Sample records for science enrichment program

  1. STEM enrichment programs and graduate school matriculation: the role of science identity salience

    PubMed Central

    Serpe, Richard T.

    2013-01-01

    Improving the state of science education in the United States has become a national priority. One response to this problem has been the implementation of STEM enrichment programs designed to increase the number of students that enter graduate programs in science. Current research indicates enrichment programs have positive effects for student performance, degree completion, interest in science and graduate enrollment. Moreover, research suggests that beyond improving performance in STEM, and providing access to research experience and faculty mentoring, enrichment programs may also increase the degree to which students identify as scientists. However, researchers investigating the role of science identity on student outcomes have focused primarily on subjective outcomes, leaving a critical question of whether science identity also influences objective outcomes such as whether students attend graduate school. Using identity theory, this study addresses this issue by investigating science identity as a mechanism linking enrichment program participation to matriculation into graduate science programs. Quantitative results from a panel study of 694 students indicate that science identity salience, along with research experience and college GPA, mediate the effect of enrichment program participation on graduate school matriculation. Further, results indicate that although the social psychological process by which science identity salience develops operates independently from student GPA, science identity amplifies the effect of achievement on graduate school matriculation. These results indicate that policies seeking to increase the efficacy of enrichment programs and increase representation in STEM graduate programs should be sensitive to the social and academic aspects of STEM education. PMID:24578606

  2. STEM enrichment programs and graduate school matriculation: the role of science identity salience.

    PubMed

    Merolla, David M; Serpe, Richard T

    2013-12-01

    Improving the state of science education in the United States has become a national priority. One response to this problem has been the implementation of STEM enrichment programs designed to increase the number of students that enter graduate programs in science. Current research indicates enrichment programs have positive effects for student performance, degree completion, interest in science and graduate enrollment. Moreover, research suggests that beyond improving performance in STEM, and providing access to research experience and faculty mentoring, enrichment programs may also increase the degree to which students identify as scientists. However, researchers investigating the role of science identity on student outcomes have focused primarily on subjective outcomes, leaving a critical question of whether science identity also influences objective outcomes such as whether students attend graduate school. Using identity theory, this study addresses this issue by investigating science identity as a mechanism linking enrichment program participation to matriculation into graduate science programs. Quantitative results from a panel study of 694 students indicate that science identity salience, along with research experience and college GPA, mediate the effect of enrichment program participation on graduate school matriculation. Further, results indicate that although the social psychological process by which science identity salience develops operates independently from student GPA, science identity amplifies the effect of achievement on graduate school matriculation. These results indicate that policies seeking to increase the efficacy of enrichment programs and increase representation in STEM graduate programs should be sensitive to the social and academic aspects of STEM education.

  3. STEM Enrichment Programs and Graduate School Matriculation: The Role of Science Identity Salience

    ERIC Educational Resources Information Center

    Merolla, David M.; Serpe, Richard T.

    2013-01-01

    Improving the state of science education in the United States has become a national priority. One response to this problem has been the implementation of STEM enrichment programs designed to increase the number of students that enter graduate programs in science. Current research indicates enrichment programs have positive effects for student…

  4. The Splashdown Effect: Measuring the Effect of Science Enrichment Programs on Science Attitudes of Gifted High School Girls and Boys

    ERIC Educational Resources Information Center

    Stake, Jayne E.; Mares, Kenneth R.

    2005-01-01

    The benefits of enrichment programs for the enhancement of students' science achievement are well established. However, little evidence is available on the value of these programs for increasing students' confidence and motivation for science. One problem in measuring changes in students' science attitudes is that students may suffer from a…

  5. A Pharmacology-Based Enrichment Program for Undergraduates Promotes Interest in Science

    PubMed Central

    Godin, Elizabeth A.; Wormington, Stephanie V.; Perez, Tony; Barger, Michael M.; Snyder, Kate E.; Richman, Laura Smart; Schwartz-Bloom, Rochelle; Linnenbrink-Garcia, Lisa

    2015-01-01

    There is a strong need to increase the number of undergraduate students who pursue careers in science to provide the “fuel” that will power a science and technology–driven U.S. economy. Prior research suggests that both evidence-based teaching methods and early undergraduate research experiences may help to increase retention rates in the sciences. In this study, we examined the effect of a program that included 1) a Summer enrichment 2-wk minicourse and 2) an authentic Fall research course, both of which were designed specifically to support students' science motivation. Undergraduates who participated in the pharmacology-based enrichment program significantly improved their knowledge of basic biology and chemistry concepts; reported high levels of science motivation; and were likely to major in a biological, chemical, or biomedical field. Additionally, program participants who decided to major in biology or chemistry were significantly more likely to choose a pharmacology concentration than those majoring in biology or chemistry who did not participate in the enrichment program. Thus, by supporting students' science motivation, we can increase the number of students who are interested in science and science careers. PMID:26538389

  6. Evaluation of the National Science Foundation Graduate Teaching Fellows in K-12 Education (GK-12) Program.

    ERIC Educational Resources Information Center

    Mitchell, Julia; Levine, Roger; Gonzalez, Raquel; Bitter, Catherine; Webb, Norman; White, Paul

    The GK-12 program of the National Science Foundation is an innovative program for enriching the value of graduate and advanced undergraduate students' education while simultaneously enriching science and mathematics teaching at the K-12 level. GK-12 is a fellowship program that offers graduate students and advanced undergraduates the opportunity…

  7. Science Teaching Experiences in Informal Settings: One Way to Enrich the Preparation Program for Preservice Science Teachers

    ERIC Educational Resources Information Center

    Hsu, Pei-Ling

    2016-01-01

    The high attrition rate of new science teachers demonstrates the urgent need to incorporate effective practices in teacher preparation programs to better equip preservice science teachers. The purpose of the study is to demonstrate a way to enrich preservice science teachers' preparation by incorporating informal science teaching practice into…

  8. Enrichment programs to create a pipeline to biomedical science careers.

    PubMed

    Cregler, L L

    1993-01-01

    The Student Educational Enrichment Programs at the Medical College of Georgia in the School of Medicine were created to increase underrepresented minorities in the pipeline to biomedical science careers. Eight-week summer programs are conducted for high school, research apprentice, and intermediate and advanced college students. There is a prematriculation program for accepted medical, dental, and graduate students. Between 1979 and 1990, 245 high school students attended 12 summer programs. Of these, 240 (98%) entered college 1 year later. In 1986, after eight programs, 162 (68%) high school participants graduated from college with a baccalaureate degree, and 127 responded to a follow-up survey. Sixty-two (49%) of the college graduates attended health science schools, and 23 (18%) of these matriculated to medical school. Of college students, 504 participated in 13 summer programs. Four hundred (79%) of these students responded to a questionnaire, which indicated that 348 (87%) of the 400 entered health science occupations and/or professional schools; 179 (45%) of these students matriculated to medical school. Minority students participating in enrichment programs have greater success in gaining acceptance to college and professional school. These data suggest that early enrichment initiatives increase the number of underrepresented minorities in the biomedical science pipeline.

  9. Inquiry-Based Science and Technology Enrichment Program for Middle School-Aged Female Students

    ERIC Educational Resources Information Center

    Kim, Hanna

    2016-01-01

    This study investigates the effects of an intensive 1-week Inquiry-Based Science and Technology Enrichment Program (InSTEP) designed for middle school-aged female students. InSTEP uses a guided/open inquiry approach that is deepened and redefined as eight sciences and engineering practices in the Next Generation Science Standards, which aimed at…

  10. Attributions, Influences and Outcomes for Underrepresented and Disadvantaged Participants of a Medical Sciences Enrichment Pipeline Program

    ERIC Educational Resources Information Center

    Pinckney, Charlyene Carol

    2014-01-01

    The current study was undertaken to examine the effectiveness of the Rowan University-School of Osteopathic Medicine - Summer Pre-Medical Research and Education Program (Summer PREP), a postsecondary medical sciences enrichment pipeline program for under-represented and disadvantaged students. Thirty-four former program participants were surveyed…

  11. Direction Discovery: A Science Enrichment Program for High School Students

    ERIC Educational Resources Information Center

    Sikes, Suzanne S.; Schwartz-Bloom, Rochelle D.

    2009-01-01

    Launch into education about pharmacology (LEAP) is an inquiry-based science enrichment program designed to enhance competence in biology and chemistry and foster interest in science careers especially among under-represented minorities. The study of how drugs work, how they enter cells, alter body chemistry, and exit the body engages students to…

  12. Using Creative Dramatics to Foster Conceptual Learning in a Science Enrichment Program

    ERIC Educational Resources Information Center

    Hendrix, Rebecca Compton

    2011-01-01

    This study made analysis of how the integration of creative drama into a science enrichment program enhanced the learning of elementary school students' understanding of sound physics and solar energy. The study also sought to determine if student attitudes toward science could be improved with the inclusion of creative drama as an extension…

  13. Evaluation of the Science Enrichment Activities (SEA) Program: A Decision Oriented Model.

    ERIC Educational Resources Information Center

    Linn, Marcia C.

    1978-01-01

    Three questions guided an evaluation of sixth and eighth grade science enrichment activities: (1) Does a free choice interactive program affect cognitive abilities? (2) Do students in a free choice program make predictable selections of activities based on their age, sex, or ability level? and (3) Are specific student choices associated with…

  14. Marine Science Summer Enrichment Camp's Impact Ocean Literacy for Middle School Students

    ERIC Educational Resources Information Center

    Young, Victoria Jewel

    2017-01-01

    Although careers in science, technology, engineering, and mathematics have expanded in the United States, science literacy skills for K-12 students have declined from 2001 to 2011. Limited research has been conducted on the impact of science enrichment programs on the science literacy skills of K-12 students, particularly in marine science. The…

  15. Research Informed Science Enrichment Programs at the Gravity Discovery Centre

    ERIC Educational Resources Information Center

    Venville, Grady; Blair, David; Coward, David; Deshon, Fred; Gargano, Mark; Gondwe, Mzamose; Heary, Auriol; Longnecker, Nancy; Pitts, Marina; Zadnik, Marjan

    2012-01-01

    Excursions to museums and science centres generally are great fun for students and teachers. The potential educational benefits beyond enjoyment, however, are rarely realised or analysed for their efficacy. The purpose of this paper is to describe four educational enrichment programs delivered at the Gravity Discovery Centre (GDC), near Gingin,…

  16. Pre-freshman enrichment program [University of New Haven

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-06-01

    The Connecticut Pre-Engineering Program, Inc. (CPEP), is a collaboration of school districts, businesses, colleges, universities, government and community organizations whose mission and program efforts are aimed at increasing the pool of African-American, Hispanic, Native-American Indian, Asian American, Women and other under-represented minority students who pursue mathematics, science, engineering and other technological based college study and careers. CPEP provides enrichment programs and activities throughout the year in New Haven. Since 1987, CPEP has sponsored summer enrichment programs designed to motivate and stimulate middle school and high school students to pursue careers in mathematics, science, engineering and other technology related fields. Throughmore » the Summer Enrichment Program, CPEP has been able to better prepare under-represented and urban students with skills that will facilitate their accessing colleges and professionals careers. The essential premise of the program design and academic content is that targeted students must be taught and nurtured as to develop their self-confidence and personal ambitions so that they can seriously plan for and commit to college-level studies. The program stresses multi-disciplinary hands-on science and mathematics experience, group learning and research, and career exploration and academic guidance. Students study under the direction of school teachers and role model undergraduate students. Weekly field trips to industrial sites, science centers and the shoreline are included in this program.« less

  17. Trenholm State (AL) Technical College High School Science Enrichment Program 1996-1997 Evaluation Report

    NASA Technical Reports Server (NTRS)

    Ross, Elizabeth G.

    1997-01-01

    This document presents findings based on a third-year evaluation of Trenholm State (AL) Technical College's National Aeronautics and Space Administration (NASA) - supported High School Science Enrichment Program (HSSEP). HSSEP is an external (to school) program for area students from groups that are underrepresented in the mathematics, science, engineering and technology (MSET) professions. In addition to gaining insight into scientific careers, HSSEP participants learn about and deliver presentations that focus on mathematics applications, scientific problem-solving and computer programming during a seven-week summer or 10-week Academic-Year Saturday session.

  18. Mississippi Curriculum Framework for Family and Consumer Sciences and Related Technology (Enrichment) (CIP: 20.0101--Comprehensive Consumer & Homemkg. Ed.). Secondary Programs.

    ERIC Educational Resources Information Center

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which reflects Mississippi's statutory requirement that instructional programs be based on core curricula and performance-based assessment, contains outlines of the instructional units required in local instructional management plans and daily lesson plans for family and consumer sciences and related technology (enrichment).…

  19. Delgado Community College/Sears-Roebuck Keeping America Working. Math, Science and Technology Summer Youth Enrichment Program. Final Report.

    ERIC Educational Resources Information Center

    Delgado Community Coll., New Orleans, LA.

    Recognizing the need for better preparation of high school students in mathematics, science, and technology, Delgado Community College and the Orleans Parish School System entered into an agreement for the provision of a summer enrichment program for minority students in grades 7 through 9 who had exhibited average or above average abilities in…

  20. The FOSTER Project: Teacher Enrichment Through Participation in NASA's Airborne Astronomy Program

    NASA Technical Reports Server (NTRS)

    Koch, David; Hull, G.; Gillespie, C., Jr.; DeVore, E.; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    NASA's airborne astronomy program offers a unique opportunity for K-12 science teacher enrichment and for NASA to reach out and serve the educational community. Learning from a combination of summer workshops, curriculum supplement materials, training in Internet skills and ultimately flying on NASA's C-141 airborne observatory, the teachers are able to share the excitement of scientific discovery with their students and convey that excitement from first hand experience rather than just from reading about science in a textbook. This year the program has expanded to include teachers from the eleven western states served by NASA Ames Research Center's Educational Programs Office as well as teachers from communities from around the country where the scientist who fly on the observatory reside. Through teacher workshops and inservice presentations, the FOSTER (Flight Opportunities for Science Teacher EnRichment) teachers are sharing the resources and experiences with many hundreds of other teachers. Ultimately, the students are learning first hand about the excitement of science, the scientific method in practice, the team work involved, the relevance of science to their daily lives and the importance of a firm foundation in math and science in today's technologically oriented world.

  1. STOP for Science! A School-Wide Science Enrichment Program

    NASA Astrophysics Data System (ADS)

    Slane, P.; Slane, R.; Arcand, K. K.; Lestition, K.; Watzke, M.

    2012-08-01

    Young students are often natural scientists. They love to poke and prod, and they live to compare and contrast. What is the fastest animal? Where is the tallest mountain on Earth (or in the Solar System)? Where do the colors in a rainbow come from? And why do baseball players choke up on their bats? Educators work hard to harness this energy and enthusiasm in the classroom but, particularly at an early age, science enrichment - exposure outside the formal classroom - is crucial to help expand science awareness and hone science skills. Developed under a grant from NASA's Chandra X-ray Center, "STOP for Science!" is a simple but effective (and extensible) school-wide science enrichment program aimed at raising questions about science topics chosen to capture student interest. Created through the combined efforts of an astrophysicist and an elementary school principal, and strongly recommended by NASA's Earth & Space Science product review, "STOP for Science" combines aesthetic displays of science topics accompanied by level-selected questions and extensive facilitator resources to provide broad exposure to familiar, yet intriguing, science themes.

  2. Learning from Science: Case Studies of Science Offerings in Afterschool Programs

    ERIC Educational Resources Information Center

    Lundh, Patrik; House, Ann; Means, Barbara; Harris, Christopher J.

    2013-01-01

    Afterschool programs have increasingly gained attention as settings that can help enrich students' science learning. Even though science is widely included in afterschool activities, sites often lack adequate materials and staff know-how to implement quality science. To address this need, this article examines afterschool science in light of the…

  3. Summer Enrichment Programs to Foster Interest in STEM Education for Students with Blindness or Low Vision

    ERIC Educational Resources Information Center

    Supalo, Cary A.; Hill, April A.; Larrick, Carleigh G.

    2014-01-01

    Hands-on science enrichment experiences can be limited for students with blindness or low vision (BLV). This manuscript describes recent hands-on summer enrichment programs held for BLV students. Also presented are innovative technologies that were developed to provide spoken quantitative feedback for BLV students engaged in hands-on science…

  4. Supplementary Activities for Enriching the Teaching of Earth Science: Astronomy, Geology, Meteorology, Oceanography.

    ERIC Educational Resources Information Center

    Exline, Joseph D., Ed.

    This publication is intended to be an aid for secondary school science teachers in providing some additional student-oriented activities to enrich the earth science program. These activities have been classroom tested by teachers and have been considered by these teachers to be educationally successful. This publication is a product of the Earth…

  5. Broadening Educational Horizons: The National Science Foundation GK-12 Teaching Fellowship Program at the University of Maine, Orono, ME, USA.

    NASA Astrophysics Data System (ADS)

    Wilson, K. R.; Kelley, J. T.

    2005-12-01

    The future of meaningful scientific research in the United States depends heavily upon the quality of the science and mathematics education received by students in our grade K-12 education system. The National Science Foundation's GK-12 Teaching Fellowship Program provides opportunities for scientific enrichment for students and their teachers at the K-12 level. Currently in its fifth year at the University of Maine, Orono, the program is one of over 100 such programs in the country. Last year, the program was honored by the New England Board of Higher Education with a Regional Award for Excellence in Project Achievement. The program has three broad goals: to enrich the scientific education of students by providing equipment, role models, and expertise that they may not otherwise be exposed; to provide professional development for teachers through curriculum enrichment and participation at scientific conferences; and to improve the teaching and communication skills of fellows. Fellows represent a broad spectrum of research interests at the University of Maine, including Biology, Chemistry, Engineering, Forestry, Geological Sciences, and Marine Science. This past year, 13 graduate students and 1 undergraduate student worked with 52 teachers and 2300 students in 26 schools across the state of Maine. The benefits of this program are tangible and substantial. New awareness of the innovative ways that K-12 and University education systems can work together to promote hands-on science and the scientific method, is one of the major contributions of the NSF GK-12 Teaching Fellowship Program.

  6. Informal Science Education for Girls: Careers in Science and Effective Program Elements

    ERIC Educational Resources Information Center

    Fadigan, Kathleen A.; Hammrich, Penny L.

    2005-01-01

    Addressing the need for continued support of after-school and summer science enrichment programs for urban girls and at-risk youth, this paper describes the educational and career paths of a sample of young women who participated in the Women in Natural Sciences (WINS) program during high school. This study also attempts to determine how the…

  7. African American perspectives: A qualitative study of an informal science enrichment program

    NASA Astrophysics Data System (ADS)

    Simpson, Jamila Rashida

    The purposes of this study were to determine what program characteristics African American parents consider when they enroll their children into an informal science education enrichment program, the parents' evaluation of a program called Jordan Academy in which they enrolled their children, and the alignment of the parents' perspectives with Black Cultural Ethos (BCE). BCE refers to nine dimensions posited by Wade Boykin, a psychologist, as comprising African American culture. Participants were parents of students that attended Jordan Academy, an informal science enrichment program designed for third through sixth grade students from underserved populations. Qualitative methodologies were utilized to perform a thorough assessment of parents' perspectives. Data sources included classroom observations, student surveys, academy curriculum, photos and video-taped class sessions. Data included teachers and parents' responses to semi-structured, audio recorded interviews and students' written responses to open-ended items on the program's evaluation instrument. The data were analyzed for themes and the findings compared to Black Cultural Ethos. Findings revealed that the participants believed that informal science education offered their children opportunities not realized in the formal school setting - a means of impacting their children holistically. The parents expressed the academic, cultural, and personal development of their children in their characterizations of the ideal informal science education experience and in their evaluations of Jordan Academy. Overall, the parents' views emphasized the BCE values of harmony, affect, verve, movement, orality and communalism. The study has important implications for practices within and research on informal science education.

  8. Inquiry-Based Science and Technology Enrichment Program: Green Earth Enhanced with Inquiry and Technology

    NASA Astrophysics Data System (ADS)

    Kim, Hanna

    2011-12-01

    This study investigated the effectiveness of a guided inquiry integrated with technology, in terms of female middle-school students' attitudes toward science/scientists and content knowledge regarding selective science concepts (e.g., Greenhouse Effect, Air/Water Quality, Alternative Energy, and Human Health). Thirty-five female students who were entering eighth grade attended an intensive, 1-week Inquiry-Based Science and Technology Enrichment Program which used a main theme, "Green Earth Enhanced with Inquiry and Technology." We used pre- and post-attitude surveys, pre- and post-science content knowledge tests, and selective interviews to collect data and measure changes in students' attitudes and content knowledge. The study results indicated that at the post-intervention measures, participants significantly improved their attitudes toward science and science-related careers and increased their content knowledge of selected science concepts ( p < .05).

  9. Flight Opportunities for Science Teacher EnRichment

    NASA Astrophysics Data System (ADS)

    Koch, D.; Devore, E.; Gillespie, C., Jr.; Hull, G.

    1994-12-01

    The Kuiper Airborne Observatory (KAO) is NASA's unique stratospheric infrared observatory. Science on board the KAO involves many disciplines and technologies. NASA Astrophysics Division supports a pre-college teacher program to provide Flight Opportunities for Science Teacher EnRichment (FOSTER). To date, forty-five teachers are participating, and the program is designed to nation-wide to serve fifty teachers per year on board the KAO. FOSTER is a pilot program for K-12 educational outreach for NASA's future Stratospheric Observatory for Infrared Astronomy (SOFIA) which will directly involve more than one-hundred teachers each year in airborne astronomical research missions. FOSTER aims to enrich precollege teachers' experiences and understanding of science, mathematics and technology. Teachers meet at NASA Ames Research Center for summer workshops on astronomy and contemporary astrophysics, and to prepare for flights. Further, teachers receive Internet training and support to create a FOSTER teacher network across the country, and to sustain communication with the airborne astronomy community. Each research flight of the KAO is a microcosm of the scientific method. Flying teachers obtain first-hand, real-time experiences of the scientific process: its excitement, hardships, challenges, discoveries, teamwork, and educational value. The FOSTER experience gives teachers pride and a sense of special achievement. They bring the excitement and adventure of doing first-class science to their students and communities. Flight Opportunities for Science Teacher EnRichment is funded by a NASA's Astrophysics Division grant, NAGW 3291, and supported by the SETI Institute and NASA Ames Research Center.

  10. Flight opportunities for science teacher enrichment

    NASA Technical Reports Server (NTRS)

    Devore, Edna; Gillespie, Carlton, Jr.; Hull, Garth; Koch, David

    1995-01-01

    NASA Astrophysics Division supports a pre-college teacher program to provide Flight Opportunities for Science Teacher EnRichment (FOSTER). To date, forty-five teachers are participating, and the program will expand nation-wide to serve fifty teachers per year on board the Kuiper Airborne Observatory. In the future, the Stratospheric Observatory for Infrared Astronomy (SOFIA) will bring more than one-hundred teachers per year on board for astronomical research mission. FOSTER is supported by a grant to the SETI Institute from the NASA Astrophysics Division, NAGW-3291.

  11. Student science enrichment training program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhu, S.S.

    1994-08-01

    This is a report on the Student Science Enrichment Training Program, with special emphasis on chemical and computer science fields. The residential summer session was held at the campus of Claflin College, Orangeburg, SC, for six weeks during 1993 summer, to run concomitantly with the college`s summer school. Fifty participants selected for this program, included high school sophomores, juniors and seniors. The students came from rural South Carolina and adjoining states which, presently, have limited science and computer science facilities. The program focused on high ability minority students, with high potential for science engineering and mathematical careers. The major objectivemore » was to increase the pool of well qualified college entering minority students who would elect to go into science, engineering and mathematical careers. The Division of Natural Sciences and Mathematics and engineering at Claflin College received major benefits from this program as it helped them to expand the Departments of Chemistry, Engineering, Mathematics and Computer Science as a result of additional enrollment. It also established an expanded pool of well qualified minority science and mathematics graduates, which were recruited by the federal agencies and private corporations, visiting Claflin College Campus. Department of Energy`s relationship with Claflin College increased the public awareness of energy related job opportunities in the public and private sectors.« less

  12. Township of Ocean School District Contemporary Science. Student Enrichment Materials.

    ERIC Educational Resources Information Center

    Truex, Ronald T.

    Contemporary Science is a program designed to provide non-academic disaffected students as well as college-bound high school students with a meaningful and positive educational experience in science in order to bridge the gap between science and the citizen in a technological world. The program, designed as a full year elective course, involves…

  13. Long-Term Impact of the Enrichment Experiences in Engineering (E[superscript 3]) Summer Teacher Program

    ERIC Educational Resources Information Center

    Autenrieth, Robin L.; Lewis, Chance W.; Butler-Purry, Karen L.

    2017-01-01

    The Enrichment Experiences in Engineering (E[superscript 3] ) summer teacher program is hosted by the Dwight Look College of Engineering at Texas A&M University and is designed to provide engineering research experiences for Texas high school science and mathematics teachers. The mission of the E[superscript 3] program is to educate and excite…

  14. Agricultural Production: Program Planning Guide: Volume 1.

    ERIC Educational Resources Information Center

    Rich, William; Wood, Eugene

    The program planning guide for agricultural production was written to assist Applied Biological and Agricultural Occupations (ABAO) teachers in enriching existing programs and/or to provide the basis for expansion of offerings to include additional materials for the cluster areas of animal science, plant science, farm mechanics, and farm business…

  15. Double TNT: Targeting New Teachers and Teaching by Novel Techniques.

    ERIC Educational Resources Information Center

    Williams-Robertson, Lydia

    A program developed by the Austin (Texas) Independent School District under a 2-year grant from the National Science Foundation is described and evaluated. The primary objectives of the program were to: interest minority and female students in science; attract these groups to the teaching of science; enrich the elementary school science…

  16. Inquiry-Based Science and Technology Enrichment Program for Middle School-Aged Female Students

    NASA Astrophysics Data System (ADS)

    Kim, Hanna

    2016-04-01

    This study investigates the effects of an intensive 1-week Inquiry-Based Science and Technology Enrichment Program (InSTEP) designed for middle school-aged female students. InSTEP uses a guided/open inquiry approach that is deepened and redefined as eight sciences and engineering practices in the Next Generation Science Standards, which aimed at increasing female students' interest in science and science-related careers. This study examined the effectiveness of InSTEP on 123 female students' pre-assessment and post-assessment changes in attitudes toward science and content knowledge of selected science concepts. An attitude survey, a science content test with multiple-choice questions, written assignments, and interviews to collect data were all used to measure students' attitudes and content knowledge. A within-group, repeated measure design was conducted, and the results indicated that at the post-intervention level, InSTEP increased the participants' positive attitudes toward science, science-related careers, and content knowledge of selected science concepts.

  17. Variations on a Theme: Characteristics of Out-of-School Time Science Programs Offered by Distinct Organization Types

    ERIC Educational Resources Information Center

    Laursen, Sandra L.; Thiry, Heather; Archie, Tim; Crane, Rebecca

    2013-01-01

    The out-of-school time (OST) domain offers a promising resource for enriching young people's experience of science, technology, and engineering. Belief is widespread that OST programs are ideal locations in which to learn science and that youth participation may increase access to science for underrepresented groups, such as girls or minorities,…

  18. Evaluating the Effectiveness of the 2002-2003 NASA SCIence Files(TM) Program

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Lambert, Matthew A.; Williams, Amy C.

    2004-01-01

    NASA SCIence Files (tm) is a research-, inquiry-, and standards-based, integrated mathematics, science, and technology series of 60-minute instructional distance learning (television and web-based) programs for students in grades 3-5. Respondents who evaluated the programs in the 2002-2003 NASA SCIence Files (tm) series reported that (1) they used the programs in the series; (2) the goals and objectives for the series were met; (3) the programs were aligned with the national mathematics, science, and technology standards; (4) the program content was developmentally appropriate for grade level; and (5) the programs in the series enhanced and enriched the teaching of mathematics, science, and technology.

  19. Bringing Science Public Outreach to Elementary Schools

    NASA Astrophysics Data System (ADS)

    Miller, Lucas; Speck, A.; Tinnin, A.

    2012-01-01

    Many science "museums” already offer fantastic programs for the general public, and even some aimed at elementary school kids. However, these venues are usually located in large cities and are only occasionally used as tools for enriching science education in public schools. Here we present preliminary work to establish exciting educational enrichment environments for public schools that do not easily have access to such facilities. This program is aimed at motivating children's interest in science beyond what they learn in the classroom setting. In this program, we use the experience and experiments/demonstrations developed at a large science museum (in this case, The St. Louis Science Center) and take them into a local elementary school. At the same time, students from the University of Missouri are getting trained on how to present these outreach materials and work with the local elementary schools. Our pilot study has started with implementation of presentations/demonstrations at Benton Elementary School within the Columbia Public School district, Missouri. The school has recently adopted a STEM (Science, Technology, Engineering, and Mathematics) centered learning system throughout all grade levels (K-5), and is therefore receptive to this effort. We have implemented a program in which we have given a series of scientific demonstrations at each grade level's lunch hour. Further enrichment ideas and plans include: addition demonstrations, hands-on experiments, and question and answer sessions. However, the application of these events would be to compliment the curriculum for the appropriate grade level at that time. The focus of this project is to develop public communications which links science museums, college students and local public schools with an emphasis on encouraging college science majors to share their knowledge and to strengthen their ability to work in a public environment.

  20. Student science enrichment training program. Progress report, June 1, 1991--May 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhu, S.S.

    1992-04-21

    Historically Black Colleges and Universities wing of the United States Department of Energy (DOE) provided funds to Claflin College, Orangeburg, S.C. To conduct a student Science Enrichment Training Program for a period of six weeks during 1991 summer. Thirty participants were selected from a pool of applicants, generated by the High School Seniors and Juniors and the Freshmen class of 1990-1991 at Claflin College. The program primarily focused on high ability students, with potential for Science, Mathematics and Engineering Careers. The major objectives of the program were W to increase the pool of well qualified college entering minority students whomore » will elect to go in Physical Sciences and Engineering and (II) to increase the enrollment in Chemistry and Preprofessional-Pre-Med, Pre-Dent, etc.-majors at Claflin College by including the Claflin students to participate in summer academic program. The summer academic program consisted of Chemistry and Computer Science training. The program placed emphasis upon laboratory experience and research. Visits to Scientific and Industrial laboratories were arranged. Guest speakers which were drawn from academia, industry and several federal agencies, addressed the participants on the future role of Science in the industrial growth of United States of America. The guest speakers also acted as role models for the participants. Several videos and films, emphasizing the role of Science in human life, were also screened.« less

  1. Beyond Academic and Social Integration: Understanding the Impact of a STEM Enrichment Program on the Retention and Degree Attainment of Underrepresented Students

    ERIC Educational Resources Information Center

    Lane, Tonisha B.

    2016-01-01

    The current study used a case study methodological approach, including document analysis, semistructured interviews, and participant observations, to investigate how a science, technology, engineering, and mathematics (STEM) enrichment program supported retention and degree attainment of underrepresented students at a large, public, predominantly…

  2. Summer Enrichment Programs: Providing Agricultural Literacy and Career Exploration to Gifted and Talented Students

    ERIC Educational Resources Information Center

    Cannon, John G.; Broyles, Thomas W.; Seibel, G. Andrew; Anderson, Ryan

    2009-01-01

    As agriculture continues to evolve and become more complex, the demand for qualified college graduates to fill agricultural careers exceeds supply. This study focused on a summer enrichment program that strives to expose gifted and talented students to the diverse nature of agricultural careers through the integration of agriculture and science.…

  3. Proceedings of the 1994 international meeting on reduced enrichment for research and test reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-08-01

    This meeting brought together participants in the international effort to minimize and eventually eliminate the use of highly enriched uranium in civilian nuclear programs. Papers cover the following topics: National programs; fuel cycle; nuclear fuels; analyses; advanced reactors; and reactor conversions. Selected papers have been indexed separately for inclusion to the Energy Science and Technology Database.

  4. The Integration of Creative Drama in an Inquiry-Based Elementary Program: The Effect on Student Attitude and Conceptual Learning

    ERIC Educational Resources Information Center

    Hendrix, Rebecca; Eick, Charles; Shannon, David

    2012-01-01

    Creative drama activities designed to help children learn difficult science concepts were integrated into an inquiry-based elementary science program. Children (n = 38) in an upper elementary enrichment program at one primary school were the participants in this action research. The teacher-researcher taught students the Full Option Science…

  5. Houston Pre-Freshman Enrichment Program (Houston PREP). Final report, June 9, 1997--July 25, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-10-01

    The 1997 Houston Pre-Freshman Enrichment Program (PREP) was conducted at the campus of the University of Houston-Downtown from June 9 to July 25, 1997. Program participants were recruited from the Greater Houston Area. All participants were identified as high-achieving students with an interest in learning about the engineering and science professions. The goal of the program was to better prepare our pre-college youth prior to entering college as mathematics, science and engineering majors. The program participants were middle school and high school students from the Aldine, Alief, Channel View, Clear Creek, Cypress-Fairbanks, Fort Bend, Galena Park, Houston, Humble, Katy, Klein,more » North Forest, Pasadena, Private, and Spring Branch Independent School Districts. Of the 194 students starting the program, 165 students were from economically and socially disadvantage groups under-represented in the engineering and science professions, and 118 of the 194 were women. Our First Year group for 1997 composed of 96% minority and women students. Second and Third Year students combined were 96% minority or women. With financial support from the Center for Computational Sciences and Advanced Distributed Simulation, the Fourth Year Program was added to PREP this year. Twelve students completed the program (83% minority or women).« less

  6. Children's Literature and the Science Curriculum

    ERIC Educational Resources Information Center

    Ediger, Marlow

    2010-01-01

    A quality children's literature program needs to be correlated with ongoing science lessons and units of study. It can enhance and enrich the science curriculum. Pupils tend to enjoy reading library books and the the literature may assist pupils to explore topics in greater depth. In addition to science experiments, demonstrations, and…

  7. Team Teaching in the Saturday Morning Search for Solutions.

    ERIC Educational Resources Information Center

    Solomon, Pearl G.; And Others

    The Marie Curie Mathematics and Science Center at St. Thomas Aquinas College (New York), in a comprehensive effort to improve mathematics and science education, offers the Saturday Morning Search for Solutions enrichment program for area students in grades 7-12. The program is interdisciplinary, connecting technology and the study of societal…

  8. FOSTER-Flight Opportunities for Science Teacher EnRichment, A New IDEA Program From NASA Astrophysics

    NASA Astrophysics Data System (ADS)

    Devore, E.; Gillespie, C.; Hull, G.; Koch, D.

    1993-05-01

    Flight Opportunities for Science Teacher EnRichment (FOSTER) is a new educational program from the Imitative to Develop Education through Astronomy in the Astrophysics Division at NASA Headquarters. Now in its first year of the pilot program, the FOSTER project brings eleven Bay Area teaaaachers to NASA Ames to participate in a year-long program of workshops, educational programs at their schools and the opportunity to fly aboard the Kuiper Airborne Observatory (KAO) on research missions. As science and math educators, FOSTER teachers get a close-up look at science in action and have the opportunity to interact with the entire team of scientists, aviators and engineers that support the research abord the KAO. In June, a second group of FOSTER teachers will participate in a week-long workshop at ASes to prepare for flights during the 1993-94 school year. In addition, the FOSTER project trains teachers to use e-mail for ongoing communication with scientists and the KAO team, develops educational materials and supports opportunities for scientists to become directly involved in local schools. FOSTER is supported by a NASA grant (NAGW 3291).

  9. Evaluating the Effectiveness of the 2001-2002 NASA "Why?" Files Program

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Frank, Kari Lou; Lambert, Matthew A.

    2002-01-01

    This report contains the results of the evaluation conducted for the 2001-2002 NASA 'Why?' Files program that was conducted in March 2002. The analysis is based on the results of 139 surveys collected from educators registered for the program. Respondents indicated that (1) the programs in the series are aligned with the national mathematics, science, and technology standards; (2) the programs are developmentally (grade level) appropriate; and (3) the programs enhance and enrich the teaching and learning of mathematics, science, and technology.

  10. Evaluating the Effectiveness of the 2001-2002 NASA CONNECT(tm) Program

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Frank, Kari Lou; Lambert, Matthew A.; Williams, Amy C.

    2002-01-01

    NASA CONNECT(tm) is a research and standards-based, integrated mathematics, science, and technology series of 30-minute instructional distance learning (television and web-based) programs for students in grades 6-8. Respondents who evaluated the programs in the 2001-2002 NASA CONNECT(tm) series reported that (1) they used the programs in the series; (2) the goals and objectives for the series were met; (3) the programs were aligned with the national mathematics, science, and technology standards; (4) the program content was developmentally appropriate for grade level; and (5) the programs in the series enhanced and enriched the teaching of mathematics, science, and technology.

  11. Evaluating the Effectiveness of the 2002-2003 NASA CONNECT(TM) Program

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Lambert, Matthew A.; Williams, Amy C.

    2004-01-01

    NASA CONNECT is a research-, inquiry-, and standards-based, integrated mathematics, science, and technology series of 30-minute instructional distance learning (television and web-based) programs for students in grades 6 8. Respondents who evaluated the programs in the 2002 2003 NASA CONNECT series reported that (1) they used the programs in the series; (2) the goals and objectives for the series were met; (3) the programs were aligned with the national mathematics, science, and technology standards; (4) the program content was developmentally appropriate for grade level; and (5) the programs in the series enhanced and enriched the teaching of mathematics, science, and technology.

  12. A study of the long term impact of an inquiry-based science program on student's attitudes towards science and interest in science careers

    NASA Astrophysics Data System (ADS)

    Gibson, Helen Lussier

    One reason science enrichment programs were created was to address the underrepresentation of women and minorities in science. These programs were designed to increase underrepresented groups' interest in science and science careers. One attempt to increase students' interest in science was the Summer Science Exploration Program (SSEP). The SSEP was a two week, inquiry-based summer science camp offered by Hampshire College for students entering grades seven and eight. Students who participated were from three neighboring school districts in Western Massachusetts. The goal of the program was to stimulate greater interest in science and scientific careers among middle school students, in particular among females and students of color. A review of the literature of inquiry-based science programs revealed that the effect of inquiry-based programs on students' attitudes towards science is typically investigated shortly after the end of the treatment period. The findings from this study contribute to our understanding of the long-term impact of inquiry-based science enrichment programs on students' attitude towards science and their interest in science careers. The data collected consisted of quantitative survey data as well as qualitative data through case studies of selected participants from the sample population. This study was guided by the following questions: (1) What was the nature and extent of the impact of the Summer Science Exploration Program (SSEP) on students' attitudes towards science and interest in science careers, in particular among females and students of color? (2) What factors, if any, other than participation in SSEP impacted students' attitude towards science and interest in scientific careers? (3) In what other ways, if any, did the participants benefit from the program? Conclusions drawn from the data indicate that SSEP helped participants maintain a high level of interest in science. In contrast, students who applied but were not accepted showed a decrease in their attitude towards science and their interest in science careers over time, compared to the participants. The interviews suggested that students enjoyed the inquiry-based approach that was used at camp. In addition, students said they found the hands-on inquiry-based approach used at camp more interesting than traditional methods of instruction (lectures and note taking) used at school. Recommendations for future research are presented.

  13. Research and Teaching: Investigating Preservice Teachers' Self-Efficacy through Saturday Science

    ERIC Educational Resources Information Center

    McLaughlin, David

    2015-01-01

    This study reports on preservice teachers' reported feelings of confidence with learning and teaching science relative to their participation in a science enrichment program. Through Saturday Science, local families are invited to explore various topics with hands-on activities designed and facilitated by students in an early childhood education…

  14. PROJECT SUCCESS: Marine Science. (Introductory Packet, Basic Marine Science Laboratory Techniques, Oceanographic Instruments, Individual Projects, Bibliography).

    ERIC Educational Resources Information Center

    Demaray, Bryan

    Five packets comprise the marine science component of an enrichment program for gifted elementary students. Considered in the introductory section are identification (pre/post measure) procedures. Remaining packets address the following topics (subtopics in parentheses): basic marine science laboratory techniques (microscope techniques and metric…

  15. Science 2. De Soto Parish Curriculum Guide.

    ERIC Educational Resources Information Center

    Brown, Emmagene L.; And Others

    This guide is designed to provide teachers (grade 2) with a ready resource for planning, organizing, and teaching science to the elementary child. Many suggested activities will provide an enriched science program. Each unit lists estimated time, content, concepts or "understandings," problems to deal with, activities, suggestions for…

  16. Collaboration and Community Building in Summer Undergraduate Research Programs in the School of Earth Sciences at Stanford University

    NASA Astrophysics Data System (ADS)

    Nevle, R. J.; Watson Nelson, T.; Harris, J. M.; Klemperer, S. L.

    2012-12-01

    In 2012, the School of Earth Sciences (SES) at Stanford University sponsored two summer undergraduate research programs. Here we describe these programs and efforts to build a cohesive research cohort among the programs' diverse participants. The two programs, the Stanford School of Earth Sciences Undergraduate Research (SESUR) Program and Stanford School of Earth Sciences Summer Undergraduate Research in Geoscience and Engineering (SURGE) Program, serve different undergraduate populations and have somewhat different objectives, but both provide students with opportunities to work on strongly mentored yet individualized research projects. In addition to research, enrichment activities co-sponsored by both programs support the development of community within the combined SES summer undergraduate research cohort. Over the course of 6 to 9 months, the SESUR Program engages Stanford undergraduates, primarily rising sophomores and juniors, with opportunities to deeply explore Earth sciences research while learning about diverse areas of inquiry within SES. Now in its eleventh year, the SESUR experience incorporates the breadth of the scientific endeavor: finding an advisor, proposal writing, obtaining funding, conducting research, and presenting results. Goals of the SESUR program include (1) providing a challenging and rewarding research experience for undergraduates who wish to explore the Earth sciences; (2) fostering interdisciplinary study in the Earth sciences among the undergraduate population; and (3) encouraging students to major or minor in the Earth sciences and/or to complete advanced undergraduate research in one of the departments or programs within SES. The SURGE Program, now in its second year, draws high performing students, primarily rising juniors and seniors, from 14 colleges and universities nationwide, including Stanford. Seventy percent of SURGE students are from racial/ethnic backgrounds underrepresented in STEM fields, and approximately one-third are the first in their families to attend college. For eight weeks, SURGE scholars conduct independent research with the guidance of faculty, research group mentors, and program assistants. The primary objectives of the SURGE program are to (1) provide undergraduates with a research experience in SES; (2) prepare undergraduates for the process of applying to graduate school; (3) introduce undergraduates to career opportunities in the geosciences and engineering; and (4) increase diversity in SES graduate programs. Independent research, network building, and intense mentoring culminate in a final oral and poster symposium. SESUR and SURGE scholars jointly participate in enrichment activities including faculty research seminars; career, graduate school, and software training workshops; GRE preparation classes; and geoscience-oriented field trips. Interaction among our students takes place through both research and enrichment activities, creating a critical mass of undergraduate scholars and promoting community development. Pre- and post-program surveys indicate that the overall goals of both programs are being achieved.

  17. Program to enrich science and mathematics experiences of high school students through interactive museum internships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reif, R.J.; Lock, C.R.

    1998-11-01

    This project addressed the problem of female and minority representation in science and mathematics education and in related fields. It was designed to recruit high school students from under-represented groups into a program that provided significant, meaningful experiences to encourage those young people to pursue careers in science and science teaching. It provided role models for those students. It provided experiences outside of the normal school environment, experiences that put the participants in the position to serve as role models themselves for disadvantaged young people. It also provided encouragement to pursue careers in science and mathematics teaching and related careers.more » In these respects, it complemented other successful programs to encourage participation in science. And, it differed in that it provided incentives at a crucial time, when career decisions are being made during the high school years. Further, it encouraged the pursuit of careers in science teaching. The objectives of this project were to: (1) provide enrichment instruction in basic concepts in the life, earth, space, physical sciences and mathematics to selected high school students participating in the program; (2) provide instruction in teaching methods or processes, including verbal communication skills and the use of questioning; (3) provide opportunities for participants, as paid student interns, to transfer knowledge to other peers and adults; (4) encourage minority and female students with high academic potential to pursue careers in science teaching.« less

  18. Identity and science learning in African American students in informal science education contexts

    NASA Astrophysics Data System (ADS)

    James, Sylvia M.

    2007-12-01

    Science education researchers are recognizing the need to consider identity and other sociocultural factors when examining causes of the science achievement gap for African American students. Non-school settings may hold greater promise than formal schooling to promote identities that are conductive to science learning in African Americans. This mixed-methods study explored the relationship between participation in out-of-school-time (OST) science enrichment programs and African American middle and high school students' racial and ethnic identity (RED, social identity as science learners, and achievement. Pre-post questionnaires used a previously validated model of REI combined with an original subscale that was developed to measure social identity as science learners. Case studies of two programs allowed for an analysis of the informal learning setting. The treatment group (N = 36) consisted of African American middle and high school students in five OST science programs, while the control group (N = 54) students were enrolled in science classes in public schools in the mid-Atlantic region. Results of a t-test of independent means indicated that there was no significant difference between the treatment and control group on measures of REI or science identity. However, the treatment group earned significantly higher science grades compared to the control group, and an ANOVA revealed a significant relationship between science identity and the intention to pursue post-secondary science studies. Although not significant, MANOVA results indicated that students who participated in OST programs exhibited gradual increases in RD and science identity over time according to grade level and gender. Follow-up analysis revealed significant relationships between awareness of racism, gender, and length of time in OST programs. The case studies illustrated that a unique community of practice exists within the OST programs. Access to authentic science learning experiences, youth development, social interactions, and relationships with staff emerged as key elements of successful science enrichment programs, Collectively, the results suggest that informal learning settings are supportive environments for science learning. Further study is needed to examine the pattern of increasing REI and science identity over time, the impact of youth development and agency, and potential implications for science in school and informal learning contexts.

  19. Program Development for Disadvantaged High-Ability Students

    ERIC Educational Resources Information Center

    Kim, Mihyeon; Cross, Jennifer; Cross, Tracy

    2017-01-01

    Examining lessons learned through 4 years of experience of hosting Camp Launch, a university-based residential science, technology, engineering, and mathematics (STEM) enrichment program for low-income, high-ability, middle school students, this article explores components of the program and offers suggestions for implementing programs that serve…

  20. Evaluating the Effectiveness of the 2000-2001 NASA CONNECT(TM) Program

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Frank, Kari Lou; Lambert, Matthew A.

    2002-01-01

    This report contains the results of the evaluation conducted for the 2000-2001 NASA CONNECT(TM) program conducted in March 2001. The analysis is based on the results collected from 154 surveys collected from educators registered for the program. Respondents indicated that the objectives for each program were met; the programs were aligned with the national (mathematics, science, and technology) standards; the programs were developmentally (grade level) appropriate; and the programs in the 2000-2001 NASA CONNECT(TM) series enhanced/enriched the teaching of mathematics, science, and technology.

  1. Keys To The Kansas Environment. 4-H School Enrichment Program.

    ERIC Educational Resources Information Center

    Kansas State Univ., Manhattan. Extension Service.

    The 4-H Club packet for preschool and elementary school children contains nine "keys", or short learning exercises, designed to enrich science and environmental education both in and out of the classroom. Each "key" includes the purpose of the activity, the intended audience, the best time of the year for the activity,…

  2. Parental Perceptions of STEM Enrichment for Young Children

    ERIC Educational Resources Information Center

    Tay, Juliana; Salazar, Alissa; Lee, Hyeseong

    2018-01-01

    Most pre-kindergarten (pre-K) and kindergarten curricula are challenging and engaging, but few are strongly grounded in science, technology, engineering, and mathematics (STEM) education. In this study, the authors examined parental perception (N = 55) of the influences of a Saturday STEM enrichment program in one university center on pre-K and…

  3. Inquiry-Based Science and Technology Enrichment Program: Green Earth Enhanced with Inquiry and Technology

    ERIC Educational Resources Information Center

    Kim, Hanna

    2011-01-01

    This study investigated the effectiveness of a guided inquiry integrated with technology, in terms of female middle-school students' attitudes toward science/scientists and content knowledge regarding selective science concepts (e.g., Greenhouse Effect, Air/Water Quality, Alternative Energy, and Human Health). Thirty-five female students who were…

  4. Using Creative Dramatics to Foster Conceptual Learning in a Science Enrichment Program

    NASA Astrophysics Data System (ADS)

    Hendrix, Rebecca Compton

    This study made analysis of how the integration of creative drama into a science enrichment program enhanced the learning of elementary school students' understanding of sound physics and solar energy. The study also sought to determine if student attitudes toward science could be improved with the inclusion of creative drama as an extension to a well-known science inquiry program. The qualitative portion of this study explored the treatment groups' perceptions of how the use of creative drama helped them to learn science. A treatment group of fourth and fifth grade students were taught using the Full Option Science System (FOSS) kit in sound physics and solar energy with the inclusion of creative drama, while a control group of fourth and fifth grade students were taught using only the FOSS kit. The quantitative data analysis revealed that the students who were taught science with the inclusion of creative drama showed greater understanding of the science content than the students in the control group taught without the inclusion of creative drama. Both groups and grade levels in this study showed a slight decline in science attitudes from pre to post survey. Although the overall change was small it was statistically significant. The conclusion from this data is that the inclusion of creative drama in a science inquiry science program does not increase student's attitudes toward learning science any better than inquiry based instruction without creative drama. The drama treatment group students reported that they enjoyed participating in creative drama activities and generally viewed the creative drama intervention as a fun way to learn more about science. The students indicated that the creative drama activities helped them to remember and think about science. The researcher concluded that creative drama when used as an extension to an inquiry science program increases student understanding of science content better than the use of a science inquiry program alone. Although students in both treatment and control groups showed a small decline in attitude toward science, the drama treatment students responded favorably to creative drama's use and implementation in helping them to learn more about science.

  5. 1997 NASA/MSFC Summer Teacher Enrichment Program

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a report on the follow-up activities conducted for the 1997 NASA Summer Teacher Enrichment Program (STEP), which was held at the George C. Marshall Space Flight Center (MSFC) for the seventh consecutive year. The program was conducted as a six-week session with 17 sixth through twelfth grade math and science teachers from a six-state region (Alabama, Arkansas, Iowa, Louisiana, Mississippi and Missouri). The program began on June 8, 1997, and ended on July 25, 1997. The long-term objectives of the program are to: increase the nation's scientific and technical talent pool with a special emphasis on underrepresented groups, improve the quality of pre-college math and science education, improve math and science literacy, and improve NASA's and pre-college education's understandings of each other's operating environments and needs. Short-term measurable objectives for the MSFC STEP are to: improve the teachers' content and pedagogy knowledge in science and/or mathematics, integrate applications from the teachers' STEP laboratory experiences into science and math curricula, increase the teachers' use of instructional technology, enhance the teachers' leadership skills by requiring them to present workshops and/or inservice programs for other teachers, require the support of the participating teacher(s) by the local school administration through a written commitment, and create networks and partnerships within the education community, both pre-college and college. The follow-up activities for the 1997 STEP included the following: academic-year questionnaire, site visits, academic-year workshop, verification of commitment of support, and additional NASA support.

  6. Thermal-Structures and Materials Testing Laboratory

    NASA Technical Reports Server (NTRS)

    Teate, Anthony A.

    1997-01-01

    Since its inception and successful implementation in 1997 at James Madison University, the Thermal Structures and Materials Testing Laboratory (T-SaMTL) funded by the NASA Langley Research Center is evolving into one of the University's premier and exemplary efforts to increase minority representation in the sciences and mathematics. Serving ten (10) students and faculty directly and almost fifty (50) students indirectly, T-SAMTL, through its recruitment efforts, workshops, mentoring program, tutorial services and its research and computational laboratories has marked the completion of the first year with support from NASA totaling $ 100,000. Beginning as an innovative academic research and mentoring program for underrepresented minority science and mathematics students, the program now boasts a constituency which consists of 50% graduating seniors in the spring of 1998 with 50% planning to go to graduate school. The program's intent is to increase the number of underrepresented minorities who receive doctoral degrees in the sciences by initiating an academically enriched research program aimed at strengthening the academic and self actualization skills of undergraduate students with the potential to pursue doctoral study in the sciences. The program provides financial assistance, academic enrichment, and professional and personal development support for minority students who demonstrate the potential and strong desire to pursue careers in the sciences and mathematics. James Madison University was awarded the first $100,000, in April 1997, by The NASA Langley Research Center for establishment and support of its Thermal Structures and Materials Testing

  7. Confessions of a fungal systematist

    Treesearch

    D. Jean Lodge

    2016-01-01

    1. The Long-Term Ecological Research (LTER) program has not influenced my basic approach to science. 2. The LTER program has reinforced my approach to mentoring, and it has increased my opportunities to mentor students through the LTER-associated Research Experiences for Undergraduates Program. 3. LTER program has greatly enriched my collaborative network and expanded...

  8. The current state of the Russian reduced enrichment research reactors program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aden, V.G.; Kartashov, E.F.; Lukichev, V.A.

    1997-08-01

    During the last year after the 16-th International Conference on Reducing Fuel Enrichment in Research Reactors held in October, 1993 in Oarai, Japan, the conclusive stage of the Program on reducing fuel enrichment (to 20% in U-235) in research reactors was finally made up in Russia. The Program was started late in 70th and the first stage of the Program was completed by 1986 which allowed to reduce fuel enrichment from 80-90% to 36%. The completion of the Program current stage, which is counted for 5-6 years, will exclude the use of the fuel enriched by more than 20% frommore » RF to other countries such as: Poland, Czeck Republick, Hungary, Roumania, Bulgaria, Libya, Viet-Nam, North Korea, Egypt, Latvia, Ukraine, Uzbekistan and Kazakhstan. In 1994 the Program, approved by RF Minatom authorities, has received the status of an inter-branch program since it was admitted by the RF Ministry for Science and Technical Policy. The Head of RF Minatom central administrative division N.I.Ermakov was nominated as the Head of the Russian Program, V.G.Aden, RDIPE Deputy Director, was nominated as the scientific leader. The Program was submitted to the Commission for Scientific, Technical and Economical Cooperation between USA and Russia headed by Vice-President A. Gore and Prime Minister V. Chemomyrdin and was given support also.« less

  9. Marine Science Summer Enrichment Camp's Impact Ocean Literacy for Middle School Students

    NASA Astrophysics Data System (ADS)

    Young, Victoria Jewel

    Although careers in science, technology, engineering, and mathematics have expanded in the United States, science literacy skills for K-12 students have declined from 2001 to 2011. Limited research has been conducted on the impact of science enrichment programs on the science literacy skills of K-12 students, particularly in marine science. The purpose of this study was to describe the impact of a marine science summer enrichment camp located in the eastern region of the United States on the ocean literacy skills of middle school students who participated in this camp. Weimar's learner centered teaching approach and the definition and principles of ocean literacy formed the conceptual framework. The central research question focused on how a marine science summer enrichment camp impacted the ocean literacy skills of middle grade students. A single case study research design was used with ten participants including 3 camp teachers, four students, and 3 parents of Grade 6-8 students who participated this camp in 2016. Data were collected from multiple sources including individual interviews of camp teachers, students, and parents, as well as camp documents and archival records. A constant comparative method was used to construct categories, determine emergent themes and discrepant data. Results indicated that the marine science camp positively impacted the ocean literacy skills of middle school students through an emphasis on a learner centered instructional approach. The findings of this study may provide a positive social impact by demonstrating active science literacy instructional strategies for teachers which can motivate students to continue studies in science and science related fields.

  10. A Potpourri of Pascal Programs.

    ERIC Educational Resources Information Center

    Gimmestad, Beverly; And Others

    This is a collection of Pascal programs that were developed for a 1986 National Science Foundation-sponsored high school teachers' summer workshop. The programs can be used as a means of extending or enriching textbook material in either high school mathematics or Pascal courses. Some suggested uses are: (1) teacher demonstrations in mathematics…

  11. MESA/MEP at American River College: Year One Evaluation Report.

    ERIC Educational Resources Information Center

    Lee, Beth S.; And Others

    In 1989, the Mathematics, Engineering, and Science Achievement (MESA)/Minority Engineering Program (MEP) was initiated at American River College. The MESA/MEP program recruits Black, Hispanic, and Native American students and provides assistance, encouragement, and enrichment programs to help them succeed in the fields of mathematics, engineering,…

  12. Science Education & Cultural Environments in the Americas. Report of the Inter-American Seminar on Science Education (Panama City, Panama, December 10-14, 1984).

    ERIC Educational Resources Information Center

    Gallagher, James J., Ed.; Dawson, George, Ed.

    The impact of cultural background on science learning is explored in this compilation of papers and reports from an inter-American Seminar on science education. For the purposes of enriching science program planning, teacher education, research, and practice in the schools, varying ideas are offered on the effects of cultural background on science…

  13. Assessment for Effective Intervention: Enrichment Science Academic Program

    NASA Astrophysics Data System (ADS)

    Sasson, Irit; Cohen, Donita

    2013-10-01

    Israel suffers from a growing problem of socio-economic gaps between those who live in the center of the country and residents of outlying areas. As a result, there is a low level of accessibility to higher education among the peripheral population. The goal of the Sidney Warren Science Education Center for Youth at Tel-Hai College is to strengthen the potential of middle and high school students and encourage them to pursue higher education, with an emphasis on majoring in science and technology. This study investigated the implementation and evaluation of the enrichment science academic program, as an example of informal learning environment, with an emphasis on physics studies. About 500 students conducted feedback survey after participating in science activities in four domains: biology, chemistry, physics, and computer science. Results indicated high level of satisfaction among the students. No differences were found with respect to gender excluding in physics with a positive attitudes advantage among boys. In order to get a deeper understanding of this finding, about 70 additional students conducted special questionnaires, both 1 week before the physics enrichment day and at the end of that day. Questionnaires were intended to assess both their attitudes toward physics and their knowledge and conceptions of the physical concept "pressure." We found that the activity moderately improved boys' attitudes toward physics, but that girls displayed decreased interest in and lower self-efficacy toward physics. Research results were used to the improvement of the instructional design of the physics activity demonstrating internal evaluation process for effective intervention.

  14. The Integration of Creative Drama in an Inquiry-Based Elementary Program: The Effect on Student Attitude and Conceptual Learning

    NASA Astrophysics Data System (ADS)

    Hendrix, Rebecca; Eick, Charles; Shannon, David

    2012-11-01

    Creative drama activities designed to help children learn difficult science concepts were integrated into an inquiry-based elementary science program. Children (n = 38) in an upper elementary enrichment program at one primary school were the participants in this action research. The teacher-researcher taught students the Full Option Science System™ (FOSS) modules of sound (fourth grade) and solar energy (fifth grade) with the integration of creative drama activities in treatment classes. A 2 × 2 × (2) Mixed ANOVA was used to examine differences in the learning outcomes and attitudes toward science between groups (drama and non-drama) and grade levels (4th and 5th grades) over time (pre/post). Learning was measured using the tests included with the FOSS modules. A shortened version of the Three Dimension Elementary Science Attitude Survey measured attitudes toward science. Students in the drama treatment group had significantly higher learning gains ( F = 160.2, p < 0.001) than students in the non-drama control group with students in grade four reporting significantly greater learning outcomes ( F = 14.3, p < 0.001) than grade five. There was a significantly statistical decrease in student attitudes toward science ( F = 7.5, p < 0.01), though a small change. Creative drama was an effective strategy to increase science conceptual learning in this group of diverse elementary enrichment students when used as an active extension to the pre-existing inquiry-based science curriculum.

  15. After-school enrichment and the activity theory: How can a management service organization assist schools with reducing the achievement gap among minority and non-minority students in science, technology, engineering, and mathematics (STEM) during the after-school hours?

    NASA Astrophysics Data System (ADS)

    Flowers, Reagan D.

    The primary purpose of this study was to investigate how a management service organization can assist schools with reducing the achievement gap between minority and non-minority students in science, technology, engineering, and mathematics (STEM) during the after-school hours. Developing a strategic plan through creating a program that provides support services for the implementation of hands-on activities in STEM for children during the after-school hours was central to this purpose. This Project Demonstrating Excellence (PDE), a social action project, also presents historical and current after-school program developments in the nation. The study is quantitative and qualitative in nature. Surveys were utilized to quantitatively capture the opinions of participants in the social action project on three specific education related issues: (1) disparity in academic motivation of students to participate in after-school STEM enrichment programs; (2) whether teachers and school administrators saw a need for STEM after-school enrichment; and (3) developing STEM after-school programs that were centered on problem-solving and higher-order thinking skills to develop students' interest in STEM careers. The sample consisted of 50 participants comprised of students, teachers, and administrators. The focus groups and interviews provided the qualitative data for the study. The qualitative sample consisted of 14 participants comprised of students, parents and teachers, administrators, an education consultant, and a corporate sponsor. The empirical data obtained from the study survey, focus groups, and interviews provided a comprehensive profile on the current views and future expectations of STEM after-school enrichment, student and school needs, and community partnerships with STEM companies. Results of the study and review of the implementation of the social action project, C-STEM (communication, science, technology, engineering, and mathematics) Teacher and Student Support Services, Inc., revealed the need and focus for STEM after-school enrichment programs in Houston, Texas. This result, along with requirements of STEM Research and Special Programs Administrations and a multiyear and multilevel strategic plan inspired by this study, led to the conceptualization, development, and implementation of C-STEM Teacher and Student Support Services, Inc. at multiple schools in Houston, Texas. The purpose of C-STEM Teacher and Student Support Services, Inc. is to provide hands-on support services that encourage schools, organizations and families to improve academic achievement and socioemotional development through project-based learning in communication, science, technology, engineering, and mathematics (CSTEM) in grades 4-12.

  16. Collaboration with Community Partners

    ERIC Educational Resources Information Center

    Sterling, Donna R.; Frazier, Wendy M.

    2006-01-01

    For eight years, relationships with community partners have been the mainstay of a science enrichment program for secondary students. Through the use of problem-based learning, science classes use, the techniques and tools of scientists to solve authentic problems directly related to students' interests and needs. In this article, the author…

  17. Educational opportunities within the NASA specialized center of research and training in gravitational biology

    NASA Technical Reports Server (NTRS)

    Guikema, James A.; Spooner, Brian S.

    1994-01-01

    The NASA Specialized Center of Research and Training (NSCORT) in Gravitational Biology was established at Kansas State University, supported through NASA's Life Science Division, Office of Space Science and Applications. Educational opportunities, associated with each of the research projects which form the nucleus of the Center, are complemented by program enrichments such as scholar exchanges and linkages to other NASA and commercial programs. The focus of this training program, and a preliminary assessment of its successes, are described.

  18. NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1990

    NASA Technical Reports Server (NTRS)

    Spencer, John H. (Compiler)

    1990-01-01

    Since 1964, NASA has supported a program of summer faculty fellowships for engineering and science educators. The objectives are to further the professional knowledge of qualified engineering and science members; to stimulate and exchange ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants' institutions; and to contribute to the research objectives of the NASA center. The study program consists of lectures and seminars on topics of interest or that are directly relevant to the research topics.

  19. INMED Prepares American Indians for the Health Professions.

    ERIC Educational Resources Information Center

    Sweney, Kathryn

    1990-01-01

    Describes the INMED (Indians into Medicine) program, which helps American Indian secondary students prepare for medical and health careers. Focuses on the INMED summer institute, an intensive five-week science and math enrichment program at the University of North Dakota, Grand Forks. (SV)

  20. From Skeletons to Bridges & Other STEM Enrichment Exercises for High School Biology

    ERIC Educational Resources Information Center

    Riechert, Susan E.; Post, Brian K.

    2010-01-01

    The national Science, Technology, Engineering, and Math (STEM) Education Initiative favors a curriculum shift from the compartmentalization of math and science classes into discrete subject areas to an integrated, multidisciplinary experience. Many states are currently implementing programs in high schools that provide greater integration of math,…

  1. Science Laboratory Safety: Findings and Implications for Teacher Education.

    ERIC Educational Resources Information Center

    Swami, Piyush

    1986-01-01

    Summarizes a survey of the condition of high school science laboratories in the greater Cincinnati area (N=36). Reports safety measures undertaken for fire and burn and eye and face protection, waste disposal, storage facilities, and ventilation. Offers suggestions and plans for enriching safety education programs for teachers. (ML)

  2. Integrated and Contextual Basic Science Instruction in Preclinical Education: Problem-Based Learning Experience Enriched with Brain/Mind Learning Principles

    ERIC Educational Resources Information Center

    Gülpinar, Mehmet Ali; Isoglu-Alkaç, Ümmühan; Yegen, Berrak Çaglayan

    2015-01-01

    Recently, integrated and contextual learning models such as problem-based learning (PBL) and brain/mind learning (BML) have become prominent. The present study aimed to develop and evaluate a PBL program enriched with BML principles. In this study, participants were 295 first-year medical students. The study used both quantitative and qualitative…

  3. Increase in Science Research Commitment in a Didactic and Laboratory-Based Program Targeted to Gifted Minority High-School Students

    ERIC Educational Resources Information Center

    Fraleigh-Lohrfink, Kimberly J.; Schneider, M. Victoria; Whittington, Dawayne; Feinberg, Andrew P.

    2013-01-01

    Underrepresentation of ethnic minorities in science, technology, engineering, and mathematics (STEM) fields has been a growing concern. Efforts to ameliorate this have often been directed at college-level enrichment. However, mentoring in the sciences at a high-school age level may have a greater impact on career choices. The Center Scholars…

  4. Assessing the Effectiveness of a Mathematics-Focused, Instructional Technology Program for Grades 6-8: A 5-Year Trend Analysis of NASA CONNECT(tm) Evaluation Data

    NASA Technical Reports Server (NTRS)

    Glassman, Nanci A.; Perry, Jeannine B.; Giersch, Christopher E.; Lambert, Matthew A.; Pinelli, Thomas E.

    2004-01-01

    NASA CONNECT is a research-, inquiry, and standards-based, integrated mathematics, science, and technology series of 30-minute instructional distance learning (television and web-based) programs for students in grades 6 8. Respondents who evaluated the programs in the series over the first five seasons (1998-99 through 2002-03) reported that (1) they used the programs in the series; (2) the goals and objectives for the series were met; (3) the programs were aligned with the national mathematics, science, and technology standards; (4) the program content was developmentally appropriate for the grade level; and (5) the programs in the series enhanced and enriched the teaching of mathematics, science, and technology.

  5. Northland science discovery. Final report, February 15, 1995--February 14, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigford, A.

    1997-09-01

    This is a final report on the US Department of Energy`s grant of $39,900 to the PLUS Center at The College of St. Scholastica for a PREP program called Northland Science Discovery (NSD). This report includes an overview of the past year`s progress toward achieving the goals established for the project, a description of the results of these efforts and their relationship to the project goals, and appendices documenting program activities, accomplishments, and expenditures. The goal of Northland Science Discovery is to provide science and math enrichment activities for students traditionally underrepresented in science (girls, minorities, low-income, and rural children).more » The program works toward this goal by providing a four-week residential, research-based, science and math youth camp which serves approximately 25 students per year. NSD has been held each summer since 1992. This program also has an academic-year component consisting of reunions.« less

  6. Beyond Academic and Social Integration: Understanding the Impact of a STEM Enrichment Program on the Retention and Degree Attainment of Underrepresented Students

    PubMed Central

    Lane, Tonisha B.

    2016-01-01

    The current study used a case study methodological approach, including document analysis, semistructured interviews, and participant observations, to investigate how a science, technology, engineering, and mathematics (STEM) enrichment program supported retention and degree attainment of underrepresented students at a large, public, predominantly white institution. From this study, a model emerged that encompassed four components: proactive care, holistic support, community building, and catalysts for STEM identity development. These components encompassed a number of strategies and practices that were instrumental in the outcomes of program participants. This paper concludes with implications for practice, such as using models to inform program planning, assessment, and evaluation. PMID:27543638

  7. Improving Inquiry Teaching through Reflection on Practice

    ERIC Educational Resources Information Center

    Lotter, Christine R.; Miller, Cory

    2017-01-01

    In this paper, we explore middle school science teachers' learning of inquiry-based instructional strategies through reflection on practice teaching sessions during a summer enrichment program with middle level students. The reflection sessions were part of a larger year-long inquiry professional development program in which teachers learned…

  8. ARO in Review 2012

    DTIC Science & Technology

    2012-01-01

    promotes original research and experimentation in the sciences, engineering, and mathematics at the high school level and publicly recognizes students ...in programs that offered enrichment classes in engineering at universities through the UNITE program. 1,614 middle and high school students ...Research and Engineering Apprenticeship Program (REAP) REAP is designed to offer high school students the opportunity to expand their background and

  9. "Unthinkable" Selves: Identity Boundary Work in a Summer Field Ecology Enrichment Program for Diverse Youth

    ERIC Educational Resources Information Center

    Carlone, Heidi B.; Huffling, Lacey D.; Tomasek, Terry; Hegedus, Tess A.; Matthews, Catherine E.; Allen, Melony H.; Ash, Mary C.

    2015-01-01

    The historical under-representation of diverse youth in environmental science education is inextricably connected to access and identity-related issues. Many diverse youth with limited previous experience to the outdoors as a source for learning and/or leisure may consider environmental science as "unthinkable." This is an ethnographic…

  10. An Unexpected Outcome: Afterschool STEM Enrichment Empowers Facilitators, Too!

    ERIC Educational Resources Information Center

    Masarik, Michelle

    2017-01-01

    One of the goals of afterschool programming is to empower students by increasing their sense of autonomy and giving them room to chart their own course of discovery. Long before STEM (science, technology, engineering, and math) became part of the educational vernacular, afterschool practitioners were using science content and scientific practices…

  11. UNITE 3D Rover Summer Workshop: An Overview and Assessment

    ERIC Educational Resources Information Center

    Hsiung, Steve C.; Deal, Walter F.; Tuluri, Francis

    2017-01-01

    UNITE is a program sponsored by the Army Educational Outreach Program (AEOP, 2015). The STEM Enrichment Activities of AEOP are designed to spark student interest in science, technology, engineering, and mathematics, especially among the underserved and those in earlier grades and educators by providing exciting, engaging, interactive, hands-on…

  12. Evaluating the Effectiveness of the 2003-2004 NASA SCIence Files(trademark) Program

    NASA Technical Reports Server (NTRS)

    Caton, Randall H.; Ricles, Shannon S.; Pinelli, Thomas E.; Legg, Amy C.; Lambert, Matthew A.

    2005-01-01

    The NASA SCI Files is an Emmy award-winning series of instructional programs for grades 3-5. Produced by the NASA Center for Distance Learning, programs in the series are research-, inquiry-, standards-, teacher- and technology-based. Each NASA SCI Files program (1) integrates mathematics, science, and technology; (2) uses Problem-Based Learning (PBL) to enhance and enrich the teaching and learning of science; (3) emphasizes science as inquiry and the scientific method; (4) motivates students to become critical thinkers and active problem solvers; and (5) uses NASA research, facilities, and personnel to raise student awareness of careers and to exhibit the "real-world" application of mathematics, science, and technology. In April 2004, 1,500 randomly selected registered users of the NASA SCI Files were invited to complete a survey containing a series of questions. A total of 263 surveys were received. This report contains the quantitative and qualitative results of that survey.

  13. Predicting scientific oral presentation scores in a high school photonics science, technology, engineering and mathematics (STEM) program

    NASA Astrophysics Data System (ADS)

    Gilchrist, Pamela O.; Carpenter, Eric D.; Gray-Battle, Asia

    2014-07-01

    A hybrid teacher professional development, student science technology mathematics and engineering pipeline enrichment program was operated by the reporting research group for the past 3 years. Overall, the program has reached 69 students from 13 counties in North Carolina and 57 teachers from 30 counties spread over a total of five states. Quantitative analysis of oral presentations given by participants at a program event is provided. Scores from multiple raters were averaged and used as a criterion in several regression analyses. Overall it was revealed that student grade point averages, most advanced science course taken, extra quality points earned in their most advanced science course taken, and posttest scores on a pilot research design survey were significant predictors of student oral presentation scores. Rationale for findings, opportunities for future research, and implications for the iterative development of the program are discussed.

  14. Evaluating the Effectiveness of the 2000-2001 NASA "Why?" Files Program

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Frank, Kari Lou; Ashcroft, Scott B.; Williams, Amy C.

    2002-01-01

    NASA 'Why?' Files, a research and standards-based, Emmy-award winning series of 60-minute instructional programs for grades 3-5, introduces students to NASA; integrates mathematics, science, and technology by using Problem-Based Learning (PBL), scientific inquiry, and the scientific method; and motivates students to become critical thinkers and active problem solvers. All four 2000-2001 NASA 'Why?' Files programs include an instructional broadcast, a lesson guide, an interactive web site, plus numerous instructional resources. In March 2001, 1,000 randomly selected program registrants participated in a survey. Of these surveys, 185 (154 usable) met the established cut-off date. Respondents reported that (1) they used the four programs in the 2000-2001 NASA 'Why?' Files series; (2) series goals and objectives were met; (3) programs met national mathematics, science, and technology standards; (4) program content was developmentally appropriate for grade level; and (5) programs enhanced/enriched the teaching of mathematics, science, and technology.

  15. Direction discovery: A science enrichment program for high school students.

    PubMed

    Sikes, Suzanne S; Schwartz-Bloom, Rochelle D

    2009-03-01

    Launch into education about pharmacology (LEAP) is an inquiry-based science enrichment program designed to enhance competence in biology and chemistry and foster interest in science careers especially among under-represented minorities. The study of how drugs work, how they enter cells, alter body chemistry, and exit the body engages students to conceptualize fundamental precepts in biology, chemistry, and math. Students complete an intensive three-week course in the fundamentals of pharmacology during the summer followed by a mentored research component during the school year. Following a 5E learning paradigm, the summer course captures student interest by introducing controversial topics in pharmacology and provides a framework that guides them to explore topics in greater detail. The 5E learning cycle is recapitulated as students extend their knowledge to design and to test an original research question in pharmacology. LEAP students demonstrated significant gains in biology and chemistry knowledge and interests in pursuing science. Several students earned honors for the presentation of their research in regional and state science fairs. Success of the LEAP model in its initial 2 years argues that coupling college-level coursework of interest to teens with an authentic research experience enhances high school student success in and enthusiasm for science. Copyright © 2009 International Union of Biochemistry and Molecular Biology, Inc.

  16. Community-School Collaborations in Science: Towards Improved Outcomes through Better Understanding of Boundary Issues

    ERIC Educational Resources Information Center

    Tytler, Russell; Symington, David; Cripps Clark, John

    2017-01-01

    There is growing interest, worldwide, in collaboration between schools and community organisations in contributing to and enriching school science programs, yet such collaborations are inadequately understood. This paper reports data from an Australian study designed to probe the views of members of the community who have participated in a broad…

  17. Assessment for Effective Intervention: Enrichment Science Academic Program

    ERIC Educational Resources Information Center

    Sasson, Irit; Cohen, Donita

    2013-01-01

    Israel suffers from a growing problem of socio-economic gaps between those who live in the center of the country and residents of outlying areas. As a result, there is a low level of accessibility to higher education among the peripheral population. The goal of the Sidney Warren Science Education Center for Youth at Tel-Hai College is to…

  18. The HSCaRS Summer Enrichment Program; Research Opportunities for Minority and Women Undergraduates in Global Change Science

    NASA Technical Reports Server (NTRS)

    Estes, Jr., Maurice G.; Perkey, Donald J.; Coleman, T. L.

    1997-01-01

    The primary objective of the HSCaRS Summer Enrichment Program (SEP) is to make significant contributions to the NASA Mission to Planet Earth (MTPE) and the Alabama A&M University (AAMU) Center for Hydrology, Soil Climatology and Remote Sensing (HSCaRS) research missions by providing undergraduate student research internships with an emphasis on minority and women students. Additional objectives are to encourage more minority and women students to pursue advanced degrees in Earth system and global change science and to increase the participation of minority institutions in the U.S. Global Change Research Program. Also, the SEP strives to make students in the traditional science disciplines more aware of the opportunities in Earth System Science. In designing the SEP, it was acknowledged that HSCaRS was a new research effort and Center. Consequently, students were not expected to immediately recognize the Center as one would older, more established research laboratories with national reputations, such as Los Alamos, Battelle, National Consortium for Atmospheric Research (NCAR), etc. Yet we still wanted to compete nationally for the best students. Therefore, we designed the program with a competitive financial package that includes a stipend of $400 per week, round-trip transportation from home to the summer research site, and free campus housing and meal plans provided by Alabama A&M University. Students also received a modest living allowance of approximately $25 per week. The internship program was 10 weeks in residence at Alabama A&M University or IGCRE, and gave students the opportunity to select from six general research areas: micro-meteorology, soil data analysis, soil moisture modeling, instrumentation, geographic information systems, and computer science. Student participants also enrolled in an introductory global change science course as part of the summer program (a copy of the course outline is in the appendix). The program included participation in a field program for approximately two weeks. All students were required to participate in the field program as a learning experience, regardless of the relationship of the field program to their majors or particular research project.

  19. The 1982 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Barfield, B. F. (Editor); Kent, M. I. (Editor); Dozier, J. (Editor); Karr, G. (Editor)

    1982-01-01

    A NASA/ASEE Summer Faculty Fellowship Research Program was conducted to further the professional knowledge of qualified engineering and science faculty members, to stimulate an exchange of ideas between participants and NASA, to enrich and refresh the research and teaching activities of participants' institutions, and to contribute to the research objectives of the NASA Centers.

  20. progressive problemshifts between different research programs in science education: A lakatosian perspective

    NASA Astrophysics Data System (ADS)

    Niaz, Mansoor

    Given the importance of epistemology and philosophy of science, the Lakatos (1970) methodology is particularly suited to evaluate competing research programs in science education. This article has two objectives: (a) to evaluate critically the interpretations of Gilbert and Swift (1985) and Rowell and Dawson (1989), and (b) to postulate a progressive problemshift between Piaget's epistemic subject and Pascual-Leone's metasubject. Regarding the Gilbert and Swift interpretation, it is concluded that the alternative conceptions movement at its present stage of development cannot explain the previous success of its rival (Piagetian school) nor supersede it by a further display of heuristic power as required by Lakatos. If we accept the Rowell and Dawson thesis it would amount to the postulation of Piagetian and integrated (Piagetian and schema) theories as rival research programs. It appears that the Rowell and Dawson approach would enrich Piagetian theory with descriptive content rather than explanatory constructs, and thus would not lead to a progressive problemshift. It is concluded that Pascual-Leone's theory extends Piaget's negative heuristic by introducing antecedent variables, and at the same time enriches the positive heuristic by introducing metasubjective task analysis, which leads to a progressive problemshift.

  1. Beyond Academic and Social Integration: Understanding the Impact of a STEM Enrichment Program on the Retention and Degree Attainment of Underrepresented Students.

    PubMed

    Lane, Tonisha B

    2016-01-01

    The current study used a case study methodological approach, including document analysis, semistructured interviews, and participant observations, to investigate how a science, technology, engineering, and mathematics (STEM) enrichment program supported retention and degree attainment of underrepresented students at a large, public, predominantly white institution. From this study, a model emerged that encompassed four components: proactive care, holistic support, community building, and catalysts for STEM identity development. These components encompassed a number of strategies and practices that were instrumental in the outcomes of program participants. This paper concludes with implications for practice, such as using models to inform program planning, assessment, and evaluation. © 2016 T. B. Lane. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. Houston prefreshman enrichment program (Houston PREP). Final report, June 10, 1996--August 1, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-10-01

    The 1996 Houston Pre-freshman Enrichment Program (PREP) was conducted on the campus of the University of Houston-Downtown from June 10 to August 1, 1996. Program Participants were recruited from the Greater Houston area. All participants were identified as high achieving students with an interest in learning about the engineering and science professions. The goal of the program was to better prepare our pre-college youth prior to entering college as mathematics, science and engineering majors. The program participants were middle school and high school students from the Aldine, Alief, Channel View, Crockett, Cypress-Fairbanks, Fort Bend, Galena Park, Houston, Humble, Katy, Klein,more » North Forest, Pasadena, Private, and Spring Branch Independent School Districts. Of the 197 students starting the program, 170 completed, 142 students were from economically and socially disadvantage groups underrepresented in the engineering and science professions, and 121 of the 197 were female. Our First Year group for 1996 composed of 96% minority and women students. Our Second and Third Year students were 100% and 93.75% minority or women respectively. This gave an overall minority and female population of 93.75%. This year, special efforts were again made to recruit students from minority groups, which caused a significant increase in qualified applicants. However, due to space limitations, 140 applicants were rejected. Investigative and discovery learning were key elements of PREP. The academic components of the program included Algebraic Structures, Engineering, Introduction to Computer Science, Introduction to Physics, Logic and Its Application to Mathematics, Probability and Statistics, Problem Solving Seminar using computers and PLATO software, SAT Preparatory Seminars, and Technical Writing.« less

  3. NASA and the United States educational system - Outreach programs in aeronautics, space science, and technology

    NASA Technical Reports Server (NTRS)

    Owens, Frank C.

    1990-01-01

    The role of NASA in developing a well-educated American work force is addressed. NASA educational programs aimed at precollege students are examined, including the NASA Spacemobile, Urban Community Enrichment Program, and Summer High School Apprenticeship Program. NASA workshops and programs aimed at helping teachers develop classroom curriculum materials are described. Programs aimed at college and graduate-level students are considered along with coordination efforts with other federal agencies and with corporations.

  4. The 1992 catalog of space science and applications education programs and activities

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This catalog provides information on current, ongoing and pilot programs conducted at precollege through postdoctoral levels which are primarily funded or managed by the Office of Space Science Applications (OSSA). The directory of programs section includes teacher and faculty preparation and enhancement, student enrichment opportunities, student research opportunities, postdoctoral and advanced research opportunities, initiatives to strengthen educational institution involvement in research and initiatives to strengthen research community involvement in education. The Educational Products appendices include tabular data of OSSA activities, NASA Spacelink, NASA education satellites videoconferences, the Teacher Resource Center Network, and a form for requesting further information.

  5. Educating K-12 Students about Glacier Dynamics in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Stearns, L. A.; Hamilton, G. S.

    2005-12-01

    Public awareness of climate change is growing in the United States. Popular movies, books and magazines are frequently addressing the issue of global warming - some with careful scientific research, but many with unrealistic statements. Early education about the basic principles and processes of climate change is necessary for the general public to distinguish fact from fiction. The U.S. National Science Foundation's GK-12 program (GK-12; grades K to 12) currently in its sixth year, provides an opportunity for scientific enrichment for students and their teachers at the K-12 level through collaborative pairings with science and engineering graduate students (the Fellows). The NSF GK-12 program at the University of Maine has three goals: to enrich the scientific education of the students by providing role models, expertise, and equipment that may not be accessible otherwise; to provide professional development for the teachers through curriculum enrichment and participation at science conferences; and to improve the teaching and communication skills of the Fellows. The University of Maine is one of over 100 U. S. universities participating in this program. During the 2004-05 academic year, 11 graduate and one undergraduate student Fellows, advised by University faculty members, taught at schools across the state of Maine. Fellows from, biology, earth science, ecology, engineering, food science, forestry, and marine science, and taught in their area of expertise. We created a hands-on activity for middle and high school students that describes glacier mass balance in a changing climate. The students make a glacier using glue, water and detergent ('flubber') and construct a glacier valley using plastic sheeting. Flubber behaves in mechanically similar ways to glacier ice, undergoing plastic deformation at low stresses and exhibiting brittle failure at high stresses. Students are encouraged to run several tests with different values for valley slope, glacier mass, 'flubber' temperature and basal conditions. We compare our glacier models to the dynamics of real glaciers and discuss how and why they might be changing over time. Throughout the activities, we stress the use of the scientific method, a fundamental building block in science education.

  6. Enrichment Experiences in Engineering (E[superscript 3]) for Teachers Summer Research Program: An Examination of Mixed-Method Evaluation Findings on High School Teacher Implementation of Engineering Content in High School STEM Classrooms

    ERIC Educational Resources Information Center

    Page, Cheryl A.; Lewis, Chance W.; Autenrieth, Robin L.; Butler-Purry, Karen L.

    2013-01-01

    Ongoing efforts across the U.S. to encourage K-12 students to consider science, technology, engineering and mathematics (STEM) careers have been motivated by concerns that the STEM pipeline is shrinking because of declining student enrollment and increasing rates of retirement in industry. The Enrichment Experiences in Engineering (E[superscript…

  7. Pre-Freshman Enrichment Program (PREP). Closeout documentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-19

    This is the final report on a project to support a science/mathematics summer program aimed at minority middle school students, whose objective was to introduce them to career opportunities, job interest, and financial help for pursuing a career objective in a technology field. The report describes program results from the summers of 1992, 1993 and 1996. It was administered through Eastern New Mexico University.

  8. Teachers' Guide for Aviation Education. For Use in Grades Two Through Six. Communication Arts, Science, Social Studies, Health, Career Education.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    This teacher's guide provides elementary teachers (grades 2-6) with supplementary learning activities centered around the subject of aviation, which may be used to enrich their regular programs. The guide is divided into the following five subject areas: communication arts, science, social studies, health, and careers in aviation. The guides vary…

  9. Hopes and Fears for Science Teaching: The Possible Selves of Preservice Teachers in a Science Education Program

    NASA Astrophysics Data System (ADS)

    Hong, Ji; Greene, Barbara

    2011-10-01

    Given the high attrition rate of beginning science teachers, it is imperative to better prepare science preservice teachers, so that they can be successful during the early years of their teaching. The purpose of this study was to explore science preservice teachers' views of themselves as a future teacher, in particular their hopes and fears for science teaching and the experiences that help to shape their possible selves. Employed were qualitative methods, which included open-ended surveys and face-to-face interviews. Eleven preservice teachers who enrolled in a secondary science teacher preparation program participated. Findings showed six categories of future selves with the most frequent category being for effective/ineffective science teaching. When their hoped-for and feared selves were not balanced, participants articulated more fears. Regarding the primary influence in shaping their hopes and fears, diverse past experiences related to teaching and learning appeared to be more salient factors than science teacher education program. Given the enriched understanding of the science preservice teachers' perceptions, we provided suggestions for science teacher educators.

  10. CaTs Lab (CHAOS and Thermal Sciences Laboratory)

    NASA Technical Reports Server (NTRS)

    Teate, Anthony A.

    2002-01-01

    The CHAOS and Thermal Sciences Laboratory (CaTs) at James Madison University evolved into a noteworthy effort to increase minority representation in the sciences and mathematics. Serving ten students and faculty directly, and nearly 50 students indirectly, CaTs, through recruitment efforts, workshops, mentoring programs, tutorial services and research and computational laboratories, fulfilled its intent to initiate an academically enriched research program aimed at strengthening the academic and self-actualization skills of undergraduate students with potential to pursue doctoral study in the sciences. The stated goal of the program was to increase by 5% the number of enrolled mathematics and science students into the program. Success far exceeded the program goals by producing 100% graduation rate of all supported recipients during its tenure, with 30% of the students subsequently in pursuit of graduate degrees. Student retention in the program exceeded 90% and faculty participation exceeded the three members involved in mentoring and tutoring, gaining multi-disciplinary support. Aggressive marketing of the program resulted in several paid summer internships and commitments from NASA and an ongoing relationship with CHROME, a nationally recognized organization which focuses on developing minority students in the sciences and mathematics. Success of the program was only limited by the limited fiscal resources at NASA which resulted in phasing out of the program.

  11. Teacher at Sea: Bringing Hands-on Experience to the Classroom

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration, 2007

    2007-01-01

    Since its inception in 1990, National Oceanic and Atmospheric Administration's (NOAA) Teacher at Sea program has enabled more than 460 teachers to gain first-hand experience of science and life at sea. By participating in this program, it becomes possible for teachers to enrich their classroom curricula with a depth of understanding made possible…

  12. Using Interdisciplinary research to enrich teachers and classrooms

    NASA Astrophysics Data System (ADS)

    Warburton, J.; Timm, K.; Huffman, L. T.; Peart, L. W.; Hammond, J.; McMahon, E.

    2011-12-01

    Imagine being on the stern of a ship in the Atlantic Ocean off the coast of New England as the crew dumps thousands of scallops on the deck, searching the Greenland ice sheet for a remote weather station, or uncovering secrets to past climates as you join an ocean sediment drilling team in Antarctica. So you ask yourself, what would you be doing in all of these places? What you would be doing is what hundreds of educators from around the world have done for over 20 years, participating in field-based Teacher Research Experience (TRE) programs. Teacher Research Experiences involve educators from varying grade levels and backgrounds in hands-on research as a member of a scientific research team. The teacher works side by side with actual research scientists, often on tasks similar to a field assistant or graduate student. As an important member of the research team teachers learn more about science content and the process of science. Subsequently, the educators play a key role in digesting and communicating the science to their students and the general public. TRE programs vary in many ways. Programs take place in a variety of settings-from laboratories to field camps, and from university campuses to aircraft or ships. The primary commonality of the TRE programs in this presentation-PolarTREC (Teachers and Researchers Exploring and Collaborating), ANDRILL (ANtarctic geological DRILLing) Research Immersion for Science Educators (ARISE); Integrated Ocean Drilling Program (IODP) School of Rock (SOR); and the National Oceanic and Atmospheric Administration Teacher at Sea (TAS) program-is that these programs provide an authentic field-based research experience for teachers outside of a laboratory setting, frequently in harsh, remote, or unusual settings. In addition, each of these programs is federally funded, possess dedicated program management staff, leverage existing scientific and programmatic resources, and are usually national, and sometimes international, in scope. Sharing their unique lessons learned and program results, authors will describe how TRE's improve and enrich interdisciplinary science education by connecting teachers, researchers, students, and the public around the globe for involvement in scientific research and global issues.

  13. The 1993 NASA-ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N. (Compiler); Young, Deborah B. (Compiler)

    1993-01-01

    Since 1964, the National Aeronautics and Space Administration has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. Objectives are: to further the professional knowledge of qualified engineering and science faculty members; to stimulate and exchange ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants' institutions; and to contribute to the research objectives of the NASA center.

  14. 1994 NASA-HU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Spencer, John H. (Compiler); Young, Deborah B. (Compiler)

    1994-01-01

    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. Objectives: (1) To further the professional knowledge of qualified engineering and science faculty members; (2) To stimulate and exchange ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of participants' institutions; (4) To contribute to the research objectives of the NASA center.

  15. Historically Black Colleges and Universities Nuclear Energy Training Program: Summary of program activities, fiscal year 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-04-27

    The Historically Black Colleges and Universities Nuclear Energy Training (HBCU NET) Program, funded by DOE, Office of Nuclear Energy and administered by ORAU, began in February 1984. The program provides support for training, study, research participation, and academic enrichment of students and faculty at designated HBCUs in nuclear science, nuclear engineering, and other nuclear-related technologes and disciplines. The program is composed of undergraduate scholarships, graduate fellowships, student and faculty research participation, and an annual student training institute.

  16. NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1992

    NASA Technical Reports Server (NTRS)

    Spencer, John H. (Compiler)

    1992-01-01

    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. Objectives of the program are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate and exchange ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA center.

  17. Participation in Peer-Led Academic Support Services: One Adaptation of a Natural Sciences Peer Learning Model to Enrichment in the Humanities

    ERIC Educational Resources Information Center

    Cheng, Stephen; Johnston, Susan

    2014-01-01

    Supplemental instruction (SI) has proven highly effective at improving success rates in high-risk first and second-year courses, in part because peerled SI sessions inculcate best-practice study skills in a specific learning context which provides opportunities for skill mastery. A successful SI program in the Faculty of Science at the University…

  18. Early Childhood.

    ERIC Educational Resources Information Center

    Schultz, Carolyn

    1985-01-01

    Describes an enrichment program for preschool children which includes hands-on experiences with animals. Includes a chart with suggestions (large group activities, outdoor activities, science center activities, language and mathematics center activities, and arts/craft center activities) for the study of birds, insects, reptiles, mammals, trees…

  19. Everyday Electrical Engineering: A One-Week Summer Academy Course for High School Students

    ERIC Educational Resources Information Center

    Mehrizi-Sani, A.

    2012-01-01

    A summer academy is held for grade 9-12 high school students at the University of Toronto, Toronto, ON, Canada, every year. The academy, dubbed the Da Vinci Engineering Enrichment Program (DEEP), is a diverse program that aims to attract domestic and international high school students to engineering and sciences (and possibly recruit them). DEEP…

  20. Use of Wikiversity and Role Play to Increase Student Engagement during Student-Led Physiology Seminars

    ERIC Educational Resources Information Center

    Singh, Satendra

    2013-01-01

    The Undergraduate Medical Program (Bachelor of Medicine and Bachelor of Surgery) at University College of Medical Sciences (Delhi, India) is a 4.5-yr, intense academic program where physiology is taught in the first year. To make the learning experience enriching, the Department of Physiology organizes four student seminars (two seminars/semester)…

  1. Soweto Curriculum Extension Programme.

    ERIC Educational Resources Information Center

    Murray, Chris

    1992-01-01

    A Saturday enrichment program for gifted black children in Soweto townships (South Africa) is described, including development of basic numeracy and literacy skills for elementary students; work in English, mathematics, and science/biology for high school students; creative activities and excursions; interracial activities; and cross-cultural…

  2. Project EAGLE (Early Academic Gifted Learning Experience): A Program for Gifted and Talented Students (Grades K-3)--Animals 3; Magnets; Sight; Geoboards 3; Dinosaurs 3; and Groups 3.

    ERIC Educational Resources Information Center

    Merkoski, Kay

    Six thematic activity booklets are presented for implementing Project EAGLE, an enrichment program for gifted and talented primary-level children. "Animals 3" introduces endangered animals and locates their home areas on maps or globes, using nine learning activities involving science and creative writing. "Magnets" discusses…

  3. A program to enhance k-12 science education in ten rural New York school districts.

    PubMed

    Goodell, E; Visco, R; Pollock, P

    1999-04-01

    The Rural Partnership for Science Education, designed by educators and scientists in 1991 with funding from the National Institutes of Health, works in two rural New York State counties with students and their teachers from kindergarten through grade 12 to improve pre-college science education. The Partnership is an alliance among ten rural New York school districts and several New York State institutions (e.g., a regional academic medical center; the New York Academy of Sciences; and others), and has activities that involve around 4,800 students and 240 teachers each year. The authors describe the program's activities (e.g., summer workshops for teachers; science exploration camps for elementary and middle-school students; enrichment activities for high school students). A certified science education specialist directs classroom demonstrations throughout the academic year to support teachers' efforts to integrate hands-on activities into the science curriculum. A variety of evaluations over the years provides strong evidence of the program's effectiveness in promoting students' and teachers' interest in science. The long-term goal of the Partnership is to inspire more rural students to work hard, learn science, and enter the medical professions.

  4. YES and BEST

    NASA Astrophysics Data System (ADS)

    Ewald, Mary Lou

    2002-10-01

    As a land-grant institution, Auburn University is committed to serving the citizens of Alabama through extension services and outreach programs. In following this outreach focus, the College of Sciences and Mathematics (COSAM) at AU has dedicated considerable resources to science and math related K-12 outreach programs, including two of our newest student-aimed programs: Youth Experiences in Science (YES) and Alabama BEST. Youth Experiences in Science (YES) is a Saturday enrichment program for middle school students. It includes a Fall and Spring Saturday component and a Summer camp experience. Activities include: LEGO's with Computers; Blood, Diseases & Forensics; Geometry of Models & Games; GPS Mapping; Polymer Chemistry; Electronics; and Genetics. Last year (2001-02), over 400 students attended a YES program on our campus. Alabama BEST (Boosting Engineering, Science & Technology) is a middle and high school robotics competition co-sponsored by COSAM and the College of Engineering at AU. Teams of students design and build robots and compete in a game format, with a new game theme introduced each year. This year, sixty teams from across Alabama and Georgia will have six weeks to design, build and perfect their robots before competition on October 18 and 19.

  5. Science Alive!: Connecting with Elementary Students through Science Exploration.

    PubMed

    Raja, Aarti; Lavin, Emily Schmitt; Gali, Tamara; Donovan, Kaitlin

    2016-05-01

    A novel program called Science Alive! was developed by undergraduate faculty members, K-12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM) literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach.

  6. 2002 NASA-HU Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    DePriest, Douglas J. (Compiler); Murray, Deborah B. (Compiler); Berg, Jennifer J. (Compiler)

    2004-01-01

    Since 1964, NASA has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering and science faculty members spend 10 weeks working with professional peers on research. NASA HQs and the American Society for Engineering Education supervise the program. Objectives: (1) To further the professional knowledge of qualified engineering and science faculty members; (2) To stimulate an exchange of ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of the participants' institutions; (4) To contribute to the research objectives of the NASA Center. Program Description: College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program consisting of lectures and seminars relevant to the Fellows' research.

  7. Santa Fe Alliance for Science: The First Eight Years

    NASA Astrophysics Data System (ADS)

    Eisenstein, Robert A.

    2013-04-01

    The Santa Fe Alliance for Science (SFAFS) was founded in May, 2005. SFAFS exists to provide assistance in K-14 math and science education in the greater Santa Fe area. It does this via extensive programs (1) in math and science tutoring at Santa Fe High School, Santa Fe Community College and to a lesser degree at other schools, (2) science fair advising and judging, (3) its ``Santa Fe Science Cafe for Young Thinkers'' series, (4) a program of professional enrichment for K-12 math and science teachers, and (5) a fledging math intervention program in middle school math. Well over 150 STEM professionals, working mostly as volunteers, have contributed since our beginning. Participation by students, parents and teachers has increased dramatically over the years, leading to much more positive views of math and science, especially among elementary school students and teachers. Support from the community and from local school districts has been very strong. I will present a brief status report on SFAFS activities, discuss some of the lessons learned along the way and describe briefly some ideas for the future. More information can be found at the SFAFS website, www.sfafs.org.

  8. YouthALIVE! From Enrichment to Employment: The YouthALIVE! Experience.

    ERIC Educational Resources Information Center

    Association of Science-Technology Centers, Washington, DC.

    This document introduces the national initiative YouthALIVE (Youth Achievement through Learning, Involvement, Volunteering, and Employment). The YouthALIVE program focuses on the needs of children of color from low-income communities and provides financial and technical assistance to science centers, zoos, botanical gardens, and museums for the…

  9. Improving Training in Methodology Enriches the Science of Psychology

    ERIC Educational Resources Information Center

    Aiken, Leona S.; West, Stephen G.; Millsap, Roger E.

    2009-01-01

    Replies to the comment Ramifications of increased training in quantitative methodology by Herbet Zimiles on the current authors original article "Doctoral training in statistics, measurement, and methodology in psychology: Replication and extension of Aiken, West, Sechrest, and Reno's (1990) survey of PhD programs in North America". The…

  10. Quarked! - Adventures in Particle Physics Education

    NASA Astrophysics Data System (ADS)

    MacDonald, Teresa; Bean, Alice

    2009-01-01

    Particle physics is a subject that can send shivers down the spines of students and educators alike-with visions of long mathematical equations and inscrutable ideas. This perception, along with a full curriculum, often leaves this topic the road less traveled until the latter years of school. Particle physics, including quarks, is typically not introduced until high school or university.1,2 Many of these concepts can be made accessible to younger students when presented in a fun and engaging way. Informal science institutions are in an ideal position to communicate new and challenging science topics in engaging and innovative ways and offer a variety of educational enrichment experiences for students that support and enhance science learning.3 Quarked!™ Adventures in the Subatomic Universe, a National Science Foundation EPSCoR-funded particle physics education program, provides classroom programs and online educational resources.

  11. Art, Chaos, Ethics, and Science (ACES): a doctoring curriculum for emergency medicine.

    PubMed

    Van Groenou, Aneema A; Bakes, Katherine Mary

    2006-11-01

    ACES (Art, Chaos, Ethics, and Science) is a curriculum developed by 2 residents and a faculty mentor at the Denver Health Medical Center Emergency Medicine Residency Program. The goal of the ACES curriculum is 2-fold: (1) to discuss areas of clinical consequence typically outside the scope of the regular academic curriculum, such as ethical dilemmas and the challenges of professionalism; and (2) to encourage reflection on our roles as caregivers on a personal, public health, and political level. Each bimonthly "doctoring roundtable" session focuses on one of these goals, bringing local and national leaders in the field to the forum to enrich discussion. Attending physicians from academic and private settings within the residency, residents at all levels, rotating medical students, and, for the past year, emergency department nurses participate in the meetings. Thus far, regular voluntary participation has been the only measure of the ongoing program's success. In this descriptive article, we discuss the aim of the program, the curriculum, and how the ACES program enriches the residency's educational goals. Recent accreditation requirements for residency training programs mandate educational experiences that allow residents to demonstrate competency in professionalism and ethical principles. The ACES curriculum developed a unique niche in our residency, creating an open forum for passionate discussion of challenging clinical encounters, unpressured reflection on ethics and decisionmaking, and constructive personal and professional development.

  12. `Unthinkable' Selves: Identity boundary work in a summer field ecology enrichment program for diverse youth

    NASA Astrophysics Data System (ADS)

    Carlone, Heidi B.; Huffling, Lacey D.; Tomasek, Terry; Hegedus, Tess A.; Matthews, Catherine E.; Allen, Melony H.; Ash, Mary C.

    2015-07-01

    The historical under-representation of diverse youth in environmental science education is inextricably connected to access and identity-related issues. Many diverse youth with limited previous experience to the outdoors as a source for learning and/or leisure may consider environmental science as 'unthinkable'. This is an ethnographic study of 16 diverse high school youths' participation, none of who initially fashioned themselves as 'outdoorsy' or 'animal people', in a four-week summer enrichment program focused on herpetology (study of reptiles and amphibians). To function as 'good' participants, youth acted in ways that placed them well outside their comfort zones, which we labeled as identity boundary work. Results highlight the following cultural tools, norms, and practices that enabled youths' identity boundary work: (1) boundary objects (tools regularly used in the program that facilitated youths' engagement with animals and nature and helped them work through fear or discomfort); (2) time and space (responsive, to enable adaptation to new environments, organisms, and scientific field techniques); (3) social support and collective agency; and (4) scientific and anecdotal knowledge and skills. Findings suggest challenges to commonly held beliefs about equitable pedagogy, which assumes that scientific practices must be thinkable and/or relevant before youth engage meaningfully. Further, findings illustrate the ways that fear, in small doses and handled with empathy, may become a resource for youths' connections to animals, nature, and science. Finally, we propose that youths' situated identity boundary work in the program may have the potential to spark more sustained identity work, given additional experiences and support.

  13. Science Alive!: Connecting with Elementary Students through Science Exploration†

    PubMed Central

    Raja, Aarti; Lavin, Emily Schmitt; Gali, Tamara; Donovan, Kaitlin

    2016-01-01

    A novel program called Science Alive! was developed by undergraduate faculty members, K–12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM) literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach. PMID:27158309

  14. Adding Interactivity to a Non-Interative Class

    ERIC Educational Resources Information Center

    Rogers, Gary; Krichen, Jack

    2004-01-01

    The IT 3050 course at Capella University is an introduction to fundamental computer networking. This course is one of the required courses in the Bachelor of Science in Information Technology program. In order to provide a more enriched learning environment for learners, Capella has significantly modified this class (and others) by infusing it…

  15. Encouraging Minority Undergraduates to Choose Science Careers: Career Paths Survey Results

    ERIC Educational Resources Information Center

    Villarejo, Merna; Barlow, Amy E. L.; Kogan, Deborah; Veazey, Brian D.; Sweeney, Jennifer K.

    2008-01-01

    To explore the reasons for the dearth of minorities in Ph.D.-level biomedical research and identify opportunities to increase minority participation, we surveyed high-achieving alumni of an undergraduate biology enrichment program for underrepresented minorities. Respondents were asked to describe their career paths and to reflect on the…

  16. Examining Urban Students' Constructions of a STEM/Career Development Intervention over Time

    ERIC Educational Resources Information Center

    Blustein, David L.; Barnett, Michael; Mark, Sheron; Depot, Mark; Lovering, Meghan; Lee, Youjin; Hu, Qin; Kim, James; Backus, Faedra; Dillon-Lieberman, Kristin; DeBay, Dennis

    2013-01-01

    Using consensual qualitative research, the study examines urban high school students' reactions to a science, technology, engineering, and math (STEM) enrichment/career development program, their resources and barriers, their perspectives on the impact of race and gender on their career development, and their overall views of work and their…

  17. Computational thinking in life science education.

    PubMed

    Rubinstein, Amir; Chor, Benny

    2014-11-01

    We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1) devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2) focus on discrete notions, rather than on continuous ones, and (3) have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.

  18. A Fiscal Cliff: The Current U.S. Federal Budget, Potential Cuts, and Impacts on Science Funding

    NASA Astrophysics Data System (ADS)

    Uhlenbrock, K. M.; Landau, E. A.; Hankin, E. R.

    2012-12-01

    As lawmakers on Capitol Hill face challenges to reach an agreement on how to cut the deficit while growing the economy, scientists must join the discussion and outline the serious impacts cuts to federal science programs will have on our society. Consistent and sustained federal science funding (discretionary spending) is an ever increasing struggle with the rising costs of mandatory spending and decrease in revenues. In 2011 Congress passed the Budget Control Act, which will require automatic across-the-board cuts, known as sequestration, and will take effect on 2 January 2013. Estimated cuts of $1.2 trillion and discretionary spending caps set at Fiscal Year 2012 levels will trigger non-defense program cuts of 9.8% in the first year as reported by the Congressional Research Service. Funding from non-defense program agencies such as NSF, NASA, DOE, NOAA, USGS, and others drive science and technological innovation, support public safety, create jobs, educate generations of scientists, stimulate the economy, protect our environment, and enrich lives. With non-defense discretionary programs representing less than one-fifth of the federal budget, severe cuts to these programs will not alleviate our deficit, but instead restrict our growth.

  19. Encouraging minority undergraduates to choose science careers: career paths survey results.

    PubMed

    Villarejo, Merna; Barlow, Amy E L; Kogan, Deborah; Veazey, Brian D; Sweeney, Jennifer K

    2008-01-01

    To explore the reasons for the dearth of minorities in Ph.D.-level biomedical research and identify opportunities to increase minority participation, we surveyed high-achieving alumni of an undergraduate biology enrichment program for underrepresented minorities. Respondents were asked to describe their career paths and to reflect on the influences that guided their career choices. We particularly probed for attitudes and experiences that influenced students to pursue a research career, as well as factors relevant to their choice between medicine (the dominant career choice) and basic science. In agreement with earlier studies, alumni strongly endorsed supplemental instruction as a mechanism for achieving excellence in basic science courses. Undergraduate research was seen as broadening by many and was transformative for half of the alumni who ultimately decided to pursue Ph.D.s in biomedical research. That group had expressed no interest in research careers at college entry and credits their undergraduate research experience with putting them on track toward a research career. A policy implication of these results is that making undergraduate research opportunities widely available to biology students (including "premed" students) in the context of a structured educational enrichment program should increase the number of minority students who choose to pursue biomedical Ph.D.s.

  20. The Impact of a Cryogenics-Based Enrichment Programme on Attitude Towards Science and the Learning of Science Concepts. Research Report

    ERIC Educational Resources Information Center

    Caleon, Imelda; Subramaniam, R.

    2005-01-01

    This study explores the impact of a cryogenics-based enrichment programme, which involves demonstrations that use liquid nitrogen, on attitudes towards science and the learning of science concepts. The findings presented in this paper are based on a sample of 214 fifth-grade students from two schools in Singapore who had their enrichment lesson in…

  1. NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1989

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N. (Compiler)

    1989-01-01

    Since 1964, NASA has supported a program of summer faculty fellowships for engineering and science educators. The objectives are: to further the professional knowledge of qualified engineering and science faculty; to stimulate and exchange ideas between participants and NASA; to enrich and refresh the research and teachning activities of participants' institutions; and to contribute to the research objectives of the NASA center. College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lecture and seminars on topics of interest or that are directly relevant to the Fellows' research topic.

  2. Hot spots enriched plasmonic nanostructure-induced random lasing of quantum dots thin film

    NASA Astrophysics Data System (ADS)

    Shan, Feng; Zhang, Xiao-Yang; Wu, Jing-Yuan; Zhang, Tong

    2018-04-01

    Not Available Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0205800), the National Natural Science Foundation of China (Grant Nos. 11734005, 61307066, and 61450110442), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20130630), the Doctoral Fund of Ministry of Education of China (Grant No. 20130092120024), the Innovation Fund of School of Electronic Science and Engineering, Southeast University, China (Grant No. 2242015KD006), and the Scientific Research Foundation of Graduate School of Southeast University, China (Grant Nos. YBJJ1513 and YBJJ1613).

  3. Little Scientists: Identity, Self-Efficacy, and Attitude Toward Science in a Girls' Science Camp

    NASA Astrophysics Data System (ADS)

    Todd, Brandy

    Underrepresentation of women and minorities in the science, technology, and engineering (STEM) fields is a perennial concern for researchers and policy-makers. Many causes of this problem have been identified. Less is known about what constitutes effective methods for increasing women's participation in STEM. This study examines the role that identity formation plays in encouraging girls to pursue STEM education and careers utilizing data from a cohort-based, informal science enrichment program that targets middle-school-aged girls. A Mixed-methods design was employed to examine girls' science interests, efficacy, attitudes, and identity---referred to as affinities. Quantitative data were collected before and after program participation using science affinity scales. Qualitative data included observations, focus groups, and individual interviews. This study builds on past research conducted on the same program. The study is presented in three components: fidelity of implementation, participant affinities, and science identity theory building. Quantitative and qualitative measures reveal that the program was implemented with high fidelity. Participants had high initial affinities for science as compared to a contrast group. Analysis of qualitative data of science affinities revealed several themes in girls' attitudes, experiences, and intentions toward science. Emergent themes discussed include girls' preferences and interests in science, gender and science efficacy, attitudes toward science, and elements of science identities. Archetypes of emergent science identities developed in this study (expert, experimenter, and inventor) inform different ways in which girls engage with and envision science study and careers. Implications for best practice in fostering science engagement and identities in middle-school-aged girls include the importance of hands-on science activities, the need for enthusiastic relatable role models, and an emphasis on deep understanding of scientific principles.

  4. The 1975 NASA/ASEE summer faculty fellowship research program. [research in the areas of aerospace engineering, aerospace systems, and information systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A research program was conducted to further the professional knowledge of qualified engineering and science faculty members, to stimulate an exchange of ideas between participants and NASA engineers and scientists, and to enrich the research activities of the participants' institutions. Abstracts of reports submitted at the end of the program are presented. Topics investigated include multispectral photography, logic circuits, gravitation theories, information systems, fracture mechanics, holographic interferometry, surface acoustic wave technology, ion beams in the upper atmosphere, and hybrid microcircuits.

  5. STEM Outreach to the African Canadian Community - The Imhotep Legacy Academy

    NASA Astrophysics Data System (ADS)

    Hewitt, Kevin

    2012-02-01

    Like the African American community in the US, the African Canadian community is underrepresented in the Science Technology Engineering and Mathematics (STEM) fields. To serve these communities two outreach organizations emerged in Canadian cities where there is a critical mass of learners of African Descent - Toronto and Halifax. I will describe the Imhotep's Legacy Academy, which began in the Physics labs of Dalhousie University in Halifax, Nova Scotia and has grown to a province-wide program serving three-quarters of the school boards in the province with an annual budget that has grown to 400,000 in 2011-12. It follows the learner from the time they enter grade 7 to the time they graduate from university, through three programs: (a) Weekly After-School science enrichment for junior high learners, (b) Virtual High school tutoring program and (c) Summer student internships and research scholarships for post-secondary students. This year, the program was the beneficiary of funding from TD Bank to establish scholarships for program participants to enter Dalhousie university. Modeled on the Meyerhoff scholarships the program participants are identified at an early stage and are promised a subset of funding as they meet selected criteria during participation in the program. The program enjoys support from the Department of Education and the highest levels of government. A tri-mentoring system exists where faculty of African descent train mentors, who are science students of African descent at associated universities, to deliver hands-on enrichment activities to learners of African Descent. Evidence supporting the success of the program will be highlighted. Project outcomes measured include (i) recruitment; (ii) attendance; (iii) stakeholder relationships; (iv) programming; (v) staff training; (vi) perception of ILASP's value; (vii) academic performance. The end results are new lessons and best practices that are incorporated into a strategic plan for the new project year. Teachers perceived that ILASP had a positive ripple effect on the entire academic and non-academic educational experience of the learners, crediting the project with (i) encouraging self-learning; (ii) assisting in honing learners' science and math skills; (iii) developing core skills that were applicable in learners' schoolwork; (iv) boosting learners' self-esteem; (v) improving school attendance; (vi) boosting learners' motivation to be engaged participants in all other classes.

  6. The Relationship Between Cognitive and Non-Cognitive Variables and Academic Performance of Students in the Science Enrichment Preparation (S.E.P.) Program

    NASA Astrophysics Data System (ADS)

    Borden, Paula D.

    This dissertation study concerned the lack of underrepresented minority students matriculating through the health professions pipeline. The term pipeline is "the educational avenue by which one must travel to successfully enter a profession" (Sullivan Alliance, 2004). There are a significant number of health professional pipeline programs based across the United States and, for the purposes of this study, a focus was placed on the Science Enrichment Preparation (S.E.P.) Program which is based at The University of North Carolina at Chapel Hill. The S.E.P. Program, is an eight-week residential summer experience, designed to support underrepresented minority pre-health students develop the competitive edge for successful admission into health professional school programs. The bedrock of this dissertation study concerned itself with the relationships between cognitive variables and non-cognitive variables and academic performance of students in the S.E.P. Program from 2005-2013. The study was undertaken to provide a clearer understanding for the NC Health Careers Access Program's (NC-HCAP) leadership with regard to variables associated with the students' academic performance in the S.E.P. Program. The data outcomes were informative for NC-HCAP in identifying cognitive and non-cognitive variables associated with student academic performance. Additionally, these findings provided direction as to what infrastructures may be put into place to more effectively support the S.E.P. participants. It is the researcher's hope this study may serve as an educational model and resource to pipeline programs and others with similar educational missions. The consequences and implications of a non-diverse healthcare workforce are high and far reaching. Without parity representation in the healthcare workforce, health disparities between racial and economic groups will likely continue to grow.

  7. Increasing Opportunities and Success in Science, Math, Engineering and Technology Through Partnerships and Resource Convergence

    NASA Astrophysics Data System (ADS)

    Huebner, P.

    2003-12-01

    Bridging the geographic boundaries and providing educational opportunities is the goal of American Indian Programs at Arizona State University East. Since its inception in 1997, American Indian Programs has established programs and partnerships to provide opportunities and resources to Tribal communities throughout Arizona. From educational programs to enhance student achievement at the K-12 level to recruitment and retention of American Indian students at the post secondary level, American Indian Programs provides the resources to further the success of students in science, math, engineering and technology. Resource convergence is critical in providing opportunities to ensure the success of Indian students in science, math, engineering and technology. American Indian Programs has built successful programs based on partnerships between federal grant programs, corporate, federal and state agencies. Providing professional development for teachers, school assessment, science and math curriculum and data collection are the primary efforts at the K-12 level to increase student achievement. Enrichment programs to enhance K-12 activities include the development of the Arizona American Indian Science and Engineering Fair (the only State fair for American Indiana's in the country) supported entirely through corporate support, summer residential programs, after school activities and dual enrollment programs for high school students. ASU East's retention rate for first year students is 92 percent and 1in 6 graduating students enter graduate programs. American Indian Programs strives to build student relationships with federal, state and corporate agencies through internships and coops. This effort has led to the development of an E-mentoring program that allows students (and K-12 teachers) to work directly with practicing scientists, and engineers in research activities. New programs look to increase technology not only in Tribal schools but increase technology in the homes of students as well.

  8. Pre-Service Teachers' Knowledge for Teaching Algebra for Equity in the Middle Grades: A Preliminary Report

    ERIC Educational Resources Information Center

    Brown, Irving A.; Davis, Trina J.; Kulm, Gerald

    2011-01-01

    This article presents our plans and initial work to explore how mathematics teacher education programs can prepare teachers for diverse middle grades classrooms. It describes the start-up of a five-year National Science Foundation project to design, develop, and test technology-enriched teacher preparation strategies to address equity in algebra…

  9. The Gender Differences: Hispanic Females and Males Majoring in Science or Engineering

    NASA Astrophysics Data System (ADS)

    Brown, Susan Wightman

    Documented by national statistics, female Hispanic students are not eagerly rushing to major in science or engineering. Using Seidman's in-depth interviewing method, 22 Hispanic students, 12 female and 10 male, majoring in science or engineering were interviewed. Besides the themes that emerged with all 22 Hispanic students, there were definite differences between the female and male Hispanic students: role and ethnic identity confusion, greater college preparation, mentoring needed, and the increased participation in enriched additional education programs by the female Hispanic students. Listening to these stories from successful female Hispanic students majoring in science and engineering, educators can make changes in our school learning environments that will encourage and enable more female Hispanic students to choose science or engineering careers.

  10. Strengthening STEM Education through Community Partnerships

    PubMed Central

    Lopez, Colleen A.; Rocha, Jon; Chapman, Matthew; Rocha, Kathleen; Wallace, Stephanie; Baum, Steven; Lawler, Brian R.; Mothé, Bianca R.

    2017-01-01

    California State University San Marcos (CSUSM) and San Marcos Elementary Schools have established a partnership to offer a large-scale community service learning opportunity to enrich science curriculum for K-5 students. It provides an opportunity for science, technology, engineering, and math (STEM) majors to give back to the community, allowing them to experience teaching in an elementary classroom setting, in schools that lack the resources and science instructor specialization needed to instill consistent science curricula. CSUSM responded to this need for more STEM education by mobilizing its large STEM student body to design hands-on, interactive science lessons based on Next Generation Science Standards (NGSS). Since 2012, the program has reached out to over four thousand K-5 students, and assessment data have indicated an increase in STEM academic performance and interest. PMID:28725512

  11. Strengthening STEM Education through Community Partnerships.

    PubMed

    Lopez, Colleen A; Rocha, Jon; Chapman, Matthew; Rocha, Kathleen; Wallace, Stephanie; Baum, Steven; Lawler, Brian R; Mothé, Bianca R

    2016-01-01

    California State University San Marcos (CSUSM) and San Marcos Elementary Schools have established a partnership to offer a large-scale community service learning opportunity to enrich science curriculum for K-5 students. It provides an opportunity for science, technology, engineering, and math (STEM) majors to give back to the community, allowing them to experience teaching in an elementary classroom setting, in schools that lack the resources and science instructor specialization needed to instill consistent science curricula. CSUSM responded to this need for more STEM education by mobilizing its large STEM student body to design hands-on, interactive science lessons based on Next Generation Science Standards (NGSS). Since 2012, the program has reached out to over four thousand K-5 students, and assessment data have indicated an increase in STEM academic performance and interest.

  12. Building Learning Communities for Research Collaboration and Cross-Cultural Enrichment in Science Education

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.

    2003-12-01

    The GLOBE program has provided opportunities for environmental science research and education collaborations among scientists, teachers and K-12 students, and for cross-cultural enrichment nationally and abroad. In Alaska, GLOBE has also provided funding leverage in some cases, and a base for several other science education programs that share a common goal of increasing student interest, understanding, process skills and achievement in science, through involvement in ongoing research investigations. These programs that use GLOBE methodologies (standardized scientific measurements and learning activities developed by scientists and educators) are: Global Change Education Using Western Science and Native Knowledge also known as "Observing Locally, Connecting Globally" (OLCG); Alaska Earth System Science Education Alliance: Improving Understanding of Climate Variability and Its Relevance to Rural Alaska; Schoolyard Long Term Ecological Research; Alaska Rural Research Partnership; Alaska Partnership for Teacher Enhancement; Alaska Lake Ice and Snow Observatory Network; Alaska Boreal Forest Council Education Outreach; Calypso Farm and Ecology Center; Environmental Education Outreach; and also GLOBE Arctic POPs (persistent organic pollutants) a program that involves countries in the circumpolar North. The University of Alaska GLOBE Partnership has collaborated with the BLM Campbell Creek Science Center Globe Partnership in facilitating GLOBE Training Workshops and providing teacher support. GLOBE's extensive website including data entry, archive, analysis and visualization capabilities; GLOBE Teacher Guide, videos and other materials provided; excellent GLOBE science research and education staff, training support office, GLOBE help desk, alignment of GLOBE curriculum with national science education standards and GLOBE certification of teachers trained on even just one GLOBE investigation, have made it easier to implement GLOBE in the classroom. Using GLOBE, whole classes of students have engaged in and contributed data to science investigations. In Alaska, classes and individual students have conducted their own inquiry studies and have successfully presented their investigations and competed at science fairs and statewide high school science symposium and international conferences. Two students presented their research investigations at the GLOBE Learning Expedition in Croatia and four students presented their study at the GLOBE Arctic POPs Conference in Sweden. These students increased not only their understanding and knowledge of science but also in appreciation of people in other countries and their cultures. Friendships have also bloomed. The learning community in Alaska has expanded to include family and community members including Native elders (using OLCG), teachers, scientists and students from other countries. The following challenges remain: 1) getting funds to be able to provide GLOBE equipment and continuous support to GLOBE teachers and students throughout the year, 2) reaching teachers and students in remote areas, 3) rapid teacher turn-over rate in rural areas, 4) using inquiry-based pedagogies during GLOBE professional development workshops including the opportunity for teacher participants to conduct their own inquiries during the workshop, 5) time, school curriculum and national education requirement constraints, 6) involving school administrators, and more local scientists and community members, and 7) providing culturally relevant and responsive science education programs and life-long learning communities.

  13. Research reports: The 1980 NASA/ASEE Summer Faculty Fellowship Program. [aeronautical research and development

    NASA Technical Reports Server (NTRS)

    Barfield, B. F. (Editor); Kent, M. I. (Editor); Dozier, J. (Editor); Karr, G. (Editor)

    1980-01-01

    The Summer Faculty Fellowship Research Program objectives are: to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants and institutions; and to contribute to the research objectives at the NASA centers. The Faculty Fellows engaged in research projects commensurate with their interests and background and worked in collaboration with a NASA/MSFC colleague.

  14. 50 Years of the Astro-Science Workshop at the Adler Planetarium

    NASA Astrophysics Data System (ADS)

    Hammergren, Mark; Martynowycz, M. W.; Ratliff, G.

    2014-01-01

    Since 1964, the Adler Planetarium has hosted a program for highly motivated and interested high-school students known as the Astro-Science Workshop (ASW). Created in response to the national “call to arms” for improved science education following the stunning launch of Sputnik, ASW was originally conducted as an extracurricular astronomy class on Saturday mornings throughout the school year, for many years under the leadership of Northwestern University professor J. Allen Hynek. A gradual decline in student interest in the 1990’s led to a redesign of ASW as a summer program featuring hands-on, student-driven investigation and experimentation. Since 2002, ASW has been organized and taught by graduate student “scientist-educators” and funded through a series of grants from the NSF. For the past seven years, students have designed, built, and flown experiments on helium balloons to altitudes of around 30 km (100,000 feet). Here, as we enter its 50th anniversary, we present the history of the Astro-Science Workshop, its context among the small but still vibrant community of post-Sputnik science enrichment programs, and its rich legacy of inspiring generations of astronomers and other explorers.

  15. The 1992 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This is the administrative report for the 1992 NASA/ASEE Summer Faculty Fellowship Program which was held at the George C. Marshall Space Flight Center (MSFC) for the 28th consecutive year. The nominal starting and finishing dates for the ten week program were June 1, 1992 through August 7, 1992. The program was sponsored by NASA Headquarters, Washington, D.C., and operated under the auspices of the American Society for Engineering Education (ASEE). The program was one of eight such programs at eight NASA centers sponsored and funded by NASA Headquarters. The basic objectives of the program are the following: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities at the participants' institutions; and (4) to contribute to the research objectives of the NASA centers. The major activities of the 1992 program were the following: (1) recruitment, selection, and assignment of faculty fellows; (2) research performed by the participants in collaboration with the MSFC colleague; (3) a seminar and tour program aimed at providing information concerning activities at MSFC; (4) an activities program of a social/non-technical nature aimed at providing the fellows and their families a means of learning about the MSFC/Huntsville area; and (5) preparation of a volume containing the written reports of the details of the research performed by each of the summer faculty. The success of the 1992 program activities in meeting the stated objectives was measured through questionnaires, which were filled out by participants and their MSFC colleagues. The following sections describe the major activities in more detail and the results of the questionnaires are summarized showing that the 1992 program was highly successful. This year's program also included 19 participants in the Summer Teacher Enrichment Program (STEP) which is comprised of middle school and high school math and science teachers.

  16. Geometry of Exploration: Eyes over Mars. NASA Connect: Program 4 in the 1999-2000 Series.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    This teaching unit is designed to help students in grades 4-8 explore the concepts of geometry and measurement in the context of surveying planets. The units in this series have been developed to enhance and enrich mathematics, science, and technology education and to accommodate different teaching and learning styles. Each unit consists of a…

  17. Enrichment Programs and Professional Development in the Geosciences: Best Practices and Models (OEDG Research Report, Stony Brook University)

    ERIC Educational Resources Information Center

    Gafney, Leo

    2017-01-01

    This report is based on several evaluations of NSF-funded geoscience projects at Stony Brook University on Long Island, NY. The report reviews the status of K-12 geoscience education, identifying challenges posed by the Next Generation Science Standards (NGSS), the experiences of university faculty engaged in teacher preparation, state…

  18. Patterns, Functions, and Algebra: Wired for Space. NASA Connect: Program 3 in the 2000-2001 Series.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    This teaching unit is designed to help students in grades 5 to 8 explore the concepts of patterns, functions, and algebra in the context of propelling spacecraft. The units in the series have been developed to enhance and enrich mathematics, science, and technology education and to accommodate different teaching and learning styles. Each unit…

  19. NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1991

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N. (Compiler)

    1991-01-01

    In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spent 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society of Engineering Education supervises the programs. The objects were the following: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate and exchange ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA center.

  20. Physics Bus: An Innovative Model for Public Engagement

    NASA Astrophysics Data System (ADS)

    Fox, Claire

    The Physics Bus is about doing science for fun. It is an innovative model for science outreach whose mission is to awaken joy and excitement in physics for all ages and walks of life - especially those underserved by science enrichment. It is a mobile exhibition of upcycled appliances-reimagined by kids-that showcase captivating physics phenomena. Inside our spaceship-themed school bus, visitors will find: a microwave ionized-gas disco-party, fog rings that shoot from a wheelbarrow tire, a tv whose electron beam is controlled by a toy keyboard, and over 20 other themed exhibits. The Physics Bus serves a wide range of public in diverse locations from local neighborhoods, urban parks and rural schools, to cross-country destinations. Its approachable, friendly and relaxed environment allows for self-paced and self-directed interactions, providing a positive and engaging experience with science. We believe that this environment enriches lives and inspires people. In this presentation we will talk about the nuts and bolts that make this model work, how the project got started, and the resources that keep it going. We will talk about the advantages of being a grassroots and community-based organization, and how programs like this can best interface with universities. We will explain the benefits of focusing on direct interactions and why our model avoids ``teaching'' physics content with words. Situating our approach within a body of research on the value of informal science we will discuss our success in capturing and engaging our audience. By the end of this presentation we hope to broaden your perception of what makes a successful outreach program and encourage you to value and support alternative outreach models such as this one. In Collaboration with: Eva Luna, Cornell University; Erik Herman, Cornell University; Christopher Bell, Ithaca City School District.

  1. Functionalized diamond nanopowder for phosphopeptides enrichment from complex biological fluids.

    PubMed

    Hussain, Dilshad; Najam-ul-Haq, Muhammad; Jabeen, Fahmida; Ashiq, Muhammad N; Athar, Muhammad; Rainer, Matthias; Huck, Christian W; Bonn, Guenther K

    2013-05-02

    Diamond is known for its high affinity and biocompatibility towards biomolecules and is used exclusively in separation sciences and life science research. In present study, diamond nanopowder is derivatized as Immobilized Metal Ion Affinity Chromatographic (IMAC) material for the phosphopeptides enrichment and as Reversed Phase (C-18) media for the desalting of complex mixtures and human serum profiling through MALDI-TOF-MS. Functionalized diamond nanopowder is characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Diamond-IMAC is applied to the standard protein (β-casein), spiked human serum, egg yolk and non-fat milk for the phosphopeptides enrichment. Results show the selectivity of synthesized IMAC-diamond immobilized with Fe(3+) and La(3+) ions. To comprehend the elaborated use, diamond-IMAC is also applied to the serum samples from gall bladder carcinoma for the potential biomarkers. Database search is carried out by the Mascot program (www.matrixscience.com) for the assignment of phosphorylation sites. Diamond nanopowder is thus a separation media with multifunctional use and can be applied to cancer protein profiling for the diagnosis and biomarker identification. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. The role of science in treaty verification.

    PubMed

    Gavron, Avigdor

    2005-01-01

    Technologically advanced nations are currently applying more science to treaty verification than ever before. Satellites gather a multitude of information relating to proliferation concerns using thermal imaging analysis, nuclear radiation measurements, and optical and radio frequency signals detection. Ground stations gather complementary signals such as seismic events and radioactive emissions. Export controls in many countries attempt to intercept materials and technical means that could be used for nuclear proliferation. Nevertheless, we have witnessed a plethora of nuclear proliferation episodes, that were undetected (or were belatedly detected) by these technologies--the Indian nuclear tests in 1998, the Libyan nuclear buildup, the Iranian enrichment program and the North Korea nuclear weapons program are some prime examples. In this talk, we will discuss some of the technologies used for proliferation detection. In particular, we will note some of the issues relating to nuclear materials control agreements that epitomize political difficulties as they impact the implementation of science and technology.

  3. An Analysis of NSF Geosciences Research Experience for Undergraduate Site Programs from 2009 through 2011

    NASA Astrophysics Data System (ADS)

    Rom, E. L.; Patino, L. C.; Weiler, S.; Sanchez, S. C.; Colon, Y.; Antell, L.

    2011-12-01

    The Research Experience for Undergraduate (REU) Program at the U.S. National Science Foundation (NSF) provides U.S. undergraduate students from any college or university the opportunity to conduct research at a different institution and gain a better understanding of research career pathways. The Geosciences REU Sites foster research opportunities in areas closely aligned with geoscience programs, particularly those related to earth, atmospheric and ocean sciences. The aim of this paper is to provide an overview of the Geosciences REU Site programs run in 2009 through 2011. A survey requesting information on recruitment methods, student demographics, enrichment activities, and fields of research was sent to the Principal Investigators of each of the active REU Sites. Over 70% of the surveys were returned with the requested information from about 50 to 60 sites each year. The internet is the most widely used mechanism to recruit participants, with personal communication as the second most important recruiting tool. The admissions rate for REU Sites in Geosciences varies from less than 10% to 50%, with the majority of participants being rising seniors and juniors. Many of the participants come from non-PhD granting institutions. Among the participants, gender distribution varies by discipline, with ocean sciences having a large majority of women and earth sciences having a majority of men. Regarding ethnic diversity, the REU Sites reflect the difficulty of attracting diverse students into Geosciences as a discipline; a large majority of participants are Caucasian and Asian students. Furthermore, participants from minority-serving institutions and community colleges constitute a small percentage of those taking part in these research experiences. The enrichment activities are very similar across the REU Sites, and mimic activities common to the scientific community, including intellectual exchange of ideas (lab meetings, seminars, and professional meetings), networking and social activities. The results from this survey will be used to examine strengths in the REU Sites in the Geosciences, opportunities that may be under utilized, and community needs to enhance this NSF wide program.

  4. Effective self-regulated science learning through multimedia-enriched skeleton concept maps

    NASA Astrophysics Data System (ADS)

    Marée, Ton J.; van Bruggen, Jan M.; Jochems, Wim M. G.

    2013-04-01

    Background: This study combines work on concept mapping with scripted collaborative learning. Purpose: The objective was to examine the effects of self-regulated science learning through scripting students' argumentative interactions during collaborative 'multimedia-enriched skeleton concept mapping' on meaningful science learning and retention. Programme description: Each concept in the enriched skeleton concept map (ESCoM) contained annotated multimedia-rich content (pictures, text, animations or video clips) that elaborated the concept, and an embedded collaboration script to guide students' interactions. Sample: The study was performed in a Biomolecules course on the Bachelor of Applied Science program in the Netherlands. All first-year students (N=93, 31 women, 62 men, aged 17-33 years) took part in this study. Design and methods: The design used a control group who received the regular course and an experimental group working together in dyads on an ESCoM under the guidance of collaboration scripts. In order to investigate meaningful understanding and retention, a retention test was administered a month after the final exam. Results: Analysis of covariance demonstrated a significant experimental effect on the Biomolecules exam scores between the experimental group and the control, and the difference between the groups on the retention test also reached statistical significance. Conclusions: Scripted collaborative multimedia ESCoM mapping resulted in meaningful understanding and retention of the conceptual structure of the domain, the concepts, and their relations. Not only was scripted collaborative multimedia ESCoM mapping more effective than the traditional teaching approach, it was also more efficient in requiring far less teacher guidance.

  5. NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1987

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N. (Compiler)

    1987-01-01

    Since 1964, NASA has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 or 11 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. Objectives: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate and exchange ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; (4) to contribute to the research objectives of the NASA center. Program Description: College or university faculty members were appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow devoted approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program consisted of lectures and seminars on topics of interest or that are directly relevant to the Fellows' research topic.

  6. Ocean Science in a K-12 setting: Promoting Inquiry Based Science though Graduate Student and Teacher Collaboration

    NASA Astrophysics Data System (ADS)

    Lodico, J. M.; Greely, T.; Lodge, A.; Pyrtle, A.; Ivey, S.; Madeiros, A.; Saleem, S.

    2005-12-01

    The University of South Florida, College of Marine Science Oceans: GK-12 Teaching Fellowship Program is successfully enriching science learning via the oceans. Funded by the National Science Foundation, the program provides a unique opportunity among scientists and K-12 teachers to interact with the intention of bringing ocean science concepts and research to the classroom environment enhance the experience of learning and doing science, and to promote `citizen scientists' for the 21st century. The success of the program relies heavily on the extensive summer training program where graduate students develop teaching skills, create inquiry based science activities for a summer Oceanography Camp for Girls program and build a relationship with their mentor teacher. For the last year and a half, two graduate students from the College of Marine Science have worked in cooperation with teachers from the Pinellas county School District, Southside Fundamental Middle School. Successful lesson plans brought into a 6th grade Earth Science classroom include Weather and climate: Global warming, The Geologic timescale: It's all about time, Density: Layering liquids, and Erosion processes: What moves water and sediment. The school and students have benefited greatly from the program experiencing hands-on inquiry based science and the establishment of an after school science club providing opportunities for students to work on their science fair projects and pursuit other science interests. Students are provided scoring rubrics and their progress is creatively assessed through KWL worksheets, concept maps, surveys, oral one on one and classroom discussions and writing samples. The year culminated with a series of hands on lessons at the nearby beach, where students demonstrated their mastery of skills through practical application. Benefits to the graduate student include improved communication of current science research to a diverse audience, a better understanding of the perspective of teachers and their content knowledge, and experience working with children and youth. The GK-12 teacher mentor benefits include a resource of inquiry based ocean science activities and increased knowledge of current scientific ocean research. The K-12 students gain an opportunity to be engage with young passionate scientists, learn about current ocean science research, and experience inquiry based science activities relating to concepts already being taught in their classroom. This program benefits all involved including the graduate students, the teachers, the K-12 students and the community.

  7. Mapping Out-of-School-Time Youth Science Programs: Organizational Patterns and Possibilities

    NASA Astrophysics Data System (ADS)

    Laursen, S. L.; Archie, T.; Thiry, H.

    2012-12-01

    Out-of-school-time (OST) experiences promise to enrich young (K-12) people's experience of science, technology and engineering. Belief is widespread that OST programs are ideal locations to learn science, and that youth participation may enhance the science workforce and increase access to science for girls and minorities. Yet we know little about the scope or nature of science-focused OST youth programming. Variety poses a challenge for researchers, with OST sites in schools, museums, zoos, science and nature centers, aquariums, planetariums, and community centers; and formats including after-school clubs, camps, workshops, festivals, research apprenticeships, and more. Moreover, there is no single national network through which researchers might reach and recruit nationally representative samples of programs. Thus, to date there has been no systematic study of the broader national landscape of OST STEM programming. Our national study, Mapping Out-of-School-Time Science (MOST-Science), examines a national sample of OST programs focused on science, engineering, and/or technology. Here we describe first findings about the characteristics of these programs and their home organizations, including aspects of program design, structure, funding, staffing, and youth audience. Using an electronic survey, we collected data from 417 programs and classified their host institutions into eight organizational types: aquariums and zoos, museums, non-profits, national youth organizations, K-12 school districts, colleges and universities, government labs, and private sector organizations. We then examine key attributes of the youth programs hosted by these institution and discuss differences based on organizational types, including scientific organizations that are especially well equipped to offer research and field experiences. Programs engaging youth in research and field experiences are offered across all organizational types. Yet they vary notably in the size and demographics of the youth populations they serve, and their interest or ability to target particular youth groups. We observe that organizations implementing youth OST science programs are often networked to other organizations similar to themselves, but unaware of related work in other sectors. Therefore, understanding the characteristics of organizations that host youth science programs may help organizations to achieve general goals such as increasing diversity, increasing accessibility, improving funding, improving program evaluation, and improving program content. For example, smaller organizations with limited resources could adopt proven strategies to increase diversity and access from larger organizations with more resources to initially develop these strategies. University programs might draw effectively upon best practices of similar programs offered by museums or non-profits. By providing a better picture of the strengths of different organizations as youth OST science providers, we hope to suggest unfilled niches for practitioners to pursue, and to highlight potential networking opportunities among organizations that can enhance youth research and field-based learning programs.

  8. Geometry and Algebra: Glow with the Flow. NASA Connect: Program 2 in the 2000-2001 Series.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    This teaching unit is designed to help students in grades 5 to 8 explore the concepts of geometry and algebra in the context of the force of drag. The units in the series have been developed to enhance and enrich mathematics, science, and technology education and to accommodate different teaching and learning styles. Each unit consists of…

  9. Measurement, Ratios, and Graphing: 3...2...1...Crash! NASA Connect: Program 1 in the 2000-2001 Series.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    This teaching unit is designed to help students in grades 5 to 8 explore the concepts of measurement, ratios, and graphing in the context of designing a dragster. The units in the series have been developed to enhance and enrich mathematics, science, and technology education and to accommodate different teaching and learning styles. Each unit…

  10. Geometry of Exploration: Water below the Surface of Mars? NASA Connect: Program 3 in the 1999-2000 Series.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    This teaching unit is designed to help students in grades 4-8 explore the concepts of geometry in the context of space navigation. The units in this series have been developed to enhance and enrich mathematics, science, and technology education and to accommodate different teaching and learning styles. Each unit consists of a storyline presenting…

  11. Factors That Contributed to Gifted Students' Success on STEM Pathways: The Role of Race, Personal Interests, and Aspects of High School Experience

    ERIC Educational Resources Information Center

    Steenbergen-Hu, Saiying; Olszewski-Kubilius, Paula

    2017-01-01

    In this study, we conducted binary logistic regression on survey data collected from 244 past participants of a Talent Search program who attended regular high schools but supplemented their regular high school education with enriched or accelerated math and science learning activities. The participants completed an online survey 4 to 6 years…

  12. Functions and Statistics: International Space Station: Up to Us. NASA Connect: Program 5 in the 2000-2001 Series.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    This teaching unit is designed to help students in grades 5 to 8 explore the concepts of functions and statistics in the context of the International Space Station (ISS). The units in the series have been developed to enhance and enrich mathematics, science, and technology education and to accommodate different teaching and learning styles. Each…

  13. NASA's Initiative to Develop Education through Astronomy (IDEA)

    NASA Astrophysics Data System (ADS)

    Bennett, Jeffrey O.; Morrow, Cherilynn A.

    1994-04-01

    We describe a progressive program in science education called the Initiative to Develop Education through Astronomy (IDEA). IDEA represents a commitrnent by the Astrophysics Division of NASA Headquarters to pre-collegiate and public learning. The program enlists the full participation of research astronomers in taking advantage of the natural appeal of astronomy and the unique features of space astrophysics missions to generate valuable learning experiences and scientifically accurate and educationally effective products for students, teachers and citizens. One of the premier projects is called Flight Opportunities for Science Teacher EnRichment (FOSTER) — a program to fly teachers aboard the Kuiper Airborne Observatory during actual research missions. IDEA is managed by a visiting scientist with extensive educational background (each of the authors have served in this role), and the program is unique within NASA science divisions for having a full time scientist devoted to education. IDEA recognizes that the rapidly shifting social and political landscape has caused a fundamental change in how science is expected to contribute to society. It is in the enlightened self-interest of all research scientists to respond to the challenge of connecting forefront research to basic educational needs. IDEA is exploring the avenues needed to facilitate these connections, including supplementing research grants for educational purposes.

  14. NASA's initiative to develop education through astronomy (IDEA)

    NASA Technical Reports Server (NTRS)

    Bennett, Jeffrey O.; Morrow, Cherilynn A.

    1994-01-01

    We describe a progressive program in science education called the Initiative to Develop Education through Astronomy (IDEA). IDEA represents a commitment by the Astrophysics Division of NASA Headquarters to pre-collegiate and public learning. The program enlists the full participation of research astronomers in taking advantage of the natural appeal of astronomy and the unique features of space astrophysics missions to generate valuable learning experiences and scientifically accurate and educationally effective products for students, teachers and citizens. One of the premier projects is called Flight Opportunities for Science Teacher EnRichment (FOSTER) - a program to fly teachers aboard the Kuiper Airborne Observatory during actual research missions. IDEA is managed by a visiting scientist with extensive educational background (each of the authors have served in this role), and the program is unique within NASA science divisions for having a full time scientist devoted to education. IDEA recognizes that the rapidly shifting social and political landscape has caused a fundamental change in how science is expected to contribute to society. It is in the enlightened self-interest of all research scientists to respond to the challenge of connecting forefront research to basic educational needs. IDEA is exploring the avenues needed to facilitate these connections, including supplementing research grants for educational purposes.

  15. A synergistic effort among geoscience, physics, computer science and mathematics at Hunter College of CUNY as a Catalyst for educating Earth scientists.

    NASA Astrophysics Data System (ADS)

    Salmun, H.; Buonaiuto, F. S.

    2016-12-01

    The Catalyst Scholarship Program at Hunter College of The City University of New York (CUNY) was established with a four-year award from the National Science Foundation (NSF) to fund scholarships for academically talented but financially disadvantaged students majoring in four disciplines of science, technology, engineering and mathematics (STEM). Led by Earth scientists the Program awarded scholarships to students in their junior or senior years majoring in computer science, geosciences, mathematics and physics to create two cohorts of students that spent a total of four semesters in an interdisciplinary community. The program included mentoring of undergraduate students by faculty and graduate students (peer-mentoring), a sequence of three semesters of a one-credit seminar course and opportunities to engage in research activities, research seminars and other enriching academic experiences. Faculty and peer-mentoring were integrated into all parts of the scholarship activities. The one-credit seminar course, although designed to expose scholars to the diversity STEM disciplines and to highlight research options and careers in these disciplines, was thematically focused on geoscience, specifically on ocean and atmospheric science. The program resulted in increased retention rates relative to institutional averages. In this presentation we will discuss the process of establishing the program, from the original plans to its implementation, as well as the impact of this multidisciplinary approach to geoscience education at our institution and beyond. An overview of accomplishments, lessons learned and potential for best practices will be presented.

  16. An Analysis of NSF Geosciences Research Experience for Undergraduate Site Programs from 2009 to 2012

    NASA Astrophysics Data System (ADS)

    Rom, E. L.; Patino, L. C.; Gonzales, J.; Weiler, C. S.; Antell, L.; Colon, Y.; Sanchez, S. C.

    2012-12-01

    The Research Experience for Undergraduate (REU) Program at the U.S. National Science Foundation (NSF) provides undergraduate students from across the nation the opportunity to conduct research at a different institution and in an area that may not be available at their home campus. REU Sites funded by the Directorate of Geosciences provide student research opportunities in earth, ocean, atmospheric and geospace research. This paper provides an overview of the Geosciences REU Site programs run from 2009 to 2012. Information was gathered from over 45 REU sites each year on recruitment methods, student demographics, enrichment activities, and fields of research. The internet is the most widely used mechanism to recruit participants. The admissions rate for REU Sites in Geosciences varies by discipline but averages between 6% to 18% each year, with the majority of participants being rising seniors and juniors. A few Sites include rising sophomores and freshmen. Most students attend PhD granting institutions. Among the participants, gender distribution depends on discipline, with atmospheric and geospace sciences having more male than female participants, but ocean and earth sciences having a majority of female participants. Regarding ethnic diversity, the REU Sites reflect the difficulty of attracting diverse students into Geosciences as a discipline; a large majority of the participants are Caucasian or Asian students. Furthermore, participants from minority-serving institutions or community colleges constitute a small percentage of those taking part in these research experiences. The enrichment activities are very similar across the REU Sites, and mimic well activities common to the scientific community, including intellectual exchange of ideas (lab meetings, seminars, and professional meetings), networking and social activities. Results from this study will be used to examine strengths in the REU Sites in the Geosciences and opportunities for improvement in the program. The data provided here also represent an excellent benchmark by which to measure future changes in student participation and program design that may result from 2012 changes in the REU program solicitation. For example, one important change is that REU programs are now required to include greater participation of students who are attending non-research institutions.

  17. Improving Inquiry Teaching through Reflection on Practice

    NASA Astrophysics Data System (ADS)

    Lotter, Christine R.; Miller, Cory

    2017-08-01

    In this paper, we explore middle school science teachers' learning of inquiry-based instructional strategies through reflection on practice teaching sessions during a summer enrichment program with middle level students. The reflection sessions were part of a larger year-long inquiry professional development program in which teachers learned science content and inquiry pedagogy. The program included a 2-week summer institute in which teachers participated in science content sessions, practice teaching to middle level students, and small group-facilitated reflection sessions on their teaching. For this study, data collection focused on teachers' recorded dialogue during the facilitator - run reflection sessions, the teachers' daily written reflections, a final written reflection, and a written reflection on a videotaped teaching session. We investigated the teachers' reflection levels and the themes teachers focused on during their reflection sessions. Teachers were found to reflect at various reflection levels, from simple description to a more sophisticated focus on how to improve student learning. Recurrent themes point to the importance of providing situated learning environments, such as the practice teaching with immediate reflection for teachers to have time to practice new instructional strategies and gain insight from peers and science educators on how to handle student learning issues.

  18. A program to prepare minority students for careers in medicine, science, and other high-level professions.

    PubMed

    Slater, M; Iler, E

    1991-04-01

    The Gateway to Higher Education program is a comprehensive four-year high school program with specially designed enrichments and supports. Its principal goal is to increase the number of minority students who will be prepared to enter training for high-level professional careers, especially in medicine and science. The program was established in September 1986 to demonstrate that minority students who perform at least at grade level can begin a rigorous curriculum in the ninth grade and achieve outstanding results, provided that the necessary support systems are in place. For 1990-91, 750 students are enrolled in Gateway programs at five New York City public high schools, and the first 119 students graduated in June 1990. The graduates have demonstrated significant achievement compared with that of their peers, as measured by standardized tests and the graduates' participation in research mentorships and college acceptances. In order to expand on its initial success, the program has increased its scope of activity to include over 400 students at the junior high school level.

  19. NASA-OAI Collaborative Aerospace Research and Fellowship Program

    NASA Technical Reports Server (NTRS)

    Heyward, Ann O.; Kankam, Mark D.

    2003-01-01

    During the summer of 2003, a IO-week activity for university faculty entitled the NASA-OAI Collaborative Aerospace Research and Fellowship Program (CFP) was conducted at the NASA Glenn Research Center in collaboration with the Ohio Aerospace Institute (OAI). The objectives of CFP are: (1) to further the professional knowledge of qualified engineering and science faculty, (2) to stimulate an exchange of ideas between teaching participants and employees of NASA, (3) to enrich and refresh the research and teaching activities of participants' institutions, and (4) to contribute to the research objectives of Glenn. This report is intended primarily to summarize the research activities comprising the 2003 CFP Program at Glenn.

  20. Research Reports: 1989 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Karr, Gerald R. (Editor); Six, Frank (Editor); Freeman, L. Michael (Editor)

    1989-01-01

    For the twenty-fifth consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The basic objectives of the programs are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. The Faculty Fellows spent ten weeks at MSFC engaged in a research project compatible with their interests and background and worked in collaboration with a NASA/MSFC colleague.

  1. Use a Building Learning Center Enrichment Program to Meet Needs of Gifted/Talented.

    ERIC Educational Resources Information Center

    Schurr, Sandra

    The paper describes the Learning Center Enrichment Program for elementary school gifted and talented children. The nomenclature associated with the program model (learning center, enrichment, and management system) is defined; and it is explained that the program is organized according to the enrichment triad model advocated by J. Renzulli because…

  2. The Road to Grow, Enrich and Strength Cooperation Between Undergrad and Research Institutions in Mexico.

    NASA Astrophysics Data System (ADS)

    Rodríguez-Domínguez, M. Á.; Perez-Campos, X.; García Vertiz, D.; Martínez, L.; Torres Sánchez, E.

    2017-12-01

    Earth sciences undergrad programs have rapidly increased in the past years in Mexico. To form the future generation of geoscientist it is important to involve young undergrad students into research activities so they can develop the interest in science. Several inter-institutional programs are already attending this matter within the Mexican geoscientific community. Two of them, "Verano de la Investigación Científica 2017 (Summer of Scientific Research 2017)" and "Programa Delfín, Interinstitucional para el fortalecimiento de la investigación y el posgrado del Pacífico (Dolphin Program)", applied by the Universidad Juárez Autónoma de Tabasco, gave the opportunity to three Geophysics Engineering students to carry out management, processing and analysis of seismic data to study the rate of seismicity over the north and south of Mexico and its relationship with the oil production industry; as well as study the seismic structure beneath a city located within a volcanic arc, in which case the study resolved a two layer model corresponding to the midcrust and the Mohorövičić discontinuities. These programs not only allowed the students to enrich and strengthen their knowledge in seismology, it also gave them an insight of the general geoscientific research activities. Furthermore, it provided the opportunity for a Ph.D. student, to take the role of a young advisor, which has helped train the student on skills needed for a future academic path, such as mentoring, assistance, encouragement and leadership.

  3. SENSE IT: Teaching STEM Principles to Middle and High School Students through the Design, Construction and Deployment of Water Quality Sensors

    ERIC Educational Resources Information Center

    Hotaling, Liesl; Lowes, Susan; Stolkin, Rustam; Lin, Peiyi; Bonner, James; Kirkey, William; Ojo, Temitope

    2012-01-01

    This paper describes the structure and impact of an NSF-funded ITEST project designed to enrich science, technology, engineering, and mathematics (STEM) education using educational modules that teach students to construct, program, and test a series of sensors used to monitor water quality. During the two years of the SENSE IT project, over 30…

  4. Evaluating the Effectiveness of the 1999-2000 NASA CONNECT Program

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Frank, Kari Lou

    2002-01-01

    NASA CONNECT is a standards-based, integrated mathematics, science, and technology series of 30-minute instructional distance learning (satellite and television) programs for students in grades 6-8. Each of the five programs in the 1999-2000 NASA CONNECT series included a lesson, an educator guide, a student activity or experiment, and a web-based component. In March 2000, a mail (self-reported) survey (booklet) was sent to a randomly selected sample of 1,000 NASA CONNECT registrants. A total of 336 surveys (269 usable) were received by the established cut-off date. Most survey questions employed a 5-point Likert-type response scale. Survey topics included (1) instructional technology and teaching, (2) instructional programming and technology in the classroom, (3) the NASA CONNECT program, (4) classroom use of computer technology, and (5) demographics. About 73% of the respondents were female, about 92% identified "classroom teacher" as their present professional duty, about 90% worked in a public school, and about 62% held a master's degree or master's equivalency. Regarding NASA CONNECT, respondents reported that (1) they used the five programs in the 1999-2000 NASA CONNECT series; (2) the stated objectives for each program were met (4.54); (3) the programs were aligned with the national mathematics, science, and technology standards (4.57); (4) program content was developmentally appropriate for grade level (4.17); and (5) the programs in the 1999-2000 NASA CONNECT series enhanced/enriched the teaching of mathematics, science, and technology (4.51).

  5. Evaluating the Effectiveness of the 1998-1999 NASA CONNECT Program

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Frank, Kari Lou; House, Patricia L.

    2000-01-01

    NASA CONNECT is a standards-based, integrated mathematics, science, and technology series of 30-minute instructional distance learning (satellite and television) programs for students in grades 5-8. Each of the five programs in the 1998-1999 NASA CONNECT series included a lesson, an educator guide, a student activity or experiment, and a web-based component. In March 1999, a mail (self-reported) survey (booklet) was sent to a randomly selected sample of 1,000 NASA CONNECT registrants. A total of 401 surveys (351 usable) were received by the established cut-off date. Most survey questions employed a 5-point Likert-type response scale. Survey topics included: (1) instructional technology and teaching, (2) instructional programming and technology in the classroom, (3) the NASA CONNECT program, (4) classroom use of computer technology, and (5) demographics. About 68% of the respondents were female, about 88% identified "classroom teacher" as their present professional duty, about 75% worked in a public school, and about 67% held a master's degree or master's equivalency. Regarding NASA CONNECT, respondents reported that: (1) they used the five programs in the 1998-1999 NASA CONNECT series; (2) the stated objectives for each program were met (4.49); (3) the programs were aligned with the national mathematics, science, and technology standards (4.61); (4) program content was developmentally appropriate for grade level (4.25); and (5) the programs in the 1998-1999 NASA CONNECT series enhanced/enriched the teaching of mathematics, science, and technology (4.45).

  6. Mars Rover Model Celebration: Using Planetary Exploration To Enrich STEM Teaching In Elementary And Middle School

    NASA Astrophysics Data System (ADS)

    Bering, E. A.; Ramsey, J.; Dominey, W.; Kapral, A.; Carlson, C.; Konstantinidis, I.; James, J.; Sweaney, S.; Mendez, R.

    2011-12-01

    The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. The recent NASA Mars Rover missions capture the imagination of children, as NASA missions have done for decades. The University of Houston is in the process of developing a prototype of a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model rover. The existing prototype program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students will design and build a model of a Mars rover to carry out a student selected science mission on the surface of Mars. The model will be a mock-up, constructed at a minimal cost from art supplies. The students will build the models as part of a project on Mars. The students will be given design criteria for a rover and will do basic research on Mars that will determine the objectives and features of their rover. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The program culminates in a capstone event held at the University of Houston (or other central location in the other communities that will be involved) where the best models from each school or group are brought together for a celebratory showcase exhibit and judging. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning.

  7. An Overview of contributions of NASA Space Shuttle to Space Science and Engineering education

    NASA Astrophysics Data System (ADS)

    Lulla, Kamlesh

    2012-07-01

    This paper provides an indepth overview of the enormous contrbutions made by the NASA Space Shuttle Program to Space science and engineering education over the past thirty years. The author has served as one of the major contributors and editors of NASA book "Wings In Orbit: Scientific and Engineering Legacies of the Space Shuttle program" (NASA SP-2010-3409). Every Space Shuttle mission was an education mission: student involvement programs such as Get Away Specials housed in Shuttle payload allowed students to propose research and thus enrich their university education experience. School students were able to operate "EarthKAM" to learn the intricacies of orbital mechanics, earth viewing opportunities and were able to master the science and art of proposal writing and scientific collaboration. The purpose of this presentation is to introduce the global student and teaching community in space sciences and engineering to the plethora of educational resources available to them for engaging a wide variety of students (from early school to the undergraduate and graduate level and to inspire them towards careers in Space sciences and technologies. The volume "Wings In Orbit" book is one example of these ready to use in classroom materials. This paper will highlight the educational payloads, experiments and on-orbit classroom activities conducted for space science and engineering students, teachers and non-traditional educators. The presentation will include discussions on the science content and its educational relevance in all major disiciplines in which the research was conducted on-board the Space Shuttle.

  8. 1998 NASA-HU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Marable, William P. (Compiler); Murray, Deborah B. (Compiler)

    1998-01-01

    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. The program objectives include: (1) To further the professional knowledge of qualified engineering and science faculty members; (2) To stimulate and exchange ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of participants' institutions; (4) To contribute to the research objectives of the NASA center. College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of interest or that are directly relevant to the Fellows' research topics. The lecture and seminar leaders will be distinguished scientists and engineers from NASA, education, and industry.

  9. 2001 NASA-ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N. (Compiler); Murray, Deborah B. (Compiler); Hathaway, Roger A. (Technical Monitor)

    2002-01-01

    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises these programs. Objectives: (1) To further the professional knowledge of qualified engineering and science faculty members; (2) To stimulate and exchange ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of participants' institutions; (4 To contribute to the research objectives of the NASA center. Program Description: College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of interest or that are directly relevant to the Fellow's research topics. The lecture and seminar leaders wil be distinguished scientists and engineers from NASA, education and industry.

  10. 1996 NASA-Hampton University American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Spencer, John H. (Compiler); Young, Deborah B. (Compiler)

    1996-01-01

    NASA has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. The objectives were: (1) To further the professional knowledge of qualified engineering and science faculty members; (2) To stimulate and exchange ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of participants institutions; (4) To contribute to the research objectives of the NASA Center. Program Description: College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of interest or that are directly relevant to the Fellows' research topics. The lectures and seminar leaders will be distinguished scientists and engineers from NASA, education, or industry.

  11. 1999 NASA - ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N. (Compiler); Murray, Deborah B. (Compiler)

    2000-01-01

    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program or summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. Objectives: (1) To further the professional knowledge of qualified engineering and science faculty members; (2) To stimulate and exchange ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of participants' institutions; (4) To contribute to the research objectives of the NASA center. Program Description: College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of interest or that are directly relevant to the Fellows' research topics. The lecture and seminar leaders will be distinguished scientists and engineers from NASA, education, and industry.

  12. A summer academic research experience for disadvantaged youth.

    PubMed

    Kabacoff, Cathryn; Srivastava, Vasudha; Robinson, Douglas N

    2013-01-01

    Internships are an effective way of connecting high school students in a meaningful manner to the sciences. Disadvantaged minorities have fewer opportunities to participate in internships, and are underrepresented in both science, technology, engineering, and mathematics majors and careers. We have developed a Summer Academic Research Experience (SARE) program that provides an enriching academic internship to underrepresented youth. Our program has shown that to have a successful internship for these disadvantaged youth, several issues need to be addressed in addition to scientific mentoring. We have found that it is necessary to remediate and/or fortify basic academic skills for students to be successful. In addition, students need to be actively coached in the development of professional skills, habits, and attitudes necessary for success in the workplace. With all these factors in place, these youths can become better students, compete on a more level playing field in their internships, and increase their potential of participating actively in the sciences in the future.

  13. A Summer Academic Research Experience for Disadvantaged Youth

    PubMed Central

    Kabacoff, Cathryn; Srivastava, Vasudha; Robinson, Douglas N.

    2013-01-01

    Internships are an effective way of connecting high school students in a meaningful manner to the sciences. Disadvantaged minorities have fewer opportunities to participate in internships, and are underrepresented in both science, technology, engineering, and mathematics majors and careers. We have developed a Summer Academic Research Experience (SARE) program that provides an enriching academic internship to underrepresented youth. Our program has shown that to have a successful internship for these disadvantaged youth, several issues need to be addressed in addition to scientific mentoring. We have found that it is necessary to remediate and/or fortify basic academic skills for students to be successful. In addition, students need to be actively coached in the development of professional skills, habits, and attitudes necessary for success in the workplace. With all these factors in place, these youths can become better students, compete on a more level playing field in their internships, and increase their potential of participating actively in the sciences in the future. PMID:24006390

  14. More Than "Getting Us Through:" A Case Study in Cultural Capital Enrichment of Underrepresented Minority Undergraduates.

    PubMed

    Ovink, Sarah M; Veazey, Brian D

    2011-01-01

    Minority students continue to be underrepresented among those who seek graduate and professional degrees in the sciences. Much previous research has focused on academic preparation. Equally important, however, are the psychological-social barriers and lack of institutional support encountered by many minority students. We present a case study of a university-sponsored intervention program for minority science majors that addresses not only academics, but also socialization into the academic community, networking, and the ability to practice newfound skills and dispositions through undergraduate research. In examining this case, we suggest that concerted, formal efforts toward expanding habitus and thereby augmenting cultural and social capital may have positive effects for underrepresented minority (URM) college students' academic and career prospects. Moreover, we argue that these differences complement the gains program participants make in academic preparedness, showing that attention to academics alone may be insufficient for addressing longstanding inequities in science career attainment among URM students.

  15. The Stanford Medical Youth Science Program: 18 years of a biomedical program for low-income high school students.

    PubMed

    Winkleby, Marilyn A

    2007-02-01

    The Stanford Medical Youth Science Program (SMYSP) is a biomedical pipeline program that seeks to diversify the health professions by providing academic enrichment in the medical sciences and college admissions support to very low-income high school students. Each summer 24 students are recruited from over 250 California high schools for the five-week residential program, led by 10 undergraduate students. Participants divide their time between classroom instruction, anatomy practicums, hospital field placements, research projects, and college admissions advising. Since its inception in 1988, 405 students have completed SMYSP and 96% have been observed for up to 18 years. The majority are from underrepresented minority groups (33.3% Latino, 21.7% African American, 4.0% Native American), many with poor academic preparation. One hundred percent of age-eligible participants have graduated from high school, and 99% have been admitted to college. Of those admitted to college (and not currently college students), 81% have earned a four-year college degree, the majority majoring in biological and physical sciences (57.1%). Among four-year college graduates, 52% are attending or have graduated from medical or graduate school. Many of the four-year college graduates (44.4%) are becoming or have become health professionals. This program, distinguished by direct participation in the sciences, strong mentoring, college admissions preparation, and long-term career guidance, has been highly successful in reaching low-income students and preparing them for medical and other careers. Results highlight the need to track students for as long as 10 to 15 years to accurately assess college graduation rates and acceptance to medical and graduate school.

  16. Minority Engineering Program Pipeline: A Proposal to Increase Minority Student Enrollment and Retention in Engineering

    NASA Technical Reports Server (NTRS)

    Charity, Pamela C.; Klein, Paul B.; Wadhwa, Bhushan

    1995-01-01

    The Cleveland State University Minority Engineering Program Pipeline consist of programs which foster engineering career awareness, academic enrichment, and professional development for historically underrepresented minority studies. The programs involved are the Access to Careers in Engineering (ACE) Program for high school pre-engineering students: the LINK Program for undergraduate students pursuing degree which include engineering; and the PEP (Pre-calculus Enrichment Program) and EPIC (Enrichment Program in Calculus) mathematics programs for undergraduate academic enrichment. The pipeline is such that high school graduates from the ACE Program who enroll at Cleveland State University in pursuit of engineering degrees are admitted to the LINK Program for undergraduate level support. LINK Program students are among the minority participants who receive mathematics enrichment through the PEP and EPIC Programs for successful completion of their engineering required math courses. THese programs are interdependent and share the goal of preparing minority students for engineering careers by enabling them to achieve academically and obtain college degree and career related experience.

  17. Climate change in the classroom: Reaching out to middle school students through science and math suitcase lessons

    NASA Astrophysics Data System (ADS)

    Jacobo, A. C.; Collay, R.; Harris, R. N.; de Silva, L.

    2011-12-01

    We have formed a link between the Increasing Diversity in Earth Sciences (IDES) program with the Science and Math Investigative Learning Experiences (SMILE) program, both at Oregon State University. The IDES mission is to strengthen the understanding of Earth Sciences and their relevance to society among broad and diverse segments of the population and the SMILE mission is to provide science and math enrichment for underrepresented and other educationally underserved students in grades 4-12. Traditionally, underserved schools do not have enough time or resources to spend on science and mathematics. Furthermore, numerous budget cuts in many Oregon school districts have negatively impacted math and science cirriculum. To combat this trend we have designed suitcase lessons in climate change that can be carried to a number of classrooms. These lesson plans are scientifically rich and economically attractive. These lessons are designed to engage students in math and science through climate change presentations, group discussions, and hands-on activities. Over the past year we have familiarized ourselves with the academic ability of sixth and seventh graders through in-class observation in Salem Oregon. One of the suit case lessons we developed focuses on climate change by exploring the plight of polar bears in the face of diminishing sea ice. Our presentation will report the results of this activity.

  18. Nanoscience and Nanotechnology Concepts for Enriching High School Curricula

    NASA Astrophysics Data System (ADS)

    Sanders, Charlotte; Marshall, Jill

    2010-03-01

    High school science teachers seeking to enhance student enthusiasm for science and to enrich their curricula with ``real world'' examples might be interested in drawing on nanoscience, which is currently a major branch of study in biology, chemistry, and physics---key high school curriculum areas---and is also a subject much reported upon by the news media. However, presenting nanoscience and nanotechnology in the classroom presents key challenges: the subject matter must be successfully integrated into the core curriculum so as to enhance the students' educational experience; it must support the aims of Texas Essential Knowledge and Skills for Science (TEKC), or equivalent systems in other states; it must be made accessible to students; and it must be presentable with the use of equipment or supplies that are neither too expensive nor too rare to be obtainable by school districts. These last two requirements are particularly difficult, because it is the nature of nanoscale research that complex fabrication processes and expensive characterization methods are typically required. This talk will discuss the authors' experience leading a teachers' workshop session in 2009 to address the issue of introducing nanoscience into the high school science classroom. The workshop is funded by the NSF through the UT-IGERT program, and brings together teachers from across Texas annually for discussion, curriculum-building, and training in concepts related to nanoscience and nanotechnology.

  19. A Study of Learning and Motivation in a New Media Enriched Environment for Middle School Science

    ERIC Educational Resources Information Center

    Liu, Min; Horton, Lucas; Olmanson, Justin; Toprac, Paul

    2011-01-01

    This study examines middle school students' learning and motivation as they engaged in a new media enriched problem-based learning (PBL) environment for middle school science. Using a mixed-method design with both quantitative and qualitative data, we investigated the effect of a new media environment on sixth graders' science learning, their…

  20. The Structural Relationship between Out-of-School Time Enrichment and Black Student Participation in Advanced Science

    ERIC Educational Resources Information Center

    Young, Jamaal; Young, Jemimah

    2018-01-01

    The researchers tested a model of the structural relationship between Black student engagement in out-of-school time (OST) science enrichment and participation in advanced science courses in high school. The participants in the sample were Black students (N = 3,173) who participated in the High School Longitudinal Study of 2009/2012. The student…

  1. Summer enrichment partnership (SEP) - society of hispanic professional engineers (SHPE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vela, C.E.

    1994-12-31

    SEP recruits talented Hispanic high school students in the Washington metropolitan area and seeks to increase the number of Hispanics who enter graduate programs in engineering and science. New students are exposed to engineering, experimental science and business, and visit R&D centers and corporations. Returning students take college level courses, such as Vector-Based Analytic Geometry and Probability and Statistics. Advanced students work on special projects. Hispanic engineers, scientists, and managers offer career guidance. Parental participation is actively encouraged. Students are selected based on: (a) commitment to succeed, (b) academic record, and (c) willingness to attend the program through graduation. Coursesmore » are taught by university faculty, with one teacher assistant per five students. Program evaluation encompasses: (1) student participation and performance, (2) school achievement, and (3) continuation to college. SEP is a partnership between the Society of Hispanic Professional Engineers, The Catholic University of America, NASA, school districts, parents and students, and Hispanic professionals.« less

  2. The Costa Rica GLOBE (Global Learning and Observations to Benefit the Environment) Project as a Learning Science Environment

    NASA Astrophysics Data System (ADS)

    Castro Rojas, María Dolores; Zuñiga, Ana Lourdes Acuña; Ugalde, Emmanuel Fonseca

    2015-12-01

    GLOBE is a global educational program for elementary and high school levels, and its main purpose in Costa Rica is to develop scientific thinking and interest for science in high school students through hydrology research projects that allow them to relate science with environmental issues in their communities. Youth between 12 and 17 years old from public schools participate in science clubs outside of their regular school schedule. A comparison study was performed between different groups, in order to assess GLOBE's applicability as a learning science atmosphere and the motivation and interest it generates in students toward science. Internationally applied scales were used as tools for measuring such indicators, adapted to the Costa Rican context. The results provide evidence statistically significant that the students perceive the GLOBE atmosphere as an enriched environment for science learning in comparison with the traditional science class. Moreover, students feel more confident, motivated and interested in science than their peers who do not participate in the project. However, the results were not statistically significant in this last respect.

  3. Effectiveness of a "Grass Roots" Statewide Enrichment Program for Gifted Elementary School Children

    ERIC Educational Resources Information Center

    Golle, Jessika; Zettler, Ingo; Rose, Norman; Trautwein, Ulrich; Hasselhorn, Marcus; Nagengast, Benjamin

    2018-01-01

    Enrichment programs provide learning opportunities for a broader or deeper examination of curricular or extracurricular topics and are popular in gifted education. Herein, we investigated the effectiveness of a statewide extracurricular enrichment program for gifted elementary school children in Germany. The program implemented a "grass…

  4. The positive effects of the FIRST high school robotics program

    NASA Astrophysics Data System (ADS)

    McIntyre, Nancy

    The essence of the FIRST Robotics Program comes from the explanation of the acronym, which means For Inspiration and Recognition in Science and Technology. Their vision is to inspire young people, their schools, and communities, an appreciation of science and technology and an understanding that mastering these can enrich the lives of all. Last year I began our school's association with this program. I secured funding from NASA/JPL, attended a workshop and kickoff event, encouraged a team of students, parents, community members, and engineers to come together to design and construct a working, competitive robot in a six week time span. This year I expanded our participation to our 6th grade students. They competed in the FIRST Lego League. As part of my 9th grade science curriculum my students designed and built Panda II in class. The after-school team will submit a 30 second animation, an autocad design, and a team website for competition as well. Our AP art students have been charged with painting our travel crate. I couldn't have been successful without the help and support of a very dedicated JPL engineer who volunteers his time to come to our school to teach our team the technical components.

  5. Building on the Success of Increasing Diversity in the Geosciences: A Bridging Program From Middle School to College

    NASA Astrophysics Data System (ADS)

    Kovacs, T.; Robinson, D.; Suleiman, A.; Maggi, B.

    2004-12-01

    A bridging program to increase the diversity in the geosciences was created at Hampton University (HU) to inspire underrepresented minorities to pursue an educational path that advances them towards careers in the geosciences. Three objectives were met to achieve this goal. First, we inspired a diverse population of middle and high school students outside of the classroom by providing an after school geoscience club, a middle school geoscience summer enrichment camp, and a research/mentorship program for high school students. Second, we helped fill the need for geoscience curriculum content requested of science teachers who work primarily with underrepresented middle school populations by providing a professional development workshop at HU led by geoscience professors, teachers, and science educators. Third, we built on the successful atmospheric sciences research and active Ph.D. program by developing our geoscience curriculum including the formation of a new space, earth, and atmospheric sciences minor. All workshops, camps, and clubs have been full or nearly full each year despite restrictions on participants repeating any of the programs. The new minor has 11 registered undergraduates and the total number of students in these classes has been increasing. Participants of all programs gave the quality of the program good ratings and participant perceptions and knowledge improved throughout the programs based on pre-, formative, and summative assessments. The ultimate goal is to increase the number of degrees granted to underrepresented minorities in the geosciences. We have built a solid foundation with our minor that prepares students for graduate degrees in the geosciences and offer a graduate degree in physics with a concentration in the atmospheric sciences. However, it's from the geoscience pipeline that students will come into our academic programs. We expect to continue to develop these formal and informal education programs to increase our reputation and utilize the network of schools with which we have built relationships to recruit underrepresented minority students into our academic programs. We also plan to continue to enhance our undergraduate minor and graduate degree programs to build a self-sustaining graduate degree-granting program in the geosciences.

  6. The Learning Effects of an Ecology Enrichment Summer Program on Gifted Students from Mainstream and Diverse Cultural Backgrounds: A Preliminary Study

    ERIC Educational Resources Information Center

    Wang, Wen-Ling; Wu, Jiun-Wei; Lin, Yu-Chin

    2006-01-01

    Enrichment is one of the important educational models for gifted students. However, the research on gifted enrichment programs rarely leads to instructional interventions for culturally diverse students. The purposes of this study were: (a) to propose an ecology enrichment summer program for gifted students from mainstream and diverse cultural…

  7. 1997 NASA-ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N. (Compiler); Young, Deborah B. (Compiler)

    1998-01-01

    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. Objectives of the program are as follows: (1) To further the professional knowledge of qualified engineering and science faculty members, (2) To stimulate and exchange ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of participants' institutions; and (4) To contribute to the research objectives of the NASA center. Program description is as follows: College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of interest or that are directly relevant to the Fellows' research topics. The lectures and seminar leaders will be distinguished scientists and engineers from NASA, education, and industry.

  8. Research and Teaching: The Pairing of a Science Communications and a Language Course to Enrich First-Year English Language Learners' Writing and Argumentation Skills

    ERIC Educational Resources Information Center

    Welsh, Ashley J.; Shaw, Amber; Fox, Joanne A.

    2017-01-01

    This article explores how English-language learners' writing evolved during a first-year seminar in science course aimed at developing students' argumentation skills. We highlight how a science communications course was paired with a weekly academic English course in the context of a highly coordinated and enriched first-year experience program…

  9. Using the Assessment Model for Developing Learning Managements in Enrichment Science Classrooms of Upper Secondary Educational Students' Outcomes in Thailand

    ERIC Educational Resources Information Center

    Athan, Athit; Srisa-ard, Boonchom; Suikraduang, Arun

    2015-01-01

    The aim of this work is to develop and investigate the model for assessing learning management on the enrichment science classrooms in the upper secondary education of the Development and Promotion of Science and Technology Talents Project in Thailand. Using the research methodologies with the four phases: to investigate the background of the…

  10. Use of Information Technology Tools in Source Selection Decision Making: A Study on USAF’s KC-X Tanker Replacement Program

    DTIC Science & Technology

    2008-06-01

    The most common outranking methods are the preference ranking organization method for enrichment evaluation ( PROMETHEE ) and the elimination and...Brans and Ph. Vincke, “A Preference Ranking Organization Method: (The PROMETHEE Method for Multiple Criteria Decision-Making),” Management Science 31... PROMETHEE ). This method needs a preference function for each criterion to compute the degree of preference.72 “The credibility of the outranking

  11. NASA-ASEE Summer Faculty Fellowship Program at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Prahl, Joseph M.; Keith, Theo G., Jr.; Montegani, Francis J.

    1996-01-01

    During the summer of 1996, a ten-week Summer Faculty Fellowship Program was conducted at the NASA Lewis Research Center (LeRC) in collaboration with Case Western Reserve University (CWRU), and the Ohio Aerospace Institute (OAI). This is the thirty-third summer of this program at Lewis. It was one of nine summer programs sponsored by NASA in 1996, at various field centers under the auspices of the American Society for Engineering Education (ASEE). The objectives of the program are: (1) to further the professional knowledge of qualified engineering and science educators, (2) to stimulate an exchange of ideas between participants and NASA, (3) to enrich and refresh the research activities of participants' institutions. (4) to contribute to the research objectives of LeRC. This report is intended to recapitulate the activities comprising the 1996 Lewis Summer Faculty Fellowship Program, to summarize evaluations by the participants, and to make recommendations regarding future programs.

  12. Active learning in optics for girls

    NASA Astrophysics Data System (ADS)

    Ali, R.; Ashraf, I.

    2017-08-01

    Active learning in Optics (ALO) is a self-funded program under the umbrella of the Abdus Salam International Centre for Theoretical Physics (ICTP) and Quaid-i-Azam University (QAU) to bring physical sciences to traditionally underserved Girls high schools and colleges in Pakistan. There is a significant gender disparity in physical Sciences in Pakistan. In Department of Physics at QAU, approximately 10 to 20% of total students were used to be females from past many decades, but now this percentage is increasing. To keep it up at same pace, we started ALO in January 2016 as a way to provide girls an enriching science experiences, in a very friendly atmosphere. We have organized many one-day activities, to support and encourage girls' students of government high schools and colleges to pursue careers in sciences. In this presentation we will describe our experience and lesson learned in these activities.

  13. Enriching Science and Math through Engineering

    ERIC Educational Resources Information Center

    Redmond, Adrienne; Thomas, Julie; High, Karen; Scott, Margaret; Jordan, Pat; Dockers, Jean

    2011-01-01

    This case study reviewed the collaborative efforts of university engineers, teacher educators, and middle school teachers to advance sixth- and seventh-grade students' learning through a series of project-based engineering activities. This two-year project enriched regular school curricula by introducing real-world applications of science and…

  14. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1987, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1987-01-01

    The 1987 Johnson Space Center (JCS) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of ASEE. The basic objectives of the program are: to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants' institutions; and to contribute to the research objective of the NASA Centers. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 1987.

  15. 1992 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Freeman, L. Michael; Chappell, Charles R.; Six, Frank; Karr, Gerald R.

    1992-01-01

    For the 28th consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The program was conducted by the University of Alabama and MSFC during the period June 1, 1992 through August 7, 1992. Operated under the auspices of the American Society for Engineering Education, the MSFC program, was well as those at other centers, was sponsored by the Office of Educational Affairs, NASA Headquarters, Washington, DC. The basic objectives of the programs, which are the 29th year of operation nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate and exchange ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers.

  16. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1992, volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1992-01-01

    The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document contains reports 13 through 24.

  17. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1992, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1992-01-01

    The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document is a compilation of the final reports 1 through 12.

  18. Introducing Earthdata 3.0: An All-New Way of Creating and Publishing Content

    NASA Astrophysics Data System (ADS)

    Bagwell, R.; Wong, M. M.; Siarto, J.; Reese, M.; Berrick, S. W.

    2015-12-01

    Since the launch of the National Aeronautics and Space Administration (NASA) Earthdata website (https://earthdata.nasa.gov) in the later part of 2011, there has been an emphasis on improving the user experience and providing more enriched content to the user, ultimately with the focus to bring the "pixels to the people" or to ensure that a user clicks the fewest amount of times to get to the data, tools, or information which they seek. NASA Earthdata was founded to be a single source of information as a conglomeration between over 20 different websites. With an increased focus on access to Earth science data, the recognition is now on transforming Earthdata from a static website to one that is a dynamic, data-driven site full of enriched content. This poster will present the process of utilizing a custom-built Content Management System (CMS) called "Conduit" to manage and publish content into the new Earthdata website, with examples of the various components of the CMS, as well as featured areas from the new website design. NASA Earthdata is a part of the Earth Observing System Data and Information System (EOSDIS) project. EOSDIS is a key core capability in NASA's Earth Science Data Systems Program. It provides end-to-end capabilities for managing NASA's Earth science data from various sources - satellites, aircraft, field measurements, and various other programs. It is comprised of twelve Distributed Active Archive Centers (DAACs), Science Computing Facilities (SCFs), data discovery and service access client (Reverb and Earthdata Search), dataset directory (Global Change Master Directory - GCMD), near real-time data (Land Atmosphere Near real-time Capability for EOS - LANCE), Worldview (an imagery visualization interface), Global Imagery Browse Services, the Earthdata Code Collaborative and a host of other discipline specific data discovery, data access, data subsetting and visualization tools. In the near future, Earthdata will have a number of components that will drive the access to the data, such as the Earthdata Search Client and the Common Metadata Repository (CMR). The focus on content curation will be to leverage the use of these components to provide an enriched content environment and a better overall user experience, with an emphasis on Earthdata being "powered by EOSDIS" components and services.

  19. Science for the 21st Century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2004-07-01

    The Federal government plays a key role in supporting the country's science infrastructure, a national treasure, and scientific research, an investment in our future. Scientific discoveries transform the way we think about our universe and ourselves, from the vastness of space to molecular-level biology. In innovations such as drugs derived through biotechnology and new communications technologies we see constant evidence of the power of science to improve lives and address national challenges. We had not yet learned to fly at the dawn of the 20th century, and could not have imagined the amazing 20th century inventions that we now takemore » for granted. As we move into the 21st century, we eagerly anticipate new insights, discoveries, and technologies that will inspire and enrich us for many decades to come. This report presents the critical responsibilities of our Federal science enterprise and the actions taken by the Federal research agencies, through the National Science and Technology Council, to align our programs with scientific opportunity and with national needs. The many examples show how our science enterprise has responded to the President's priorities for homeland and national security, economic growth, health research, and the environment. In addition, we show how the science agencies work together to set priorities; coordinate related research programs; leverage investments to promote discovery, translate science into national benefits, and sustain the national research enterprise; and promote excellence in math and science education and work force development.« less

  20. Science Fiction on Film.

    ERIC Educational Resources Information Center

    Burmester, David

    1985-01-01

    Reviews science fiction films used in a science fiction class. Discusses feature films, short science fiction films, short story adaptations, original science fiction pieces and factual science films that enrich literature. (EL)

  1. Support programs for minority students at Ohio University College of Osteopathic Medicine.

    PubMed

    Thompson, H C; Weiser, M A

    1999-04-01

    The Ohio University College of Osteopathic Medicine ranks high among the nation's 19 osteopathic medical schools with respect to the percentage of underrepresented minorities (URMs) in the entering class. The college has strong recruitment and retention programs for URM and disadvantaged students. URM enrollment rose steadily from 11% in 1982-83 to 22% in 1997-98, despite the school's location in a rural, residential public university with few minorities as students or town residents. The college has six programs to support minority students through both undergraduate and medical school: the Summer Scholars Program (1983 to present), an intensive six-week summer program to prepare rising under-graduate seniors and recent graduates to apply to medical school; Academic Enrichment (1987 to present), to support first- and second-year medical students; the Prematriculation Program (1988 to present), an intensive six-week summer program for students who will matriculate in the college; Program ExCEL (1993 to present), a four-year program for undergraduates at Ohio University; the Summer Enrichment Program (1993 to present), an optional six-week program for students who will enter the premedical course at Ohio University; and the Post-baccalaureate Program (1993 to present), a year-long, individually tailored program for URM students who have applied to the medical college but have been rejected. The medical college first focused on supporting students already in the medical school curriculum, then expanded logically back through the undergraduate premedical programs, always targeting learning strategies and survival strategies, peer and faculty support, and mastery of the basic science content. The college plans to create an on-site MCAT preparation program and perhaps expand into secondary education.

  2. Research reports: 1991 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Karr, Gerald R. (Editor); Chappell, Charles R. (Editor); Six, Frank (Editor); Freeman, L. Michael (Editor)

    1991-01-01

    The basic objectives of the programs, which are in the 28th year of operation nationally, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. The faculty fellows spent 10 weeks at MSFC engaged in a research project compatible with their interests and background and worked in collaboration with a NASA/MSFC colleague. This is a compilation of their research reports for summer 1991.

  3. Engaging High School Girls in Native American Culturally Responsive STEAM Enrichment Activities

    ERIC Educational Resources Information Center

    Kant, Joanita M.; Burckhard, Suzette R.; Meyers, Richard T.

    2018-01-01

    Providing science, technology, engineering, art, and mathematics (STEAM) culturally responsive enrichment activities is one way of promoting more interest in science, technology, engineering, and mathematics (STEM) studies and careers among indigenous students. The purpose of the study was to explore the impact, if any, of STEAM culturally…

  4. Helping Basic Scientists Engage With Community Partners to Enrich and Accelerate Translational Research.

    PubMed

    Kost, Rhonda G; Leinberger-Jabari, Andrea; Evering, Teresa H; Holt, Peter R; Neville-Williams, Maija; Vasquez, Kimberly S; Coller, Barry S; Tobin, Jonathan N

    2017-03-01

    Engaging basic scientists in community-based translational research is challenging but has great potential for improving health. In 2009, The Rockefeller University Center for Clinical and Translational Science partnered with Clinical Directors Network, a practice-based research network (PBRN), to create a community-engaged research navigation (CEnR-Nav) program to foster research pairing basic science and community-driven scientific aims. The program is led by an academic navigator and a PBRN navigator. Through meetings and joint activities, the program facilitates basic science-community partnerships and the development and conduct of joint research protocols. From 2009-2014, 39 investigators pursued 44 preliminary projects through the CEnR-Nav program; 25 of those became 23 approved protocols and 2 substudies. They involved clinical scholar trainees, early-career physician-scientists, faculty, students, postdoctoral fellows, and others. Nineteen (of 25; 76%) identified community partners, of which 9 (47%) named them as coinvestigators. Nine (of 25; 36%) included T3-T4 translational aims. Seven (of 25; 28%) secured external funding, 11 (of 25; 44%) disseminated results through presentations or publications, and 5 (71%) of 7 projects publishing results included a community partner as a coauthor. Of projects with long-term navigator participation, 9 (of 19; 47%) incorporated T3-T4 aims and 7 (of 19; 37%) secured external funding. The CEnR-Nav program provides a model for successfully engaging basic scientists with communities to advance and accelerate translational science. This model's durability and generalizability have not been determined, but it achieves valuable short-term goals and facilitates scientifically meaningful community-academic partnerships.

  5. Hampton University/American Society for Engineering Education/NASA Summer Faculty Fellowship Program 1986

    NASA Technical Reports Server (NTRS)

    Spencer, J. H. (Compiler)

    1986-01-01

    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 or 11 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society of Engineering Education supervises the programs. Objectives: (1) To further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate and exchange ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of participants' institutions; (4) to contribute to the research objectives of the NASA center. Program Description: College or university will be faculty members appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA-Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of general interest or that are directly relevant to the Fellows' research project. The lecturers and seminar leaders will be distinguished scientists and engineers from NASA, education or industry.

  6. The 1995 NASA-ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N. (Compiler); Young, Deborah B. (Compiler)

    1995-01-01

    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. The objectives of this program are: (1) To further the professional knowledge of qualified engineering and science faculty members; (2) To stimulate and exchange ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of participants' institutions; and (4) To contribute to the research objectives of the NASA center. College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of interest or that are directly relevant to the Fellows' research topics. The lectures and seminar leaders will be distinguished scientists and engineers from NASA, education, or industry.

  7. NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1985

    NASA Technical Reports Server (NTRS)

    Goglia, G. (Compiler)

    1985-01-01

    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. The objectives of this program are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to simulate and exchange ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants institutions; and (4) to contribute to the research objectives of the NASA center. College or university faculty members will be appointed as research fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The fellows will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of general interest or that are directly relevant to the fellows' research project. The lecturers and seminar leaders will be distinguished scientists and engineers from NASA, the educational community, or industry.

  8. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) summer faculty fellowship program, 1986, volume 1

    NASA Technical Reports Server (NTRS)

    Mcinnis, Bayliss (Editor); Goldstein, Stanley (Editor)

    1987-01-01

    The Johnson Space Center (JSC) NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston. The basic objectives of the program are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching objectives of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. Each faculty fellow spent ten weeks at JSC engaged in a research project commensurate with his interests and background and worked in collaboration with a NASA/JSC colleague. Volume 1 contains sections 1 through 14.

  9. Research Reports: 1986 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Freeman, L. Michael (Editor); Speer, Fridtjof A. (Editor); Cothran, Ernestine K. (Editor); Karr, Gerald R. (Editor)

    1986-01-01

    For the 22th consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted for the summer of 1986 by the University of Alabama and Marshall Space Flight Center. The basic objectives of the program are: (1)to further the professional knowledge of qualified engineering and science faculty members; (2)to stimulate an exchange of ideas between participants and NASA; (3)to enrich and refresh the research and teaching activities of the participants' institution; and (4)to contribute to the research objectives of the NASA center. The Faculty Fellows spent ten weeks at MSFC engaged in a research project compatible with their interest and background and worked in collaboration with a NASA/MSFC colleague. This is a compilation of Fellows' reports on their research.

  10. Reciprocal Education Experiences In Two GK-12 Programs: Teachers Learning And Students Teaching In Diverse Settings

    NASA Astrophysics Data System (ADS)

    Mayo, M.; Williams, C.; Rodriguez, T.; Greely, T.; Pyrtle, A. J.; Rivera-Rentas, A. L.; Vilches, M.

    2004-12-01

    The National Science Foundation's Graduate Teaching Fellows in K-12 Education (GK-12) Program has enabled science, technology, engineering and mathematics (STEM) graduate schools across the country to become more active in local area K-12 schools. An overview of a graduate student's experiences, insights gained and lessons learned as a Fellow in the 2003-2004 Universidad Metropolitana's (UMET) environmental science and the 2004-2005 University of South Florida's (USF) ocean science GK-12 Programs is presented. The major goals of the 2003-2004 UMET GK-12 Program were 1) to enrich environmental science teaching and learning via a thematic approach in eight local public schools and 2) to provide UMET graduate students with exposure to teaching methodologies and practical teaching experience. Utilizing examples from local environments in and nearby Carolina, Puerto Rico to teach key science principles at Escuela de la Comunidad Juana Rodriguez Mundo provided numerous opportunities to relate science topics to students' daily life experiences. By 2004, the UMET GK-12 Program had successfully engaged the entire student body (primarily comprised of bilingual minority kindergarten to sixth graders), teachers and school administrators in environment-focused teaching and learning activities. Examples of such activities include tree planting projects to minimize local erosion, conducting a science fair for the first time in many years, and numerous opportunities to experience what "real scientists do" while conducting environmental science investigations. During the 2004-2005 academic year, skills, insights and lessons learned as a UMET GK-12 Fellow are being further enhanced through participation in the USF GK-12 OCEANS Program. The overall objectives of the 2004-2005 USF GK-12 OCEANS assignment at Madeira Beach Elementary School in Saint Petersburg, Florida are to 1) engage students from various ethnic backgrounds and cultures in hands-on science activities, 2) enhance the school's third grade ocean science education curriculum, and 3) foster dialog between students at Madeira Beach Elementary School and Escuela de la Comunidad Juana Rodriguez Mundo, via exchange of pictures, video recordings, letters and emails related to environment-focused learning activities being undertaken at the two schools. In addition to these objectives, during the 2004-2005 academic year several ocean science-focused activities, the majority of which were adapted and/or identified from either the UMET GK-12 or USF OCEAN GK-12 Programs, will be utilized to further stimulate Madeira Beach Elementary School third graders' critical thinking skills. Examples of such activities, including hands-on exercises, case studies, games and field trips are highlighted in this presentation.

  11. Empowering Rural Appalachian Youth Through Integrated Inquiry-based Earth Science

    NASA Astrophysics Data System (ADS)

    Cartwright, T. J.; Hogsett, M.

    2009-05-01

    Science education must be relevant and inspiring to keep students engaged and receptive to learning. Reports suggest that science education reform can be advanced by involving students in active research (NSF 1996). Through a 2-year Geoscience Education award from the National Science Foundation, a program called IDGE (Integrated Design for Geoscience Education) has targeted low-income, under-represented, and minority high school students in rural Appalachia in inquiry-based projects, international collaboration, and an international environmental expedition incorporating the GLOBE program protocols. This program targeted Upward Bound students at Marshall University in Huntington, West Virginia. The Upward Bound is a federally-supported program targeting low-income, under-represented, and minority students for inclusion in a summer academic- enrichment program. IDGE builds on the mission of Upward Bound by encouraging underprivileged students to investigate science and scientific careers. This outreach has proven to be successful in enhancing positive attitudes and understanding about science and increasing the number of students considering science careers. IDGE has found that students must be challenged to observe the world around them and to consider how their decisions affect the future of our planet, thus making geoscience relevant and interesting to the students. By making the geoscience course inquiry-based and incorporating field research that is relevant to local environmental issues, it becomes possible for students to bridge the gap between science in theory and science in practice while remaining engaged. Participants were able to broaden environmental connections through an ecological expedition experience to Costa Rica, serving as an opportunity to broaden the vision of students as members of an international community of learners and scientists through their experiences with a diverse natural environment. This trip, in coordination with the inclusion of scientific instruments such as GPS and probeware, fostered additional student interest in earth science. IDGE has shown to have a lasting effect on the participating students who learn from the experience that science is a dynamic field in need of creative minds who want to make discoveries. Through relevant inquiry, the quality of geoscience instruction is inspiring a new generation of geoscientists. This work was supported in part by the National Science Foundation under award 0735596. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the National Science Foundation.

  12. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  13. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 1

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  14. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B.; Goldstein, Stanley H.

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JCS. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  15. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  16. Educational Intervention in a Medically Underserved Area.

    PubMed

    Atance, Joel; Mickalis, Morgan; Kincade, Brianna

    2018-04-01

    Medical students from rural and medically underserved areas (MUAs) are more likely than their peers to practice medicine in rural areas and MUAs. However, students from MUAs are also more likely to face socioeconomic barriers to a career in medicine. To determine whether a week-long summer enrichment experience (SEE) at Edward Via College of Osteopathic Medicine-Carolinas could successfully teach high school students from MUAs basic biomedical concepts and foster an interest in medicine and the health sciences. The SEE program is open to high school students in the Spartanburg, South Carolina, area. The program includes interactive lectures, laboratories, demonstrations on gross anatomy prosections, demonstrations on medical simulation models, tours of emergency vehicles, an introduction to osteopathic manipulative medicine, and student-led research projects. Participants were asked to complete a 15-question quiz that assessed their knowledge of basic biomedical concepts and a 10-question survey that assessed their attitudes toward careers in medicine and health sciences. Both the quiz and the survey were completed on both the first and final days of the program. The data were analyzed using paired t tests. Participant knowledge of basic biomedical concepts, as determined by the quiz scores, increased after completion of the program (9.1 average correct answers vs 12.6 average correct answers) (P<.001). Participant attitude toward medicine and the health sciences improved in 9 of the 10 items surveyed after completion of the program (P<.05). Participant knowledge of basic biomedical concepts and their knowledge of and interest in careers in the health sciences improved after completing the SEE program. These findings suggest that educational interventions for high school students could help to develop primary care physicians for rural areas and MUAs and that there is a role for osteopathic medical schools to nurture these students as early as possible.

  17. History-Based Instruction Enriched with Various Sources of Situational Interest on the Topic of the Atom: the Effect on Students' Achievement and Interest

    NASA Astrophysics Data System (ADS)

    Pekdağ, Bülent; Azizoğlu, Nursen

    2018-05-01

    This study examines the effect of history-based instruction on the topic of the atom on students' academic achievement and their interest in the history of science, investigating as well the relationship between student interest and academic achievement. The sample of the study consisted of two groups of freshman students from an undergraduate elementary science teachers program. The same chemistry instructor taught the groups, which were randomly assigned as an experimental and a control group. The students in the control group received traditional teacher-centered instruction, while the experimental group students were taught the topic of the atom using history-based instruction enriched with various sources of situational interest such as novelty, autonomy, social involvement, and knowledge acquisition (NASK). Data gathering instruments were the Atom Achievement Test and the History of Science Interest Scale, administered to both of the groups before and after the instruction. The data were analyzed with the independent-samples t test, the paired-samples t test, and one-way ANCOVA statistical analysis. The results showed that the history-based instruction including NASK was more effective than traditional instruction in improving the students' learning of the subject of the atom as well as in stimulating and improving students' interest in the history of science. Further, students with high interest displayed significantly better achievement than students with low interest. The better learning of the topic of the atom was more pronounced in the case of students with a high interest in the history of science compared to students with moderate or low interest.

  18. Australian Personal Enrichment Education and Training Programs. Statistics 1996. An Overview.

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research, Leabrook (Australia).

    This publication presents a consolidated national picture of activity in recreation, leisure, and personal enrichment programs in Australia. It also details highlights, key features, and characteristics of activity in personal enrichment programs in 1996. Information has been collected from two main training provider groups: adult community…

  19. Creative Change: Art, Music, and Climate Science

    NASA Astrophysics Data System (ADS)

    Dahlberg, R. A.; Hoffman, J. S.; Maurakis, E. G.

    2017-12-01

    As part of ongoing climate science education initiatives, the Science Museum of Virginia hosted Creative Change in March 2017. The event featured multidisciplinary programming created by scientists, artists, and students reacting to and interpreting climate change and resiliency through a variety of artistic mediums and informal science education. Creative Change was developed in consideration of studies conducted at Columbia University that indicate traditional educational approaches, which rely heavily on scientific information and data literacy, fail to engage and inspire action in a majority of people. Our informal science education programming developed for Creative Change, by contrast, is inclusive to all ages and backgrounds, integrating scientific data and an artistic human touch. Our goal was to increase public awareness of climate change and resiliency through the humanities in support of the Museum's mission to inspire Virginians to enrich their lives through science. Visitors were invited to attend Coral Reef Fever, a dance performance of coral bleaching; high school and university art exhibitions; climate data performed by a string quartet; poetry, rap, and theater performances; and a panel discussion by artists and scientists on communicating science through the arts and humanities. Based on 26 post- event survey results, we found as a result that visitors enjoyed the event (mean of 9.58 out of 10), learned new information (9.07), and strongly agreed that the arts and humanities should be used more in communicating science concepts (9.77). Funded in part by Bond Bradley Endowment and NOAA ELG Award #NA15SEC0080009.

  20. Laboratory directed research and development program, FY 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides themore » resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.« less

  1. 2000 NASA-HU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Marable, William P. (Compiler); Murray, Deborah B. (Compiler); Hathaway, Roger A. (Technical Monitor)

    2000-01-01

    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend ten weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. The objectives are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate and exchange ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA center. College or university faculty members will be appointed as Research Fellows to spend ten weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of interest or that are directly relevant to the Fellows' research topics. The lecture and seminar leaders will be distinguished scientists and engineers from NASA, education, and industry. A list of the abstracts of the presentations is provided.

  2. A Meta-Analysis of the Effects of Enrichment Programs on Gifted Students

    ERIC Educational Resources Information Center

    Kim, Mihyeon

    2016-01-01

    Although descriptions of enrichment programs are valuable for practitioners, practices, and services for gifted students, they must be backed by evidence, derived through a synthesis of research. This study examined research on enrichment programs serving gifted students and synthesized the current studies between 1985 and 2014 on the effects of…

  3. Center of Microbial Oceanography Research and Education (C-MORE) Initiatives Toward Promoting Diversity in the Ocean Sciences

    NASA Astrophysics Data System (ADS)

    Bruno, B. C.

    2007-05-01

    The ocean sciences suffer from a lack of diversity, particularly among indigenous peoples, despite the fact that indigenous peoples often have deep, cultural knowledge about the marine environment. Nowhere is this inequity more glaring than in Hawaii. Traditional knowledge in marine science enabled Native Hawaiians and Pacific Islanders (NHPI) to become world leaders in transpacific canoe voyaging, aquaculture, and fisheries. Yet today, NHPI are severely underrepresented in the ocean sciences (and in STEM fields in general) at all levels of education and employment. When compared to other ethnic and racial groups in Hawaii, NHPI students as a group have among the poorest educational performance, indicated in part by underrepresentation in college enrolment and pre-college gifted and talented programs, as well as overrepresentation in eligibility for special education and free and reduced lunch programs. The Center of Microbial Oceanography Research and Education (C-MORE), a NSF-funded, multi-institutional Science and Technology Center based at the University of Hawai (UH), is determined to address this inequity. C- MORE is committed to increasing diversity in the ocean sciences, particularly among NHPI, at all levels of education and research. Our approach is to work with existing programs with a track record of increasing diversity among NHPI. We are currently developing culturally relevant materials including educational games for K-12 students, mentorships for high school and community college students, and laboratory and shipboard experiences for teachers and undergraduates in partnership with minority-serving organizations. Some of our main partners are EPSCoR (Experimental Program to Stimulate Competitive Research), Ka `Imi `Ike (an NSF- funded program to recruit and retain NHPI undergraduates in geosciences), Upward Bound (an enrichment program for economically disadvantaged high school students which includes intensive summer courses), the UH Center on Disability Studies (which is developing culturally relevant curriculum to address the overrepresentation of NHPI in special education classes) and the UH Louis Stokes Program (which we plan to use as a model). For more information, please refer to: http:cmore.soest.hawaii.edu

  4. School Science Comes Alive. Phase Three

    NASA Technical Reports Server (NTRS)

    Hartline, Frederick F.

    1997-01-01

    Phase 3 of the School Science Comes Alive Program (S(sup 2)CAP) created an exciting, science - enrichment experience for third, fourth and fifth graders and their teachers and enhanced the science-teaching skills of teacher teams at each of four participating elementary schools on Virginia's Peninsula. The schools involved enroll a majority of Black students, many of whom are from economically disadvantaged households. Designed to build on the highly successful S(sup 2)CAP program of the preceding two years, this project brought college faculty together with classroom teachers and trained volunteers in a cooperative effort to make a lasting difference in the quality of science education at the four schools. In total, this program touched approximately 1000 the school children, more than half of whom are black, giving them direct and indirect exposure to the spirit of inquiry and adventure of the world-wide science community. In S(sup 2)CAP Phase 3, a large measure of responsibility was placed on the classroom teachers, thus creating a more sustainable partnership between college faculty and grade school teacher. Our college physics professors coached and supported teams of teachers from each school at intensive training workshops. A volunteer program provided each teacher with one or more trained volunteers to assist in class with the hands-on activities that have been central to the S2CAP program. Most of the equipment for these activities was constructed during the workshops by the teachers and volunteers from low cost materials provided by the program. Two types of volunteers were enlisted: science smart black college students and technically trained retirees (many of whom are ex-NASA employees). One goal of this program was to increase the numbers of minority students who see science as an interesting and exciting subject, to make the science period a time which students look forward to in the school day. Such an attitude is expected to translate naturally into a higher interest in science and engineering as a career for these students. A second goal was to create a sustainable improvement in the way science is taught at the elementary level. By the end of the program we expected that our teachers would be significantly more self reliant in using hands-on-activities as a part of their science curricula than they were prior to their involvement with S2CAP. In summary, S2CAP Phase 3 offered intensive training workshops for teachers and supporting volunteers followed by stimulating hands-on activities in the classroom for the children. These components combined to amplify the experience, enthusiasm, and ideas of our scientists in a way that complements the normal elementary school curriculum in each of the two school systems involved.

  5. Behavioral Effects of an Enhanced Enrichment Program for Group-Housed Sooty Mangabeys (Cercocebus atys)

    PubMed Central

    Crast, Jessica; Bloomsmith, Mollie A; Jonesteller, Trina J

    2016-01-01

    Evaluating the behavioral effects of enrichment on animals housed in biomedical facilities is necessary to effectively support their care and wellbeing. We tested the cumulative effects of an enhanced enrichment program on sooty mangabey behavior: locomotion, feeding and foraging, manipulating items in the enclosure, social affiliation, aggression, and abnormal behavior. The enhanced enrichment program included the addition of a substrate (timothy hay), widely distributing small pieces of produce and a forage mixture in the hay, adding structures and perching, and increasing the variety of food items, foraging devices, and other manipulable items. We tested 10 groups living in runs (n = 54) by using an ABA experimental design (phase A, standard enrichment; phase B, enhanced enrichment) and Wilcoxon signed-rank tests to compare behavior across phases. During phase B, subjects significantly increased feeding, foraging, and manipulation of items, and they decreased self-grooming, social affiliation, and aggression. Combined enrichment use increased from approximately 10% to 21% of the mangabeys’ time. Enhanced enrichment did not affect locomotion or abnormal behavior. The increases in feeding, foraging, and manipulation during enhanced enrichment were driven primarily by the subjects’ preference for foraging in the hay: it was the most effective component of the program in promoting feeding and foraging behavior, which comprises the majority of wild sooty mangabeys’ daily activity. Developing an effective, species-appropriate, and comprehensive enrichment program is essential to successfully promote the health and wellbeing of captive NHP. PMID:27931313

  6. Behavioral Effects of an Enhanced Enrichment Program for Group-Housed Sooty Mangabeys (Cercocebus atys).

    PubMed

    Crast, Jessica; Bloomsmith, Mollie A; Jonesteller, Trina J

    2016-11-01

    Evaluating the behavioral effects of enrichment on animals housed in biomedical facilities is necessary to effectively support their care and wellbeing. We tested the cumulative effects of an enhanced enrichment program on sooty mangabey behavior: locomotion, feeding and foraging, manipulating items in the enclosure, social affiliation, aggression, and abnormal behavior. The enhanced enrichment program included the addition of a substrate (timothy hay), widely distributing small pieces of produce and a forage mixture in the hay, adding structures and perching, and increasing the variety of food items, foraging devices, and other manipulable items. We tested 10 groups living in runs (n = 54) by using an ABA experimental design (phase A, standard enrichment; phase B, enhanced enrichment) and Wilcoxon signed-rank tests to compare behavior across phases. During phase B, subjects significantly increased feeding, foraging, and manipulation of items, and they decreased self-grooming, social affiliation, and aggression. Combined enrichment use increased from approximately 10% to 21% of the mangabeys' time. Enhanced enrichment did not affect locomotion or abnormal behavior. The increases in feeding, foraging, and manipulation during enhanced enrichment were driven primarily by the subjects' preference for foraging in the hay: it was the most effective component of the program in promoting feeding and foraging behavior, which comprises the majority of wild sooty mangabeys' daily activity. Developing an effective, species-appropriate, and comprehensive enrichment program is essential to successfully promote the health and wellbeing of captive NHP.

  7. Education and Outreach Programs Offered by the Center for High Pressure Research and the Consortium for Materials Properties Research in Earth Sciences

    NASA Astrophysics Data System (ADS)

    Richard, G. A.

    2003-12-01

    Major research facilities and organizations provide an effective venue for developing partnerships with educational organizations in order to offer a wide variety of educational programs, because they constitute a base where the culture of scientific investigation can flourish. The Consortium for Materials Properties Research in Earth Sciences (COMPRES) conducts education and outreach programs through the Earth Science Educational Resource Center (ESERC), in partnership with other groups that offer research and education programs. ESERC initiated its development of education programs in 1994 under the administration of the Center for High Pressure Research (CHiPR), which was funded as a National Science Foundation Science and Technology Center from 1991 to 2002. Programs developed during ESERC's association with CHiPR and COMPRES have targeted a wide range of audiences, including pre-K, K-12 students and teachers, undergraduates, and graduate students. Since 1995, ESERC has offered inquiry-based programs to Project WISE (Women in Science and Engineering) students at a high school and undergraduate level. Activities have included projects that investigated earthquakes, high pressure mineral physics, and local geology. Through a practicum known as Project Java, undergraduate computer science students have developed interactive instructional tools for several of these activities. For K-12 teachers, a course on Long Island geology is offered each fall, which includes an examination of the role that processes in the Earth's interior have played in the geologic history of the region. ESERC has worked with Stony Brook's Department of Geosciences faculty to offer courses on natural hazards, computer modeling, and field geology to undergraduate students, and on computer programming for graduate students. Each summer, a four-week residential college-level environmental geology course is offered to rising tenth graders from the Brentwood, New York schools in partnership with Stony Brook's Department of Technology and Society. During the academic year, a college-level Earth science course is offered to tenth graders from Sayville, New York. In both programs, students conduct research projects as one of their primary responsibilities. In collaboration with the Museum of Long Island Natural Sciences on the Stony Brook campus, two programs have been developed that enable visiting K-12 school classes to investigate earthquakes and phenomena that operate in the Earth's deep interior. From 1997 to 1999, the weekly activity-based Science Enrichment for the Early Years (SEEY) program, focusing on common Earth materials and fundamental Earth processes, was conducted at a local pre-K school. Since 2002, ESERC has worked with the Digital Library for Earth System Education (DLESE) to organize the Skills Workshops for their Annual Meeting and with EarthScope for the development of their Education and Outreach Program Plan. Future education programs and tools developed through COMPRES partnerships will place an increased emphasis on deep Earth materials and phenomena.

  8. The 1993 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Karr, Gerald R. (Editor); Chappell, Charles R. (Editor); Six, Frank (Editor); Freeman, L. Michael (Editor)

    1993-01-01

    For the 29th consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The program was conducted by the University of Alabama in Huntsville and MSFC during the period of 6-1-93 through 8-6-93. Operated under the auspices of the American Society for Engineering Education, the MSFC program, as well as those at other NASA centers, was sponsored by the Office of Educational Affairs, NASA Headquarters, Washington, DC. The basic objectives of the programs, which are in the 30th year of operation nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institution; and (4) to contribute to the research objectives of the NASA centers.

  9. Research reports: 1987 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Karr, Gerald R. (Editor); Cothran, Ernestine K. (Editor); Freeman, L. Michael (Editor)

    1987-01-01

    For the 23rd consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The program was conducted by the University of Alabama in Huntsville and MSFC during the period 1 June to 7 August 1987. Operated under the auspices of the American Society for Engineering Education, the MSFC program, as well as those at other NASA Centers, was sponsored by the Office of University Affairs, NASA Headquarters, Washington, D.C. The basic objectives of the program are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participant's institutions; and (4) to contribute to the research objectives of the NASA Centers. This document is a compilation of Fellow's reports on their research during the Summer of 1987.

  10. Integrating the Teaching of Space Science, Planetary Exploration And Robotics In Elementary And Middle School with Mars Rover Models

    NASA Astrophysics Data System (ADS)

    Bering, E. A.; Ramsey, J.; Smith, H.; Boyko, B. S.; Peck, S.; Arcenaux, W. H.

    2005-05-01

    The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. This paper describes a program designed to help provide some excitement and relevance. It is based on the task of developing a mobile robot or "Rover" to explore the surface of Mars. There are two components to the program, a curriculum unit and a contest. The curriculum unit is structured as a 6-week planetary science unit for elementary school (grades 3-5). It can also be used as a curriculum unit, enrichment program or extracurricular activity in grades 6-8 by increasing the expected level of scientific sophistication in the mission design. The second component is a citywide competition to select the most outstanding models that is held annually at a local college or University. Primary (Grades 3-5) and middle school (Grades 6-8) students interested in science and engineering will design and build of a model of a Mars Rover to carry out a specific science mission on the surface of Mars. The students will build the models as part of a 6-week Fall semester classroom-learning or homework project on Mars. The students will be given design criteria for a rover, and be required to do basic research on Mars that will determine the operational objectives and structural features of their rover. This module may be used as part of a class studying general science, earth science, solar system astronomy or robotics or as a multi-disciplinary unit for a gifted and talented program. A written report on the science objectives and design features of the Rover is required. The program includes specific learning objectives in research skills, language arts (reading scientific literature, preparing a verbal presentation and writing a report), mathematics, science and engineering.The model will be mostly a mock-up, constructed at a minimal cost (estimated cost of less than 10-25) of mostly found objects and simple art supplies.

  11. Using existing programs as vehicles to disseminate knowledge, provide opportunities for scientists to assist educators, and to engage students in using real data

    NASA Astrophysics Data System (ADS)

    Smith, S. C.; Wegner, K.; Branch, B. D.; Miller, B.; Schulze, D. G.

    2013-12-01

    Many national and statewide programs throughout the K-12 science education environment teach students about science in a hands-on format, including programs such as Global Learning and Observations to Benefit the Environment (GLOBE), Project Learning Tree (PLT), Project Wild, Project Wet, and Hoosier River Watch. Partnering with one or more of these well-known programs can provide many benefits to both the scientists involved in disseminating research and the K-12 educators. Scientists potentially benefit by broader dissemination of their research by providing content enrichment for educators. Educators benefit by gaining understanding in content, becoming more confident in teaching the concept, and increasing their enthusiasm in teaching the concepts addressed. This presentation will discuss an innovative framework for professional development that was implemented at Purdue University, Indiana in July 2013. The professional development incorporated GLOBE protocols with iPad app modules and interactive content sessions from faculty and professionals. By collaborating with the GLOBE program and scientists from various content areas, the Department of Earth, Atmospheric, and Planetary Sciences at Purdue University successfully facilitated a content rich learning experience for educators. Such activity is promoted and supported by Purdue University Libraries where activities such as Purdue's GIS Day are efforts of making authentic learning sustainable in the State of Indiana and for national consideration. Using iPads to visualize soil transitions on a field trip. Testing Water quality in the field.

  12. Engineering Encounters: Designing Healthy Ice Pops. A STEM Enrichment Project for Second Graders Incorporates Nutrition and Design Principles

    ERIC Educational Resources Information Center

    Bubnick, Laura; Enneking, Katie; Egbers, Julie

    2016-01-01

    Science, technology, engineering, and math (STEM) education piques students' innate curiosity and opens their eyes to hundreds of career possibilities. This column presents ideas and techniques to enhance your science teaching. This month's issue shares information about a STEM enrichment project for second graders that incorporates nutrition and…

  13. Bringing Hands-on Activities and Real Scientists to Students: Bishop Museum's X-treme Science Exhibit, Holoholo Science Program, and Planned Science Learning Center

    NASA Astrophysics Data System (ADS)

    Hills, D. J.; Fullerton, K.; Hoddick, C.; Ali, N.; Mosher, M. K.

    2002-12-01

    Bishop Museum developed the "X-treme Science: Exploring Oceans, Volcanoes, and Outer Space" museum exhibit in conjunction with NASA as part of their goal to increase educational outreach. A key element of the exhibit was the inclusion of real scientists describing what they do, and fostering the interaction between scientists and students. Highlights of the exhibit were interviews with local (Hawaii-based) scientists involved in current ocean, volcano, and space research. These interviews were based on questions that students provided, and were available during the exhibit at interactive kiosks. Lesson plans were developed by local teachers and scientists, and provided online to enhance the exhibit. However, one limitation of the museum exhibit was that not all students in the state could visit, or spend enough time with it. To serve more remote schools, and to provide for additional enrichment for those who did attend, the education department at Bishop Museum developed a traveling program with the X-treme Science exhibit as the basis. The Holoholo (Hawaiian for "fun outing") Science program brings a scientist into the classroom with a hands-on scientific inquiry activity. The activity is usually a simplified version of a problem that the scientist actually deals with. The students explore the activity, reach conclusions, and discuss their results. They are then given the opportunity to question the scientist about the activity and about what the scientist does. This allows students to understand that science is not something mystical, but rather something attainable. A key element of Holoholo remains the active participation of real-life scientists in the experience. The scientists who have participated in the program have had overwhelmingly positive experiences. Bishop Museum is developing a science learning center, with the objective of meeting local and national science standards using inquiry based science. The unifying theme of all three of these projects is involving students with active scientists who are accessible to them. AGU scientists are vital to realizing this goal.

  14. Research reports: 1994 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Freeman, L. Michael (Editor); Chappell, Charles R. (Editor); Six, Frank (Editor); Karr, Gerald R. (Editor)

    1994-01-01

    For the 30th consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The basic objectives of the programs, which are in the 31st year of operation nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA centers. The Faculty Fellows spent 10 weeks at MSFC engaged in a research project compatible with their interests and background and worked in collaboration with a NASA/MSFC colleague. This document is a compilation of Fellows' reports on their research during the summer of 1994.

  15. NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Hosler, E. Ramon (Editor); Valdes, Carol (Editor); Brown, Tom (Editor)

    1993-01-01

    This document is a collection of technical reports on research conducted by the participants in the 1993 NASA/ASEE Summer Faculty Fellowship Program at KSC. The basic common objectives of the Program are: to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants' institutions; and to contribute to the research objectives of the NASA centers. 1993 topics include wide band fiber optic communications, a prototype expert/information system for examining environmental risks of KSC activities, alternatives to premise wiring using ATM and microcellular technologies, rack insertion end effector (RIEE) automation, FTIR quantification of industrial hydraulic fluids in perchloroethylene, switch configuration for migration to optical fiber network, and more.

  16. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1994, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard; Sickorez, Donn G.

    1995-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to: (1) further the professional knowledge of qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) enrich and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1994.

  17. Cosmogenically-produced isotopes in natural and enriched high-purity germanium detectors for the MAJORANA DEMONSTRATOR

    NASA Astrophysics Data System (ADS)

    Gilliss, Thomas; MAJORANA DEMONSTRATOR Collaboration

    2017-01-01

    The MAJORANA DEMONSTRATOR advances toward measurements of the neutrinoless double-beta decay of 76Ge. Detectors employed in the DEMONSTRATOR are subject to cosmogenic spallation during production and processing, resulting in activation of certain long-lived radioisotopes. Activation of these cosmogenic isotopes is mitigated by shielded storage of detectors and through underground operation of the DEMONSTRATOR at the 4850 ft level of the Sanford Underground Research Facility. In this work, we explore the appearance and reduction of cosmogenic contributions to the DEMONSTRATOR background spectrum. This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics and Nuclear Physics Programs of the National Science Foundation, and the Sanford Underground Research Facility.

  18. Planning an Effective Speakers Outreach Program

    NASA Technical Reports Server (NTRS)

    McDonald, Malcolm W.

    1996-01-01

    The National Aeronautics and Space Administration (NASA) and, in particular, the Marshall Space Flight Center (MSFC) have played pivotal roles in the advancement of space exploration and space-related science and discovery since the early 1960's. Many of the extraordinary accomplishments and advancements of NASA and MSFC have gone largely unheralded to the general public, though they often border on the miraculous. This lack of suitable and deserved announcement of these "miracles" seems to have occurred because NASA engineers and scientists are inclined to regard extraordinary accomplishment as a normal course of events. The goal in this project has been to determine an effective structure and mechanism for communicating to the general public the extent to which our investment in our US civilian space program, NASA, is, in fact, a very wise investment. The project has involved discerning important messages of truth which beg to be conveyed to the public. It also sought to identify MSFC personnel who are particularly effective as messengers or communicators. A third aspect of the project was to identify particular target audiences who would appreciate knowing the facts about their NASA investment. The intent is to incorporate the results into the formation of an effective, proactive MSFC speakers bureau. A corollary accomplishment for the summer was participation in the formation of an educational outreach program known as Nasa Ambassadors. Nasa Ambassadors are chosen from the participants in the various MSFC summer programs including: Summer Faculty Fellowship Program (SFFP), Science Teacher Enrichment Program (STEP), Community College Enrichment Program (CCEP), Joint Venture (JOVE) program, and the NASA Academy program. NASA Ambassadors agree to make pre-packaged NASA-related presentations to non-academic audiences in their home communities. The packaged presentations were created by a small cadre of participants from the 1996 MSFC summer programs, volunteering their time beyond their normal NASA summer research commitment. A total of eight presentations were created and made available for use by NASA Ambassadors. A major segment of the research effort during the summer has been devoted to verifying and documenting certain "spinoff' contributions of NASA technology and in determining their relevance and impact to our society and our nation's economy. The purpose behind the verification/documentation research has been to shed light on the question of whether or not our NASA investment is a wise investment. It has revealed that NASA is a wise investment.

  19. Louis D. Brandeis High School, Demonstration Bilingual Enrichment College Preparatory Program. O.E.E. Evaluation Report, 1982-1983.

    ERIC Educational Resources Information Center

    Cochran, Effie Papatzikou; Collins, Carla

    The Enrichment College Preparatory Program, an Elementary and Secondary Education Act, Title VII bilingual demonstration project at a Manhattan, New York City, high school, completed the final year of a two-year funding cycle in June 1983. The program, which provided cultural enrichment and advanced academic experiences to 160 intellectually…

  20. ENRICHMENT ACTIVITIES FOR THE GIFTED CHILD IN THE REGULAR CLASSROOM--GRADES FOUR THROUGH EIGHT.

    ERIC Educational Resources Information Center

    MCARTHUR, BERNARD

    ENRICHMENT SUGGESTIONS FOR TEACHERS OF GRADES FOUR THROUGH EIGHT IN THE AREAS OF SCIENCE, MATHEMATICS, SOCIAL STUDIES, AND LANGUAGE AND READING WERE PRESENTED. EACH SUBJECT INCLUDED A DESCRIPTION OF THE LESSON, WITH MATERIALS, AND HOW TO EXPLAIN THE PURPOSES. AN EXAMPLE OF A SCIENCE ACTIVITY WAS BUILDING A TEST COIL FOR A SEVENTH GRADE CLASS. THE…

  1. Playing Smart: The Family Guide to Enriching, Offbeat Learning Activities for Ages 4-14. Revised, Expanded and Updated Edition.

    ERIC Educational Resources Information Center

    Perry, Susan K.

    Noting children's need for enrichment at home, this book offers hundreds of unusual ways for children and parents to spend time together. Using this book as a guide, parents and children can survey new subjects ranging from cultural diversity to photography, journal keeping, psychology, food science, gardening, and sports science. The activities…

  2. Preparation of Underrepresented Males for Scientific Careers: A Study of the Dr. John H. Hopps Jr. Defense Research Scholars Program at Morehouse College

    PubMed Central

    Thompson, Rahmelle C.; Monroe-White, Thema; Xavier, Jeffrey; Howell, Courtney; Moore, Myisha Roberson; Haynes, J. K.

    2016-01-01

    Equal representation within higher education science, technology, engineering, and mathematics (STEM) fields and the STEM workforce in the United States across demographically diverse populations is a long-standing challenge. This study uses two-to-one nearest-neighbor matched-comparison group design to examine academic achievement, pursuit of graduate science degree, and classification of graduate institution attended by students participating in the Hopps Scholars Program (Hopps) at Morehouse College. Hopps is a highly structured enrichment program aimed at increasing participation of black males in STEM fields. Morehouse institutional records, Hopps Program records, and National Student Clearinghouse data were used to examine differences between Hopps and non-Hopps STEM graduates of Morehouse. Two-way sample t tests and chi-square tests revealed significant differences in academic achievement, likelihood of STEM degree pursuit, and the classification of graduate institutions attended by Hopps versus non-Hopps students. Hopps Scholars were significantly more likely than non-Hopps STEM graduates both to pursue STEM doctoral degrees and to attend doctoral-granting institutions with higher research activity. The Hopps Program’s approach to training black male students for scientific careers is a model of success for other programs committed to increasing the number of black males pursuing advanced degrees in STEM. PMID:27562959

  3. Is it design or is it inquiry? Exploring technology research in a Filipino school setting

    NASA Astrophysics Data System (ADS)

    Yazon, Jessamyn Marie Olivares

    My case study explored Filipino secondary students' and teachers' experiences with technology research, project-based pedagogy. The study was conducted to examine the nature of a Technology Research (TR) Curriculum, and how it mediates non-Western students' learning, and interest in technology-based careers. The context for my study is Philippine Science High School's (PSHS) TR program wherein students outline a proposal, design an experiment or a device, and implement their design to address a real world problem. My data sources included semi-structured interviews of 27 students and 2 teachers; participant observations of classroom and group activities, teacher-student consultations, and Science-Technology Fair presentations; TR curriculum documents; and researcher journal logs. My examination of curriculum documents revealed that since the 1960s, the Philippine government has implemented specialized educational programs, such as the PSHS Science/Technology Streaming and TR programs, to support Filipino youth interested in science and technology courses and careers. Data analyses showed that the TR program provided a rich, practical learning environment where 'doing technology design' blended with 'doing science inquiry'. The TR activities enhanced student understanding of science and technology; helped them integrate and apply knowledge and skills learned from other school subjects; encouraged them to be creative, problem-solvers; and helped develop their lifelong learning skills. Students recognized that TR teachers adopted alternative instructional strategies that prompted students to adopt more active roles in their learning. Research findings revealed that student interest in pursuing technology-related careers was supported by their participation in the streaming and the TR programs. Data also showed that Filipino cultural practices mediated student learning, and career decision-making. My research findings suggest that present notions of scientific inquiry, and technological design need to be re-examined; that integrated science-technology school programs must be implemented to enhance students' academic and vocational knowledge and skills; and that career direction interventions should address personal and socio-cultural factors other than student interest and aptitude. My study provides strong evidence that technology research pedagogy can change teaching-learning approaches in a Filipino classroom. This study showed that academic-vocational, technology-enriched science curriculum could be effectively designed to help equip students to become critical thinkers and leaders in the 21st century.

  4. Learning health equity frameworks within a community of scholars.

    PubMed

    Alexander, Kamila A; Dovydaitis, Tiffany; Beacham, Barbara; Bohinski, Julia M; Brawner, Bridgette M; Clements, Carla P; Everett, Janine S; Gomes, Melissa M; Harner, Holly; McDonald, Catherine C; Pinkston, Esther; Sommers, Marilyn S

    2011-10-01

    Scholars in nursing science have long espoused the concept of health equity without specifically using the term or dialoguing about the social determinants of health and social justice. This article describes the development, implementation, and evaluation of a doctoral and postdoctoral seminar collective entitled "Health Equity: Conceptual, Linguistic, Methodological, and Ethical Issues." The course enabled scholars-in-training to consider the construct and its nuances and frame a personal philosophy of health equity. An example of how a group of emerging scholars can engage in the important, but difficult, discourse related to health equity is provided. The collective provided a forum for debate, intellectual growth, and increased insight for students and faculty. The lessons learned by all participants have the potential to enrich doctoral and postdoctoral scientific training in nursing science and may serve as a model for other research training programs in the health sciences. Copyright 2011, SLACK Incorporated.

  5. Learning Health Equity Frameworks within a Community of Scholars

    PubMed Central

    Dovydaitis, Tiffany; Beacham, Barbara; Bohinski, Julia M.; Brawner, Bridgette M.; Clements, Carla P.; Everett, Janine S.; Gomes, Melissa M.; Harner, Holly; McDonald, Catherine C.; Pinkston, Esther; Sommers, Marilyn S.

    2011-01-01

    Scholars in nursing science have long espoused the concept of health equity without specifically using the term or dialoguing about the social determinants of health and social justice. In this paper, we describe the development, implementation, and evaluation of a doctoral and post- doctoral seminar collective entitled Health Equity: Conceptual, Linguistic, Methodological and Ethical Issues. The course enabled scholars-in-training to consider the construct and its nuances and frame a personal philosophy of health equity. We offer an example of how a group of emerging scholars can engage in the important, but difficult discourse related to health equity. The collective provided a forum for debate, intellectual growth, and increased insight for students and faculty. We posit that the lessons learned by all participants have the potential to enrich doctoral and post-doctoral scientific training in nursing science and may serve as a model for other research training programs in the health sciences. PMID:21710960

  6. Enhancing Diversity in Biomedical Data Science

    PubMed Central

    Canner, Judith E.; McEligot, Archana J.; Pérez, María-Eglée; Qian, Lei; Zhang, Xinzhi

    2017-01-01

    The gap in educational attainment separating underrepresented minorities from Whites and Asians remains wide. Such a gap has significant impact on workforce diversity and inclusion among cross-cutting Biomedical Data Science (BDS) research, which presents great opportunities as well as major challenges for addressing health disparities. This article provides a brief description of the newly established National Institutes of Health Big Data to Knowledge (BD2K) diversity initiatives at four universities: California State University, Monterey Bay; Fisk University; University of Puerto Rico, Río Piedras Campus; and California State University, Fullerton. We emphasize three main barriers to BDS careers (ie, preparation, exposure, and access to resources) experienced among those pioneer programs and recommendations for possible solutions (ie, early and proactive mentoring, enriched research experience, and data science curriculum development). The diversity disparities in BDS demonstrate the need for educators, researchers, and funding agencies to support evidence-based practices that will lead to the diversification of the BDS workforce PMID:28439180

  7. Final Report on Activities Supported by Department of Energy Grant No. DE-FG02-02ER63397, 2002-August 31, 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madelaine Marquez; Neil Stillings

    The grant supported four projects that involved professional development for teachers and enrichment programs for students from under-funded and under-served school districts. The projects involved long-term partnerships between Hampshire College and the districts. All projects were concerned with the effective implementation of inquiry-based science learning and its alignment with state and national curriculum and assessment standards. One project, The Collaboration for Excellence in Science Education (CESE), was designed to support research on the development of concepts in the physical sciences, specifically energy and waves. Extensive data from student interviews and written essays supported the neo-Piagetian hierarchical complexity theory of thismore » area of conceptual development. New assessment techniques that can be used by teachers were also developed. The final report includes a full presentation of the methods and results of the research.« less

  8. The Role of the National Laboratory in Improving Secondary Science Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White,K.; Morris, M.; Stegman, M.

    While the role of science, technology, engineering, and mathematics (STEM) teachers in our education system is obvious, their role in our economic and national security system is less so. Our nation relies upon innovation and creativity applied in a way that generates new technologies for industry, health care, and the protection of our national assets and citizens. Often, it is our science teachers who generate the excitement that leads students to pursue science careers. While academia provides these teachers with the tools to educate, the rigors of a science and technology curriculum, coupled with the requisite teaching courses, often limitmore » teacher exposure to an authentic research environment. As the single largest funding agency for the physical sciences, the US Department of Energy's (DOE) Office of Science plays an important role in filling this void. For STEM teachers, the DOE Academies Creating Teacher Scientists program (ACTS) bridges the worlds of research and education. The ACTS program at Brookhaven National Laboratory (BNL), one of several across the country, exemplifies the value of this program for participating teachers. Outcomes of the work at BNL as evidenced by the balance of this report, include the following: (1) Teachers have developed long-term relationships with the Laboratory through participation in ongoing research, and this experience has both built enthusiasm for and enriched the content knowledge of the participants. (2) Teachers have modified the way they teach and are more likely to engage students in authentic research and include more inquiry-based activities. (3) Teachers have reported their students are more interested in becoming involved in science through classes, extra-curricular clubs, and community involvement. (4) Teachers have established leadership roles within their peer groups, both in their own districts and in the broader teaching community. National laboratories are making an important contribution to the science education system by engaging teachers in authentic research activities, maintaining durable relationships with the teachers, sharing the tools and intellectual capabilities of a federal research agency, and taking the added step of engaging their students as well. These experiences, set in a scientifically rich environment, distinguish the DOE ACTS program.« less

  9. An Investigation of a Culturally Responsive Approach to Science Education in a Summer Program for Marginalized Youth

    NASA Astrophysics Data System (ADS)

    Garvin, Brittany A.

    There have been numerous calls and efforts made to provide states, school districts, and communities needed financial support to increase and enhance access to and opportunities in Science, Technology, Engineering, and Math (STEM) related disciplines for marginalized populations (Tyson, Lee, & Hanson, 2007; Caldwell & Siwatu, 2003). As the challenge to better educate students of color and poor students intensifies, the need to provide equitable science learning experiences for all students aimed at scientific literacy and STEM also becomes critical. Thus the need to provide summer science enrichment programs where students engage in scientific experimentation, investigation, and critical thinking are vital to helping students who have been traditionally marginalized achieve success in school science and enter the science career pipeline. This mixed methods study examined the impact of a culturally responsive approach on student attitudes, interests in science education and STEM careers, and basic science content knowledge before and after participation in an upward bound summer program. Quantitative results indicated using a culturally responsive approach to teach science in an informal learning space significantly increases student achievement. Students receiving culturally responsive science instruction exhibited statistically significant increases in their posttest science scores compared to pretest science scores, M = 0.376, 95% CI [0.266, 0.487], t (10) = 7.610, p < 0.001. Likewise, students receiving culturally responsive science instruction had a significantly higher interest in science (M = 1.740, SD = 0.548) and STEM careers, M = 0.597, 95% CI [0.276, 0.919], p = 0.001. The qualitative data obtained in this study sought to gain a more in-depth understanding of the impact of a culturally responsive approach on students' attitudes, interests in science and STEM careers. Findings suggest providing students the opportunity to do and learn science utilizing a culturally responsive approach was much more beneficial to their overall science knowledge, as it allowed students to experience, understand, and connect to and through their science learning. Likewise, culturally responsive science instruction helped students to foster a more positive interest in science and STEM careers as it provided students the opportunity to do science in a meaningful and relevant way. Moreover, results revealed students receiving culturally responsive science instruction were able to see themselves represented in the curriculum and recognized their own strengths; as a result they were more validated and affirmed in and transformed by, their learning.

  10. UCSF partnership to enrich science teaching for sixth graders in San Francisco's schools.

    PubMed

    Doyle, H J

    1999-04-01

    Increasing the diversity of students entering the health professions is a challenging goal for medical schools. One approach to this goal is to share the enthusiasm and energy of medical students with younger students, who may pursue medical education in the future. The MedTeach program, established in 1989 and coordinated by the Science & Health Education Partnership of the University of California, San Francisco (UCSF), does so by partnering volunteer medical students from UCSF with sixth-grade classes studying the human body. In 1997-98, around 350 sixth-graders in the San Francisco Schools benefitted from the program. Each team of medical student's visits its class ten to 12 times a year to present engaging, hands-on lessons on body systems and health. The medical students are also role models for the middle-school students. In addition, the diverse student population of San Francisco public schools provides a rich environment for the medical students to improve their communication and teaching skills.

  11. Beyond Einstein

    NASA Astrophysics Data System (ADS)

    Hertz, P.

    2003-03-01

    The Structure and Evolution of the Universe (SEU) theme within NASA's Office of Space Science seeks to explore and understand the dynamic transformations of energy in the Universe - the entire web of biological and physical interactions that determine the evolution of our cosmic habitat. This search for understanding will enrich the human spirit and inspire a new generation of explorers, scientists, and engineers. To that end, NASA's strategic planning process has generated a new Roadmap to enable those goals. Called "Beyond Einstein", this Roadmap identifies three science objectives for the SEU theme: (1) Find out what powered the Big Bang; (2) Observe how black holes manipulate space, time, and matter; and (3) Identify the mysterious dark energy pullingthe Universe apart. These objectives can be realized through a combination of large observatories (Constellation-X, LISA), moderate sized, PI-led missions (the Einstein Probes), and a contuinuing program of technology development, research and analysis, and education/public outreach. In this presentation, NASA's proposed Beyond Einstein Program will be described. The full Roadmap is available at http://universe.nasa.gov/.

  12. Publication Bias Currently Makes an Accurate Estimate of the Benefits of Enrichment Programs Difficult: A Postmortem of Two Meta-Analyses Using Statistical Power Analysis

    ERIC Educational Resources Information Center

    Warne, Russell T.

    2016-01-01

    Recently Kim (2016) published a meta-analysis on the effects of enrichment programs for gifted students. She found that these programs produced substantial effects for academic achievement (g = 0.96) and socioemotional outcomes (g = 0.55). However, given current theory and empirical research these estimates of the benefits of enrichment programs…

  13. The Legacy Project: A Case Study of Civic Capacity Building and Transformative Educational Leadership in a Community-Based Academic Enrichment Program

    ERIC Educational Resources Information Center

    Didlick-Davis, Celeste R.

    2016-01-01

    This study examines how a grassroots educational enrichment program in a small urban economically depressed area builds and uses civic capacity. Using qualitative data collected through a case study of the Legacy Academic Enrichment program in Middletown, Ohio, I identify factors that make Legacy sustainable and successful in a community that has…

  14. The 1983 NASA/ASEE Summer Faculty Fellowship Research Program research reports

    NASA Technical Reports Server (NTRS)

    Horn, W. J. (Editor); Duke, M. B. (Editor)

    1983-01-01

    The 1983 NASA/ASEE Summary Faculty Fellowship Research Program was conducted by Texas A&M University and the Lyndon B. Johnson Space Center (JSC). The 10-week program was operated under the auspices of the American Society for Engineering Education (ASEE). The basic objectives of the programs, which began in 1965 at JSC and in 1964 nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members, (2) to stimulate an exchange of ideas between participants and NASA, (3) to enrich and refresh the research and teaching activities of participants' institutions, and (4) to contribute to the research objectives of the NASA Centers. The faculty fellows spent 10 weeks at JSC engaged in a research project commensurate with their interests and background. They worked in collaboration with a NASA/JSC colleague. This document is a compilation of final reports on their research during the summer of 1983.

  15. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) summer faculty fellowship program, 1986, volume 2

    NASA Technical Reports Server (NTRS)

    Mcinnis, Bayliss (Editor); Goldstein, Stanley (Editor)

    1987-01-01

    The Johnson Space Center (JSC) NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The ten week program was operated under the auspices of the American Society for Engineering Education (ASEE). The basic objectives of the program are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. Each faculty fellow spent ten weeks at JSC engaged in a research project commensurate with his interests and background and worked in collaboration with a NASA/JSC colleague. The final reports on the research projects are presented. This volume, 2, contains sections 15 through 30.

  16. Twelve Years of Education and Public Outreach with the Fermi Gamma-ray Space Telescope

    NASA Astrophysics Data System (ADS)

    Cominsky, Lynn R.; McLin, K. M.; Simonnet, A.; Fermi E/PO Team

    2013-04-01

    During the past twelve years, NASA's Fermi Gamma-ray Space Telescope has supported a wide range of Education and Public Outreach (E/PO) activities, targeting K-14 students and the general public. The purpose of the Fermi E/PO program is to increase student and public understanding of the science of the high-energy Universe, through inspiring, engaging and educational activities linked to the mission’s science objectives. The E/PO program has additional more general goals, including increasing the diversity of students in the Science, Technology, Engineering and Mathematics (STEM) pipeline, and increasing public awareness and understanding of Fermi science and technology. Fermi's multi-faceted E/PO program includes elements in each major outcome category: ● Higher Education: Fermi E/PO promotes STEM careers through the use of NASA data including research experiences for students and teachers (Global Telescope Network), education through STEM curriculum development projects (Cosmology curriculum) and through enrichment activities (Large Area Telescope simulator). ● Elementary and Secondary education: Fermi E/PO links the science objectives of the Fermi mission to well-tested, customer-focused and NASA-approved standards-aligned classroom materials (Black Hole Resources, Active Galaxy Education Unit and Pop-up book, TOPS guides, Supernova Education Unit). These materials have been distributed through (Educator Ambassador and on-line) teacher training workshops and through programs involving under-represented students (after-school clubs and Astro 4 Girls). ● Informal education and public outreach: Fermi E/PO engages the public in sharing the experience of exploration and discovery through high-leverage multi-media experiences (Black Holes planetarium and PBS NOVA shows), through popular websites (Gamma-ray Burst Skymap, Epo's Chronicles), social media (Facebook, MySpace), interactive web-based activities (Space Mysteries, Einstein@Home) and activities by amateur astronomers nation-wide (Supernova! Toolkit). This poster highlights various facets of the Fermi E/PO program.

  17. Transcriptional diversity during lineage commitment of human blood progenitors.

    PubMed

    Chen, Lu; Kostadima, Myrto; Martens, Joost H A; Canu, Giovanni; Garcia, Sara P; Turro, Ernest; Downes, Kate; Macaulay, Iain C; Bielczyk-Maczynska, Ewa; Coe, Sophia; Farrow, Samantha; Poudel, Pawan; Burden, Frances; Jansen, Sjoert B G; Astle, William J; Attwood, Antony; Bariana, Tadbir; de Bono, Bernard; Breschi, Alessandra; Chambers, John C; Consortium, Bridge; Choudry, Fizzah A; Clarke, Laura; Coupland, Paul; van der Ent, Martijn; Erber, Wendy N; Jansen, Joop H; Favier, Rémi; Fenech, Matthew E; Foad, Nicola; Freson, Kathleen; van Geet, Chris; Gomez, Keith; Guigo, Roderic; Hampshire, Daniel; Kelly, Anne M; Kerstens, Hindrik H D; Kooner, Jaspal S; Laffan, Michael; Lentaigne, Claire; Labalette, Charlotte; Martin, Tiphaine; Meacham, Stuart; Mumford, Andrew; Nürnberg, Sylvia; Palumbo, Emilio; van der Reijden, Bert A; Richardson, David; Sammut, Stephen J; Slodkowicz, Greg; Tamuri, Asif U; Vasquez, Louella; Voss, Katrin; Watt, Stephen; Westbury, Sarah; Flicek, Paul; Loos, Remco; Goldman, Nick; Bertone, Paul; Read, Randy J; Richardson, Sylvia; Cvejic, Ana; Soranzo, Nicole; Ouwehand, Willem H; Stunnenberg, Hendrik G; Frontini, Mattia; Rendon, Augusto

    2014-09-26

    Blood cells derive from hematopoietic stem cells through stepwise fating events. To characterize gene expression programs driving lineage choice, we sequenced RNA from eight primary human hematopoietic progenitor populations representing the major myeloid commitment stages and the main lymphoid stage. We identified extensive cell type-specific expression changes: 6711 genes and 10,724 transcripts, enriched in non-protein-coding elements at early stages of differentiation. In addition, we found 7881 novel splice junctions and 2301 differentially used alternative splicing events, enriched in genes involved in regulatory processes. We demonstrated experimentally cell-specific isoform usage, identifying nuclear factor I/B (NFIB) as a regulator of megakaryocyte maturation-the platelet precursor. Our data highlight the complexity of fating events in closely related progenitor populations, the understanding of which is essential for the advancement of transplantation and regenerative medicine. Copyright © 2014, American Association for the Advancement of Science.

  18. A New Approach to Reach Latino Populations in Rural and Urban Settings

    NASA Astrophysics Data System (ADS)

    Morris, P.; Garcia, A.; Galindo, C.; Obot, V.; Allen, J.; Reiff, P.; Sumners, C.; Garcia, J.; Garza, O.

    2004-12-01

    Current statistics indicate that Latino populations have lower high school and college graduation rates than Anglos or African Americans. If Latinos do not pursue baccalaureate and higher degrees, then this group will be left behind as technological advances increasingly drive our society. The drop out rate affects not only the individuals, families, communities, and society from many different aspects, including financial independence, but also loss of potential contributing members of society in science, engineering, etc. Houston, an urban area, with a Latino population of 39% and Brownsville, a rural area represented by 84% Latinos, are two Texas areas where universities, schools, museums, and NASA are reaching out to increase science skills and graduation rates. Many Houston families have the opportunity to be introduced to different options, but Brownsville families do not have the same opportunities as the area lacks a strong industrial and technological base. We have developed programs to improve the space and Earth science knowledge base by providing summer science enrichment programs for K-12 students, family events, exposing high school students to college opportunities, and training high school and college students to serve as mentors to their peers. The peer mentors lead many of the outreach venues, interacting with the public with demonstrations and interactive science activities. In addition, we have developed a series of teacher workshops and modules on integrated science and mathematics. The teacher workshops are designed to provide the teachers with a wealth of integrated examples for classroom use.

  19. Using the Earth as an Effective Model for Integrating Space Science Into Education Outreach Programs

    NASA Astrophysics Data System (ADS)

    Morris, P. A.; Allen, J.; Galindo, C.; McKay, G.; Obot, V.; Reiff, P.

    2005-05-01

    Our methods of teaching Earth and space science as two disciplines do not represent the spirit of earlier scientists such as Aristotle, da Vinci, and Galileo. We need to re-evaluate these methods and take advantage of the excitement created in the general public over the recent space science exploration programs. The information that we are obtaining from both the Mars missions and Cassini-Huygens focuses on interpreting geomorphology, mineral compositions and gas identification based on Earth as a baseline for data evaluation. This type of evaluation is an extension of Hutton's 18th century principle of Uniformitarianism, the present is the key to the past, or Earth is the key for understanding extraterrestrial bodies. Geomorphological examples are volcanic activity, meteoritic impacts, and evidence of water altering surface features. The Hawaiian, or shield, type volcanoes are analogues for Olympus Mons and the other volcanoes on Mars. Other examples include comparing sand dunes on Earth with possible Martian dunes, known stream patterns on Earth with potential stream patterns on Mars, and even comparing meteoritic impact features on Mars, the Earth, Moon and Mercury. All of these comparisons have been developed into inquiry-based activities and are available through NASA publications. Each of these activities is easily adapted to emphasize either Earth science or space science or both. Beyond geomorphology, solar storms are an excellent topic for integrating Earth and space science. Solar storms are traditionally part of space science studies, but most students do not understand their effect on Earth or the intense effects they could have on humans, whether traveling through space or exploring the surfaces of the Moon or Mars. Effects are not only limited to space travel and other planetary surfaces but also include Earth's magnetosphere, which in turn, affect radio transmission and potentially climate. Like geomorphology courses, there are extensive NASA programs available via either the Internet or CD (e.g., those distributed by P. Reiff, Rice University) that provide inquiry-based activities for students. There is great potential to share the connections of Earth and space science by using NASA developed education materials. The materials can be adapted for the classroom, after school programs, family outreach events, and summer science enrichment programs.

  20. Behavioral responses of three armadillo species (Mammalia: Xenarthra) to an environmental enrichment program in Villavicencio, Colombia.

    PubMed

    Cortés Duarte, Alexandra; Trujillo, Fernando; Superina, Mariella

    2016-07-01

    Enrichment is a powerful tool to improve the welfare of animals under human care. Stress-related health and behavioral problems, as well as reproductive failure, are frequent in armadillos (Xenarthra, Cingulata, Dasypodidae) under human care, which hinders the development of successful ex situ conservation programs. Nevertheless, scientific studies on the effect of enrichment programs on armadillos are virtually non-existent. The objective of this study was to assess the impact of an enrichment program on the behavior of armadillos under human care. The behavior of 12 individuals of three species (Dasypus novemcinctus, D. sabanicola, and Cabassous unicinctus) maintained at Finca El Turpial, Villavicencio, Colombia, was recorded using scan sampling during three daily time blocks of 2 hr each before (4 weeks) and after (4 weeks) implementing an enrichment program. Enrichment did not stimulate the armadillos to change or extend their activity period. In general, activity levels were low during the entire study, and virtually no activity was recorded in the morning in any species, neither without nor with enrichment. The latter did, however, improve welfare by reducing abnormal and increasing natural foraging behaviors. All species were attracted by artificial termite mounds. Dasypus spp. showed special interest in cardboard boxes with food, while Cabassous was mainly attracted to hollow plastic balls filled with food. Our results suggest that separate enrichment programs need to be developed for different armadillo species, and that they should be applied during the time of day at which they are most active. Zoo Biol. 35:304-312, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Gifted Programs.

    ERIC Educational Resources Information Center

    Luehning, Barbara

    1979-01-01

    Describes programs for the gifted: visual and performing arts for secondary students, enrichment for rural elementary students, and a learning center elementary enrichment program. NOTE: includes "INTERARTS: The High School Program for the Talented in the Arts" by Barbara Luehning, "Spice" by Jane V. Salisbury, and "Learning Center Enrichment…

  2. Challenges in Science.

    ERIC Educational Resources Information Center

    Staples, Greg; And Others

    This publication is a collection of science activities designed to enrich elementary or junior high science curricula. These activities encourage students to investigate facets of life sciences, physical sciences, and earth sciences either with a teacher or independently. The 70 activities have been classified into 10 subareas under these three…

  3. An elective course in aromatherapy science.

    PubMed

    Esposito, Emily R; Bystrek, Mary V; Klein, JoAnn S

    2014-05-15

    To evaluate the impact of an innovative team-taught elective course on second-year (P2) students' knowledge and skills relating to the relationship between aromatherapy and pharmacy. An Aromatherapy Science elective course was offered to P2 students in an accelerated doctor of pharmacy (PharmD) degree program and was designed to provide an elective course experience while focusing on active-learning skills such as group work, student-led presentations, and in-class activities. Lectures were designed to reinforce core curricular threads from the basic sciences within the pharmaceutical sciences department while highlighting key aromatherapy principles. Course evaluations, grades, and student self-assessments were used to evaluate student fulfillment and knowledge gained. Students agreed this hands-on course integrated pharmaceutical science experiences, enriched their pharmacy education, and provided knowledge to enhance their confidence in describing essential oil uses, drug interactions, and key aromatherapy clinical implications. Students agreed this course prepared them to identify essential oil therapeutic uses and potential essential oil-drug interactions, and interpret literature. The introduction of aromatherapy principles to pharmacy students will prepare a new generation of healthcare professionals on the role of alternative medicines.

  4. The PPPL - Trenton Partnership: Past, Present, Future

    NASA Astrophysics Data System (ADS)

    Post-Zwicker, Andrew; Ritter, Christine; Morgan, James; Dejesus, Chris; Guilbert, Nick

    2004-11-01

    PPPL has an ongoing partnership with the Trenton, NJ public schools that leverages the unique resources of the laboratory in order to improve science education. The district is designated as an Abbott school district, one of 30 in NJ that are urban and poorer than the average. During the past year, PPPL has focused its efforts at the middle school level. A new science laboratory with an emphasis on energy and environmental studies is under construction and will open in 2005. PPPL is acting as a consultant on the design and will then provide scientific training for teachers. A middle school laboratory is a fertile starting ground for systemic change since it has the potential to affect a very susceptible student population. Simultaneously, to address current students' attitudes and encourage them, PPPL hosts the newly created middle school Science Bowl, a single day competition mixing quiz questions and a fuel cell powered car race. Finally, plans are underway to provide enrichment programs for students at PPPL and elsewhere during the summer. PPPL has the resources, expertise, and experience in the area of teacher professional experience, educational programming, and laboratory design to be the perfect agent to facilitate this effort.

  5. The Proliferation Security Initiative: A Means to an End for the Operational Commander

    DTIC Science & Technology

    2009-05-04

    The Reduced Enrichment for Research and Test Reactors ( RERTR ) Program develops technology necessary to enable the conversion of civilian...facilities using high enriched uranium (HEU) to low enriched uranium (LEU) fuels and targets. The RERTR Program was initiated by the U.S. Department of...processes have been developed for producing radioisotopes with LEU targets. The RERTR Program is managed by the Office of Nuclear Material Threat

  6. Applying behavior-analytic methodology to the science and practice of environmental enrichment in zoos and aquariums.

    PubMed

    Alligood, Christina A; Dorey, Nicole R; Mehrkam, Lindsay R; Leighty, Katherine A

    2017-05-01

    Environmental enrichment in zoos and aquariums is often evaluated at two overlapping levels: published research and day-to-day institutional record keeping. Several authors have discussed ongoing challenges with small sample sizes in between-groups zoological research and have cautioned against the inappropriate use of inferential statistics (Shepherdson, , International Zoo Yearbook, 38, 118-124; Shepherdson, Lewis, Carlstead, Bauman, & Perrin, Applied Animal Behaviour Science, 147, 298-277; Swaisgood, , Applied Animal Behaviour Science, 102, 139-162; Swaisgood & Shepherdson, , Zoo Biology, 24, 499-518). Multi-institutional studies are the typically-prescribed solution, but these are expensive and difficult to carry out. Kuhar ( Zoo Biology, 25, 339-352) provided a reminder that inferential statistics are only necessary when one wishes to draw general conclusions at the population level. Because welfare is assessed at the level of the individual animal, we argue that evaluations of enrichment efficacy are often instances in which inferential statistics may be neither necessary nor appropriate. In recent years, there have been calls for the application of behavior-analytic techniques to zoo animal behavior management, including environmental enrichment (e.g., Bloomsmith, Marr, & Maple, , Applied Animal Behaviour Science, 102, 205-222; Tarou & Bashaw, , Applied Animal Behaviour Science, 102, 189-204). Single-subject (also called single-case, or small-n) designs provide a means of designing evaluations of enrichment efficacy based on an individual's behavior. We discuss how these designs might apply to research and practice goals at zoos and aquariums, contrast them with standard practices in the field, and give examples of how each could be successfully applied in a zoo or aquarium setting. © 2017 Wiley Periodicals, Inc.

  7. Free-Fall Sex and Golden Eggs

    ERIC Educational Resources Information Center

    Burke, Michael C.

    1978-01-01

    Provides an annotated bibliography of science fiction literature suitable for use with secondary school students. Connections between science fiction and the science disciplines are viewed by the author as an excellent method by which to enrich science classes. (CP)

  8. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1993, volume 2

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)

    1993-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participant's institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. A compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1993 is presented.

  9. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1998. Volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    1999-01-01

    JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston and JSC, under ASEE. The objectives of the program are to further the professional knowledge of qualified engineering and science members; stimulate an exchange of ideas between participants and NASA; enrich and refresh the research and teaching activities of participants; and contribute to the research objectives of the NASA Centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project commensurate with his/her interests and background and worked in collaboration with a NASA/JSC colleague. This document is a compilation of the final reports on the fellows' research projects performed during the summer of 1998. Volume 1, current volume, contains the first reports, and volume 2 contains the remaining reports.

  10. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1993, volume 1

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)

    1993-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are as follows: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1993.

  11. Improving training in methodology enriches the science of psychology.

    PubMed

    Aiken, Leona S; West, Stephen G; Millsap, Roger E

    2009-01-01

    Replies to the comment Ramifications of increased training in quantitative methodology by Herbet Zimiles on the current authors original article "Doctoral training in statistics, measurement, and methodology in psychology: Replication and extension of Aiken, West, Sechrest, and Reno's (1990) survey of PhD programs in North America". The current authors state that in their recent article, they reported the results of an extensive survey of quantitative training in all PhD programs in North America. They compared these results with those of a similar survey conducted 12 years earlier (Aiken, West, Sechrest, & Reno, 1990), and raised issues for the future methodological training of substantive and quantitative researchers in psychology. The authors then respond to Zimiles three questions. PsycINFO Database Record 2009 APA.

  12. Mathematically precocious and female: Self-efficacy and STEM course choices among high achieving middle grade students

    NASA Astrophysics Data System (ADS)

    Burt, Stacey M.

    The problem addressed in this project is the lack of mathematically gifted females choosing to pursue advanced science, technology, engineering, and mathematics (STEM) courses in secondary education due to deficiencies in self-efficacy. The purpose of this project was to study the effects of a child-guided robotics program as it relates to the self-efficacy of mathematically gifted 6th grade female students and their future course choices in the advanced STEM content areas. This mixed-model study utilized a STEM attitude survey, artifacts, interviews, field notes, and standardized tests as measurement tools. Significance was found between genders in the treatment group for the standardized science scores, indicating closure in the achievement gap. Research suggests that STEM enrichment is beneficial for mathematically gifted females.

  13. Discovery of the Collaborative Nature of Science with Undergraduate Science Majors and Non-Science Majors through the Identification of Microorganisms Enriched in Winogradsky Columns.

    PubMed

    Ramirez, Jasmine; Pinedo, Catalina Arango; Forster, Brian M

    2015-12-01

    Today's science classrooms are addressing the need for non-scientists to become scientifically literate. A key aspect includes the recognition of science as a process for discovery. This process relies upon interdisciplinary collaboration. We designed a semester-long collaborative exercise that allows science majors taking a general microbiology course and non-science majors taking an introductory environmental science course to experience collaboration in science by combining their differing skill sets to identify microorganisms enriched in Winogradsky columns. These columns are self-sufficient ecosystems that allow researchers to study bacterial populations under specified environmental conditions. Non-science majors identified phototrophic bacteria enriched in the column by analyzing the signature chlorophyll absorption spectra whereas science majors used 16S rRNA gene sequencing to identify the general bacterial diversity. Students then compiled their results and worked together to generate lab reports with their final conclusions identifying the microorganisms present in their column. Surveys and lab reports were utilized to evaluate the learning objectives of this activity. In pre-surveys, nonmajors' and majors' answers diverged considerably, with majors providing responses that were more accurate and more in line with the working definition of collaboration. In post-surveys, the answers between majors and nonmajors converged, with both groups providing accurate responses. Lab reports showed that students were able to successfully identify bacteria present in the columns. These results demonstrate that laboratory exercises designed to group students across disciplinary lines can be an important tool in promoting science education across disciplines.

  14. The Military Significance of Small Uranium Enrichment Facilities Fed with Low-Enrichment Uranium (Redacted)

    DTIC Science & Technology

    1969-12-01

    a five-year supply of enriched uranium for reactor fuel . Nevertheless, it seems clear that some foreign enrichment developments are approaching a...produc- tion of fissile material could powerfully influence the assessment of risks and benefits of a nuclear weapons development program . Since... program is likely to include the production of its own relatively pure fissile plutonium. This would involve more rapid cycling and reprocessing of fuel

  15. Fostering Earth Science Inquiry From Within a Native Hawaiian Cultural Framework In O`ahu (Hawai`i) Through A Multidisciplinary Place-Based High School Summer Enrichment Program

    NASA Astrophysics Data System (ADS)

    Moxey, L.; Dias, R.; Legaspi, E.

    2010-12-01

    During the summer of 2010, twenty-five public high school students from underrepresented communities and ethnicities (Hawaiian, part-Hawaiian, Sāmoan, Filipino, Pacific Islander) in O`ahu (Hawai`i) participated in the Mālama Ke Ahupua`a (protecting our watershed) program. This rigorous three-week hands-on, place-based multidisciplinary program provided students with the opportunity of visiting the Mānoa Valley watershed (O`ahu, Hawaii) for learning and experiencing the Earth Science System dynamics that comprises it, while simultaneously exploring the significance of the ahupua`a (watershed) as related to native Hawaiian history and culture. While earning Hawaii DOE-approved academic credit, students utilized GPS/GIS technology, quantitative water quality testing equipment, and environmental monitoring tools for performing a watershed survey and water quality study of Mānoa Stream (Mānoa Valley) from its inception in the mountains, its advance through Honolulu’s urbanized areas, and its convergence with the Pacific Ocean. Through this hands-on field-based study, students documented changes in the watershed’s environment as reflected in declining water quality induced by anthropogenic pollution sources and urbanization. Students also visited relevant native Hawaiian cultural sites in Mānoa, and explored their direct links with the historical sustainable usage of the watershed’s natural resources, both from a cultural and science-based perspective. Finally, traditional wa`a (native Hawaiian outrigger canoes) were used as both cultural resources for discussing ancient Polynesian exploration, as well as scientific research platforms for conducting near-shore reef surveys & assessments. This program served to promote not only Earth Science literacy and STEM skills, but also contributed to further environmental stewardship while fostering native Hawaiian & Polynesian cultural identities.

  16. ESSEA as an Enhancement to K-12 Earth Systems Science Efforts at San José State University

    NASA Astrophysics Data System (ADS)

    Messina, P.; Metzger, E. P.; Sedlock, R. L.

    2002-12-01

    San José State University's Geology Department has implemented and maintained a two-fold approach to teacher education efforts. Both pre-service and in-service populations have been participants in a wide variety of content-area enrichment, training, and professional development endeavors. Spearheading these initiatives is the Bay Area Earth Science Institute (BAESI); organized in 1990, this program has served more than 1,000 teachers in weekend- and summer-workshops, and field trips. It sustains a network of Bay Area teachers via its Website (http://www.baesi.org), newsletter, and allows teachers to borrow classroom-pertinent materials through the Earth Science Resource Center. The Department has developed a course offering in Earth Systems Science (Geology 103), which targets pre-service teachers within SJSU's multiple-subject credential program. The curriculum satisfies California subject matter competency requirements in the geosciences, and infuses pedagogy into the syllabus. Course activities are intended for pre-service and in-service teachers' adaptation in their own classrooms. The course has been enhanced by two SJSU-NASA collaborations (Project ALERT and the Sun-Earth Connection Education Forum), which have facilitated incorporation of NASA data, imagery, and curricular materials. SJSU's M.A. in Natural Science, a combined effort of the Departments of Geology, Biology, and Program in Science Education, is designed to meet the multi-disciplinary needs of single-subject credential science teachers by providing a flexible, individually-tailored curriculum that combines science course work with a science education project. Several BAESI teachers have extended their Earth science knowledge and teaching skills through such projects as field guides to local sites of geological interest; lab-based modules for teaching about earthquakes, rocks and minerals, water quality, and weather; and interactive online materials for students and teachers of science. In keeping with SJSU's alliance with NASA Centers, the Geology Department is proud to offer ESSEA online courses as part of its multi-dimensional approach to Earth Systems teacher education. SJSU plans to offer both the middle- and high-school courses to a national audience, beginning spring 2003. The addition of ESSEA courses will complement existing projects, and will help to build a stronger Earth Systems-savvy community.

  17. Preparation of Underrepresented Males for Scientific Careers: A Study of the Dr. John H. Hopps Jr. Defense Research Scholars Program at Morehouse College.

    PubMed

    Thompson, Rahmelle C; Monroe-White, Thema; Xavier, Jeffrey; Howell, Courtney; Moore, Myisha Roberson; Haynes, J K

    Equal representation within higher education science, technology, engineering, and mathematics (STEM) fields and the STEM workforce in the United States across demographically diverse populations is a long-standing challenge. This study uses two-to-one nearest-neighbor matched-comparison group design to examine academic achievement, pursuit of graduate science degree, and classification of graduate institution attended by students participating in the Hopps Scholars Program (Hopps) at Morehouse College. Hopps is a highly structured enrichment program aimed at increasing participation of black males in STEM fields. Morehouse institutional records, Hopps Program records, and National Student Clearinghouse data were used to examine differences between Hopps and non-Hopps STEM graduates of Morehouse. Two-way sample t tests and chi-square tests revealed significant differences in academic achievement, likelihood of STEM degree pursuit, and the classification of graduate institutions attended by Hopps versus non-Hopps students. Hopps Scholars were significantly more likely than non-Hopps STEM graduates both to pursue STEM doctoral degrees and to attend doctoral-granting institutions with higher research activity. The Hopps Program's approach to training black male students for scientific careers is a model of success for other programs committed to increasing the number of black males pursuing advanced degrees in STEM. © 2016 R. C. Thompson et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Musicals Enrich Middle School Programs

    ERIC Educational Resources Information Center

    Thomas, Douglas D.; North, Rita

    2005-01-01

    An enriching fine arts program has long been advocated as an essential element of an effective middle school program. The vocal music program at Pleasant Hill (Missouri) Middle School supports student growth and development beyond the regular classroom. It supports students' existing skills and talents and provides opportunities for them to…

  19. Teaching Outside the Box: Challenging Gifted Students with Polar Sciences Without Benefit of a Science Classroom

    NASA Astrophysics Data System (ADS)

    Dooley, J.

    2013-12-01

    In the high-stakes-testing world of one-size-fits-most educational practices, it is often the needs of the most able students that are unmet, yet these high ability learners can benefit greatly from exploration in the area of polar science. With school schedules and budgets already stretched to the breaking point and Common Core (CCSS) subjects are the focus, very few resources remain for topics considered by some as unimportant. Polar and climate science are prime examples. Here, a council member of Polar Educators International and Gifted Education Teacher, shares resources and ideas to engage this unique group of students and others. She draws from experiences and knowledge gained through ANDRILL's Arise Educator program, IPY Oslo and Montreal PolarEDUCATOR workshops, and Consortium for Ocean Leadership's Deep Earth Academy. Topics include School-wide Enrichment through use of ANDRILL's Flexhibit material and participation in Antarctica Day, afterschool Deep Freeze clubs that presented in public outreach venues for polar science events at the Maryland Science Center in Baltimore and NYC's Museum of Natural History, group project work using IODP core data from Antarctica, interaction with polar scientists via Skype, and other projects.

  20. The Physics of Life: A Biophysics Course for Non-science Major Undergraduates

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    2014-03-01

    Enhancing the scientific literacy of non-scientists is an important goal, both because of the ever-increasing impact of science and technology on people's lives, and because understanding contemporary science enables enriching insights into the workings of nature. One route to improving scientific literacy is via general education undergraduate courses - i.e. courses intended for students not majoring in the sciences or engineering - which in many cases provide these students' last formal exposure to science. I describe here a course on biophysics for non-science-major undergraduates recently developed at the University of Oregon. Biophysics, I claim, is a particularly useful vehicle for addressing scientific literacy. It involves important and general scientific concepts, demonstrates connections between basic science and tangible, familiar phenomena related to health and disease, and illustrates how scientific insights proceed not in predictable paths, but rather by applying tools and perspectives from disparate fields in creative ways. In addition, it highlights the far-reaching impact of physics research. I describe the general design of this course and the specific content of a few of its modules, as well as noting aspects of enrollment and evaluation. This work is affiliated with the University of Oregon's Science Literacy Program, supported by a grant from the Howard Hughes Medical Institute.

  1. 21st Century Learning Skills Embedded in Climate Literacy Teacher Professional Development

    NASA Astrophysics Data System (ADS)

    Myers, R. J.; Schwerin, T. G.; Blaney, L.

    2011-12-01

    Trilling and Fadel's "21st Century Learning Skills" defines a vision of how to infuse an expanded set of skills, competencies and flexibilities into the classroom. Among these skills are global awareness, health and environmental literacy. The authors contend that in order for our students to compete, they will need critical thinking and problem solving skills, communication and collaboration, and creativity and innovation. Students will also need to be digital savvy. This poster outlines a program of preparing teachers to implement inquiry-based modules that allow students to exercise hypothetical deductive reasoning to address climate literacy issues such as: the Dust Bowl, thermohaline circulation, droughts, the North Atlantic Oscillation, climate variability and energy challenges. This program is implemented through the Earth System Science Education Alliance. ESSEA supports the educational goal of "attracting and retaining students in science careers" and the associated goal of "attracting and retaining students in science through a progression of educational opportunities for students, teachers and faculty." ESSEA provides long-duration educator professional development that results in deeper content understanding and confidence in teaching global climate change and science disciplines. The target audience for this effort is pre-service and in-service K-12 teachers. The ESSEA program develops shared educational resources - including modules and courses - that are based on NASA and NOAA climate science and data. The program is disseminated through the ESSEA Web site: http://essea.courses.strategies.org. ESSEA increases teachers' access to high-quality materials, standards-based instructional methods and content knowledge. Started in 2000 and based on online courses for K-12 teachers, ESSEA includes the participation of faculty at 45 universities and science centers. Over 3,500 pre- and in-service K-12 teachers have completed ESSEA courses. In addition to 21st Century learning skills, the ESSEA program is based on the urgent need for professional development for pre- and in-service teachers of Earth science. The Revolution in Earth and Space Science Education (2001) cites the Glenn Report saying "...the way to interest children in mathematics and science is through teachers who are not only enthusiastic about their subjects, but who are also steeped in their disciplines and who have the professional training - as teachers - to teach those subjects well. Nor is this teacher training simply a matter of preparation; it depends just as much - or even more - on sustained, high-quality professional development" (p. 1). This treatise states that Earth and space sciences are in the greatest need for professional development. Teachers find themselves inadequately qualified to teach science and find that professional development is not available or lacking in quality. The ESSEA program addresses its educational priorities through enriching pre- and in-service Earth science teachers' backgrounds in Earth system science, specifically in the area of global climate change, and through developing educational materials in support of science education.

  2. The Effect of Grouping and Program Type on Scholastic and Affective Outcomes in the Mawhiba Schools Partnership Initiative

    ERIC Educational Resources Information Center

    Batterjee, Adel A.

    2016-01-01

    Researchers have struggled for decades to determine whether ability grouping is helpful or harmful; however, study findings have been inconsistent. To assess the effect of grouping and program type on scholastic and affective outcomes, three grouping types (gifted separate-class enrichment, pull-out gifted enrichment, and no enrichment), three…

  3. The History of Winter: teachers as scientists

    NASA Astrophysics Data System (ADS)

    Koenig, L.; Courville, Z.; Wasilewski, P. J.; Gow, T.; Bender, K. J.

    2013-12-01

    The History of Winter (HOW) is a NASA Goddard Space Flight Center-funded teacher enrichment program that was started by Dr. Peter Wasilewski (NASA), Dr. Robert Gabrys (NASA) and Dr. Tony Gow (Cold Regions Research and Engineering Laboratory, or CRREL) in 2001 and continues with support and involvement of scientists from both the NASA Cryospheric Sciences Laboratory and CREEL. The program brings educators mostly from middle and high schools but also from state parks, community colleges and other institutions from across the US to the Northwood School (a small, private boarding school) in Lake Placid, NY for one week to learn about several facets of winter, polar, and snow research, including the science and history of polar ice core research, lake ice formation and structure, snow pack science, winter ecology, and remote sensing including current and future NASA cryospheric missions. The program receives support from the Northwood School staff to facilitate the program. The goal of the program is to create 'teachers as scientists' which is achieved through several hands-on field experiences in which the teachers have the opportunity to work with polar researchers from NASA, CRREL and partner Universities to dig and sample snow pits, make ice thin sections from lake ice, make snow shelters, and observe under-ice lake ecology. The hands-on work allows the teachers to use the same tools and techniques used in polar research while simultaneously introducing science concepts and activities to support their classroom work. The ultimate goal of the program is to provide the classroom teachers with the opportunity to learn about current and timely cryospheric research as well as to engage in real fieldwork experiences. The enthusiasm generated during the week-long program is translated into classroom activities with guidance from scientists, teachers and educational professionals. The opportunity to engage with polar researchers, both young investigators and renowned veterans in the field, is a unique experience for many of the teachers. Here we present lessons learned throughout the lifetime of the program, including successes and improvements made, and present our vision for the future of HOW.

  4. Summer faculty fellowship program, 1984

    NASA Technical Reports Server (NTRS)

    Spencer, J. H. (Compiler)

    1984-01-01

    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 or 11 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society of Engineering Education supervises the programs. Objectives: (1) to further the professional knowledge of a qualified between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants institutions; and (4) to contribute to the research objectives of the NASA center. Program Description: College or university faculty members will be appointed as research fellows to spend 10 weeks in cooperative research and study at the NASA-Langley Research Center. The fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of general interest or that are directly relevant to the fellow's research project. The lecturers and seminar leaders will be distinguished scientists and engineers from NASA, education, or industry.

  5. Early Opportunities Research Partnership Between Howard University, University of Maryland Baltimore County and NASA Goddard for Engaging Underrepresented STEM Students in Earth and Space Sciences

    NASA Astrophysics Data System (ADS)

    Misra, P.; Venable, D. D.; Hoban, S.; Demoz, B.; Bleacher, L.; Meeson, B. W.; Farrell, W. M.

    2017-12-01

    Howard University, University of Maryland Baltimore County and NASA Goddard Space Flight Center (GSFC) are collaborating to engage underrepresented STEM students and expose them to an early career pathway in NASA-related Earth & Space Science research. The major goal is to instill interest in Earth and Space Science to STEM majors early in their academic careers, so that they become engaged in ongoing NASA-related research, motivated to pursue STEM careers, and perhaps become part of the future NASA workforce. The collaboration builds on a program established by NASA's Dynamic Response of the Environments of Asteroids, the Moon and the moons of Mars (DREAM2) team to engage underrepresented students from Howard in summer internships. Howard leveraged this program to expand via NASA's Minority University Research and Education Project (MUREP) funding. The project pairs Howard students with GSFC mentors and engages them in cutting-edge Earth and Space Science research throughout their undergraduate tenure. The project takes a multi-faceted approach, with each year of the program specifically tailored to each student's strengths and addressing their weaknesses, so that they experience a wide array of enriching research and professional development activities that help them grow both academically and professionally. During the academic year, the students are at Howard taking a full load of courses towards satisfying their degree requirements and engaging in research with their GSFC mentors via regular telecons, e-mail exchanges, video chats & on an average one visit per semester to GSFC for an in-person meeting with their research mentor. The students extend their research with full-time summer internships at GSFC, culminating in a Capstone Project and Senior Thesis. As a result, these Early Opportunities Program students, who have undergone rigorous training in the Earth and Space Sciences, are expected to be well-prepared for graduate school and the NASA workforce.

  6. Snacks, beverages, and physical activity during volunteer-led out-of-school-time programs: a cross-sectional analysis.

    PubMed

    Economos, Christina D; Anzman-Frasca, Stephanie; Koomas, Alyssa H; Chan, Grace; Folta, Sara C; Heck, Julianne; Newman, Molly; Sacheck, Jennifer M

    2017-01-27

    Tens of millions of children regularly participate in out-of-school-time (OST) programs, providing an opportunity for child health promotion. Most research on OST has focused on structured, staff-led after-school programs, as opposed to volunteer-led programs such as enrichment programs and youth sports. The aim of this study was to describe snacks, beverages, and physical activity (PA) practices in volunteer-led OST programs across five organizations in three states. An online survey including the Out-of-School-Time Snacks, Beverages, and Physical Activity Questionnaire was distributed to 1,695 adult leaders of enrichment and youth sports programs serving 5-12 year-old children in Maine, Massachusetts, and New Hampshire, USA. The response rate was 57.8%, with 980 leaders participating and 698 (136 youth sports, 562 enrichment) remaining after data cleaning procedures. Frequencies were calculated to describe snack, beverage, and PA offerings during typical meetings and whether healthy snack, beverage, and PA criteria were met. Criteria were developed a priori with the intent to capture co-occurring practices that together indicate healthy snack (fruits and vegetables or no snack over salty/sweet snacks); beverage (water over sugar-sweetened beverages); and PA environments (regular opportunities for >15 or 45 min of PA in enrichment and sports programs, respectively). About half of enrichment leaders reported that snacks and beverages were provided during typical meetings vs. one-fifth of sports leaders. In 28.4% of enrichment programs, PA was offered at every meeting vs. 98.5% of sports programs. Among enrichment programs, 50.4 and 25.8% met healthy snack and beverage criteria, respectively, and 29.4% met PA criteria, with 27.6% meeting criteria in two or more areas, and 5.0% in all three. Among sports programs, 72.8 and 78.7% met healthy snack and beverage criteria, respectively, and 71.3% met PA criteria. Eighty-two percent met criteria in two or more areas, and 46.3% met criteria in all three. Most programs did not meet criteria for healthier snacks and beverages and opportunities for PA during typical meetings, indicating room for improvement in encouraging widespread adoption of these practices. Efforts to improve the healthfulness of snacks and beverages and increase opportunities for PA during volunteer-led OST programs are warranted.

  7. Research Reports: 1988 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Freeman, L. Michael (Editor); Chappell, Charles R. (Editor); Cothran, Ernestine K. (Editor); Karr, Gerald R. (Editor)

    1988-01-01

    The basic objectives are to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA: to enrich and refresh the research and teaching activities of the participants' institutions; and to contribute to the research objectives of the NASA centers. Topics addressed include: cryogenics; thunderstorm simulation; computer techniques; computer assisted instruction; system analysis weather forecasting; rocket engine design; crystal growth; control systems design; turbine pumps for the Space Shuttle Main engine; electron mobility; heat transfer predictions; rotor dynamics; mathematical models; computational fluid dynamics; and structural analysis.

  8. Harnessing the Risk-Related Data Supply Chain: An Information Architecture Approach to Enriching Human System Research and Operations Knowledge

    NASA Technical Reports Server (NTRS)

    Buquo, Lynn E.; Johnson-Throop, Kathy A.

    2011-01-01

    An Information Architecture facilitates the understanding and, hence, harnessing of the human system risk-related data supply chain which enhances the ability to securely collect, integrate, and share data assets that improve human system research and operations. By mapping the risk-related data flow from raw data to useable information and knowledge (think of it as a data supply chain), the Human Research Program (HRP) and Space Life Science Directorate (SLSD) are building an information architecture plan to leverage their existing, and often shared, IT infrastructure.

  9. Research Reports: 1984 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Freeman, L. M. (Editor); Osborn, T. L. (Editor); Dozier, J. B. (Editor); Karr, G. R. (Editor)

    1985-01-01

    A NASA/ASEE Summer Faulty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The basic objectives of the programs are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. The Faculty Fellows spent ten weeks at MSFC engaged in a research project compatible with their interests and background and worked in collaboration with a NASA/MSFC colleague. This document is a compilation of Fellows' reports on their research during the summer of 1984. Topics covered include: (1) data base management; (2) computational fluid dynamics; (3) space debris; (4) X-ray gratings; (5) atomic oxygen exposure; (6) protective coatings for SSME; (7) cryogenics; (8) thermal analysis measurements; (9) solar wind modelling; and (10) binary systems.

  10. Digital fabrication as an instructional technology for supporting upper elementary and middle school science and mathematics education

    NASA Astrophysics Data System (ADS)

    Tillman, Daniel

    The purpose of this three-paper manuscript dissertation was to study digital fabrication as an instructional technology for supporting elementary and middle school science and mathematics education. Article one analyzed the effects of digital fabrication activities that were designed to contextualize mathematics education at a summer mathematics enrichment program for upper elementary and middle school students. The primary dependent variables studied were the participants' knowledge of mathematics and science content, attitudes towards STEM (science, technology, engineering, and mathematics) and STEM-related careers. Based upon the data collected, three results were presented as having justifiable supporting empirical evidence: (1) The digital fabrication activities, combined with the other mathematics activities at the enrichment program, resulted in non-significant overall gains in students' mathematics test scores and attitudes towards STEM. (2) The digital fabrication activities, combined with the other mathematics activities at the enrichment program, resulted in noteworthy gains on the "Probability & Statistics" questions. (3) Some students who did poorly on the scored paper test on mathematics and science content were nonetheless nominated by their teachers as demonstrating meritorious distinction during the digital fabrication activities (termed "Great Thinkers" by the 5th-grade teachers). Article two focused on how an instructional technology course featuring digital fabrication activities impacted (1) preservice elementary teachers' efficacy beliefs about teaching science, and (2) their attitudes and understanding of how to include instructional technology and digital fabrication activities into teaching science. The research design compared two sections of a teaching with technology course featuring digital fabrication activities to another section of the same course that utilized a media cycle framework (Bull & Bell, 2005) that did not feature digital fabrication activities. Based upon analysis of the data collected, two main results were determined to have justifiable supporting empirical evidence: (1) After the instructional technology course featuring digital fabrication activities, the participants reported statistically significant overall gains in science teaching efficacy beliefs. (2) When asked to describe their future plans for using three instructional technologies in their teaching, the top five most mentioned instructional technologies were: interactive whiteboards, video, class website, interactive online timeline, and digital fabrication. Of the participants that mentioned digital fabrication, the specific content areas mentioned were: history (four out of eight students mentioned), social studies (two out of eight), and science, math, engineering, and technology were each mentioned once. Article three assessed the impact of a series of lessons incorporating a NASA-themed transmedia book featuring digital fabrication activities on 5th-grade students who had been recognized as advanced in mathematics. The main dependent variables studied were the students' knowledge of science content from the Virginia Standards of Learning, attitude towards science, and student reported likes and dislikes about the project. Based upon analysis of the data collected, three main results were presented: (1) Students demonstrated significant positive gains in correct answers to questions on the topic of "Force, Matter, Energy, & Motion" from pretest to posttest. (2) There were nonsignificant gains reported by students on the attitude survey questions about attitude towards science, but this was chiefly because of one question that was significantly impacted in a negative direction. (3) Students articulated five main categories of likes and six main categories of dislikes of the experience, thereby providing insight into their own perception of some of the affordances and constraints of the educational activities. The five topics mentioned most often by students as self-reported likes about the experience included: hands-on activities including building, making, or designing (18 of 29 students mentioned; 62.1%), experimenting (9 of 29; 31.0%), presenting (9 of 29; 31.0%), drawing (6 of 29; 20.7%), and working in groups (6 of 29; 20.7%). The six topics most mentioned by students as self-reported dislikes about the experience included: taking tests (13 of 29 students mentioned; 44.8%), drawing (7 of 29; 24.1%), confusing / too fast (4 of 29; 13.8%), class discussions (4 of 29; 13.8%), reviewing (4 of 29; 13.8%), and attitude surveys (4 of 29; 13.8%). Cumulatively these three articles aim to contribute to the body of research studying the impact of digital fabrication as an instructional technology for supporting upper elementary and middle school science and mathematics education. This goal is described in greater detail in the "Manuscript Theme" section that begins on the next page. Keywords: STEM, digital fabrication, upper elementary science education, contextual mathematics, modeling-based science instruction, transmedia books, performance assessment, preservice elementary teacher education, science teaching efficacy beliefs

  11. ACCELERATION AND ENRICHMENT IN THE JUNIOR HIGH SCHOOL. A FOLLOW-UP STUDY.

    ERIC Educational Resources Information Center

    ARENDS, RICHARD H.; FORD, PAUL M.

    THE 1963-64 STUDY INVOLVED AN INVESTIGATION OF ACCELERATION IN MATHEMATICS AND ENRICHMENT IN READING AND SCIENCE IN THE JUNIOR HIGH SCHOOL. BUT THE RESEARCH WAS BROADENED AND, UNLIKE THE 1962-63 STUDY, EXPLORED MORE DEEPLY THE EFFECTS OF ACCELERATION AND ENRICHMENT. A NUMBER OF SCHOOLS OUTSIDE OF WALLA WALLA WAS USED. PROBLEMS CONSIDERED WERE--(1)…

  12. NSF GK-12 Fellows as Mentors for K-12 Teachers Participating in Field Research Experiences

    NASA Astrophysics Data System (ADS)

    Ellins, K.; Perry, E.

    2005-12-01

    The University of Texas Institute for Geophysics (UTIG) recognizes the value of providing educational opportunities to K-12 teachers who play a critical role in shaping the minds of young people who are the future of our science. To that end, UTIG established the "Texas Teachers in the Field" program in 2000 to formalize the participation of K-12 teachers in field programs that included UTIG scientists. In 2002, "Texas Teachers in the Field" evolved through UTIG's involvement in a University of Texas at Austin GK-12 project led by the Environmental Sciences Institute, which enabled UTIG to partner a subset of GK-12 Fellows with teachers participating in geophysical field programs. During the three years of the GK-12 project, UTIG successfully partnered four GK-12 Fellows with five K-12 teachers. The Fellows served as mentors to the teachers, as liaisons between UTIG scientists leading field programs and teachers and their students, and as resources in science, mathematics, and technology instruction. Specifically, Fellows prepared teachers and their students for the field investigations, supervised the design of individual Teacher Research Experience (TRE) projects, and helped teachers to develop standards-aligned curriculum resources related to the field program for use in their own classrooms, as well as broader distribution. Although all but one TRE occurred during the school year, Texas school districts and principals were willing to release teachers to participate because the experience and destinations were so extraordinary (i.e., a land-based program in Tierra del Fuego, Argentina; and research cruises to the Southeast Caribbean Sea and Hess Deep in the Pacific Ocean) and carried opportunities to work with scientists from around the world. This exceptional collaboration of GK-12 Fellows, K-12 teachers and research scientists enriches K-12 student learning and promotes greater enthusiasm for science. The level of mentoring, preparation and follow-up provided by the GK-12 Fellows was important in helping teachers transfer components of a challenging field research experience to their students. Participating research scientists were able to convey the importance of their science to a wider audience. NSF GK-12 Fellows gained valuable experience in communicating scientific knowledge and field skills to K-12 teachers and students, became more knowledgeable about K-12 science education and were exposed to advances in pedagogy.

  13. ENRICHMENT PROGRAM FOR ACADEMICALLY TALENTED JUNIOR HIGH SCHOOL STUDENTS FROM LOW INCOME FAMILIES.

    ERIC Educational Resources Information Center

    PRESSMAN, HARVEY

    A PROPOSAL FOR AN ENRICHMENT PROGRAM FOR ACADEMICALLY TALENTED JUNIOR HIGH SCHOOL STUDENTS FROM LOW-INCOME FAMILIES IN CERTAIN AREAS OF BOSTON IS PRESENTED. BASIC ASSUMPTIONS ARE THAT THERE IS AND OBVIOUS AND PRESSING NEED TO GIVE EXTRA HELP TO THE ABLE STUDENT FROM A DISADVANTAGED BACKGROUND, AND THAT A RELATIVELY BRIEF ENRICHMENT EXPERIENCE FOR…

  14. Enrichment Strategies in Pediatric Drug Development: An Analysis of Trials Submitted to the US Food and Drug Administration.

    PubMed

    Green, Dionna J; Liu, Xiaomei I; Hua, Tianyi; Burnham, Janelle M; Schuck, Robert; Pacanowski, Michael; Yao, Lynne; McCune, Susan K; Burckart, Gilbert J; Zineh, Issam

    2017-12-08

    Clinical trial enrichment involves prospectively incorporating trial design elements that increase the probability of detecting a treatment effect. The use of enrichment strategies in pediatric drug development has not been systematically assessed. We analyzed the use of enrichment strategies in pediatric trials submitted to the US Food and Drug Administration from 2012-2016. In all, 112 efficacy studies associated with 76 drug development programs were assessed and their overall success rates were 78% and 75%, respectively. Eighty-eight trials (76.8%) employed at least one enrichment strategy; of these, 66.3% employed multiple enrichment strategies. The highest trial success rates were achieved when all three enrichment strategies (practical, predictive, and prognostic) were used together within a single trial (87.5%), while the lowest success rate was observed when no enrichment strategy was used (65.4%). The use of enrichment strategies in pediatric trials was found to be associated with trial and program success in our analysis. © 2017 American Society for Clinical Pharmacology and Therapeutics.

  15. AIAA Educator Academy - Mars Rover Curriculum: A 6 week multidisciplinary space science based curriculum

    NASA Astrophysics Data System (ADS)

    Henriquez, E.; Bering, E. A.; Slagle, E.; Nieser, K.; Carlson, C.; Kapral, A.

    2013-12-01

    The Curiosity mission has captured the imagination of children, as NASA missions have done for decades. The AIAA and the University of Houston have developed a flexible curriculum program that offers children in-depth science and language arts learning culminating in the design and construction of their own model rover. The program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students learn to research Mars in order to pick a science question about Mars that is of interest to them. They learn principles of spacecraft design in order to build a model of a Mars rover to carry out their mission on the surface of Mars. The model is a mock-up, constructed at a minimal cost from art supplies. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning. This paper will describe the structure and organization of the 6 week curriculum. A set of 30 new 5E lesson plans have been written to support this project as a classroom activity. The challenge of developing interactive learning activities for planetary science will be explored. These lesson plans incorporate state of the art interactive pedagogy and current NASA Planetary Science materials.

  16. Getting the Word Out: Teaching Middle-School Children about Cardiovascular Disease

    PubMed Central

    Toepperwein, Mary Anne; Pruski, Linda A.; Blalock, Cheryl L.; Lemelle, Olivia R.; Lichtenstein, Michael J.

    2008-01-01

    Cardiovascular disease (CVD) has roots in childhood; since CVD begins early, a clear strong case for early education focused on CVD primary prevention exists. Scientists are not traditionally involved in disseminating health knowledge into public education. Similarly, public school teachers typically do not have access to biomedical research that may increase their students’ health science literacy. One way to bridge the ‘cultural’ gap between researchers and school teachers is to form science education partnerships. In order for such partnerships to be successful, teams of scientists and teachers must ‘translate’ biomedical research into plain language appropriate for students. In this article, we briefly review the need for improving health literacy, especially through school-based programs, and describe work with one model scientist/teacher partnership, the Teacher Enrichment Initiatives. Examples of cardiovascular research ‘translated’ into plain language lessons for middle school students are provided and practical considerations for researchers pursuing a science education partnership are delineated. PMID:19122871

  17. Project ASTRO-Tucson: An Educational Outreach Program For All Seasons

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.; Wilson, R.

    2002-12-01

    Project ASTRO-Tucson represents a flexible program that is broad in content coverage and has utility for a diverse educational audience. As such, Project ASTRO forms the core of the National Optical Astronomy Observatory's successful regional outreach program. The program is aligned with the National Science Education Standards, appeals to different teaching and learning styles and can be adapted for space, staff, and money constraints at individual schools. ASTRO is broad in its astronomy content coverage and also addresses the scientific process, best practices and pedagogy, student misconceptions, and authentic assessment issues. In Tucson it has been used successfully with elementary, middle and high school students of different ethnic backgrounds, as well as with handicap-challenged and under-served students. ASTRO-Tucson is one of 13 sites nationally that have collectively reached over 100,000 students in the last 6 years. The program's core element is the partnering of professional and amateur astronomers with K-12 teachers and community educators who want to enrich their astronomy and science teaching. The partnerships are extended through a training workshop, hands-on activities, effective educational materials, follow-up workshops, continued staff support, and connections to community resources. In turn, the interest generated by Project ASTRO has fostered new programs such as Family ASTRO (just begun in Tucson), which invites families to evening or weekend family events doing fun astronomy activities together. We will describe some of the lessons learned from the Project ASTRO and Family ASTRO programs in Tucson and discuss efforts to jump-start and localize a Project ASTRO-type program in Chile at Cerro Tololo Inter-American Observatory.

  18. An enrichment program for South Carolina high school students interested in future biomedical science professions.

    PubMed

    McLean, A H; Gibbs, T; Sugimoto, T; Altekruse, J M

    1983-06-01

    The Biomedical Sciences Program of the University of South Carolina intends to increase the number of qualified, economically disadvantaged minority students graduating from educational programs that lead to careers in the health field. The objective is to provide students with an overview of the health care delivery system in the United States and to acquaint students with a wide range of health care occupations and opportunities in the health care field. Experience-based learning, through site visits to different health care centers, is used in this program.In 1981, 100 ninth-grade students from rural school districts in South Carolina were recruited to participate in the program from 1981 through 1985. To assist in evaluation of the summer program, each student completed a self-administered questionnaire composed of questions related to background information and a pre-test covering factual material derived from information provided by visits to health care delivery agencies. At the completion of the summer program, the same test (excluding the collection of background material) was administered as a post-test.Of the 113 students who took the pre-test, 89 students also took the post-test. The decrease in students was accounted for by early withdrawal from the summer program or conflicts in scheduled events. Of the post-test group, 75 (84.3 percent) were nonwhite and 14 (15.7 percent) were white. The sex distribution was 60 women (67.4 percent) and 29 men (32.6 percent).Follow-up on academic advancement and career development progress is planned for each student over the next five years.

  19. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1987, volume 1

    NASA Technical Reports Server (NTRS)

    Jones, William B. (Editor); Goldstein, Stanley H. (Editor)

    1987-01-01

    The objective of the NASA/ASEE program were: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent 10 weeks at Johnson Space Center engaged in a research project commensurate with his/her interests and background and worked in collaboration with a NASA/JSC colleague. A compilation is presented of the final reports on the research projects done by the fellows during the summer of 1987. This is volume 1 of a 2 volume report.

  20. The status and initial results of the MAJORANA DEMONSTRATOR

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoyu; MAJORANA Collaboration

    2017-01-01

    The MAJORANA DEMONSTRATOR is an ultra-low background experiment searching for neutrinoless double-beta decay in 76Ge at the Sanford Underground Research Facility. The search for neutrinoless double-beta decay could determine the Dirac vs Majorana nature of neutrino mass and provide insight to the matter-antimatter asymmetry in the Universe. The DEMONSTRATOR is comprised of 44.8 kg (30 kg enriched in 76Ge) of high purity Ge detectors separated into two modules. Construction and commissioning of both modules completed in Summer 2016 and both modules are now acquiring physics data. In my talk, I will discuss the initial results of the first physics run utilizing both modules focusing primarily on the studies of the background and projections to a ton-scale experiment. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  1. Exploring teachers' perspectives on the impact of out-of-school science-based programs for secondary level physics classrooms in Nebraska

    NASA Astrophysics Data System (ADS)

    Baquerizo-Birth, Marisol

    This exploratory phenomenological study investigates the lived experiences of six high school physics teachers in Nebraska regarding their perceptions on the impact of participating in a science-based out-of-school program. By exploring the research question, we discover how this experience relates to these teachers' self-concept and professional growth. Open-ended, semi-structured, one-on-one interviews are used as the data collection method to explore teachers' perceptions. Responses reveal that teachers participating in the Cosmic Ray Observatory Project (CROP) as a means of exploring advanced, extracurricular physics projects perceive their participation as an opportunity for enrichment, collaboration, helping their students, and empowerment. Intertwined in the presented narratives, teachers refer to their schools' limited administrative support as a source of struggle tied to the challenge of balancing school and teaching responsibilities with CROP participants' responsibilities. This study proposes teachers must feel confident with their specific subject area to achieve a progressive view of self, and that supplemental professional development opportunities are crucial to physics teaching.

  2. Promoting convergence: The integrated graduate program in physical and engineering biology at Yale University, a new model for graduate education

    PubMed Central

    Noble, Dorottya B.; Mochrie, Simon G. J.; O'Hern, Corey S.; Pollard, Thomas D.

    2016-01-01

    Abstract In 2008, we established the Integrated Graduate Program in Physical and Engineering Biology (IGPPEB) at Yale University. Our goal was to create a comprehensive graduate program to train a new generation of scientists who possess a sophisticated understanding of biology and who are capable of applying physical and quantitative methodologies to solve biological problems. Here we describe the framework of the training program, report on its effectiveness, and also share the insights we gained during its development and implementation. The program features co‐teaching by faculty with complementary specializations, student peer learning, and novel hands‐on courses that facilitate the seamless blending of interdisciplinary research and teaching. It also incorporates enrichment activities to improve communication skills, engage students in science outreach, and foster a cohesive program cohort, all of which promote the development of transferable skills applicable in a variety of careers. The curriculum of the graduate program is integrated with the curricular requirements of several Ph.D.‐granting home programs in the physical, engineering, and biological sciences. Moreover, the wide‐ranging recruiting activities of the IGPPEB serve to enhance the quality and diversity of students entering graduate school at Yale. We also discuss some of the challenges we encountered in establishing and optimizing the program, and describe the institution‐level changes that were catalyzed by the introduction of the new graduate program. The goal of this article is to serve as both an inspiration and as a practical “how to” manual for those who seek to establish similar programs at their own institutions. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(6):537–549, 2016. PMID:27292366

  3. ParentSource: A Practice in Enrichment

    ERIC Educational Resources Information Center

    Blackwell, Patricia

    2005-01-01

    Community-based parenting education programs have a unique role to play in the promotion of infant mental health. In contrast to classes that seek to accelerate child development, the author describes enrichment programs that promote parent-child bonding and healthy social and emotional development. The ParentSource program was developed on the…

  4. EDUCATIONAL ENRICHMENT PROGRAM - 1964.

    ERIC Educational Resources Information Center

    FUNK, JOHN H.

    THE EDUCATIONAL ENRICHMENT PROGRAM - 1964 WAS A COOPERATIVE UNDERTAKING OF SIX INDEPENDENT SCHOOLS IN OR NEAR BOSTON AND A NUMBER OF INTERESTED ORGANIZATIONS THAT OFFERED THE USE OF THEIR FACILITIES AND PERSONNEL TO AN URBAN COMMUNITY DURING THE NONSCHOOL MONTHS. THE AIM OF THE PROGRAM WAS TO OFFER CHALLENGING AND EXPLORATORY STUDY WHICH COULD…

  5. An Elective Course in Aromatherapy Science

    PubMed Central

    Bystrek, Mary V.; Klein, JoAnn S.

    2014-01-01

    Objective. To evaluate the impact of an innovative team-taught elective course on second-year (P2) students’ knowledge and skills relating to the relationship between aromatherapy and pharmacy. Design. An Aromatherapy Science elective course was offered to P2 students in an accelerated doctor of pharmacy (PharmD) degree program and was designed to provide an elective course experience while focusing on active-learning skills such as group work, student-led presentations, and in-class activities. Lectures were designed to reinforce core curricular threads from the basic sciences within the pharmaceutical sciences department while highlighting key aromatherapy principles. Assessment. Course evaluations, grades, and student self-assessments were used to evaluate student fulfillment and knowledge gained. Students agreed this hands-on course integrated pharmaceutical science experiences, enriched their pharmacy education, and provided knowledge to enhance their confidence in describing essential oil uses, drug interactions, and key aromatherapy clinical implications. Conclusion. Students agreed this course prepared them to identify essential oil therapeutic uses and potential essential oil-drug interactions, and interpret literature. The introduction of aromatherapy principles to pharmacy students will prepare a new generation of healthcare professionals on the role of alternative medicines. PMID:24850941

  6. The Galileo Teacher Training Programme

    NASA Astrophysics Data System (ADS)

    Doran, Rosa

    The Galileo Teacher Training Program is a global effort to empower teachers all over the world to embark on a new trend in science teaching, using new technologies and real research meth-ods to teach curriculum content. The GTTP goal is to create a worldwide network of "Galileo Ambassadors", promoters of GTTP training session, and a legion of "Galileo Teachers", edu-cators engaged on the use of innovative resources and sharing experiences and supporting its pears worldwide. Through workshops, online training tools and resources, the products and techniques promoted by this program can be adapted to reach locations with few resources of their own, as well as network-connected areas that can take advantage of access to robotic, optical and radio telescopes, webcams, astronomy exercises, cross-disciplinary resources, image processing and digital universes (web and desktop planetariums). Promoters of GTTP are expert astronomy educators connected to Universities or EPO institutions that facilitate the consolidation of an active support to newcomers and act as a 24 hour helpdesk to teachers all over the world. GTTP will also engage in the creation of a repository of astronomy education resources and science research projects, ViRoS (Virtual Repository of resources and Science Projects), in order to simplify the task of educators willing to enrich classroom activities.

  7. The effects of inquiry-based summer enrichment activities on rising eighth graders' knowledge of science processes, attitude toward science, and perceptions of scientists

    NASA Astrophysics Data System (ADS)

    Moore, Juanita Martin

    The purpose of this research was to examine the effects of summer science enrichment on eighth-graders' science process skills knowledge, attitude toward science and perceptions of scientists. A single group pre- and post-test design was used to test participants in a summer science enrichment camp, which took place over a three-week period in the summer of 2000. Participants, all of whom were residents of the Mississippi area known as the Delta, lived on the campus of Mississippi Valley State University for the entire course of the camp. Activities included several guided inquiry-based projects such as water rocket design and solar or battery-powered car design. Participants also took trips to an environmental camp in north Mississippi and to the Stennis Space Center on the Mississippi Gulf Coast. Participants worked on their projects in groups, supervised by an undergraduate student "mentor". Participants were encouraged to keep journals of their experiences throughout the camp, and the researcher developed a rubric to evaluate student journals for process knowledge, evidence of planning, reflective thought, and disposition toward science. Tests were used to evaluate student knowledge of process skills, attitude toward science, and perceptions of scientists. On the Test of Integrated Process Skills (Dillashaw & Okey, 1983), the students showed significant improvement overall, but when evaluated separately, males showed significant improvement while females did not. On the Attitude toward Science in School Assessment (Germane, 1988), data indicated that attitude toward science improved significantly for the group as a whole, but upon closer inspection, indicated a significant improvement for the female students only. On Chamber's Draw-a-Scientist Test (1983), analysis of student drawings indicated no significant change in stereotypical images of scientists for the group overall. However, boys' scores indicated a significant improvement when analyzed separately. Journal analysis revealed a need for instruction in their use, but provided an interesting glimpse into students' thoughts. The researcher concluded that summer enrichment camps have potential m terms of helping students improve their science knowledge and their thinking about science. Further research on summer opportunities, inquiry-based instruction, work with mentors, and use of journals is suggested by this work.

  8. A Summary of Actinide Enrichment Technologies and Capability Gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, Bradley D.; Robinson, Sharon M.

    2017-01-01

    The evaluation performed in this study indicates that a new program is needed to efficiently provide a national actinide radioisotope enrichment capability to produce milligram-to-gram quantities of unique materials for user communities. This program should leverage past actinide enrichment, the recent advances in stable isotope enrichment, and assessments of the future requirements to cost effectively develop this capability while establishing an experience base for a new generation of researchers in this vital area. Preliminary evaluations indicate that an electromagnetic isotope separation (EMIS) device would have the capability to meet the future needs of the user community for enriched actinides. Themore » EMIS technology could be potentially coupled with other enrichment technologies, such as irradiation, as pre-enrichment and/or post-enrichment systems to increase the throughput, reduce losses of material, and/or reduce operational costs of the base EMIS system. Past actinide enrichment experience and advances in the EMIS technology applied in stable isotope separations should be leveraged with this new evaluation information to assist in the establishment of a domestic actinide radioisotope enrichment capability.« less

  9. Evaluating an Enrichment Program in Early Childhood: A Multi-Methods Approach

    ERIC Educational Resources Information Center

    van Aswegen, Christa; Pendergast, Donna

    2015-01-01

    This article reports on the evaluation of one topic in an enrichment program designed for children in their early years of learning. The program is responsive to an increased understanding of the benefits for very young children of programs that not only take advantage of the sensitive periods for learning but that also assist parents to a take a…

  10. Integrated Design for Geoscience Education with Upward Bound Students

    NASA Astrophysics Data System (ADS)

    Cartwright, T. J.; Hogsett, M.; Ensign, T. I.; Hemler, D.

    2009-05-01

    Capturing the interest of our students is imperative to expand the conduit of future Earth scientists in the United States. According to the Rising Above the Gathering Storm report (2005), we must increase America's talent pool by improving K-12 mathematics and science education. Geoscience education is uniquely suited to accomplish this goal, as we have become acutely aware of our sensitivity to the destructive forces of nature. The educational community must take advantage of this heightened awareness to educate our students and ensure the next generation rebuilds the scientific and technological base on which our society rests. In response to these concerns, the National Science Foundation advocates initiatives in Geoscience Education such as IDGE (Integrated Design for Geoscience Education), which is an inquiry-based geoscience program for Upward Bound (UB) students at Marshall University in Huntington, West Virginia. The UB program targets low-income under-represented students for a summer academic-enrichment program. IDGE builds on the mission of UB by encouraging underprivileged students to investigate science and scientific careers. During the two year project, high school students participated in an Environmental Inquiry course utilizing GLOBE program materials and on-line learning modules developed by geoscience specialists in land cover, soils, hydrology, phenology, and meteorology. Students continued to an advanced course which required IDGE students to collaborate with GLOBE students from Costa Rica. The culmination of this project was an educational expedition in Costa Rica to complete ecological field studies, providing first-hand knowledge of the international responsibility we have as scientists and citizens of our planet. IDGE was designed to continuously serve educators and students. By coordinating initiatives with GLOBE headquarters and the GLOBE country community, IDGE's efforts have yielded multiple ways in which to optimize positive implications of the project. On-line learning modules continue to expand the number impacted by the program. Through collaboration with both GLOBE headquarters and the GLOBE Country Coordinator, an international teacher workshop in Costa Rica provided GLOBE training and equipment necessary for a true GLOBE student collaborative project. IDGE continues to expand the impacts beyond the limited participants involved in the program. Overall, the preliminary results show sufficient data that IDGE is successful in: exposing students to an inquiry-based hands-on science experience; providing a positive challenging yet enjoyable science experience for students; providing a science experience which was different than their formal science class; enhancing or maintaining positive attitudes and habits of mind about science; improving some student perceptions of science, science processes, and the nature of science; increasing the number of students considering science careers; enhanced student understanding of the importance of science knowledge and coursework for everyone. Through the practice of field research and inquiry-based learning, the quality of geoscience instruction is inspiring a new generation of geoscientists. This work was supported in part by the National Science Foundation under award #0735596. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the National Science Foundation.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frybort, Jan

    A critical experiment is a standard part of training of students at the Training Reactor VR-1 operated within the Faculty of Nuclear Sciences and Physical Engineering at the Czech Technical University in Prague. In autumn 2005 the HEU fuel IRT-3M with enrichment 36 % {sup 235}U was replaced by the LEU fuel IRT-4M with enrichment 19.7 % {sup 235}U. The fuel replacement at the VR-1 Reactor is a part of an international program RERTR. This Paper presents basic information about preparation for the fuel replacement and approaching of the first critical state with the new zone configuration C1 which replacedmore » B1 core with the old IRT-3M fuel. The whole process was carried out according to the Czech law and the relevant international recommendations. The experience with the VR-1 operation confirms the assumption that the C1 core configuration will be suitable from the point of view of the reactivity balance for the long term safe operation of the Training Reactor VR-1. (author)« less

  12. Enriching the Teaching of Biology with Mathematical Concepts

    ERIC Educational Resources Information Center

    Andersen, Janet

    2007-01-01

    Secondary school educators are told to teach more mathematics and science to their students to help them become more proficient in the two subjects. Coordination of mathematics and science teaching is recognized as another means of improving proficiency. The National Science Foundation has funded the "Mathematics, Science and Technology…

  13. How Science Fairs Foster Inquiry Skills and Enrich Learning

    ERIC Educational Resources Information Center

    Paul, Jürgen; Groß, Jorge

    2017-01-01

    Science competitions have continuing relevance for schools. The aim of the German youth science fair "Jugend forscht" is to encourage scientific thinking and inquiry methods such as experimentation. Three concrete examples of participating projects are given. We summarise the current state of research related to science competitions,…

  14. ENRICHMENT - CLASSROOM CHALLENGE.

    ERIC Educational Resources Information Center

    GIBBONY, HAZEL L.

    SUGGESTIONS FOR ENRICHMENT TEACHING ARE PRESENTED. THE SUGGESTIONS ARE DIVIDED UNDER ELEMENTARY CLASSROOM AND SECONDARY SCHOOL SUBJECTS. SOME OF THE SUGGESTIONS FOR ELEMENTARY SCHOOL ARE BULLETIN BOARDS, FIELD TRIPS, INDIVIDUAL PROJECTS, AND DISCUSSIONS. THESE SUGGESTIONS APPLY TO LANGUAGE ARTS, SOCIAL STUDIES, SCIENCE, ARITHMETIC AND FOREIGN…

  15. Planetary Sciences Literature - Access and Discovery

    NASA Astrophysics Data System (ADS)

    Henneken, Edwin A.; ADS Team

    2017-10-01

    The NASA Astrophysics Data System (ADS) has been around for over 2 decades, helping professional astronomers and planetary scientists navigate, without charge, through the increasingly complex environment of scholarly publications. As boundaries between disciplines dissolve and expand, the ADS provides powerful tools to help researchers discover useful information efficiently. In its new form, code-named ADS Bumblebee (https://ui.adsabs.harvard.edu), it may very well answer questions you didn't know you had! While the classic ADS (http://ads.harvard.edu) focuses mostly on searching basic metadata (author, title and abstract), today's ADS is best described as a an "aggregator" of scholarly resources relevant to the needs of researchers in astronomy and planetary sciences, and providing a discovery environment on top of this. In addition to indexing content from a variety of publishers, data and software archives, the ADS enriches its records by text-mining and indexing the full-text articles (about 4.7 million in total, with 130,000 from planetary science journals), enriching its metadata through the extraction of citations and acknowledgments. Recent technology developments include a new Application Programming Interface (API), a new user interface featuring a variety of visualizations and bibliometric analysis, and integration with ORCID services to support paper claiming. The new ADS provides powerful tools to help you find review papers on a given subject, prolific authors working on a subject and who they are collaborating with (within and outside their group) and papers most read by by people who read recent papers on the topic of your interest. These are just a couple of examples of the capabilities of the new ADS. We currently index most journals covering the planetary sciences and we are striving to include those journals most frequently cited by planetary science publications. The ADS is operated by the Smithsonian Astrophysical Observatory under NASA Cooperative Agreement NNX16AC86A.

  16. Protecting Human Health in a Changing Environment: 2018 Summer Enrichment Program

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) in Research Triangle Park, NC is offering a free 1-week Summer Enrichment Program to educate students about how the Agency protects human health and the environment.

  17. Interdisciplinary Instruction in the Humanities Enrichment Program: Alignment of Programmatic, Pedagogic, and Learner Goals.

    ERIC Educational Resources Information Center

    Gudipati, Lakshmi

    This paper details the benefits of interdisciplinary studies, with particular focus on the Humanities Enrichment Program at the Community College of Philadelphia. The program uses a team-teaching, linked-course paradigm. Two courses from different disciplines are aligned, and faculty from each discipline teach the linked courses as humanities…

  18. An Effectiveness Study of a Culturally Enriched School-Based CBT Anxiety Prevention Program

    ERIC Educational Resources Information Center

    Miller, Lynn D.; Laye-Gindhu, Aviva; Bennett, Joanna L.; Liu, Yan; Gold, Stephenie; March, John S.; Olson, Brent F.; Waechtler, Vanessa E.

    2011-01-01

    Anxiety disorders are prevalent in the school-aged population and are present across cultural groups. Scant research exists on culturally relevant prevention and intervention programs for mental health problems in the Aboriginal populations. An established cognitive behavioral program, FRIENDS for Life, was enriched to include content that was…

  19. An Enrichment Program for Migrant Students: MENTE/UOP.

    ERIC Educational Resources Information Center

    Gilbert, Michael B.

    The report describes the objectives and accomplishments of a summer enrichment program, Migrantes Envueltos en Nuevos Temas de Educacion/Migrants Engaged in New Themes in Education (MENTE), for promising and talented migrant high schoolers. The program is a cooperative one with a university. Students selected by a review committee are tested for…

  20. Expanding Learning, Enriching Learning: Portraits of Five Programs. Stories from the Field

    ERIC Educational Resources Information Center

    Browne, Daniel; Syed, Sarosh; Mendels, Pamela

    2013-01-01

    These "Stories From the Field" describe five Wallace-funded programs working to expand learning and enrichment for disadvantaged children, so they can benefit from the types of opportunities their wealthier counterparts have access to, from homework help to swimming classes. The report details each program's approach, successes and…

  1. Mentoring Through Research as a Catalyst for the Success of Under-represented Minority Students in the Geosciences at California State University Northridge

    NASA Astrophysics Data System (ADS)

    Marsaglia, K. M.; Pedone, V.; Simila, G. W.; Yule, J. D.

    2002-12-01

    The Catalyst Program of the Department of Geological Sciences at California State University Northridge has been developed by four faculty members who were the recipients of a three-year award (2002-2005) from the National Science Foundation. The goal of the program is to increase minority participation and success in the geosciences. The program seeks to enrich the educational experience by introducing students at all levels to research in the geosciences and to decrease obstacles that affect academic success. Both these goals are largely achieved by the formation of integrated high school, undergraduate, and graduate research groups, which also provide fulfilling and successful peer mentorship. The Catalyst Program provides significant financial support to participants to allow them to focus their time on their education. New participants first complete a specially designed course that introduces them to peer-mentoring, collaborative learning, and geological research. Students of all experience levels then become members of research teams, which deepens academic and research skills as well as peer-mentor relationships. The program was highly successful in its inaugural year. To date, undergraduates and graduate students in the program coauthored six abstracts at professional meetings and one conference paper. High-school students gained first hand experience of a college course and geologic research. Perhaps the most important impacts of the program are the close camaraderie that has developed and the increased ability of the Catalyst students to plan and execute research with greater confidence and self-esteem.

  2. A social and academic enrichment program promotes medical school matriculation and graduation for disadvantaged students.

    PubMed

    Keith, L; Hollar, D

    2012-07-01

    This study assessed the impact of a pre-medical pipeline program on successful completion of medical school and the capacity of this program to address achievement gaps experienced by disadvantaged students. The University of North Carolina (USA) Medical Education Development (MED) program provides intensive academic and test skills preparation for admission to medical, dental, and other allied health professions schools. This retrospective study evaluated the academic progress of a longitudinal sample of 1738 disadvantaged college students who completed MED between 1974 and 2001. Data sources included MED participant data, medical school admissions data for the host school, aggregate data from the Association of American Medical Colleges (AAMC), and individual MED participant data from AAMC. Methods of analysis utilized Chi-square, independent samples t test, and logistic regression to examine associations between factors. Of the 935 students in MED from 1974 to 2001, who had indicated an interest in medical school, 887 (94.9%) successfully matriculated and 801 (85.7%) successfully earned the MD degree. Using logistic regression, factors that were significantly correlated with earning the medical degree included the student's race, college undergraduate total and science grade point averages, with Hispanic, African American, and Native American participants earning the medical degree at rates comparable to Caucasian participants. MED students successfully earned the MD degree despite having significantly lower Medical College Admissions Test (MCAT) scores and undergraduate grade point averages compared to all United States medical school applicants: MCAT scores had little relationship with student's success. These findings suggest that an intensive, nine-week, pre-medical academic enrichment program that incorporates confidence-building and small-group tutoring and peer support activities can build a foundation on which disadvantaged students can successfully earn matriculation to and graduation from medical school.

  3. The 2004 Transit of Venus as a Space Science Education Opportunity

    NASA Astrophysics Data System (ADS)

    Odenwald, S.; Mayo, L.; Vondrak, R.; Thieman, J.; Hawkins, I.; Schultz, G.

    2003-12-01

    We will present some of the programs and activities that NASA and its missions are preparing in order to support public and K12 education in space science and astronomy using the 2004 transit of Venus as a focal event. The upcoming transit of Venus on June 8 offers a unique opportunity to educate students and the general public about the scale of the solar system and the universe, as well as basic issues in comparative planetology. NASA's Sun-Earth Connection Education Forum is offering a number of programs to take advantage of this rare event. Among these are a live web cast from Spain of the entire transit, a series of radio and TV programs directed at students and the general public, a web cast describing extra-solar planet searches using the transit geometry, and archived observations produced by public observatories and student-operated solar viewers. The NASA/OSS Education Forums will also partner with science museums, planetaria and teachers across the country to bring the transit of Venus 'down to Earth'. In addition to offering enrichment activities in mathematics and space science, we also describe collaborations that have yielded unique historical resources including online archives of newspaper articles from the 1874 and 1882 transits. In addition, in collaboration with the Library of Congress Music Division, we have supported a modern re-orchestration of John Philip Sousa's Transit of Venus March which has not been performed since 1883. We anticipate that the transit of Venus will be a significant event of considerable public interest and curiosity, if the newspaper headlines from the transit seen in 1882 are any indication.

  4. The Pedometer as a Tool to Enrich Science Learning in a Public Health Context

    ERIC Educational Resources Information Center

    Rye, James A.; Zizzi, Samuel J.; Vitullo, Elizabeth A.; Tompkins, Nancy O'Hara

    2005-01-01

    The United States is experiencing an obesity epidemic: A science-technology-society public health issue tied to our built environment, which is characterized by heavy dependence on automobiles and reduced opportunities to walk and bicycle for transportation. This presents an informal science education opportunity within "science in personal…

  5. College for Kids, An Innovative Enrichment Program for Gifted Elementary Children.

    ERIC Educational Resources Information Center

    Clasen, Donna Rae; Subkoviak, Michael J.

    One hundred fifty-six gifted elementary students (grades 3 through 6) responded to the Coopersmith Self Esteem Inventory on a pre- and posttest basis during a 3 week, 45 hour College for Kids program, designed as an enrichment program with focus on critical thinking, problem solving, inquiry, research, and questioning. Thirty students responded to…

  6. Louis D. Brandeis High School. Demonstration Bilingual Enrichment College Preparatory Program. O.E.E. Evaluation Report, 1981-1982.

    ERIC Educational Resources Information Center

    Cochran, Effie Papatzikou; Cotayo, Armando

    The Demonstration Bilingual Enrichment College Preparatory Program at Louis D. Brandeis High School in New York City is designed to address the needs of the "academically more able" student with limited English proficiency. The program supplements the school's existing services for 120 Spanish-dominant students, and offers instructional…

  7. Analysis of Tank 38H (HTF-38-15-47, 49) and Tank 43H (HTF-43-15-51, 53) surface and subsurface supernatant samples in support of enrichment and corrosion control programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L. N.

    This report provides the results of analyses on Tanks 38H and 43H surface and subsurface supernatant liquid samples in support of the Enrichment Control Program (ECP) and the Corrosion Control Program (CCP).

  8. Promoting First-Generation College Students' Mental Well-Being: Student Perceptions of an Academic Enrichment Program

    ERIC Educational Resources Information Center

    Swanbrow Becker, Martin A.; Schelbe, Lisa; Romano, Kelly; Spinelli, Carmella

    2017-01-01

    Academic enrichment programs seek to address the challenges first-generation students face, but research tends to focus on academic outcomes. In this study we investigated first-generation students' perceptions of how a program addresses their mental well-being. A total of 25 undergraduate students who were enrolled in an academic enrichment…

  9. THE EFFECTS OF THE BOSTON EDUCATIONAL ENRICHMENT PROGRAM ON CHILDREN'S ATTITUDES, VALUES, AND CREATIVITY.

    ERIC Educational Resources Information Center

    VREELAND, REBECCA S.

    AN EVALUATION OF A 6-WEEK SUMMER EDUCATIONAL ENRICHMENT PROGRAM FOR DISADVANTAGED STUDENTS RANGING FROM PRESCHOOL TO GRADE NINE FOUND THAT DESPITE THE SHORTNESS OF THE SESSIONS PROGRESS WAS MADE TOWARD REACHING THE GOALS OF THE PROGRAM. THE GOALS INCLUDED INCREASING STUDENTS' VERBAL AND NONVERBAL CREATIVITY, DEVELOPING STUDENT COOPERATION AND…

  10. Critical Components of a Summer Enrichment Program for Urban Low-Income Gifted Students

    ERIC Educational Resources Information Center

    Kaul, Corina R.; Johnsen, Susan K.; Witte, Mary M.; Saxon, Terrill F.

    2015-01-01

    Effective program models are needed for low-income youth. This article describes one successful summer enrichment program, University for Young People's Project Promise, and outlines three key components of a Partnership for Promoting Potential in Low-Income Gifted Students (Partnership Model), which is based on Lee, Olszewski-Kubilius, and…

  11. Parent Perceptions of the Effects of the Saturday Enrichment Program on Gifted Students' Talent Development

    ERIC Educational Resources Information Center

    Olszewski-Kubilius, Paula; Lee, Seon-Young

    2004-01-01

    Based on survey responses from 187 parents of students who attended the Saturday Enrichment Program (SEP) at the Center for Talent Development (CTD) of Northwestern University, this study showed that overall, parents perceived favorable effects of the program on their children's talent development, especially academic talent development. As a…

  12. Cognitive Education with Deaf Adolescents: Effects of Instrumental Enrichment.

    ERIC Educational Resources Information Center

    Haywood, H. Carl; And Others

    1988-01-01

    Twenty-six deaf adolescents received instruction in a structured program of cognitive education called "Instrumental Enrichment." The program addresses, among other processes, comparison, classification, logical progression, spatial orientation, analysis and synthesis, and syllogistic thinking. Following training, the subjects showed…

  13. The Learning Enrichment Service: A Triad-Based Secondary School Model for Enrichment Programming.

    ERIC Educational Resources Information Center

    Smyth, Elizabeth; And Others

    1983-01-01

    Three secondary teachers describe a school-wide support system for meeting the needs of gifted students in and beyond the regular classroom. A management team coordinates enrichment within the school and community while a computerized data bank of enrichment resources is accessible to all learners. (CL)

  14. NASA Langley/CNU Distance Learning Programs

    NASA Technical Reports Server (NTRS)

    Caton, Randall; Pinelli, Thomas E.

    2002-01-01

    NASA Langley Research Center and Christopher Newport University (CNU) provide, free to the public, distance learning programs that focus on math, science, and/or technology over a spectrum of education levels from K-adult. The effort started in 1997, and we currently have a suite of five distance-learning programs. We have around 450,000 registered educators and 12.5 million registered students in 60 countries. Partners and affiliates include the American Institute of Aeronautics and Astronautics (AIAA), the Aerospace Education Coordinating Committee (AECC), the Alliance for Community Media, the National Educational Telecommunications Association, Public Broadcasting System (PBS) affiliates, the NASA Learning Technologies Channel, the National Council of Teachers of Mathematics (NCTM), the Council of the Great City Schools, Hampton City Public Schools, Sea World Adventure Parks, Busch Gardens, ePALS.com, and Riverdeep. Our mission is based on the "Horizon of Learning," a vision for inspiring learning across a continuum of educational experiences. The programs form a continuum of educational experiences for elementary youth through adult learners. The strategic plan for the programs will evolve to reflect evolving national educational needs, changes within NASA, and emerging system initiatives. Plans for each program component include goals, objectives, learning outcomes, and rely on sound business models. It is well documented that if technology is used properly it can be a powerful partner in education. Our programs employ both advances in information technology and in effective pedagogy to produce a broad range of materials to complement and enhance other educational efforts. Collectively, the goals of the five programs are to increase educational excellence; enhance and enrich the teaching of mathematics, science, and technology; increase scientific and technological literacy; and communicate the results of NASA discovery, exploration, innovation and research. All pre-college distance learning programs support the national mathematics, science, and technology standards; support K-12 systemic change; involve educators in their development, implementation, and evaluation; and are based on alliances and partnerships. In addition the programs seek to invoke a sense of geographic, ethnic and cultural diversity by featuring schools from all over the U.S.; schools from urban, suburban, and rural areas; public, private, and religious schools; and schools with large populations of African-American, Asian and Hispanic students.

  15. An Amazing Medical Discovery! A Comprehensive Neighborhood Quality of Life Enrichment Program. An Intensive Prevention Program To Address the Social Causes of Individual and Community Pathology in an Inner-City Neighborhood. Revised.

    ERIC Educational Resources Information Center

    Miami-Dade Community Coll., FL. Medical Center Campus.

    In 1991, Miami-Dade Community College (MDCC) developed a proposal for the Comprehensive Neighborhood Quality of Life Enrichment Program, a program to be based on the principles of holism, prevention, and community synergy, focusing on the treatment of individuals with many, complex, and "all-at-once" needs. The program will operate in a poor…

  16. An Exploratory Study of the Relationship between Learners' Attitudes towards Learning Science and Characteristics of an Afterschool Science Club

    ERIC Educational Resources Information Center

    Agunbiade, Esther; Ngcoza, Kenneth; Jawahar, Kavish; Sewry, Joyce

    2017-01-01

    The Khanya Maths and Science Club (KMSC) is an afterschool science/maths enrichment programme for learners in Grades 7-12 supported by postgraduate students and academic staff volunteers. This research seeks to explore the relationship between participating learners' attitude toward learning science and the characteristics of this afterschool…

  17. KSC-03pd0816

    NASA Image and Video Library

    2003-03-21

    KENNEDY SPACE CENTER, FLA. - Lockheed Martin Vice President/Associate Program Manager Brian Duffy (second from left) and NASA/Kennedy Space Center Director Roy Bridges (center) share a laugh with student participants in the 2003 Southeastern Regional FIRST Robotic Competition. The competition is being held at the University of Central Florida (UCF) in Orlando, March 20-23. Forty student teams from around the country are participating in the event that pits team-built gladiator robots against each other in an athletic-style competition. The teams are sponsored by NASA/Kennedy Space Center, The Boeing Company/Brevard Community College, and Lockheed Martin Space Operations/Mission Systems for the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The vision of FIRST is to inspire in the youth of our nation an appreciation of science and technology and an understanding that mastering these disciplines can enrich the lives of all mankind.

  18. The librarian's role in an enrichment program for high school students interested in the health professions.

    PubMed

    Rossini, Beverly; Burnham, Judy; Wright, Andrea

    2013-01-01

    Librarians from the University of South Alabama Biomedical Library partnered to participate in a program that targets minority students interested in health care with instruction in information literacy. Librarians participate in the summer enrichment programs designed to encourage minority students to enter health care professions by enhancing their preparation. The curriculum developed by the Biomedical Library librarians is focused on developing information searching skills. Students indicated that the library segment helped them in their library research efforts and helped them make more effective use of available resources. Librarians involved report a sense of self-satisfaction as the program allows them to contribute to promoting greater diversity in health care professions. Participating in the summer enrichment program has been beneficial to the students and librarians.

  19. The 2007 National Federation of the Blind Youth Slam: Making Astronomy Accessible to Students Who are Blind

    NASA Astrophysics Data System (ADS)

    Grice, Noreen A.

    2008-05-01

    In the summer of 2007, nearly two hundred blind and visually impaired high school students participated in a weeklong enrichment program at Johns Hopkins University called the National Federation of the Blind Youth Slam. They spent four days participating in hands-on science and engineering classes and exploring careers previously thought inaccessible to those without sight. The students were separated into "tracks” with each group focusing on a different field. Want to know what happened in the astronomy track? Come by this paper and see examples of accessible astronomy activities, including accessible star parties, from the Youth Slam!

  20. National Aeronautics and Space Administration (NASA)/american Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1991, Volume 2

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)

    1991-01-01

    The objectives of the program are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participant's institutions; and (4) to contribute to the research objectives of the NASA Centers. A compilation of the final reports on the research projects done by the faculty fellows during the summer of 1991 are presented. Some of the topics covered include: collision avoidance for rover vehicles, bioinstrumentation, neural nets, total quality management of flexible space structures, project scheduling, nondestructive tests, orthostatic intolerance to bedrest, hypersonic reentry simulation, measuring human energy expenditure, tribological models, trace element movement in Anarctic ice, gastrointestinal function, and computer assisted instruction.

  1. Enriching science, practice, and policy relevant to school psychology around the globe.

    PubMed

    Jimerson, Shane R

    2016-03-01

    This editorial provides a brief synthesis of the past, present, and future of School Psychology Quarterly, highlighting important contributions as an international resource to enrich, invigorate, enhance, and advance science, practice, and policy relevant to school psychology around the globe. Information herein highlights (a) the value of high quality and timely reviews, (b) publishing manuscripts that address a breadth of important topics relevant to school psychology, and (c) the structure and contributions of the special topic sections featured in School Psychology Quarterly. (c) 2016 APA, all rights reserved).

  2. Development of the AuScope Australian Earth Observing System

    NASA Astrophysics Data System (ADS)

    Rawling, T.

    2017-12-01

    Advances in monitoring technology and significant investment in new national research initiatives, will provide significant new opportunities for delivery of novel geoscience data streams from across the Australian continent over the next decade. The AuScope Australian Earth Observing System (AEOS) is linking field and laboratory infrastructure across Australia to form a national sensor array focusing on the Solid Earth. As such AuScope is working with these programs to deploy observational infrastructure, including MT, passive seismic, and GNSS networks across the entire Australian Continent. Where possible the observational grid will be co-located with strategic basement drilling in areas of shallow cover and tied with national reflection seismic and sampling transects. This integrated suite of distributed earth observation and imaging sensors will provide unprecedented imaging fidelity of our crust, across all length and time scales, to fundamental and applied researchers in the earth, environmental and geospatial sciences. The AEOS will the Earth Science community's Square Kilometer Array (SKA) - a distributed telescope that looks INTO the earth rather than away from it - a 10 million SKA. The AEOS is strongly aligned with other community strategic initiatives including the UNCOVER research program as well as other National Collaborative Research Infrastructure programs such as the Terrestrial Environmental Research Network (TERN) and the Integrated Marine Observing System (IMOS) providing an interdisciplinary collaboration platform across the earth and environmental sciences. There is also very close alignment between AuScope and similar international programs such as EPOS, the USArray and EarthCube - potential collaborative linkages we are currently in the process of pursuing more fomally. The AuScope AEOS Infrastructure System is ultimately designed to enable the progressive construction, refinement and ongoing enrichment of a live, "FAIR" four-dimensional Earth Model for the Australian Continent and its immediate environs.

  3. Inspiring the Next Generation of Naval Scientists and Engineers in Mississippi and Louisiana

    NASA Astrophysics Data System (ADS)

    Breland-Mensi, S.; Calantoni, J.

    2012-12-01

    In 2011, the American Institute of Physics ranked Mississippi 50th out of 50 states in preparing students for science, technology, engineering and math (STEM) careers. Louisiana placed 48th on the list. [1] The Naval Research Laboratory - Stennis Space Center detachment (NRL-SSC) is located on the Mississippi Gulf Coast, approximately 2 miles from the Louisiana state line. In response to a growing need for NRL-SSC to sustain recruitment and retention of the best and brightest scientists and engineers (S&Es), NRL-SSC became a National Defense Education Program (NDEP) site in August 2009. NDEP's mission is to support a new generation of S&Es who will apply their talents in U.S. Defense laboratories. As an NDEP site, NRL-SSC receives funding to promote STEM at K-12 institutions geographically local to NRL-SSC. NDEP funding allows present Department of Defense civilian S&Es to collaborate with teachers to enrich student learning in the classroom environment through various programs, events, training and activities. Since NRL-SSC's STEM program's inception, more than 30 S&Es have supported an array of STEM outreach activities in over 30 different local schools. An important part of the K-12 outreach from NRL-SSC is to provide professional development opportunities for local teachers. During the summer of 2012, in collaboration with STEM programs sponsored by the Office of Naval Research (ONR), we provided a series of professional development opportunities for 120 local science and mathematics teachers across K-12. The foundation of NRL-SSC STEM programs includes MATHCOUNTS, FIRST and SeaPerch—all nationally recognized, results-driven programs. We will discuss the breadth of participation in these programs and how these programs will support NRL-SSC future recruitment goals.

  4. Utilization-focused evaluation of a STEM enrichment program

    NASA Astrophysics Data System (ADS)

    Carter, Sally

    The purpose of this study was to determine the impact and utilization of a STEM enrichment program (hereafter referred to as The Program). The Program consisted of two parts. First an educator resource center provided free educational materials throughout The Program’s home state. The second part of The Program was a network of education specialists who provided professional development for teachers, modeled lessons with students, and provided presentations for the general public. The problem addressed by this study was a lack of knowledge regarding the impact of The Program. The Program’s director requested a utilization-focused program evaluation to answer thirteen questions. Questions covered Program impact for five areas: overall impact on teachers, overall impact on students, overall impact of materials, overall impact of Program personnel, and overall impact on STEM education. A mixed-methods case study was designed to gather data. Quantitative data included Program archival data regarding the number of contacts and a survey distributed to teachers who had used The Program’s services on at least one occasion. Qualitative data included written comments gathered from the teacher surveys, seven teacher focus groups, and four Program personnel interviews. Data found an overall positive Program impact in all five areas. Both quantitative and qualitative data showed favorable perceptions by teachers and Program personnel. It is not known if data from this case study can be generalized to other STEM enrichment programs. Future research might include a study to determine if The Program’s model could be used to generate new STEM enrichment programs.

  5. Long-Term Macroevaluation of Environmental Enrichment in Three Brown Bears (Ursus arctos) at Barcelona Zoo.

    PubMed

    Soriano, Ana I; Vinyoles, Dolors; Maté, Carmen

    2016-01-01

    The evaluation of enrichment programs is important to determine their effect on nonhuman animal welfare. The daily activity pattern and use of space of 3 brown bears (Ursus arctos) were used for long-term macroevaluation of enrichment to compare the baseline and enrichment phases. Focal sampling methods were used for data collection, and instantaneous scans were made at 2-min intervals during 15 sessions of 1 hr for each animal during the 2 study periods. The enrichment devices were categorized as feeding, occupational, and sensorial. The long-term macroevaluation in 3 bears showed statistically significant differences in some types of activity but not in others. There were also statistically significant differences for the use of space in 4 of the 8 zones in which the enclosures were divided. A more homogenous pattern in the use of space was only observed during the enrichment phase in the old female. The 3 brown bears followed different patterns concerning the enrichment program.

  6. Political Science and Business School Curriculum.

    ERIC Educational Resources Information Center

    Matasar, Ann B.

    In the business community an understanding of the workings of government is essential. Most undergraduate business curricula do not include political science courses even though the subject can make major contributions to the student's education. Three areas of the business core would be particularly enriched by political science: organization…

  7. Afternoon Remedial and Enrichment Program, Buffalo, New York. Elementary Program in Compensatory Education, 2.

    ERIC Educational Resources Information Center

    American Institutes for Research in the Behavioral Sciences, Palo Alto, CA.

    This afternoon remedial and enrichment program was offered to inner-city low income children (grades 3-8). About 75 percent of the children were black, 20 percent white and 5 percent Puerto Rican. Remedial instruction was offered in reading and mathematics. Average class size was six pupils; these small groups allowed for better diagnosis of needs…

  8. Special Competition Bilingual Enrichment Academic Russian Program. Final Evaluation Report, 1992-93. OREA Report.

    ERIC Educational Resources Information Center

    Seiman, Florence

    Special Competition Bilingual Enrichment Academic Russian Program is a federally-funded program that served 623 native Russian-speaking, limited-English-proficient (LEP) students in nine public and two private high schools in New York City in 1992-93, its first year of operation. Students received instruction in English as a second language (ESL),…

  9. Acceleration and Enrichment in the Junior High School; A Follow-up Study.

    ERIC Educational Resources Information Center

    Arends, Richard; Ford, Paul M.

    To test the effectiveness of a program of acceleration and enrichment, five ninth grade classes of students (25 in each class, IQ's 120 or above) who had been in this program for 2 years were compared to two control (C) classes of academically talented students who had not had the program. All students were given a series of standardized…

  10. The PRIME Partnership: 9th Graders, Graduate Students and Integrated, Inquiry-Based Science

    NASA Astrophysics Data System (ADS)

    Gaffney, A. M.; Miguelez, S.

    2001-12-01

    The PRIME program (Partnership for Research in Inquiry-based Math, science and engineering Education) is a collaboration between the UW Colleges of Education and Engineering and several Seattle-area school districts. This project, funded by the NSF GK-12 program, pairs UW graduate students from math, science and engineering disciplines with local middle school teachers. The graduate student spends a year working with the teacher, on projects designed to meet the needs and interests of the specific partnership and classroom. In the partnership, the graduate student spends 15 hours per week in the classroom, interacting with the students, as well as additional planning time outside of the classroom. Goals of the PRIME program are enriched learning by middle school students, professional development for middle school teachers, improved communication and teaching skills for the graduate students, and strengthened partnerships between the University of Washington and local school districts. The goal of our partnership was to develop an inquiry-based, 9th grade unit that integrates the pre-existing Earth Science and Chemistry units, and to assess the effectiveness of teaching Chemistry in the context of Earth Science. We have observed that students often become engaged and excited when they do hands-on activities that utilize the intrinsic understanding that they have of concepts that draw upon experiences in their daily lives. When science is taught and learned in one such context - in the context of the natural world - the students may gain a more solid fundamental understanding of the science that they learn. The day-to-day activities for this unit vary widely. We started each topic with a question designed to get the students thinking independently and to identify the preconceptions that the students brought into the classroom. Discussions of students' preconceptions served as a justification and springboard for the subsequent activities and experiments. Examples of questions used to spark student thought are: "What do you think the inside of the Earth looks like?," "What makes a volcano erupt?," and "Do mountains last forever?." We evaluated the effectiveness of this approach through a combination of classroom observations, formal and informal interviews, and surveys

  11. Senior Science Enrichment Modules. S.S.T.A. Research Centre Report No. 58.

    ERIC Educational Resources Information Center

    Fedorak, Allen; And Others

    Presented is a set of learning modules intended for teaching science to students in grades eleven and twelve. Each module incorporates problem solving using the scientific viewpoint and emphasizing the interface between science and society. The fifteen modules presented include the following topics: group dynamics; the value of science; a puzzle…

  12. Using the Sociology of Associations to Rethink STEM Education

    ERIC Educational Resources Information Center

    Buxton, Cory; Harper, Susan; Payne, Yolanda Denise; Allexsaht-Snider, Martha

    2017-01-01

    Using three constructs taken from Latour's 2005 book, "Reassembling the Social," we consider our work in 2 contexts that were part of a project to support science teachers working with English learners: an 8th-grade physical science class in a summer science enrichment academy, and a 6th-grade Earth science class in a public middle…

  13. Enriching Students' Education Using Interactive Workstations at a Salt Mine Turned Science Center

    ERIC Educational Resources Information Center

    Meissner, Barbara; Bogner, Franz

    2011-01-01

    Although teachers in principle are prepared to make use of science centers, such excursions often fail to facilitate learning processes. Therefore, it is necessary to improve the link between science centers and schools. The design and evaluation of valuable outreach projects may enhance students' out-of-school science learning. In our study, we…

  14. Analysis of Tank 38H (HTF-38-15-119, 127) Surface, Subsurface and Tank 43H (HTF-43-15-116, 117 and 118) Surface, Feed Pump Suction and Jet Suction Subsurface Supernatant Samples in Support of Enrichment, Corrosion Control and Salt Batch Planning Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L.

    Compositional feed limits have been established to ensure that a nuclear criticality event for the 2H and 3H Evaporators is not possible. The Enrichment Control Program (ECP) requires feed sampling to determine the equivalent enriched uranium content prior to transfer of waste other than recycle transfers (requires sampling to determine the equivalent enriched uranium at two locations in Tanks 38H and 43H every 26 weeks) The Corrosion Control Program (CCP) establishes concentration and temperature limits for key constituents and periodic sampling and analysis to confirm that waste supernate is within these limits. This report provides the results of analyses onmore » Tanks 38H and 43H surface and subsurface supernatant liquid samples in support of the ECP, the CCP, and the Salt Batch 10 Planning Program.« less

  15. Current fundamental science challenges in low temperature plasma science that impact energy security and international competitiveness

    NASA Astrophysics Data System (ADS)

    Hebner, Greg

    2010-11-01

    Products and consumer goods that utilize low temperature plasmas at some point in their creation touch and enrich our lives on almost a continuous basis. Examples are many but include the tremendous advances in microelectronics and the pervasive nature of the internet, advanced material coatings that increase the strength and reliability of products from turbine engines to potato chip bags, and the recent national emphasis on energy efficient lighting and compact fluorescent bulbs. Each of these products owes their contributions to energy security and international competiveness to fundamental research investments. However, it would be a mistake to believe that the great commercial success of these products implies a robust understanding of the complicated interactions inherent in plasma systems. Rather, current development of the next generation of low temperature plasma enabled products and processes is clearly exposing a new set of exciting scientific challenges that require leaps in fundamental understanding and interdisciplinary research teams. Emerging applications such as liquid-plasma systems to improve water quality and remediate hazardous chemicals, plasma-assisted combustion to increase energy efficiency and reduce emissions, and medical applications promise to improve our lives and the environment only if difficult science questions are solved. This talk will take a brief look back at the role of low temperature plasma science in enabling entirely new markets and then survey the next generation of emerging plasma applications. The emphasis will be on describing the key science questions and the opportunities for scientific cross cutting collaborations that underscore the need for increased outreach on the part of the plasma science community to improve visibility at the federal program level. This work is supported by the DOE, Office of Science for Fusion Energy Sciences, and Sandia National Laboratories, a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

  16. MS PHD'S Professional Development Program: A Scientific Renaissance in Cyberspace

    NASA Astrophysics Data System (ADS)

    Powell, J. M.; Williamson, V. A.; Griess, C. A.; Pyrtle, A. J.

    2004-12-01

    This study is a component of a four-year investigation of MS PHD'S Professional Development Program's virtual community through the lenses of underrepresented minority students in Earth system science and engineering fields. In this presentation, the development, assessment and projected utilization of the ongoing study will be discussed. The overall goal of this study is to examine the effectiveness of virtual team building methods and understand how the development of a communal cyberinfrastructure acts as an integral part of the emergence of a Scientific Renaissance. The exemplar, Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science (MS PHD'S), provides professional development experiences to facilitate the advancement of students of color achieving outstanding Earth system careers. Undergraduate and graduate students are supported through access to scientific conferences, mentorship and virtual community building. Framed by critical theory, this ethnographic exploration uses a mixed methods research design to record, observe, and analyze both the processes and products of the website, listserv and synchronous web-based dialogue. First, key findings of the formative evaluation and annual reports of the successfully implemented 2003 MS PHD'S Pilot Project are presented. These findings inform future evaluations of the use of technological resources and illustrate how this public space provides peer support and enriched research opportunities. Quantitative methods such as statistical analysis, academic and professional tracking and evaluative tools for scientific content and competency are complimented by qualitative methods that include observations, heuristic case studies and focus group interviews. The findings of this ongoing investigation will provide insight on how national organizations, higher education practitioners, community-based support systems and underrepresented minorities in the sciences promote diversity by developing successful cyberspace programs and networks. Through the examination of the transformation, expansion and democratization of the Earth system science community, new knowledge will be obtained on how a cyber-community fuses science, diversity and technology to form dialectics between creating and analyzing a Scientific Renaissance.

  17. Enriching K-12 Science and Mathematics Education Using LEGOs

    ERIC Educational Resources Information Center

    Williams, Keeshan; Igel, Irina; Poveda, Ronald; Kapila, Vikram; Iskander, Magued

    2012-01-01

    This paper presents a series of illustrative LEGO Mindstorms-based science and math activities, developed under an NSF GK-12 Fellows project, for elementary, middle, and high school grades. The activities, developed by engineering and science graduate Fellows in partnership with K-12 teachers, are grade appropriate, address pertinent learning…

  18. Stepfamily Enrichment Program: A Preventive Intervention for Remarried Couples

    ERIC Educational Resources Information Center

    Michaels, Marcia L.

    2006-01-01

    The Stepfamily Enrichment Program is a multi-couple group intervention intended to help stepfamilies successfully negotiate the early stages of family formation. Theory, research, and clinical findings were integrated in this intervention designed specifically for remarried couples. Emphasis is placed on strengthening and improving family…

  19. Teacher Professional Development with SOFIA from Inception to Flight

    NASA Astrophysics Data System (ADS)

    Hemenway, Mary Kay; Lacy, J.; Sneden, C.; EXES Teacher Associates, SOFIA

    2012-01-01

    Since January 1998 Texas science and math teachers have met several times per year in a program centered on SOFIA, the Stratospheric Observatory for Infrared Astronomy. Initial meetings focused on astronomical instrumentation as the ground-based TEXES (Texas Echelon Cross Echelle Spectrograph) and its SOFIA successor, EXES, were developed and built. Sixty-nine different teachers have been involved in the seventy-nine Saturday meetings between January 1998 and October 2011. A typical meeting included an update on SOFIA, an expert talk on a science or technology topic, and a Standards-linked activity that they can carry back to use in their classrooms. Many of the participants have presented activities or reports to their colleagues. A variety of guest-presenters - faculty, staff, and graduate students as well as visitors (both in person and through videoconference) - enriched the program with their expertise. Some Saturday meetings included field trips to Waco to visit the SOFIA aircraft modification; other trips sent subsets of teachers to McDonald Observatory for TEXES' early observations, to Hawaii for observing runs on the IRTF or Gemini, and to various locations for American Astronomical Society meetings. The participants report their increased knowledge of astronomical concepts and of the culture of professional astronomy. By spreading the SOFIA EXES teacher program over such a long period, the staff has formed strong professional bonds with the participants while the participants have shared their experiences with each other. Support from USRA grant 8500-98-008; the National Science Foundation AST- 0607312, AST- 0607708, and AST-0908978; and SOFIA Education/Public Outreach through the SETI Institute 08-SC-1022 is gratefully acknowledged.

  20. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program: 1995. Volume 1

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Sickorez, Donn G. (Editor)

    1996-01-01

    The objectives of the JSC NASA/ASEE Summer Faculty Fellowship Program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. In addition to the faculty participants, the 1995 program included five students. This document is a compilation of the first fifteen of twenty-seven final reports on the research projects completed by the faculty fellows and visiting students during the summer of 1995. The reports of two of the students are integral with that of the respective fellow. Three students wrote separate reports included in Volume 2.

  1. A PROGRAM TO PROVIDE EDUCATIONAL ENRICHMENT TO DISADVANTAGED IN-SCHOOL NEIGHBORHOOD YOUTH CORPS ENROLLEES DURING THE SUMMER.

    ERIC Educational Resources Information Center

    PECK, BERNARD; AND OTHERS

    A SUMMER PROGRAM OF EDUCATIONAL ENRICHMENT FOR DISADVANTAGED YOUTH, AGES 16-22, WAS EVALUATED. THE PROGRAM, WHICH WAS DEVELOPED BY THE NEIGHBORHOOD YOUTH CORPS AND CONDUCTED JOINTLY BY THE NEW YORK CITY BOARD OF EDUCATION AND SIX COMMUNITY AGENCIES, ATTEMPTED (1) TO IMPROVE THE READING AND WRITING SKILLS OF THE ENROLLEES, (2) TO ENCOURAGE THEM TO…

  2. Predicting Treatment Success in Social Skills Training for Adolescents with Autism Spectrum Disorders: The UCLA Program for the Education and Enrichment of Relational Skills

    ERIC Educational Resources Information Center

    Chang, Ya-Chih; Laugeson, Elizabeth A.; Gantman, Alexander; Ellingsen, Ruth; Frankel, Fred; Dillon, Ashley R.

    2014-01-01

    This study seeks to examine the predictors of positive social skills outcomes from the University of California, Los Angeles Program for the Education and Enrichment of Relational Skills, an evidence-based parent-assisted social skills program for high-functioning middle school and high school adolescents with autism spectrum disorders. The…

  3. Lessons Learned from My Students: The Impact of SEM Teaching and Learning on Affective Development

    ERIC Educational Resources Information Center

    Hebert, Thomas P.

    2010-01-01

    Through reflection on his years as an enrichment teacher in Schoolwide Enrichment Model (SEM) programs, the author describes significant ways the social and emotional development of his students was shaped by their involvement in enriched teaching and learning. Through portraits of his students engaged in Type II and Type III enrichment, the…

  4. The 2003 NASA Faculty Fellowship Program Research Reports

    NASA Technical Reports Server (NTRS)

    Nash-Stevenson, S. K.; Karr, G.; Freeman, L. M.; Bland, J. (Editor)

    2004-01-01

    For the 39th consecutive year, the NASA Faculty Fellowship Program (NFFP) was conducted at Marshall Space Flight Center. The program was sponsored by NASA Headquarters, Washington, DC, and operated under contract by The University of Alabama in Huntsville. In addition, promotion and applications are managed by the American Society for Engineering Education (ASEE) and assessment is completed by Universities Space Research Association (USRA). The nominal starting and finishing dates for the 10-week program were May 27 through August 1, 2003. The primary objectives of the NASA Faculty Fellowship Program are to: (1) Increase the quality and quantity of research collaborations between NASA and the academic community that contribute to NASA s research objectives; (2) provide research opportunities for college and university faculty that serve to enrich their knowledge base; (3) involve students in cutting-edge science and engineering challenges related to NASA s strategic enterprises, while providing exposure to the methods and practices of real-world research; (4) enhance faculty pedagogy and facilitate interdisciplinary networking; (5) encourage collaborative research and technology transfer with other Government agencies and the private sector; and (6) establish an effective education and outreach activity to foster greater awareness of this program.

  5. National Aeronautics and Space Administration (NASA)/American Society of Engineering Education (ASEE) Summer Faculty Fellowship Program - 2000

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    2003-01-01

    The 2000 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and 1964 nationally, are to (1) further the professional knowledge of qualified engineering and science faculty, (2) stimulate an exchange of ideas between participants and NASA, (3) enrich and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA Centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project commensurate with her/his interests and background, and worked in collabroation with a NASA/JSC colleague. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 2000.

  6. Developing Classroom Research Modules Through In Depth Understanding of the Research Process

    NASA Astrophysics Data System (ADS)

    Guilbert, K.; Soong, J.; Cotrufo, M.

    2012-12-01

    Students of low income families often have fewer opportunities, especially in regards to science, than their peers of higher socioeconomic upbringing. This opportunity deficit can stifle their interest in science before it begins. As an elementary teacher at a Title 1 school, I strive to enrich the scientific opportunities for my students. I gained exposure to soil science by participating in a litter decomposition experiment and the Summer Soil Institute at Colorado State University through an NSF funded Research Experience for Teachers program (RET). My participation in the RET provided me with the tools necessary to implement in depth research in my 5th grade classroom. A teacher's greatest tool is having a deep understanding of a topic prior to relaying it to students. This depth of knowledge needs to be coupled with a general understanding of the research process and techniques that are being used by contemporary scientists. Applying these ideas, I created a long-term decomposition module for my students that can be used as a model for teachers to create meaningful research opportunities for students.

  7. Enriching the Research Experiences for Undergraduates in Geoscience Through Student Feedback

    NASA Astrophysics Data System (ADS)

    Sears, R. F.; Bank, C. G.

    2014-12-01

    Research Experiences for Undergraduates (REU) allow students to work alongside professionals while they conduct scientific research and offer excellent opportunities to expose students to the practical components of their university education. Indeed, anecdotal evidence shows that a well-planned REU builds teamwork skills, provides a deeper understanding of the science learned in the classroom, and allows students to experience the various stages of science and thus consider wider career options. However, such evidence is difficult to measure. In this presentation we will present preliminary results from a survey of 2nd and 3rd year students who have been engaged in separate interdisciplinary projects (a geophysical survey in South Africa to assist archaeologists, and a forensic study in collaboration with the provincial police). Our before and after surveys address criteria such as students' understanding of scientific methodology, familiarity with the topic and tools for the research, expectations of the study and of themselves, and logistics of doing science. It is our hope that the student voices we present will help REU program coordinators to address limitations and establish best practices to provide the richest possible learning experience.

  8. CUE (CULTURE, UNDERSTANDING, ENRICHMENT)--SOCIAL STUDIES.

    ERIC Educational Resources Information Center

    BROWN, ROBERT M.; AND OTHERS

    THIS PUBLICATION IS A TEACHING GUIDE TO PROVIDE GUIDANCE FOR INTEGRATING CAREFULLY SELECTED AUDIOVISUAL ITEMS INTO EXISTING NINTH-GRADE CURRICULUMS IN SOCIAL STUDIES. IT IS ONE OF FIVE GUIDES PREPARED FOR USE IN PROJECT CUE. AN EXPERIMENTAL PROGRAM DESIGNED TO INCREASE CULTURAL UNDERSTANDING AND ENRICHMENT IN THE EDUCATIONAL PROGRAMS OF HIGH…

  9. Reading Enrichment Art Development.

    ERIC Educational Resources Information Center

    Sholler, Ruth; And Others

    1983-01-01

    A unit on Afro-American art was developed as part of the Reading Enrichment Art Development program. Elementary students from the program were concentrating on the concept of pattern in language. The unit was designed to reinforce this understanding via the reverse-fold pleating process used in a Nigerian tie-dye project. (AM)

  10. The School and Home Enrichment Program for Severely Handicapped Children.

    ERIC Educational Resources Information Center

    Gleason, Joni J.

    1987-01-01

    The School and Home Enrichment Program for Severely Handicapped Children includes 332 activities. Focus is on the development of sensory responsiveness, eating skills, fine motor skills, gross motor skills, expressive language, receptive language, personal hygiene, dressing, and social interaction that can be used by parents or teachers as a…

  11. Bridging "The Two Cultures" through Aesthetic Education: Considering Visual Art, Science, and Imagination

    ERIC Educational Resources Information Center

    Asher, Rikki

    2007-01-01

    Art can be used to enrich the subject of science and science can be used to motivate study in art. This can stimulate new ways to regard the relationship of art and science in classrooms. Theoretical and practical examples will highlight: early and contemporary artists who developed ideas about art forms in nature; the impact an Aesthetics and…

  12. The Pedometer as a Tool to Enrich Science Learning in a Public Health Context

    NASA Astrophysics Data System (ADS)

    Rye, James A.; Zizzi, Samuel J.; Vitullo, Elizabeth A.; Tompkins, Nancy O'hara

    2005-12-01

    The United States is experiencing an obesity epidemic: A science-technology-society public health issue tied to our built environment, which is characterized by heavy dependence on automobiles and reduced opportunities to walk and bicycle for transportation. This presents an informal science education opportunity within "science in personal and social perspectives'' to use pedometer technology for enhancing students' understandings about human energy balance. An exploratory study was conducted with 29 teachers to investigate how pedometers could be used for providing academic enrichment to secondary students participating in after-school Health Sciences and Technology Academy clubs. Frequency analysis revealed that the pedometer activities often investigated kilocalorie expenditure and/or incorporated hypothesis testing/experimenting. Teachers' perspectives on learning outcomes most frequently conveyed that students increased their awareness of the importance of health habits relative to kilocalorie intake and expenditure. Pedometers have considerable merit for the regular science curriculum as they allow for numerous mathematics applications and inquiry learning and target concepts such as energy and equilibrium that cut across the National Science Education Standards. Pedometers and associated resources on human energy balance are important tools that science teachers can employ in helping schools respond to the national call to prevent childhood obesity.

  13. Technology in education: A guidebook for developing a science and math education support program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, C.L.

    1992-09-01

    Education is vital to survival and success in an increasingly technical world, and the quality of education is the responsibility of everyone students, teachers, parents, industry, and government. Any technical organization wanting to contribute to that success through its local education system can do so easily and effectively through careful planning. This report details that planning process and includes methods to (1) identify the interests, strengths, and resources of the technical organization; (2) identify the needs of the local education system; (3) interface with local school system administration, principals, and teachers; and (4) develop a unique plan to match themore » organization's strengths and resources with the needs of the school system. Following these getting started'' activities is the actual program that the Engineering Technology Division implemented in a local elementary school, including the curriculum, topics, and actual lesson plans used by technical personnel in the classroom. Finally, there are enrichment activities for teachers and students, suggestions for measuring the success of an education support program, and an overview of student responses to questions about the overall program.« less

  14. Technology in education: A guidebook for developing a science and math education support program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, C.L.

    1992-09-01

    Education is vital to survival and success in an increasingly technical world, and the quality of education is the responsibility of everyone students, teachers, parents, industry, and government. Any technical organization wanting to contribute to that success through its local education system can do so easily and effectively through careful planning. This report details that planning process and includes methods to (1) identify the interests, strengths, and resources of the technical organization; (2) identify the needs of the local education system; (3) interface with local school system administration, principals, and teachers; and (4) develop a unique plan to match themore » organization`s strengths and resources with the needs of the school system. Following these ``getting started`` activities is the actual program that the Engineering Technology Division implemented in a local elementary school, including the curriculum, topics, and actual lesson plans used by technical personnel in the classroom. Finally, there are enrichment activities for teachers and students, suggestions for measuring the success of an education support program, and an overview of student responses to questions about the overall program.« less

  15. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program: 1995.. Volume 2

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Sickorez, Donn G. (Editor)

    1996-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted at JSC, including the White Sands Test Facility, by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. In addition to the faculty participants, the 1995 program included five students. This document is a compilation of the final reports on the research projects completed by the faculty fellows and visiting students during the summer of 1995. The reports of two of the students are integral with that of the respective fellow. Three students wrote separate reports.

  16. Understanding change and curriculum implementation

    NASA Astrophysics Data System (ADS)

    de Jong, Gayle Marie

    2000-10-01

    This dissertation is a qualitative case study that examined perceptions of teachers in 2 schools about the process of change used in the implementation of a hands-on science program. Many change initiatives have failed in their implementation, and it may not necessarily be attributed to their quality. A countless number of promising programs have been derailed by a poor understanding of the process of change. This study looks first at the history of science reform to illustrate first the importance of hands-on inquiry as an effective instructional strategy. Then the process of change and its relationship to the implementation of a hands-on science curriculum was examined. The Hands on Science Program (HASP) is modular based and relies heavily on inquiry teaching. The project had been underway in these schools for about 5 years, and the districts are ready to evaluate its success. An interview with the original Project Director and information obtained from a summative evaluation helped explain the HASP. The Project Director shared the thinking that was involved in the program's inception, and the evaluation report served as a summary of the project's progress. Two schools were selected to examine the status of the program. The Organizational Climate Description Questionnaire and the Organizational Health Inventory developed by Hoy and Tarter (1997) were used to enrich the description of the school. Five teachers from each school, who have had leading roles in the implementation, were interviewed in an attempt to understand the insider's view of the change process used in the implementation of the HASP in their schools. Achievement data from the Stanford Achievement Test-9 was also used to provide some additional information. Interviews were used to understand teacher perceptions in each school and then compared in a cross-ease analysis. The results of this study could be used as planning suggestions for educational leaders designing change initiatives, although it should be understood that the results obtained from these 2 schools may not be generalized to others. Efforts to implement new curriculums will fail without sufficient study, planning, and understanding of the process of change.

  17. Feeding the pipeline: academic skills training for predental students.

    PubMed

    Markel, Geraldine; Woolfolk, Marilyn; Inglehart, Marita Rohr

    2008-06-01

    This article reports the outcomes of an evaluation conducted to determine if an academic skills training program for undergraduate predental students from underrepresented minority backgrounds increased the students' standardized academic skills test scores for vocabulary, reading comprehension, reading rates, spelling, and math as well as subject-specific test results in biology, chemistry, and physics. Data from standardized academic skill tests and subject-specific tests were collected at the beginning and end of the 1998 to 2006 Pipeline Programs, six-week summer enrichment programs for undergraduate predental students from disadvantaged backgrounds. In total, 179 students (75.4 percent African American, 7.3 percent Hispanic, 5.6 percent Asian American, 5 percent white) attended the programs during these nine summers. Scores on the Nelson-Denny Reading Test showed that the students improved their vocabulary scores (percentile ranks before/after: 46.80 percent/59.56 percent; p<.001), reading comprehension scores (47.21 percent/62.67 percent; p<.001), and reading rates (34.01 percent/78.31 percent; p<.001) from the beginning to the end of the summer programs. Results on the Wide Range Achievement Test III showed increases in spelling (73.58 percent/86.22 percent; p<.001) and math scores (56.98 percent/81.28 percent; p<.001). The students also improved their subject-specific scores in biology (39.07 percent/63.42 percent; p<.001), chemistry (20.54 percent/51.01 percent; p<.001), and physics (35.12 percent/61.14 percent; p<.001). To increase the number of underrepresented minority students in the dental school admissions pool, efforts are needed to prepare students from disadvantaged backgrounds for this process. These data demonstrate that a six-week enrichment program significantly improved the academic skills and basic science knowledge scores of undergraduate predental students. These improvements have the potential to enhance the performance of these students in college courses and thus increase their level of competitiveness in the dental school admissions process.

  18. On the Coming Demise of Job Enrichment. Technical Report No. 9.

    ERIC Educational Resources Information Center

    Hackman, J. Richard

    Job enrichment rapidly is becoming one of the most widely used behavioral science strategies for organizational change. And there is scattered but compelling evidence that, under certain conditions, the technique can lead simultaneously to both improved productivity and an increase in the quality of employee work experiences. Yet observations of…

  19. Does Continued Participation in STEM Enrichment and Enhancement Activities Affect School Maths Attainment?

    ERIC Educational Resources Information Center

    Banerjee, Pallavi Amitava

    2017-01-01

    Science, technology, engineering, and mathematics (STEM) skills are very valuable for economic growth. However, the number of young people pursuing STEM learning trajectories in the United Kingdom was lower than the predicted demand during the last decade. Several STEM enrichment and enhancement activities were thus funded by the government,…

  20. Enriching Cross Cirriculum Projects with Astronomy for Gifted Students

    NASA Astrophysics Data System (ADS)

    Burris, Debra L.

    2016-01-01

    The aim of many GT (Gifted and Talented) teachers is to provide comprehesive and long term projects to enrich cirriculum for their students rather than shorter "worksheet based" activities. Atkins Middle School has collaborated with faculty from the University of Central Arkansas over the past 9 years to create projects which span the academic year and enrich learning while emphasizing the goals of the science standards. An overview of those projects and Astronomy's role within them will be presented.

  1. SENSE IT: Student Enabled Network of Sensors for the Environment using Innovative Technology

    NASA Astrophysics Data System (ADS)

    Hotaling, L. A.; Stolkin, R.; Kirkey, W.; Bonner, J. S.; Lowes, S.; Lin, P.; Ojo, T.

    2010-12-01

    SENSE IT is a project funded by the National Science Foundation (NSF) which strives to enrich science, technology, engineering and mathematics (STEM) education by providing teacher professional development and classroom projects in which high school students build from first principles, program, test and deploy sensors for water quality monitoring. Sensor development is a broad and interdisciplinary area, providing motivating scenarios in which to teach a multitude of STEM subjects, from mathematics and physics to biology and environmental science, while engaging students with hands on problems that reinforce conventional classroom learning by re-presenting theory as practical tools for building real-life working devices. The SENSE IT program is currently developing and implementing a set of high school educational modules which teach environmental science and basic engineering through the lens of fundamental STEM principles, at the same time introducing students to a new set of technologies that are increasingly important in the world of environmental research. Specifically, the project provides students with the opportunity to learn the engineering design process through the design, construction, programming and testing of a student-implemented water monitoring network in the Hudson and St. Lawrence Rivers in New York. These educational modules are aligned to state and national technology and science content standards and are designed to be compatible with standard classroom curricula to support a variety of core science, technology and mathematics classroom material. For example, while designing, programming and calibrating the sensors, the students are led through a series of tasks in which they must use core mathematics and physics theory to solve the real problems of making their sensors work. In later modules, students can explore environmental science and environmental engineering curricula while deploying and monitoring their sensors in local rivers. This presentation will provide an overview of the educational modules. A variety of sensors will be described, which are suitably simple for design and construction from first principles by high school students while being accurate enough for students to make meaningful environmental measurements. The presentation will also describe how the sensor building activities can be tied to core curricula classroom theory, enabling the modules to be utilized in regular classes by mathematics, science and computing teachers without disrupting their semester’s teaching goals. Furthermore, the presentation will address of the first two years of the SENSE IT project, during which 39 teachers have been equipped, trained on these materials, and have implemented the modules with around approximately 2,000 high school students.

  2. Game-Based Learning Aids in Second Life

    ERIC Educational Resources Information Center

    Young, William, II; Franklin, Teresa; Cooper, Tessa; Carroll, Stephen; Liu, Chang

    2012-01-01

    In an age of technological advancement, video games have been found to be effective teaching aids in middle school science classrooms. A National Science Foundation (NSF) project at Ohio University, known as STEAM, (Science and Technology Enrichment for Appalachian Middle Schoolers), has examined Second Life as a curriculum aid through the design,…

  3. Developing Oral and Written Communication Skills in Undergraduate Computer Science and Information Systems Curriculum

    ERIC Educational Resources Information Center

    Kortsarts, Yana; Fischbach, Adam; Rufinus, Jeff; Utell, Janine M.; Yoon, Suk-Chung

    2010-01-01

    Developing and applying oral and written communication skills in the undergraduate computer science and computer information systems curriculum--one of the ABET accreditation requirements - is a very challenging and, at the same time, a rewarding task that provides various opportunities to enrich the undergraduate computer science and computer…

  4. Teaching Physical Science through Children's Literature. 20 Complete Lessons for Elementary Grades.

    ERIC Educational Resources Information Center

    Gertz, Susan E.; Portman, Dwight J.; Sarquis, Mickey

    This guide focuses on teaching hands-on, discovery-oriented physical science in the elementary classroom using children's literature. Each lesson is an integrated learning episode with a clearly defined science content objective which is supported and enriched through literature, writing, and mathematics. The three sections are: (1) "Properties of…

  5. Hands-On Environmental Science Activities. Teacher's Edition. First Edition.

    ERIC Educational Resources Information Center

    Kutscher, Eugene

    The ability of students to go beyond facts and to think critically, while at the same time enjoying and valuing the learning process, is fundamental to science and environmentalism. This book provides enrichment activities for the science curriculum that provide concrete connections with important world events. Each activity is self-contained and…

  6. Fetal Alcohol Exposure Reduces Adult Brain Plasticity. Science Briefs

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2007

    2007-01-01

    "Science Briefs" summarize the findings and implications of a recent study in basic science or clinical research. This Brief summarizes the findings and implications of "Moderate Fetal Alcohol Exposure Impairs the Neurogenic Response to an Enriched Environment in Adult Mice" (I. Y. Choi; A. M. Allan; and L. A. Cunningham). Observations of mice…

  7. Promoting convergence: The integrated graduate program in physical and engineering biology at Yale University, a new model for graduate education.

    PubMed

    Noble, Dorottya B; Mochrie, Simon G J; O'Hern, Corey S; Pollard, Thomas D; Regan, Lynne

    2016-11-12

    In 2008, we established the Integrated Graduate Program in Physical and Engineering Biology (IGPPEB) at Yale University. Our goal was to create a comprehensive graduate program to train a new generation of scientists who possess a sophisticated understanding of biology and who are capable of applying physical and quantitative methodologies to solve biological problems. Here we describe the framework of the training program, report on its effectiveness, and also share the insights we gained during its development and implementation. The program features co-teaching by faculty with complementary specializations, student peer learning, and novel hands-on courses that facilitate the seamless blending of interdisciplinary research and teaching. It also incorporates enrichment activities to improve communication skills, engage students in science outreach, and foster a cohesive program cohort, all of which promote the development of transferable skills applicable in a variety of careers. The curriculum of the graduate program is integrated with the curricular requirements of several Ph.D.-granting home programs in the physical, engineering, and biological sciences. Moreover, the wide-ranging recruiting activities of the IGPPEB serve to enhance the quality and diversity of students entering graduate school at Yale. We also discuss some of the challenges we encountered in establishing and optimizing the program, and describe the institution-level changes that were catalyzed by the introduction of the new graduate program. The goal of this article is to serve as both an inspiration and as a practical "how to" manual for those who seek to establish similar programs at their own institutions. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(6):537-549, 2016. © 2016 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.

  8. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon

    NASA Astrophysics Data System (ADS)

    Tracy, Lisa; Luhman, Dwight; Carr, Stephen; Borchardt, John; Bishop, Nathaniel; Ten Eyck, Gregory; Pluym, Tammy; Wendt, Joel; Witzel, Wayne; Blume-Kohout, Robin; Nielsen, Erik; Lilly, Michael; Carroll, Malcolm

    In this talk we will discuss electron spin resonance experiments in single donor silicon qubit devices fabricated at Sandia National Labs. A self-aligned device structure consisting of a polysilicon gate SET located adjacent to the donor is used for donor electron spin readout. Using a cryogenic HEMT amplifier next to the silicon device, we demonstrate spin readout at 100 kHz bandwidth and Rabi oscillations with 0.96 visibility. Electron spin resonance measurements on these devices show a linewidth of 30 kHz and coherence times T2* = 10 us and T2 = 0.3 ms. We also discuss estimates of the fidelity of our donor electron spin qubit measurements using gate set tomography. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon.

  9. e-Alert from Fermilab Education Office November 2014 - Spring 2015

    Science.gov Websites

    math enrichment classes. Fermilab Friends for Science Education offers scholarships for teachers to out our new space for curriculum committees to examine the breadth of up-to-date K-12 math and science

  10. Putting Cognitive Science behind a Statistics Teacher's Intuition

    ERIC Educational Resources Information Center

    Jones, Karrie A.; Jones, Jennifer L.; Vermette, Paul J.

    2011-01-01

    Recent advances in cognitive science have led to an enriched understanding of how people learn. Using a framework presented by Willingham, this article examines instructional best practice from the perspective of conceptual understanding and its implications on statistics education.

  11. Earth Science Curriculum Enrichment Through Matlab!

    NASA Astrophysics Data System (ADS)

    Salmun, H.; Buonaiuto, F. S.

    2016-12-01

    The use of Matlab in Earth Science undergraduate courses in the Department of Geography at Hunter College began as a pilot project in Fall 2008 and has evolved and advanced to being a significant component of an Advanced Oceanography course, the selected tool for data analysis in other courses and the main focus of a graduate course for doctoral students at The city University of New York (CUNY) working on research related to geophysical, oceanic and atmospheric dynamics. The primary objectives of these efforts were to enhance the Earth Science curriculum through course specific applications, to increase undergraduate programming and data analysis skills, and to develop a Matlab users network within the Department and the broader Hunter College and CUNY community. Students have had the opportunity to learn Matlab as a stand-alone course, within an independent study group, or as a laboratory component within related STEM classes. All of these instructional efforts incorporated the use of prepackaged Matlab exercises and a research project. Initial exercises were designed to cover basic scripting and data visualization techniques. Students were provided data and a skeleton script to modify and improve upon based on the laboratory instructions. As student's programming skills increased throughout the semester more advanced scripting, data mining and data analysis were assigned. In order to illustrate the range of applications within the Earth Sciences, laboratory exercises were constructed around topics selected from the disciplines of Geology, Physics, Oceanography, Meteorology and Climatology. In addition the structure of the research component of the courses included both individual and team projects.

  12. Providing Authentic Research Experiences for Pre-Service Teachers through UNH's Transforming Earth System Science Education (TESSE) Program

    NASA Astrophysics Data System (ADS)

    Varner, R. K.; Furman, T.; Porter, W.; Darwish, A.; Graham, K.; Bryce, J.; Brown, D.; Finkel, L.; Froburg, E.; Guertin, L.; Hale, S. R.; Johnson, J.; von Damm, K.

    2007-12-01

    The University of New Hampshire's Transforming Earth System Science Education (UNH TESSE) project is designed to enrich the education and professional development of in-service and pre-service teachers, who teach or will teach Earth science curricula. As part of this program, pre-service teachers participated in an eight- week summer Research Immersion Experience (RIE). The main goal of the RIE is to provide authentic research experiences in Earth system science for teachers early in their careers in an effort to increase future teachers` comfort and confidence in bringing research endeavors to their students. Moreover, authentic research experiences for teachers will complement teachers` efforts to enhance inquiry-based instruction in their own classrooms. Eighteen pre-service teachers associated with our four participating institutions - Dillard University (4), Elizabeth City State University (4), Pennsylvania State University (5), and University of New Hampshire (UNH) (5) participated in the research immersion experience. Pre-service teachers were matched with a faculty mentor who advised their independent research activities. Each pre-service teacher was expected to collect and analyze his or her own data to address their research question. Some example topics researched by participants included: processes governing barrier island formation, comparison of formation and track of hurricanes Hugo and Katrina, environmental consequences of Katrina, numerical models of meander formation, climatic impacts on the growth of wetland plants, and the visual estimation of hydrothermal vent properties. Participants culminated their research experience with a public presentation to an audience of scientists and inservice teachers.

  13. Impact of WOWW's Fine Arts Enriched Education Programming

    ERIC Educational Resources Information Center

    Sharp, Laurie A.; Tiegs, Ali

    2018-01-01

    Learning through the fine arts possesses many benefits, yet efforts to address the arts within public schools, particularly rural schools, are insufficient. In an effort to support rural public schools in Texas, Window On a Wider World (WOWW) began providing fine arts enriched education programming in 2006 to area partner schools that serve…

  14. Gifted Elementary Students' Interactions with Female and Male Scientists in a Biochemistry Enrichment Program.

    ERIC Educational Resources Information Center

    She, Candace Hsiao-Ching; Barrow, Lloyd H.

    1997-01-01

    Examines how gender and self-concept relate to gifted elementary students' participation in a biochemistry enrichment program taught by female and male scientists. Students with low self-concepts asked more questions and received more feedback than students with high self-concepts. Student-initiated questions and gender differences in interaction…

  15. Cognitive Modifiability of Children with Developmental Disabilities: A Multicentre Study Using Feuerstein's Instrumental Enrichment-Basic Program

    ERIC Educational Resources Information Center

    Kozulin, A.; Lebeer, J.; Madella-Noja, A.; Gonzalez, F.; Jeffrey, I.; Rosenthal, N.; Koslowsky, M.

    2010-01-01

    The study aimed at exploring the effectiveness of cognitive intervention with the new "Instrumental Enrichment Basic" program (IE-basic), based on Feuerstein's theory of structural cognitive modifiability that contends that a child's cognitive functioning can be significantly modified through mediated learning intervention. The IE-basic…

  16. Enriched Home Environment Program for Preschool Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Sood, Divya; Szymanski, Monika; Schranz, Caren

    2015-01-01

    This study discusses the impact of the Enriched Home Environment Program (EHEP) on participation in home activities among two children with ASD using case study methodology. EHEP involves occupational therapists to collaborate with families of children with ASD to educate them about the impact of factors that influence child's participation within…

  17. Water Quality: Water Education for Teachers. A 4-H School Enrichment Program.

    ERIC Educational Resources Information Center

    Powell, G. Morgan; Kling, Emily B.

    This looseleaf notebook is a teacher resource package that is designed for enrichment program use. It contains five units dealing with water quality: (1) The Water Cycle; (2) Our Water Supply; (3) Waste/Water Treatment; (4) Water Conservation; (5) Water Pollution. The units provide background information, experiments, stories, poems, plays, and…

  18. Legislative, Financial Issues in Higher Education: 1976 and Beyond.

    ERIC Educational Resources Information Center

    Post, A. Alan

    1976-01-01

    The next decade in higher education will show a leveling and decline in enrollment accompanied by a significant shift from program expansion to program enrichment. Educators will face a challenge of trying to convince governors and legislators of the benefits of enrichment within the existing unclear economic picture where education must compete…

  19. An Enriched and Cooperative Reading Program for Achievers at the Sixth Grade Level.

    ERIC Educational Resources Information Center

    Central Arkansas Education Center, Little Rock.

    An enrichment and cooperative reading program for high achievers in grade 6 involved participants in four reading classes who received supplementary reading instruction with the aid of teacher made cassette tapes, listening stations, current newspapers and magazines, and Reader's Digest skill builders. Testing at the end of the first year…

  20. An examination of conceptual change in undergraduate biology majors while learning science concepts including biological evolution

    NASA Astrophysics Data System (ADS)

    McQuaide, Glenn G.

    2006-12-01

    Without adequate understanding of science, we cannot make responsible personal, regional, national, or global decisions about any aspect of life dealing with science. Better understanding how we learn about science can contribute to improving the quality of our educational experiences. Promoting pathways leading to life-long learning and deep understanding in our world should be a goal for all educators. This dissertation project was a phenomenological investigation into undergraduate understanding and acceptance of scientific theories, including biological evolution. Specifically, student descriptions of conceptual change while learning science theory were recorded and analyzed. These qualitative investigations were preceded by a survey that provided a means of selecting students who had a firmer understanding of science theory. Background information and survey data were collected in an undergraduate biology class at a small, Southern Baptist-affiliated liberal arts school located in south central Kentucky. Responses to questions on the MATE (Rutledge and Warden, 1999) instrument were used to screen students for interviews, which investigated the way by which students came to understand and accept scientific theories. This study identifies some ways by which individuals learn complex science theories, including biological evolution. Initial understanding and acceptance often occurs by the conceptual change method described by Posner et al. (1982). Three principle ways by which an individual may reach a level of understanding and acceptance of science theory were documented in this study. They were conceptual change through application of logic and reasoning; conceptual change through modification of religious views; and conceptual change through acceptance of authoritative knowledge. Development of a deeper, richer understanding and acceptance of complex, multi-faceted concepts such as biological evolution occurs in some individuals by means of conceptual enrichment. Conceptual enrichment occurs through addition of new knowledge, and then examining prior knowledge through the perspective of this new knowledge. In the field of science, enrichment reinforces complex concepts when multiple, convergent lines of supporting evidences point to the same rational scientific conclusion.

  1. How Shapley Lectures have Enriched a Small University in the Heart of Michigan

    NASA Astrophysics Data System (ADS)

    Reed, L.

    1998-05-01

    Saginaw Valley State University SVSU, is tucked in the industrial heartland of central Michigan. Our students can best be described as non-traditional in the sense that many are employed full - or part-time while working to upgrade or complete a degree. Our Physics Department is a small but active member of the College of Science, Engineering and Technology. Many Shapley lecturers have visited us over the years and each has inspired our students, faculty and community to think about the universe in a new and exciting way. I will share some of the feed back we have received about the program and emphasize its continuing importance to smaller institutions like SVSU

  2. 2013 Alan Blizzard Award Feature Article--Enriching Educational Experiences through UBC's First Year Seminar in Science (SCIE113)

    ERIC Educational Resources Information Center

    Fox, Joanne; Birol, Gülnur; Han, Andrea; Cassidy, Alice; Nakonechny, Joanne; Berger, Jim; Peacock, Simon; Samuels, Lacey

    2014-01-01

    The First Year Seminar in Science (SCIE113) was developed during 2009/2010 academic year through an exemplary collaboration between faculty, administrators and educational support staff in the Faculty of Science at the University of British Columbia (UBC). SCIE113 reflects the vision and values of the Faculty of Science and UBC by offering an…

  3. Mars Rover Model Celebration: Developing Inquiry Based Lesson Plans to Teach Planetary Science In Elementary And Middle School

    NASA Astrophysics Data System (ADS)

    Bering, E. A.; Slagle, E.; Nieser, K.; Carlson, C.; Kapral, A.; Dominey, W.; Ramsey, J.; Konstantinidis, I.; James, J.; Sweaney, S.; Mendez, R.

    2012-12-01

    The recent NASA Mars Rover missions capture the imagination of children, as NASA missions have done for decades. The University of Houston is in the process of developing a prototype of a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model rover. The existing prototype program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students will design and build a model of a Mars rover to carry out a student selected science mission on the surface of Mars. The model will be a mock-up, constructed at a minimal cost from art supplies. The students will build the models as part of a project on Mars. The students will be given design criteria for a rover and will do basic research on Mars that will determine the objectives and features of their rover. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning. This paper will describe the development of a detailed set of new 5E lesson plans to support this project as a classroom activity. The challenge of developing interactive learning activities for planetary science will be explored. These lesson plans incorporate state of the art interactive pedagogy and current NASA Planetary Science materials.

  4. Attributes and characteristics of the Mathematics, Engineering, Science, Achievement (MESA) high school program for first-generation Latino students

    NASA Astrophysics Data System (ADS)

    Flores, Ramon

    This study used a web-based survey collected data from 28 first-generation Latino engineers who participated in the Mathematics, Engineering, Science, Achievement (MESA) program during their high school years. From the set of 28 respondents, 5 volunteered to participate in an optional telephone interview. The purpose of this study was to describe the critical attributes and characteristics of the MESA program that lead to success at both the high school and college levels for first-generation Latino students. Success at the high school level was operationally defined as successfully graduating with a high school diploma. Success at the college level was operationally defined here as college graduation with an engineering degree. Using a mixed-methods technique, the researcher attempted to secure consensus of opinion from a sample population of 28 first-generation Latino engineers. The mixed-methods technique was chosen since it allowed the researcher to draw on the strengths of quantitative and qualitative approaches. According to the findings, the typical respondent felt that mentoring was the attribute of the MESA program that most prepared him to graduate from high school. The respondents felt that the following MESA attributes most helped them transition into an undergraduate engineering program: Academic and University Advising; Enrichment Activities; Career Advising; Field Trips; Mentoring; Scholarship Incentive Awards; and Speakers. The respondents viewed study groups as the MESA attribute that best prepared them to graduate college with an engineering degree. This study was purposefully designed as a descriptive study. Future research is required to extend this work into an evaluative study. This would allow for the generalization of the critical attributes to the general student population serviced by the MESA program.

  5. Worldwide Report, Nuclear Development and Proliferation

    DTIC Science & Technology

    1984-12-19

    Growth 29 Atucha Employees Issue Demands 20 BRAZIL Uranium Enrichment Program To Begin Feb 1985 (0 ESTADO DE SAO PAULO, 6 Nov 84) 31 Nuclear...Program in ’Decisive Period’ (Jose Roberto Arruda; 0 ESTADO DE SAO PAULO, 18 Nov 84) 33 Future Enrichment Plant Construction in Ceara Announced (0...ESTADO DE SAO PAULO, 20 Oct 84) 35 - b PERU Editorial Questions Status of Several IPEN Programs (FOLHA DE SAO PAULO, 14 Oct 84) 36 Briefs

  6. Hearing Female Voices in Life Science Classrooms.

    ERIC Educational Resources Information Center

    Dunlap, Julie

    1990-01-01

    The author makes a case for keeping sensitivity and intuitive approaches in the science classroom. The importance of emotional connections with other organisms, considered a critical part of enriched, effective scientific thinking, is emphasized. Female and male learning styles are described. (KR)

  7. Research Reports: 2001 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Karr, G. (Editor); Pruitt, J. (Editor); Nash-Stevenson, S. (Editor); Freeman, L. M. (Editor); Karr, C. L. (Editor)

    2002-01-01

    For the thirty-seventh consecutive year, a NASA/ASEE (American Society for Engineering Education) Summer Faculty Fellowship Program was conducted at Marshall Space Flight Center (MSFC). The program was conducted by The University of Alabama in Huntsville and MSFC during the period May 29 - August 3, 2001. Operated under the auspices of the American Society for Engineering Education, the MSFC program, as well as those at other NASA Centers, was sponsored by the University Affairs Office, NASA Headquarters, Washington, DC. The basic objectives of the programs, which are in the thirty-seventh year of operation nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. The Faculty Fellows spent ten weeks at MSFC engaged in a research project compatible with their interests and background and worked in collaboration with a NASA MSFC colleague. This document is a compilation of Fellows' reports on their research during the summer of 2001.

  8. Diving in and Exploring Curricular Frameworks: The New Zealand Marine Studies Centre Programme

    ERIC Educational Resources Information Center

    Riley, Tracy; MacIntyre, Bill; Bicknell, Brenda; Cutler, Steve

    2010-01-01

    The New Zealand Marine Studies Centre has developed a programme for secondary gifted and talented students offering hands-on science in the real world. These programmes are designed to include elements of the Enrichment Triad Model (ETM), specifically the three types of enrichment, and, to a lesser degree, some aspects of the Schoolwide Enrichment…

  9. CSI Web Adventures: A Forensics Virtual Apprenticeship for Teaching Science and Inspiring STEM Careers

    ERIC Educational Resources Information Center

    Miller, Leslie; Chang, Ching-I; Hoyt, Daniel

    2010-01-01

    CSI: The Experience, a traveling museum exhibit and a companion web adventure, was created through a grant from the National Science Foundation as a potential model for informal learning. The website was designed to enrich and complement the exhibit by modeling the forensic process. Substantive science, real-world lab techniques, and higher-level…

  10. Looking at Earth from Space: Teacher's Guide with Activities for Earth and Space Science.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The Maryland Pilot Earth Science and Technology Education Network (MAPS-NET) project was sponsored by the National Aeronautics and Space Administration (NASA) to enrich teacher preparation and classroom learning in the area of Earth system science. This publication includes a teacher's guide that replicates material taught during a graduate-level…

  11. Learning Form and Function by Dance-Dramatizing Cultural Legends to Drum Rhythms Wearing Student-Made Animal Masks

    ERIC Educational Resources Information Center

    Gray, Phyllis; Rule, Audrey C.; Kirkland Holmes, Gloria; Logan, Stephanie R.; Alert, Andrea L.; Mason, Cynthia A.

    2016-01-01

    This study examined the self-efficacy in science, art, dance, and music; attitudes concerning contributions of people of various ethnic/cultural groups; and science learning of students involved in an after-school arts-integrated science enrichment project. Students dramatized three traditional animal legends from African, Native American, and…

  12. Design of Personalized Blended Learning Environments Based on Web-Assisted Modelling in Science Education

    ERIC Educational Resources Information Center

    Çetinkaya, Murat

    2016-01-01

    Positive results of science teaching studies supported with the means provided by technology require the enrichment of the content of blended learning environments to provide more benefits. Within this context, it is thought that preparing a web-assisted model-based teaching, which is frequently used in science teaching, based on the "Matter…

  13. [Nebraska 4-H Wheat Science School Enrichment Project, Teacher/Leader Guides 213-222 and 227.

    ERIC Educational Resources Information Center

    Nebraska Univ., Lincoln. Inst. of Agriculture and Natural Resources.

    Through the 4-H Wheat Science project, students learn the importance of wheat from the complete process of growing wheat to the final product of bread. The curriculum is designed to include hands-on experiences in science, consumer education, nutrition, production economics, vocabulary, and applied mathematics. Teachers can select those units out…

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    BEHAR, Christophe; GUIBERTEAU, Philippe; DUPERRET, Bernard

    This paper describes the D&D program that is being implemented at France's High Enrichment Gaseous Diffusion Plant, which was designed to supply France's Military with Highly Enriched Uranium. This plant was definitively shut down in June 1996, following French President Jacques Chirac's decision to end production of Highly Enriched Uranium and dismantle the corresponding facilities.

  15. A qualitative study of motivation in Alaska Native Science and Engineering Program (ANSEP) precollege students

    NASA Astrophysics Data System (ADS)

    Yatchmeneff, Michele

    The dramatic underrepresentation of Alaska Natives in science, technology, engineering and mathematics (STEM) degrees and professions calls for rigorous research in how students access these fields. Research has shown that students who complete advanced mathematics and science courses while in high school are more academically prepared to pursue and succeed in STEM degree programs and professions. There is limited research on what motivates precollege students to become more academically prepared before they graduate from high school. In Alaska, Alaska Native precollege students regularly underperform on required State of Alaska mathematics and science exams when compared to non-Alaska Native students. Research also suggests that different things may motivate Alaska Native students than racial majority students. Therefore there is a need to better understand what motivates Alaska Native students to take and successfully complete advanced mathematics and science courses while in high school so that they are academically prepared to pursue and succeed in STEM degrees and professions. The Alaska Native Science & Engineering Program (ANSEP) is a longitudinal STEM educational enrichment program that works with Alaska Native students starting in middle school through doctoral degrees and further professional endeavors. Research suggests that Alaska Native students participating in ANSEP are completing STEM degrees at higher rates than before the program was available. ANSEP appears to be unique due to its longitudinal approach and the large numbers of Alaska Native precollege, university, and graduate students it supports. ANSEP provides precollege students with opportunities to take advanced high school and college-level mathematics and science courses and complete STEM related projects. Students work and live together on campus during the program components. Student outcome data suggests that ANSEP has been successful at motivating precollege participants to successfully complete advanced high school and college-level mathematics and science courses prior to high school graduation. This study was designed to examine the motivations of Alaska Native high school students who participated in the ANSEP Precollege components to take advanced mathematics and science courses in high school or before college. Participants were 30 high school or college students, 25 of whom were Alaska Native, who were currently attending or had attended Alaska Native Science & Engineering Program (ANSEP) Precollege components in high school. Self-determination theory was used as this study's theoretical framework to develop the semi-structured interview questions and also analyze the interviews. A thematic approach was used to analyze the interviews. The results of this study indicated that ANSEP helped the Alaska Native high school students gain a sense of autonomy, competence, and relatedness in order to be motivated to take advanced mathematics and science courses in high school or before college. In particular, Alaska Native high school students described that relatedness was an important element to them being motivated to take advanced mathematics and science courses. More specifically, participants reported that the Alaska Native community developed at the ANSEP Building and the relationships they developed with their Alaska Native high school peers and staff played an influential role in the motivation of these students. These findings are important because research suggests that autonomy and competence are more important elements than relatedness because they generate or maintain intrinsic motivation. Alaska Native high school students reported that ANSEP was more successful in helping them gain a sense of competence and relatedness than at helping them gain a sense of autonomy. More specifically, the reason the participants did not feel ANSEP developed their sense of autonomy was because ANSEP restricted their actions during the ANSEP Precollege study sessions. My study implies that Alaska Native students need to feel like they belong in order to be motivated to take and succeed at taking advanced mathematics and science courses. Educators and STEM program leaders should incorporate elements of belonging into the educational environments they develop for their Alaska Native students. Future research should be conducted to determine if other racial minority students need to feel like they belong in order to be motivated to take and succeed at taking advanced mathematics and science courses. My study also indicated that Alaska Native students were motivated to take advanced mathematics and science courses by knowing ANSEP would support them in future programming because of its longitudinal approach. Funding agencies of STEM programs should consider funding programs that provide a longitudinal approach to help Alaska Native students' sense of competence grow. Future research should include studying other STEM programs to determine if they are motivating their students to take and succeed in advanced mathematics and science courses.

  16. High-Ability Students' Perspectives on an Affective Curriculum in a Diverse, University-Based Summer Residential Enrichment Program

    ERIC Educational Resources Information Center

    Jen, Enyi; Gentry, Marcia; Moon, Sidney M.

    2017-01-01

    The purpose of this study was to investigate how high-ability students experienced their participation in an affective curriculum through small-group discussions in a diverse, university-based, summer enrichment program for talented youth. The investigation included two closely related studies. The first study included 77 high-ability students…

  17. Meeting the Need to Belong: Predicting Effects of a Friendship Enrichment Program for Older Women

    ERIC Educational Resources Information Center

    Stevens, Nan L.; Martina, Camille M. S.; Westerhof, Gerben J.

    2006-01-01

    Purpose: This study explores the effects of participation in a program designed to enrich friendship and reduce loneliness among women in later life. Several hypotheses based on the need to belong, socioemotional selectivity theory, and the social compensation model were tested. Design and Methods: Study 1 involved two measurement points, one at…

  18. Shaping Aspirations, Awareness, Academics, and Action: Outcomes of Summer Enrichment Programs for English-Learning Secondary Students

    ERIC Educational Resources Information Center

    Matthews, Paul H.; Mellom, Paula J.

    2012-01-01

    Mixed-method evaluation of two iterations of month-long summer enrichment programs for English-learning secondary students investigated impacts on participants' beliefs about school and academic achievement, and on actual course choices, test outcomes, and graduation rates. Students (N = 85) from one ethnically diverse, high-poverty high school in…

  19. Cognitive, Socioemotional, and Attitudinal Effects of a Triarchic Enrichment Program for Gifted Children

    ERIC Educational Resources Information Center

    Gubbels, Joyce; Segers, Eliane; Verhoeven, Ludo

    2014-01-01

    In most industrialized societies, the regular educational system does not meet the educational needs of gifted pupils, causing a lag in their school achievement. One way in which more challenge can be provided to gifted children is with an enrichment program. In the present study, cognitive, socioemotional, and attitudinal effects of a triarchic…

  20. The Effects of a Premarital Relationship Enrichment Program on Relationship Satisfaction

    ERIC Educational Resources Information Center

    Yilmaz, Tugba; Kalkan, Melek

    2010-01-01

    The aim of this study is to investigate the effects of a premarital relationship enrichment program on relationship satisfaction among couples. The experimental and control groups were totally composed of 20 individuals. In order to test whether there are any significant differences between the scores of pre-test and post-test within the control…

  1. Parents as Partners in Art Education Enrichment

    ERIC Educational Resources Information Center

    Hansen, Laurie

    2008-01-01

    The author describes a parent art program, how it works, and ways to implement it. She emphasizes the strengths of parent programs as a way to support and enrich existing arts education, not as a replacement. Hansen describes the art kit--the adult's teaching resource--and the basic four-part process: presentation, demonstration, an art activity,…

  2. Summer Enrichment Workshop (SEW): A Quality Component of the University of Alabama's Gifted Education Preservice Training Program

    ERIC Educational Resources Information Center

    Newman, Jane L.; Gregg, Madeleine; Dantzler, John

    2009-01-01

    Summer Enrichment Workshop (SEW) is a clinical experience in the teacher preservice training program for gifted and talented (GT) master's degree interns at the University of Alabama. This mixed design study investigated the effects of the SEW clinical experience on interns' preparation to teach. Quantitative analysis demonstrated a statistically…

  3. Health science learning academy: a successful "pipeline" educational program for high school students.

    PubMed

    Fincher, Ruth-Marie E; Sykes-Brown, Wilma; Allen-Noble, Rosie

    2002-07-01

    The objective of the Health Professions Partnership Initiative is to increase the number of underrepresented minority Georgia residents who become health care professionals by (1) creating a pipeline of well-qualified high school and college students interested in health care careers, (2) increasing the number of well-qualified applicants to medical and other health professions schools, and (3) increasing the number of underrepresented minority students at the Medical College of Georgia (MCG). The Health Professions Partnership Initiative at MCG was created in 1996 by collaboration among the MCG Schools of Medicine and Nursing, two Augusta high schools attended primarily by underrepresented minority students, three historically black colleges and universities, the Fort Discovery National Science Center of Augusta, community service organizations, and MCG student organizations. The project was funded by the Association of American Medical Colleges and The Robert Wood Johnson Foundation. The high school component, the Health Science Learning Academy (HSLA), was designed to strengthen the students' educational backgrounds and interest in professional careers as evidenced by increased standardized test scores and numbers of students entering college and health professions schools. Additional goals included a system to track students' progress throughout the pipeline as well as professional development sessions to enrich faculty members' knowledge and enhance their teaching expertise. The HSLA began with ninth-grade students from the two high schools. During its second year, funding from the Health 1st Foundation allowed inclusion of another high school and expansion to ninth grade through twelfth grade. The HSLA's enrichment classes meet for three hours on 18 Saturday mornings during the academic year and include computer-interactive SAT preparation and English composition (tenth grade); biology, algebra, calculus, and English composition (eleventh grade); and advanced mathematics and biology (twelfth grade). The ultimate solution to the paucity of underrepresented minority physicians resides largely in successful pipeline programs that expand the pool of well-qualified applicants, matriculants, and graduates from medical schools. Intermediate results of the HSLA support the success of the program. Since its creation in the 1996-1997 academic year, 203 students have participated in the HSLA and all 38 (from the original two schools) who completed the four-year program have enrolled in college. The mean SAT score for students who completed the HSLA program was 1,066, compared with a mean of 923 for all college-bound students in the participating schools. The mean increases in SAT scores for students who completed the four-year program were.5% (1,100 to 1,105) for students attending a magnet high school and 18% (929 to 1,130) for students attending the comprehensive high school. The mean overall increases in SAT scores for students in the two high schools were 1% (1,044 to 1,048) and 9.1% (765 to 834), respectively. The HSLA is accomplishing its goals and, while it is too early to know if these students will participate in MCAT preparatory programs and apply to medical and other health professions schools, their sustained commitment and enthusiasm bode well for continued success.

  4. Analysis of tank 4 (FTF-4-15-22, 23) surface and subsurface supernatant samples in support of enrichment control, corrosion control and evaporator feed qualification programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L. N.

    This report provides the results of analyses on Savannah River Site Tank 4 surface and subsurface supernatant liquid samples in support of the Enrichment Control Program (ECP), the Corrosion Control Program (CCP) and the Evaporator Feed Qualification (EFQ) Program. The purpose of the ECP sample taken from Tank 4 in August 2015 was to determine if the supernatant liquid would be “acceptable feed” to the 2H and 3H evaporator systems.

  5. Using the History of Research on Sickle Cell Anemia to Affect Preservice Teachers' Conceptions of the Nature of Science.

    ERIC Educational Resources Information Center

    Howe, Eric M.

    This paper examines how using a series of lessons developed from the history of research on sickle cell anemia affects preservice teacher conceptions of the nature of science (NOS). The importance of a pedagogy that has students do science through an integral use of the history of science is effective at enriching students' NOS views is presented.…

  6. 75 FR 36414 - American Indians Into Psychology; Notice of Competitive Grant Applications for American Indians...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... subjects of math and science in order to pursue training in the health professions. f. Provide budget... enrichment in the subjects of math and science in order to pursue training in the health professions. f...

  7. Status of stable isotope enrichment, products, and services at the Oak Ridge National Laboratory

    NASA Astrophysics Data System (ADS)

    Scott Aaron, W.; Tracy, Joe G.; Collins, Emory D.

    1997-02-01

    The Oak Ridge National Laboratory (ORNL) has been supplying enriched stable and radioactive isotopes to the research, medical, and industrial communities for over 50 y. Very significant changes have occurred in this effort over the past several years, and, while many of these changes have had a negative impact on the availability of enriched isotopes, more recent developments are actually improving the situation for both the users and the producers of enriched isotopes. ORNL is still a major producer and distributor of radioisotopes, but future isotope enrichment operations to be conducted at the Isotope Enrichment Facility (IEF) will be limited to stable isotopes. Among the positive changes in the enriched stable isotope area are a well-functioning, long-term contract program, which offers stability and pricing advantages; the resumption of calutron operations; the adoption of prorated conversion charges, which greatly improves the pricing of isotopes to small users; ISO 9002 registration of the IEF's quality management system; and a much more customer-oriented business philosophy. Efforts are also being made to restore and improve upon the extensive chemical and physical form processing capablities that once existed in the enriched stable isotope program. Innovative ideas are being pursued in both technical and administrative areas to encourage the beneficial use of enriched stable isotopes and the development of related technologies.

  8. A Decade Of Teacher Professional Development With SOFIA's EXES And TEXES

    NASA Astrophysics Data System (ADS)

    Hemenway, Mary Kay; Lacy, J. H.; Sneden, C.; Teacher Associates, EXES

    2007-12-01

    Since January 1998 central Texas grade 6-12 science and math teachers have met several times per year to learn first-hand about how a scientific instrument, the Echelon Cross Echelle Spectrograph (EXES), is being developed and built for SOFIA. In addition to learning about the technology of astronomical instrumentation, they have learned about the development of SOFIA, the scheduling and preparation for observing runs, and a wide range of astronomical topics. A typical Saturday meeting includes an update on SOFIA, EXES, and its ground-based prototype, TEXES (Texas Echelon Cross Echelle Spectrograph); one or more presentations on a science or technology topic; and a Standards-linked activity that they can carry back to use in their classrooms. A variety of guest-presenters - faculty, staff, and graduate students as well as visitors (e. g., Jackie Davidson and Alan Tokunaga) - enrich the program with their expertise. Field trips are important supplements to the program; the entire group visited Waco three times to observe the SOFIA aircraft modification while selected members have accompanied scientists to McDonald Observatory, IRTF, and Gemini for observing runs. In addition, the immediacy offered by live videoconferences with TEXES observers at IRTF and Gemini brought the participants a unique appreciation of nighttime observing at a professional observatory. The participants report their increased knowledge of astronomical concepts and of the culture of professional astronomy. By spreading the SOFIA EXES teacher program over its first decade of development, the staff has formed strong professional bonds with the participants while the participants have shared their experiences with each other. Support from USRA grant 8500-98-008 and the National Science Foundation AST-0607312 and AST- 0607708 is gratefully acknowledged.

  9. Long-term treatment with antioxidants and a program of behavioral enrichment reduces age-dependent impairment in discrimination and reversal learning in beagle dogs.

    PubMed

    Milgram, Norton W; Head, Elizabeth; Zicker, Steven C; Ikeda-Douglas, Candace; Murphey, Heather; Muggenberg, Bruce A; Siwak, Christina T; Tapp, P Dwight; Lowry, Stephen R; Cotman, Carl W

    2004-05-01

    The effects of long-term treatment with both antioxidants and a program of behavioral enrichment were studied as part of a longitudinal investigation of cognitive aging in beagle dogs. Baseline performance on a battery of cognitive tests was used to assign 48 aged dogs (9-12 years) into four cognitively equivalent groups, of 12 animals per group: Group CC (control food-control environment), group CE (control food-enriched environment); Group AC (antioxidant fortified food-control environment); Group AE (fortified food-enriched environment). We also tested a group of young dogs fed the control food and a second group fed the fortified food. Both groups of young dogs received a program of behavioral enrichment. To evaluate the effects of the interventions on cognition after 1 year, the dogs were tested on a size discrimination learning task and subsequently on a size discrimination reversal learning task. Both tasks showed age-sensitivity, with old dogs performing more poorly than young dogs. Both tasks were also improved by both the fortified food and the behavioral enrichment. However, in both instances the treatment effects largely reflected improved performance in the combined treatment group. These results suggest that the effectiveness of antioxidants in attenuating age-dependent cognitive decline is dependent on behavioral and environmental experience.

  10. Improving science and mathematics education with computational modelling in interactive engagement environments

    NASA Astrophysics Data System (ADS)

    Neves, Rui Gomes; Teodoro, Vítor Duarte

    2012-09-01

    A teaching approach aiming at an epistemologically balanced integration of computational modelling in science and mathematics education is presented. The approach is based on interactive engagement learning activities built around computational modelling experiments that span the range of different kinds of modelling from explorative to expressive modelling. The activities are designed to make a progressive introduction to scientific computation without requiring prior development of a working knowledge of programming, generate and foster the resolution of cognitive conflicts in the understanding of scientific and mathematical concepts and promote performative competency in the manipulation of different and complementary representations of mathematical models. The activities are supported by interactive PDF documents which explain the fundamental concepts, methods and reasoning processes using text, images and embedded movies, and include free space for multimedia enriched student modelling reports and teacher feedback. To illustrate, an example from physics implemented in the Modellus environment and tested in undergraduate university general physics and biophysics courses is discussed.

  11. Separation science and technology. Semiannual progress report, October 1993--March 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandegrift, G.F.; Aase, S.B.; Buchholz, B.

    1997-12-01

    This document reports on the work done by the Separations Science and Technology Programs of the Chemical Technology Division, Argonne National Laboratory (ANL), in the period October 1993-March 1994. This effort is mainly concerned with developing the TRUEX process for removing and concentrating actinides from acidic waste streams contaminated with transuranic (TRU) elements. The objectives of TRUEX processing are to recover valuable TRU elements and to lower disposal costs for the nonTRU waste product of the process. Other projects are underway with the objective of developing (1) evaporation technology for concentrating radioactive waste and product streams such as those generatedmore » by the TRUEX process, (2) treatment schemes for liquid wastes stored are being generated at ANL, (3) a process based on sorbing modified TRUEX solvent on magnetic beads to be used for separation of contaminants from radioactive and hazardous waste streams, and (4) a process that uses low-enriched uranium targets for production of {sup 99}Mo for nuclear medicine uses.« less

  12. To catch a childs's imagination: Educational overview of CAN DO G-324

    NASA Technical Reports Server (NTRS)

    Nicholson, J. H.

    1986-01-01

    The experience has shown that a GAS experiment can be a valuable education tool. It can return results far in excess of the resources invested. The best estimate on the financial investment per student indicates that it is somewhat less than the cost of a school lunch. That's a bargain in a time when educational bargains are hard to come by. To reach this goal means reaching far beyond the students who could possibly design or fly experiments in a single canister. The greatest value of CAN DO is that it serves as a catalyst and inspiration for other activities. To not reach out would have turned it into an overblown, expensive science fair project for a few exceptional students. To fully exploit the benefit of a GAS canister, you should build on a well established science enrichment program. As part of a comprehensive plan, a GAS can be one of the most motivating educational tools available.

  13. Parks, Place and Pedagogy - Education Partnerships with the National Park Service

    NASA Astrophysics Data System (ADS)

    Vye, E. C.; Rose, W. I.; Nash, B.; Klawiter, M.; Huntoon, J. E.; Engelmann, C. A.; Gochis, E. E.; MiTEP

    2011-12-01

    The Michigan Teaching Excellence Program (MITEP) is a multi-year program of teacher leadership development that empowers science teachers in Grand Rapids, Kalamazoo, and Jackson to lead their schools and districts through the process of improving science teaching and learning. A component of this program is facilitated through partnership between academia, K-12 educators, and the National Park Service (NPS) that aims to develop place-based education strategies that improve diversity and Earth Science literacy. This tangible education method draws upon both the sense of place that National Parks offer and the art of interpretation employed by the park service. Combined, these deepen cognitive process and provide a more diverse reflection of what place means and the processes behind shaping what we see. Our partnerships present participants the opportunity to intern in a Midwest national park for 3-8 weeks during their third year in the program. In summer 2011, eleven teachers from the Grand Rapids school district participated in this innovative way of learning and teaching Earth Science. One goal was to develop geological interpretive materials desired and needed for the parks. Secondly, and important to place-based educational methodologies, these deliverables will be used as a way of bringing the parks to urban classrooms. Participants lived in the parks and worked directly with both national park and Michigan Tech staff to create lesson plans, podcasts, media clips, video, and photographic documentation of their experiences. These lesson plans will be hosted in the Views of the National Park website in an effort to provide innovative teaching resources nationally for teachers or free-choice learners wishing to access information on Midwest national parks. To the benefit of park staff, working with teachers from urban areas offered an opportunity for park staff to access diverse learners in urban settings unable to visit the park. The foundation has been laid for future work in this program aiming to develop a stronger appreciation of environment and geological processes and connections between what K-12 students do and their impact on Earth systems. This paper presents preliminary results of the following evaluation methods: 1) pre-post surveys administered to examine depth and breadth of geological knowledge, awareness of cultural significance, and emotional meanings and attachments toward the park, and 2) semi-structured interviews with participants, park staff, and academic faculty to determine how these programs can be best implemented and improved in both parks and classrooms alike. Learning about Earth system processes can be fostered by employing different ways of knowing, or the art of interpretation. It is hoped that this engagement between teachers, parks, and academia will increase diversity in Earth Science, enrich Earth Science curriculum, and help develop a sense of place for students

  14. Dawn Mission Education and Public Outreach: Science as Human Endeavor

    NASA Astrophysics Data System (ADS)

    Cobb, W. H.; Wise, J.; Schmidt, B. E.; Ristvey, J.

    2012-12-01

    Dawn Education and Public Outreach strives to reach diverse learners using multi-disciplinary approaches. In-depth professional development workshops in collaboration with NASA's Discovery Program, MESSENGER and Stardust-NExT missions focusing on STEM initiatives that integrate the arts have met the needs of diverse audiences and received excellent evaluations. Another collaboration on NASA ROSES grant, Small Bodies, Big Concepts, has helped bridge the learning sequence between the upper elementary and middle school, and the middle and high school Dawn curriculum modules. Leveraging the Small Bodies, Big Concepts model, educators experience diverse and developmentally appropriate NASA activities that tell the Dawn story, with teachers' pedagogical skills enriched by strategies drawn from NSTA's Designing Effective Science Instruction. Dawn mission members enrich workshops by offering science presentations to highlight events and emerging data. Teachers' awareness of the process of learning new content is heightened, and they use that experience to deepen their science teaching practice. Activities are sequenced to enhance conceptual understanding of big ideas in space science and Vesta and Ceres and the Dawn Mission 's place within that body of knowledge Other media add depth to Dawn's resources for reaching students. Instrument and ion engine interactives developed with the respective science team leads help audiences engage with the mission payload and the data each instrument collects. The Dawn Dictionary, an offering in both audio as well as written formats, makes key vocabulary accessible to a broader range of students and the interested public. Further, as Dawn E/PO has invited the public to learn about mission objectives as the mission explored asteroid Vesta, new inroads into public presentations such as the Dawn MissionCast tell the story of this extraordinary mission. Asteroid Mapper is the latest, exciting citizen science endeavor designed to invite the general public into the thrill of NASA science. Helping teachers develop a picture of the history and evolution of our understanding of the solar system, and honing in on the place of asteroids in helping us answer old questions and discover new ones, students and the general public sees the power and excitement underlying planetary science as human endeavor. Research indicates that science inquiry is powerful in the classroom and mission scientists are real-life models of science inquiry in action. Cross-curricular elements include examining research-based strategies for enhancing English language learners' ability to engage in higher order questions and a professional astronomy artist's insight into how visual analysis requires not just our eyes engaged, but our brains: comparing, synthesizing, questioning, evaluating, and wondering. Dawn Education and Public Outreach will share out perspectives and lessons learned, backed by extensive evaluation examining the efficacy of the mission's efforts.

  15. Nondestructive Inspection System for Special Nuclear Material Using Inertial Electrostatic Confinement Fusion Neutrons and Laser Compton Scattering Gamma-Rays

    NASA Astrophysics Data System (ADS)

    Ohgaki, H.; Daito, I.; Zen, H.; Kii, T.; Masuda, K.; Misawa, T.; Hajima, R.; Hayakawa, T.; Shizuma, T.; Kando, M.; Fujimoto, S.

    2017-07-01

    A Neutron/Gamma-ray combined inspection system for hidden special nuclear materials (SNMs) in cargo containers has been developed under a program of Japan Science and Technology Agency in Japan. This inspection system consists of an active neutron-detection system for fast screening and a laser Compton backscattering gamma-ray source in coupling with nuclear resonance fluorescence (NRF) method for precise inspection. The inertial electrostatic confinement fusion device has been adopted as a neutron source and two neutron-detection methods, delayed neutron noise analysis method and high-energy neutron-detection method, have been developed to realize the fast screening system. The prototype system has been constructed and tested in the Reactor Research Institute, Kyoto University. For the generation of the laser Compton backscattering gamma-ray beam, a race track microtron accelerator has been used to reduce the size of the system. For the NRF measurement, an array of LaBr3(Ce) scintillation detectors has been adopted to realize a low-cost detection system. The prototype of the gamma-ray system has been demonstrated in the Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology. By using numerical simulations based on the data taken from these prototype systems and the inspection-flow, the system designed by this program can detect 1 kg of highly enriched 235U (HEU) hidden in an empty 20-ft container within several minutes.

  16. Time for a Change

    ERIC Educational Resources Information Center

    McCann, Florence; Millsap-Shobert, Katie; Schmidt, Sherland Ann; Falsarella, Carell

    2010-01-01

    Fifth graders in Mrs. Caldwell's class would soon experience a "change" as they made the transition from elementary to middle school. Participation in classroom inquiry investigations and schoolwide science enrichment events had already developed students' enthusiasm for science; here was an opportunity to solidify that enthusiasm. Guest science…

  17. From Droughts to Drones: An After-School Club Uses Drones to Learn about Environmental Science

    ERIC Educational Resources Information Center

    Gillani, Bijan; Gillani, Roya

    2015-01-01

    An after-school enrichment activity offered to sixth-grade students gave a group of 10 students an opportunity to explore the effects of the California drought in their community using an engaging scientific device: the UAV (unmanned aerial vehicle). Although this activity was specifically designed for a small after-school enrichment group, it…

  18. A Curriculum Guide to Applications of Science to Technology for Able Learners.

    ERIC Educational Resources Information Center

    VanTassel-Baska, Joyce, Ed.; And Others

    This curriculum guide was developed with the intention of providing an enrichment option for gifted and talented learners who are interested in pursuing current issues and topics in the fields of mathematics and science. The scope of the guide is meant to encompass a year's study of a set of topics which apply mathematics to science and…

  19. The Search for Synthesis: Constraints on the Development of the Humanities in Liberal Science-based Education.

    ERIC Educational Resources Information Center

    Goodlad, Sinclair

    2000-01-01

    Suggests that the perspectives developed by humanities as part of education in science, technology, and medicine can offer enrichment in ways that lead to both use and delight. Sketches some activities at the Imperial College of Science, Technology and Medicine (ICSTM) in London concerned with liberal education and describes some of the…

  20. Looking at the Mirror: A Self-Study of Science Teacher Educators' PCK for Teaching Teachers

    ERIC Educational Resources Information Center

    Demirdögen, Betül; Aydin, Sevgi; Tarkin, Aysegül

    2015-01-01

    In this self-study, we aimed to delve into how re-designing and teaching re-designed practicum course offered to pre-service teachers (PTs) enriched our, as science teacher educators, development of pedagogical content knowledge (PCK) for teaching science teachers. This self-study was conducted during a compulsory practicum course in which we…

  1. Enriching Students' Scientific Thinking through Relational Reasoning: Seeking Evidence in Texts, Tasks, and Talk

    ERIC Educational Resources Information Center

    Murphy, P. Karen; Firetto, Carla M.; Greene, Jeffrey A.

    2017-01-01

    As reflected in the Next Generation Science Standards, concerns about the adequacy of education and career preparation in science, technology, engineering, and mathematics (STEM) fields have led to fundamental shifts in the focus of K-12 science education. Such shifts are also highlighted in many of the articles within this special issue, and the…

  2. The Place of Practical Wisdom in Science Education: What Can Be Learned from Aristotelian Ethics and a Virtue-Based Theory of Knowledge

    ERIC Educational Resources Information Center

    Salloum, Sara

    2017-01-01

    This conceptual paper aims to characterize science teachers' practical knowledge utilizing a virtue-based theory of knowledge and the Aristotelian notion of phronesis/practical wisdom. The article argues that a greater understanding of the concept of phronesis and its relevance to science education would enrich our understandings of teacher…

  3. STAR Library Education Network: a hands-on learning program for libraries and their communities

    NASA Astrophysics Data System (ADS)

    Dusenbery, P.

    2010-12-01

    Science and technology are widely recognized as major drivers of innovation and industry (e.g. Rising above the Gathering Storm, 2006). While the focus for education reform is on school improvement, there is considerable research that supports the role that out-of-school experiences can play in student achievement and public understanding of STEM disciplines. Libraries provide an untapped resource for engaging underserved youth and their families in fostering an appreciation and deeper understanding of science and technology topics. Designed spaces, like libraries, allow lifelong, life-wide, and life-deep learning to take place though the research basis for learning in libraries is not as developed as other informal settings like science centers. The Space Science Institute’s National Center for Interactive Learning (NCIL) in partnership with the American Library Association (ALA), the Lunar and Planetary Institute (LPI), and the National Girls Collaborative Project (NGCP) have received funding from NSF to develop a national education project called the STAR Library Education Network: a hands-on learning program for libraries and their communities (or STAR-Net for short). STAR stands for Science-Technology, Activities and Resources. The overarching goal of the project is to reach underserved youth and their families with informal STEM learning experiences. This project will deepen our knowledge of informal/lifelong learning that takes place in libraries and establish a learning model that can be compared to the more established free-choice learning model for science centers and museums. The project includes the development of two STEM hands-on exhibits on topics that are of interest to library staff and their patrons: Discover Earth and Discover Tech. In addition, the project will produce resources and inquiry-based activities that libraries can use to enrich the exhibit experience. Additional resources will be provided through partnerships with relevant professional science and technology organizations (e.g. American Geophysical Union; National Academy of Engineering) that will provide speakers for host library events and webinars. Online and in-person workshops will be conducted for library staff with a focus on increasing content knowledge and improving facilitation expertise. This presentation will report on strategic planning activities for STAR-Net, a Community of Practice model, and the evaluation/research components of this national education program.

  4. A Balanced Approach to Building STEM College and Career Readiness in High School: Combining STEM Intervention and Enrichment Programs

    ERIC Educational Resources Information Center

    Rakich, Sladjana S.; Tran, Vinh

    2016-01-01

    Often STEM schools and STEM enrichment programs attract primarily high achieving students or those with strong motivation or interest. However, to ensure that more students pursue interest in STEM, steps must be taken to provide access for all students. For a balanced and integrated career development focus, schools must provide learning…

  5. Comparing Differences in Math Achievement and Attitudes toward Math in a Sixth Grade Mathematics Enrichment Pilot Program

    ERIC Educational Resources Information Center

    Tow, Tamara

    2011-01-01

    High-stakes assessments have encouraged educators to ignore the needs of the top performers. Therefore, the Oakwood School District decided to implement a mathematics pilot enrichment program in order to meet the needs of the advanced mathematics students. As a result, this study used quantitative data to determine if there was a significant…

  6. Project Promise: A Long-Term Follow-Up of Low-Income Gifted Students Who Participated in a Summer Enrichment Program

    ERIC Educational Resources Information Center

    Kaul, Corina R.; Johnsen, Susan K.; Saxon, Terrill F.; Witte, Mary M.

    2016-01-01

    "Overlooked gems" is the term used in gifted education to describe high-potential, low-income students who are unable to excel because of significant barriers in their homes, environments, and educational systems. To address these barriers, educators have offered enrichment and other types of talent development programs to this at-risk…

  7. Faculty Use of Culturally Mediated Instruction in a Community College Academic Enrichment Program

    ERIC Educational Resources Information Center

    Lacey, Charna L.

    2009-01-01

    The purpose of this study was to examine faculty use of Culturally Mediated Instructional (CMI) practices in a community college-based academic enrichment program. The intent of the study was two-fold: (a) to search for evidence that instructional practices were reflective of Hollins' (1996) theory of CMI, and (b) to explore faculty perceptions of…

  8. The Effect of an Out-of-School Enrichment Program on the Academic Achievement of High-Potential Students from Low-Income Families

    ERIC Educational Resources Information Center

    Hodges, Jaret; McIntosh, Jason; Gentry, Marcia

    2017-01-01

    High-potential students from low-income families are at an academic disadvantage compared with their more affluent peers. To address this issue, researchers have suggested novel approaches to mitigate gaps in student performance, including out-of-school enrichment programs. Longitudinal mixed effects modeling was used to analyze the growth of…

  9. Educational Learning and Enrichment Center (ELEC), Inc., 1996-97. Research Report on an Educational Program.

    ERIC Educational Resources Information Center

    Houston Independent School District, TX. Dept. of Research and Accountability.

    The Educational Learning and Enrichment Center (ELEC) entered into a contract with the Houston Independent School District (HISD) (Texas) to provide a community-based alternative education program for HISD eligible students who had dropped out of school and were considered to be at risk of not completing their basic education. The 1996-97…

  10. The Importance of School-Wide Enrichment Programs in Elementary School Settings

    ERIC Educational Resources Information Center

    Burris, Lauren

    2011-01-01

    Due to the state of California's budget crisis with education, over the last several years, Gifted and Talented education programs have been cut across the state. As a result, students are being simply taught to take a test, and enrichment to students, those considered "gifted" and all others, is not being offered to the extent that is…

  11. Research Reports: 1995 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Karr, G. R. (Editor); Chappell, C. R. (Editor); Six, F. (Editor); Freeman, L. M. (Editor)

    1996-01-01

    For the 31st consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The program was conducted by the University of Alabama in Huntsville and MSFC during the period 15 May 1995 - 4 Aug. 1995. Operated under the auspices of the American Society for Engineering Education, the MSFC program, as well as those at other NASA centers, was sponsored by the Higher Education Branch, Education Division, NASA Headquarters, Washington, D.C. The basic objectives of the programs, which are in the 32nd year of operation nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers. The Faculty Fellows spent 10 weeks at MSFC engaged in a research project compatible with their interests and background and worked in collaboration with a NASA/MSFC colleague. This document is a compilation of Fellows' reports on their research during the summer of 1995. The University of Alabama in Huntsville presents the Co-Directors' report on the administrative operations of the program. Further information can be obtained by contacting any of the editors.

  12. Research Reports: 1997 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Karr, G. R. (Editor); Dowdy, J. (Editor); Freeman, L. M. (Editor)

    1998-01-01

    For the 33rd consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The program was conducted by the University of Alabama in Huntsville and MSFC during the period June 2, 1997 through August 8, 1997. Operated under the auspices of the American Society for Engineering Education, the MSFC program was sponsored by the Higher Education Branch, Education Division, NASA Headquarters, Washington, D.C. The basic objectives of the program, which are in the 34th year of operation nationally, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers. The Faculty Fellows spent 10 weeks at MSFC engaged in a research project compatible with their interests and background and worked in collaboration with a NASA/MSFC colleague. This document is a compilation of Fellows' reports on their research during the summer of 1997. The University of Alabama in Huntsville presents the Co-Directors' report on the administrative operations of the program. Further information can be obtained by contacting any of the editors.

  13. Research Reports: 1996 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Freeman, M. (Editor); Chappell, C. R. (Editor); Six, F. (Editor); Karr, G. R. (Editor)

    1996-01-01

    For the 32nd consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The program was conducted by the University of Alabama and MSFC during the period May 28, 1996 through August 2, 1996. Operated under the auspices of the American Society for Engineering Education, the MSFC program, as well as those at other NASA centers, was sponsored by the Higher Education Branch, Education Division, NASA Headquarters, Washington, D.C. The basic objectives of the programs, which are in the 33rd year of operation nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers. The Faculty Fellows spent 10 weeks at MSFC engaged in a research project compatible with their interests and background and worked in collaboration with a NASA/MSFC colleague. This document is a compilation of Fellows' reports on their research during the summer of 1996. The University of Alabama presents the Co-Directors' report on the administrative operations of the program. Further information can be obtained by contacting any of the editors.

  14. Empowering Pre-College Students To Engage In Climate Change Solutions

    NASA Astrophysics Data System (ADS)

    Haine, D. B.

    2014-12-01

    Developing and implementing solutions to environmental challenges, such as climate change, depend upon the cultivation of STEM knowledge and skills among today's youth. Furthermore, STEM instruction enhances learning by providing tools to investigate and analyze environmental issues, making the issue real and tangible to students. That said, educators engaged in the climate literacy movement are aware that possession of knowledge about Earth's climate and the causes and consequences of climate change is not sufficient to empower individuals to contribute to solutions that promote a sustainable future. By framing the issue of climate change in the context of energy, by utilizing STEM instructional strategies and by showcasing scientists and others working on solutions to address climate change, the Climate Leadership and Energy Awareness Program (Climate LEAP) at the University of North Carolina (UNC) at Chapel Hill is cultivating a network of youth who are not only informed about society's use of energy and the implication for Earth's climate but also empowered to be part of the solution as society shifts to a low carbon economy. During this year-long science enrichment program, 9th-12thgraders learn about our fossil fuel based economy, meet scientists who are working to expand the use of renewable energy sources, and develop communication and leadership skills. Experienced educators with UNC's Institute for the Environment, the Morehead Planetarium and Science Center and the Alliance for Climate Education partner with scientists to implement Climate LEAP. In addition to increasing knowledge of climate science and of the solutions proposed to address climate change, program participants are invited to engage members of their community through implementation of a solutions-oriented community outreach project. Now in its fifth year, 168 students have completed Climate LEAP, with approximately 2/3 completing at least one community outreach project. A survey of program alumni indicated that 90% of respondents were motivated by the program to make at least one behavior change to conserve energy in their daily life. This session will include a description of the program evaluation plan, which includes assessment of student learning..

  15. NASA Ambassadors: A Speaker Outreach Program

    NASA Technical Reports Server (NTRS)

    McDonald, Malcolm W.

    1998-01-01

    The work done on this project this summer has been geared toward setting up the necessary infrastructure and planning to support the operation of an effective speaker outreach program. The program has been given the name, NASA AMBASSADORS. Also, individuals who become participants in the program will be known as "NASA AMBASSADORS". This summer project has been conducted by the joint efforts of this author and those of Professor George Lebo who will be issuing a separate report. The description in this report will indicate that the NASA AMBASSADOR program operates largely on the contributions of volunteers, with the assistance of persons at the Marshall Space Flight Center (MSFC). The volunteers include participants in the various summer programs hosted by MSFC as well as members of the NASA Alumni League. The MSFC summer participation programs include: the Summer Faculty Fellowship Program for college and university professors, the Science Teacher Enrichment Program for middle- and high-school teachers, and the NASA ACADEMY program for college and university students. The NASA Alumni League members are retired NASA employees, scientists, and engineers. The MSFC offices which will have roles in the operation of the NASA AMBASSADORS include the Educational Programs Office and the Public Affairs Office. It is possible that still other MSFC offices may become integrated into the operation of the program. The remainder of this report will establish the operational procedures which will be necessary to sustain the NASA AMBASSADOR speaker outreach program.

  16. Enrichment of Science Education Using Real-time Data Streams

    NASA Astrophysics Data System (ADS)

    McDonnell, J. M.; de Luca, M. P.

    2002-12-01

    For the past six years, Rutgers Marine and Coastal Sciences (RMCS) has capitalized on human interest and fascination with the ocean by using the marine environment as an entry point to develop interest and capability in understanding science. This natural interest has been used as a springboard to encourage educators and their students to use the marine environment as a focal point to develop basic skills in reading, writing, math, problem-solving, and critical thinking. With the selection of model science programs and the development of collaborative school projects and Internet connections, RMCS has provided a common ground for scientists and educators to create interesting and meaningful science learning experiences for classroom application. Student exposure to the nature of scientific inquiry also prepares them to be informed decision-makers and citizens. Technology serves as an educational tool, and its usefulness is determined by the quality of the curriculum content and instructional strategy it helps to employ. In light of this, educational issues such as curriculum reform, professional development, assessment, and equity must be addressed as they relate to technology. Efforts have been made by a number of organizations to use technology to bring ocean science education into the K-12 classroom. RMCS has used he Internet to increase (1) communication and collaboration among students and teacher, (2) the range of resources available to students, and (3) opportunities for students and educators to present their ideas and opinions. Technology-based educational activities will be described.

  17. Effects of Enrichment Presentation and Other Factors on Behavioral Welfare of Pantropical Spotted Dolphin (Stenella attenuata).

    PubMed

    Perez, Barbara C; Mehrkam, Lindsay R; Foltz, Amanda R; Dorey, Nicole R

    2018-01-01

    Environmental enrichment is a crucial element of promoting welfare for animals in captivity. However, enrichment programs are not always formally evaluated for their efficacy. Furthermore, there is little empirical evidence of enrichment evaluation for species of small cetaceans in zoological settings. A wide range of variables may potentially influence enrichment efficacy and how it in turn affects behavior. The purpose of this study was to determine the most preferred environmental enrichment, and method of presentation, for a species that has not been well studied in captivity, the pantropical spotted dolphin (Stenella attenuata). In order to determine which enrichment items and method of presentation were most effective at eliciting enrichment interaction, we systematically examined how several variables of enrichment influenced enrichment interaction. The results suggested that presenting enrichment after training sessions influenced interaction with the enrichment. The results also indicated preference for enrichment type and a specific enrichment device. Finally, factors that influenced interaction were also found to influence aberrant behavior. The results support the premise that enrichment be "redefined" for each species and each individual.

  18. Enrichment Zoning Options for the Small Nuclear Rocket Engine (SNRE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce G. Schnitzler; Stanley K. Borowski

    2010-07-01

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. In NASA’s recent Mars Design Reference Architecture (DRA) 5.0 study (NASA-SP-2009-566, July 2009), nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option because of its high thrust and high specific impulse (-900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. An extensive nuclear thermal rocket technology development effortmore » was conducted from 1955-1973 under the Rover/NERVA Program. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art design incorporating lessons learned from the very successful technology development program. Past activities at the NASA Glenn Research Center have included development of highly detailed MCNP Monte Carlo transport models of the SNRE and other small engine designs. Preliminary core configurations typically employ fuel elements with fixed fuel composition and fissile material enrichment. Uniform fuel loadings result in undesirable radial power and temperature profiles in the engines. Engine performance can be improved by some combination of propellant flow control at the fuel element level and by varying the fuel composition. Enrichment zoning at the fuel element level with lower enrichments in the higher power elements at the core center and on the core periphery is particularly effective. Power flattening by enrichment zoning typically results in more uniform propellant exit temperatures and improved engine performance. For the SNRE, element enrichment zoning provided very flat radial power profiles with 551 of the 564 fuel elements within 1% of the average element power. Results for this and alternate enrichment zoning options for the SNRE are compared.« less

  19. An Analysis of NSF Geosciences 2009 Research Experience for Undergraduate Site Programs

    NASA Astrophysics Data System (ADS)

    Sanchez, S. C.; Patino, L. C.; Rom, E. L.; Weiler, S. C.

    2009-12-01

    The Research Experience for Undergraduate (REU) Program at the U.S. National Science Foundation (NSF) provides undergraduate students the opportunity to conduct research at different institutions and in areas that may not be available in their home campuses. The Geosciences REU Sites foster research opportunities in areas closely aligned with undergraduate majors and facilitates discovery of the multidisciplinary nature of the Geosciences. The aim of this paper is to provide an overview of the Geosciences REU Site programs run in 2009. A survey requesting information on recruitment methods, student demographics, enrichment activities, and fields of research was sent to the Principal Investigators of each of the 50 active REU Sites; over 70% of the surveys were returned with the requested information. The internet is the most widely used mechanism to recruit participants, but the survey did not distinguish among different tools like websites, emails, social networks, etc. The admissions rate for REU Sites in Geosciences varies from less than 10% to 50%, with the majority of participants being rising seniors and juniors. A few Sites include rising sophomores. At least 40% of the participants come from non-PhD granting institutions. Among the participants, gender distribution is balanced, with a slightly larger number of female participants. Regarding ethnic diversity, the REU Sites reflect the difficulty of attracting diverse students into Geosciences as a discipline; more than 75% of the participants are Caucasian and Asian students. Furthermore, participants from minority-serving institutions constitute a small percentage of those taking part in these research experiences. The enrichment activities are very similar across the REU Sites, and mimic well activities common to the scientific community, including intellectual exchange of ideas (lab meetings, seminars, and professional meetings), networking and social activities. There are some clear similarities among REU Sites managed by the three divisions in the Directorate of Geosciences (e.g. recruitment tools, academic level of participants, and enrichment activities), but other aspects vary among the Sites managed by the different divisions (e.g. admissions rate, diversity, and distribution among research disciplines). The results from this survey will be used to examine strengths in the REU Sites in the Geosciences, opportunities that may be under utilized, and community needs to enhance this NSF wide program.

  20. Is Informal Education the Answer to Increasing and Widening Participation in STEM Education?

    ERIC Educational Resources Information Center

    Banerjee, Pallavi Amitava

    2017-01-01

    This paper summarises research findings from a longitudinal national evaluation of science, technology, engineering and mathematics (STEM) "enrichment and enhancement activities". The activities included science practical lessons, supported by ambassador visits, trips to laboratories, STEM centres and higher education institutions. The…

  1. Interactive Online Modules and Videos for Learning Geological Concepts at the University of Toronto Department of Earth Sciences

    NASA Astrophysics Data System (ADS)

    Veglio, E.; Graves, L. W.; Bank, C. G.

    2014-12-01

    We designed various computer-based applications and videos as educational resources for undergraduate courses at the University of Toronto in the Earth Science Department. These resources were developed in effort to enhance students' self-learning of key concepts as identified by educators at the department. The interactive learning modules and videos were created using the programs MATLAB and Adobe Creative Suite 5 (Photoshop and Premiere) and range from optical mineralogy (extinction and Becke line), petrology (equilibrium melting in 2-phase systems), crystallography (crystal systems), geophysics (gravity anomaly), and geologic history (evolution of Canada). These resources will be made available for students on internal course websites as well as through the University of Toronto Earth Science's website (www.es.utoronto.ca) where appropriate; the video platform YouTube.com may be used to reach a wide audience and promote the material. Usage of the material will be monitored and feedback will be collected over the next academic year in order to gage the use of these interactive learning tools and to assess if these computer-based applications and videos foster student engagement and active learning, and thus offer an enriched learning experience.

  2. Master of Arts in Physics Education (MAPE) Program

    NASA Astrophysics Data System (ADS)

    Lindgren, Richard A.; Thornton, Stephen T.

    2001-11-01

    In the past 15 years, the Department of Physics at the University of Virginia in collaboration with the Curry School of Education has supported numerous summer high school physics and physical science teacher enrichment programs through the School of Continuing and Professional Studies. As a result of this accumulated experience in working with teachers, we created the Master of Arts in Physics Education (MAPE) program to address the needs of the high school physics teacher of the present and future. Through distance learning and summer study at UVa, participants earn the 30 hours needed for the Masters degree within 2 1/2 years while maintaining their current teaching position. Summer study includes the calculus based primary physics courses 631, 632, and 633 and associated laboratory courses. Summer physics course assignments and responsibilities do not terminate until late in the fall. Distance learning during the academic year is accomplished via the Internet using WebAssign, chat rooms, email, videotapes, and streamline video. Although recently approved in the spring 2000, 12 teachers have already graduated with the MAPE degree.

  3. Building an academic-community partnership for increasing representation of minorities in the health professions.

    PubMed

    Erwin, Katherine; Blumenthal, Daniel S; Chapel, Thomas; Allwood, L Vernon

    2004-11-01

    We evaluated collaboration among academic and community partners in a program to recruit African American youth into the health professions. Six institutions of higher education, an urban school system, two community organizations, and two private enterprises became partners to create a health career pipeline for this population. The pipeline consisted of 14 subprograms designed to enrich academic science curricula, stimulate the interest of students in health careers, and facilitate entry into professional schools and other graduate-level educational programs. Subprogram directors completed questionnaires regarding a sense of common mission/vision and coordination/collaboration three times during the 3-year project. The partners strongly shared a common mission and vision throughout the duration of the program, although there was some weakening in the last phase. Subprogram directors initially viewed coordination/collaboration as weak, but by midway through the project period viewed it as stronger. Feared loss of autonomy was foremost among several factors that threatened collaboration among the partners. Collaboration was improved largely through a process of building trust among the partners.

  4. New Directions in Native American Earth Science Education in San Diego County

    NASA Astrophysics Data System (ADS)

    Riggs, E. M.

    2001-05-01

    Founded in 1998, the Indigenous Earth Sciences Project (IESP) of San Diego State University aims to increase the access of local Native American tribal communities to geoscience education and to geoscience information, and to attract more Indian students into earth science careers. As tribes encounter earth and environmental science-related issues, it is important to increase 1) on-reservation geoscience expertise, 2) the quality and cultural accessibility of geoscience curricula for Native K-12 students, and 3) geoscience literacy in Native communities at large. We have established partnerships with local reservation learning centers and education councils with the goal of building programs for K-12 students, college students, adult learners and on-reservation field programs for the whole community which both enrich the resident scientific understanding of reservation settings and find ways to include the rich intellectual tradition of indigenous knowledge of earth processes in the San Diego region. This work has been greatly assisted by the construction of HPWREN, a wireless Internet backbone connection built by UCSD, which now delivers broadband Internet service to the reservation communities of Pala, Rincon, and La Jolla as well as providing high-speed access to a variety of locally-collected geoscience data. This new networking venture has allowed us to explore virtual classroom, tutoring, and interactive data analysis activities with the learning centers located on these reservations. Plans and funding are also in place to expand these connections to all of the 18 reservation communities within San Diego county. We are also actively working to establish earth science components to existing bridging programs to Palomar College, a community college with deep connections to the northern San Diego county American Indian communities. These students will be assisted in their transfer to SDSU and will also be connected with geoscience research opportunities at the collaborating institutions (SDSU, UCSD, Scripps Institute of Oceanography). By building a local K-Ph.D. collaboration, it is our goal that we can directly address the low representation of Native American students in the geosciences and simultaneously aid local tribes in their own efforts to ensure their own continued sovereignty.

  5. Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, volume 73

    NASA Technical Reports Server (NTRS)

    Haas, Michael R. (Editor); Davidson, Jacqueline A. (Editor); Erickson, Edwin F. (Editor)

    1995-01-01

    This symposium was organized to review the science related to NASA's Airborne Astronomy Program on the occasion of the twentieth anniversary of the Kuiper Airborne Observatory (KAO). The theme selected, 'The Galactic Ecosystem: From Gas to Stars to Dust,' was considered to capture the underlying commonality of much of the research discussed. The 8 sessions were as follows: The Interstellar Medium; The Life Cycle of the ISM in Other Galaxies; Star and Planetary System Formation; Our Planetary System: The Solar System; The Enrichment of the Interstellar Medium; The Galactic Center: A Unique Region of the Galactic Ecosystem; Instrumentation for Airborne Astronomy; KAO History and Education; and Missions and the Future of Infrared Astronomy.

  6. Tox21 Enricher: Web-based Chemical/Biological Functional Annotation Analysis Tool Based on Tox21 Toxicity Screening Platform.

    PubMed

    Hur, Junguk; Danes, Larson; Hsieh, Jui-Hua; McGregor, Brett; Krout, Dakota; Auerbach, Scott

    2018-05-01

    The US Toxicology Testing in the 21st Century (Tox21) program was established to develop more efficient and human-relevant toxicity assessment methods. The Tox21 program screens >10,000 chemicals using quantitative high-throughput screening (qHTS) of assays that measure effects on toxicity pathways. To date, more than 70 assays have yielded >12 million concentration-response curves. The patterns of activity across assays can be used to define similarity between chemicals. Assuming chemicals with similar activity profiles have similar toxicological properties, we may infer toxicological properties based on its neighbourhood. One approach to inference is chemical/biological annotation enrichment analysis. Here, we present Tox21 Enricher, a web-based chemical annotation enrichment tool for the Tox21 toxicity screening platform. Tox21 Enricher identifies over-represented chemical/biological annotations among lists of chemicals (neighbourhoods), facilitating the identification of the toxicological properties and mechanisms in the chemical set. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A Virtual Learning Application of the Schoolwide Enrichment Model and High-End Learning Theory

    ERIC Educational Resources Information Center

    Renzulli, Joseph S.; Reis, Sally M.

    2012-01-01

    Remarkable advances in instructional communication technology (ICT) have now made it possible to provide high levels of enrichment services to students online. This paper describes an Internet-based enrichment program based on a high-end learning theory that focuses on the development of creative productivity through the "application" of knowledge…

  8. The Effects of Differentiated Instruction and Enrichment Pedagogy on Reading Achievement in Five Elementary Schools

    ERIC Educational Resources Information Center

    Reis, Sally M.; McCoach, D. Betsy; Little, Catherine A.; Muller, Lisa M.; Kaniskan, R. Burcu

    2011-01-01

    This experimental study examined the effect of a differentiated, enriched reading program on students' oral reading fluency and comprehension using the schoolwide enrichment model-reading (SEM-R). Treatment and control conditions were randomly assigned to 63 teachers and 1,192 second through fifth grade students across five elementary schools.…

  9. From Laboratories to Classrooms: Involving Scientists in Science Education

    NASA Astrophysics Data System (ADS)

    DeVore, E. K.

    2001-12-01

    Scientists play a key role in science education: the adventure of making new discoveries excites and motivates students. Yet, American science education test scores lag behind those of other industrial countries, and the call for better science, math and technology education is widespread. Thus, improving American science, math and technological literacy is a major educational goal for the NSF and NASA. Today, funding for research often carries a requirement that the scientist be actively involved in education and public outreach (E/PO) to enhance the science literacy of students, teachers and citizens. How can scientists contribute effectively to E/PO? What roles can scientists take in E/PO? And, how can this be balanced with research requirements and timelines? This talk will focus on these questions, with examples drawn from the author's projects that involve scientists in working with K-12 teacher professional development and with K-12 curriculum development and implementation. Experiences and strategies for teacher professional development in the research environment will be discussed in the context of NASA's airborne astronomy education and outreach projects: the Flight Opportunities for Science Teacher EnRichment project and the future Airborne Ambassadors Program for NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA). Effective partnerships with scientists as content experts in the development of new classroom materials will be described with examples from the SETI Institute's Life in the Universe curriculum series for grades 3-9, and Voyages Through Time, an integrated high school science course. The author and the SETI Institute wish to acknowledge funding as well as scientific and technical support from the National Science Foundation, the National Aeronautics and Space Administration, the Hewlett Packard Company, the Foundation for Microbiology, and the Combined Federated Charities.

  10. Educational Enrichment for Disadvantaged Inschool Neighborhood Youth Corps Enrollees During the Summer 1967. Evaluation of New York City Title I Educational Projects 1966-67.

    ERIC Educational Resources Information Center

    Williams, E. Belvin; Tannenbaum, Robert S.

    A 1967 evaluation of New York City's Neighborhood Youth Corps (NYC) educational enrichment program presents the objectives and the methods of implementation of the Board of Education and the local community agencies which administered the project. Criticized are the diversity of the program objectives, the lack of provision for a specified…

  11. The Effect of an Enrichment Program on Developing Analytical, Creative, and Practical Abilities of Elementary Gifted Students

    ERIC Educational Resources Information Center

    Aljughaiman, Abdullah M.; Ayoub, Alaa Eldin A.

    2012-01-01

    The current study investigated the effects of a school enrichment program on the analytical, creative, and practical abilities of elementary gifted students. Forty-two students (N = 42) from the fifth and sixth grade of the Al-Shawkany School in Saudi Arabia were randomly chosen to participate in the study according to two criteria: (a) being…

  12. Choices of Students, Parents, and Teachers and Their Effects on Schools and Communities: A Case Study of a New Enriched High School Program

    ERIC Educational Resources Information Center

    DiGiorgio, Carla

    2010-01-01

    This study is an ethnographic case study of two schools as they implemented an enrichment program. The sample included students, parents, teachers, school administrators, and board and government personnel. Data was drawn from interviews and observations of participants, curriculum analysis, and communication between school, home, and the public.…

  13. The Effect of an Enrichment Reading Program on the Cognitive Processes and Neural Structures of Children Having Reading Difficulties

    ERIC Educational Resources Information Center

    Kuruyer, Hayriye Gül; Akyol, Hayati; Karli Oguz, Kader; Has, Arzu Ceylan

    2017-01-01

    The main purpose of the current study is to explain the effect of an enrichment reading program on the cognitive processes and neural structures of children experiencing reading difficulties. The current study was carried out in line with a single-subject research method and the between-subjects multiple probe design belonging to this method. This…

  14. The Effects of the Marriage Enrichment Program Based on the Cognitive-Behavioral Approach on the Marital Adjustment of Couples

    ERIC Educational Resources Information Center

    Kalkan, Melek; Ersanli, Ercumend

    2008-01-01

    The aim of this study is to investigate the effects of the marriage enrichment program based on the cognitive-behavioral approach on levels of marital adjustment of individuals. The experimental and control group of this research was totally composed of 30 individuals. A pre-test post-test research model with control group was used in this…

  15. Development and research program for a soil-based bioregenerative agriculture system to feed a four person crew at a Mars base.

    PubMed

    Silverstone, S; Nelson, M; Alling, A; Allen, J

    2003-01-01

    For humans to survive during long-term missions on the Martian surface, bioregenerative life support systems including food production will decrease requirements for launch of Earth supplies, and increase mission safety. It is proposed that the development of "modular biospheres"--closed system units that can be air-locked together and which contain soil-based bioregenerative agriculture, horticulture, with a wetland wastewater treatment system is an approach for Mars habitation scenarios. Based on previous work done in long-term life support at Biosphere 2 and other closed ecological systems, this consortium proposes a research and development program called Mars On Earth(TM) which will simulate a life support system designed for a four person crew. The structure will consist of 6 x 110 square meter modular agricultural units designed to produce a nutritionally adequate diet for 4 people, recycling all air, water and waste, while utilizing a soil created by the organic enrichment and modification of Mars simulant soils. Further research needs are discussed, such as determining optimal light levels for growth of the necessary range of crops, energy trade-offs for agriculture (e.g. light intensity vs. required area), capabilities of Martian soils and their need for enrichment and elimination of oxides, strategies for use of human waste products, and maintaining atmospheric balance between people, plants and soils. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  16. Engaging Communities to Understand and Adapt to Environmental Changes with The GLOBE Program

    NASA Astrophysics Data System (ADS)

    Wegner, K.; Malmberg, J. S.; Murphy, T.; Mauriello, H.

    2015-12-01

    During the past twenty years, The GLOBE Program (www.globe.gov) has connected scientists, K-12 students, teachers, and other stakeholders to "co-create" scientific understanding of their local, regional, and global environment in more than 110 countries. Through the support and collaboration of federal agencies- NASA, NSF, and NOAA- the community-driven GLOBE database has more than 130 million Earth science measurements (atmosphere, biosphere, hydrosphere, and pedosphere) that align with the USGCRP's indicators of climate change, such as air and surface temperature (Indicator: Global Surface Temperature), land cover (Indicators: 1) Forest Cover; 2) Grassland, Shrubland, and Pasture Cover), and plant phenology (Indicator: Start of Spring). GLOBE contributes to climate literacy while encouraging community members of all ages to enrich their scientific understanding, define issues of local relevance, and engage in broader action, such as regional and global science campaigns. In this session, we will present case studies of how GLOBE data has been used to inspire "homegrown" research campaigns such as the GLOBE Surface Temperature Campaign and European Aerosols Campaign, as well as solution-based action in response to environmental changes, including the development of a mosquito protocol in Thailand and across Africa and a toad service project in the Czech Republic. We will also discuss some of the initiatives we have led as a program in order to promote and share local and regional community-led efforts with our worldwide GLOBE community, as well as some of the challenges and opportunities presented by supporting climate research.

  17. Exploring Hybrid Instruction in Science: Using LMS for Contextual, Interdisciplinary Active Learning Enrichment

    ERIC Educational Resources Information Center

    Quarless, Duncan; Nieto, Fernando

    2013-01-01

    Learning Management Systems are instructional platforms that offer opportunities to address the development of core competencies across disciplines. The emergence of instructional models which place greater emphasis on core skill development in science education help to build interdisciplinary communities through curricular connectivity and…

  18. Polymerization Simulator for Introductory Polymer and Material Science Courses

    ERIC Educational Resources Information Center

    Chirdon, William M.

    2010-01-01

    This work describes how molecular simulation of polymerization reactions can be used to enrich introductory polymer or material science courses to give students a deeper understanding of free-radical chain and stepwise growth polymerization reactions. These simulations have proven to be effective media for instruction that do not require material…

  19. Multiple Modes of Inquiry in Earth Science

    ERIC Educational Resources Information Center

    Kastens, Kim A.; Rivet, Ann

    2008-01-01

    To help teachers enrich their students' understanding of inquiry in Earth science, this article describes six modes of inquiry used by practicing geoscientists (Earth scientists). Each mode of inquiry is illustrated by using examples of seminal or pioneering research and provides pointers to investigations that enable students to experience these…

  20. "Have Them Read a Good Book": Enriching the Scientific and Technical Writing Curriculum.

    ERIC Educational Resources Information Center

    Miles, Thomas H.

    1989-01-01

    Lists approximately 200 recent science and technology book titles (some with annotations). Notes that this literature acquaints students with the history of science and technology and helps them understand debated philosophical issues. Includes the following subject areas: anthropology; chemistry; computers and artificial intelligence; ecology;…

Top