the qualitative findings integrated design and student technology are promising.
Aron, David C
2017-04-01
The purpose of medical education is to produce competent and capable professional practitioners who can combine the art and science of medicine. Moreover, this process must prepare individuals to practise in a field in which knowledge is increasing and the contexts in which that knowledge is applied are changing in unpredictable ways. The 'basic sciences' are important in the training of a physician. The goal of basic science training is to learn it in a way that the material can be applied in practice. Much effort has been expended to integrate basic science and clinical training, while adding many other topics to the medical curriculum. This effort has been challenging. The aims of the paper are (1) to propose a unifying conceptual framework that facilitates knowledge integration among all levels of living systems from cell to society and (2) illustrate the organizing principles with two examples of the framework in action - cybernetic systems (with feedback) and distributed robustness. Literature related to hierarchical and holarchical frameworks was reviewed. An organizing framework derived from living systems theory and spanning the range from molecular biology to health systems management was developed. The application of cybernetic systems to three levels (regulation of pancreatic beta cell production of insulin, physician adjustment of medication for glycaemic control and development and action of performance measures for diabetes care) was illustrated. Similarly distributed robustness was illustrated by the DNA damage response system and principles underlying patient safety. Each of the illustrated organizing principles offers a means to facilitate the weaving of basic science and clinical medicine throughout the course of study. The use of such an approach may promote systems thinking, which is a core competency for effective and capable medical practice. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Harrison, Roger A; Gemmell, Isla; Reed, Katie
2015-01-01
(1) To quantify the effect of using different public health competence frameworks to audit the curriculum of an online distance learning MPH program, and (2) to measure variation in the outcomes of the audit depending on which competence framework is used. Retrospective audit. We compared the teaching content of an online distance learning MPH program against each competence listed in different public health competence frameworks relevant to an MPH. We then compared the number of competences covered in each module in the program's teaching curriculum and in the program overall, for each of the competence frameworks used in this audit. A comprehensive search of the literature identified two competence frameworks specific to MPH programs and two for public health professional/specialty training. The number of individual competences in each framework were 32 for the taught aspects of the UK Faculty of Public Health Specialist Training Program, 117 for the American Association of Public Health, 282 for the exam curriculum of the UK Faculty of Public Health Part A exam, and 393 for the European Core Competencies for MPH Education. This gave a total of 824 competences included in the audit. Overall, the online MPH program covered 88-96% of the competences depending on the specific framework used. This fell when the audit focused on just the three mandatory modules in the program, and the variation between the different competence frameworks was much larger. Using different competence frameworks to audit the curriculum of an MPH program can give different indications of its quality, especially as it fails to capture teaching considered to be relevant, yet not included in an existing competence framework. The strengths and weaknesses of using competence frameworks to audit the content of an MPH program have largely been ignored. These debates are vital given that external organizations responsible for accreditation specify a particular competence framework to be used. Our study found that each of four different competence frameworks suggested different levels of quality in our teaching program, at least in terms of the competences included in the curriculum. Relying on just one established framework missed some aspects of the curriculum included in other frameworks used in this study. Conversely, each framework included items not covered by the others. Thus, levels of agreement with the content of our MPH and established areas of competence were, in part, dependent on the competence framework used to compare its' content. While not entirely a surprising finding, this study makes an important point and makes explicit the challenges of selecting an appropriate competence framework to inform MPH programs, and especially one which recruits students from around the world.
ERIC Educational Resources Information Center
Connecticut Univ., Storrs. Dept. of Educational Leadership.
This curriculum guide provides the plant science components of the vocational agriculture curriculum for Regional Vocational Agriculture Centers. The curriculum is divided into exploratory units for students in the 9th and 10th grades and specialized units for students in grades 11 and 12. The five exploratory units are: agricultural pest control;…
ERIC Educational Resources Information Center
Dixon, Peggy; And Others
This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculum. The SET Curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology. The objective of this curriculum development project is to train technicians in the use of…
ERIC Educational Resources Information Center
Killion, Joellen
2016-01-01
A randomized trial study, conducted over two school years in 18 high schools in Washington, finds that "An Inquiry Approach," a three-year, educative curriculum for high school science, has a positive impact on student achievement, teacher practice, and fidelity of implementation of the curriculum when the curriculum is paired with…
ERIC Educational Resources Information Center
Forbes, Cory T.; Davis, Elizabeth A.
2010-01-01
Curriculum materials are crucial tools with which teachers engage students in science as inquiry. In order to use curriculum materials effectively, however, teachers must develop a robust capacity for pedagogical design, or the ability to mobilize a variety of personal and curricular resources to promote student learning. The purpose of this study…
Multiple case studies of STEM teachers' orientations to science teaching through engineering design
NASA Astrophysics Data System (ADS)
Rupp, Madeline
The following master's thesis is composed of two manuscripts describing STEM teachers' orientations to science teaching through engineering within the context of the Science Learning through Engineering Design (SLED) partnership. The framework guiding both studies was science teaching orientations, a component of pedagogical content knowledge. Data were collected via semi-structured interviews, multi-day classroom observations, pre- and post-observation interviews, implementation plans, and written reflections. Data sources were analyzed to generate two orientations to science teaching through engineering design for each participant. The first manuscript illustrates a single case study conducted with a sixth grade STEM teacher. Results of this study revealed a detailed picture of the teacher's goals, practices, assessments, and general views when teaching science through engineering design. Common themes across the teacher's instruction were used to characterize her orientations to science teaching through engineering design. Overall, the teacher's orientations showed a shift in her practice from didactic to student-centered methods of teaching as a result of integrating engineering design-based curriculum. The second manuscript describes a comparative case study of two sixth grade SLED participants. Results of this study revealed more complex and diverse relationships between the teachers' orientations to teaching science through engineering design and their instruction. Participants' orientations served as filters for instruction, guided by their divergent purposes for science teaching. Furthermore, their orientations and resulting implementation were developed from knowledge gained in teacher education, implying that teacher educators and researchers can use this framework to learn more about how teachers' knowledge is used to integrate engineering and science practices in the K-12 classroom.
Science for Survival: The Modern Synthesis of Evolution and the Biological Sciences Curriculum Study
ERIC Educational Resources Information Center
Green, Lisa Anne
2012-01-01
In this historical dissertation, I examined the process of curriculum development in the Biological Sciences Curriculum Study (BSCS) in the United States during the period 1959-1963. The presentation of evolution in the high school texts was based on a more robust form of Darwinian evolution which developed during the 1930s and 1940s called…
ERIC Educational Resources Information Center
Looi, Chee-Kit; Sun, Daner; Kim, Mi Song; Wen, Yun
2018-01-01
Background and purpose: To date, there has been little research on the Teacher Professional Development (TPD) for delivering a mobile technology-supported science curriculum. To address this, a TPD model for a science curriculum supported by mobile technology was developed and evaluated in this paper. The study reported focuses on the…
Electrical Energy. 7th and 8th Grade Agriculture Science Curriculum. Teacher Materials.
ERIC Educational Resources Information Center
Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.
This curriculum guide, the fifth in a set of six, contains teacher and student materials for a unit on electrical energy prepared as part of a seventh- and eighth-grade agricultural science curriculum that is integrated with science instruction. The guide contains the state goals and sample learning objectives for each goal for students in grades…
ERIC Educational Resources Information Center
Sun, Daner; Looi, Chee-Kit
2018-01-01
This paper explores the crossover between formal learning and learning in informal spaces supported by mobile technology, and proposes design principles for educators to carry out a science curriculum, namely Boundary Activity-based Science Curriculum (BAbSC). The conceptualization of the boundary object, and the principles of boundary activity as…
ERIC Educational Resources Information Center
Metz, Kathleen E.
2009-01-01
This article examines teachers' perspectives on the challenges of using a science reform curriculum, as well as their learning in interaction with the curriculum and parallel professional development program. As case studies, I selected 4 veteran teachers of 2nd or 3rd grade, with varying science backgrounds (including 2 with essentially none).…
ERIC Educational Resources Information Center
Reed-Mundell, Charlie
2001-01-01
Provides five fully developed library media activities that are designed for use with specific curriculum units in art, reading, language arts, science, and social studies. Describes library media skills, curriculum objectives, grade levels, resources, instructional roles, procedures, evaluation, and follow-up for each activity. (LRW)
ERIC Educational Resources Information Center
Castano Rodriguez, Carolina
2016-01-01
Through a critical textual analysis of the content and structure of the new Australian science curriculum, in this paper I identify the values it encourages and those that are absent. I investigate whether the Australian science curriculum is likely to promote the attitudes needed to educate generations of children who act more responsibly with…
Science in the 21st Century: More than Just the Facts
ERIC Educational Resources Information Center
Price, Jeremy F.; Pimentel, Diane Silva; McNeill, Katherine L.; Barnett, Michael; Strauss, Eric
2011-01-01
The authors have worked to meet the demands of the 21st century by using the Urban EcoLab, an urban ecology curriculum based on the National Science Education Standards. This curriculum emphasizes the local and community-based nature of science and is freely available for teachers to view, download, and use. As part of the curriculum the authors…
ERIC Educational Resources Information Center
De Putter-Smits, Lesley G. A.; Taconis, Ruurd; Jochems, Wim; Van Driel, Jan
2012-01-01
The committees for the current Dutch context-based innovation in secondary science education employed teachers to design context-based curriculum materials. A study on the learning of science teachers in design teams for context-based curriculum materials is presented in this paper. In a correlation study, teachers with (n = 5 and 840 students)…
ERIC Educational Resources Information Center
Utica City School District, NY.
Two-column objectives are listed for an integrated science curriculum (grades K-12), often subheaded according to science area (biology, general science, physical science, earth science) and grade level. In grades K-6, objectives for topics of science study include conditions for plants and animals to live, adaptation, conservation,…