Sample records for science final project

  1. Science and Engineering Technician Curriculum Development Project. Final Report.

    ERIC Educational Resources Information Center

    Mowery, Donald R.; Wolf, Lawrence J.

    Project SET (Science and Engineering for Technicians) developed a series of study guides designed to teach generic science and engineering skills to students interested in becoming technicians. An entire 2-year curriculum is encompassed by these guides, geared for 2-year college students. Described in this final report are the project's rationale,…

  2. Final Technical Progress Report; Closeout Certifications; CSSV Newsletter Volume I; CSSV Newsletter Volume II; CSSV Activity Journal; CSSV Final Financial Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houston, Johnny L; Geter, Kerry

    This Project?s third year of implementation in 2007-2008, the final year, as designated by Elizabeth City State University (ECSU), in cooperation with the National Association of Mathematicians (NAM) Inc., in an effort to promote research and research training programs in computational science ? scientific visualization (CSSV). A major goal of the Project was to attract the energetic and productive faculty, graduate and upper division undergraduate students of diverse ethnicities to a program that investigates science and computational science issues of long-term interest to the Department of Energy (DoE) and the nation. The breadth and depth of computational science?scientific visualization andmore » the magnitude of resources available are enormous for permitting a variety of research activities. ECSU?s Computational Science-Science Visualization Center will serve as a conduit for directing users to these enormous resources.« less

  3. Description of the supporting factors of final project in Mathematics and Natural Sciences Faculty of Syiah Kuala University with multiple correspondence analysis

    NASA Astrophysics Data System (ADS)

    Rusyana, Asep; Nurhasanah; Maulizasari

    2018-05-01

    Syiah Kuala University (Unsyiah) is hoped to have graduates who are qualified for working or creating a field of work. A final project course implementation process must be effective. This research uses data from the evaluation conducted by Mathematics and Natural Sciences Faculty (FMIPA) of Unsyiah. Some of the factors that support the completion of the final project are duration, guidance, the final project seminars, facility, public impact, and quality. This research aims to know the factors that have a relationship with the completion of the final project and identify similarities among variables. The factors that support the completion of the final project at every study program in FMIPA are (1) duration, (2) guidance and (3) facilities. These factors are examined for the correlations by chi-square test. After that, the variables are analyzed with multiple correspondence analysis. Based on the plot of correspondence, the activities of the guidance and facilities in Informatics Study Program are included in the fair category, while the guidance and facilities in the Chemistry are included in the best category. Besides that, students in Physics can finish the final project with the fastest completion duration, while students in Pharmacy finish for the longest time.

  4. Review of Final Year MSP Evaluations, Performance Period 2007. Analytic and Technical Support for Mathematics and Science Partnerships

    ERIC Educational Resources Information Center

    Bobronnikov, Ellen; Rhodes, Hilary; Bradley, Cay

    2010-01-01

    This final report culminates the evaluation and technical assistance provided for the U.S. Department of Education's Mathematics and Science Partnership (MSP) Program and its projects since 2005. As part of this support, Abt Associates looked across the portfolio of projects funded by the MSP program to draw lessons on best practices. This…

  5. Science and Self-Determination/FIPSE, 1981. Final Report.

    ERIC Educational Resources Information Center

    Churchill, Ward; Card, Ann

    The FIPSE-funded Science and Self-Determination Project was conceptualized as a response to help alleviate the critical need for Native American scientists who would be able to deal with issues and concerns both within and outside of the Native American community. Objectives of the Science and Self-Determination Project were to prepare…

  6. The BIOSCI electronic newsgroup network for the biological sciences. Final report, October 1, 1992--June 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristofferson, D.; Mack, D.

    1996-10-01

    This is the final report for a DOE funded project on BIOSCI Electronic Newsgroup Network for the biological sciences. A usable network for scientific discussion, major announcements, problem solving, etc. has been created.

  7. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now in the final stages of development. First science flights will begin in 2006. The observatory is expected to operate for over 20 years. The first light science instruments and some science projects will be discussed.

  8. [Nebraska 4-H Wheat Science School Enrichment Project, Teacher/Leader Guides 213-222 and 227.

    ERIC Educational Resources Information Center

    Nebraska Univ., Lincoln. Inst. of Agriculture and Natural Resources.

    Through the 4-H Wheat Science project, students learn the importance of wheat from the complete process of growing wheat to the final product of bread. The curriculum is designed to include hands-on experiences in science, consumer education, nutrition, production economics, vocabulary, and applied mathematics. Teachers can select those units out…

  9. Final Technical Report for earmark project "Atmospheric Science Program at the University of Louisville"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowling, Timothy Edward

    2014-02-11

    We have completed a 3-year project to enhance the atmospheric science program at the University of Louisville, KY (est. 2008). The goals were to complete an undergraduate atmospheric science laboratory (Year 1) and to hire and support an assistant professor (Years 2 and 3). Both these goals were met on schedule, and slightly under budget.

  10. Final Report of the Computer Assisted Learning Test Project. Report No. 19.

    ERIC Educational Resources Information Center

    Van der Drift, K. D.; And Others

    A pilot project was conducted to gain information to advise the Board of Directors at the University of Leyden as to the feasibility of using a computerized system to aid in instructional programs in the social sciences, law, medicine, arts, mathematics, and natural sciences at a low cost. The pilot project is divided into four parts which are…

  11. Final Report on Activities Supported by Department of Energy Grant No. DE-FG02-02ER63397, 2002-August 31, 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madelaine Marquez; Neil Stillings

    The grant supported four projects that involved professional development for teachers and enrichment programs for students from under-funded and under-served school districts. The projects involved long-term partnerships between Hampshire College and the districts. All projects were concerned with the effective implementation of inquiry-based science learning and its alignment with state and national curriculum and assessment standards. One project, The Collaboration for Excellence in Science Education (CESE), was designed to support research on the development of concepts in the physical sciences, specifically energy and waves. Extensive data from student interviews and written essays supported the neo-Piagetian hierarchical complexity theory of thismore » area of conceptual development. New assessment techniques that can be used by teachers were also developed. The final report includes a full presentation of the methods and results of the research.« less

  12. Listening to the River: Final Evaluation Report

    ERIC Educational Resources Information Center

    Robles, Dawn; Mitchell, Heather; Horsch, Elizabeth; St. John, Mark

    2010-01-01

    "Listening to the River" (LTTR) is a watershed science education project funded by the National Science Foundation. The project aims to deliver watershed education experiences in and around Traverse City, Michigan, and also to develop a model that can be replicated in other locations. Inverness Research was contracted by the…

  13. 7 CFR 3405.19 - Monitoring progress of funded projects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the first year of the project and annually thereafter during the life of the grant. Generally, the... agricultural sciences higher education system; and data on project personnel and beneficiaries. The Final...

  14. Year One of Project Pulse: Pupils Using Laptops in Science and English. A Final Report. Technical Report No. 26.

    ERIC Educational Resources Information Center

    McMillan, Katie; Honey, Margaret

    A year-long study was conducted with a class of 25 eighth graders, their English and science teachers, and the school computer supervisor at a school in Roselle (New Jersey). The structure and goals of the project, called PULSE, for Pupils Using Laptops in Science and English, are described. Research questions focused on the development of…

  15. Northland science discovery. Final report, February 15, 1995--February 14, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigford, A.

    1997-09-01

    This is a final report on the US Department of Energy`s grant of $39,900 to the PLUS Center at The College of St. Scholastica for a PREP program called Northland Science Discovery (NSD). This report includes an overview of the past year`s progress toward achieving the goals established for the project, a description of the results of these efforts and their relationship to the project goals, and appendices documenting program activities, accomplishments, and expenditures. The goal of Northland Science Discovery is to provide science and math enrichment activities for students traditionally underrepresented in science (girls, minorities, low-income, and rural children).more » The program works toward this goal by providing a four-week residential, research-based, science and math youth camp which serves approximately 25 students per year. NSD has been held each summer since 1992. This program also has an academic-year component consisting of reunions.« less

  16. Communicating Ocean Sciences to Informal Audiences (COSIA): Final Evaluation Report

    ERIC Educational Resources Information Center

    Phillips, Michelle; St. John, Mark

    2010-01-01

    Communicating Ocean Sciences to Informal Audiences (COSIA) is a National Science Foundation (NSF)-funded project consisting of six three-way partnerships between the Lawrence Hall of Science (LHS) and an informal science education institution (ISEI) partnered with an institution of higher education (IHE). Together, educators from the ISEI (often…

  17. Radiological Sciences Discipline Advisory Group Final Report. Kentucky Allied Health Project.

    ERIC Educational Resources Information Center

    Kentucky Council on Public Higher Education, Frankfort.

    Radiological sciences education in Kentucky and articulation within this field are examined, based on the Kentucky Allied Health Project (KAHP), which designed an articulated statewide system to promote entry and exit of personnel at a variety of educational levels. The KAHP model promotes articulation in learning, planning, and resource…

  18. Teaching, as Learning, as Inquiry: Moving beyond Activity in the Analysis of Teaching Practice.

    ERIC Educational Resources Information Center

    Sandoval, William A.; Deneroff, Victoria; Franke, Megan L.

    This paper describes an ongoing high school science teacher professional development project, Beyond Final Form Science, that focuses on developing teachers' ideas of scientific inquiry and inquiry pedagogy. It analyzes the first several months of the project, highlighting analyses of teachers' interactions during monthly professional development…

  19. Physically Handicapped in Science: Final Project Report.

    ERIC Educational Resources Information Center

    O'Brien, Maureen B.; And Others

    A two-year project was conducted by St. Mary's Junior College to improve the science literacy of visually-impaired students (VIS) through the adaptation of instructional methods and materials. A four-step process was used: (1) learning materials were reviewed to identify problem areas; (2) preliminary adaptations were made based on the review; (3)…

  20. Clinical Laboratory Sciences Discipline Advisory Group Final Report. Kentucky Allied Health Project.

    ERIC Educational Resources Information Center

    Kentucky Council on Public Higher Education, Frankfort.

    Education in the clinical laboratory sciences in Kentucky and articulation within the field are examined, based on the Kentucky Allied Health Project (KAHP), which designed an articulated statewide system to promote entry and exit of personnel at a variety of educational levels. The KAHP model promotes articulation in learning, planning, and…

  1. Canopy in the Clouds: Integrating Science and Media to Inspire a New Generation of Scientists

    NASA Astrophysics Data System (ADS)

    Goldsmith, G. R.; Fulton, A. D.; Witherill, C. D.

    2008-12-01

    Innovative approaches to science education are critical for inspiring a new generation of scientists. In a world where students are inundated with digital media inviting them to explore exciting, emerging disciplines, science often lags behind in using progressive media techniques. Additionally, science education media often neglects to include the scientists conducting research, thereby disconnecting students from the excitement, adventure, and beauty of conducting research in the field. Here we present initial work from a science education media project entitled Canopy in the Clouds. In particular, we address the goals and approach of the project, the logistics associated with generating educational material at a foreign field site, and the challenges associated with effectively integrating science and media. Canopy in the Clouds is designed to engage students in research, motivate a new generation of young scientists, and promote conservation from the perspective of a current research project being conducted in the canopy of a tropical montane cloud forest located in Monteverde, Costa Rica. The project seeks to generate curriculum based on multiple, immersive forms of novel digital media that attract and maintain student attention. By doing so from the perspective of an adventurous research project in a beautiful and highly biodiverse region, we hope to engage students in science and enhance bioliteracy. However, there are considerable logistic considerations associated with such an approach, including safety, travel, permitting, and equipment maintenance. Additionally, the goals of both the scientific research and the educational media project must be balanced in order to meet objectives in a timely fashion. Finally, materials generated in the field must be translated to viable final products and distributed. Work associated with Canopy in the Clouds will thus provide insight into this process and can serve to inform future science education and outreach efforts.

  2. Big Science and the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Giudice, Gian Francesco

    2012-03-01

    The Large Hadron Collider (LHC), the particle accelerator operating at CERN, is probably the most complex and ambitious scientific project ever accomplished by humanity. The sheer size of the enterprise, in terms of financial and human resources, naturally raises the question whether society should support such costly basic-research programs. I address this question by first reviewing the process that led to the emergence of Big Science and the role of large projects in the development of science and technology. I then compare the methodologies of Small and Big Science, emphasizing their mutual linkage. Finally, after examining the cost of Big Science projects, I highlight several general aspects of their beneficial implications for society.

  3. The Next Level in Automated Solar Flare Forecasting: the EU FLARECAST Project

    NASA Astrophysics Data System (ADS)

    Georgoulis, M. K.; Bloomfield, D.; Piana, M.; Massone, A. M.; Gallagher, P.; Vilmer, N.; Pariat, E.; Buchlin, E.; Baudin, F.; Csillaghy, A.; Soldati, M.; Sathiapal, H.; Jackson, D.; Alingery, P.; Argoudelis, V.; Benvenuto, F.; Campi, C.; Florios, K.; Gontikakis, C.; Guennou, C.; Guerra, J. A.; Kontogiannis, I.; Latorre, V.; Murray, S.; Park, S. H.; Perasso, A.; Sciacchitano, F.; von Stachelski, S.; Torbica, A.; Vischi, D.

    2017-12-01

    We attempt an informative description of the Flare Likelihood And Region Eruption Forecasting (FLARECAST) project, European Commission's first large-scale investment to explore the limits of reliability and accuracy achieved for the forecasting of major solar flares. We outline the consortium, top-level objectives and first results of the project, highlighting the diversity and fusion of expertise needed to deliver what was promised. The project's final product, featuring an openly accessible, fully modular and free to download flare forecasting facility will be delivered in early 2018. The project's three objectives, namely, science, research-to-operations and dissemination / communication, are also discussed: in terms of science, we encapsulate our close-to-final assessment on how close (or far) are we from a practically exploitable solar flare forecasting. In terms of R2O, we briefly describe the architecture of the FLARECAST infrastructure that includes rigorous validation for each forecasting step. From the three different communication levers of the project we finally focus on lessons learned from the two-way interaction with the community of stakeholders and governmental organizations. The FLARECAST project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 640216.

  4. A New Strategic Direction for the AAHSLD Annual Statistics: Planning, Service Roles, Performance Measures, and Management Information Systems for Academic Health Science Libraries: Final Report for Phase I.

    ERIC Educational Resources Information Center

    McClure, Charles R.; And Others

    This report presents a summary of activities, findings, and recommendations from Phase I of a project to improve the effectiveness of academic health science libraries and their provision of information services. The objectives for Phase I of the project are given: (1) to identify academic health science library requirements in the areas of…

  5. The Final Year Project (FYP) in Social Sciences: Establishment of Its Associated Competences and Evaluation Standards

    ERIC Educational Resources Information Center

    Mateo, Joan; Escofet, Anna; Martinez, Francesc; Ventura, Javier; Vlachopoulos, Dimitrios

    2012-01-01

    This paper presents the fundamental characteristics of the Final Year Project (FYP), its associated competences and some evaluation standards that derived from a research conducted by the regional government of Catalonia (Spain) and the Catalan University Quality Assurance Agency. More analytically, the paper begins with the definition of the…

  6. The PIE Institute Project: Final Evaluation Report

    ERIC Educational Resources Information Center

    St. John, Mark; Carroll, Becky; Helms, Jen; Smith, Anita

    2008-01-01

    The Playful Invention and Exploration (PIE) Institute project was funded in 2005 by the National Science Foundation (NSF). For the past three years, Inverness Research has served as the external evaluator for the PIE project. The authors' evaluation efforts have included extensive observation and documentation of PIE project activities; ongoing…

  7. 77 FR 12823 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... Exascale ARRA projects--Magellan final report, Advanced Networking update Status from Computer Science COV Early Career technical talks Summary of Applied Math and Computer Science Workshops ASCR's new SBIR..., Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the...

  8. Women in Science and Technology: The Institutional Ecology Approach. Volume I: Final Research Report.

    ERIC Educational Resources Information Center

    Byrne, Eileen M.

    This document is the final research report of the University of Queensland Women in Science and Technology in Australia (WISTA) project. The report is a policy review study conducted from 1985 to 1990, of the factors that act as critical filters or positive factors that hinder or help women's access to and progression in certain scientific and…

  9. Support of an Active Science Project by a Large Information System: Lessons for the EOS Era

    NASA Technical Reports Server (NTRS)

    Angelici, Gary L.; Skiles, J. W.; Popovici, Lidia Z.

    1993-01-01

    The ability of large information systems to support the changing data requirements of active science projects is being tested in a NASA collaborative study. This paper briefly profiles both the active science project and the large information system involved in this effort and offers some observations about the effectiveness of the project support. This is followed by lessons that are important for those participating in large information systems that need to support active science projects or that make available the valuable data produced by these projects. We learned in this work that it is difficult for a large information system focused on long term data management to satisfy the requirements of an on-going science project. For example, in order to provide the best service, it is important for all information system staff to keep focused on the needs and constraints of the scientists in the development of appropriate services. If the lessons learned in this and other science support experiences are not applied by those involved with large information systems of the EOS (Earth Observing System) era, then the final data products produced by future science projects may not be robust or of high quality, thereby making the conduct of the project science less efficacious and reducing the value of these unique suites of data for future research.

  10. William H. Taft High School, Project Adelante. O.E.E. Evaluation Report, 1982-1983. [Final Report].

    ERIC Educational Resources Information Center

    Keyes, Jose Luis; Schulman, Robert

    Project Adelante, in its third and final year of funding, provided instruction in English as a Second Language (ESL) and Spanish language skills, as well as bilingual instruction in mathematics, science, and social studies, to 230 (fall semester) and 235 (spring semester) limited English proficient Hispanic students at Willaim H. Taft High School,…

  11. John Jay High School Project "RESCATE." O.E.E. Evaluation Report, 1982-1983. [Final Report.

    ERIC Educational Resources Information Center

    Friedman, Grace Ibanez; Schulman, Robert

    Project RESCATE, in its third and final year of funding, provided instruction in English as a Second Language (ESL) and native language skills, as well as bilingual instruction in science, mathematics, and social studies, to 185 Spanish-speaking students of limited English proficiency (LEP) at John Jay High School in Brooklyn, New York. In…

  12. NASA technology utilization applications. [transfer of medical sciences

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The work is reported from September 1972 through August 1973 by the Technology Applications Group of the Science Communication Division (SCD), formerly the Biological Sciences Communication Project (BSCP) in the Department of Medical and Public Affairs of the George Washington University. The work was supportive of many aspects of the NASA Technology Utilization program but in particular those dealing with Biomedical and Technology Application Teams, Applications Engineering projects, new technology reporting and documentation and transfer activities. Of particular interest are detailed reports on the progress of various hardware projects, and suggestions and criteria for the evaluation of candidate hardware projects. Finally some observations about the future expansion of the TU program are offered.

  13. Connecting Oceanography and Music

    NASA Astrophysics Data System (ADS)

    Beauregard, J. L.

    2016-02-01

    Capturing and retaining the interest of non-science majors in science classes can be difficult, no matter what type of science. At Berklee College of Music, this challenge is especially significant, as all students are music majors. In my Introductory Oceanography course, I use a final project as a way for the students to link class material with their own interests. The students may choose any format to present their projects to the class; however, many students write and perform original music. The performances of ocean-themed music have become a huge draw of the Introductory Oceanography course. In an effort to expand the reach of this music, several colleagues and I organized the first Earth Day event at Berklee, `Earthapalooza 2015.' This event included performances of music originally written for the final projects, as well as other musical performances, poetry readings, guest talks, and information booths. Although the idea of an Earth Day event is not new, this event is unique in that student performances really resonate with the student audience. Additionally, since many of these students will enter professional careers in the performance and recording industries, the potential exists for them to expose large audiences to the issues of oceanography through music. In this presentation, I will play examples of original student compositions and show video of the live student performances. I will also discuss the benefits and challenges of the final projects and the Earth Day event. Finally, I will highlight the future plans to continue ocean-themed music at Berklee.

  14. 1991 survey of recent health sciences library building projects.

    PubMed Central

    Ludwig, L T

    1992-01-01

    Twenty health sciences libraries reported building planning, expansion, or construction of new facilities in the association's second annual survey of recent building projects. Six projects are new, freestanding structures in which the library occupies all or a major portion of the space. Six other projects are part of new construction for separately administered units in which the library is a major tenant. The final eight projects involve additions to or renovations of existing space. Seven of these twenty libraries were still in projected, predesign, or design stages of awaiting funding approval; of those seven, five were not prepared to release the requested information. Six projects are reported here as illustrative of current building projects. Images PMID:1600420

  15. Apollo-Soyuz test project: Composite of MSFC final science report

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Experimental procedures of nine experiments conducted during the Apollo-Soyuz Test Project mission from July 15th to July 24th, 1975 are presented. Conclusions and recommendations based on these experiments are given.

  16. The Rare Book Collection of Capodimonte Astronomical Observatory Will be on the Web: Ancient Science Available to Everyone

    NASA Astrophysics Data System (ADS)

    Cirella, E. O.; Caprio, G.

    2015-04-01

    This paper describes a project for the preservation, promotion, and creation of a website for the rare book collection of Capodimonte Astronomical Observatory. The project, promoted by INAF—Capodimonte Astronomical Observatory, was supported by the Campania Region through European funds. The final component of the project was the publication of a bibliographical catalog, Le Cinquecentine dell'Osservatorio Astronomico di Capodimonte, which was addressed to specialized users, including historians of science and bibliophiles.

  17. Informal science educators network project Association of Science-Technology Centers Incorporated. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-05-09

    Funding from the Department of Energy and the Annenberg/CPB Math and Science Project have helped the Association of Science-technology Centers Incorporated (ASTC) to establish and sustain an on-line community of informal science educators nationwide. The Project, called the Informal Science Educators Network Project (ISEN), is composed primarily of informal science educators and exhibit developers from science centers, museums, zoos, aquariums, botanical gardens, parks, and nature centers. Although museum-based professionals represent the majority of subscribers to ISEN, also involved are some classroom teachers and teacher educators from colleges and universities. Common to all ISEN participants is a commitment to school andmore » science education reform. Specifically, funding from the Department of Energy helped to boot strap the effort, providing Barrier Reduction Vouchers to 123 educators that enabled them participate in ISEN. Among the major accomplishments of the Project are these: (1) assistance to 123 informal science educators to attend Internet training sessions held in connection with the Project and/or purchase hardware and software that linked them to the Internet; (2) Internet training for 153 informal science educators; (3) development of a listserv which currently has over 180 subscribers--an all-time high; (4) opportunity to participate in four web chats involving informal science educators with noted researchers; (5) development of two sites on the World Wide Web linking informal science educators to Internet resources; (6) creation of an on-line collection of over 40 articles related to inquiry-based teaching and science education reform. In order to continue the momentum of the Project, ASTC has requested from the Annenberg/CPB Math and Science project a no/cost extension through December 1997.« less

  18. Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS): Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Boer, Gijs; Lawrence, Dale; Palo, Scott

    2017-03-29

    This final technical report details activities undertaken as part of the referenced project. Included is information on the preparation of aircraft for deployment to Alaska, summaries of the three deployments covered under this project, and a brief description of the dataset and science directions pursued. Additionally, we provide information on lessons learned, publications, and presentations resulting from this work.

  19. Student Science Training Program in Mathematics, Physics and Computer Science. Final Report to the National Science Foundation. Artificial Intelligence Memo No. 393.

    ERIC Educational Resources Information Center

    Abelson, Harold; diSessa, Andy

    During the summer of 1976, the MIT Artificial Intelligence Laboratory sponsored a Student Science Training Program in Mathematics, Physics, and Computer Science for high ability secondary school students. This report describes, in some detail, the style of the program, the curriculum and the projects the students under-took. It is hoped that this…

  20. The Art of Science

    NASA Astrophysics Data System (ADS)

    Vaidya, Ashwin; Munakata, Mika

    2014-03-01

    The Art of Science project at Montclair State University strives to communicate the creativity inherent in the sciences to students and the general public alike. The project uses connections between the arts and sciences to show the underlying unity and interdependence of the two. The project is planned as one big `performance' bringing together the two disciplines around the theme of sustainability. In the first phase, physics students learned about and built human-powered generators including hand cranks and bicycle units. In the second phase, using the generators to power video cameras, art students worked with a visiting artist to make short films on the subject of sustainability, science, and art. The generators and films were showcased at an annual university Physics and Art exhibition which was open to the university and local community. In the final phase, to be conducted, K12 teachers will learn about the project through a professional development workshop and will be encouraged to adapt the experiment for their own classrooms. The last phase will also combine the university and K12 projects for an exhibition to be displayed on Earth Day, 2014. Project funded by the APS Outreach Grant.

  1. 77 FR 5755 - Notice of Public Meetings of Committees of the Administrative Conference of the United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... finally on ``Science Project Page.'' Dated: February 1, 2012. Shawne C. McGibbon, General Counsel. [FR Doc... projects. Complete details regarding the committee meetings, the contours of the projects, how to attend... Project. The report, prepared by Professor Lenni B. Benson (New York Law School) and Russell Wheeler...

  2. A Project to Develop an Associate of Science Degree Curriculum in Renewable Energy Resources and Applications in Agriculture. Final Report, July 1, 1980-June 30, 1981.

    ERIC Educational Resources Information Center

    Allen, Keith; Fielding, Marvin R.

    A project was conducted at State Fair Community College (SFCC) in Sedalia, Missouri, to develop an associate of science degree curriculum in renewable energy resources and their application in agriculture. A pilot study, designed to verify and rate the importance of 138 competencies in fuel alcohol production and to ascertain employment…

  3. Multi-Modalities Sensor Science

    DTIC Science & Technology

    2015-02-28

    enhanced multi-mode sensor science. bio -sensing, cross-discipling, multi-physics, nano-technology sailing He +46-8790 8465 1 Final Report for SOARD Project...spectroscopy, nano-technology, biophotonics and multi-physics modeling to produce adaptable bio -nanostructure enhanced multi-mode sensor science. 1...adaptable bio -nanostructure enhanced multi-mode sensor science. The accomplishments includes 1) A General Method for Designing a Radome to Enhance

  4. Designing Citizen Science Projects in the Era of Mega-Information and Connected Activism

    NASA Astrophysics Data System (ADS)

    Pompea, S. M.

    2010-12-01

    The design of citizen science projects must take many factors into account in order to be successful. Currently, there are a wide variety of citizen science projects with different aims, audiences, reporting methods, and degrees of scientific rigor and usefulness. Projects function on local, national, and worldwide scales and range in time from limited campaigns to around the clock projects. For current and future projects, advanced cell phones and mobile computing allow an unprecedented degree of connectivity and data transfer. These advances will greatly influence the design of citizen science projects. An unprecedented amount of data is available for data mining by interested citizen scientists; how can projects take advantage of this? Finally, a variety of citizen scientist projects have social activism and change as part of their mission and goals. How can this be harnessed in a constructive and efficient way? The design of projects must also select the proper role for experts and novices, provide quality control, and must motivate users to encourage long-term involvement. Effective educational and instructional materials design can be used to design responsive and effective projects in a more highly connected age with access to very large amounts of information.

  5. Translational Science Project Team Managers: Qualitative Insights and Implications from Current and Previous Postdoctoral Experiences.

    PubMed

    Wooten, Kevin C; Dann, Sara M; Finnerty, Celeste C; Kotarba, Joseph A

    2014-07-01

    The development of leadership and project management skills is increasingly important to the evolution of translational science and team-based endeavors. Team science is dependent upon individuals at various stages in their careers, inclusive of postdocs. Data from case histories, as well as from interviews with current and former postdocs, and those supervising postdocs, indicate six essential tasks required of project managers in multidisciplinary translational teams, along with eight skill-related themes critical to their success. To optimize the opportunities available and to ensure sequential development of team project management skills, a life cycle model for the development of translational team skills is proposed, ranging from graduate trainees, postdocs, assistant professors, and finally to mature scientists. Specific goals, challenges and project management roles and tasks are recommended for each stage for the life cycle.

  6. Translational Science Project Team Managers: Qualitative Insights and Implications from Current and Previous Postdoctoral Experiences

    PubMed Central

    Wooten, Kevin C.; Dann, Sara M.; Finnerty, Celeste C.; Kotarba, Joseph A.

    2015-01-01

    The development of leadership and project management skills is increasingly important to the evolution of translational science and team-based endeavors. Team science is dependent upon individuals at various stages in their careers, inclusive of postdocs. Data from case histories, as well as from interviews with current and former postdocs, and those supervising postdocs, indicate six essential tasks required of project managers in multidisciplinary translational teams, along with eight skill-related themes critical to their success. To optimize the opportunities available and to ensure sequential development of team project management skills, a life cycle model for the development of translational team skills is proposed, ranging from graduate trainees, postdocs, assistant professors, and finally to mature scientists. Specific goals, challenges and project management roles and tasks are recommended for each stage for the life cycle. PMID:25621288

  7. Final Project Report to NSF.

    ERIC Educational Resources Information Center

    National Inst. for Science Education, Madison, WI.

    The National Institute for Science Education's (NISE) focused mission is to improve mathematics and science education from kindergarten through college. This document reports on NISE's research programs, dissemination programs, and organizational process programs. Contents include: (1) "Systemic Reform: Policy and Evaluation" (William H. Clune and…

  8. Comprehensive Final Report for the Marine Seismic System Program

    DTIC Science & Technology

    1985-08-01

    Executive summary g ■ -■• < ".• v>:.* From 1981 through 1983, the Defense Advanced Research Projects Agency funded the National Science...S. Government. Per Mr. J. A. Ballard, NORDA/Code 360 Accesion For NTIS CRA&I DUG TAB Unannou.iCed Justification G D By Distib...n>r" Analysis of Ambient Seismic Noise Recorded by Downhole and Ocean-Bottom Seismometers on Dee: Sea Drilling Project Leg 78B Richard G

  9. Windows to the Universe: Earth Science Enterprise Education Program

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Over the past year, Windows to the Universe has continued a multifaceted program of support to the Earth Science Enterprise Education program. Areas of activity include continued maintenance of the W2U website and user traffic analysis, development of new and revised content and activities on the website, implementation of new tools to facilitate website development and maintenance, response to users questions and comments, professional development for educators through workshops at the National Science Teachers Association meetings and at NCAR, and dissemination of information about the project through materials distribution at NSTAs, AGUs, AMS and other venues. This report provides some background on the project and summarizes progress for the third and final year of the project.

  10. Staff Development for Pedagogues in Bilingual Math and Science Programs, 1993-94. Final Evaluation Report. OER Report.

    ERIC Educational Resources Information Center

    Roman, Elliott M.

    Staff Development for Pedagogues in Bilingual Math and Science provided two thematically-based workshops to 40 New York City science teachers who taught students of limited English proficiency (LEP) citywide. Workshops emphasized successful teaching strategies as well as psychological aspects involved in teaching LEP students. The project also…

  11. Ion drift meter research

    NASA Technical Reports Server (NTRS)

    Heelis, Roderick A.

    1994-01-01

    The final activity period for the DE project has been particularly productive. This period has seen the final delivery of geophysical data sets to the National Space Science Data Center, the granting of three Ph.D. degrees from cumulative work on the project, the operation of automatic data access and display routines for the data, and an increased effort in research and publication of the data. As before the research activities, largely devoted to studies involving the dynamics of the ionosphere, utilize data from the IDM and the RPA and thus the work is not easily attributable to one or the other of these separately funded efforts. In this final report we provide brief descriptions of the work accomplished in the final phase of the program. The Dynamics Explorer program has provided a significant opportunity for much of the community to participate in the data analysis and interpretation. The data, now residing in the national space science data center, are a great legacy that should continue to yield important results for many years.

  12. THE BEAR BROOK WATERSHED MANIPULATION PROJECT: WATERSHED SCIENCE IN A POLICY PERSPECTIVE. (R825762)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  13. Using Primary Literature to Teach Science Literacy to Introductory Biology Students

    PubMed Central

    Krontiris-Litowitz, Johanna

    2013-01-01

    Undergraduate students struggle to read the scientific literature and educators have suggested that this may reflect deficiencies in their science literacy skills. In this two-year study we develop and test a strategy for using the scientific literature to teach science literacy skills to novice life science majors. The first year of the project served as a preliminary investigation in which we evaluated student science literacy skills, created a set of science literacy learning objectives aligned with Bloom’s taxonomy, and developed a set of homework assignments that used peer-reviewed articles to teach science literacy. In the second year of the project the effectiveness of the assignments and the learning objectives were evaluated. Summative student learning was evaluated in the second year on a final exam. The mean score was 83.5% (±20.3%) and there were significant learning gains (p < 0.05) in seven of nine of science literacy skills. Project data indicated that even though students achieved course-targeted lower-order science literacy objectives, many were deficient in higher-order literacy skills. Results of this project suggest that building scientific literacy is a continuing process which begins in first-year science courses with a set of fundamental skills that can serve the progressive development of literacy skills throughout the undergraduate curriculum. PMID:23858355

  14. SciStarter 2.0: A Digital Platform to Foster and Study Sustained Engagement in Citizen Science

    NASA Astrophysics Data System (ADS)

    Hoffman, C.

    2016-12-01

    SciStarter is a popular online hotspot for citizen science. As a Match.com meets Amazon for citizen science projects, we connect the millions of citizen scientists to thousands of projects and events, and to the resources they need to participate. These opportunities represent ways for the general public from kids to adults to get involved in scientific research. Recently, SciStarter developed a new digital infrastructure to support sustained engagement in citizen science, and research into the behaviors and motivations of participants. The new digital infrastructure of SciStarter includes contribution tracking tools to make it easier to participate in multiple projects, enhanced GIS information to promote locally relevant projects, an online personal dashboard to keep track of contributions, and the use of these tools (contribution tracking, GIS, dashboard) by project owners and researchers to better understand and respond to the needs and interests of citizen science participants. We will provide an overview of these tools and the research behind their development. We will then explore how these new tools advance citizen science towards a future with more pathways to participatory policymaking, expanded access to informal STEM experiences, and lowered barriers to citizen science. Finally, we will present the research questions that can and will be answered through the site by practitioners in the diverse science and citizen science fields.

  15. Good practices to promote gender equality in science and physics in Tunisia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaziri, Sihem

    Women represent 47% of researchers in Tunisia but only 12% of senior faculty in scientific fields. This paper describes three areas of activity to promote greater participation of women. The Women in Science group at the University of Tunis has, among other activities, organized an annual conference on women in science since 2005. The COACh project is a multinational effort across northern Africa to promote professional networking and mentoring through partnerships with women in the United States. Finally, an immersive summer school was organized to introduce master’s level women to projects and careers in optics and photonics.

  16. Good practices to promote gender equality in science and physics in Tunisia

    NASA Astrophysics Data System (ADS)

    Jaziri, Sihem

    2015-12-01

    Women represent 47% of researchers in Tunisia but only 12% of senior faculty in scientific fields. This paper describes three areas of activity to promote greater participation of women. The Women in Science group at the University of Tunis has, among other activities, organized an annual conference on women in science since 2005. The COACh project is a multinational effort across northern Africa to promote professional networking and mentoring through partnerships with women in the United States. Finally, an immersive summer school was organized to introduce master's level women to projects and careers in optics and photonics.

  17. Using Science Activities To Internalize Locus of Control. Final Report.

    ERIC Educational Resources Information Center

    Rowland, Paul McD.

    This project was designed to investigate the effect of the use of cause-and-effect activities in the science curriculum on the locus of control of the learner. The purpose of this research is to find the effect of the activities on the learner's locus of control and attitude toward science at grades 7 through 10. A multivariate analysis of…

  18. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.

    The joint US and German SOFIA project to develop and operate a 2.5 m infrared airborne telescope in a Boeing 747-SP is now in the final stages of development. First science flights will begin in 2007. The observatory is expected to operate for over 20 years. The sensitivity, characteristics, science instrument complement, and examples of first light science are discussed.

  19. Educational Technology Project, Volume One. The Development of Materials for the Training of Science Education Personnel in Educational Technology. Final Report.

    ERIC Educational Resources Information Center

    Ziener, George H.; And Others

    The planning, production, validation, and revision of learning materials designed for use in institutes for science supervisors is described in this first of five volumes. Four sets of packages, ("Role of the Science Supervisor,""Introduction to Educational Technology,""An Application of Educational Technology," and "Management Kits,") each using…

  20. LLNL Mercury Project Trinity Open Science Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, Shawn A.

    The Mercury Monte Carlo particle transport code is used to simulate the transport of radiation through urban environments. These challenging calculations include complicated geometries and require significant computational resources to complete. In the proposed Trinity Open Science calculations, I will investigate computer science aspects of the code which are relevant to convergence of the simulation quantities with increasing Monte Carlo particle counts.

  1. Greening the Engineering and Technology Curriculum via Real Life Hands-on Projects

    USDA-ARS?s Scientific Manuscript database

    This paper aims at demonstrating how greening efforts can be embedded into science and engineering courses without major curricular changes. In this regard, examples of final projects assigned in a statistical quality control, a 500-level, graduate engineering course, focusing on campus sustainabili...

  2. [Analysis of projects funded by NSFC in field of Chinese material medica resource in recent three years].

    PubMed

    Gao, Wei; Guo, Shu-Zhen; Han, Li-Wei; Zhang, Feng-Zhu

    2016-10-01

    The paper reviewed the sponsorship and final reports of projects focus on Science of Chinese materia medica resource in Medical Science Department, National Natural Science Foundation of China. The applicant and supportive organizations were analyzed. The progress and results of some projects were summarized by research fields including formation mechanism of Dao-di herbs, research of plant taxonomy, breeding and cultivation of medical plants, ecological and environmental adaptability of Chinese materia medica resource, quality assessment of Chinese materia medica resource, and biosynthesis and regulation of active compounds. In addition, the potential problems and the most and least focused areas in the application were summarized for reference. Copyright© by the Chinese Pharmaceutical Association.

  3. Improving Preservice Elementary Teachers' Writing in a Science Context

    ERIC Educational Resources Information Center

    Everett, Susan; Luera, Gail; Otto, Charlotte

    2008-01-01

    The authors investigated whether a series of mini prewriting assignments linked to a formal paper describing an original research project would improve preservice elementary teachers' writing abilities in a science context. They compared 38 final reports from students who completed the prewriting assignments with 38 reports randomly selected from…

  4. Evaluation of Free To Grow, Phase II: Detailed Profile of the Free To Grow Project in California. Final Report.

    ERIC Educational Resources Information Center

    Harrington, Mary

    The Free to Grow pilot project, developed by the Charles R. Drew University of Medicine and Science and its Head Start project, operated between 1994 and 1999. Following a 2-year planning and development stage, 5 project sites went on to complete the 3-year implementation phase in California, Colorado, Kentucky, New York, and Puerto Rico; the…

  5. BESTNET: Binational English & Spanish Telecommunications Network. Final FIPSE Report.

    ERIC Educational Resources Information Center

    Arias, Armando A., Jr.; Bellman, Beryl L.

    The final evaluation of BESTNET (the Binational English and Spanish Telecommunications Network) is described. Undertaken as a collaborative effort to experiment with new telecommunications media in distance education and to attract Hispanic students into the science and engineering fields, the project involved the development of a number of…

  6. Seward Park High School Project Superemos, 1982-1983. O.E.E. Evaluation Report.

    ERIC Educational Resources Information Center

    Velazquez, Clara; Schulman, Robert

    Project Superemos, in its final year of a two-year funding cycle, provided instruction in English as a Second Language (ESL) and native language skills, as well as bilingual instruction in mathematics, science, and social studies, to approximately 125 Spanish speaking students of limited English proficiency (LEP) in grades 9 and 10. The project's…

  7. An Interdisciplinary Course Involving Science and the Humanities. Final Report.

    ERIC Educational Resources Information Center

    Love, Robert W.; Olson, Frederick S.

    The project described in this report focused on the development of an interdisciplinary course incorporating physics and literature at Shoreline Community College. Part 1 provides an overview of the project and summarizes major questions and problems confronted in the process of curriculum development, including the relationship between science…

  8. Science Education and the Material Culture of the Nineteenth-Century Classroom: Physics and Chemistry in Spanish Secondary Schools

    NASA Astrophysics Data System (ADS)

    Simon, Josep; Cuenca-Lorente, Mar

    2012-02-01

    Although a large number of Spanish secondary schools have preserved an important scientific heritage, including large scientific instrument collections, this heritage has never been officially protected. Their current state is very diverse, and although several research projects have attempted to initiate their recovery and use, their lack of coordination and wide range of methodological approaches has limited their impact. This paper presents a case-study integrated in a new project supported by the Catalan Scientific Instrument Commission (COMIC) whose final aim is the establishment of a research hub for the preservation, study and use of Spanish scientific instrument collections. Major aims in this project are promoting a better coordination of Spanish projects in this field, and furthering international research on science pedagogy and the material culture of science. The major focus of COMIC is currently the recovery of secondary school collections. This paper provides first, a historical account of the development of secondary education in Spain, and the contemporary establishment of physics and chemistry school collections. Second, we focus on a case-study of three Spanish schools (Valencia, Castellón, and Alicante). Finally, we provide a brief overview of current projects to preserve Spanish school collections, and discuss how COMIC can contribute to help to coordinate them, and to take a step forward interdisciplinary research in this context.

  9. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now in the final stages of development. First science flights will begin in 2008. The observatory is expected to operate for over 20 years. The sensitivity, characteristics, science instrument complement, and examples of 1-st light spectroscopic astrochemistry science are discussed.

  10. Incorporating Geographic Information Science in the BSc Environ-mental Science Program in Botswana

    NASA Astrophysics Data System (ADS)

    Akinyemi, Felicia O.

    2018-05-01

    Critical human capacity in Geographic Information Science (GISc) is developed at the Botswana International University of Science and Technology, a specialized, research university. Strategies employed include GISc courses offered each semester to students from various programs, the conduct of field-based projects, enrolment in online courses, geo-spatial initiatives with external partners, and final year research projects utilizing geospatial technologies. A review is made of available GISc courses embedded in the Bachelor of Science Environmental Science program. GISc courses are incorporated in three Bachelor degree programs as distinct courses. Geospatial technologies are employed in several other courses. Student researches apply GIS and Remote Sensing methods to environmental and geological themes. The overarching goals are to equip students in various disciplines to utilize geospatial technologies, and enhance their spatial thinking and reasoning skills.

  11. Nontraditional inheritance: Genetics and the nature of science, now titled, The puzzle of inheritance: Genetics and the methods of science. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McInerney, J.D.

    1998-08-31

    This project led to the development of an instructional module designed for use in high school biology classes. The module contains two major components. The first is an overview for teachers, which introduces the module, describes the Human Genome Project, and addresses issues in the philosophy of science and some of the ethical, legal, and social implications of research in genetics. It provides a survey of fundamental genetics concepts and of new, nontraditional concepts of inheritance. The second component provides six instructional activities appropriate for high school or introductory college students.

  12. Alliance for Computational Science Collaboration, HBCU Partnership at Alabama A&M University Final Performance Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Z.T.

    2001-11-15

    The objective of this project was to conduct high-performance computing research and teaching at AAMU, and to train African-American and other minority students and scientists in the computational science field for eventual employment with DOE. During the project period, eight tasks were accomplished. Student Research Assistant, Work Study, Summer Interns, Scholarship were proved to be one of the best ways for us to attract top-quality minority students. Under the support of DOE, through research, summer interns, collaborations, scholarships programs, AAMU has successfully provided research and educational opportunities to minority students in the field related to computational science.

  13. From access to success in science: An academic-student affairs intervention for undergraduate freshmen biology students

    NASA Astrophysics Data System (ADS)

    Aldridge, Jacqueline Nouvelle

    The first year experience is known to present an array of challenges for traditional college students. In particular, freshmen who major in a STEM discipline have their own unique set of challenges when they transition from high school science and math to college science and math; especially chemistry. As a result, students may encounter negative experiences which lower academic and social confidence. This project was designed as a pilot study intervention for a small group of freshmen biology students who were considered academically at-risk due their math SAT scores. The study occurred during the fall semester involving an enhanced active learning component based on the Peer-led Team Learning (PLTL) general chemistry supplemental pedagogy model, and a biology-focused First Year Experience (FYE). PLTL workshops took place in freshmen residence halls, creating a live-n-learn community environment. Mid-term and final chemistry grades and final math grades were collected to measure academic progress. Self-reporting surveys and journals were used to encourage participants to reconstruct their experiences and perceptions of the study. Descriptive analysis was performed to measure statistical significance between midterm and final grade performance, and a general inductive qualitative method was used to determine academic and social confidence as well as experiences and perceptions of the project. Findings of this project revealed a statistically significant improvement between chemistry midterm and final grades of the sample participants. Although academic confidence did not increase, results reveal that social confidence progressed as the majority of students developed a value for studying in groups.

  14. NASA/Drexel program. [research effort in large-scale technical programs management for application to urban problems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The results are reported of the NASA/Drexel research effort which was conducted in two separate phases. The initial phase stressed exploration of the problem from the point of view of three primary research areas and the building of a multidisciplinary team. The final phase consisted of a clinical demonstration program in which the research associates consulted with the County Executive of New Castle County, Delaware, to aid in solving actual problems confronting the County Government. The three primary research areas of the initial phase are identified as technology, management science, and behavioral science. Five specific projects which made up the research effort are treated separately. A final section contains the conclusions drawn from total research effort as well as from the specific projects.

  15. Wisconsin Earth and Space Science Education

    NASA Technical Reports Server (NTRS)

    Bilbrough, Larry (Technical Monitor); French, George

    2003-01-01

    The Wisconsin Earth and Space Science Education project successfilly met its objectives of creating a comprehensive online portfolio of science education curricular resources and providing a professional development program to increase educator competency with Earth and Space science content and teaching pedagogy. Overall, 97% of participants stated that their experience was either good or excellent. The favorable response of participant reactions to the professional development opportunities highlights the high quality of the professional development opportunity. The enthusiasm generated for using the curricular material in classroom settings was overwhelmingly positive at 92%. This enthusiasm carried over into actual classroom implementation of resources from the curricular portfolio, with 90% using the resources between 1-6 times during the school year. The project has had a positive impact on student learning in Wisconsin. Although direct measurement of student performance is not possible in a project of this kind, nearly 75% of participating teachers stated that they saw an increase in student performance in math and science as a result of using project resources. Additionally, nearly 75% of participants saw an increase in the enthusiasm of students towards math and science. Finally, some evidence exists that the professional development academies and curricular portfolio have been effective in changing educator behavior. More than half of all participants indicated that they have used more hands-on activities as a result of the Wisconsin Earth and Space Science Education project.

  16. Cognitive Academic Language Learning Approach (Project CALLA), Community School District 2 Special Alternative Instruction Program. Final Evaluation Report, 1992-93. OREA Report.

    ERIC Educational Resources Information Center

    Lynch, Joanne

    Cognitive Academic Language Learning Approach (Project CALLA) was a federally funded program serving 960 limited-English-proficient students in 10 Manhattan (New York) elementary schools in 1992-93 its third year of operation. The project provided instruction in English as a Second Language (ESL), mathematics, science, and social studies in…

  17. Bone Marrow Matters

    ERIC Educational Resources Information Center

    Dunne, Mark; Maklad, Rania; Heaney, Emma

    2014-01-01

    As a final-year student teacher specialising in primary science, Emma Heaney faced the challenge of having to plan, organise, and conduct a small-scale, classroom-based research project. She had to teach about bones in the final block practice session and thought it would be a good idea to bring in some biological specimens obtained from the local…

  18. Final report for the National Center for Intermodal Transportation for Economic Competitiveness : project title: student technology exchange program (STEP) for engineering/robotics in middle school students.

    DOT National Transportation Integrated Search

    2015-05-05

    Key outcomes or other achievements - This project highlighted the importance of math and science concepts within three of the six STEM-related career clusters as defined by the Mississippi Department of Education: Agriculture, Food and Natural Resour...

  19. Outdoor Biology Instructional Strategies (OBIS): 1972-79. Final Project Report.

    ERIC Educational Resources Information Center

    Laetsch, W. M.; Knott, Robert C.

    Prepared for the National Science Foundation (NSF), this report summarizes the development and work of the Outdoor Biology Instructional Strategies (OBIS) project from 1972 to 1979. One hundred activities for ten- to fifteen-year-olds in community groups (scouts, clubs, camps, churches, etc.) were developed, field tested, revised, and made…

  20. Are You Ready to Take the Plunge? Create an Amusement Park.

    ERIC Educational Resources Information Center

    Mueller, Andrea; Brown, Rod

    2000-01-01

    Describes an activity on charting 6th and 7th grade students' ideas about a potential science project. Summarizes a five week project on creating a new ride or redesigning existing rides in an amusement park, including research and sketches, final drawings, models of rides, and class presentations. (YDS)

  1. 78 FR 26063 - Central Utah Project Completion Act; East Hobble Creek Restoration Project Final Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... releases, and enhancement of the existing water supply. Dated: April 15, 2013. Reed R. Murray, Program... Environmental Assessment AGENCY: Office of the Assistant Secretary for Water and Science, Interior; Utah...: Central Utah Water Conservancy District, 355 West University Parkway, Orem, Utah 84058-7303 Department of...

  2. SOFIA: Stratospheric Observatory for Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.

    The SOFIA project to develop and operate a 2 5-meter infrared telescope in a Boeing 747-SP is in its final stages of development First science flights will begin in 2008 with the observatory designed to operate for over 20 years Status of the development and technical issues will be discussed along with the expected sensitivity and first light science instruments Also discussed will be examples of the science to be carried out and opportunities for the science community to use SOFIA

  3. Australian Information Education in the 21st Century--The Synergy among Research, Teaching and Practice

    ERIC Educational Resources Information Center

    Nastasie, Daniela L.

    2012-01-01

    In 2011 a group of Australian Library and Information Science academics led by Prof. Helen Partridge conducted an investigation into the Australian Library and Information Science education in the 21st century. The project was funded by the Australian Learning and Teaching Council (ALTC) and the final report, titled "Re-conceptualising and…

  4. International Cooperation of Space Science and Application in Chinese Manned Space Program

    NASA Astrophysics Data System (ADS)

    Gao, Ming; Guo, Jiong; Yang, Yang

    Early in China Manned Space Program, lots of space science and application projects have been carried out by utilizing the SZ series manned spaceships and the TG-1 spacelab, and remarkable achievements have been attained with the efforts of international partners. Around 2020, China is going to build its space station and carry out space science and application research of larger scale. Along with the scientific utilization plan for Chinese space station, experiment facilities are considered especially for international scientific cooperation, and preparations on international cooperation projects management are made as well. This paper briefs the international scientific cooperation history and achievement in the previous missions of China Manned Space Program. The general resources and facilities that will support potential cooperation projects are then presented. Finally, the international cooperation modes and approaches for utilizing Chinese Space Station are discussed.

  5. Capturing Cognitive Fingerprints for Active Authentication

    DTIC Science & Technology

    2014-10-01

    CAPTURING COGNITIVE FINGERPRINTS FOR ACTIVE AUTHENTICATION IOWA STATE UNIVERSITY OF SCIENCE & TECHNOLOGY OCTOBER 2014 FINAL TECHNICAL REPORT...REPORT TYPE FINAL TECHNICAL REPORT 3. DATES COVERED (From - To) SEP 2013 – APR 2014 4. TITLE AND SUBTITLE CAPTURING COGNITIVE FINGERPRINTS FOR ACTIVE...The project ended before the IRB application was approved. 15. SUBJECT TERMS Active Authentication, Cognitive Fingerprints , Biometric Modalities

  6. Developing Teachers' Computational Thinking Beliefs and Engineering Practices through Game Design and Robotics

    ERIC Educational Resources Information Center

    Leonard, Jacqueline; Barnes-Johnson, Joy; Mitchell, Monica; Unertl, Adrienne; Stubbe, Christopher R.; Ingraham, Latanya

    2017-01-01

    This research report presents the final year results of a three-year research project on computational thinking (CT). The project, funded by the National Science Foundation, involved training teachers in grades four through six to implement Scalable Game Design and LEGO® EV3 robotics during afterschool clubs. Thirty teachers and 531 students took…

  7. User-Adaptable Microcomputer Graphics Software for Life Science Instruction. Final Project Report.

    ERIC Educational Resources Information Center

    Spain, James D.

    The objectives of the SUMIT project was to develop, evaluate, and disseminate 20 course modules (microcomputer programs) for instruction in general biology and ecology. To encourage broad utilization, the programs were designed for the Apple II microcomputer and written in Applesoft Basic with a user-adaptable format. Each package focused on a key…

  8. Factors Affecting Student Choice of the Undergraduate Research Project: Staff and Student Perceptions

    ERIC Educational Resources Information Center

    Harland, Janice; Pitt, Sarah; Saunders, Venetia

    2005-01-01

    As pressures on resources are growing and some question the value and types of final year research work for students in the biosciences and other disciplines, it is important to be well informed about student expectations of their project. In this case study within Biomolecular Sciences, questionnaires were used to compare staff and student…

  9. A Tale of Two Courses: Challenging Millennials to Experience Culture through Film

    ERIC Educational Resources Information Center

    Kirakosian, Katie; McLaurin, Virginia; Speck, Cary

    2017-01-01

    In this article, we discuss how adding a final film project to a revised "Culture through Film" course led to deeper student learning and higher rates of student success, as well as increased student satisfaction. Ultimately, we urge social science educators to include experiential projects in their courses that connect to all learning…

  10. Homogenisation in project management for large German research projects in the Earth system sciences: overcoming the institutional coordination bias

    NASA Astrophysics Data System (ADS)

    Rauser, Florian; Vamborg, Freja

    2016-04-01

    The interdisciplinary project on High Definition Clouds and Precipitation for advancing climate prediction HD(CP)2 (hdcp2.eu) is an example for the trend in fundamental research in Europe to increasingly focus on large national and international research programs that require strong scientific coordination. The current system has traditionally been host-based: project coordination activities and funding is placed at the host institute of the central lead PI of the project. This approach is simple and has the advantage of strong collaboration between project coordinator and lead PI, while exhibiting a list of strong, inherent disadvantages that are also mentioned in this session's description: no community best practice development, lack of integration between similar projects, inefficient methodology development and usage, and finally poor career development opportunities for the coordinators. Project coordinators often leave the project before it is finalized, leaving some of the fundamentally important closing processes to the PIs. This systematically prevents the creation of professional science management expertise within academia, which leads to an automatic imbalance that hinders the outcome of large research programs to help future funding decisions. Project coordinators in academia often do not work in a professional project office environment that could distribute activities and use professional tools and methods between different projects. Instead, every new project manager has to focus on methodological work anew (communication infrastructure, meetings, reporting), even though the technological needs of large research projects are similar. This decreases the efficiency of the coordination and leads to funding that is effectively misallocated. We propose to challenge this system by creating a permanent, virtual "Centre for Earth System Science Management CESSMA" (cessma.com), and changing the approach from host- based to centre-based. This should complement the current system, by creating permanent, sustained options for interactions between large research projects in similar fields. In the long run such a centre might improve on the host-based system because the centre-based solution allows multiple projects to be coordinated in conjunction by experienced science managers, using overlap in meeting organization, reporting, infrastructure, travel and so on. To still maintain close cooperation between project managers and lead PIs, we envision a virtual centre that creates extensive collaborative opportunities by organizing yearly retreats, a shared technical data base, et cetera. As "CESSMA" is work in progress (we have applied for funding for 2016-18), we would like to use this opportunity to discuss chances, potential problems, experiences and options for this attempt to institutionalise the very reason for this session: improved, coordinated, effective science coordination; and to create a central focal point for public / academia interactions.

  11. Toward a gender-sensitive model of science teacher education for women primary and early childhood teachers

    NASA Astrophysics Data System (ADS)

    Bearlin, Margaret

    1990-01-01

    Female teachers predominate in primary schools, and tend both to have more negative perceptions of their teaching skills in the physical sciences than males, and to expect girls to perform less well in these areas than boys, with likely serious consequences for girls. In this context the WASTE (Women and Science Teacher Education) Project sought to identify characteristics for teacher education programs which, in the opinion of their conveners, were productive in changing the attitude toward the teaching of science, or in changing the actual mode of teaching science, of women preservice and practising teachers. This paper reports the findings of the WASTE Project which surveyed the conveners of pre- and inservice programs and outlined the three models of exemplary practice used to classify responses: subject-centred, learner-centred and knowledge and person-centred. These models were based largely on differing explanations given for attitude change and on implicit concepts of knowledge, persons, and teaching and learning, and on the importance attributed to gender as a variable. Secondly, it shows how the Primary and Early Childhood Science and Technology Education Project, a gender-sensitive action-research project, was built on these findings. Finally, using these models, it offers a critique of the gender perspective of the Discipline Review of Teacher Education (DEET, 1989).

  12. A Place of Transformation: Lessons from the Cosmic Serpent Informal Science Education Professional Development Project

    NASA Astrophysics Data System (ADS)

    Peticolas, L.; Maryboy, N.; Begay, D.; Stein, J.; Valdez, S.; Paglierani, R.

    2012-08-01

    A cultural disconnect exists between Western scientists and educators and Native communities in terms of scientific worldviews and Indigenous ways of knowing. This cultural disconnect manifests itself in the lack of participation of Native Americans in Western science and a lack of appreciation by Western scientists of Native science. Our NSF-Funded project "Cosmic Serpent: Bridging Native and Western Learning in Museum Settings" set out to provide a way for informal science education practitioners and tribal museum practitioners to learn about these two worldviews in such a way as to inform their educational practice around these concepts. We began with a pilot workshop in year one of this four-year project. We then provided two week-long professional development workshops in three regions within the Western U.S., and culminated with a final conference for all participants. In total, the workshops served 162 participants, including 115 practitioners from 19 tribal museums and 41 science, natural history, and cultural museums; 23 tribal community members; and 24 "bridge people" with knowledge of both Indigenous and Western science. For this article, we focus on the professional and personal transformations around culture, knowledge, science, and worldviews that occurred as a part of this project. We evaluated the collaborative aspects of this grant between the Indigenous Education Institute; the Center for Science Education at the University of California, Berkeley; the Institute for Learning Innovation; Native Pathways; Association for Science and Technology Centers; and the National Museum of the American Indian. Using evaluation results, as well as our personal reflections, we share our learnings from a place of transformation. We provide lessons we learned with this project, which we hope others will find relevant to their own science education work.

  13. Water Resources Research Grant Program Project Descriptions: Fiscal Year 1988

    USGS Publications Warehouse

    Lew, Melvin; McCoy, Beverly M.

    1989-01-01

    This report contains information on the 38 new projects funded by the U.S. Geological Survey's Water Resources Research Grant Program in fiscal year 1988 and on 11 projects completed during the year. For the new projects, the report gives the grant number, project title, performing organization, principal investigator(s), project duration, and a project description that includes: (1) identification of water-related problems and problem-solution approach, (2) contribution to problem solution, (3) objectives, and (4) approach. The 38 projects include 14 in the area of ground-water quality problems, 10 in the science and technology of water-quality management, 4 in climate variability and the hydrologic cycle, 7 in institutional change in water-resources management, and 3 in miscellaneous water-resources management problems. For the 11 completed projects, the report gives the grant number, project title, performing organization, principal investigator(s), starting date, date of receipt of final report, and an abstract of the final report. Each project description provides the information needed to obtain a copy of the final report. The report also contains tables showing (1) proposals received according to area of research interest, (2) grant awards and funding according to area of research interest, (3) proposals received according to type of submitting organization, and (4) awards and funding according to type of organization.

  14. Impact Assessment of a Department-Wide Science Education Initiative Using Students' Perceptions of Teaching and Learning Experiences

    ERIC Educational Resources Information Center

    Jones, Francis

    2017-01-01

    Evaluating major post-secondary education improvement projects involves multiple perspectives, including students' perceptions of their experiences. In the final year of a seven-year department-wide science education initiative, we asked students in 48 courses to rate the extent to which each of 39 teaching or learning strategies helped them learn…

  15. Live from Space Station Learning Technologies Project

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This is the Final Report for the Live From Space Station (LFSS) project under the Learning Technologies Project FY 2001 of the MSFC Education Programs Department. AZ Technology, Inc. (AZTek) has developed and implemented science education software tools to support tasks under the LTP program. Initial audience consisted of 26 TreK in the Classroom schools and thousands of museum visitors to the International Space Station: The Earth Tour exhibit sponsored by Discovery Place museum.

  16. Characteristics and sources of the electron density irregularities in the mid latitude E and Fregions

    DTIC Science & Technology

    2017-05-10

    ASTRONOMY &SPACE SCIENCE INSTITUTE Final Report 05/10/2017 DISTRIBUTION A: Distribution approved for public release. AF Office Of Scientific Research...kasi.re.kr - Institution : Korea Astronomy and Space Science Institute - Mailing Address : 776, Daedeokdae-ro, Yuseong-gu, Daejeon, Republic of...Youngsil Kwak 5d.  PROJECT NUMBER 5e.  TASK NUMBER 5f.  WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) KOREA ASTRONOMY &SPACE SCIENCE

  17. Building Surface Science Capacity to Serve the Automobile Industry in Southeastern Michigan, final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Weidian

    This project, “Building Surface Science Capacity to Serve the Automobile Industry in Southeastern Michigan” was carried out in two phases: (1) the 2009 – 2012 renovation of space in the new EMU Science Complex, which included the Surface Science Laboratory (SSL), a very vigorous research lab at EMU that carries on a variety of research projects to serve the auto and other industries in Michigan; and (2) the 2013 purchase of several pieces of equipment to further enhance the research capability of the SSL. The funding granted by the DoE was proposed to “renovate the space in the Science Complexmore » to include SSL and purchase equipment for tribological and electrochemical impedance measurements in the lab, thus SSL will serve the auto and other industries in Michigan better.” We believe we have fully accomplished the mission.« less

  18. Water Resources Research Grant Program project descriptions, fiscal year 1987

    USGS Publications Warehouse

    ,

    1987-01-01

    This report contains information on the 34 new projects funded by the United States Geological Survey 's Water Resources Research Grant Program in fiscal year 1987 and on 3 projects completed during the year. For the new projects, the report gives the grant number, project title, performing organization, principal investigator(s), and a project description that includes: (1) identification of water related problems and problem-solution approach (2) contribution to problem solution, (3) objectives, and (4) approach. The 34 projects include 12 in the area of groundwater quality problems, 12 in the science and technology of water quality management, 1 in climate variability and the hydrologic cycle, 4 in institutional change in water resources management, and 5 in surface water management. For the three completed projects, the report furnishes the grant number; project title; performing organization; principal investor(s); starting data; data of receipt of final report; and an abstract of the final report. Each project description provides the information needed to obtain a copy of the final report. The report contains tables showing: (1) proposals received according to area of research interest, (2) grant awards and funding according to area of research interest, (3) proposals received according to type of submitting organization, and (4) awards and funding according to type of organization. (Author 's abstract)

  19. The PACA Project Ecology: Observing Campaigns, Outreach and Citizen Science

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P. A.

    2016-12-01

    The PACA Project has three main components: observational campaigns aligned with scientific research; outreach to engage all forms of audiences and citizen science projects that aim to produce specific scientific results, by engaging professional scientific and amateur communities and a variety of audiences. The primary observational projects are defined by specific scientific goals by professionals, resulting in global observing campaigns involving a variety of observers, and observing techniques. Some of PACA's observing campaigns have included global characterization of comets (e.g., C/ISON, SidingSpring, 67P/Churyumov-Gerasimenko, Lovejoy, etc.), planets (Jupiter, Saturn and Mars) and currently expanding to include polarimetric exploration of solar system objects with small apertures and collaboration with CITIZEN CATE, a citizen science observing campaign to observe the 2017 Continental America Total Eclipse. Our Outreach campaigns leverage the multiple social media/platforms for at least two important reasons: (i) the immediate dissemination of observations and interaction with the global network and (ii) free or inexpensive resources for most of the participants. The use of social media is becoming prevalent in citizen science projects due to these factors. The final stage of the PACA ecosystem is the integration of these components into a publication. We shall highlight some of the interesting challenges and solutions of the PACA Project so far and provide a view of future projects in all three categories with new partnerships and collaborations.

  20. Small Particles in Cirrus (SPartICus) and Storm Peak Lab Validation Experiment (StormVEx) Science Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mace, Gerald

    The Small Particles in Cirrus (SPartICus) campaign took place from January through June, 2011 and the Storm Peak Lab Cloud Property Validation Experiment (StormVEx) took place from November, 2011 through April, 2012. The PI of this project, Dr. Gerald Mace, had the privilege to be the lead on both of these campaigns. The essence of the project that we report on here was to conduct preliminary work that was necessary to bring the field data sets to a point where they could be used for their intended science purposes

  1. Extension of TVCAI Project to Include Demonstration of Intelligent Videodisc System. Hardware, Software, and Courseware Implementation Component. Final Report.

    ERIC Educational Resources Information Center

    Brandt, Richard C.; Knapp, Barbara H.

    This project, stemming from work started under the National Science Foundation grant "Development of a Television Computer Assisted Instruction (TVCAI) System" SER-7806412, called for the transfer to videodisc of some of the videotape materials developed under the grant. Three efforts were included in the proposal: design and development…

  2. Newton High School Project CAPABLE 1984-1985. OEA Evaluation Report.

    ERIC Educational Resources Information Center

    1986

    In 1984-85, Project CAPABLE was in its final year of a 3-year funding cycle at schools in New York City. The program provided instruction in English as a second language, native language arts, bilingual science, and bilingual social studies to 324 Chinese, Korean, and Vietnamese-speaking students of limited English proficiency (LEP) in Grades 9…

  3. Taking a 'Big Data' approach to data quality in a citizen science project.

    PubMed

    Kelling, Steve; Fink, Daniel; La Sorte, Frank A; Johnston, Alison; Bruns, Nicholas E; Hochachka, Wesley M

    2015-11-01

    Data from well-designed experiments provide the strongest evidence of causation in biodiversity studies. However, for many species the collection of these data is not scalable to the spatial and temporal extents required to understand patterns at the population level. Only data collected from citizen science projects can gather sufficient quantities of data, but data collected from volunteers are inherently noisy and heterogeneous. Here we describe a 'Big Data' approach to improve the data quality in eBird, a global citizen science project that gathers bird observations. First, eBird's data submission design ensures that all data meet high standards of completeness and accuracy. Second, we take a 'sensor calibration' approach to measure individual variation in eBird participant's ability to detect and identify birds. Third, we use species distribution models to fill in data gaps. Finally, we provide examples of novel analyses exploring population-level patterns in bird distributions.

  4. Final Report for DE-SC0002298 Agency Number: DE-PS02-09ER09-01 An Advanced Network and distributed Storage Laboratory (ANDSL) for Data Intensive Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livny, Miron

    2014-08-17

    The original intent of this project was to build and operate an Advanced Network and Distributed Storage Laboratory (ANDSL) for Data Intensive Science that will prepare the Open Science Grid (OSG) community for a new generation of wide area communication capabilities operating at a 100Gb rate. Given the significant cut in our proposed budget we changed the scope of the ANDSL to focus on the software aspects of the laboratory – workload generators and monitoring tools and on the offering of experimental data to the ANI project. The main contributions of our work are twofold: early end-user input and experimentalmore » data to the ANI project and software tools for conducting large scale end-to-end data placement experiments.« less

  5. Science Operations Management

    NASA Astrophysics Data System (ADS)

    Squibb, Gael F.

    1984-10-01

    The operation teams for the Infrared Astronomical Satellite (IRAS) included scientists from the IRAS International Science Team. The scientific decisions on an hour-to-hour basis, as well as the long-term strategic decisions, were made by science team members. The IRAS scientists were involved in the analysis of the instrument performance, the analysis of the quality of the data, the decision to reacquire data that was contaminated by radiation effects, the strategy for acquiring the survey data, and the process for using the telescope for additional observations, as well as the processing decisions required to ensure the publication of the final scientific products by end of flight operations plus one year. Early in the project, two science team members were selected to be responsible for the scientific operational decisions. One, located at the operations control center in England, was responsible for the scientific aspects of the satellite operations; the other, located at the scientific processing center in Pasadena, was responsible for the scientific aspects of the processing. These science team members were then responsible for approving the design and test of the tools to support their responsibilities and then, after launch, for using these tools in making their decisions. The ability of the project to generate the final science data products one year after the end of flight operations is due in a large measure to the active participation of the science team members in the operations. This paper presents a summary of the operational experiences gained from this scientific involvement.

  6. Hyperspectral Technology Transfer to the US Department of Interior: Summary of Results of the NASA/DOI Hyperspectral Technology Transfer Project

    NASA Technical Reports Server (NTRS)

    Root, Ralph; Wickland, Diane

    2001-01-01

    In 1997 the Office of Biological Informatics and Outreach (OBIO), Biological Resources Division, US Geological Survey and NASA, Office of Earth Science (OES), initiated a coordinated effort for applying Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data and analysis, as a technology transfer project, to critical DOI environmental issues in four study sites throughout the United States. This work was accomplished by four US Department of the Interior (DOI) study teams with support from NASA/OES principal investigators and the Office of Earth Science programs. The studies, including personnel, objectives, background, project plans, and milestones were documented in a project website at . This report summarizes the final outcomes of the project, detailing accomplishments, lessons learned, and benefits realized to NASA, the US Geological Survey, and the participating DOI bureaus.

  7. Final Report on DOE Project entitled Dynamic Optimized Advanced Scheduling of Bandwidth Demands for Large-Scale Science Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramamurthy, Byravamurthy

    2014-05-05

    In this project, developed scheduling frameworks for dynamic bandwidth demands for large-scale science applications. In particular, we developed scheduling algorithms for dynamic bandwidth demands in this project. Apart from theoretical approaches such as Integer Linear Programming, Tabu Search and Genetic Algorithm heuristics, we have utilized practical data from ESnet OSCARS project (from our DOE lab partners) to conduct realistic simulations of our approaches. We have disseminated our work through conference paper presentations and journal papers and a book chapter. In this project we addressed the problem of scheduling of lightpaths over optical wavelength division multiplexed (WDM) networks. We published severalmore » conference papers and journal papers on this topic. We also addressed the problems of joint allocation of computing, storage and networking resources in Grid/Cloud networks and proposed energy-efficient mechanisms for operatin optical WDM networks.« less

  8. Barriers and facilitators for integrating digital narratives in secondary school science instruction: A media specialist's action research study

    NASA Astrophysics Data System (ADS)

    Midland, Susan

    Media specialists are increasingly assuming professional development roles as they collaborate with teachers to design instruction that combines content with technology. I am a media specialist in an independent school, and collaborated with two science teachers over a three-year period to integrate technology with their instruction. This action study explored integration of a digital narrative project in three eighth-grade earth science units and one ninth-grade physics unit with each unit serving as a cycle of research. Students produced short digital documentaries that combined still images with an accompanying narration. Students participating in the project wrote scripts based on selected science topics. The completed scripts served as the basis for the narratives. These projects were compared with a more traditional science writing project. Barriers and facilitators for implementation of this type of media project in a science classroom were identified. Lack of adequate access to computers proved to be a significant mechanical barrier. Acquisition of a laptop cart reduced but did not eliminate the technology access issues. The complexity of the project increased implementation time in comparison with traditional alternatives. Evaluation of the completed media projects presented problems. Scores by outside evaluators reflected evaluator unfamiliarity with assessing multimedia projects rather than student performance. Despite several revisions of the assessment rubric, low inter-rater reliability remained a concern even in the last cycle. This suggests that evaluation of media could present issues for teachers who attempt projects of this kind. A writing frame was developed to facilitate production of scripts. This reduced the time required to produce the scripts, but produced writing that was formulaic in the teacher's estimate. A graphic organizer was adopted in the final cycle to address this concern. New insights emerged as the study progressed through the four cycles of the study. At the conclusion of the study, the two teachers and I had a better understanding of barriers that can prevent smooth integration of a technology-based project.

  9. Mario Bunge: Physicist and Philosopher

    NASA Astrophysics Data System (ADS)

    Matthews, Michael R.

    Mario Bunge was born in Argentina in the final year of the First World War.He learnt atomic physics and quantum mechanics from an Austrian refugee who had been a student of Heisenberg. Additionally he taught himself modern philosophy in an environment that was a philosophical backwater. He was the first South American philosopher of science to be trained in science. His publications in physics, philosophy, psychology, sociology and the foundations of biology, are staggering in number, and include a massive 8-volume Treatise on Philosophy. The unifying thread of his scholarship is the constant and vigorous advancement of the Enlightenment Project, and criticism of cultural and academic movements that deny or devalue the core planks of the project: namely its naturalism, the search for truth, the universality of science, rationality, and respect for individuals. At a time when specialisation is widely decried, and its deleterious effects on science, philosophy of science, educational research and science teaching are recognised - it is salutary to see the fruits of one person's pursuit of the Big'' scientific and philosophical picture.

  10. Wind power live! An interactive exhibit and related programs about wind generated energy at the Science Museum of Minnesota. Final performance report, February 1, 1995--September 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, P.

    The final performance report for the Wind Power Live! museum exhibit summarizes the goals and outcomes for the project. Project goals included: (1) help museum visitors understand why wind is being considered as a significant energy source; (2) enable visualization of the dynamics and power output of turbines; (3) exhibit a working wind turbine; (4) showcase wind as a technological success story; (5) consider the environmental costs and benefits of wind energy; (6) examine the economics of wind power, and (7) explain some of the limits to wind power as a commercial energy source. The methods of meeting the projectmore » goals through the museum exhibit are briefly outlined in the report. Goal number three, to introduce a working wind turbine, was dropped from the final project.« less

  11. ENVIRONMENTAL SCIENCE AND TECHNOLOGY. (R822721C703)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  12. Developing statistical wildlife habitat relationships for assessing cumulative effects of fuels treatments: Final Report for Joint Fire Science Program Project

    Treesearch

    Samuel A. Cushman; Kevin S. McKelvey

    2006-01-01

    The primary weakness in our current ability to evaluate future landscapes in terms of wildlife lies in the lack of quantitative models linking wildlife to forest stand conditions, including fuels treatments. This project focuses on 1) developing statistical wildlife habitat relationships models (WHR) utilizing Forest Inventory and Analysis (FIA) and National Vegetation...

  13. A robotic exploration mission to Mars and Phobos

    NASA Technical Reports Server (NTRS)

    Kerr, Justin H.; Defosse, Erin; Ho, Quang; Barriga, Ernisto; Davis, Grant; Mccourt, Steve; Smith, Matt

    1993-01-01

    This report discusses the design of a robotic exploration to Mars and Phobos. It begins with the mission's background and objectives, followed by a detailed explanation of various elements of Project Aeneas, including science, spacecraft, probes, and orbital trajectories. In addition, a description of Argos Space Endeavours, management procedures, and overall project costs are presented. Finally, a list of recommendations for future design activity is included.

  14. Creation of Audiovisual Presentations as a Tool to Develop Key Competences in Secondary-School Students. A Case Study in Science Class

    ERIC Educational Resources Information Center

    Ezquerra, Ángel; Manso, Javier; Burgos, Mª Esther; Hallabrin, Carla

    2014-01-01

    New curricular plans based on key competences create the need for new educational proposals that allow their development. This article describes a proposal to develop key competences through project-based learning. The project's objective is the creation of a digital video. The following study was carried out with students in their final two years…

  15. DARPA Advanced High Current Density Cathodes for Defense Applications: Development Phase

    DTIC Science & Technology

    1993-03-01

    Project Number 01-0624-07-0857 Report Number SAIC-93/1018 March 1, 1993 Science Apphcations Internatia Corporation An Employee-Owned Company OTIC a...Density Cathodes for Defense Applications: Development Phase FINAL REPORT Contract Number N00014-90-C-2118 Project Number 01-0624-07-0857 Report...of a typical Si-TaSi2 boule used for the eutectic advanced cathode materials in this project . The seed for the boule is at right in the photograph. v

  16. Final Report for the ZERT Project: Basic Science of Retention Issues, Risk Assessment & Measurement, Monitoring and Verification for Geologic Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spangler, Lee; Cunningham, Alfred; Lageson, David

    2011-03-31

    ZERT has made major contributions to five main areas of sequestration science: improvement of computational tools; measurement and monitoring techniques to verify storage and track migration of CO{sub 2}; development of a comprehensive performance and risk assessment framework; fundamental geophysical, geochemical and hydrological investigations of CO{sub 2} storage; and investigate innovative, bio-based mitigation strategies.

  17. Increasing Productivity through Social Structure.

    DTIC Science & Technology

    1985-02-15

    relay team. The availability of prizes was thus equal for individual and team competition. The prizes were colorful T-shirts with the words " Social ...AD-RI68 261 INCREASING PRODUCTIVITY THROUGH SOCIAL STRUCTUREM NORTH CAROLINA UNIV AT CHAPEL HILL INST FOR RESEARCH IN SOCIAL SCIENCE B LATANE 15 FEB...North Carolina (Institute for Research in Social Science Chapel Hill, NC 27514 c0 UIncreasing Productivity through Social Structure: Final Project Report

  18. Chemistry for the Life Sciences. An Instructor Resource Guide. Appendix to a Final Report on the Paraprofessional Rurally Oriented Family Home Health Training Program.

    ERIC Educational Resources Information Center

    Odom, H. Clyde; Myer, Donna Foster

    This instructor's resource guide, one in a series of products from a project to develop an associate degree program for paraprofessional rural family health promoters, deals with teaching chemistry for the life sciences. Covered in the first section of the volume are the role of chemistry in rural health promotional training, general objectives…

  19. The adventures of climate science in the sweet land of idle arguments

    NASA Astrophysics Data System (ADS)

    Winsberg, Eric; Goodwin, William Mark

    2016-05-01

    In a recent series of papers Roman Frigg, Leonard Smith, and several coauthors have developed a general epistemological argument designed to cast doubt on the capacity of a broad range of mathematical models to generate "decision relevant predictions." The presumptive targets of their argument are at least some of the modeling projects undertaken in contemporary climate science. In this paper, we trace and contrast two very different readings of the scope of their argument. We do this by considering the very different implications for climate science that these interpretations would have. Then, we lay out the structure of their argument-an argument by analogy-with an eye to identifying points at which certain epistemically significant distinctions might limit the force of the analogy. Finally, some of these epistemically significant distinctions are introduced and defended as relevant to a great many of the predictive mathematical modeling projects employed in contemporary climate science.

  20. Wind-energy Science, Technology and Research (WindSTAR) Consortium: Curriculum, Workforce Development, and Education Plan Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manwell, James

    2013-03-19

    The purpose of the project is to modify and expand the current wind energy curriculum at the University of Massachusetts Amherst and to develop plans to expand the graduate program to a national scale. The expansion plans include the foundational steps to establish the American Academy of Wind Energy (AAWE). The AAWE is intended to be a cooperative organization of wind energy research, development, and deployment institutes and universities across North America, whose mission will be to develop and execute joint RD&D projects and to organize high-level science and education in wind energy

  1. Music Education and the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Beauregard, J. L.

    2011-12-01

    Capturing the interest of non-science majors in science classes can be very difficult, no matter what type of science course it is. At Berklee College of Music, this challenge is especially daunting, as all students are majoring in some type of music program. To engage the Berklee students, I am trying to link the material in Earth science courses to music. The connection between Earth science and music is made in several different ways within the curriculum of each class, with the main connection via a final project. For their projects, students can use any creative outlet (or a standard presentation) to illustrate a point related to the course. Many students have chosen to compose original music and perform it for the class. Some examples of their work will be presented. These original compositions allow students to relate course material to their own lives. Additionally, since many of these students will enter professional careers in the performance and recording industries, the potential exists for them to expose large audiences to the issues of Earth sciences through music.

  2. Evaluation of a High School Fair Program for Promoting Successful Inquiry-based Learning

    NASA Astrophysics Data System (ADS)

    Betts, Julia Nykeah

    The success of inquiry-based learning (IBL) in supporting science literacy can be challenged when students encounter obstacles in the absence of proper support. This research is intended to evaluate the effectiveness of an Oregon public school district's regional science fair coaching program in promoting inquiry skills and positive attitudes toward science in participating high school students. The purpose of this study was to better understand students' perception of program support, obstacles or barriers faced by students, and potential benefits of IBL facilitated by the science fair program. Data included responses to informal and semi-structured interviews, an anonymous survey, a Skills assessment of final project displays, and an in-depth case study on three students' experiences. Results suggest that the science fair program can properly engage participants in authentic IBL. However, when assessing the participant's final project displays, I found that previous fair experience did not significantly increase mean scores as identified by the official Oregon Department of Education (ODE) scoring guides. Based on results from the case study, it is suggested that participants' low science self-concept, poor understanding of inquiry skills, and inability to engage in reflective discourse may reduce students' abilities to truly benefit. Recommendations to address this discrepancy include identifying specific needs of students through a pre--fair survey to develop more targeted support, and providing new opportunities to develop skills associated with science-self concept, understanding of inquiry and reflective discourse. In addition, results suggest that students would benefit from more financial support in the form of grants, and more connections with knowledgeable mentors.

  3. Inquiry projects in science teacher education: What can investigative experiences reveal about teacher thinking and eventual classroom practice?

    NASA Astrophysics Data System (ADS)

    Windschitl, Mark

    2003-01-01

    Science education reform documents emphasize the importance of inquiry experiences for young learners. This means that teachers must be prepared with the knowledge, skills, and habits of thinking to mentor their students through authentic investigations. This study examines how preservice teachers' inquiry experiences, in a science methods course, influenced and were influenced by their conceptions of inquiry. The study also assesses how these experiences were associated with eventual classroom practice. Six preservice secondary teachers were observed during a 2-month inquiry project and then followed into the classroom as they began a 9-week teaching practicum. Data revealed that participants' preproject conceptions of the inquiry process were related to the conduct and interpretation of their own inquiry project, and that the project experience modified the inquiry conceptions of those participants who already had sophisticated understandings of scientific investigations. Perhaps most importantly, the participants who eventually used guided and open inquiry during their student teaching were not those who had more authentic views of inquiry or reflected most deeply about their own inquiry projects, but rather they were individuals who had significant undergraduate or professional experiences with authentic science research. Finally, this article advocates that independent science investigations be part of preservice education and that these experiences should be scaffolded to prompt reflection specifically about the nature of inquiry and conceptually linked to ways in which inquiry can be brought into the K-12 classroom.

  4. Guiding science expeditions: The design of a learning environment for project-based science

    NASA Astrophysics Data System (ADS)

    Polman, Joseph Louis

    Project-based pedagogy has been revived recently as a teaching strategy for promoting students' active engagement in learning science by doing science. Numerous reform efforts have encouraged project-based teaching in high schools, along with a range of supports for its implementation, often including computers and the Internet. History has shown, however, that academic research and new technologies are not enough to effect real change in classrooms. Ultimately, teachers accomplish activity with their students daily in classrooms. Putting the idea of project-based teaching into practice depends on many particulars of teachers' situated work with students. To better understand the complexity of project-based science teaching in schools, I conducted an interpretive case study of one exceptional teacher's work. The teacher devotes all class time after the beginning of the year to open-ended, student-designed Earth Science research projects. Over four years of involvement with the Learning through Collaborative Visualization (CoVis) reform effort, this teacher has developed, implemented, and refined strategies for supporting and guiding students in conducting open-ended inquiry. Through a close examination of the teacher's work supporting student projects, I explore the design issues involved in such an endeavor, including affordances, constraints, and tradeoffs. In particular, I show how time constrains both student and teacher action, how the traditional school culture and grading create stumbling blocks for change, and how conflicting beliefs about teaching and learning undermine the accomplishment of guided inquiry. I also show how Internet tools including Usenet news, email, and the World Wide Web afford students an opportunity to gather and make use of distributed expertise and scientific data resources; how an activity structure, combined with a corresponding structure to the artifact of the final written product, supports student accomplishment of unfamiliar practices; and how the teacher guides students in real time through mutually transformative communication. I synthesize the important design elements into a framework for conducting project-based science, especially in settings where such pedagogy is relatively new. This study will inform teachers and reformers of the practical and complex work of implementing project-based teaching in schools.

  5. Oklahoma Space Industry Development Authority

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The purpose of this grant was to increase the awareness of students of space sciences and commerce through experimentation. This objective was carried out through the award and administration, by OSIDA, the Oklahoma Space Industry Development Authority, of eleven smaller grants to fund thirteen projects at schools determined by competitive application. Applications were graded on potential outreach, experimentation objectives and impact on students' awareness of space sciences. We chose projects from elementary, middle and high schools as well as colleges that would encourage students through research and experimentation to consider education and careers in related disciplines. Each organization did not receive an equal share of the grant; instead, OSIDA distributed the money to each project based on the organization's need. A copy of the dispersement record is enclosed with this final grant report. The projects covered topics such as: space colonization, space stations, constellations, model rocketry, and space commerce.

  6. Materials Science and Physics at Micro/Nano-Scales. FINAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Judy Z.

    2009-09-07

    The scope of this project is to study nanostructures of semiconductors and superconductors, which have been regarded as promising building blocks for nanoelectronic and nanoelectric devices. The emphasis of this project is on developing novel synthesis approaches for fabrication of nanostructures with desired physical properties. The ultimate goal is to achieve a full control of the nanostructure growth at microscopic scales. The major experimental achievements obtained are summarized

  7. Mathematics and Measurement.

    PubMed

    Boisvert, R F; Donahue, M J; Lozier, D W; McMichael, R; Rust, B W

    2001-01-01

    In this paper we describe the role that mathematics plays in measurement science at NIST. We first survey the history behind NIST's current work in this area, starting with the NBS Math Tables project of the 1930s. We then provide examples of more recent efforts in the application of mathematics to measurement science, including the solution of ill-posed inverse problems, characterization of the accuracy of software for micromagnetic modeling, and in the development and dissemination of mathematical reference data. Finally, we comment on emerging issues in measurement science to which mathematicians will devote their energies in coming years.

  8. Scientific and Technical Support for the Galileo Net Flux Radiometer Experiment

    NASA Technical Reports Server (NTRS)

    Sromovsky, Lawrence A.

    1997-01-01

    This report describes work in support of the Galileo Net Flux Radiometer (NFR), an instrument mounted on the Galileo probe, a spacecraft designed for entry into and direct measurements of Jupiter's atmosphere. Tasks originally proposed for the post launch period covered by NCC 2-854 are briefly as follows: attend and support PSG (Project Science Group) and other project science meetings; support in-flight checkouts; maintain and keep safe the spare instrument and GSE (Ground Support Equipment); organize and maintain documentation; finish NFR calibration measurements, documentation, and analysis; characterize and diagnose instrument anomalies; develop descent data analysis tools; and science data analysis and publication. Because we had the capability to satisfy a project support need we also subsequently proposed and were funded to make ground-based observations of Jupiter during the period surrounding the Galileo arrival at Jupiter, using the Swedish Solar Telescope at La Palma, Canary Islands. The following section provides background information on the NFR instrument. Section 3 contains the final report of work done.

  9. Women in Science and Technology: The Institutional Ecology Approach. Volume II: Statistical Annex: Sex Differentiation of Grade 12 Enrollments and of Higher Education Disciplines.

    ERIC Educational Resources Information Center

    Byrne, Eileen M.

    This volume is to be used in conjunction with volume I (Final Research Report) of the Women in Science and Technology in Australia (WISTA) research project. This document contains the main statistical tables of grade 12 and higher education enrollments used as the basis for the statistical element of the WISTA research report. The document is…

  10. Improving Mobile Infrastructure for Pervasive Personal Computing

    DTIC Science & Technology

    2007-11-01

    fulfillment of the requirements for the degree of Master of Science. Copyright c© 2007 Ajay Surie This research was supported by the National Science Foundation...NSF) under grant number CNS-0509004 and by the Army Research Office (ARO) through grant number DAAD19-02-1-0389 (“Perpetually Available and Secure...efforts my final project could not have been successful. Working with the members of my research group, Niraj Tolia, Benjamin Gilbert, Jan Harkes, Adam

  11. Whole-House Design and Commissioning in the Project Home Again Hot-Humid New Construction Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerrigan, Philip

    2012-09-01

    Building Science Corporation has been working with Project Home Again since 2008 and has consulted on the design of around 100 affordable, energy efficient new construction homes for victims of hurricanes Katrina and Rita. This report details the effort on the final two phases of the project: Phases V and VI, which resulted in a total of 25 homes constructed in 2011. The goal of this project was to develop and implement an energy efficiency package that will achieve at least 20% whole house source energy savings improvement over the B10 Benchmark.

  12. Involving stakeholders in the commissioning and implementation of fishery science projects: experiences from the U.K. Fisheries Science Partnership.

    PubMed

    Armstrong, M J; Payne, A I L; Deas, B; Catchpole, T L

    2013-10-01

    Following from similar initiatives worldwide, the U.K.'s Fisheries Science Partnership (FSP) was established in 2003 to provide the fishing industry with opportunities to propose and participate in scientific studies in collaboration with fishery scientists. Key concepts were that most of the available funding would support industry participation, that industry, not scientists, would come up with the ideas for projects, and that commercial fishing vessels and fishing methods would be used to address specific concerns of the fishing industry in a scientifically controlled manner. Nearly 100 projects had been commissioned by March 2012, covering annual time-series surveys of stocks subject to traditional assessment, and ad hoc projects on, e.g. gear selectivity, discard survival, tagging and migration and fishery development. The extent to which the results of the projects have been used by stakeholders, fishery scientists and fishery managers at a national and E.U. level is evaluated, along with the degree of industry interest and involvement, and reasons are identified for successes or failures in the uptake of the results into management and policy. Finally, the question is posed whether the programme has been successful in improving the engagement of the fishing community in the science-management process and in fostering communication and greater trust between fishers, scientists and managers. © 2013 Crown Copyright. © 2013 The Fisheries Society of the British Isles.

  13. Review of State Soil Cleanup Levels for Dioxin (December 2009)

    EPA Science Inventory

    This final report summarizes a survey of state soil cleanup levels for dioxin and characterizes the science underlying these values. The objective of this project was to summarize existing state cleanup levels for dioxin in soil, together with their scientific bases where availa...

  14. FOR THE FUN OF SCIENCE: A DISCUSSION WITH JOHN E. CASIDA. (R825433)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  15. PFIESTERIA SCIENCE PRIOR TO THE CHESAPEAKE OUTBREAKS, AND AN ABBREVIATED EPILOGUE. (R825551)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  16. Applying an information literacy rubric to first-year health sciences student research posters.

    PubMed

    Goodman, Xan; Watts, John; Arenas, Rogelio; Weigel, Rachelle; Terrell, Tony

    2018-01-01

    This article describes the collection and analysis of annotated bibliographies created by first-year health sciences students to support their final poster projects. The authors examined the students' abilities to select relevant and authoritative sources, summarize the content of those sources, and correctly cite those sources. We collected images of 1,253 posters, of which 120 were sampled for analysis, and scored the posters using a 4-point rubric to evaluate the students' information literacy skills. We found that 52% of students were proficient at selecting relevant sources that directly contributed to the themes, topics, or debates presented in their final poster projects, and 64% of students did well with selecting authoritative peer-reviewed scholarly sources related to their topics. However, 45% of students showed difficulty in correctly applying American Psychological Association (APA) citation style. Our findings demonstrate a need for instructors and librarians to provide strategies for reading and comprehending scholarly articles in addition to properly using APA citation style.

  17. Applying an information literacy rubric to first-year health sciences student research posters*

    PubMed Central

    Goodman, Xan; Watts, John; Arenas, Rogelio; Weigel, Rachelle; Terrell, Tony

    2018-01-01

    Objective This article describes the collection and analysis of annotated bibliographies created by first-year health sciences students to support their final poster projects. The authors examined the students’ abilities to select relevant and authoritative sources, summarize the content of those sources, and correctly cite those sources. Methods We collected images of 1,253 posters, of which 120 were sampled for analysis, and scored the posters using a 4-point rubric to evaluate the students’ information literacy skills. Results We found that 52% of students were proficient at selecting relevant sources that directly contributed to the themes, topics, or debates presented in their final poster projects, and 64% of students did well with selecting authoritative peer-reviewed scholarly sources related to their topics. However, 45% of students showed difficulty in correctly applying American Psychological Association (APA) citation style. Conclusion Our findings demonstrate a need for instructors and librarians to provide strategies for reading and comprehending scholarly articles in addition to properly using APA citation style. PMID:29339940

  18. D. Carlos de Bragança, a Pioneer of Experimental Marine Oceanography: Filling the Gap Between Formal and Informal Science Education

    NASA Astrophysics Data System (ADS)

    Faria, Cláudia; Pereira, Gonçalo; Chagas, Isabel

    2012-06-01

    The activities presented in this paper are part of a wider project that investigates the effects of infusing the history of science in science teaching, toward students' learning and attitude. Focused on the work of D. Carlos de Bragança, King of Portugal from 1889 to 1908, and a pioneer oceanographer, the activities are addressed at the secondary Biology curriculum (grade 10, ages 15, 16). The proposed activities include a pre-visit orientation task, two workshops performed in a science museum and a follow-up learning task. In class, students have to analyse original historical excerpts of the king's work, in order to discuss and reflect about the nature of science. In the museum, students actively participate in two workshops: biological classification and specimen drawing. All students considered the project relevant for science learning, stating that it was important not only for knowledge acquisition but also for the understanding of the nature of science. As a final remark we stress the importance of creating activities informed by the history of science as a foundation for improving motivation, sustaining effective science teaching and meaningful science learning, and as a vehicle to promote a closer partnership between schools and science museums.

  19. Transformed Science: Overcoming Barriers of Inequality and Mistrust to Pursue the Agenda of Underrepresented Communities

    NASA Astrophysics Data System (ADS)

    Lyons, Renee

    Educational programs created to provide opportunities for all, in reality often reflect social inequalities. Such is the case for Public Participation in Scientific Research (PPSR) Projects. PPSR projects have been proposed as an effective way to engage more diverse audiences in science, yet the demographics of PPSR participants do not correspond with the demographic makeup of the United States. The field of PPSR as a whole has struggled to recruit low SES and underrepresented populations to participate in project research efforts. This research study explores factors, which may be affecting an underrepresented community's willingness to engage in scientific research and provides advice from PPSR project leaders in the field, who have been able to engage underrepresented communities in scientific research, on how to overcome these barriers. Finally the study investigates the theoretical construct of a Third Space within a PPSR project. The research-based recommendations for PPSR projects desiring to initiate and sustain research partnerships with underrepresented communities well align with the theoretical construct of a Third Space. This study examines a specific scientific research partnership between an underrepresented community and scientific researchers to examine if and to what extent a Third Space was created. Using qualitative methods to understand interactions and processes involved in initiating and sustaining a scientific research partnership, this study provides advice on how PPSR research partnerships can engage underrepresented communities in scientific research. Study results show inequality and mistrust of powerful institutions stood as participation barriers for underrepresented community members. Despite these barriers PPSR project leaders recommend barriers can be confronted by open dialogue with communities about the abuse and alienation they have faced, by signaling respect for the community, and by entering the community through someone the community already trusts. Finally although many of the principles of a Third Space well align with the larger level of activity, which existed in the PPSR project examined in this study, study findings challenge others to critically examine assumptions behind the idea of a Third Space in PPSR and urge other PPSR project leaders towards a transformed view of science.

  20. Defectivity control of aluminum chemical mechanical planarization in replacement metal gate process of MOSFET

    NASA Astrophysics Data System (ADS)

    Jin, Zhang; Yuling, Liu; Chenqi, Yan; Yangang, He; Baohong, Gao

    2016-04-01

    The replacement metal gate (RMG) defectivity performance control is very challenging in high-k metal gate (HKMG) chemical mechanical polishing (CMP). In this study, three major defect types, including fall-on particles, micro-scratch and corrosion have been investigated. The research studied the effects of polishing pad, pressure, rotating speed, flow rate and post-CMP cleaning on the three kinds of defect, which finally eliminated the defects and achieved good surface morphology. This study will provide an important reference value for the future research of aluminum metal gate CMP. Project supported by the Major National Science and Technology Special Projects (No. 2009ZX02308), the Natural Science Foundation for the Youth of Hebei Province (Nos. F2012202094, F2015202267), and the Outstanding Youth Science and Technology Innovation Fund of Hebei University of Technology (No. 2013010).

  1. New Capabilities for Hostile Environments on Z Grand Challenge LDRD - Final Status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuneo, Michael E.; Griffin, P. J.; Balch, D. K.

    2016-10-01

    The purpose of this project was to develop new physical simulation capabilities in order to support the science-based qualification of nonnuclear weapon components in hostile radiation environments. The project contributes directly to the goals of maintaining a safe, secure, and effective US nuclear stockpile, maintaining strategic deterrence at lower nuclear force levels, extending the life of the nuclear deterrent capability, and to be ready for technological surprise.

  2. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    Students and faculty from Mapletown Jr/Sr High School and Margaret Bell Middle School listen as John Grunsfeld, NASA Associate Administrator for the Science Mission Directorate, speaks about his experiences on the final space shuttle servicing mission to the Hubble Space Telescope during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014. Photo Credit: (NASA/Joel Kowsky)

  3. Climate research, citizen science and art in Bangladesh

    NASA Astrophysics Data System (ADS)

    Stiller-Reeve, Mathew; Naznin, Zakia; Blanchard, Anne; Bremer, Scott

    2017-04-01

    Our research project focuses on climate information for adaptation in the northeast region of Bangladesh. In this project, we work closely with local rural communities. Since these local people are carrying out citizen science together, then a sense of community and good team spirit are essential for success. We collaborated with a Bangladeshi artist to achieve some important goals. Not only did we want to create new and exciting outreach materials, we -more importantly- wanted to see how the artistic process could nurture a sense of community for the local participants. Despite being limited by time, we saw some promising outcomes from the collaboration. The artist successfully interacted with the project researchers and the local participants. The final artwork was a real collaboration between the artist and the participants whom felt pride and ownership in the results.

  4. Student projects in medicine: a lesson in science and ethics.

    PubMed

    Edwards, Sarah J L

    2009-11-01

    Regulation of biomedical research is the subject of considerable debate in the bioethics and health policy worlds. The ethics and governance of medical student projects is becoming an increasingly important topic in its own right, especially in the U.K., where there are periodic calls to change it. My main claim is that there seems to be no good reason for treating student projects differently from projects led by qualified and more experienced scientists and hence no good grounds for changing the current system of ethics review. I first suggest that the educational objectives cannot be met without laying down standards of good science, whatever they may be. Weak science is unnecessary for educational purposes, and it is, in any case, unlikely to produce good researchers in the future. Furthermore, it is curious to want to change the system of ethics review specifically for students when it is the science that is at stake, and when the science now falls largely outside the ethics remit. I further show that ethics review is nevertheless important since students carry a new potential conflict of interests that warrants independent oversight which supervisory support does not offer. This potential conflict may become more morally troublesome the greater the risks to the subjects of the research, and students may impose greater risks on their subjects (relative to professional researchers) by virtue of being inexperienced, whatever the nature of the project. Pragmatic concerns may finally be allayed by organizing the current system more efficiently at critical times of the university calendar.

  5. Methane Hydrate Field Program: Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, Greg

    This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report: Historical Methane Hydrate Projectmore » Review Report; Methane Hydrate Workshop Report; Topical Report: Marine Methane Hydrate Field Research Plan; and Final Scientific/Technical Report.« less

  6. RN Baccalaureate Education: A Process-Product Evaluation, 1979-1983. Final Report.

    ERIC Educational Resources Information Center

    Jacobsen, Marilyn-Lu W.; Sabritt, David

    Processes and outcomes associated with baccalaureate education for registered nurses were studied longitudinally as part of the Sleuthing Nursing Pathways Project. Participants included about 500 registered nurses who entered the Bachelor of Science in Nursing (BSN) programs at the University of Kentucky, the University of Louisville, Northern…

  7. Transparency Masters for Crop and Weed Identification. Final Report.

    ERIC Educational Resources Information Center

    Miller, Dwane G.; And Others

    Instructional aids produced from these transparency masters and the accompanying narrative may be used by vocational agriculture teachers in presenting courses in plant science. They were developed by subject matter specialists and teacher educators as part of a project designed to test effects of involving vocational agriculture teachers in…

  8. Thought Experiments in Physics Education: A Simple and Practical Example.

    ERIC Educational Resources Information Center

    Lattery, Mark J.

    2001-01-01

    Uses a Galilean thought experiment to enhance learning in a college-level physical science course. Presents both modern and historical perspectives of Galileo's work. As a final project, students explored Galileo's thought experiment in the laboratory using modern detectors with satisfying results. (Contains 25 references.) (Author/ASK)

  9. The Impact of Automation on Libraries. Final Report.

    ERIC Educational Resources Information Center

    Cline, Hugh F.; Sinnott, Loraine T.

    This project examined a series of alternative policies for the management and funding of university libraries as they adopt and adapt to various information science technologies to accomplish the functions of acquisitions, cataloging, circulation, and reference services. Comparative case studies were completed at the University of Chicago,…

  10. Bridging Knowledge: A Collective Undergraduate Thesis Development Approach

    ERIC Educational Resources Information Center

    Holdsworth, Jason K.; Arun, Özgür

    2017-01-01

    While there are various approaches to gerontological and geriatrics (and social sciences) education globally, a component commonly included in undergraduate education is a final thesis project. In Turkey, the Department of Gerontology at Akdeniz University has undertaken a unique approach to thesis development that values and draws on accessing…

  11. Computer Lab Modules as Problem Solving Tools. Final Report.

    ERIC Educational Resources Information Center

    Ignatz, Mila E.; Ignatz, Milton

    There are many problems involved in upgrading scientific literacy in high schools: poorly qualified teachers, the lack of good instructional materials, and economic and academic disadvantages all contribute to the problem. This document describes a project designed to increase the opportunities available to the high school science student to…

  12. Point spread function modeling and image restoration for cone-beam CT

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Huang, Kui-Dong; Shi, Yi-Kai; Xu, Zhe

    2015-03-01

    X-ray cone-beam computed tomography (CT) has such notable features as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection image degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed first. The general PSF model of cone-beam CT is established, and based on it, the PSF under arbitrary scanning conditions can be calculated directly for projection image restoration without the additional measurement, which greatly improved the application convenience of cone-beam CT. Secondly, a projection image restoration algorithm based on pre-filtering and pre-segmentation is proposed, which can make the edge contours in projection images and slice images clearer after restoration, and control the noise in the equivalent level to the original images. Finally, the experiments verified the feasibility and effectiveness of the proposed methods. Supported by National Science and Technology Major Project of the Ministry of Industry and Information Technology of China (2012ZX04007021), Young Scientists Fund of National Natural Science Foundation of China (51105315), Natural Science Basic Research Program of Shaanxi Province of China (2013JM7003) and Northwestern Polytechnical University Foundation for Fundamental Research (JC20120226, 3102014KYJD022)

  13. Mathematics and Measurement

    PubMed Central

    Boisvert, Ronald F.; Donahue, Michael J.; Lozier, Daniel W.; McMichael, Robert; Rust, Bert W.

    2001-01-01

    In this paper we describe the role that mathematics plays in measurement science at NIST. We first survey the history behind NIST’s current work in this area, starting with the NBS Math Tables project of the 1930s. We then provide examples of more recent efforts in the application of mathematics to measurement science, including the solution of ill-posed inverse problems, characterization of the accuracy of software for micromagnetic modeling, and in the development and dissemination of mathematical reference data. Finally, we comment on emerging issues in measurement science to which mathematicians will devote their energies in coming years. PMID:27500024

  14. Collection and analysis of high-resolution elevation data for the Lincoln Lidar Project, Lincoln, Nebraska, 2004

    USGS Publications Warehouse

    Meyer, P.D.; Greenlee, Susan K.; Gesch, Dean B.; Hubl, Erik J.; Axmann, Ryan N.

    2005-01-01

    The Lincoln Lidar Project was a partnership developed between the U.S. Geological Survey National Center for Earth Resources Observations and Science (EROS), Lancaster County and the city of Lincoln, Nebraska. This project demonstrated a successful planning, collection, analysis and integration of high-resolution elevation information using Light Detection and Ranging, (Lidar) data. This report describes the partnership developed to collect local Lidar data and transform the data into information useable at local to national levels. This report specifically describes project planning, quality assurance, processing, transforming raw Lidar points to useable data layers, and visualizing and disseminating the raw and final products.

  15. Comparing art-science collaboration efforts to highlight changes in the marine environment of Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Lee, O. A.

    2016-12-01

    Significant changes to the Arctic marine environment is anticipated as a result of decreasing sea ice and increasing anthropogenic activity that may occur with increasing access to ice-free waters. Two different collaboration efforts between scientists and artists on projects related to changes in the Alaskan Arctic waters are compared to present different outcomes from two collaboration strategies. The first collaboration involved a funded project to develop visualizations of change on the North Slope as part of an outreach effort for the North Slope Science Initiative Scenarios project. The second collaboration was a voluntary art-science collaboration to develop artwork about changing sea ice habitat for walrus as one contribution to a featured art show during the 2016 Arctic Science Summit Week. Both collaboration opportunities resulted in compelling visualizations. However the funded collaboration provided for more iterative discussions between the scientist and the collaborators for the film and animation products throughout the duration of the project. This ensured that the science remained an important focal point. In contrast, the product of the voluntary collaboration effort was primarily driven by the artist's perspective, although the discussions with the scientist played a role in connecting the content of the three panels in the final art and sculpture piece. This comparison of different levels of scientist-involvement and resources used to develop the visualizations highlights the importance of defining the intended audience and expectations for all collaborators early.

  16. Hampshire College Center for Science Education. Final Report on Activities Supported by the Department of Energy Grant No. DE-FG02-06ER64256

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stillings, Neil; Wenk, Laura

    Hampshire College's Center for Science Education (Center) focuses on teacher professional development, curriculum development, and student enrichment programs. The Center also maintains research programs on teacher change, student learning and instructional effectiveness. The Center's work promotes learning that persists over time and transfers to new situations in and out of school. The projects develop the implications of the increasing agreement among teachers and researchers that effective learning involves active concept mastery and consistent practice with inquiry and critical thinking. The Center's objective is to help strengthen the pipeline of U.S. students pursuing postsecondary study in STEM fields. The Center achievesmore » this by fostering an educational environment in which science is taught as an active, directly experienced endeavor across the K-16 continuum. Too often, young people are dissuaded from pursuing science because they do not see its relevance, instead experiencing it as dry, rote, technical. In contrast, when science is taught as a hands-on, inquiry-driven process, students are encouraged to ask questions grounded in their own curiosity and seek experimental solutions accordingly. In this way, they quickly discover both the profound relevance of science to their daily lives and its accessibility to them. Essentially, they learn to think and act like real scientists. The Center’s approach is multi-faceted: it includes direct inquiry-based science instruction to secondary and postsecondary students, educating the next generation of teachers, and providing new educational opportunities for teachers already working in the schools. Funding from the Department of Energy focused on the last population, enabling in-service teachers to explore and experience the pedagogy of inquiry-based science for themselves, and to take it back to their classrooms and students. The Center has demonstrated that the inquiry-based approach to science learning is compatible with existing state curriculum frameworks and produces students who understand and are positively inclined toward science. Funds from this Department of Energy grant supported three projects that involved K-16 science outreach: 1. Teaching Issues and Experiments in Ecology (TIEE). TIEE a peer-reviewed online journal and curriculum resource for postsecondary science teachers. 2. The Collaboration for Excellence in Science Education (CESE). CESE is a partnership with the Amherst, Massachusetts school system to foster the professional development of science teachers, and to perform research on student learning in the sciences and on teacher change. The project draws on Hampshire's long experience with inquiry-oriented and interdisciplinary education, as well as on its unique strengths in cognitive science. The project is run as design research, working with teachers to improve their practices and studying student and/or teacher outcomes. 3. Day in the Lab. Grant funds partially supported the expansion of the ongoing science outreach activities of the School of Natural Science. These activities are focused on local districts with large minority enrollments, including the Amherst, Holyoke and Springfield Public School Districts, and the Pioneer Valley Performing Arts Charter School (PVPA). Each of the three projects supported by the grant met or exceeded its goals. In part, the successes we met were due to continuity and communication among the staff of the programs. At the beginning of the CESE project, a science outreach coordinator was recruited. He worked throughout the grant period along with a senior researcher and the project's curriculum director. Additionally, the director and an undergraduate student conducted research on teacher change. The science outreach coordinator acted as a liaison among Hampshire College, the school districts, and a number of local businesses and agencies, providing organizational support, discussion facilitation, classroom support for teachers, and materials purchase. His presence in the schools kept teachers engaged and supported. He also brought the PVPA Charter School into the project. He worked closely with the educational outreach coordinator at Hampshire who oversaw the Day in the Lab program. Together, they have ensured the continuity of support to the schools through the use and placement of student interns. Finally, the director and coordinators worked with the Hitchock Center for the Environment to bring the two science professional development efforts in Amherst together. The joint development of workshops for elementary teachers was extremely successful. A major reason for the successes of the CESE program was the strength of the teacher outreach team and the sheer number of hours spent building relationships, talking about teaching and learning, planning projects, developing curriculum, and working with experts throughout the Pioneer Valley.« less

  17. Involving International Student Teams in GPS and GRS Surveys to Study Cryospheric Change in Greenland and the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Herzfeld, U. C.; Mayer, H.

    2009-12-01

    In the course of research programs to develop a methodology for the study of microtopography of ice and snow surfaces, we placed a strong emphasis on the involvement of students. This project provided the opportunity to engage students in every step from building the instrument through development of the data processing, the actual field measurements, processing of the resultant data, their evaluation and interpretation to the final publication in scientific journals. The development of the Glacier Roughness Sensor (GRS) incorporating Global Positioning System (GPS) technology and the fieldwork on the Greenland Inland Ice were particularly fascinating and instructive for students. In a related snow-hydrological research project on Niwot Ridge in the Colorado Front Range, we involved students in two season-long measurement campaigns in a high alpine environment. Students from the Universität Trier, Germany, and the University of Colorado Boulder participated in this project to learn about the value of international collaboration in science. Funding was provided by Deutsche Forschungsgemeinschaft (Antarctic and Arctic Program) and the U.S. National Science Foundation (Hydrological Sciences Program). Students participated in preparatory classes and field camps, selected their own research projects and received university credit towards their degrees in geography or environmental sciences. All student participants in the MICROTOP projects have gone on to higher university education and become professionally exceptionally successful. Students setting up camp on the Greenland Ice Sheet during expedition MICROTOP 99.

  18. Vision and Voyages: Lessons Learned from the Planetary Decadal Survey

    NASA Astrophysics Data System (ADS)

    Squyres, S. W.

    2015-12-01

    The most recent planetary decadal survey, entitled Vision and Voyages for Planetary Science in the Decade 2013-2022, provided a detailed set of priorities for solar system exploration. Those priorities drew on broad input from the U.S. and international planetary science community. Using white papers, town hall meetings, and open meetings of the decadal committees, community views were solicited and a consensus began to emerge. The final report summarized that consensus. Like many past decadal reports, the centerpiece of Vision and Voyages was a set of priorities for future space flight projects. Two things distinguished this report from some previous decadals. First, conservative and independent cost estimates were obtained for all of the projects that were considered. These independent cost estimates, rather than estimates generated by project advocates, were used to judge each project's expected science return per dollar. Second, rather than simply accepting NASA's ten-year projection of expected funding for planetary exploration, decision rules were provided to guide program adjustments if actual funding did not follow projections. To date, NASA has closely followed decadal recommendations. In particular, the two highest priority "flagship" missions, a Mars rover to collect samples for return to Earth and a mission to investigate a possible ocean on Europa, are both underway. The talk will describe the planetary decadal process in detail, and provide a more comprehensive assessment of NASA's response to it.

  19. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    NASA Social attendees are seen during a science panel discussion with Cassini project scientist at JPL, Linda Spilker, Cassini interdisciplinary Titan scientist at Cornell University, Jonathan Lunine, Cassini Composite Infrared Spectrometer(CIRS) Instrument deputy principle investigator Connor Nixon, and Cassini assistant project science systems engineer Morgan Cable, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  20. The role of assessment infrastructures in crafting project-based science classrooms

    NASA Astrophysics Data System (ADS)

    D'Amico, Laura Marie

    In project-based science teaching, teachers engage students in the practice of conducting meaningful investigations and explanations of natural phenomena, often in collaboration with fellow students or adults. Reformers suggest that this approach can provide students with more profitable learning experiences; but for many teachers, a shift to such instruction can be difficult to manage. As some reform-minded teachers have discovered, classroom assessment can serve as a vital tool for meeting the challenges associated with project science activity. In this research, classroom assessment was viewed as an infrastructure that both students and teachers rely upon as a mediational tool for classroom activity and communications. The study explored the classroom assessment infrastructures created by three teachers involved in the Learning through Collaborative Visualization (CoVis) Project from 1993--94 to 1995--96. Each of the three teachers under study either created a new course or radically reformulated an old one in an effort to incorporate project-based science pedagogy and supporting technologies. Data in the form of interviews, classroom observations, surveys, student work, and teacher records was collected. From these data, an interpretive case study was developed for each course and its accompanying assessment infrastructure. A set of cross-case analyses was also constructed, based upon common themes that emerged from all three cases. These themes included: the assessment challenges based on the nature of project activity, the role of technology in the teachers' assessment infrastructure designs, and the influence of the wider assessment infrastructure on their course and assessment designs. In combination, the case studies and cross-case analyses describe the synergistic relationship between the design of pedagogical reforms and classroom assessment infrastructures, as well as the effectiveness of all three assessment designs. This work contributes to research and practice associated with assessment and pedagogical reform in three ways. First, it provides a theoretical frame for the relationship between assessment and pedagogical reform. Second, it provides a set of taxonomies which outline both the challenges of project-based science activity and typical assessment strategies to meet them. Finally, it provides a set of cautions and recommendations for designing classroom assessment infrastructures in support of project-based science.

  1. Final Report: A Broad Research Project on the Sciences of Complexity, September 15, 1994 - November 15, 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2000-02-01

    DOE support for a broad research program in the sciences of complexity permitted the Santa Fe Institute to initiate new collaborative research within its integrative core activities as well as to host visitors to participate in research on specific topics that serve as motivation and testing ground for the study of the general principles of complex systems. Results are presented on computational biology, biodiversity and ecosystem research, and advanced computing and simulation.

  2. First Spacelab mission status and lessons learned

    NASA Technical Reports Server (NTRS)

    Craft, H. G., Jr.; Smith, M. J.; Mullinger, D.

    1982-01-01

    There are 38 experiments and/or facilities currently under development, or undergoing testing, which will be incorporated into Spacelab for its first mission. These experiments cover a range of scientific disciplines which includes atmospheric research, life sciences, space plasma research, materials science, and space industrialization technology. In addition to the full development of individual experiments, the final design of the integrated payload and the development of all requisite integration hardware have been accomplished. Attention is given to the project management lessons learned during payload integration development.

  3. Materials Science Clean Room Facility at Tulane University (Final Technical Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altiero, Nicholas

    2010-09-30

    The project involves conversion of a 3,000 sq. ft. area into a clean room facility for materials science research. It will be accomplished in phases. Phase I will involve preparation of the existing space, acquisition and installation of clean room equipped with a pulsed laser deposition (PLD) processing system, and conversion of ancillary space to facilitate the interface with the clean room. From a capital perspective, Phases II and III will involve the acquisition of additional processing, fabrication, and characterization equipment and capabilities.

  4. Automated metadata--final project report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schissel, David

    This report summarizes the work of the Automated Metadata, Provenance Cataloging, and Navigable Interfaces: Ensuring the Usefulness of Extreme-Scale Data Project (MPO Project) funded by the United States Department of Energy (DOE), Offices of Advanced Scientific Computing Research and Fusion Energy Sciences. Initially funded for three years starting in 2012, it was extended for 6 months with additional funding. The project was a collaboration between scientists at General Atomics, Lawrence Berkley National Laboratory (LBNL), and Massachusetts Institute of Technology (MIT). The group leveraged existing computer science technology where possible, and extended or created new capabilities where required. The MPO projectmore » was able to successfully create a suite of software tools that can be used by a scientific community to automatically document their scientific workflows. These tools were integrated into workflows for fusion energy and climate research illustrating the general applicability of the project’s toolkit. Feedback was very positive on the project’s toolkit and the value of such automatic workflow documentation to the scientific endeavor.« less

  5. Space research - At a crossroads

    NASA Technical Reports Server (NTRS)

    Mcdonald, Frank B.

    1987-01-01

    Efforts which must be expended if U.S. space research is to regain vitality in the next few years are discussed. Small-scale programs are the cornerstone for big science projects, giving both researchers and students a chance to practice the development of space missions and hardware and identify promising goals for larger projects. Small projects can be carried aloft by balloons, sounding rockets, the Shuttle and ELVs. It is recommended that NASA continue the development of remote sensing systems, and join with other government agencies to fund space-based materials science, space biology and medical research. Increased international cooperation in space projects is necessary for affording moderate to large scale missions, for political reasons, and to maximize available space resources. Finally, the establishment and funding of long-range goals in space, particularly the development of the infrastructure and technologies for the exploration and colonization of the planets, must be viewed as the normal outgrowth of the capabilities being developed for LEO operations.

  6. “Brevity is the Soul of Wit”: Use of a Stepwise Project to Teach Concise Scientific Writing

    PubMed Central

    Cyr, Nicole E.

    2017-01-01

    Skillful writing is essential for professionals in science and medicine. Consequently, many undergraduate institutions have adjusted their curriculum to include in-depth instruction and practice in writing for students majoring in the sciences. In neuroscience, students are often asked to write a laboratory report in the style of a primary scientific article or a term paper structured like a review article. Typically, students write section by section and build up to the final draft of a complete paper. In this way, students learn how to write a scientific paper. While learning to write such a paper is important, this is not the only type of written communication relevant to scientific careers. Here, I describe a stepwise writing project aimed to improve editing, succinctness, and the ability to synthesize the literature. Furthermore, I provide feedback from the students, and discuss the advantages and challenges of this project. PMID:29371841

  7. Astronomy in my shopping cart: Today I bought some asteroids, hundreds of black holes and three Solar Systems!

    NASA Astrophysics Data System (ADS)

    Boccato, C.; Lazzaretto, E.

    2008-06-01

    Here we will present a pilot project that will be tested and developed throughout 2007/08 in advance of the International Year of Astronomy. Why "putting astronomy in the shopping cart"? The aim of the project is to publicise astrophysics at a popular level, choosing a place that best matches the meaning of the word `popular': the shopping mall. With this project we want to arouse consumer interest in science, making use of the supermarket inside any shopping mall: a place people are familiar with and where they find common consumer goods. The final purpose is to give our science consumer the chance to bring home shopping bags filled not only with consumer goods, but also with a piece of knowledge about astronomy, astrophysics and the way astronomers work and think to understand the Universe and its phenomena.

  8. Department of Homeland Security Summer Internship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Erika J.

    2010-07-30

    My time at Lawrence Livermore National Laboratory (LLNL) has been one of the most rewarding and exciting experiences of my life. When I first applied for a Department of Homeland Security (DHS) internship I was concerned that my major in Mass Communications and Emergency Management would not be suited for the hard science environment. Thankfully DHS and my mentor, Brooke Buddemeier, demonstrated that the skills and knowledge I possess are critical for the successful integration of good science into Homeland Security and emergency response, and allowed me the opportunity to work on an exciting project. This paper intends to givemore » an overview of my experiences while at LLNL, explain the project I have been a part of, explain my specific role within that project, discuss my achievements, explain how my internship has changed where I plan to take my career path, and, finally, discuss how I believe DHS can enhance their future internship programs.« less

  9. An historical account of the first year of operation of the Maine School of Science and Mathematics

    NASA Astrophysics Data System (ADS)

    Patterson, James Charles

    The purpose of this study was to describe the first school year of operation for the Maine School of Science and Mathematics. Specific areas included in the study were: student residential life and support services, curriculum design, faculty characteristics, administrative structure and guidelines and a formative evaluation design. A comparison was made to a synthesis of characteristics derived from the literature review on the ten public, statewide, residential schools who are members of the National Consortium for Specialized Secondary Schools of Mathematics, Science and Technology. The Maine School of Science and Mathematics is a statewide public, residential, charter high school designed for highly motivated and high achieving students from across the state. The enabling legislation that created the school was passed in 1994 with a projected start-up in the Fall of 1995. A new independent governor took office in January, 1995 and announced that the appropriation to educate the first students would be delayed until a later date due to an ongoing economic recession. A staff of three full-time MSSM employees worked with the Maine Legislature and a initial start-up appropriation was finally enacted on June 30, 1995 just sixty days from the projected opening date of this new, public, school of choice. During July and August 1995, a teaching faculty, residential life supervisors and a support staff had to be hired and trained. Major policy and program decisions had to be made regarding curriculum, students life/discipline, program evaluation, student transportation, recreation programs, textbook selection, equipment and supply purchases. Students selected to be in the entering class had to make their final decisions to attend this unknown and controversial new charter high school. Finally, as the Maine School of Science and Mathematics was to share the former Limestone High School with the Limestone School Department, space and cost allocations had to be negotiated.

  10. Current Status of the LOFAR EoR Key Science Project

    NASA Astrophysics Data System (ADS)

    Koopmans, L. V. E.; LOFAR EoR KSP Team

    2018-05-01

    A short status update on the LOFAR Epoch of Reionization (EoR) Key Science Project (KSP) is given, regarding data acquisition, data processing and analysis, and current power-spectrum limits on the redshifted 21-cm signal of neutral hydrogen at redshifts z = 8 - 10. With caution, we present a preliminary astrophysical analysis of ~60 hr of processed LOFAR data and their resulting power spectrum, showing that potentially already interesting limits on X-ray heating during the Cosmic Dawn can already be gained. This is by no means the final analysis of this sub-set of data, but illustrates the future potential when all nearly 3000 hr of data in hand on two EoR windows will have been processed.

  11. Space Processing Applications Rocket (SPAR) project: SPAR 10

    NASA Technical Reports Server (NTRS)

    Poorman, R. (Compiler)

    1986-01-01

    The Space Processing Applications Rocket Project (SPAR) X Final Report contains the compilation of the post-flight reports from each of the Principal Investigators (PIs) on the four selected science payloads, in addition to the engineering report as documented by the Marshall Space Flight Center (MSFC). This combined effort also describes pertinent portions of ground-based research leading to the ultimate selection of the flight sample composition, including design, fabrication and testing, all of which are expected to contribute to an improved comprehension of materials processing in space. The SPAR project was coordinated and managed by MSFC as part of the Microgravity Science and Applications (MSA) program of the Office of Space Science and Applications (OSSA) of NASA Headquarters. This technical memorandum is directed entirely to the payload manifest flown in the tenth of a series of SPAR flights conducted at the White Sands Missile Range (WSMR) and includes the experiments entitled, Containerless Processing Technology, SPAR Experiment 76-20/3; Directional Solidification of Magnetic Composites, SPAR Experiment 76-22/3; Comparative Alloy Solidification, SPAR Experiment 76-36/3; and Foam Copper, SPAR Experiment 77-9/1R.

  12. Teachers Learning to Research Climate: Development of hybrid teacher professional development to support climate inquiry and research in the classroom

    NASA Astrophysics Data System (ADS)

    Odell, M. R.; Charlevoix, D. J.; Kennedy, T.

    2011-12-01

    The GLOBE Program is an international science and education focused on connecting scientists, teachers and students around relevant, local environmental issues. GLOBE's focus during the next two years in on climate, global change and understanding climate from a scientific perspective. The GLOBE Student Climate Research Campaign (SCRFC) will engage youth from around the world in understanding and researching climate through investigations of local climate challenges. GLOBE teachers are trained in implementation of inquiry in the classroom and the use of scientific data collection protocols to develop inquiry and research projects of the Earth System. In preparation for the SCRC, GLOBE teachers will need additional training in climate science, global change and communicating climate science in the classroom. GLOBE's reach to 111 countries around the world requires development of scalable models for training teachers. In June GLOBE held the first teacher professional development workshop (Learning to Research Summer Institute) in a hybrid format with two-thirds of the teachers participating face-to-face and the remaining teachers participating virtually using Adobe Connect. The week long workshop prepared teachers to integrate climate science inquiry and research projects in the classrooms in the 2011-12 academic year. GLOBE scientists and other climate science experts will work with teachers and their students throughout the year in designing and executing a climate science research project. Final projects and research results will be presented in May 2012 through a virtual conference. This presentation will provide the framework for hybrid teacher professional development in climate science research and inquiry projects as well as summarize the findings from this inaugural session. The GLOBE Program office, headquartered in Boulder, is funded through cooperative agreements with NASA and NOAA with additional support from NSF and the U.S. Department of State. GLOBE is supported in countries around the world through bi-lateral agreements between U.S. Department of state and national governments.

  13. Final Report for DOE Project: Portal Web Services: Support of DOE SciDAC Collaboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mary Thomas, PI; Geoffrey Fox, Co-PI; Gannon, D

    2007-10-01

    Grid portals provide the scientific community with familiar and simplified interfaces to the Grid and Grid services, and it is important to deploy grid portals onto the SciDAC grids and collaboratories. The goal of this project is the research, development and deployment of interoperable portal and web services that can be used on SciDAC National Collaboratory grids. This project has four primary task areas: development of portal systems; management of data collections; DOE science application integration; and development of web and grid services in support of the above activities.

  14. US Climate Variability and Predictability (CLIVAR) Project- Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, Mike

    The US CLIVAR Project Office administers the US CLIVAR Program with its mission to advance understanding and prediction of climate variability and change across timescales with an emphasis on the role of the ocean and its interaction with other elements of the Earth system. The Project Office promotes and facilitates scientific collaboration within the US and international climate and Earth science communities, addressing priority topics from subseasonal to centennial climate variability and change; the global energy imbalance; the ocean’s role in climate, water, and carbon cycles; climate and weather extremes; and polar climate changes. This project provides essential one-year supportmore » of the Project Office, enabling the participation of US scientists in the meetings of the US CLIVAR bodies that guide scientific planning and implementation, including the scientific steering committee that establishes program goals and evaluates progress of activities to address them, the science team of funded investigators studying the ocean overturning circulation in the Atlantic, and two working groups tackling the priority research topics of Arctic change influence on midlatitude climate and weather extremes and the decadal-scale widening of the tropical belt.« less

  15. Using project life-cycles as guide for timing the archival of scientific data and supporting documentation

    NASA Astrophysics Data System (ADS)

    Martinez, E.; Glassy, J. M.; Fowler, D. K.; Khayat, M.; Olding, S. W.

    2014-12-01

    The NASA Earth Science Data Systems Working Groups (ESDSWG) focuses on improving technologies and processes related to science discovery and preservation. One particular group, the Data Preservation Practices, is defining a set of guidelines to aid data providers in planning both what to submit for archival, and when to submit artifacts, so that the archival process can begin early in the project's life cycle. This has the benefit of leveraging knowledge within the project before staff roll off to other work. In this poster we describe various project archival use cases and identify possible archival life cycles that map closely to the pace and flow of work. To understand "archival life cycles", i.e., distinct project phases that produce archival artifacts such as instrument capabilities, calibration reports, and science data products, the workig group initially mapped the archival requirements defined in the Preservation Content Specification to the typical NASA project life cycle. As described in the poster, this work resulted in a well-defined archival life cycle, but only for some types of projects; it did not fit well for condensed project life cycles experienced within airborne and balloon campaigns. To understand the archival process for projects with compressed cycles, the working group gathered use cases from various communities. This poster will describe selected uses cases that provided insight into the unique flow of these projects, as well as proposing archival life cycles that map artifacts to projects with compressed timelines. Finally, the poster will conclude with some early recommendations for data providers, which will be captured in a formal Guidelines document - to be published in 2015.

  16. The human genome: Some assembly required. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    The Human Genome Project promises to be one of the most rewarding endeavors in modern biology. The cost and the ethical and social implications, however, have made this project the source of considerable debate both in the scientific community and in the public at large. The 1994 Graduate Student Symposium addresses the scientific merits of the project, the technical issues involved in accomplishing the task, as well as the medical and social issues which stem from the wealth of knowledge which the Human Genome Project will help create. To this end, speakers were brought together who represent the diverse areasmore » of expertise characteristic of this multidisciplinary project. The keynote speaker addresses the project`s motivations and goals in the larger context of biological and medical sciences. The first two sessions address relevant technical issues, data collection with a focus on high-throughput sequencing methods and data analysis with an emphasis on identification of coding sequences. The third session explores recent advances in the understanding of genetic diseases and possible routes to treatment. Finally, the last session addresses some of the ethical, social and legal issues which will undoubtedly arise from having a detailed knowledge of the human genome.« less

  17. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    John Grunsfeld, NASA Associate Administrator for the Science Mission Directorate, speaks to students from Mapletown Jr/Sr High School and Margaret Bell Middle School about his experiences on the final space shuttle servicing mission to the Hubble Space Telescope during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014. Grunsfeld flew on three of the five servicing missions to the Hubble Space Telescope. Photo Credit: (NASA/Joel Kowsky)

  18. Community Project for Accelerator Science and Simulation (ComPASS) Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary, John R.; Cowan, Benjamin M.; Veitzer, S. A.

    2016-03-04

    Tech-X participated across the full range of ComPASS activities, with efforts in the Energy Frontier primarily through modeling of laser plasma accelerators and dielectric laser acceleration, in the Intensity Frontier primarily through electron cloud modeling, and in Uncertainty Quantification being applied to dielectric laser acceleration. In the following we present the progress and status of our activities for the entire period of the ComPASS project for the different areas of Energy Frontier, Intensity Frontier and Uncertainty Quantification.

  19. An interdisciplinary school project using a Nintendo Wii controller for measuring car speed

    NASA Astrophysics Data System (ADS)

    Hansen, Nils Kristian; Mitchell, James Robert

    2013-03-01

    This work examines the feasibility of employing a Nintendo Wii game controller for measuring car speed in an interdisciplinary school project. It discusses the physical characteristics of the controller and of vehicle headlights. It suggests how an experiment may be linked to topics in mathematics, statistics, physics and computer science. An algorithm for calculating speed from repeated recordings of car headlights is provided. Finally the results of repeated experiments with an approaching car are provided.

  20. Final Report on DTRA Basic Research Project #BRCALL08-Per3-C-2-0006 "High-Z Non-Equilibrium Physics and Bright X-ray Sources with New Laser Targets"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colvin, Jeffrey D.

    This project had two major goals. Final Goal: obtain spectrally resolved, absolutely calibrated x-ray emission data from uniquely uniform mm-scale near-critical-density high-Z plasmas not in local thermodynamic equilibrium (LTE) to benchmark modern detailed atomic physics models. Scientific significance: advance understanding of non-LTE atomic physics. Intermediate Goal: develop new nano-fabrication techniques to make suitable laser targets that form the required highly uniform non-LTE plasmas when illuminated by high-intensity laser light. Scientific significance: advance understanding of nano-science. The new knowledge will allow us to make x-ray sources that are bright at the photon energies of most interest for testing radiation hardening technologies,more » the spectral energy range where current x-ray sources are weak. All project goals were met.« less

  1. Planetary Exploration Education: As Seen From the Point of View of Subject Matter Experts

    NASA Astrophysics Data System (ADS)

    Milazzo, M. P.; Anderson, R. B.; Gaither, T. A.; Vaughan, R. G.

    2016-12-01

    Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) was selected as one of 27 new projects to support the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice. Our goal is to develop and disseminate out-of-school time (OST) curricular and related educator professional development modules that integrate planetary science, technology, and engineering. We are a partnership between planetary science Subject Matter Experts (SMEs), curriculum developers, science and engineering teacher professional development experts and OST teacher networks. The PLANETS team includes the Center for Science Teaching and Learning (CSTL) at Northern Arizona University (NAU); the U.S. Geological Survey (USGS) Astrogeology Science Center (Astrogeology), and the Boston Museum of Science (MOS). Here, we present the work and approach by the SMEs at Astrogeology. As part of this overarching project, we will create a model for improved integration of SMEs, curriculum developers, professional development experts, and educators. For the 2016 and 2017 Fiscal Years, our focus is on creating science material for two OST modules designed for middle school students. We will begin development of a third module for elementary school students in the latter part of FY2017. The first module focuses on water conservation and treatment as applied on Earth, the International Space Station, and at a fictional Mars base. This unit involves the science and engineering of finding accessible water, evaluating it for quality, treating it for impurities (i.e., dissolved and suspended), initial use, a cycle of greywater treatment and re-use, and final treatment of blackwater. The second module involves the science and engineering of remote sensing as it is related to Earth and planetary exploration. This includes discussion and activities related to the electromagnetic spectrum, spectroscopy and various remote sensing systems and techniques. In these activities and discussions we include observation and measurement techniques and tools, as well as collection and use of specific data of interest to scientists. These two modules will be tested and refined based on educator and student feedback, with expected final release in late summer of 2017.

  2. Can participation in a school science fair improve middle school students' attitudes toward science and interest in science careers?

    NASA Astrophysics Data System (ADS)

    Finnerty, Valerie

    The purpose of this study was to investigate whether participation in a school-based science fair affects middle school students' attitudes toward science and interest in science and engineering careers. A quasi-experimental design was used to compare students' pre- and posttest attitudes toward and interest in science. Forty-eight of the 258 participants completed a school-based science fair during the study. In addition, twelve middle school science teachers completed an online survey. Both the Survey of Science Attitudes and Interest I and II (SSAI-I and II) measured students' attitudes toward and interest in science and science and mathematics self-efficacy, asked about classroom inquiry experiences and gathered demographic information. An online survey gathered qualitative data about science teachers' perceptions of school science fairs. The results showed no significant interactions among completion of a science fair project and attitudes toward and interest in science, science and mathematics self-efficacy or gender. There were significant differences at both pre- and posttest in attitudes between the students who did and did not complete a science fair project. All participating teachers believed that participation in science fairs could have a positive effect on students' attitudes and interest, but cited lack of time as a major impediment. There was significant interaction between level of classroom inquiry and attitudes and interest in science; students who reported more experiences had higher scores on these measures. Classroom inquiry also interacted with the effects of a science fair and participants' pre- and posttest attitude scores. Finally, the amount and source of assistance on a science fair project had a significant impact on students' posttest measures. Major limitations which affect the generalization of these findings include the timing of the administration of the pretest, the number of participants in the experimental group and differences in the science fair procedures at the participating schools. Embedded in a curriculum that includes the teaching of inquiry practices, science fairs may play a role in the inspiration of future scientists, but more research needs to be done on the quality of students' experiences, including amount and type of classroom instruction before and during the science fair process.

  3. Enhancing Student Employability through Ethics-Based Outreach Activities and Open Educational Resources

    ERIC Educational Resources Information Center

    Lewis, David I.

    2011-01-01

    This paper reports on how science communication final year undergraduate research projects and educational internships can be utilised to provide opportunities for students to develop and utilise key employability skills. In the current difficult economic climate, the report "Working towards your future: Making the most of your time in higher…

  4. APPLICATIONS OF SURFACE ANALYSIS IN THE ENVIRONMENTAL SCIENCES: DEHALOGENATION OF CHLOROCARBONS WITH ZERO-VALENT IRON AND IRON-CONTAINING MINERAL SURFACES. (R828771C006)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  5. Playful Invention and Exploration. Final Evaluation Report: Executive Summary

    ERIC Educational Resources Information Center

    St. John; Mark; Carroll, Becky; Helms, Jen; Smith, Anita

    2008-01-01

    PIE (Playful Invention and Exploration) is a unique approach to learning that centers on the use of technology and design challenges to create powerful learning experiences in informal education settings. The Playful Invention and Exploration (PIE) Institute project was funded in 2005 by the National Science Foundation (NSF). Overall, 150…

  6. New Directions in Library and Information Science Education. Final Report. Volume 2.11: Information Service Company Professional Competencies.

    ERIC Educational Resources Information Center

    Griffiths, Jose-Marie; And Others

    This document contains validated activities and competencies needed by information professionals working in an information service company. The activities and competencies are organized according to the functions which information professionals in such companies perform: project management; reference/analysis of secondary data; research, analysis,…

  7. Self- and Peer Assessments of Oral Presentations by First-Year University Students

    ERIC Educational Resources Information Center

    Aryadoust, Vahid

    2015-01-01

    Forty science students received training for 12 weeks on delivering effective presentations and using a tertiary-level English oral presentation scale comprising three subscales (Verbal Communication, Nonverbal Communication, and Content and Organization) measured by 18 items. For their final project, each student was given 10 to 12 min to present…

  8. Making and Moving Publics: Stuart Hall's Projects, Maximal Selves and Education

    ERIC Educational Resources Information Center

    Roman, Leslie G.

    2015-01-01

    An extraordinary educator and public intellectual, Stuart Hall's career as a scholar, activist, teacher and mentor has touched almost every field in the social sciences and humanities. Paradoxically, education rarely claims him as an educator. Stuart Hall's refusal to see publics as given, fixed or settled matters with clear or final demarcations…

  9. A Program to Enhance the Effectiveness of Teaching Assistants.

    ERIC Educational Resources Information Center

    Cornell Univ., Ithaca, NY. Coll. of Engineering.

    This manual is the final report on a two-year project to enhance the effectiveness of teaching assistants. It is designed as a workbook for persons conducting instructional programs for teaching assistants and is specific to teaching assistants in engineering and the natural sciences. The manual contains an introduction and six chapters. Chapter…

  10. Project on Application of Modern Communication Technologies to Educational Networking. Final Technical Report.

    ERIC Educational Resources Information Center

    Morgan, Robert P.; Eastwood, Lester F., Jr.

    Research on this National Science Foundation grant to study the application of modern communications technology to educational networking was divided into three parts: assessment of the role of technology in non-traditional post-secondary education; assessment of communications technologies and educational services of current or potential future…

  11. Measuring the Impact of Varied Instructional Approaches in an Introductory Animal Science Course

    ERIC Educational Resources Information Center

    Bolt, Brian Grady

    2009-01-01

    The objectives of this project were to: evaluate the impact of demographic descriptors (gender, class rank and final grade) on student's self perceived level of engagement in classroom activities; measure the impact of varying teaching styles on a student's likelihood of correctly answering a knowledge based question and: assessing the…

  12. Project-Based Teaching: Helping Students Make Project Connections

    NASA Astrophysics Data System (ADS)

    Johnson, Heather Jo Pusich

    Project-based curriculum materials are designed to support students in engaging with scientific content and practices in meaningful ways, with the goal of improving students' science learning. However, students need to understand the connections between what they are doing on a day-to-day basis with respect to the goals of the overall project for students to get the motivational and cognitive benefits of a project-based approach. In this dissertation, I looked at the challenges that four ninth grade science teachers faced as they helped students to make these connections using a project-based environmental science curriculum. The analysis revealed that in general when the curriculum materials made connections explicit, teachers were better able to articulate the relationship between the lesson and the project during enactment. However, whether the connections were explicit or implicit in the materials, enactments of the same lesson across teachers revealed that teachers leveraged different aspects of the project context in different ways depending on their knowledge, beliefs, and goals about project-based teaching. The quantitative analysis of student data indicated that when teacher enactments supported project goals explicitly, students made stronger connections between a lesson and the project goal. Therefore, a teacher's ability to make clear connections during classroom instruction is essential. Furthermore, when students made connections between each lesson and the larger project goals their attitudes toward the lesson were more positive and they performed better on the final assessment. These findings suggest that connections between individual lessons and the goals of the project are critical to the effectiveness of project-based learning. This study highlights that while some teachers were able to forge these connections successfully as a result of leveraging cognitive resources, teachers' beliefs, knowledge and goals about project-based teaching are variable. As such, teachers adopting project-based curriculum materials need more support - through educative curriculum materials, coaching, or ongoing professional development - to help them support project connections consistently and explicitly in their teaching practice.

  13. Revolutionizing Climate Science: Using Teachers as Communicators

    NASA Astrophysics Data System (ADS)

    Warburton, J.; Crowley, S.; Wood, J.

    2012-12-01

    PolarTREC (Teachers and Researchers Exploring and Collaborating) is a National Science Foundation (NSF) funded program in which K-12 teachers participate in hands-on field research experiences in the Polar Regions. Teachers are the dynamic conduits for communicating climate science. In the PolarTREC final report, researchers found that teachers were vital in refining the language of their science and have shaped the goals of the scientific project. Program data demonstrates that science in classrooms is better understood when teachers have a full-spectrum grasp of project intricacies from defining the project, to field data collection, encountering situations for creativity and critical thinking, as well as participating in data and project analysis. Teachers' translating the authentic scientific process is integral in communicating climate science to the broader public. Teachers playing a major role in polar science revolutionize the old paradigm of "in-school learning". Through daily online journaling and forums, social media communication, live webinars with public, and professional development events, these teachers are moving beyond classrooms to communicate with society. Through teachers, climate policy can be shaped for the future by having scientifically literate students as well as assessable science. New paradigms come as teachers attain proficient levels of scientific understanding paired with the expert abilities for communication with years of experience. PolarTREC teachers are a model for new interactions peer-to-peer learning and mentorship for young scientists. Our programmatic goal is to expand the opportunities for PolarTREC teachers to share their involvement in science with additional formal and informal educators. 'Teaching the teachers' will reach exponential audiences in media, policy, and classrooms. Modeling this program, we designed and conducted a teacher training on climate science in Denali National Park. Utilizing expert university faculty in climate science and a PolarTREC alumni teacher the program was touted as 'the best professional opportunity to date". This program gave new teachers the tools to adequately communicate climate science with a new generation of scientifically literate students. Additionally, teachers possess the skills to inform young professional scientists on effective outreach and communication beyond peer-reviewed papers and scientific circles.

  14. The Sungrazer Citizen Science Project

    NASA Astrophysics Data System (ADS)

    Battams, K.

    2016-12-01

    The NASA-funded Sungrazer Project is one of the oldest and most successful Citizen Science projects, having more than doubled the number of officially designated comets since it became public in 2002. The Sungrazer Project has enabled the discovery of more than 3,100 previously unknown near-Sun and Sungrazing comets in images returned by the joint ESA-NASA Solar and Heliospheric Observatory (SOHO), which was launched in 1995, and the NASA Solar Terrestrial Relations Observatories (STEREO), launched in 2006. The Sungrazer Project offers a centralized web site for amateur astronomers ("comet hunters") to report potential comets in SOHO and STEREO data, which the Project PI then confirms/rejects. It is then the task of the Project PI to perform precise astrometric measurements of all new comets, and supply the resulting data to the Minor Planet Center for official orbit determinations and designation. Almost 100 individuals from all over the world have discovered comets via the Project, with successful participants as young as 13-years old. In this talk I will discuss the history of the project, report the current discovery statistics, and highlight a few of the major discoveries enabled by the Project. I will also discuss the logistic of the program, participation requirements, day-to-day operations, and outreach efforts. Finally I will present an outlook for the project with respect to future space-based heliophysics missions.

  15. Science in Hawaii/Haawina Hoopapau: A Culturally Responsive Curriculum Project

    NASA Astrophysics Data System (ADS)

    Galloway, L. M.; Roberts, K.; Leake, D. W.; Stodden, R. S.; Crabbe, V.

    2005-12-01

    The marvels of modern science often fail to engage indigenous students, as the content and instructional style are usually rooted in the Western experience. This 3 year project, funded by the US Dept. of Education for the Education of Native Hawaiians, offers a curriculum that teaches science through (rather than just about) Native Hawaiian culture. The curriculum focuses on the interdependence of natural resources in our ahupuaa, or watersheds, and helps students strengthen their sense of place and self to malama i ka aina, to care for the land. Further, the curriculum is designed to: engage students in scientific study with relevant, interesting content and activities; improve student achievement of state department of education standards; increase student knowledge and skills in science, math and language arts; respond to the learning needs of Native Hawaiian and/or at-risk students. The project will be presented by a curriculum writer who created and adapted more than a year's worth of materials by teaming with kupuna (respected elders), local cultural experts and role models, educators (new, veteran, Hawaiian, non-Hawaiian, mainland, general and special education teachers), and professionals at the Center on Disability Studies at the University of Hawaii and ALU LIKE, Inc, a non-profit organization to assist Native Hawaiians. The materials created thus far are available for viewing at: www.scihi.hawaii.edu The curriculum, designed for grades 8-11 science classes, can be used to teach a year-long course, a unit, or single lesson related to astronomy, biology, botany, chemistry, geology, oceanography, physical and environmental sciences. This project is in its final year of field testing, polishing and dissemination, and therefore this session will encourage idea sharing, as does our copyright free Web site.

  16. Science Goals of the U.S. Department of the Interior Southeast Climate Science Center

    USGS Publications Warehouse

    Dalton, Melinda S.

    2011-01-01

    In 2011, the U.S. Department of the Interior Southeast Climate Science Center (CSC) finalized the first draft of its goals for research needed to address the needs of natural and cultural partners for climate science in the Southeastern United States. The science themes described in this draft plan were established to address the information needs of ecoregion conservation partnerships, such as the Landscape Conservation Cooperatives (LCCs) and other regional conservation-science and resource-management partners. These themes were developed using priorities defined by partners and stakeholders in the Southeast and on a large-scale, multidisciplinary project-the Southeast Regional Assessment Project (SERAP)-developed in concert with those partners. Science products developed under these themes will provide models of potential future conditions, assessments of likely impacts, and tools that can be used to inform the conservation management decisions of LCCs and other partners. This information will be critical as managers try to anticipate and adapt to climate change. Resource managers in the Southeast are requesting this type of information, in many cases as a result of observed climate change effects. The Southeast CSC draft science plan identifies six science themes and frames the activities (tasks, with examples of recommended near-term work for each task included herein) related to each theme that are needed to achieve the objectives of the Southeast CSC.

  17. Social science in a stem cell laboratory: what happened when social and life sciences met.

    PubMed

    Stacey, Glyn; Stephens, Neil

    2012-01-01

    We describe the experience of conducting intensive social science research at the UK Stem Cell Bank from the viewpoint of both the person conducting the social science research and the Director of the Bank. We detail the initial misunderstandings and concerns held by both and the problems these caused. Then we describe how the relationship developed as the project progressed and shared benefits became apparent. Finally, while acknowledging potential areas of tension between the life and social sciences, we suggest further interaction between the disciplines would prove beneficial for both and speculate as to how this may be achieved. In the discussion we identify a set of learning points from our experience and definitions of social science terminology that may help to inform future engagements between life and social scientists.

  18. The Milky Way Project: A Citizen Science Catalog of Infrared Bow Shock Nebulae

    NASA Astrophysics Data System (ADS)

    Dixon, Don; Jayasinghe, Tharindu; Povich, Matthew S.

    2017-01-01

    We present preliminary results from the first citizen-science search for infrared stellar-wind bow shock candidates. This search uses the Milky Way project, hosted by the Zooniverse, an online platform with over 1 million volunteer citizen scientists. Milky Way Project volunteers examine 77,000 randomly-distributed Spitzer image cutouts at varying zoom levels. Volunteers mark the infrared arc of potential bow shock candidates as well as the star likely driving the nebula. We produce lists of candidates from bow shocks flagged by multiple volunteers, which after merging and final visual review form the basis for our catalog. Comparing our new catalog to a recently-published catalog of 709 infrared bow shock candidates identified by a small team of (primarily undergraduate) researchers will allow us to assess the effectiveness of citizen science for this type of search and should yield a more complete catalog. Planned studies using these large catalogs will improve constraints on the mass-loss rates for the massive stars that create these bow shock nebulae. Mass-loss rates are highly uncertain but are a critical component of evolutionary models for massive stars. This work is supported by the National Science Foundation under grants CAREER-1454334, AST-1411851 (RUI) and AST-1412845.

  19. Writing Assignments in Disguise: Lessons Learned Using Video Projects in the Classroom

    NASA Astrophysics Data System (ADS)

    Wade, P.; Courtney, A.

    2012-12-01

    This study describes the instructional approach of using student-created video documentaries as projects in an undergraduate non-science majors' Energy Perspectives science course. Four years of teaching this course provided many reflective teaching moments from which we have enhanced our instructional approach to teaching students how to construct a quality Ken Burn's style science video. Fundamental to a good video documentary is the story told via a narrative which involves significant writing, editing and rewriting. Many students primarily associate a video documentary with visual imagery and do not realize the importance of writing in the production of the video. Required components of the student-created video include: 1) select a topic, 2) conduct research, 3) write an outline, 4) write a narrative, 5) construct a project storyboard, 6) shoot or acquire video and photos (from legal sources), 7) record the narrative, 8) construct the video documentary, 9) edit and 10) finalize the project. Two knowledge survey instruments (administered pre- and post) were used for assessment purposes. One survey focused on the skills necessary to research and produce video documentaries and the second survey assessed students' content knowledge acquired from each documentary. This talk will focus on the components necessary for video documentaries and the instructional lessons learned over the years. Additionally, results from both surveys and student reflections of the video project will be shared.

  20. Development of Early Warning System for Landslide Using Electromagnetic, Hydrological, Geotechnical, and Geological Approaches

    NASA Astrophysics Data System (ADS)

    Huang, Q.; Hattori, K.; Chae, B.

    2011-12-01

    The Joint Research Collaboration Program (JRCP) for Chinese-Korean-Japanese (CKJ) Research Collaboration is a new cooperative scheme for joint funding from Chinese Department of International Cooperation of the Ministry of Science and Technology (DOIC), Korea Foundation for International Cooperation of Science and Technology (KICOS) and Japan Science and Technology Agency (JST). In this paper, we will introduce the funded CKJ project entitled "Development of early warning system for landslide using electromagnetic, hydrological, geotechnical, and geological approaches". The final goal of the project is to develop a simple methodology for landslide monitoring/forecasting (early warning system) using self potential method in the frame work of joint research among China, Korea, and Japan. The project is developing a new scientific and technical methodology for prevention of natural soil disasters. The outline of the project is as follows: (1) basic understanding on the relationship between resistivity distribution and moisture in soil and their visualization of their dynamical changes in space and time using tomography technique, (2) laboratory experiments of rainfall induced landslides and sandbox for practical use of the basic understanding, (3) in-situ experiments for evaluation. Annual workshops/symposia, seminars will be organized for strengthening the scientific collaborations and exchanges. In consideration of the above issues, integration of geological, hydrological, geotechnical characteristics with electromagnetic one are adopted as the key approach in this project. This study is partially supported by the Joint Research Collaboration Program, DOIC, MOST, China (2010DFA21570) and the National Natural Science Foundation of China (40974038, 41025014).

  1. Earth Radiation Measurement Science

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis

    2000-01-01

    This document is the final report for NASA Grant NAG1-1959, 'Earth Radiation Measurement Science'. The purpose of this grant was to perform research in this area for the needs of the Clouds and Earth Radiant Energy System (CERES) project and for the Earth Radiation Budget Experiment (ERBE), which are bing conducted by the Radiation and Aerosols Branch of the Atmospheric Sciences Division of Langley Research Center. Earth Radiation Measurement Science investigates the processes by which measurements are converted into data products. Under this grant, research was to be conducted for five tasks: (1) Point Response Function Measurements; (2) Temporal Sampling of Outgoing Longwave Radiation; (3) Spatial Averaging of Radiation Budget Data; (4) CERES Data Validation and Applications; and (5) ScaRaB Data Validation and Application.

  2. Standardized Sky Partitioning for the Next Generation Astronomy and Space Science Archives

    NASA Technical Reports Server (NTRS)

    Lal, Nand (Technical Monitor); McLean, Brian

    2004-01-01

    The Johns Hopkins University and Space Telescope Science Institute are working together on this project to develop a library of standard software for data archives that will benefit the wider astronomical community. The ultimate goal was to develop and distribute a software library aimed at providing a common system for partitioning and indexing the sky in manageable sized regions and provide complex queries on the objects stored in this system. Whilst ongoing maintenance work will continue the primary goal has been completed. Most of the next generation sky surveys in the different wavelengths like 2MASS, GALEX, SDSS, GSC-II, DPOSS and FIRST have agreed on this common set of utilities. In this final report, we summarize work on the work elements assigned to the STScI project team.

  3. ROSCOE Manual, Volume 14A-1 - Ambient Atmosphere (Major and Minor Neutral Species and Ionosphere).

    DTIC Science & Technology

    1979-06-30

    height EDDSCH 100 - 300 Parabola, determined by data-point values EBOTD and EF2MXD at altitudes HEBOTD and HF2MXD and vertical slope at altitude HF2MXD...Ionosphere) c Science Applications, Inc. P.O. Box 2351 La Jolla, California 92038 30 June 1979 Final Report for Period 1 January 1976-30 June 1979...ORGANIZATION NAME AND ADDRESS 10 PROGRAM ELEMENT. PROJECT. TASK Science Applications, Inc. V/ AREA 6 WORK U NIT NUMBERS P.O. Box 2351 Subtask S99QAXHCO62-37 La

  4. Active Remote Sensing of Natural Resources: Course Notes. Science Series No. 5. Final Technical Report.

    ERIC Educational Resources Information Center

    Maxwell, Eugene L.

    Presented is a portion of a research project which developed materials for teaching remote sensing of natural resources on an interdisciplinary basis at the graduate level. This volume contains notes developed for a course in active remote sensing. It is concerned with those methods or systems which generate the electromagnetic energy…

  5. Writing Activities Embedded in Bioscience Laboratory Courses to Change Students' Attitudes and Enhance Their Scientific Writing

    ERIC Educational Resources Information Center

    Lee, Susan E.; Woods, Kyra J.; Tonissen, Kathryn F.

    2011-01-01

    We introduced writing activities into a project style third year undergraduate biomolecular science laboratory to assist the students to produce a final report in the form of a journal article. To encourage writing while the experimental work was proceeding, the embedded writing activities required ongoing analysis of experimental data. After…

  6. Enlargement Futures Project: Expert Panel on Technology, Knowledge and Learning. Final Report.

    ERIC Educational Resources Information Center

    Gourova, Elissaveta; Ducatel, Ken; Gavigan, James; Scapolo, Fabiana; Di Pietrogiacomo, Paola

    The next 10 years provide an opportunity for the European Union (EU) to renew the science and technology (S&T) base and build necessary knowledge-society capacities and capabilities in Pre-Accession Countries (PACs). Applied research has faced a major downsize; redressing the balance in the research and development systems is urgently needed.…

  7. Moving forward: Responding to and mitigating effects of the MPB epidemic [Chapter 8

    Treesearch

    Claudia Regan; Barry Bollenbacher; Rob Gump; Mike Hillis

    2014-01-01

    The final webinar in the Future Forest Webinar Series provided an example of how managers utilized available science to address questions about post-epidemic forest conditions. Assessments of current conditions and projected trends, and how these compare with historical patterns, provide important information for land management planning. Large-scale disturbance events...

  8. Chemical Operations Technology Curriculum Development Project. PY95 Final Detailed Report.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Marshall.

    A model curriculum for an associate of applied science degree in chemical operations technology (COT) was developed at Texas State Technical College in Marshall, Texas. First, a comprehensive analysis of the local and statewide labor market demand for trained personnel in the advanced field of COT was conducted. Next, a comprehensive task analysis…

  9. Knowledge-based systems in Japan

    NASA Technical Reports Server (NTRS)

    Feigenbaum, Edward; Engelmore, Robert S.; Friedland, Peter E.; Johnson, Bruce B.; Nii, H. Penny; Schorr, Herbert; Shrobe, Howard

    1994-01-01

    This report summarizes a study of the state-of-the-art in knowledge-based systems technology in Japan, organized by the Japanese Technology Evaluation Center (JTEC) under the sponsorship of the National Science Foundation and the Advanced Research Projects Agency. The panel visited 19 Japanese sites in March 1992. Based on these site visits plus other interactions with Japanese organizations, both before and after the site visits, the panel prepared a draft final report. JTEC sent the draft to the host organizations for their review. The final report was published in May 1993.

  10. Mixed H ∞ and Passive Projective Synchronization for Fractional Order Memristor-Based Neural Networks with Time-Delay and Parameter Uncertainty

    NASA Astrophysics Data System (ADS)

    Song, Xiao-Na; Song, Shuai; Tejado Balsera, Inés; Liu, Lei-Po

    2017-10-01

    This paper investigates the mixed H ∞ and passive projective synchronization problem for fractional-order (FO) memristor-based neural networks. Our aim is to design a controller such that, though the unavoidable phenomena of time-delay and parameter uncertainty are fully considered, the resulting closed-loop system is asymptotically stable with a mixed H ∞ and passive performance level. By combining active and adaptive control methods, a novel hybrid control strategy is designed, which can guarantee the robust stability of the closed-loop system and also ensure a mixed H ∞ and passive performance level. Via the application of FO Lyapunov stability theory, the projective synchronization conditions are addressed in terms of linear matrix inequality techniques. Finally, two simulation examples are given to illustrate the effectiveness of the proposed method. Supported by National Natural Science Foundation of China under Grant Nos. U1604146, U1404610, 61473115, 61203047, Science and Technology Research Project in Henan Province under Grant Nos. 152102210273, 162102410024, and Foundation for the University Technological Innovative Talents of Henan Province under Grant No. 18HASTIT019

  11. Five Years of NASA Science and Engineering in the Classroom: The Integrated Product Team/NASA Space Missions Course

    NASA Astrophysics Data System (ADS)

    Hakkila, Jon; Runyon, Cassndra; Benfield, M. P. J.; Turner, Matthew W.; Farrington, Phillip A.

    2015-08-01

    We report on five years of an exciting and successful educational collaboration in which science undergraduates at the College of Charleston work with engineering seniors at the University of Alabama in Huntsville to design a planetary science mission in response to a mock announcement of opportunity. Alabama high schools are also heavily involved in the project, and other colleges and universities have also participated. During the two-semester course students learn about scientific goals, past missions, methods of observation, instrumentation, and component integration, proposal writing, and presentation. More importantly, students learn about real-world communication and teamwork, and go through a series of baseline reviews before presenting their results at a formal final review for a panel of NASA scientists and engineers. The project is competitive, with multiple mission designs competing with one another for the best review score. Past classes have involved missions to Venus, Europa, Titan, Mars, asteroids, comets, and even the Moon. Classroom successes and failures have both been on epic scales.

  12. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Cassini project scientist at JPL, Linda Spilker, left, Cassini interdisciplinary Titan scientist at Cornell University, Jonathan Lunine, second from left, Cassini Composite Infrared Spectrometer(CIRS) Instrument deputy principle investigator Connor Nixon, second from right, and Cassini assistant project science systems engineer Morgan Cable, right, participate in a Cassini science panel discussion during the Cassini NASA Social, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  13. Influence of oxygen doping on resistive-switching characteristic of a-Si/c-Si device

    NASA Astrophysics Data System (ADS)

    Zhang, Jiahua; Chen, Da; Huang, Shihua

    2017-12-01

    The influence of oxygen doping on resistive-switching characteristics of Ag/a-Si/p+-c-Si device was investigated. By oxygen doping in the growth process of amorphous silicon, the device resistive-switching performances, such as the ON/OFF resistance ratios, yield and stability were improved, which may be ascribed to the significant reduction of defect density because of oxygen incorporation. The device I-V characteristics are strongly dependent on the oxygen doping concentration. As the oxygen doping concentration increases, the Si-rich device gradually transforms to an oxygen-rich device, and the device yield, switching characteristics, and stability may be improved for silver/oxygen-doped a-Si/p+-c-Si device. Finally, the device resistive-switching mechanism was analyzed. Project supported by the Zhejiang Provincial Natural Science Foundation of China (No. LY17F040001), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University (No. KF2015_02), the Open Project Program of National Laboratory for Infrared Physics, Chinese Academy of Sciences (No. M201503), the Zhejiang Provincial Science and Technology Key Innovation Team (No. 2011R50012), and the Zhejiang Provincial Key Laboratory (No. 2013E10022).

  14. Understanding and Improving Blind Students' Access to Visual Information in Computer Science Education

    NASA Astrophysics Data System (ADS)

    Baker, Catherine M.

    Teaching people with disabilities tech skills empowers them to create solutions to problems they encounter and prepares them for careers. However, computer science is typically taught in a highly visual manner which can present barriers for people who are blind. The goal of this dissertation is to understand and decrease those barriers. The first projects I present looked at the barriers that blind students face. I first present the results of my survey and interviews with blind students with degrees in computer science or related fields. This work highlighted the many barriers that these blind students faced. I then followed-up on one of the barriers mentioned, access to technology, by doing a preliminary accessibility evaluation of six popular integrated development environments (IDEs) and code editors. I found that half were unusable and all had some inaccessible portions. As access to visual information is a barrier in computer science education, I present three projects I have done to decrease this barrier. The first project is Tactile Graphics with a Voice (TGV). This project investigated an alternative to Braille labels for those who do not know Braille and showed that TGV was a potential alternative. The next project was StructJumper, which created a modified abstract syntax tree that blind programmers could use to navigate through code with their screen reader. The evaluation showed that users could navigate more quickly and easily determine the relationships of lines of code when they were using StructJumper compared to when they were not. Finally, I present a tool for dynamic graphs (the type with nodes and edges) which had two different modes for handling focus changes when moving between graphs. I found that the modes support different approaches for exploring the graphs and therefore preferences are mixed based on the user's preferred approach. However, both modes had similar accuracy in completing the tasks. These projects are a first step towards the goal of making computer science education more accessible to blind students. By identifying the barriers that exist and creating solutions to overcome them, we can support increasing the number of blind students in computer science.

  15. Integrating Climate Change Science and Sustainability in Environmental Science, Sociology, Philosophy and Business Courses.

    NASA Astrophysics Data System (ADS)

    Boudrias, M. A.; Cantzler, J.; Croom, S.; Huston, C.; Woods, M.

    2015-12-01

    Courses on sustainability can be taught from multiple perspectives with some focused on specific areas (environmental, socio-cultural, economic, ethics) and others taking a more integrated approach across areas of sustainability and academic disciplines. In conjunction with the Climate Change Education Program efforts to enhance climate change literacy with innovative approaches, resources and communication strategies developed by Climate Education Partners were used in two distinct ways to integrate climate change science and impacts into undergraduate and graduate level courses. At the graduate level, the first lecture in the MBA program in Sustainable Supply Chain Management is entirely dedicated to climate change science, local and global impacts and discussions about key messages to communicate to the business community. Basic science concepts are integrated with discussions about mitigation and adaptation focused on business leaders. The concepts learned are then applied to the semester-long business plan project for the students. At the undergraduate level, a new model of comprehensive integration across disciplines was implemented in Spring 2015 across three courses on Sustainability each with a specific lens: Natural Science, Sociology and Philosophy. All three courses used climate change as the 'big picture' framing concept and had similar learning objectives creating a framework where lens-specific topics, focusing on depth in a discipline, were balanced with integrated exercises across disciplines providing breadth and possibilities for integration. The comprehensive integration project was the creation of the climate action plan for the university with each team focused on key areas of action (water, energy, transportation, etc.) and each team built with at least one member from each class ensuring a natural science, sociological and philosophical perspective. The final project was presented orally to all three classes and an integrated paper included all three perspectives. The best projects are being compiled so they can be shared with the University of San Diego's planning committee.

  16. Rocky River Watershed Based Curriculum Guide Project

    NASA Astrophysics Data System (ADS)

    Cox, Phillip Howard

    Environmental education has the ability to increase cognitive ability, have a positive impact on group work skills, attitudes and self-efficacy, and increase student performance. Due to Federal "No Child Left Behind Act" legislation, increased standardized testing has resulted in the disenfranchisement of students from formal learning. The purpose of this project was to develop a curriculum guide based on the Rocky River watershed so teachers could use the Rocky River watershed as a means to satisfy the objectives of the NC Standard Course of Study and at the same time increase student environmental awareness, classroom engagement, sense of place and scores on the NC Earth/Environmental Final Exams. The project was developed to correlate with the newly revised North Carolina Standard Course of Study for Earth/Environmental Science. The curriculum guide was developed by utilizing the best practices suggested by scientific literature, the NC Standard Course of Study for Earth/Environmental Science, the North American Association for Environmental Education and the National Education Association.

  17. Team science for science communication.

    PubMed

    Wong-Parodi, Gabrielle; Strauss, Benjamin H

    2014-09-16

    Natural scientists from Climate Central and social scientists from Carnegie Mellon University collaborated to develop science communications aimed at presenting personalized coastal flood risk information to the public. We encountered four main challenges: agreeing on goals; balancing complexity and simplicity; relying on data, not intuition; and negotiating external pressures. Each challenge demanded its own approach. We navigated agreement on goals through intensive internal communication early on in the project. We balanced complexity and simplicity through evaluation of communication materials for user understanding and scientific content. Early user test results that overturned some of our intuitions strengthened our commitment to testing communication elements whenever possible. Finally, we did our best to negotiate external pressures through regular internal communication and willingness to compromise.

  18. Thomson Reuters to release Book Citation Index later this year

    NASA Astrophysics Data System (ADS)

    Aldred, Maxine

    2011-08-01

    Thomson Reuters will launch its new Book Citation Index later this year. Projected to include 25,000 volumes from major publishers and university presses in science, social science, and the humanities, the Book Citation Index will cover scholarly books (both series and nonseries) that present original research or literature reviews. The current effort regarding the science section is focused on books published from 2005 to the present. AGU has sent copies of its catalog for inclusion in the Book Citation Index, but the final selection will be made by Thomson Reuters, using its internal selection criteria, which may be found at http://wokinfo.com/wok/media/pdf/BKCI-SelectionEssay_web.pdf.

  19. Impact of problem finding on the quality of authentic open inquiry science research projects

    NASA Astrophysics Data System (ADS)

    Labanca, Frank

    2008-11-01

    Problem finding is a creative process whereby individuals develop original ideas for study. Secondary science students who successfully participate in authentic, novel, open inquiry studies must engage in problem finding to determine viable and suitable topics. This study examined problem finding strategies employed by students who successfully completed and presented the results of their open inquiry research at the 2007 Connecticut Science Fair and the 2007 International Science and Engineering Fair. A multicase qualitative study was framed through the lenses of creativity, inquiry strategies, and situated cognition learning theory. Data were triangulated by methods (interviews, document analysis, surveys) and sources (students, teachers, mentors, fair directors, documents). The data demonstrated that the quality of student projects was directly impacted by the quality of their problem finding. Effective problem finding was a result of students using resources from previous, specialized experiences. They had a positive self-concept and a temperament for both the creative and logical perspectives of science research. Successful problem finding was derived from an idiosyncratic, nonlinear, and flexible use and understanding of inquiry. Finally, problem finding was influenced and assisted by the community of practicing scientists, with whom the students had an exceptional ability to communicate effectively. As a result, there appears to be a juxtaposition of creative and logical/analytical thought for open inquiry that may not be present in other forms of inquiry. Instructional strategies are suggested for teachers of science research students to improve the quality of problem finding for their students and their subsequent research projects.

  20. Final Report for EPSCoR Implementation Award DE-FG02-08ER46528 to University of Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egami, Takeshi

    With the completion of the Spallation Neutron Source (SNS) and upgrading of the High-Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) the state of Tennessee now leads the world in the capability of neutron scattering research. This project aimed at directing the great impact of these facilities to researchers in the EPSCoR states, Tennessee in particular, by creating a research collaboration network around these facilities. The plan consisted of two parts: (1) Direct effort to increase the user base through the travel fellowship for graduate students and faculty from the EPSCoR states to use the neutron facilitiesmore » at the ORNL, and through workshops and schools on the application of neutron scattering, and (2) Research collaboration among the core participants from UTK, ORNL and other states. The EPSCoR Travel Fellowship Program has supported over 300 distinct and 600 cumulative neutron facility users and over 250 workshop participants, with the total of nearly 600 distinct recipients. This program has been highly popular particularly among young faculty members who often have difficulty in raising travel funds, and enabled participation of young graduate students to neutron research. This program has been the foundation of this project. We supported several educational workshops, organized one (“neutrons for novice”) by ourselves each year, targeting non-users of neutron scattering. These efforts significantly contributed to expand the neutron user base among the EPSCoR states. The core research targeted condensed matter physics and soft matter sciences. The core research groups participating in this project include not only researchers from Tennessee but those from Kansas, South Carolina, Puerto Rico and Louisiana, making this project a national, rather than regional, enterprise. Collaborations that were seeded by this project have grown into two major projects, one in materials science (irradiation effects on high-entropy alloys) and the other in soft matter sciences (bio-membranes). Through this project we promoted the use of neutron scattering, particularly in biological and life sciences and in energy sciences, and facilitated the DOE investment in this field to impact wide fields of science and engineering. This project was administered through the Joint Institute for Neutron Sciences (JINS) of the University of Tennessee (UT) and ORNL. JINS is jointly supported by both UT and ORNL, and participate in organizing workshops and schools to promote the use of neutron scattering.« less

  1. NASA newsletters for the Weber Student Shuttle Involvement Project

    NASA Technical Reports Server (NTRS)

    Morey-Holton, E. R.; Sebesta, P. D.; Ladwig, A. M.; Jackson, J. T.; Knott, W. M., III

    1988-01-01

    Biweekly reports generated for the Weber Student Shuttle Involvement Project (SSIP) are discussed. The reports document the evolution of science, hardware, and logistics for this Shuttle project aboard the eleventh flight of the Space Transportation System (STS-41B), launched from Kennedy Space Center on February 3, 1984, and returned to KSC 8 days later. The reports were intended to keep all members of the team aware of progress in the project and to avoid redundancy and misunderstanding. Since the Weber SSIP was NASA's first orbital rat project, documentation of all actions was essential to assure the success of this complex project. Eleven reports were generated: October 3, 17 and 31; November 14 and 28; and December 12 and 17, 1983; and January 3, 16, and 23; and May 1, 1984. A subject index of the reports is included. The final report of the project is included as an appendix.

  2. CosmoQuest: Engaging Students in Authentic Research through Science Fairs

    NASA Astrophysics Data System (ADS)

    Lebofsky, Larry A.; Canizo, Thea; Buxner, Sanlyn; Schmitt, Bill; Runco, Susan; Graff, Paige; CosmoQuest Team

    2016-10-01

    CosmoQuest is embarking on a five-year effort to increase student participation in science fairs through nation-wide training of teachers, science educators, and scientists. The program focuses on helping teachers attain the needed content knowledge and skills to support creation of meaningful science fair research projects. . This includes supporting teachers' understanding of how to engage students in age-appropriate projects as young science and engineering professionals. If successful, students will create their own understanding of STEM content through research. This occurs when students are guided into learning where they become involved at a level that makes it possible for them to independently ask questions and investigate answers by seeking patterns, testing, building conceptual models, and/or designing technology.To support this kind of engagement, we are curating and creating resources to support students of all ages and abilities. Students at different age levels generally have very different developmental reasoning abilities, and engagement and learning are increased when students use age-appropriate reasoning abilities. For instance primary students are effective in observing, communicating, and comparing. As they get older they develop abilities in sequencing and finding relationships. At middle school they add inferring and finally in high school the acquired skills for applying ideas from many disciplines to create more complex understanding.Through a comprehensive program of curriculum development, educator professional development, and building strategic partnerships, we will increase the number and quality of space science related science fair projects in the United States. CosmoQuest is funded through individual donations, through NASA Cooperative Agreement NNX16AC68A, and through additional grants and contracts that are listed on the About page of our website, cosmoquest.org.

  3. The Decision-Making Process in the Adoption of a New Physics Course in American High Schools. Final Report.

    ERIC Educational Resources Information Center

    Yegge, John F.; And Others

    Reported is a study of the implementation of the new Project Physics course in American high schools. In the summer of 1970, 457 teachers attending 14 National Science Foundation institutes and 98 of their school administrators provided information through discussions and questionnaires. At the four institutes at which an implementation conference…

  4. A Project to Determine the Proper Placement of Composition Courses within Engineering Curriculum. Final Report

    ERIC Educational Resources Information Center

    Williams, Juanita H.

    There has been a suspicion among college English teachers that the writing skills of engineering and science students deteriorate between the time they complete Freshman English and the time they graduate. To test the validity of this hypothesis, 5 groups comprising 361 subjects (72 freshmen, 70 sophomores, 71 juniors, 74 seniors, and 74 technical…

  5. Renewal of Currently Employed Teachers as Teachers of Applied Biological and Agricultural Occupations. Final Report.

    ERIC Educational Resources Information Center

    Thomas, Hollie B.; And Others

    A workshop of interested science teachers from the metropolitan area of Illinois sought to increase their awareness of the career opportunities for their students in the biological and agricultural occupations that exist locally. The main purpose of the project was to establish programs in the metropolitan areas designed to match the interests of…

  6. Teaching Scientific Methodology through Microcomputer Simulations in Genetics. Final Project Report.

    ERIC Educational Resources Information Center

    Kellogg, Ted; Latson, Jon

    There are two major concerns about the teaching of high school biology. One is the degree to which students memorize laws, facts, and principles, and the second involves the role of the classroom teacher. These aspects result in a discrepancy between the theory and practice of science education. The purpose of this report is to provide: (1) a…

  7. Continuation of Employment Training for Students in the Shell Fisheries Industry. Final Report. 1981-1982.

    ERIC Educational Resources Information Center

    Cape May County Vocational Schools, NJ.

    A project to provide training in the shell fishing industries was continued into its second year to develop entry-level skills for employment and provide instruction and hands-on experience through infusing the existing Marine Science program. Results from a survey of instructors and individuals involved in the industry were used to develop a…

  8. 77 FR 74119 - Snapper-Grouper Fishery of the South Atlantic; 2012 Commercial Accountability Measure and Closure...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... estimated by the Science Research Director, are projected to reach the commercial annual catch limit (ACL... of the ACL if they occur. The final rule for Amendment 17B to the FMP established ACLs for eight... commercial ACL (commercial quota) for snowy grouper is 82,900 lb (37,603 kg), gutted weight, for the current...

  9. A Core Program in JIAFS

    NASA Technical Reports Server (NTRS)

    Whitesides, John L.

    2000-01-01

    This paper presents appendices listing and summarizing funding of, and participants in the project, for a final report on A Core Program in JIAFS (Joint Institute for Advancement of Flight Sciences). The objectives of the program were to conduct high-risk innovative research, administer and direct the on-going programs, and appoint additional Graduate Research Scholar Assistants depending on availability of applicants and funds.

  10. IEA's TIMSS 2003 International Report on Achievement in the Mathematics Cognitive Domains: Findings from a Developmental Project

    ERIC Educational Resources Information Center

    Mullis, Ina V. S.; Martin, Michael O.; Foy, Pierre

    2005-01-01

    This report documents the process undertaken to produce scales in three cognitive domains: knowing, applying, and reasoning. Included are the final scales showing differences among countries, as well as within countries. TIMSS 2003 is the third and most recently completed round of IEA's Trends in International Mathematics and Science Study, a…

  11. The PACA Project: Creating Synergy Between Observing Campaigns, Outreach and Citizen Science

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, Padma

    2017-04-01

    The PACA (Pro-Am Collaborative Astronomy) Project's primary goal is to develop and build synergy between professional and amateur astronomers from observations in the many aspects of support of missions and campaigns. To achieve this, the PACA has three main components: observational campaigns aligned with scientific research; outreach to engage all forms of audiences and citizen science projects that aim to produce specific scientific results, by engaging professional scientific and amateur communities and a variety of audiences. The primary observational projects are defined by specific scientific goals by professionals, resulting in global observing campaigns involving a variety of observers, and observing techniques. Some of PACA's observing campaigns have included global characterization of comets (e.g., C/ISON, SidingSpring, 67P/Churyumov-Gerasimenko, Lovejoy, etc.), planets (Jupiter, Saturn and Mars) and currently expanded to include (i) polarimetric exploration of solar system objects with small apertures and (ii) in collaboration with CITIZEN CATE, a citizen science observing campaign to observe the 2017 Continental America Total Eclipse, engage many levels of informal audiences using interactive social media to participate in the campaign. Our Outreach campaigns leverage the multiple social media/platforms for at least two important reasons: (i) the immediate dissemination of observations and interaction with the global network and (ii) free or inexpensive resources for most of the participants. The final stage of the PACA ecosystem is the integration of these components into publications. We shall highlight some of the interesting challenges and solutions of the PACA Project so far and provide a view of future projects and new partnerships in all three categories.

  12. Semantic e-Science in Space Physics - A Case Study

    NASA Astrophysics Data System (ADS)

    Narock, T.; Yoon, V.; Merka, J.; Szabo, A.

    2009-05-01

    Several search and retrieval systems for space physics data are currently under development in NASA's heliophysics data environment. We present a case study of two such systems, and describe our efforts in implementing an ontology to aid in data discovery. In doing so we highlight the various aspects of knowledge representation and show how they led to our ontology design, creation, and implementation. We discuss advantages that scientific reasoning allows, as well as difficulties encountered in current tools and standards. Finally, we present a space physics research project conducted with and without e-Science and contrast the two approaches.

  13. MY NASA DATA: Making Earth Science Data Accessible to the K-12 Community

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Alston, E. J.; Diones, D. D.; Moore, S. W.; Oots, P. C.; Phelps, C. S.

    2006-12-01

    In 2004, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project began. The goal of this project is to enable K-12 and citizen science communities to make use of the large volume of Earth System Science data that NASA has collected and archived. One major outcome is to allow students to select a problem of real-life importance, and to explore it using high quality data sources without spending months looking for and then learning how to use a dataset. The key element of the MY NASA DATA project is the implementation of a Live Access Server (LAS). The LAS is an open source software tool, developed by NOAA, that provides access to a variety of data sources through a single, fairly simple, point- and- click interface. This tool truly enables use of the available data - more than 100 parameters are offered so far - in an inquiry-based educational setting. It readily gives students the opportunity to browse images for times and places they define, and also provides direct access to the underlying data values - a key feature of this educational effort. The team quickly discovered, however, that even a simple and fairly intuitive tool is not enough to make most teachers comfortable with data exploration. User feedback has led us to create a friendly LAS Introduction page, which uses the analogy of a restaurant to explain to our audience the basic concept of an LAS. In addition, we have created a "Time Coverage at a Glance" chart to show what data are available when. This keeps our audience from being too confused by the patchwork of data availability caused by the start and end of individual missions. Finally, we have found it necessary to develop a substantial amount of age appropriate documentation, including topical pages and a science glossary, to help our audience understand the parameters they are exploring and how these parameters fit into the larger picture of Earth System Science. MY NASA DATA intends to create a community of data explorers. A MY NASA DATA e-mentor network provides opportunities for educators, students, and citizens to engage in dialog about the questions they encounter. The website hosts a collection of data-based lesson plans that have been written by teachers for use in their own classrooms. A new portion of the website, launched this summer, invites submission of student research projects that use our resources. Finally, we are continually seeking additional Earth System Science datasets that can be offered to our audience through the MY NASA DATA LAS interface.

  14. Not Just for Big Dogs: the NSF Career Program from AN Undergraduate College Perspective

    NASA Astrophysics Data System (ADS)

    Harpp, K. S.

    2011-12-01

    Relatively few NSF CAREER grants are awarded to faculty at undergraduate colleges, leading to a perception that the program is geared for major research institutions. The goal of this presentation is to dispel this misconception by describing a CAREER grant at a small, liberal arts institution. Because high quality instruction is the primary mission of undergraduate colleges, the career development plan for this proposal was designed to use research as a teaching tool. Instead of distinct sets of objectives for the research and education components, the proposal's research and teaching plans were integrated across the curriculum to maximize opportunities for undergraduate engagement. The driving philosophy was that students learn science by doing it. The proposal plan therefore created opportunities for students to be involved in hands-on, research-driven projects from their first through senior years. The other guiding principle was that students become engaged in science when they experience its real life applications. Stage 1 of the project provided mechanisms to draw students into science in two ways. The first was development of an inquiry-based curriculum for introductory classes, emphasizing practical applications and hands-on learning. The goal was to energize, generate confidence, and provide momentum for early science students to pursue advanced courses. The second mechanism was the development of a science outreach program for area K-9 schools, designed and implemented by undergraduates, an alternative path for students to discover science. Stages 2 and 3 consisted of increasingly advanced project-based courses, with in-depth training in research skills. The courses were designed along chemical, geological, and environmental themes, to capture the most student interest. The students planned their projects within a set of constraints designed to lead them to fundamental concepts and centered on questions of importance to the local community, thereby reinforcing the accessibility and relevance of science. The final stage was independent research with the PI on a focused research question, the equivalent of the research plan in most CAREER proposals. The overarching research objectives had to satisfy 2 criteria: a) questions had to be accessible and compelling (e.g., investigating the origin of volcanic islands in the Galapagos); and b) the project had to be divisible into tractable units for students, yet substantive enough for presentation at national meetings. Together, the projects ultimately addressed the PI's major research questions. The impacts of this grant were far-reaching. First, it supported a multi-year research project for the PI, which ultimately led to publications and successful proposals. More than 25 undergraduates carried out research projects, most presenting at national conferences. The outreach component engaged over 60 undergraduates; at least 20 have pursued science-teaching careers and another 25 have gone on to science graduate studies. The undergraduates brought hands-on science to more than 15,000 school children. Less obviously, the grant provided leverage for the PI to expand projects beyond their initial scope, involving more students and establishing on-going collaboration with colleagues at research institutions that have continued beyond the life of the grant.

  15. Programs for attracting under-represented minority students to graduate school and research careers in computational science. Final report for period October 1, 1995 - September 30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, James C. Jr.; Mason, Thomas; Guerrieri, Bruno

    1997-10-01

    Programs have been established at Florida A & M University to attract minority students to research careers in mathematics and computational science. The primary goal of the program was to increase the number of such students studying computational science via an interactive multimedia learning environment One mechanism used for meeting this goal was the development of educational modules. This academic year program established within the mathematics department at Florida A&M University, introduced students to computational science projects using high-performance computers. Additional activities were conducted during the summer, these included workshops, meetings, and lectures. Through the exposure provided by this programmore » to scientific ideas and research in computational science, it is likely that their successful applications of tools from this interdisciplinary field will be high.« less

  16. Reinventing Image Detective: An Evidence-Based Approach to Citizen Science Online

    NASA Astrophysics Data System (ADS)

    Romano, C.; Graff, P. V.; Runco, S.

    2017-12-01

    Usability studies demonstrate that web users are notoriously impatient, spending as little as 15 seconds on a home page. How do you get users to stay long enough to understand a citizen science project? How do you get users to complete complex citizen science tasks online?Image Detective, a citizen science project originally developed by scientists and science engagement specialists at the NASA Johnson Space center to engage the public in the analysis of images taken from space by astronauts to help enhance NASA's online database of astronaut imagery, partnered with the CosmoQuest citizen science platform to modernize, offering new and improved options for participation in Image Detective. The challenge: to create a web interface that builds users' skills and knowledge, creating engagement while learning complex concepts essential to the accurate completion of tasks. The project team turned to usability testing for an objective understanding of how users perceived Image Detective and the steps required to complete required tasks. A group of six users was recruited online for unmoderated and initial testing. The users followed a think-aloud protocol while attempting tasks, and were recorded on video and audio. The usability test examined users' perception of four broad areas: the purpose of and context for Image Detective; the steps required to successfully complete the analysis (differentiating images of Earth's surface from those showing outer space and identifying common surface features); locating the image center point on a map of Earth; and finally, naming geographic locations or natural events seen in the image.Usability test findings demonstrated that the following best practices can increase participation in Image Detective and can be applied to the successful implementation of any citizen science project:• Concise explanation of the project, its context, and its purpose;• Including a mention of the funding agency (in this case, NASA);• A preview of the specific tasks required of participants;• A dedicated user interface for the actual citizen science interaction.In addition, testing revealed that users may require additional context when a task is complex, difficult, or unusual (locating a specific image and its center point on a map of Earth). Video evidence will be made available with this presentation.

  17. Reinventing Image Detective: An Evidence-Based Approach to Citizen Science Online

    NASA Technical Reports Server (NTRS)

    Romano, Cia; Graff, Paige V.; Runco, Susan

    2017-01-01

    Usability studies demonstrate that web users are notoriously impatient, spending as little as 15 seconds on a home page. How do you get users to stay long enough to understand a citizen science project? How do you get users to complete complex citizen science tasks online? Image Detective, a citizen science project originally developed by scientists and science engagement specialists at the NASA Johnson Space center to engage the public in the analysis of images taken from space by astronauts to help enhance NASA's online database of astronaut imagery, partnered with the CosmoQuest citizen science platform to modernize, offering new and improved options for participation in Image Detective. The challenge: to create a web interface that builds users' skills and knowledge, creating engagement while learning complex concepts essential to the accurate completion of tasks. The project team turned to usability testing for an objective understanding of how users perceived Image Detective and the steps required to complete required tasks. A group of six users was recruited online for unmoderated and initial testing. The users followed a think-aloud protocol while attempting tasks, and were recorded on video and audio. The usability test examined users' perception of four broad areas: the purpose of and context for Image Detective; the steps required to successfully complete the analysis (differentiating images of Earth's surface from those showing outer space and identifying common surface features); locating the image center point on a map of Earth; and finally, naming geographic locations or natural events seen in the image. Usability test findings demonstrated that the following best practices can increase participation in Image Detective and can be applied to the successful implementation of any citizen science project: (1) Concise explanation of the project, its context, and its purpose; (2) Including a mention of the funding agency (in this case, NASA); (3) A preview of the specific tasks required of participants; (4) A dedicated user interface for the actual citizen science interaction. In addition, testing revealed that users may require additional context when a task is complex, difficult, or unusual (locating a specific image and its center point on a map of Earth). Video evidence will be made available with this presentation.

  18. Exploring ``Science As Culture'' Through The European Science Museums Astronomy And Museum Education

    NASA Astrophysics Data System (ADS)

    Lelingou, Dimitra; Varga, Benedek; Czár, Katalin; Sircar, Seema; Paterson, Allan; Lindsay, Lilian; Watson, Andy; Croly, Christopher

    2010-01-01

    The Hellenic Physical Society is a scientific association with an intensive action in the field of education, which is governed by the philosophy that the relationship between science and society must be interactive. For this reason the Hellenic Physical Society is a partner of the European Grundtvig Lifelong Learning Project/Learning Partnerships, tilted: Exploring ``Science as Culture'' through the European Science Museums. The program numbered 07-GRCO1-GR04-00025-1 constitutes an educational collaboration between the Semmelweis Museum Library and archives of the History of Medicine of Hungary, which is the co-ordinator of the project, the Hellenic Physical Society (Greece) and the Aberdeen City Council Strategic Leadership of United Kingdom. During the first year that the european project was conducted, the Physics Museum of the greek aegean island of Chios, in collaboration with the Second Chance School of Chios, also took part. During the academic year 2008-2009, the Second Chance School of the Koridallos Prison of Athens is also taking part. The basic ideas, the design axes and the first results of the Grundtvig project will be developed in this presentation. This european partnership creates an educational programme consisting of science-related activities (such as seminars, lectures, presentations and in situ experimental activities), and prepares appropriate educational material for lifelong science learning, using innovative teaching methodologies and the European science museums' exhibits participating in this project, by making them centres of significant cultural contribution to science and society. Using the integrated approach of astronomy teaching as the central design axe in this programme, we highlight the cultural aspects of science education. From our educational intervention we develop educational tools for astronomy suitable for distance learning and making use of new technologies. The partnership is addressed to different age groups: museum visitors, museum educators, teachers involved in adult education, adult school students, financially and socially inferior groups, the general public. It aims at promoting innovative didactic lifelong procedures of informal forms of science education, through the proper utilization of the artifacts on display of the european science museums taking part, to the utilization of teaching procedures with the use of new technologies as didactic tools, to the forming of a cultural network of collaboration and to the creation of life-long learning teaching tools, so as to furhter promote the cultural dimension of scientific knowledge. In this paper a particular reference will be done to the development of a museum educational project of astronomy at the Adults Prisoners of the Second Chance School of Koridallos Prison of Athens and to the way that we try to insert elements of museum education inside the prison's school. Our main objective is to vivify the science museums. At the same time, we intend to share our experiences and relate our various fields of educational activity, so as to participating in this project. Finally, we intend to cultivate the cultural ideals and perceptions of European citizens, through the exploration of our common cultural past, to raise the awareness in our scientific-cultural heritage and to use this heritage as a powerful unifying field for us all.

  19. Conclusion: applying South East Asia Rainforest Research Programme science to land-use management policy and practice in a changing landscape and climate

    PubMed Central

    Walsh, Rory P. D.; Nussbaum, Ruth; Fowler, David; Weilenmann, Maja; Hector, Andy

    2011-01-01

    The context and challenges relating to the remaining tropical rainforest are briefly reviewed and the roles which science can play in addressing questions are outlined. Key messages which articles in the special issue, mainly based on projects of the Royal Society South East Asia Rainforest Research Programme (SEARRP), have raised of relevance to policies on land use, land management and REDD+ are then considered. Results from the atmospheric science and hydrology papers, and some of the ecological ones, demonstrate the very high ecosystem service values of rainforest (compared with oil palm) in maintaining high biodiversity, good local air quality, reducing greenhouse emissions, and reducing landslide, flooding and sedimentation consequences of climate change—and hence provide science to underpin the protection of remaining forest, even if degraded and fragmented. Another group of articles test ways of restoring forest quality (in terms of biodiversity and carbon value) or maintaining as high biodiversity and ecological functioning levels as possible via intelligent design of forest zones and fragments within oil palm landscapes. Finally, factors that have helped to enhance the policy relevance of SEARRP projects and dissemination of their results to decision-makers are outlined. PMID:22006974

  20. Galileo Press Conference from JPL. Parts 1 and 2

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This two-tape Jet Propulsion Laboratory (JPL) video production presents a Dec. 8, 1992 press conference held at JPL to discuss the final Galileo spacecraft encounter with Earth before beginning its journey to Jupiter. The main theme of the conference was centered on the significance of the 2nd and final Earth/Moon flyby as being the spacecraft's last planetary encounter in the solar system before reaching Jupiter, as well as final flight preparations prior to its final journey. Each person of the five member panel was introduced by Robert MacMillan (JPL Public Information Mgr.) before giving brief presentations including slides and viewgraphs covering their area of expertise regarding Galileo's current status and future plans. After the presentations, the media was given an opportunity to ask questions of the panel regarding the mission. Mr. Wesley Huntress (Dir. of Solar System Exploration (NASA)), William J. ONeill (Galileo Project Manager), Neal E. Ausman, Jr. (Galileo Mission Director), Dr. Torrence V. Johnson (Galileo Project Scientist) and Dr. Ronald Greeley (Member, Imaging Team, Colorado St. Univ.) made up the panel and discussed topics including: Galileo's interplanetary trajectory; project status and performance review; instrument calibration activities; mission timelines; lunar observation and imaging; and general lunar science. Also included in the last three minutes of the video are simulations and images of the 2nd Galileo/Moon encounter.

  1. DISCUSSION ON "ELECTROCHEMICAL AND RAMAN SPECTROSCOPIC STUDIES OF THE INFLUENCE OF CHLORINATED SOLVENTS ON THE CORROSION BEHAVIOUR OF IRON IN BORATE BUFFER AND IN SIMULATED GROUNDWATER (CORROSION SCIENCE 2000;42:1921-1939)." (R827117)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  2. An Experimental Study of the Project CRISS Reading Program on Grade 9 Reading Achievement in Rural High Schools. Final Report NCEE 2011-4007

    ERIC Educational Resources Information Center

    Kushman, Jim; Hanita, Makoto; Raphael, Jacqueline

    2011-01-01

    Students entering high school face many new academic challenges. One of the most important is their ability to read and understand more complex text in literature, mathematics, science, and social studies courses as they navigate through a rigorous high school curriculum. The Regional Educational Laboratory (REL) Northwest conducted a study to…

  3. Pre-Freshman Enrichment Program (PREP). Closeout documentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-19

    This is the final report on a project to support a science/mathematics summer program aimed at minority middle school students, whose objective was to introduce them to career opportunities, job interest, and financial help for pursuing a career objective in a technology field. The report describes program results from the summers of 1992, 1993 and 1996. It was administered through Eastern New Mexico University.

  4. Man-Portable Simultaneous Magnetometer and EM System (MSEMS)

    DTIC Science & Technology

    2008-12-01

    expensive fluxgate magnetometers . This is because the interleaving hardware is expecting a Larmor signal as input; it performs period counting of the...Larmor signal between EM61 pulses to convert the frequency-based Larmor signal into nanotesla. A fluxgate magnetometer does not employ the resonance...FINAL REPORT Man-Portable Simultaneous Magnetometer and EM System (MSEMS) ESTCP Project MM-0414 December 2008 Robert Siegel Science

  5. Life sciences payload definition and integration study. Volume 3: Preliminary equipment item specification catalog for the carry-on laboratories. [for Spacelab

    NASA Technical Reports Server (NTRS)

    1974-01-01

    All general purpose equipment items contained in the final carry-on laboratory (COL) design concepts are described in terms of specific requirements identified for COL use, hardware status, and technical parameters such as weight, volume, power, range, and precision. Estimated costs for each item are given, along with projected development times.

  6. The Utility of An Evaluative Model in Judging the Relationship Between Classroom Verbal Behavior and Student Achievement in Three Selected Physics Curricula, Final Report.

    ERIC Educational Resources Information Center

    Smith, T. C., Jr.

    The purpose of the 1968-69 investigation was to determine the applicability of a curriculum evaluation model to investigate high school students' achievement in three physics courses (traditional physics, Physical Science Study Curriculum, and Harvard Project Physics). Three tests were used to measure student progress: The Dunning-Abeles Physics…

  7. A River Runs through It: A School on the Edge of the Columbia River Estuary Combines Science and Stewardship Right in Its Own Backyard.

    ERIC Educational Resources Information Center

    Sherman, Lee

    2002-01-01

    The estuary at the mouth of the Columbia River in Wahkiakum County Washington) provides a natural laboratory for experiential learning. Wahkiakum High School students participate in interdisciplinary projects that have included habitat restoration, a salmon hatchery, stream restoration, tree planting, and recreating the final leg of the Lewis and…

  8. The Monsoon-90 / SALSA / EOS / SUDMED / SAHRA / HELP / USPP Experience: A Progression of Interdisciplinary Integration of Science and Decision Making over 20 years.

    NASA Astrophysics Data System (ADS)

    Chehbouni, G.; Goodrich, D.; Kustas, B.; Sorooshian, S.; Shuttleworth, J.; Richter, H.

    2008-12-01

    The Monsoon'90 Experiment conducted at the USDA-ARS Walnut Gulch Experimental Watershed in southeast Arizona was the start of a long arc of subsequent experiments and research that were larger, longer-term, more international, more interdisciplinary, and led to more direct integration of science for decision making and watershed management. In this era, much of our research and science must be more directly relevant to decision-makers and natural resource managers as they increasingly require sophisticated levels of expert findings and scientific results (e.g. interdisciplinary) to make informed decisions. Significant effort beyond focused, single disciplinary research is required conduct interdisciplinary science typical in large scale field experiments. Even greater effort is required to effectively integrate our research across the physical and ecological sciences for direct use by policy and decision makers. This presentation will provide an overview of the evolution of this arc of experiments and long-term projects into a mature integrated science and decision making program. It will discuss the transition in project focus from science and research for understanding; through science for addressing a need; to integrated science and policy development. At each stage the research conducted became more interdisciplinary, first across abiotic disciplines (hydrology, remote sensing, atmospheric science), then by merging abiotic and biotic disciplines (adding ecology and plant physiology), and finally a further integration of economic and social sciences with and policy and decision making for resource management. Lessons learned from this experience will be reviewed with the intent providing guidance to ensure that the resulting research is socially and scientifically relevant and will not only result in cutting edge science but will also directly address the needs of policy makers and resource managers.

  9. MTU-pre-service teacher enhancement program. Final report, September 1992--May 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, C.S.; Yarroch, W.J.

    1996-01-01

    The MTU Pre-Service Teacher Enhancement Program was a two year extended project designed to introduce a select group of science and engineering undergraduate students, with good {open_quotes}people skills,{close_quotes} to the teaching profession. Participants were paid for their time spent with area teacher/mentors and were involved in a variety of in school activities, projects and observations to illustrate the teaching profession. They were encouraged to consider the teaching profession as a future career option. The student participants, however, were under no obligation to enter the Teacher Education Program at the conclusion of the program.

  10. History of Science and Science Museums

    NASA Astrophysics Data System (ADS)

    Faria, Cláudia; Guilherme, Elsa; Gaspar, Raquel; Boaventura, Diana

    2015-10-01

    The activities presented in this paper, which are addressed to elementary school, are focused on the pioneering work of the Portuguese King Carlos I in oceanography and involve the exploration of the exhibits belonging to two different science museums, the Aquarium Vasco da Gama and the Maritime Museum. Students were asked to study fish adaptations to deep sea, through the exploration of a fictional story, based on historical data and based on the work of the King that served as a guiding script for all the subsequent tasks. In both museums, students had access to: historical collections of organisms, oceanographic biological sampling instruments, fish gears and ships. They could also observe the characteristics and adaptations of diverse fish species characteristic of deep sea. The present study aimed to analyse the impact of these activities on students' scientific knowledge, on their understanding of the nature of science and on the development of transversal skills. All students considered the project very popular. The results obtained suggest that the activity promoted not only the understanding of scientific concepts, but also stimulated the development of knowledge about science itself and the construction of scientific knowledge, stressing the relevance of creating activities informed by the history of science. As a final remark we suggest that the partnership between elementary schools and museums should be seen as an educational project, in which the teacher has to assume a key mediating role between the school and the museums.

  11. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Tielens, A. G. G. M.; Gehrz, R. D.; Callis, H. H. S.

    2007-09-01

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now in its final stages of development. Flying in the stratosphere, SOFIA allows observations throughout the infrared and submillimeter region with an average transmission of >= 80%. The SOFIA instrument complement includes broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. These instruments will enable SOFIA to make unique contributions to a broad array of science topics. First science flights will begin in 2009, and the observatory is expected to operate for more than 20 years. The sensitivity, characteristics, science instrument complement, and examples of first light science are discussed.

  12. The NASA Evolutionary Xenon Thruster (NEXT): NASA's Next Step for U.S. Deep Space Propulsion

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.; Patterson, Michael J.; Benson, Scott W.

    2008-01-01

    NASA s Evolutionary Xenon Thruster (NEXT) project is developing next generation ion propulsion technologies to enhance the performance and lower the costs of future NASA space science missions. This is being accomplished by producing Engineering Model (EM) and Prototype Model (PM) components, validating these via qualification-level and integrated system testing, and preparing the transition of NEXT technologies to flight system development. The project is currently completing one of the final milestones of the effort, that is operation of an integrated NEXT Ion Propulsion System (IPS) in a simulated space environment. This test will advance the NEXT system to a NASA Technology Readiness Level (TRL) of 6 (i.e., operation of a prototypical system in a representative environment), and will confirm its readiness for flight. Besides its promise for upcoming NASA science missions, NEXT may have excellent potential for future commercial and international spacecraft applications.

  13. Parallel High Order Accuracy Methods Applied to Non-Linear Hyperbolic Equations and to Problems in Materials Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jan Hesthaven

    2012-02-06

    Final report for DOE Contract DE-FG02-98ER25346 entitled Parallel High Order Accuracy Methods Applied to Non-Linear Hyperbolic Equations and to Problems in Materials Sciences. Principal Investigator Jan S. Hesthaven Division of Applied Mathematics Brown University, Box F Providence, RI 02912 Jan.Hesthaven@Brown.edu February 6, 2012 Note: This grant was originally awarded to Professor David Gottlieb and the majority of the work envisioned reflects his original ideas. However, when Prof Gottlieb passed away in December 2008, Professor Hesthaven took over as PI to ensure proper mentoring of students and postdoctoral researchers already involved in the project. This unusual circumstance has naturally impacted themore » project and its timeline. However, as the report reflects, the planned work has been accomplished and some activities beyond the original scope have been pursued with success. Project overview and main results The effort in this project focuses on the development of high order accurate computational methods for the solution of hyperbolic equations with application to problems with strong shocks. While the methods are general, emphasis is on applications to gas dynamics with strong shocks.« less

  14. The Magellan Final Report on Cloud Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ,; Coghlan, Susan; Yelick, Katherine

    The goal of Magellan, a project funded through the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR), was to investigate the potential role of cloud computing in addressing the computing needs for the DOE Office of Science (SC), particularly related to serving the needs of mid- range computing and future data-intensive computing workloads. A set of research questions was formed to probe various aspects of cloud computing from performance, usability, and cost. To address these questions, a distributed testbed infrastructure was deployed at the Argonne Leadership Computing Facility (ALCF) and the National Energy Research Scientific Computingmore » Center (NERSC). The testbed was designed to be flexible and capable enough to explore a variety of computing models and hardware design points in order to understand the impact for various scientific applications. During the project, the testbed also served as a valuable resource to application scientists. Applications from a diverse set of projects such as MG-RAST (a metagenomics analysis server), the Joint Genome Institute, the STAR experiment at the Relativistic Heavy Ion Collider, and the Laser Interferometer Gravitational Wave Observatory (LIGO), were used by the Magellan project for benchmarking within the cloud, but the project teams were also able to accomplish important production science utilizing the Magellan cloud resources.« less

  15. Center for Biophotonics Science and Technology (CBST).

    PubMed

    Chuang, Frank

    2004-01-01

    The Center for Biophotonics Science and Technology (CBST) is the only center in the country funded by the National Science Foundation and devoted to the study of light and radiant energy in biology and medicine. Our consortium of 10 world-class academic institutions and research laboratories is comprised of physical and life scientists, physicians and engineers - along with industry participants, educators and community leaders - working together to bring biophotonics to the forefront of mainstream science. The three main arms of CBST are (1) Science and Technology, (2) Education, and (3) Knowledge Transfer. The research sponsored by the center focuses on critical themes that are expected to have significant impact on current biomedical science and technology. Projects include the development of new methods in optical microscopy that work well beyond the diffraction limit; ultrafast, high-intensity X-ray lasers to resolve the structure of single biomolecules, and new devices and sensors for minimally - or noninvasive medical applications. CBST is developing a new curriculum, along with training materials, internships and research fellowships to introduce biophotonics to students and teachers at all educational levels. Finally, the knowledge transfer component of CBST is seeking to catalyze the rapid growth of biophotonics as a new technology sector by supplying intellectual capital and tools to stimulate the growth of new products and new companies. By coupling the center's biophotonics research projects with industry partners and sponsors, a unique R&D environment is created to expand the use of photons in the development of life sciences, bioengineering and health care.

  16. A course designed for undergraduate biochemistry students to learn about cultural diversity issues.

    PubMed

    Benore-Parsons, Marilee

    2006-09-01

    Biology, biochemistry, and other science students are well trained in science and familiar with how to conduct and evaluate scientific experiments. They are less aware of cultural issues or how these will impact their careers in research, education, or as professional health care workers. A course was developed for advanced undergraduate science majors to learn about diversity issues in a context that would be relevant to them, entitled "Diversity Issues in Health Care: Treatment and Research." Learning objectives included: developing awareness of current topics concerning diversity issues in health care; learning how research is carried out in health care, including pharmaceutical research, clinical trials, and social research; and learning about health care practices. Lectures and projects included readings on laboratory and clinical research, as well as literature on legal, race, gender, language, age, and income issues in health care research and clinical practice. Exams, papers, and a service learning project were used to determine the final course grade. Assessment indicated student understanding of diversity issues was improved, and the material was relevant. Copyright © 2006 International Union of Biochemistry and Molecular Biology, Inc.

  17. [Science in Argentina. Where do we go from here?].

    PubMed

    Barañao, Lino

    2012-01-01

    The Minister of Science described in detail his plans for the creation of closer bonds between science and society in a long term attempt to improve general quality of life. This will be accomplished by strengthening the infrastructure with diversification of the finances, multidisciplinary interrelations aiming to increase production, with special attention for social demands. One of these objectives includes the creation of research-private/public company interrelations, stressing the importance of multidisciplinary projects. Publication of results in high impact journals will always be a priority stressing the importance of basic research as a source of breakthroughs or technological inventions. The Minister also referred to the awarding of grants for scientific projects, the relation between research and production and the promotion of technological innovations. He defined three technological platforms, which are nanotechnology, biotechnology and communication. He also identified four problem/opportunity sectors, such as public health, energy sources, agro-industry and social development. Interaction between these has already led to an area of biotechnology applied to public health which will grow through translational medicine. He finally discussed the problem of patents and their importance in promoting successful business-research partnerships.

  18. Collaborating on Climate: The Signs of the Land Camp as a Model for Meaningful Learning Between Indigenous Communities and Western Climate Scientists

    NASA Astrophysics Data System (ADS)

    Chase, M.; Brunacini, J.; Sparrow, E. B.

    2016-12-01

    As interest in Indigenous Knowledge (IK) grows, how can researchers ensure that collaboration is meaningful, relevant, and valuable for those involved? The Signs of the Land: Reaching Arctic Communities Facing Climate Change Camp is a collaborative project developed by the Association for Interior Native Educators (AINE), the International Arctic Research Center (IARC), and the PoLAR Partnership. Modeled on AINE's Elder Academy and supported by a grant from the National Science Foundation, the camp facilitates in-depth dialogue about climate change and explores causes, impacts, and solutions through the cultural lens of Alaska Native communities. The project integrates local observations, IK, and western climate science. Participants engage with Alaska Native Elders, local climate researchers, and learn about climate communication tools and resources for responding. Following camps in 2014 and 2016, project partners identified a variety of questions about the challenges and opportunities of the collaboration that will be discussed in this presentation. For instance, what does it mean to equitably integrate IK, and in what ways are Native communities able to participate in research project design, delivery, and evaluation? How are decisions made and consensus built within cultural practices, project goals, and funding expectations? How do opportunities available to Indigenous communities to engage with western climate science broaden understanding and response? And, how does the ability to connect with and learn from Alaska Native Elders affect motivation, engagement, and community action? Finally, what is the effect of learning about climate change in a cultural camp setting?

  19. Final Report for Annex II--Assessment of Solar Radiation Resources In Saudi Arabia, 1998-2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, D. R.; Wilcox, S. M.; Marion, W. F.

    2002-04-01

    The Final Report for Annex II - Assessment of Solar Radiation Resources in Saudi Arabia 1998-2000 summarizes the accomplishment of work performed, results achieved, and products produced under Annex II, a project established under the Agreement for Cooperation in the Field of Renewable Energy Research and Development between the Kingdom of Saudi Arabia and the United States. The report covers work and accomplishments from January 1998 to December 2000. A previous progress report, Progress Report for Annex II - Assessment of Solar Radiation Resources in Saudi Arabia 1993-1997, NREL/TP-560-29374, summarizes earlier work and technical transfer of information under the project.more » The work was performed in at the National Renewable Energy Laboratory (NREL) in Golden, Colorado, at the King Abdulaziz City for Science and Technology (KACST) in Riyadh, Saudi Arabia, and at selected weather stations of the Saudi Meteorological and Environmental Protection Administration (MEPA).« less

  20. The 'end of AIDS' project: Mobilising evidence, bureaucracy, and big data for a final biomedical triumph over AIDS.

    PubMed

    Leclerc-Madlala, Suzanne; Broomhall, Lorie; Fieno, John

    2017-12-04

    Efforts are currently underway by major orchestrators and funders of the global AIDS response to realise the vision of achieving an end to AIDS by 2030. Unlike previous efforts to provide policy guidance or to encourage 'best practice' approaches for combatting AIDS, the end of AIDS project involves the promotion of a clear set of targets, tools, and interventions for a final biomedical solution to the epidemic. In this paper, we examine the bureaucratic procedures of one major AIDS funder that helped to foster a common vision and mission amongst a global AIDS community with widely divergent views on how best to address the epidemic. We focus on the methods, movements, and materials that are central to the project of ending AIDS, including those related to biomedical forms of evidence and big data science. We argue that these approaches have limitations and social scientists need to pay close attention to the end of AIDS project, particularly in contexts where clinical interventions might transform clinical outcomes, but where the social, economic, and cultural determinants of HIV and AIDS remain largely intact and increasingly obscured.

  1. BAO Plate Archive Project: Digitization, Electronic Database and Research Programmes

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Abrahamyan, H. V.; Andreasyan, H. R.; Azatyan, N. M.; Farmanyan, S. V.; Gigoyan, K. S.; Gyulzadyan, M. V.; Khachatryan, K. G.; Knyazyan, A. V.; Kostandyan, G. R.; Mikayelyan, G. A.; Nikoghosyan, E. H.; Paronyan, G. M.; Vardanyan, A. V.

    2016-06-01

    The most important part of the astronomical observational heritage are astronomical plate archives created on the basis of numerous observations at many observatories. Byurakan Astrophysical Observatory (BAO) plate archive consists of 37,000 photographic plates and films, obtained at 2.6m telescope, 1m and 0.5m Schmidt type and other smaller telescopes during 1947-1991. In 2002-2005, the famous Markarian Survey (also called First Byurakan Survey, FBS) 1874 plates were digitized and the Digitized FBS (DFBS) was created. New science projects have been conducted based on these low-dispersion spectroscopic material. A large project on the whole BAO Plate Archive digitization, creation of electronic database and its scientific usage was started in 2015. A Science Program Board is created to evaluate the observing material, to investigate new possibilities and to propose new projects based on the combined usage of these observations together with other world databases. The Executing Team consists of 11 astronomers and 2 computer scientists and will use 2 EPSON Perfection V750 Pro scanners for the digitization, as well as Armenian Virtual Observatory (ArVO) database will be used to accommodate all new data. The project will run during 3 years in 2015-2017 and the final result will be an electronic database and online interactive sky map to be used for further research projects, mainly including high proper motion stars, variable objects and Solar System bodies.

  2. Topics in computational physics

    NASA Astrophysics Data System (ADS)

    Monville, Maura Edelweiss

    Computational Physics spans a broad range of applied fields extending beyond the border of traditional physics tracks. Demonstrated flexibility and capability to switch to a new project, and pick up the basics of the new field quickly, are among the essential requirements for a computational physicist. In line with the above mentioned prerequisites, my thesis described the development and results of two computational projects belonging to two different applied science areas. The first project is a Materials Science application. It is a prescription for an innovative nano-fabrication technique that is built out of two other known techniques. The preliminary results of the simulation of this novel nano-patterning fabrication method show an average improvement, roughly equal to 18%, with respect to the single techniques it draws on. The second project is a Homeland Security application aimed at preventing smuggling of nuclear material at ports of entry. It is concerned with a simulation of an active material interrogation system based on the analysis of induced photo-nuclear reactions. This project consists of a preliminary evaluation of the photo-fission implementation in the more robust radiation transport Monte Carlo codes, followed by the customization and extension of MCNPX, a Monte Carlo code developed in Los Alamos National Laboratory, and MCNP-PoliMi. The final stage of the project consists of testing the interrogation system against some real world scenarios, for the purpose of determining the system's reliability, material discrimination power, and limitations.

  3. The Atacama Large Aperture Submm/mm Telescope (AtLAST) Project

    NASA Astrophysics Data System (ADS)

    Bertoldi, Frank

    2018-01-01

    In the past decade a strong case has been made for the construction of a next generation, 25 to 40-meter large submillimeter telescope, most notably through the CCAT and the Japanese LST projects. Although much effort had been spent on detailed science cases and technological studies, none of these projects have yet secured funding to advance to construction. We invite the interested community to join a study of the scientific merit, technical implementation, and financial path toward what we coin the "Atacama Large Submillimeter Telescope" (AtLAST). Through this community workshop, working groups, and a final report to be released in early 2019, we hope to motivate the global astronomy community to value and support the realization of such a facility.

  4. Investigating the Impact of NGSS-Aligned Professional Development on PreK-3 Teachers' Science Content Knowledge and Pedagogy

    NASA Astrophysics Data System (ADS)

    Tuttle, Nicole; Kaderavek, Joan N.; Molitor, Scott; Czerniak, Charlene M.; Johnson-Whitt, Eugenia; Bloomquist, Debra; Namatovu, Winnifred; Wilson, Grant

    2016-11-01

    This pilot study investigates the impact of a 2-week professional development Summer Institute on PK-3 teachers' knowledge and practices. This Summer Institute is a component of [program], a large-scale early-childhood science project that aims to transform PK-3 science teaching. The mixed-methods study examined concept maps, lesson plans, and classroom observations to measure possible changes in PK-3 teachers' science content knowledge and classroom practice from 11 teachers who attended the 2014 Summer Institute. Analysis of the concept maps demonstrated statistically significant growth in teachers' science content knowledge. Analysis of teachers' lesson plans demonstrated that the teachers could design high quality science inquiry lessons aligned to the Next Generation Science Standards following the professional development. Finally, examination of teachers' pre- and post-Summer Institute videotaped inquiry lessons showed evidence that teachers were incorporating new inquiry practices into their teaching, especially regarding classroom discourse. Our results suggest that an immersive inquiry experience is effective at beginning a shift towards reform-aligned science and engineering instruction but that early elementary educators require additional support for full mastery.

  5. Environmental Science: 49 Science Fair Projects. Science Fair Projects Series.

    ERIC Educational Resources Information Center

    Bonnet, Robert L.; Keen, G. Daniel

    This book contains 49 science fair projects designed for 6th to 9th grade students. Projects are organized by the topics of soil, ecology (projects in habitat and life cycles), pests and controls (projects in weeds and insects), recycling (projects in resources and conservation), waste products (projects in decomposition), microscopic organisms,…

  6. An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series

    NASA Astrophysics Data System (ADS)

    McClain, Charles R.; Feldman, Gene C.; Hooker, Stanford B.

    2004-01-01

    The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project Office was formally initiated at the NASA Goddard Space Flight Center in 1990. Seven years later, the sensor was launched by Orbital Sciences Corporation under a data-buy contract to provide 5 years of science quality data for global ocean biogeochemistry research. To date, the SeaWiFS program has greatly exceeded the mission goals established over a decade ago in terms of data quality, data accessibility and usability, ocean community infrastructure development, cost efficiency, and community service. The SeaWiFS Project Office and its collaborators in the scientific community have made substantial contributions in the areas of satellite calibration, product validation, near-real time data access, field data collection, protocol development, in situ instrumentation technology, operational data system development, and desktop level-0 to level-3 processing software. One important aspect of the SeaWiFS program is the high level of science community cooperation and participation. This article summarizes the key activities and approaches the SeaWiFS Project Office pursued to define, achieve, and maintain the mission objectives. These achievements have enabled the user community to publish a large and growing volume of research such as those contributed to this special volume of Deep-Sea Research. Finally, some examples of major geophysical events (oceanic, atmospheric, and terrestrial) captured by SeaWiFS are presented to demonstrate the versatility of the sensor.

  7. Evaluation Tools in the European Higher Education Area (EHEA): An Assessment for Evaluating the Competences of the Final Year Project in the Social Sciences

    ERIC Educational Resources Information Center

    Mateo, Joan; Escofet, Anna; Martinez-Olmo, Francesc; Ventura, Javier; Vlachopoulos, Dimitrios

    2012-01-01

    The guidelines of the European Higher Education Area (EHEA) imply the rethinking of many of the current evaluation systems, since the new pedagogical models now focus on the learning acquired through the students' personal work and on the establishment of the ideal conditions for them to achieve the learning outcomes of the proposed educational…

  8. JPL-20170915-CASSINf-0002-Cassini End of Mission Post Event Press ConferenceAVAIL

    NASA Image and Video Library

    2017-09-15

    This press briefing summarizes the end of NASA-ESA's Cassini-Huygens mission to Saturn and presents the final images made by the spacecraft before its planned disintegration in Saturn's atmosphere on September 15, 2017. Featured: Earl Maize, Cassini Program Manager, JPL; Linda Spilker, Cassini Project Scientist, JPL; Julie Webster, Cassini Spacecraft operations Manager, JPL; and Thomas Zurbuchen, Associate Administrator, Science Mission Directorate, NASA HQ.

  9. JPRS Report, Science & Technology, Europe

    DTIC Science & Technology

    1992-10-27

    reprocessors involved. PRAVDA The BMW, Ford, Mercedes - Benz , Opel, Porsche and VW companies have joined together in the Project Team Recycling of Old...WEHRTECHNIK, Jun 92] 27 Effect of Common Market on European Aerospace Industry [Fausto Cereti; Bonn WEHRTECHNIK, Jun 92] 29 Thyssen Develops Laser...Europe. What, in your opinion, do you think the final solution will be in this sector of the industry? [Mehdorn] We’re talking about four market

  10. Seminar on the Acquisition of Latin American Library Materials (15th, Toronto, Ontario, Canada, June 23-26, 1970). Final Report and Working Papers, Volume II.

    ERIC Educational Resources Information Center

    Benson, Susan Shattuck: Bresie, Mayellen

    Volume 2 contains 13 working papers from the 15th Seminar on Acquisition of Latin American Library Materials. The papers are: (1) A Report on Bibliographic Activities; (2) Microfilm Projects Newsletter; (3) Role of Latin American Legal Material in the Social Science Research Library; (4) A description of sources for Legal and Social Science…

  11. KAPAO: a MEMS-based natural guide star adaptive optics system

    NASA Astrophysics Data System (ADS)

    Severson, Scott A.; Choi, Philip I.; Contreras, Daniel S.; Gilbreth, Blaine N.; Littleton, Erik; McGonigle, Lorcan P.; Morrison, William A.; Rudy, Alex R.; Wong, Jonathan R.; Xue, Andrew; Spjut, Erik; Baranec, Christoph; Riddle, Reed

    2013-03-01

    We describe KAPAO, our project to develop and deploy a low-cost, remote-access, natural guide star adaptive optics (AO) system for the Pomona College Table Mountain Observatory (TMO) 1-meter telescope. We use a commercially available 140-actuator BMC MEMS deformable mirror and a version of the Robo-AO control software developed by Caltech and IUCAA. We have structured our development around the rapid building and testing of a prototype system, KAPAO-Alpha, while simultaneously designing our more capable final system, KAPAO-Prime. The main differences between these systems are the prototype's reliance on off-the-shelf optics and a single visible-light science camera versus the final design's improved throughput and capabilities due to the use of custom optics and dual-band, visible and near-infrared imaging. In this paper, we present the instrument design and on-sky closed-loop testing of KAPAO-Alpha as well as our plans for KAPAO-Prime. The primarily undergraduate-education nature of our partner institutions, both public (Sonoma State University) and private (Pomona and Harvey Mudd Colleges), has enabled us to engage physics, astronomy, and engineering undergraduates in all phases of this project. This material is based upon work supported by the National Science Foundation under Grant No. 0960343.

  12. A retrospective of the GREGOR solar telescope in scientific literature

    NASA Astrophysics Data System (ADS)

    Denker, C.; von der Lühe, O.; Feller, A.; Arlt, K.; Balthasar, H.; Bauer, S.-M.; Bello González, N.; Berkefeld, Th.; Caligari, P.; Collados, M.; Fischer, A.; Granzer, T.; Hahn, T.; Halbgewachs, C.; Heidecke, F.; Hofmann, A.; Kentischer, T.; Klva{ňa, M.; Kneer, F.; Lagg, A.; Nicklas, H.; Popow, E.; Puschmann, K. G.; Rendtel, J.; Schmidt, D.; Schmidt, W.; Sobotka, M.; Solanki, S. K.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Volkmer, R.; Waldmann, T.; Wiehr, E.; Wittmann, A. D.; Woche, M.

    2012-11-01

    In this review, we look back upon the literature, which had the GREGOR solar telescope project as its subject including science cases, telescope subsystems, and post-focus instruments. The articles date back to the year 2000, when the initial concepts for a new solar telescope on Tenerife were first presented at scientific meetings. This comprehensive bibliography contains literature until the year 2012, i.e., the final stages of commissioning and science verification. Taking stock of the various publications in peer-reviewed journals and conference proceedings also provides the ``historical'' context for the reference articles in this special issue of Astronomische Nachrichten/Astronomical Notes.

  13. Teenagers as scientist - Learning by doing or doing without learning?

    NASA Astrophysics Data System (ADS)

    Kapelari, Suzanne; Carli, Elisabeth; Tappeiner, Ulrike

    2010-05-01

    Title: Teenagers as scientist - Learning by doing or doing without learning? Authors: Dr. Suzanne Kapelari* and Elsabeth Carli*, Ulrike Tappeiner** *Science Educaton Center,**Institute of Ecology,University Innsbruck, Austria The PISA (2006-2007) Assessment Framework asks for"…. the development of a general understanding of important concepts and explanatory framework of science, of the methods by which science derives evidence to support claims for its knowledge and of the strength and limitations of science in the real world….". To meet these requirements pupils are eventually asked to engage in "working like scientists learning activities" at school or while visiting informal learning institutions. But what does it mean in a real life situation? An ambitious project call named "Sparkling Science" was launched by the Austrian Federal Ministry of Science and Research in 2008, asking scientists to run their research in tight co-operation with local teachers and pupils. Although this would be enough of a challenge anyway, the ultimate goals of these projects are to achieve publishable scientific results in the particular field. The project design appears to be promising. Pupils and teachers are invited to gain first hand experience as part of a research team investigating current research questions. Pupils experience science research first hand, explore laboratories and research sites, gather data, discuss findings, draw conclusions and finally publish them. They set off on an exciting two years journey through a real scientific project. Teachers have the unique opportunity to get insight into a research project and work closely together with scientists. In addition teachers and pupils have the opportunity to gain first hand knowledge about a particular topic and are invited to discuss science matters on the uppermost level. Sparkling Science promoting agents have high expectations. Their website (www.sparklingscience.at) says: "Forming research teams that involve scientists and children simulates the research process and has a high impact on skill building for both partners". In the contrary hardly anything do we actually know about how effective these learning environments really are. For the last decades a large body of science education research has predominantly taken place in laboratories and formal educational settings. Significant "blind spots" in the current literature appear when it comes to focusing on "the nature of learning in outdoor education" as well as "learning in research-education partnerships". The Institute of Ecology at the University of Innsbruck, Austria was awarded the project: Top-Klima-Science: Hydrologic Balance and Global Change: Future Prospect for Mountain Areas in the Face of Changes in Land Use and Climate. The University of Innsbruck and the European Academy Bolzano are coordinating their efforts with their partner school HLFS Kematen in Tyrol. Two classes with nearly 60 students age 15 -18 years are involved in all areas of the project. The research project as such is accompanied by an ongoing evaluation of the process, which is carried out by science education researchers from the Science Education Centre at the University to Innsbruck, Austria. Iterative testing of teaching and learning strategies to improve them as they are developed is going along with a front, middle and end evaluation to find out what expectations, fears and motivations pupils, teachers and researchers have before joining in and how these develop in course of the two years working relationship. Evaluators also watch closely on how pupil develop their conceptual understanding of the topic they are investigating and whether their attitude towards science and science research changes in course of working as "real scientists. This talk will present preliminary results from work in progress and will discuss pros and cons of "doing real research" as a long term strategy for science in tomorrow's classrooms.

  14. Development of an interprofessional competency framework in Japan.

    PubMed

    Haruta, Junji; Sakai, Ikuko; Otsuka, Mariko; Yoshimoto, Hisashi; Yoshida, Kazue; Goto, Michiko; Shimoi, Toshinori

    2016-09-01

    This article presents a project that aimed to identify a set of competencies (domains and statements) to prepare Japanese students and healthcare practitioners for collaborative practice. The Japan Association for Interprofessional Education (JAIPE) has started a government-funded project to formulate its interprofessional competency framework, in cooperation with professional organisations (e.g. Japan Society for Medical Education) in healthcare and social sciences. This three-year project is underway as part of the Initiative to Build up the Core Healthcare Personnel programme of Mie University. This project consists of five stages: literature review, data collection, prototype development, consensus formation, and finalisation. Our efforts will culminate in Japan's first interprofessional competency framework, with consensus from relevant academic societies and other stakeholders. We hope that the involvement of stakeholder participation will improve the usability of the final interprofessional competency framework.

  15. Geology of the Southern Utopia Planitia Highland-Lowland Boundary Plain: Second Year Results and Third Year Plan

    NASA Technical Reports Server (NTRS)

    Skinner, J. A., Jr.; Tanaka, K. L.; Hare, T. M.

    2009-01-01

    The southern Utopia highland-lowland boundary (HLB) extends >1500 km westward from Hyblaeus Dorsa to the topographic saddle that separates Isidis and Utopia Planitiae. It contains bench-like platforms that contain depressions, pitted cones (some organized into arcuate chains and thumb-print terrain), isolated domes, buried circular depressions, ring fractures, polygonal fractures, and other locally- to regionally-dispersed landforms [1-2]. The objective of this map project is to clarify the geologic evolution of the southern Utopia Planitia HLB by identifying the geologic, structural, and stratigraphic relationships of surface materials in MTMs 10237, 15237, 20237, 10242, 15242, 20242, 10247, 15247, and 20247. The project was originally awarded in April, 2007 and is in its final year of support. Mapping is on-schedule and formal map submission will occur by December, 2009, with finalization anticipated by April, 2010. Herein, we (1) review specifics regarding mapping data and methods, (2) present nomenclature requests that we feel will assist with unit descriptions, (3) describe Year 2 mapping and science accomplishments, and (4) outline Year 3 technical and managerial approaches for finalizing the geologic map.

  16. FY06 LDRD Final Report: Broadband Radiation and Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madsen, N; Fasenfest, B; White, D

    2007-03-08

    This is the final report for LDRD 01-ERD-005. The Principle Investigator was Robert Sharpe. Collaborators included Niel Madsen, Benjamin Fasenfest, John D. Rockway, of the Defense Sciences Engineering Division (DSED), Vikram Jandhyala and James Pingenot from the University of Washington, and Mark Stowell of the Center for Applications Development and Software Engineering (CADSE). It should be noted that Benjamin Fasenfest and Mark Stowell were partially supported under other funding. The purpose of this LDRD effort was to enhance LLNL's computational electromagnetics capability in the area of broadband radiation and scattering. For radiation and scattering problems our transient EM codes aremore » limited by the approximate Radiation Boundary Conditions (RBC's) used to model the radiation into an infinite space. Improved RBC's were researched, developed, and incorporated into the existing EMSolve finite-element code to provide a 10-100x improvement in the accuracy of the boundary conditions. Section I provides an introduction to the project and the project goals. Section II provides a summary of the project's research and accomplishments as presented in the attached papers.« less

  17. Spectroscopic observations with the Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Tielens, A. G. G. M.; Callis, H. H. S.

    The joint US and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now in its final stages of development. Flying in the stratosphere, SOFIA allows observations through the infrared and submillimeter region, with an average transmission of greater than 80%. SOFIA is characterized by a wide instrument complement ranging from broadband imagers, through moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, to high-resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. This broad range in instruments will enable SOFIA to make unique contributions to a broad array of science topics. First science flights will begin in 2009 and the observatory is expected to operate for over 20 years. The sensitivity, characteristics, science instrument complement, and examples of first light spectroscopic science are discussed.

  18. Stratospheric Observatory for Infrared Astronomy (sofia)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Tielens, A. G. G. M.; Callis, H. H. S.

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now in its final stages of development. Flying in the stratosphere, SOFIA allows observations through the infrared and submillimeter region, with an average transmission of ≳ 80%. SOFIA is characterized by a wide instrument complement ranging from broadband imagers, through moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, to high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. This broad range in instruments will enable SOFIA to make unique contributions to a broad array of science topics. First science flights will begin in 2009 and the observatory is expected to operate for over 20 years. The sensitivity, characteristics, science instrument complement, and examples of first light science are discussed.

  19. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Gehrz, R. D.

    2009-08-01

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is in its final stages of development. Flying in the stratosphere, SOFIA allows observations throughout the infrared and submillimeter region, with an average transmission of greater than 80%. SOFIA's first generation instrument complement includes high-speed photometers, broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. These instruments will enable SOFIA to make unique contributions to a broad array of science topics. First science flights will begin in 2010, and the observatory is expected to operate for more than 20 years. The sensitivity, characteristics, science instrument complement, future instrument opportunities and examples of first light science will be discussed.

  20. Computational Science at the Argonne Leadership Computing Facility

    NASA Astrophysics Data System (ADS)

    Romero, Nichols

    2014-03-01

    The goal of the Argonne Leadership Computing Facility (ALCF) is to extend the frontiers of science by solving problems that require innovative approaches and the largest-scale computing systems. ALCF's most powerful computer - Mira, an IBM Blue Gene/Q system - has nearly one million cores. How does one program such systems? What software tools are available? Which scientific and engineering applications are able to utilize such levels of parallelism? This talk will address these questions and describe a sampling of projects that are using ALCF systems in their research, including ones in nanoscience, materials science, and chemistry. Finally, the ways to gain access to ALCF resources will be presented. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357.

  1. Final Overview of ACES Simulation for Evaluation SARP Well-Clear Definitions

    NASA Technical Reports Server (NTRS)

    Santiago, Confesor; Johnson, Marcus A.; Isaacson, Doug; Hershey, David

    2014-01-01

    The UAS in the NAS project is studying the minimum operational performance standards for unmanned aerial systems (UAS's) detect-and-avoid (DAA) system in order to operate in the National Airspace System. The DoD's Science and research Panel (SARP) Well-Clear Workshop is investigating the time and spatial boundary at which an UAS violates well-clear. NASA is supporting this effort through use of its Airspace Concept Evaluation System (ACES) simulation platform. This briefing presents the final results to the SARP, which will be used to judge the three candidate well-clear definitions, and for the selection of the most operationally suitable option.

  2. Three New (2+1)-dimensional Integrable Systems and Some Related Darboux Transformations

    NASA Astrophysics Data System (ADS)

    Guo, Xiu-Rong

    2016-06-01

    We introduce two operator commutators by using different-degree loop algebras of the Lie algebra A1, then under the framework of zero curvature equations we generate two (2+1)-dimensional integrable hierarchies, including the (2+1)-dimensional shallow water wave (SWW) hierarchy and the (2+1)-dimensional Kaup-Newell (KN) hierarchy. Through reduction of the (2+1)-dimensional hierarchies, we get a (2+1)-dimensional SWW equation and a (2+1)-dimensional KN equation. Furthermore, we obtain two Darboux transformations of the (2+1)-dimensional SWW equation. Similarly, the Darboux transformations of the (2+1)-dimensional KN equation could be deduced. Finally, with the help of the spatial spectral matrix of SWW hierarchy, we generate a (2+1) heat equation and a (2+1) nonlinear generalized SWW system containing inverse operators with respect to the variables x and y by using a reduction spectral problem from the self-dual Yang-Mills equations. Supported by the National Natural Science Foundation of China under Grant No. 11371361, the Shandong Provincial Natural Science Foundation of China under Grant Nos. ZR2012AQ011, ZR2013AL016, ZR2015EM042, National Social Science Foundation of China under Grant No. 13BJY026, the Development of Science and Technology Project under Grant No. 2015NS1048 and A Project of Shandong Province Higher Educational Science and Technology Program under Grant No. J14LI58

  3. A Few Discrete Lattice Systems and Their Hamiltonian Structures, Conservation Laws

    NASA Astrophysics Data System (ADS)

    Guo, Xiu-Rong; Zhang, Yu-Feng; Zhang, Xiang-Zhi; Yue, Rong

    2017-04-01

    With the help of three shift operators and r-matrix theory, a few discrete lattice systems are obtained which can be reduced to the well-known Toda lattice equation with a constraint whose Hamiltonian structures are generated by Poisson tensors of some induced Lie-Poisson bracket. The recursion operators of these lattice systems are constructed starting from Lax representations. Finally, reducing the given shift operators to get a simpler one and its expanding shift operators, we produce a lattice system with three vector fields whose recursion operator is given. Furthermore, we reduce the lattice system with three vector fields to get a lattice system whose Lax pair and conservation laws are obtained, respectively. Supported by the National Natural Science Foundation of China under Grant No. 11371361, the Innovation Team of Jiangsu Province Hosted by China University of Mining and Technology (2014), the the Key Discipline Construction by China University of Mining and Technology under Grant No. XZD201602, the Shandong Provincial Natural Science Foundation, China under Grant Nos. ZR2016AM31, ZR2016AQ19, ZR2015EM042, the Development of Science and Technology Plan Projects of TaiAn City under Grant No. 2015NS1048, National Social Science Foundation of China under Grant No. 13BJY026, and A Project of Shandong Province Higher Educational Science and Technology Program under Grant No. J14LI58

  4. Setting up crowd science projects.

    PubMed

    Scheliga, Kaja; Friesike, Sascha; Puschmann, Cornelius; Fecher, Benedikt

    2016-11-29

    Crowd science is scientific research that is conducted with the participation of volunteers who are not professional scientists. Thanks to the Internet and online platforms, project initiators can draw on a potentially large number of volunteers. This crowd can be involved to support data-rich or labour-intensive projects that would otherwise be unfeasible. So far, research on crowd science has mainly focused on analysing individual crowd science projects. In our research, we focus on the perspective of project initiators and explore how crowd science projects are set up. Based on multiple case study research, we discuss the objectives of crowd science projects and the strategies of their initiators for accessing volunteers. We also categorise the tasks allocated to volunteers and reflect on the issue of quality assurance as well as feedback mechanisms. With this article, we contribute to a better understanding of how crowd science projects are set up and how volunteers can contribute to science. We suggest that our findings are of practical relevance for initiators of crowd science projects, for science communication as well as for informed science policy making. © The Author(s) 2016.

  5. Using Recreational Drones to Promote STEM Learning

    NASA Astrophysics Data System (ADS)

    Olds, S. E.; Dahlman, L. E.; Mooney, M. E.; Russell, R. M.

    2017-12-01

    The popularity of unmanned aerial vehicles (UAVs or drones) as a fun, inexpensive (<$100), and easy to fly "toy" continues to grow yearly. Flying drones can also serve as a great entry point to stimulate curiosity and encourage students to engage in science, technology, engineering, and math (STEM) investigations. Leveraging the popularity of recreational drones, the Education Committee at the Earth System Information Partners (ESIP) has worked with educators, researchers, and data scientists to develop a Drones for STEM initiative to inspire learners to use drones as a platform to collect and analyze local-scale data using lightweight cameras and/or sensors. In 2016, the initiative developed learning activity outlines and piloted the materials at an ESIP-sponsored teacher workshop and National Science Teacher Association sessions. After incorporating feedback from those sessions, ESIP collaborated with the UCAR Center for Science Education to publish finalized activities. Available on the UCAR SciEd website (SciEd.ucar.edu/engineering-activities), the activities encompass skills to measure drone payload, flight height, and velocity. Investigations also encourage the use of repeat photography, comparing images from drones and satellites, and creating 3D structure from motion (SfM) models from overlapping photographs. The site also offers general guidance to develop science projects or science fair investigations using Next Generation Science Standards science and engineering practices. To encourage the use of drones in STEM, UNAVCO and NOAA staff, sponsored by ESIP, led two hands-on workshops this summer; a three half-day workshop at the Earth Educator Rendezvous (EER) and a half-day session during the ESIP Educator Workshop. Participants practiced UAV flying skills, experimented with lightweight sensors, and learned about current drone-enhanced research projects. In small groups, they tested existing activities and designed student-focused investigations. Examples of projects include measuring aeromagnetics, developing 3D topographic models, creating vertical profiles over various land-surfaces at different temporal intervals, and developing a multi-semester drone-focused curriculum. This presentation will elaborate upon the workshops, learning materials, and insights.

  6. The Life Science Exchange: a case study of a sectoral and sub-sectoral knowledge exchange programme.

    PubMed

    Perkins, Brian Lee; Garlick, Rob; Wren, Jodie; Smart, Jon; Kennedy, Julie; Stephens, Phil; Tudor, Gwyn; Bisson, Jonathan; Ford, David V

    2016-04-27

    Local and national governments have implemented sector-specific policies to support economic development through innovation, entrepreneurship and knowledge exchange. Supported by the Welsh Government through the European Regional Development Fund, The Life Science Exchange® project was created with the aim to increase interaction between stakeholders, to develop more effective knowledge exchange mechanisms, and to stimulate the formation and maintenance of long-term collaborative relationships within the Welsh life sciences ecosystem. The Life Science Exchange allowed participants to interact with other stakeholder communities (clinical, academic, business, governmental), exchange perspectives and discover new opportunities. Six sub-sector focus groups comprising over 200 senior stakeholders from academia, industry, the Welsh Government and National Health Service were established. Over 18 months, each focus group provided input to inform healthcare innovation policy and knowledge mapping exercises of their respective sub-sectors. Collaborative projects identified during the focus groups and stakeholder engagement were further developed through sandpit events and bespoke support. Each sub-sector focus group produced a report outlining the significant strengths and opportunities in their respective areas of focus, made recommendations to overcome any 'system failures', and identified the stakeholder groups which needed to take action. A second outcome was a stakeholder-driven knowledge mapping exercise for each area of focus. Finally, the sandpit events and bespoke support resulted in participants generating more than £1.66 million in grant funding and inward investment. This article outlines four separate outcomes from the Life Science Exchange programme. The Life Science Exchange process has resulted in a multitude of collaborations, projects, inward investment opportunities and special interest group formations, in addition to securing over ten times its own costs in funding for Wales. The Life Science Exchange model is a simple and straightforward mechanism for a regional or national government to adapt and implement in order to improve innovation, skills, networks and knowledge exchange.

  7. Synthesis of power plant outage schedules. Final technical report, April 1995-January 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.R.

    This document provides a report on the creation of domain theories in the power plant outage domain. These were developed in conjunction with the creation of a demonstration system of advanced scheduling technology for the outage problem. In 1994 personnel from Rome Laboratory (RL), Kaman Science (KS), Kestrel Institute, and the Electric Power Research Institute (EPRI) began a joint project to develop scheduling tools for power plant outage activities. This report describes our support for this joint effort. The project uses KIDS (Kestrel Interactive Development System) to generate schedulers from formal specifications of the power plant domain outage activities.

  8. Teaching Sustainable Water Resources and Low Impact Development: A Project Centered Course for First-Year Undergraduates

    NASA Astrophysics Data System (ADS)

    Cianfrani, C. M.

    2009-12-01

    Teaching Sustainable Water Resources and Low Impact Development: A Project Centered Course for First-Year Undergraduates Christina M. Cianfrani Assistant Professor, School of Natural Science, Hampshire College, 893 West Avenue, Amherst, MA 01002 Sustainable water resources and low impact development principles are taught to first-year undergraduate students using an applied design project sited on campus. All students at Hampshire College are required to take at least one natural science course during their first year as part of their liberal arts education. This requirement is often met with resistance from non-science students. However, ‘sustainability’ has shown to be a popular topic on campus and ‘Sustainable Water Resources’ typically attracts ~25 students (a large class size for Hampshire College). Five second- or third-year students are accepted in the class as advanced students and serve as project leaders. The first-year students often enter the class with only basic high school science background. The class begins with an introduction to global water resources issues to provide a broad perspective. The students then analyze water budgets, both on a watershed basis and a personal daily-use basis. The students form groups of 4 to complete their semester project. Lectures on low impact design principles are combined with group work sessions for the second half of the semester. Students tour the physical site located across the street from campus and begin their project with a site analysis including soils, landcover and topography. They then develop a building plan and identify preventative and mitigative measures for dealing with stormwater. Each group completes TR-55 stormwater calculations for their design (pre- and post-development) to show the state regulations for quantity will be met with their design. Finally, they present their projects to the class and prepare a formal written report. The students have produced a wide variety of creative, mostly practical designs. Student feedback about the course has included high praise for the applied nature of the project as well as the use of advanced students to lead the groups and help provide guidance throughout the project. Example of low impact development using clustered housing, rain gardens (small dots), green roofs (circles on house sites), vegetated swales along roadways, infiltration area, and a reforested buffer (along right edge).

  9. Internet Links for Science Education: Student-Scientist Partnerships (edited by Karen Cohen)

    NASA Astrophysics Data System (ADS)

    Barden, Linda M.

    1998-10-01

    Plenum: New York, 1997. xx + 260 pp. Figs., tables, photos. 15 x 22.8 cm. ISBN 0-306-45558-7. $27.50. Science education is undergoing an upheaval more fundamental than the one that occurred in the aftermath of Sputnik. Research during the past 40 years has led to a radical change in the way we view children's learning of science. The National Science Education Standards (NSES) suggest a new model for teaching science based upon these research findings. Societal changes, particularly changes in business, have put pressure on schools to alter the emphasis of curricula from rote memory and individual competition to problem solving using a variety of technological skills and teamwork/team competition. This timely book addresses all these issues by describing projects that K-12 teachers can use to achieve the goals set forth by both NSES and business. It also provides scientists with examples of how they and their coworkers might better interact with K-12 science education to encourage a more scientifically literate society. Finally, it includes suggestions for future research in science education.

  10. New Dimensions of The PACA (Pro-Am Collaborative Astronomy) Project

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P. A.

    2017-12-01

    The Pro-Am Collaborative Astronomy (PACA) project evolved from the observational campaign of comet C/2012 S1 or C/ISON in 2013 to pro-am observing campaigns and polarimetric exploration in 2017. These include support of observing campaigns of current comets, legacy data, historical comets, planets, solar corona; and interconnected with social media, data and citizen scientists. A four dimensional framework has been developed to ensure the success of each unique PACA observing campaign, starting with identification of key science observations; creation of a global core observer network, utilizing the latest in technology and finally development of outreach and citizen science programs. A set of shareable documents addressing observational strategies; consistent standards for data; data access, use, and storage, to align with the needs of professional observers. Several interesting results emerged from the synergistic inclusion of both social media and amateur astronomers: (1) the establishment of a network of astronomers and related professionals, that can be galvanized into action on short notice to support observing campaigns; (2) assist in various science investigations pertinent to the campaign; (3) provide an alert-sounding mechanism should the need arise; (4) immediate outreach and dissemination of results via our media/blogger members; (5) provide a forum for discussions between the imagers and modelers to help strategize the observing campaign for maximum benefit. One of the challenges faced by all aspects of the PACA Project is how to archive and mine the volume of data generated for each campaign - and a potential citizen science project. I will highlight key aspects of past PACA campaigns: C/2013 A1 (C/SidingSpring) ; 67P/Churyumov-Gerasimenko (CG), target for ESA/Rosetta mission; and our current campaign PACA_PolNet, a multi-site polarimetric network to observe the Total Solar Eclipse on 21 August 2017, in partnership with the project Citizen CATE.

  11. The COMPASS Project

    NASA Astrophysics Data System (ADS)

    Duley, A. R.; Sullivan, D.; Fladeland, M. M.; Myers, J.; Craig, M.; Enomoto, F.; Van Gilst, D. P.; Johan, S.

    2011-12-01

    The Common Operations and Management Portal for Airborne Science Systems (COMPASS) project is a multi-center collaborative effort to advance and extend the research capabilities of the National Aeronautics and Space Administration's (NASA) Airborne Science Program (ASP). At its most basic, COMPASS provides tools for visualizing the position of aircraft and instrument observations during the course of a mission, and facilitates dissemination, discussion, and analysis and of multiple disparate data sources in order to more efficiently plan and execute airborne science missions. COMPASS targets a number of key objectives. First, deliver a common operating picture for improved shared situational awareness to all participants in NASA's Airborne Science missions. These participants include scientists, engineers, managers, and the general public. Second, encourage more responsive and collaborative measurements between instruments on multiple aircraft, satellites, and on the surface in order to increase the scientific value of these measurements. Fourth, provide flexible entry points for data providers to supply model and advanced analysis products to mission team members. Fifth, provide data consumers with a mechanism to ingest, search and display data products. Finally, embrace an open and transparent platform where common data products, services, and end user components can be shared with the broader scientific community. In pursuit of these objectives, and in concert with requirements solicited by the airborne science research community, the COMPASS project team has delivered a suite of core tools intended to represent the next generation toolset for airborne research. This toolset includes a collection of loosely coupled RESTful web-services, a system to curate, register, and search, commonly used data sources, end-user tools which leverage web socket and other next generation HTML5 technologies to aid real time aircraft position and data visualization, and an extensible a framework to rapidly accommodate mission specific requirements and mission tools.

  12. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    NASA Astrophysics Data System (ADS)

    Lowes, L. L.; Budney, C. J.; Sohus, A.; Wheeler, T.; Urban, A.; NASA Planetary Science Summer School Team

    2011-12-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor's recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions, during which their mentors aid them in finalizing their mission design and instrument suite, and in making the necessary trade-offs to stay within the cost cap. Tours of JPL facilities highlight the end-to-end life cycle of a mission. At week's end, students present their Concept Study to a "proposal review board" of JPL scientists and engineers and NASA Headquarters executives, who feed back the strengths and weaknesses of their proposal and mission design. A survey of Planetary Science Summer School alumni administered in summer of 2011 provides information on the program's impact on students' career choices and leadership roles as they pursue their employment in planetary science and related fields. Preliminary results will be discussed during the session. Almost a third of the approximately 450 Planetary Science Summer School alumni from the last 10 years of the program are currently employed by NASA or JPL. The Planetary Science Summer School is implemented by the JPL Education Office in partnership with JPL's Team X Project Design Center.

  13. UNIVERSITY RESEARCH PROGRAM IN ROBOTICS, Final Technical Annual Report, Project Period: 9/1/04 - 8/31/05

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James S. Tulenko; Carl D. Crane III

    The University Research Program in Robotics (URPR) Implementation Plan is an integrated group of universities performing fundamental research that addresses broad-based robotics and automation needs of the NNSA Directed Stockpile Work (DSW) and Campaigns. The URPR mission is to provide improved capabilities of robotics science and engineering to meet the future needs of all weapon systems and other associated NNSA/DOE activities.

  14. Norfolk State University Research Experience in Earth System Science

    NASA Technical Reports Server (NTRS)

    Chaudhury, Raj

    2002-01-01

    The truly interdisciplinary nature of Earth System Science lends itself to the creation of research teams comprised of people with different scientific and technical backgrounds. In the annals of Earth System Science (ESS) education, the lack of an academic major in the discipline might be seen as a barrier to the involvement of undergraduates in the overall ESS-enterprise. This issue is further compounded at minority-serving institutions by the rarity of departments dedicated to Atmospheric Science, Oceanography or even the geosciences. At Norfolk State University, a Historically Black College, a six week, NASA-supported, summer undergraduate research program (REESS - Research Experience in Earth System Science) is creating a model that involves students with majors in diverse scientific disciplines in authentic ESS research coupled with a structured education program. The project is part of a wider effort at the University to enhance undergraduate education by identifying specific areas of student weaknesses regarding the content and process of science. A pre- and post-assessment test, which is focused on some fundamental topics in global climate change, is given to all participants as part of the evaluation of the program. Student attitudes towards the subject and the program's approach are also surveyed at the end of the research experience. In 2002, 11 undergraduates participated in REESS and were educated in the informed use of some of the vast remote sensing resources available through NASA's Earth Science Enterprise (ESE). The program ran from June 3rd through July 12, 2002. This was the final year of the project.

  15. Democratizing science and technology education: Perspectives from the philosophy of education

    NASA Astrophysics Data System (ADS)

    Pierce, Clayton Todd

    This study examines conceptualizations of science and technology and their relation to ideas of democratic education in the history of philosophy of education. My genealogical analysis begins by tracing the anti-democratic emergence of ideas and values of science and technology that have evolved through ancient and modern periods within the philosophy of education and continue to shape the ways science and technology are understood and treated in educational settings. From my critical engagement with Plato's Republic and Rousseau's Emile, I argue that anti-democratic structures and values have been embedded in philosophy of education through Plato's educational theory of techne and Rousseau's pedagogical theory that involves science and technology as important educational force. Following this theme, I analyze the work of John Dewey and Herbert Marcuse and their shared project for democratizing science and technology through education. Through a critical comparison of both theorists' models, I suggest that each provides positive legacies for philosophy of education to draw upon in rethinking the intersection of science, technology, and education: a strong model for understanding public problems associated with a highly technological and scientific society and a reconstructive framework for values and sensibilities that demands a new value relationship to be developed between humans and science and technology. Finally, I situate my critique and assessment of this history in the philosophy of education within the current science and technology education reform movement in the United States. I claim that the official models of science and technological literacy and inquiry, as constructed by the National Academy of Sciences and a host of governmental policies, shape science and technology education with a decidedly neo-liberal focus and purpose. In response to this anti-democratic movement I offer an alternative position that utilizes a counter-epistemology to the dominant model that currently exists in science education standards and suggest that this is a project that philosophy of education must be involved while also conscious of its past.

  16. Enhancing Teacher and Student Engagement and Understanding of Marine Science Through Classroom Citizen Science Projects

    NASA Astrophysics Data System (ADS)

    Goodale, T. A.

    2016-02-01

    Overview This paper presentation shares findings from a granted funded project that sought to expand teacher content knowledge and pedagogy within the fields of marine science and coastal resource management through the implementation of classroom citizen science projects. A secondary goal was to increase middle and high school student interest and participation in marine science and natural resources research. Background A local science & engineering fair has seen a rapid decline in secondary student participants in the past four years. Research has demonstrated that when students are a part of a system of knowledge production (citizen science) they become much more aware, involved and conscious of scientific concepts compared to traditional school laboratory and nature of science activities. This project's primary objectives were to: (a) enhance teacher content expertise in marine science, (b) enrich teacher professional learning, (c) support citizen science classroom projects and inspire student activism and marine science engagement. Methods Project goals were addressed through classroom and meaningful outdoor educational experiences that put content knowledge into field based practices. Teachers learned to apply thier expanded content knowlege through classroom citizen science projects that focus on marine resource conservation issues such as fisheries management, water quality, turtle nesting and biodiversity of coastal ecosystems. These projects would eventually become potential topics of citizen science research topics for their students to pursue. Upon completion of their professional development, participants were urged to establish student Marine Science clubs with the goal of mentoring student submissions into the local science fair. Supplemental awards were possible for the students of project participants. Findings Based on project measures participants significantly increased their knowledge and awareness of presented material marine science and coastal resources. 11/14 teacher participants established citizen science clubs that focused on marine related issues. Science fair participation increased by 42% and of those students whose mentor teacher was a project participant 90% stated they would likely pursue a marine science related major in college.

  17. BAO Plate Archive digitization, creation of electronic database and its scientific usage

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg M.

    2015-08-01

    Astronomical plate archives created on the basis of numerous observations at many observatories are important part of the astronomical heritage. Byurakan Astrophysical Observatory (BAO) plate archive consists of 37,500 photographic plates and films, obtained at 2.6m telescope, 1m and 0.5m Schmidt telescopes and other smaller ones during 1947-1991. In 2002-2005, the famous Markarian Survey (First Byurakan Survey, FBS) 2000 plates were digitized and the Digitized FBS (DFBS, http://www.aras.am/Dfbs/dfbs.html) was created. New science projects have been conducted based on these low-dispersion spectroscopic material. In 2015, we have started a project on the whole BAO Plate Archive digitization, creation of electronic database and its scientific usage. A Science Program Board is created to evaluate the observing material, to investigate new possibilities and to propose new projects based on the combined usage of these observations together with other world databases. The Executing Team consists of 9 astronomers and 3 computer scientists and will use 2 EPSON Perfection V750 Pro scanners for the digitization, as well as Armenian Virtual Observatory (ArVO) database to accommodate all new data. The project will run during 3 years in 2015-2017 and the final result will be an electronic database and online interactive sky map to be used for further research projects.

  18. Examining Thai high school students' developing STEM projects

    NASA Astrophysics Data System (ADS)

    Teenoi, Kultida; Siripun, Kulpatsorn; Yuenyong, Chokchai

    2018-01-01

    Like others, Thailand education strongly focused on STEM education. This paper aimed to examine existing Thai high school students' integrated knowledge about science, technology, engineering, and mathematics (STEM) in their developing science project. The participants included 49 high school students were studying the subject of individual study (IS) in Khon Kaen wittayayon school, Khon Kaen, Thailand. The IS was provided to gradually enhance students to know how to do science project starting from getting start to do science projects, They enrolled to study the individual study of science project for three year in roll. Methodology was qualitative research. Views of students' integrated knowledge about STEM were interpreted through participant observation, interview, and students' science projects. The first author as participant observation has taught this group of students for 3 years. It found that 16 science projects were developed. Views of students' integrated knowledge about STEM could be categorized into three categories. These included (1) completely indicated integration of knowledge about science, technology, engineering, and mathematics, (2) partial indicated integration of knowledge about science, technology, engineering, and mathematics, and (3) no integration. The findings revealed that majority of science projects could be categorized as completely indicated integration of knowledge about science, technology, engineering, and mathematics. The paper suggested some ideas of enhancing students to applying STEM for developing science projects.

  19. Earth System Science Project

    ERIC Educational Resources Information Center

    Rutherford, Sandra; Coffman, Margaret

    2004-01-01

    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  20. Large-Scale Science Observatories: Building on What We Have Learned from USArray

    NASA Astrophysics Data System (ADS)

    Woodward, R.; Busby, R.; Detrick, R. S.; Frassetto, A.

    2015-12-01

    With the NSF-sponsored EarthScope USArray observatory, the Earth science community has built the operational capability and experience to tackle scientific challenges at the largest scales, such as a Subduction Zone Observatory. In the first ten years of USArray, geophysical instruments were deployed across roughly 2% of the Earth's surface. The USArray operated a rolling deployment of seismic stations that occupied ~1,700 sites across the USA, made co-located atmospheric observations, occupied hundreds of sites with magnetotelluric sensors, expanded a backbone reference network of seismic stations, and provided instruments to PI-led teams that deployed thousands of additional seismic stations. USArray included a comprehensive outreach component that directly engaged hundreds of students at over 50 colleges and universities to locate station sites and provided Earth science exposure to roughly 1,000 landowners who hosted stations. The project also included a comprehensive data management capability that received, archived and distributed data, metadata, and data products; data were acquired and distributed in real time. The USArray project was completed on time and under budget and developed a number of best practices that can inform other large-scale science initiatives that the Earth science community is contemplating. Key strategies employed by USArray included: using a survey, rather than hypothesis-driven, mode of observation to generate comprehensive, high quality data on a large-scale for exploration and discovery; making data freely and openly available to any investigator from the very onset of the project; and using proven, commercial, off-the-shelf systems to ensure a fast start and avoid delays due to over-reliance on unproven technology or concepts. Scope was set ambitiously, but managed carefully to avoid overextending. Configuration was controlled to ensure efficient operations while providing consistent, uniform observations. Finally, community governance structures were put in place to ensure a focus on science needs and goals, to provide an informed review of the project's results, and to carefully balance consistency of observations with technical evolution. We will summarize lessons learned from USArray and how these can be applied to future efforts such as SZO.

  1. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    NASA Astrophysics Data System (ADS)

    Budney, C. J.; Lowes, L. L.; Sohus, A.; Wheeler, T.; Wessen, A.; Scalice, D.

    2010-12-01

    Sponsored by NASA’s Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor’s recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions, during which their mentors aid them in finalizing their mission design and instrument suite, and in making the necessary trade-offs to stay within the cost cap. Tours of JPL facilities highlight the end-to-end life cycle of a mission. At week’s end, students present their Concept Study to a “proposal review board” of JPL scientists and engineers and NASA Headquarters executives, who feed back the strengths and weaknesses of their proposal and mission design. The majority of students come from top US universities with planetary science or engineering programs, such as Brown University, MIT, Georgia Tech, University of Colorado, Caltech, Stanford, University of Arizona, UCLA, and University of Michigan. Almost a third of Planetary Science Summer School alumni from the last 10 years of the program are currently employed by NASA or JPL. The Planetary Science Summer School is implemented by the JPL Education Office in partnership with JPL’s Team X Project Design Center.

  2. The Luminosity Measurement for the DZERO Experiment at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, Gregory R.

    Primary project objective: The addition of University of Nebraska-Lincoln (UNL) human resources supported by this grant helped ensure that Fermilab’s DZERO experiment had a reliable luminosity measurement through the end of Run II data taking and an easily-accessible repository of luminosity information for all collaborators performing physics analyses through the publication of its final physics results. Secondary project objective: The collaboration between the UNL Instrument Shop and Fermilab’s Scintillation Detector Development Center enhanced the University of Nebraska’s future role as a particle detector R&D and production facility for future high energy physics experiments. Overall project objective: This targeted project enhancedmore » the University of Nebraska’s presence in both frontier high energy physics research in DZERO and particle detector development, and it thereby served the goals of the DOE Office of Science and the Experimental Program to Stimulate Competitive Research (EPSCoR) for the state of Nebraska.« less

  3. The Lasting Impacts of an Oceanographic Teacher Research Experiences in a Land-locked Classroom (Invited)

    NASA Astrophysics Data System (ADS)

    Manning, C.; Pockalny, R. A.; D'Hondt, S. L.

    2009-12-01

    Authentic science research opportunities for classroom teachers, like the NSF-funded ARMADA Project, improves teacher motivation, enables rigor and relevance in the classroom, and provides mentoring to new teachers. This project also facilitates communication between scientists, educators, and the public by connecting scientists to a broader audience through the teacher. In January and February 2009, we participated in a six-week cruise aboard the R/V Knorr studying the oceanographic controls and distribution of subseafloor microbial life in the equatorial Pacific. The international team of scientists employed geophysics, geochemistry, microbiology, and geology to characterize microbial activity. The integrated techniques demonstrate how modern science is not separated by discipline, but relies on the strengths of many to understand the complexities of the natural world. This experience has affected dramatic change in teaching about natural resources, plate tectonics, and climate in Honors Earth Science and ecology, sustainability, and global change in AP Environmental Science. Integrating many different approaches to studying natural phenomenon creates a more challenging and interesting learning environment that both students and parents respect, making them less likely to question more rigorous assignments. The ARMADA Project encourages teachers to journal daily about their experiences, which resulted in real-time web-log of cruise activities that documented how teachers, scientists and crew work together to achieve scientific goals. Finally, the authentic research experience demonstrates that when teachers and scientists work together to communicate research goals and results, both communities benefit, mutual respect is enhanced, and potential long-term collaborations are fostered.

  4. Authentic Astronomy Research Experiences for Teachers: The NASA/IPAC Teacher Archive Research Program (NITARP)

    NASA Astrophysics Data System (ADS)

    Rebull, L. M.; Gorjian, V.; Squires, G.; Nitarp Team

    2012-08-01

    How many times have you gotten a question from the general public, or read a news story, and concluded that "they just don't understand how real science works?" One really good way to get the word out about how science works is to have more people experience the process of scientific research. Since 2004, the way we have chosen to do this is to provide authentic research experiences for teachers using real data (the program used to be called the Spitzer Teacher Program for Teachers and Students, which in 2009 was rechristened the NASA/IPAC Teacher Archive Research Program, or NITARP). We partner small groups of teachers with a mentor astronomer, they do research as a team, write up a poster, and present it at an American Astronomical Society (AAS) meeting. The teachers incorporate this experience into their classroom, and their experiences color their teaching for years to come, influencing hundreds of students per teacher. This program differs from other similar programs in several important ways. First, each team works on an original, unique project. There are no canned labs here! Second, each team presents their results in posters at the AAS, in science sessions (not outreach sessions). The posters are distributed throughout the meeting, in amongst other researchers' work; the participants are not "given a free pass" because they are teachers. Finally, the "product" of this project is the scientific result, not any sort of curriculum packet. The teachers adapt their project to their classroom environment, and we change the way they think about science and scientists.

  5. James Webb Space Telescope Optical Telescope Element Integrated Science Instrument Module (OTIS) Status

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Voyton, Mark; Lander, Julie; Keski-Kuha, Ritva; Matthews, Gary

    2016-01-01

    The James Webb Space Telescope Optical Telescope Element (OTE) and Integrated ScienceInstrument Module (ISIM)are integrated together to form the OTIS. Once integrated, the OTIS undergoes primary mirrorcenter of curvatureoptical tests, electrical and operational tests, acoustics and vibration testing at the Goddard SpaceFlight Center beforebeing shipped to the Johnson Space Center for cryogenic optical testing of the OTIS. In preparationfor the cryogenicoptical testing, the JWST project has built a Pathfinder telescope and has completed two OpticalGround SystemEquipment (OGSE) cryogenic optical tests with the Pathfinder. In this paper, we will summarize opticaltest results todate and status the final Pathfinder test and the OTIS integration and environmental test preparations

  6. A semester-long project for teaching basic techniques in molecular biology such as restriction fragment length polymorphism analysis to undergraduate and graduate students.

    PubMed

    DiBartolomeis, Susan M

    2011-01-01

    Several reports on science education suggest that students at all levels learn better if they are immersed in a project that is long term, yielding results that require analysis and interpretation. I describe a 12-wk laboratory project suitable for upper-level undergraduates and first-year graduate students, in which the students molecularly locate and map a gene from Drosophila melanogaster called dusky and one of dusky's mutant alleles. The mapping strategy uses restriction fragment length polymorphism analysis; hence, students perform most of the basic techniques of molecular biology (DNA isolation, restriction enzyme digestion and mapping, plasmid vector subcloning, agarose and polyacrylamide gel electrophoresis, DNA labeling, and Southern hybridization) toward the single goal of characterizing dusky and the mutant allele dusky(73). Students work as individuals, pairs, or in groups of up to four students. Some exercises require multitasking and collaboration between groups. Finally, results from everyone in the class are required for the final analysis. Results of pre- and postquizzes and surveys indicate that student knowledge of appropriate topics and skills increased significantly, students felt more confident in the laboratory, and students found the laboratory project interesting and challenging. Former students report that the lab was useful in their careers.

  7. A Semester-Long Project for Teaching Basic Techniques in Molecular Biology Such as Restriction Fragment Length Polymorphism Analysis to Undergraduate and Graduate Students

    PubMed Central

    DiBartolomeis, Susan M.

    2011-01-01

    Several reports on science education suggest that students at all levels learn better if they are immersed in a project that is long term, yielding results that require analysis and interpretation. I describe a 12-wk laboratory project suitable for upper-level undergraduates and first-year graduate students, in which the students molecularly locate and map a gene from Drosophila melanogaster called dusky and one of dusky's mutant alleles. The mapping strategy uses restriction fragment length polymorphism analysis; hence, students perform most of the basic techniques of molecular biology (DNA isolation, restriction enzyme digestion and mapping, plasmid vector subcloning, agarose and polyacrylamide gel electrophoresis, DNA labeling, and Southern hybridization) toward the single goal of characterizing dusky and the mutant allele dusky73. Students work as individuals, pairs, or in groups of up to four students. Some exercises require multitasking and collaboration between groups. Finally, results from everyone in the class are required for the final analysis. Results of pre- and postquizzes and surveys indicate that student knowledge of appropriate topics and skills increased significantly, students felt more confident in the laboratory, and students found the laboratory project interesting and challenging. Former students report that the lab was useful in their careers. PMID:21364104

  8. The Astrobiology in Secondary Classrooms (ASC) curriculum: focusing upon diverse students and teachers.

    PubMed

    Arino de la Rubia, Leigh S

    2012-09-01

    The Minority Institution Astrobiology Collaborative (MIAC) began working with the NASA Goddard Center for Astrobiology in 2003 to develop curriculum materials for high school chemistry and Earth science classes based on astrobiology concepts. The Astrobiology in Secondary Classrooms (ASC) modules emphasize interdisciplinary connections in astronomy, biology, chemistry, geoscience, physics, mathematics, and ethics through hands-on activities that address national educational standards. Field-testing of the Astrobiology in Secondary Classrooms materials occurred over three years in eight U.S. locations, each with populations that are underrepresented in the career fields of science, technology, engineering, and mathematics. Analysis of the educational research upon the high school students participating in the ASC project showed statistically significant increases in students' perceived knowledge and science reasoning. The curriculum is in its final stages, preparing for review to become a NASA educational product.

  9. Bright Lights: Big Experiments! A public engagement activity for international year of light

    NASA Astrophysics Data System (ADS)

    Downie, Jonathan; Morton, Jonathan A. S.; McCoustra, Martin R. S.

    2017-01-01

    The Bright Lights: Big Experiments! public engagement project enabled high school students Scottish S2 to prepare a short, 5 min video using their own words and in their own style to present a scientific experiment on the theme of light to their contemporaries via YouTube. This paper describes the various experiments that we chose to deliver and our experiences in delivering them to our partner schools. The results of pre- and post-activity surveys of both the pupils and teachers are presented in an effort to understand the impact of the project on the students, staff and their schools. The quality of the final video product is shown to be a key factor, increasing the pupils’ likelihood of pursuing science courses and participating in further science engagement activities. Analysis of the evaluation methods used indicate the need for more sensitive tools to provide further insight into the impact of this type of engagement activity.

  10. Final Report. Institute for Ultralscale Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Kwan-Liu; Galli, Giulia; Gygi, Francois

    The SciDAC Institute for Ultrascale Visualization brought together leading experts from visualization, high-performance computing, and science application areas to make advanced visualization solutions for SciDAC scientists and the broader community. Over the five-year project, the Institute introduced many new enabling visualization techniques, which have significantly enhanced scientists’ ability to validate their simulations, interpret their data, and communicate with others about their work and findings. This Institute project involved a large number of junior and student researchers, who received the opportunities to work on some of the most challenging science applications and gain access to the most powerful high-performance computing facilitiesmore » in the world. They were readily trained and prepared for facing the greater challenges presented by extreme-scale computing. The Institute’s outreach efforts, through publications, workshops and tutorials, successfully disseminated the new knowledge and technologies to the SciDAC and the broader scientific communities. The scientific findings and experience of the Institute team helped plan the SciDAC3 program.« less

  11. The drive to innovation: The privileging of science and technology knowledge production in Canada

    NASA Astrophysics Data System (ADS)

    Cauchi, Laura

    This dissertation project explored the privileging of knowledge production in science and technology as a Canadian national economic, political and social strategy. The project incorporated the relationship between nation-state knowledge production and how that knowledge is then systematically evaluated, prioritized and validated by systems of health technology assessment (HTA). The entry point into the analysis and this dissertation project was the Scientific Research and Experimental Design (SR&ED) federal tax incentive program as the cornerstone of science and technology knowledge production in Canada. The method of inquiry and analysis examined the submission documents submitted by key stakeholders across the country, representing public, private and academic standpoints, during the public consultation process conducted from 2007 to 2008 and how each of these standpoints is hooked into the public policy interests and institutional structures that produce knowledge in science and technology. Key public meetings, including the public information sessions facilitated by the Canada Revenue Agency and private industry conferences, provided context and guidance regarding the current pervasive public and policy interests that direct and drive the policy debates. Finally, the "Innovation Canada: A Call to Action Review of Federal Support to Research and Development: Expert Panel Report," commonly referred to as "The Jenkins Report" (Jenkins et al., 2011), was critically evaluated as the expected predictor of future public policy changes associated with the SR&ED program and the future implications for the production of knowledge in science and technology. The method of inquiry and analytical lens was a materialist approach that drew on the inspiring frameworks of such scholars as Dorothy Smith, Michel Foucault, Kaushik Sunder Rajan, Melinda Cooper, and, Gilles Deleuze. Ultimately, I strove to illuminate the normalizing force and power of knowledge production in science and technology, and the disciplines and structures that encompass it and are hooked into it where the privileging of such knowledge becomes hegemonic within and by the regimes of knowledge production that created them.

  12. The Manhattan Project and its Effects on American Women Scientists

    NASA Astrophysics Data System (ADS)

    Fletcher, Samuel

    2008-04-01

    There have been many detailed historical accounts of the Manhattan Project, but few have recognized the technical role women scientists and engineers crucially played in the Project's success. Despite their absence from these prominent accounts, recent studies have revealed that, in fact, women participated in every non-combat operation associated with the Manhattan Project. With such extensive participation of women and such a former lack of historical attention upon them, little analysis has been done on how the Manhattan Project might have influenced the prospectus of women scientists after the war. This talk has two aims: 1) to recount some of the technical and scientific contributions of women to the Manhattan Project, and 2) to examine what effects these contributions had on the women's careers as scientists. In other words, I intend offer a preliminary explanation of the extent to which the Manhattan Project acted both as a boon and as a detriment to American women scientists. And finally, I will address what this historical analysis could imply about the effects of current efforts to recruit women into science.

  13. Doing the Project and Learning the Content: Designing Project-Based Science Curricula for Meaningful Understanding

    ERIC Educational Resources Information Center

    Kanter, David E.

    2010-01-01

    Project-based science curricula can improve students' usable or meaningful understanding of the science content underlying a project. However, such curricula designed around "performances" wherein students design or make something do not always do this. We researched ways to design performance project-based science curricula (pPBSc) to better…

  14. A chronosequence feasibility assessment of emergency fire rehabilitation records within the intermountain western United States-final report to the Joint Fire Science Program-Project 08-S-08

    Treesearch

    Kevin C. Knutson; David A. Pyke; Troy A. Wirth; David S. Pilliod; Matthew L. Brooks; Jeanne C. Chambers

    2009-01-01

    Department of the Interior (DOI) bureaus have invested heavily (for example, the U.S. Bureau of Land Management (BLM) spent more than $60 million in fiscal year 2007) in seeding vegetation for emergency stabilization and burned area rehabilitation of non-forested arid lands over the past 10 years. The primary objectives of these seedings commonly are to (1) reduce the...

  15. LWIR Microgrid Polarimeter for Remote Sensing Studies

    DTIC Science & Technology

    2010-02-28

    Polarimeter for Remote Sensing Studies 5b. GRANT NUMBER FA9550-08-1-0295 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 1. Scott Tyo 5e. TASK...and tested at the University of Arizona, and preliminary images are shown in this final report. 15. SUBJECT TERMS Remote Sensing , polarimetry 16...7.0 LWIR Microgrid Polarimeter for Remote Sensing Studies J. Scott Tyo College of Optical Sciences University of Arizona Tucson, AZ, 85721 tyo

  16. Applying the Kanban method in problem-based project work: a case study in a manufacturing engineering bachelor's programme at Aalborg University Copenhagen

    NASA Astrophysics Data System (ADS)

    Balve, Patrick; Krüger, Volker; Tolstrup Sørensen, Lene

    2017-11-01

    Problem-based learning (PBL) has proven to be highly effective for educating students in an active and self-motivated manner in various disciplines. Student projects carried out following PBL principles are very dynamic and carry a high level of uncertainty, both conditions under which agile project management approaches are assumed to be highly supportive. The paper describes an empirical case study carried out at Aalborg University Copenhagen involving students from two different semesters of a Bachelor of Science programme. While executing the study, compelling examples of how PBL and the agile project management method Kanban blend could be identified. A final survey reveals that applying Kanban produces noticeable improvements with respect to creating, assigning and coordinating project tasks. Other improvements were found in group communication, knowledge about the work progress with regards to both the individual and the collective and the students' way of continuously improving their own teamwork.

  17. EXPOsOMICS: final policy workshop and stakeholder consultation.

    PubMed

    Turner, Michelle C; Vineis, Paolo; Seleiro, Eduardo; Dijmarescu, Michaela; Balshaw, David; Bertollini, Roberto; Chadeau-Hyam, Marc; Gant, Timothy; Gulliver, John; Jeong, Ayoung; Kyrtopoulos, Soterios; Martuzzi, Marco; Miller, Gary W; Nawrot, Timothy; Nieuwenhuijsen, Mark; Phillips, David H; Probst-Hensch, Nicole; Samet, Jonathan; Vermeulen, Roel; Vlaanderen, Jelle; Vrijheid, Martine; Wild, Christopher; Kogevinas, Manolis

    2018-02-15

    The final meeting of the EXPOsOMICS project "Final Policy Workshop and Stakeholder Consultation" took place 28-29 March 2017 to present the main results of the project and discuss their implications both for future research and for regulatory and policy activities. This paper summarizes presentations and discussions at the meeting related with the main results and advances in exposome research achieved through the EXPOsOMICS project; on other parallel research initiatives on the study of the exposome in Europe and in the United States and their complementarity to EXPOsOMICS; lessons learned from these early studies on the exposome and how they may shape the future of research on environmental exposure assessment; and finally the broader implications of exposome research for risk assessment and policy development on environmental exposures. The main results of EXPOsOMICS in relation to studies of the external exposome and internal exposome in relation to both air pollution and water contaminants were presented as well as new technologies for environmental health research (adductomics) and advances in statistical methods. Although exposome research strengthens the scientific basis for policy development, there is a need in terms of showing added value for public health to: improve communication of research results to non-scientific audiences; target research to the broader landscape of societal challenges; and draw applicable conclusions. Priorities for future work include the development and standardization of methodologies and technologies for assessing the external and internal exposome, improved data sharing and integration, and the demonstration of the added value of exposome science over conventional approaches in answering priority policy questions.

  18. Final Report Scalable Analysis Methods and In Situ Infrastructure for Extreme Scale Knowledge Discovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Leary, Patrick

    The primary challenge motivating this project is the widening gap between the ability to compute information and to store it for subsequent analysis. This gap adversely impacts science code teams, who can perform analysis only on a small fraction of the data they calculate, resulting in the substantial likelihood of lost or missed science, when results are computed but not analyzed. Our approach is to perform as much analysis or visualization processing on data while it is still resident in memory, which is known as in situ processing. The idea in situ processing was not new at the time ofmore » the start of this effort in 2014, but efforts in that space were largely ad hoc, and there was no concerted effort within the research community that aimed to foster production-quality software tools suitable for use by Department of Energy (DOE) science projects. Our objective was to produce and enable the use of production-quality in situ methods and infrastructure, at scale, on DOE high-performance computing (HPC) facilities, though we expected to have an impact beyond DOE due to the widespread nature of the challenges, which affect virtually all large-scale computational science efforts. To achieve this objective, we engaged in software technology research and development (R&D), in close partnerships with DOE science code teams, to produce software technologies that were shown to run efficiently at scale on DOE HPC platforms.« less

  19. Tales from the Dark Side: Teacher Professional Development , Support , Activities, Student Research & Presentations

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.

    2013-12-01

    In a partnership last Spring with Arizona Public Service, the National Optical Astronomy Observatory (NOAO) created the 'Dark-Skies Energy Education Program: Energy Awareness for a Sustainable Future'. In this program, experienced science and technology education specialists from NOAO led 2 one-day professional development workshops for thirteen 6th grade teachers on dark skies and energy education. The workshops focused on three foundational, scaffolding activities and a final student research project. This in turn culminated in a Family Science Night where students presented their projects. In between these events, our NOAO team provided support for teachers through real-time video conferencing using FaceTime. In addition to the professional development, each teacher received a kit full of resource materials to perform the activities and research project. The kit was at no cost to the teacher, school, or district. Each kit contained the latest version of a tablet, which was used to facilitate communication and support for the teachers, as well as provide all the program's written teaching materials. The activities are in accordance with state, Common Core and Next Generation Science Standards. Our NOAO instructors gave firsthand experiences on how best to use these materials in a classroom or public setting. They also discussed opportunities on how they can incorporate, adapt and expand upon the activities and research projects in the classroom. Evaluation reports from the program's independent evaluator showed that the students enjoyed learning from the three foundational activities and research projects. The project presentations by the Yuma students were outstanding in their creativity, level of effort, and scientific accuracy. To summarize the evaluations, significant changes in knowledge and attitude were made with the teachers and students (from one-on-one interviews and surveys), but behavioral changes (albeit only over a semester) seemed minimal. The AGU ED session presentation will focus on the program logistics and outcomes as well as lessons learned. The Dark Skies and Energy Education Kit

  20. NSF Internships in Public Science Education: Sensing the Radio Sky

    NASA Astrophysics Data System (ADS)

    Hund, L.; Boltuch, D.; Fultz, C.; Buck, S.; Smith, T.; Harris, R.; Moffett, D.; LaFratta, M.; Walsh, L.; Castelaz, M. W.

    2005-12-01

    The intent of the "Sensing the Radio Sky" project is to teach high school students the concepts and relevance of radio astronomy through presentations in STARLAB portable planetariums. The two year project began in the summer of 2004. A total of twelve interns and four faculty mentors from Furman University and UNCA have participated at the Pisgah Astronomical Research Institute to develop the Radio Sky project. The project united physics and multimedia majors and allowed these students to apply their knowledge of different disciplines to a common goal. One component of the project is the development and production of a cylinder to be displayed in portable STARLAB planetariums. The cylinder gives a thorough view of the Milky Way and of several other celestial sources in radio wavelengths, yet these images are difficult to perceive without prior knowledge of radio astronomy. Consequently, the Radio Sky team created a multimedia presentation to accompany the cylinder. This multimedia component contains six informative lessons on radio astronomy assembled by the physics interns and numerous illustrations and animations created by the multimedia interns. The cylinder and multimedia components complement each other and provide a unique, thorough, and highly intelligible perspective on radio astronomy. The project is near completion and the final draft will be sent to Learning Technologies, Inc., for marketing to owners of STARLAB planetariums throughout the world. The development of the Radio Sky project has also provided a template for potential similar projects that examine our universe in different wavelengths, such as gamma ray, x-ray, and infrared. We acknowledge support from the NSF Internship in Public Science Education Program grant number 0324729.

  1. Evaluation of Seeds of Science/Roots of Reading Project: "Shoreline Science" and "Terrarium Investigations." CSE Technical Report 676

    ERIC Educational Resources Information Center

    Wang, Jia; Baker, Eva L.

    2006-01-01

    This project was initiated in order to evaluate two literacy and science integrated instruction units, "Shoreline Science" and "Terrarium Investigations," designed by the Lawrence Hall of Science "Seeds of Science/Roots of Reading" Project ("Seeds/Roots"). We examined how the integrated units affect student…

  2. The delta cooperative model: a dynamic and innovative team-work activity to develop research skills in microbiology.

    PubMed

    Rios-Velazquez, Carlos; Robles-Suarez, Reynaldo; Gonzalez-Negron, Alberto J; Baez-Santos, Ivan

    2006-05-01

    The Delta Cooperative Model (DCM) is a dynamic and innovative teamwork design created to develop fundamentals in research skills. High school students in the DCM belong to the Upward Bound Science and Math (UBSM) program at the Inter American University, Ponce Campus. After workshops on using the scientific method, students were organized into groups of three students with similar research interests. Each student had to take on a role within the group as either a researcher, data analyst, or research editor. Initially, each research team developed hypothesis-driven ideas on their proposed project. In intrateam research meetings, they emphasized team-specific tasks. Next, interteam meetings were held to present ideas and receive critical input. Finally, oral and poster research presentations were conducted at the UBSM science fair. Several team research projects covered topics in medical, environmental, and general microbiology. The three major assessment areas for the workshop and DCM included: (i) student's perception of the workshops' effectiveness in developing skills, content, and values; (ii) research team self- and group participation evaluation, and (iii) oral and poster presentation during the science fair. More than 91% of the students considered the workshops effective in the presentation of scientific method fundamentals. The combination of the workshop and the DCM increased student's knowledge by 55% from pre- to posttests. Two rubrics were designed to assess the oral presentation and poster set-up. The poster and oral presentation scores averaged 83% and 75% respectively. Finally, we present a team assessment instrument that allows the self- and group evaluation of each research team. While the DCM has educational plasticity and versatility, here we document how the this model has been successfully incorporated in training and engaging students in scientific research in microbiology.

  3. Advances in the NASA Earth Science Division Applied Science Program

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Bonniksen, C. K.; Escobar, V. M.

    2016-12-01

    The NASA Earth Science Division's Applied Science Program advances the understanding of and ability to used remote sensing data in support of socio-economic needs. The integration of socio-economic considerations in to NASA Earth Science projects has advanced significantly. The large variety of acquisition methods used has required innovative implementation options. The integration of application themes and the implementation of application science activities in flight project is continuing to evolve. The creation of the recently released Earth Science Division, Directive on Project Applications Program and the addition of an application science requirement in the recent EVM-2 solicitation document NASA's current intent. Continuing improvement in the Earth Science Applications Science Program are expected in the areas of thematic integration, Project Applications Program tailoring for Class D missions and transfer of knowledge between scientists and projects.

  4. What Are the Effects of Science Lesson Planning in Peers?—Analysis of Attitudes and Knowledge Based on an Actor-Partner Interdependence Model

    NASA Astrophysics Data System (ADS)

    Smit, Robbert; Rietz, Florian; Kreis, Annelies

    2017-04-01

    This study focuses on the effects of collaborative lesson planning by science pre-service teachers on their attitudes and knowledge. In our study, 120 pre-service teachers discussed a preparation for a science inquiry lesson in dyads. The teacher with the lesson preparation had the role of the coachee, while the other was the coach. We investigated the following research questions: (1) Does learning occur between the two peers? and (2) Is the competency in lesson planning affected by the attitude and knowledge of coach and coachee? Based on an actor-partner interdependence model (APIM), we could clarify the relations of pedagogical content knowledge (PCK) and attitudes (ATT) between and within the dyads of coach and coachee, as well as their development over time. Furthermore, the APIM allowed the inclusion of a mediator (lesson planning competency). Both PCK and ATT increased slightly but significantly during our project. ATT and PCK seemed to converge between coach and coachee at the end of the project. However, we could not find any cross-lagged effects, meaning there was no effect of coach on coachee or vice versa over time. Further, preceding PCK showed a significant effect on the competency of lesson planning, but planning competency did not influence succeeding PCK or attitude. Finally, these results are discussed with respect to science teacher education.

  5. What Are the Effects of Science Lesson Planning in Peers?—Analysis of Attitudes and Knowledge Based on an Actor-Partner Interdependence Model

    NASA Astrophysics Data System (ADS)

    Smit, Robbert; Rietz, Florian; Kreis, Annelies

    2018-06-01

    This study focuses on the effects of collaborative lesson planning by science pre-service teachers on their attitudes and knowledge. In our study, 120 pre-service teachers discussed a preparation for a science inquiry lesson in dyads. The teacher with the lesson preparation had the role of the coachee, while the other was the coach. We investigated the following research questions: (1) Does learning occur between the two peers? and (2) Is the competency in lesson planning affected by the attitude and knowledge of coach and coachee? Based on an actor-partner interdependence model (APIM), we could clarify the relations of pedagogical content knowledge (PCK) and attitudes (ATT) between and within the dyads of coach and coachee, as well as their development over time. Furthermore, the APIM allowed the inclusion of a mediator (lesson planning competency). Both PCK and ATT increased slightly but significantly during our project. ATT and PCK seemed to converge between coach and coachee at the end of the project. However, we could not find any cross-lagged effects, meaning there was no effect of coach on coachee or vice versa over time. Further, preceding PCK showed a significant effect on the competency of lesson planning, but planning competency did not influence succeeding PCK or attitude. Finally, these results are discussed with respect to science teacher education.

  6. Moving Towards a Science-Driven Workbench for Earth Science Solutions

    NASA Astrophysics Data System (ADS)

    Graves, S. J.; Djorgovski, S. G.; Law, E.; Yang, C. P.; Keiser, K.

    2017-12-01

    The NSF-funded EarthCube Integration and Test Environment (ECITE) prototype was proposed as a 2015 Integrated Activities project and resulted in the prototyping of an EarthCube federated cloud environment and the Integration and Testing Framework. The ECITE team has worked with EarthCube science and technology governance committees to define the types of integration, testing and evaluation necessary to achieve and demonstrate interoperability and functionality that benefit and support the objectives of the EarthCube cyber-infrastructure. The scope of ECITE also includes reaching beyond NSF and EarthCube to work with the broader Earth science community, such as the Earth Science Information Partners (ESIP) to incorporate lessons learned from other testbed activities, and ultimately provide broader community benefits. This presentation will discuss evolving ECITE ideas for a science-driven workbench that will start with documented science use cases, map the use cases to solution scenarios that identify the available technology and data resources that match the use case, the generation of solution workflows and test plans, the testing and evaluation of the solutions in a cloud environment, and finally the documentation of identified technology and data gaps that will assist with driving the development of additional EarthCube resources.

  7. Disaster mitigation science for Earthquakes and Tsunamis -For resilience society against natural disasters-

    NASA Astrophysics Data System (ADS)

    Kaneda, Y.; Takahashi, N.; Hori, T.; Kawaguchi, K.; Isouchi, C.; Fujisawa, K.

    2017-12-01

    Destructive natural disasters such as earthquakes and tsunamis have occurred frequently in the world. For instance, 2004 Sumatra Earthquake in Indonesia, 2008 Wenchuan Earthquake in China, 2010 Chile Earthquake and 2011 Tohoku Earthquake in Japan etc., these earthquakes generated very severe damages. For the reduction and mitigation of damages by destructive natural disasters, early detection of natural disasters and speedy and proper evacuations are indispensable. And hardware and software developments/preparations for reduction and mitigation of natural disasters are quite important. In Japan, DONET as the real time monitoring system on the ocean floor is developed and deployed around the Nankai trough seismogenic zone southwestern Japan. So, the early detection of earthquakes and tsunamis around the Nankai trough seismogenic zone will be expected by DONET. The integration of the real time data and advanced simulation researches will lead to reduce damages, however, in the resilience society, the resilience methods will be required after disasters. Actually, methods on restorations and revivals are necessary after natural disasters. We would like to propose natural disaster mitigation science for early detections, evacuations and restorations against destructive natural disasters. This means the resilience society. In natural disaster mitigation science, there are lots of research fields such as natural science, engineering, medical treatment, social science and literature/art etc. Especially, natural science, engineering and medical treatment are fundamental research fields for natural disaster mitigation, but social sciences such as sociology, geography and psychology etc. are very important research fields for restorations after natural disasters. Finally, to realize and progress disaster mitigation science, human resource cultivation is indispensable. We already carried out disaster mitigation science under `new disaster mitigation research project on Mega thrust earthquakes around Nankai/Ryukyu subduction zone', and `SATREPS project of earthquake and tsunami disaster mitigation in the Marmara region and disaster education in Turkey'. Furthermore, we have to progress the natural disaster mitigation science against destructive natural disaster in the near future.

  8. QR-STEM: Energy and Environment as a Context for Improving QR and STEM Understandings of 6-12 Grade Teachers II. The Quantitative Reasoning

    NASA Astrophysics Data System (ADS)

    Mayes, R.; Lyford, M. E.; Myers, J. D.

    2009-12-01

    The Quantitative Reasoning in STEM (QR STEM) project is a state level Mathematics and Science Partnership Project (MSP) with a focus on the mathematics and statistics that underlies the understanding of complex global scientific issues. This session is a companion session to the QR STEM: The Science presentation. The focus of this session is the quantitative reasoning aspects of the project. As students move from understandings that range from local to global in perspective on issues of energy and environment, there is a significant increase in the need for mathematical and statistical conceptual understanding. These understandings must be accessible to the students within the scientific context, requiring the special understandings that are endemic within quantitative reasoning. The QR STEM project brings together interdisciplinary teams of higher education faculty and middle/high school teachers to explore complex problems in energy and environment. The disciplines include life sciences, physics, chemistry, earth science, statistics, and mathematics. These interdisciplinary teams develop open ended performance tasks to implement in the classroom, based on scientific concepts that underpin energy and environment. Quantitative reasoning is broken down into three components: Quantitative Literacy, Quantitative Interpretation, and Quantitative Modeling. Quantitative Literacy is composed of arithmetic concepts such as proportional reasoning, numeracy, and descriptive statistics. Quantitative Interpretation includes algebraic and geometric concepts that underlie the ability to interpret a model of natural phenomena which is provided for the student. This model may be a table, graph, or equation from which the student is to make predictions or identify trends, or from which they would use statistics to explore correlations or patterns in data. Quantitative modeling is the ability to develop the model from data, including the ability to test hypothesis using statistical procedures. We use the term model very broadly, so it includes visual models such as box models, as well as best fit equation models and hypothesis testing. One of the powerful outcomes of the project is the conversation which takes place between science teachers and mathematics teachers. First they realize that though they are teaching concepts that cross their disciplines, the barrier of scientific language within their subjects restricts students from applying the concepts across subjects. Second the mathematics teachers discover the context of science as a means of providing real world situations that engage students in the utility of mathematics as a tool for solving problems. Third the science teachers discover the barrier to understanding science that is presented by poor quantitative reasoning ability. Finally the students are engaged in exploring energy and environment in a manner which exposes the importance of seeing a problem from multiple interdisciplinary perspectives. The outcome is a democratic citizen capable of making informed decisions, and perhaps a future scientist.

  9. Design definition of the Laser Atmospheric Wind Sounder (LAWS), phase 2. Volume 2: Final report

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.

    1992-01-01

    Lockheed personnel, along with team member subcontractors and consultants, have performed a preliminary design for the LAWS Instrument. Breadboarding and testing of a LAWS class laser have also been performed. These efforts have demonstrated that LAWS is a feasible Instrument and can be developed with existing state-of-the-art technology. Only a commitment to fund the instrument development and deployment is required to place LAWS in orbit and obtain the anticipated science and operational forecasting benefits. The LAWS Science Team was selected in 1988-89 as were the competing LAWS phase 1/2 contractor teams. The LAWS Science Team developed requirements for the LAWS Instrument, and the NASA/LAWS project office defined launch vehicle and platform design constraints. From these requirements and constraints, the lockheed team developed LAWS Instrument concepts and configurations. A system designed to meet these requirements and constraints is outlined. The LAWS primary subsystem and interfaces - laser, optical, and receiver/processor - required to assemble a lidar are identified. Also identified are the support subsystems required for the lidar to function from space: structures and mechanical, thermal, electrical, and command and data management. The Lockheed team has developed a preliminary design of a LAWS Instrument System consisting of these subsystems and interfaces which will meet the requirements and objectives of the Science Team. This final report provides a summary of the systems engineering analyses and trades of the LAWS. Summaries of the configuration, preliminary designs of the subsystems, testing recommendations, and performance analysis are presented. Environmental considerations associated with deployment of LAWS are discussed. Finally, the successful LAWS laser breadboard effort is discussed along with the requirements and test results.

  10. Can citizen science enhance public understanding of science?

    PubMed

    Bonney, Rick; Phillips, Tina B; Ballard, Heidi L; Enck, Jody W

    2016-01-01

    Over the past 20 years, thousands of citizen science projects engaging millions of participants in collecting and/or processing data have sprung up around the world. Here we review documented outcomes from four categories of citizen science projects which are defined by the nature of the activities in which their participants engage - Data Collection, Data Processing, Curriculum-based, and Community Science. We find strong evidence that scientific outcomes of citizen science are well documented, particularly for Data Collection and Data Processing projects. We find limited but growing evidence that citizen science projects achieve participant gains in knowledge about science knowledge and process, increase public awareness of the diversity of scientific research, and provide deeper meaning to participants' hobbies. We also find some evidence that citizen science can contribute positively to social well-being by influencing the questions that are being addressed and by giving people a voice in local environmental decision making. While not all citizen science projects are intended to achieve a greater degree of public understanding of science, social change, or improved science -society relationships, those projects that do require effort and resources in four main categories: (1) project design, (2) outcomes measurement, (3) engagement of new audiences, and (4) new directions for research. © The Author(s) 2015.

  11. Alliance for Computational Science Collaboration HBCU Partnership at Fisk University. Final Report 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, W. E.

    2004-08-16

    Computational Science plays a big role in research and development in mathematics, science, engineering and biomedical disciplines. The Alliance for Computational Science Collaboration (ACSC) has the goal of training African-American and other minority scientists in the computational science field for eventual employment with the Department of Energy (DOE). The involvements of Historically Black Colleges and Universities (HBCU) in the Alliance provide avenues for producing future DOE African-American scientists. Fisk University has been participating in this program through grants from the DOE. The DOE grant supported computational science activities at Fisk University. The research areas included energy related projects, distributed computing,more » visualization of scientific systems and biomedical computing. Students' involvement in computational science research included undergraduate summer research at Oak Ridge National Lab, on-campus research involving the participation of undergraduates, participation of undergraduate and faculty members in workshops, and mentoring of students. These activities enhanced research and education in computational science, thereby adding to Fisk University's spectrum of research and educational capabilities. Among the successes of the computational science activities are the acceptance of three undergraduate students to graduate schools with full scholarships beginning fall 2002 (one for master degree program and two for Doctoral degree program).« less

  12. A project-based geoscience curriculum: select examples

    NASA Astrophysics Data System (ADS)

    Brown, L. M.; Kelso, P. R.; White, R. J.; Rexroad, C. B.

    2007-12-01

    Principles of constructivist educational philosophy serve as a foundation for the recently completed National Science Foundation sponsored undergraduate curricular revision undertaken by the Geology Department of Lake Superior State University. We integrate lecture and laboratory sessions utilizing active learning strategies that focus on real-world geoscience experiences and problems. In this presentation, we discuss details of three research-like projects that require students to access original data, process and model the data using appropriate geological software, interpret and defend results, and disseminate results in reports, posters, and class presentations. The projects are from three upper division courses, Carbonate Systems, Sequence Stratigraphy, and Geophysical Systems, where teams of two to four students are presented with defined problems of durations ranging from a few weeks to an entire semester. Project goals and location, some background information, and specified dates and expectations for interim and final written and oral reports are provided to students. Some projects require the entire class to work on one data set, some require each team to be initially responsible for a portion of the project with teams ultimately merging data for interpretation and to arrive at final conclusions. Some projects require students to utilize data from appropriate geological web sites such as state geological surveys. Others require students to design surveys and utilize appropriate instruments of their choice for field data collection. Students learn usage and applications of appropriate geological software in compiling, processing, modeling, and interpreting data and preparing formal reports and presentations. Students uniformly report heightened interest and motivation when engaged in these projects. Our new curriculum has resulted in an increase in students" quantitative and interpretive skills along with dramatic improvement in communication and interpersonal skills related to group dynamics.

  13. The Zadko Telescope: Exploring the Transient Universe

    NASA Astrophysics Data System (ADS)

    Coward, D. M.; Gendre, B.; Tanga, P.; Turpin, D.; Zadko, J.; Dodson, R.; Devogéle, M.; Howell, E. J.; Kennewell, J. A.; Boër, M.; Klotz, A.; Dornic, D.; Moore, J. A.; Heary, A.

    2017-01-01

    The Zadko telescope is a 1 m f/4 Cassegrain telescope, situated in the state of Western Australia about 80-km north of Perth. The facility plays a niche role in Australian astronomy, as it is the only meter class facility in Australia dedicated to automated follow-up imaging of alerts or triggers received from different external instruments/detectors spanning the entire electromagnetic spectrum. Furthermore, the location of the facility at a longitude not covered by other meter class facilities provides an important resource for time critical projects. This paper reviews the status of the Zadko facility and science projects since it began robotic operations in March 2010. We report on major upgrades to the infrastructure and equipment (2012-2014) that has resulted in significantly improved robotic operations. Second, we review the core science projects, which include automated rapid follow-up of gamma ray burst (GRB) optical afterglows, imaging of neutrino counterpart candidates from the ANTARES neutrino observatory, photometry of rare (Barbarian) asteroids, supernovae searches in nearby galaxies. Finally, we discuss participation in newly commencing international projects, including the optical follow-up of gravitational wave (GW) candidates from the United States and European GW observatory network and present first tests for very low latency follow-up of fast radio bursts. In the context of these projects, we outline plans for a future upgrade that will optimise the facility for alert triggered imaging from the radio, optical, high-energy, neutrino, and GW bands.

  14. Using Analytics to Support Petabyte-Scale Science on the NASA Earth Exchange (NEX)

    NASA Astrophysics Data System (ADS)

    Votava, P.; Michaelis, A.; Ganguly, S.; Nemani, R. R.

    2014-12-01

    NASA Earth Exchange (NEX) is a data, supercomputing and knowledge collaboratory that houses NASA satellite, climate and ancillary data where a focused community can come together to address large-scale challenges in Earth sciences. Analytics within NEX occurs at several levels - data, workflows, science and knowledge. At the data level, we are focusing on collecting and analyzing any information that is relevant to efficient acquisition, processing and management of data at the smallest granularity, such as files or collections. This includes processing and analyzing all local and many external metadata that are relevant to data quality, size, provenance, usage and other attributes. This then helps us better understand usage patterns and improve efficiency of data handling within NEX. When large-scale workflows are executed on NEX, we capture information that is relevant to processing and that can be analyzed in order to improve efficiencies in job scheduling, resource optimization, or data partitioning that would improve processing throughput. At this point we also collect data provenance as well as basic statistics of intermediate and final products created during the workflow execution. These statistics and metrics form basic process and data QA that, when combined with analytics algorithms, helps us identify issues early in the production process. We have already seen impact in some petabyte-scale projects, such as global Landsat processing, where we were able to reduce processing times from days to hours and enhance process monitoring and QA. While the focus so far has been mostly on support of NEX operations, we are also building a web-based infrastructure that enables users to perform direct analytics on science data - such as climate predictions or satellite data. Finally, as one of the main goals of NEX is knowledge acquisition and sharing, we began gathering and organizing information that associates users and projects with data, publications, locations and other attributes that can then be analyzed as a part of the NEX knowledge graph and used to greatly improve advanced search capabilities. Overall, we see data analytics at all levels as an important part of NEX as we are continuously seeking improvements in data management, workflow processing, use of resources, usability and science acceleration.

  15. Climate Data Service in the FP7 EarthServer Project

    NASA Astrophysics Data System (ADS)

    Mantovani, Simone; Natali, Stefano; Barboni, Damiano; Grazia Veratelli, Maria

    2013-04-01

    EarthServer is a European Framework Program project that aims at developing and demonstrating the usability of open standards (OGC and W3C) in the management of multi-source, any-size, multi-dimensional spatio-temporal data - in short: "Big Earth Data Analytics". In order to demonstrate the feasibility of the approach, six thematic Lighthouse Applications (Cryospheric Science, Airborne Science, Atmospheric/ Climate Science, Geology, Oceanography, and Planetary Science), each with 100+ TB, are implemented. Scope of the Atmospheric/Climate lighthouse application (Climate Data Service) is to implement the system containing global to regional 2D / 3D / 4D datasets retrieved either from satellite observations, from numerical modelling and in-situ observations. Data contained in the Climate Data Service regard atmospheric profiles of temperature / humidity, aerosol content, AOT, and cloud properties provided by entities such as the European Centre for Mesoscale Weather Forecast (ECMWF), the Austrian Meteorological Service (Zentralanstalt für Meteorologie und Geodynamik - ZAMG), the Italian National Agency for new technologies, energies and sustainable development (ENEA), and the Sweden's Meteorological and Hydrological Institute (Sveriges Meteorologiska och Hydrologiska Institut -- SMHI). The system, through an easy-to-use web application permits to browse the loaded data, visualize their temporal evolution on a specific point with the creation of 2D graphs of a single field, or compare different fields on the same point (e.g. temperatures from different models and satellite observations), and visualize maps of specific fields superimposed with high resolution background maps. All data access operations and display are performed by means of OGC standard operations namely WMS, WCS and WCPS. The EarthServer project has just started its second year over a 3-years development plan: the present status the system contains subsets of the final database, with the scope of demonstrating I/O modules and visualization tools. At the end of the project all datasets will be available to the users.

  16. Earth Science: 49 Science Fair Projects Series.

    ERIC Educational Resources Information Center

    Bonnet, Robert L.; Keen, G. Daniel

    This book offers a large collection of Earth science projects and project ideas for students, teachers, and parents. The projects described are complete but can also be used as spring boards to create expanded projects. Overviews, organizational direction, suggested hypotheses, materials, procedures, and controls are provided. The projects…

  17. From science fair to project-based science: A study of the implementation of an innovation through an existing activity system

    NASA Astrophysics Data System (ADS)

    Walker, Lisa Jean

    The implementation process is critical to the success of educational innovations. Project-based science is an innovation designed to support students' science learning. Science fair is a pervasive school practice in which students exhibit science projects. Little is known about how science fair may affect the implementation of reform efforts in science education. This study explores the relationship of science fair and project-based science in the classrooms of three science teachers. Two theories are used to understand science fair as an instructional practice. Cultural historical activity theory supports an analysis of the origins and development of science fair. The idea of communities of practice supports a focus on why and how educational practitioners participate in science fair and what meanings the activity holds for them. The study identifies five historically-based design themes that have shaped science fair: general science, project method, scientific method, extra-curricular activity, and laboratory science. The themes provide a new framework for describing teachers' classroom practices for science fair activities and support analysis of the ways their practices incorporate aspects of project-based science. Three case studies in Chicago present ethnographic descriptions of science fair practices within the context of school communities. One focuses on the scientific method as a linear process for doing science, another on knowledge generation through laboratory experiments, and the third on student ability to engage in open-ended inquiry. One teacher reinvents a project-based science curriculum to strengthen students' laboratory-based science fair projects, while another reinvents science fair to teach science as inquiry. In each case, science fair is part of the school's efforts to improve science instruction. The cases suggest that reform efforts help to perpetuate science fair practice. To support systemic improvements in science education, this study recommends that science fair be recognized as a classroom instructional activity---rather than an extra-curricular event---and part of the system of science education in this country. If science fair is to reflect new ideas in science education, direct intervention in the practice is necessary. This study---including both the history and examples of current practice---provides valuable insights for reconsidering science fair's design.

  18. Graduate Management Project. The Pursuit of Quality in Military Health Care: Are We Held to a Higher Standard?

    DTIC Science & Technology

    2006-06-20

    end in itself, a final cause of seeking the good in other pursuits (Abelson & Nielsen, 1967). Immanuel Kant’s ideas also have a significant influence...on ethics. Kant defined ethics as the philosophical science that "... deals with the laws of free moral action" ( Kant , 1964, p. 13). Kant’s ethical...Organization, (n.d.). Biography of the Honorable William Winkenwerder, Jr., M.D., MB.A., Assistant Secretary of Defense for Health Affairs. Retrieved

  19. University Research Program in Robotics - "Technologies for Micro-Electrical-Mechanical Systems in directed Stockpile Work (DSW) Radiation and Campaigns", Final Technical Annual Report, Project Period 9/1/06 - 8/31/07

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James S. Tulenko; Carl D. Crane

    The University Research Program in Robotics (URPR) is an integrated group of universities performing fundamental research that addresses broad-based robotics and automation needs of the NNSA Directed Stockpile Work (DSW) and Campaigns. The URPR mission is to provide improved capabilities in robotics science and engineering to meet the future needs of all weapon systems and other associated NNSA/DOE activities.

  20. Investigating the Effects Fracture Systems Have on Seismic Wave Velocities at the Lajitas, Texas Seismic Station

    DTIC Science & Technology

    1989-05-01

    Victoria L. Sandidge-Bodoh % S Southern Methodist University Department of Geological Sciences Dallas, TX 75275 1 May 1989 Final Report 3 March 1987 - 2...Projects Agency or the U.S. Government. This technical report has been reviewed and is approved for publicj ion. JAME F. LEWKOW(CZ J/ S F. LEWKOWiC...Effects Fracture Systems Have on Seismic Wave Velocities at the Lajitas, Texas Seismic Station 12. PERSONAL AUTHOR( S ) Victoria L. Sandidge-Bodoh 13a. TYPE

  1. Space Processing Applications Rocket project, SPAR 2

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Experiment objectives, design/operational concepts, and final results are summarized for six materials science experiments conducted during the second space processing applications rocket mission flown by NASA. The individual experiments discussed are: (1) solidification of Pb-Sb eutectic; (2) feasibility of producing closed-cell metal foams; (3) direct observation of dendrite remelting and macrosegregation in castings; (4) agglomeration in immiscible liquids; (5) casting dispersion - strengthened composites at zero gravity; and (6) solidification behavior of Al-In alloys under zero gravity conditions.

  2. A regional technology transfer program

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The final report is presented for the North Carolina Science and Technology Research Center's 14th consecutive contract period as a NASA Industrial Applications Center, serving the information needs of nine Southeastern states. Included in the report are figures for and analysis of marketing efforts, file usage, search delivered, and other services performed for clients; and information on staff changes, workshops, and special projects in 1978. An appendix contains copies of NC/STRC magazine advertisements, letters from clients, and supplementary information on NC/STRC staff and services.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, Ulrich F., E-mail: katz@physik.uni-erlangen.de; Collaboration: KM3NeT Collaboration

    KM3NeT is a future research infrastructure in the Mediterranean Sea, hosting a multi-cubic-kilometre neutrino telescope and nodes for Earth and Sea sciences. In this report we shortly summarise the genesis of the KM3NeT project and present key elements of its technical design. The physics objectives of the KM3NeT neutrino telescope and some selected sensitivity estimates are discussed. Finally, some first results from prototype operations and the next steps towards implementation – in particular the first construction phase in 2014/15 – are described.

  4. Space Processing Applications Rocket project SPAR III

    NASA Technical Reports Server (NTRS)

    Reeves, F.

    1978-01-01

    This document presented the engineering report and science payload III test report and summarized the experiment objectives, design/operational concepts, and final results of each of five scientific experiments conducted during the third Space Processing Applications Rocket (SPAR) flight flown by NASA in December 1976. The five individual SPAR experiments, covering a wide and varied range of scientific materials processing objectives, were entitled: Liquid Mixing, Interaction of Bubbles with Solidification Interfaces, Epitaxial Growth of Single Crystal Film, Containerless Processing of Beryllium, and Contact and Coalescence of Viscous Bodies.

  5. On Darwin's 'metaphysical notebooks'. II: "Metaphysics" and final cause.

    PubMed

    Calabi, L

    2001-01-01

    The first part of this paper was published in Rivista di Biologia/Biology Forum 94 (2001). In the second part below an examination is made of the meaning of the term Metaphysics in some passages of the Darwinian Notebooks for the years 1836-1844. Metaphysics no longer defines a field of philosophical enquiries mainly concerning the being and the essence after the manner of Aristotle; it now refers to a kind of philosophy of mind after the manner of J. Locke's criticism of the Hypokeimenon. However Aristotle's Metaphysics also encompasses a treatment of the idea of causes, and of final cause particularly, in the explanation of events, and in the explanation of natural phenomena especially. The criticism of the idea of final cause in the interpretation of the world of life is one of Darwin's foundational acts in his early years. When conceiving his Système du monde, in the last years of the XVIII Century, Laplace could think that God is a hypothesis not really needed by science, as we are told. For the knowledge of organic nature to attain the status of science, it remained to be shown that since--certain of the exemplariness of Newton's Principles as much as cautious before the mystery of life--did not need the hypothesis of final ends in order to understand and explain the productions of the living nature: not only in the form of that final cause (the First Cause, the Vera Causa) in which Natural Theology still rested, but also in the form of nature's inner finality which still moulded Whewell's Kantian philosophy. Such demonstration is a very important subject in Darwin's early enquiries, where he criticises finalism as a projection of self-conceiving Man, likely inherited from a knowing of causality in nuce to be found also in animals.

  6. Science FEST: Preservice Teachers link Math and Science in Astronomy Lessons

    NASA Astrophysics Data System (ADS)

    DeMuth, N. H.; Kasabian, J.; Hacking, P. B.

    2005-12-01

    Funded by the National Science Foundation and corporate sponsored by Northrop Grumman, Science FEST (Science for Future Elementary School Teachers) aims to develop the science content and pedagogy for project participants by connecting their college coursework to the science they will eventually teach. Working individually and in pairs, future elementary and secondary school teachers design a comprehensive module in astronomy that is inquiry-based and reflects national and state science standards. Project participants then teach their module in local elementary or middle school classrooms. Science FEST project participants report gaining a deep understanding of the science they are teaching, learning to engage all students to explore science concepts, and reflecting on their teaching and how it can be improved. The project's website can be found at www.science-fest.org.

  7. Cluster synchronization of community network with distributed time delays via impulsive control

    NASA Astrophysics Data System (ADS)

    Leng, Hui; Wu, Zhao-Yan

    2016-11-01

    Cluster synchronization is an important dynamical behavior in community networks and deserves further investigations. A community network with distributed time delays is investigated in this paper. For achieving cluster synchronization, an impulsive control scheme is introduced to design proper controllers and an adaptive strategy is adopted to make the impulsive controllers unified for different networks. Through taking advantage of the linear matrix inequality technique and constructing Lyapunov functions, some synchronization criteria with respect to the impulsive gains, instants, and system parameters without adaptive strategy are obtained and generalized to the adaptive case. Finally, numerical examples are presented to demonstrate the effectiveness of the theoretical results. Project supported by the National Natural Science Foundation of China (Grant No. 61463022), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20161BAB201021), and the Natural Science Foundation of Jiangxi Educational Committee, China (Grant No. GJJ14273).

  8. Argument as Professional Development: Impacting Teacher Knowledge and Beliefs About Science

    NASA Astrophysics Data System (ADS)

    Crippen, Kent J.

    2012-12-01

    Using a case study method, the experiences of a group of high school science teachers participating in a unique professional development method involving an argue-to-learn intervention were examined. The participants ( N = 42) represented 25 different high schools from a large urban school district in the southwestern United States. Data sources included a multiple-choice science content test and artifacts from a capstone argument project. Findings indicate although it was intended for the curriculum to be a robust and sufficient collection of evidence, participant groups were more likely to use the Web to find unique evidence than to they were to use the provided materials. Content knowledge increased, but an issue with teacher conceptions of primary data was identified, as none of the participants chose to use any of their experimental results in their final arguments. The results of this study reinforce multiple calls for science curricula that engage students (including teachers as students) in the manipulation and questioning of authentic data as a means to better understanding complex socioscientific issues and the nature of science.

  9. Pittsburgh Public School District / Carnegie Mellon University Robotics Team Participation in the US First Competition

    NASA Technical Reports Server (NTRS)

    Stroupe, Ashley

    2002-01-01

    FIRST, For Inspiration and Recognition of Science and Technology, is an international program designed to encourage junior and senior high school students to participate in science and technology related activities. FIRST attempts to increase enthusiasm for technology by providing a competitive environment in which to demonstrate robotics technology designed for a particular set of tasks. Carnegie Mellon University provided student members of the project the opportunity to complete the design, construction, testing, and operation of a robot. Electrical, mechanical, and programming skills were stressed, with both adult and senior students acting as mentors for more junior members. Teamwork and integration was also stressed in order to provide students with a realistic feel for project-based work. Finally, an emphasis was placed on recruiting students with greater difficulty in entering technological fields: girls and ethnic minorities and students leaning toward humanities (especially art). Carnegie Mellon built a relationship with Taylor Allderdice High School that lasted four years. For four years, the success of the project increased each year. Each term, the students successfully designed and built a working robot that could fully participate in the competition. The enthusiasm of the students has been the cornerstone of the recruit of new students, keeping the project growing and vital. Carnegie Mellon's participation with Allderdice has been an overall great success.

  10. Assessing Motivations and Use of Online Citizen Science Astronomy Projects

    NASA Astrophysics Data System (ADS)

    Nona Bakerman, Maya; Buxner, Sanlyn; Bracey, Georgia; Gugliucci, Nicole

    2018-01-01

    The exponential proliferation of astronomy data has resulted in the need to develop new ways to analyze data. Recent efforts to engage the public in the discussion of the importance of science has led to projects that are aimed at letting them have hands-on experiences. Citizen science in astronomy, which has followed the model of citizen science in other scientific fields, has increased in the number and type of projects in the last few years and poses captivating ways to engage the public in science.The primary feature of this study was citizen science users’ motivations and activities related to engaging in astronomy citizen science projects. We report on participants’ interview responses related to their motivations, length and frequency of engagement, and reasons for leaving the project. From May to October 2014, 32 adults were interviewed to assess their motivations and experiences with citizen science. In particular, we looked at if and how motivations have changed for those who have engaged in the projects in order to develop support for and understandparticipants of citizen science. The predominant reasons participants took part in citizen science were: interest, helping, learning or teaching, and being part of science. Everyone interviewed demonstrated an intrinsic motivation to do citizen science projects.Participants’ reasons for ending their engagement on any given day were: having to do other things, physical effects of the computer, scheduled event that ended, attention span or tired, computer or program issues. A small fraction of the participants also indicated experiencing negative feedback. Out of the participants who no longer took part in citizen science projects, some indicated that receiving negative feedback was their primary reason and others reported the program to be frustrating.Our work is helping us to understand participants who engage in online citizen science projects so that researchers can better design projects to meet their needs and develop support materials and incentives to encourage more participation.

  11. Alliance for Computational Science Collaboration: HBCU Partnership at Alabama A&M University Continuing High Performance Computing Research and Education at AAMU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Xiaoqing; Deng, Z. T.

    2009-11-10

    This is the final report for the Department of Energy (DOE) project DE-FG02-06ER25746, entitled, "Continuing High Performance Computing Research and Education at AAMU". This three-year project was started in August 15, 2006, and it was ended in August 14, 2009. The objective of this project was to enhance high performance computing research and education capabilities at Alabama A&M University (AAMU), and to train African-American and other minority students and scientists in the computational science field for eventual employment with DOE. AAMU has successfully completed all the proposed research and educational tasks. Through the support of DOE, AAMU was able tomore » provide opportunities to minority students through summer interns and DOE computational science scholarship program. In the past three years, AAMU (1). Supported three graduate research assistants in image processing for hypersonic shockwave control experiment and in computational science related area; (2). Recruited and provided full financial support for six AAMU undergraduate summer research interns to participate Research Alliance in Math and Science (RAMS) program at Oak Ridge National Lab (ORNL); (3). Awarded highly competitive 30 DOE High Performance Computing Scholarships ($1500 each) to qualified top AAMU undergraduate students in science and engineering majors; (4). Improved high performance computing laboratory at AAMU with the addition of three high performance Linux workstations; (5). Conducted image analysis for electromagnetic shockwave control experiment and computation of shockwave interactions to verify the design and operation of AAMU-Supersonic wind tunnel. The high performance computing research and education activities at AAMU created great impact to minority students. As praised by Accreditation Board for Engineering and Technology (ABET) in 2009, ?The work on high performance computing that is funded by the Department of Energy provides scholarships to undergraduate students as computational science scholars. This is a wonderful opportunity to recruit under-represented students.? Three ASEE papers were published in 2007, 2008 and 2009 proceedings of ASEE Annual Conferences, respectively. Presentations of these papers were also made at the ASEE Annual Conferences. It is very critical to continue the research and education activities.« less

  12. Four Tools for Science Fair Success

    ERIC Educational Resources Information Center

    Smith, Sherry Weaver; Messmer, Barbara; Storm, Bill; Weaver, Cheryl

    2007-01-01

    These teacher-tested ideas will guide students in creating true inquiry-based projects. Two of the ideas, the Topic Selection Wizard and Science Project Timeline, are appropriate for all science fair programs, even new ones. For existing programs, the Black Box of Project Improvement and After-School Project Clinic improve project quality and…

  13. Student and Faculty Outcomes of Undergraduate Science Research Projects by Geographically Dispersed Students

    ERIC Educational Resources Information Center

    Shaw, Lawton; Kennepohl, Dietmar

    2013-01-01

    Senior undergraduate research projects are important components of most undergraduate science degrees. The delivery of such projects in a distance education format is challenging. Athabasca University (AU) science project courses allow distance education students to complete research project courses by working with research supervisors in their…

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drouhard, Margaret MEG G; Steed, Chad A; Hahn, Steven E

    In this paper, we propose strategies and objectives for immersive data visualization with applications in materials science using the Oculus Rift virtual reality headset. We provide background on currently available analysis tools for neutron scattering data and other large-scale materials science projects. In the context of the current challenges facing scientists, we discuss immersive virtual reality visualization as a potentially powerful solution. We introduce a prototype immersive visual- ization system, developed in conjunction with materials scientists at the Spallation Neutron Source, which we have used to explore large crystal structures and neutron scattering data. Finally, we offer our perspective onmore » the greatest challenges that must be addressed to build effective and intuitive virtual reality analysis tools that will be useful for scientists in a wide range of fields.« less

  15. Science education: A meta-analysis of major questions

    NASA Astrophysics Data System (ADS)

    Anderson, Ronald D.; Kahl, Stuart R.; Glass, Gene V.; Smith, Mary Lee

    A multi-institutional endeavor was initiated to integrate the findings of extant research studies directed toward the major science education research questions. The research questions were selected by a largely empirical process of identifiying the most frequently researched questions in the literature. These questions were assigned to various researchers who developed coding sheets and procedures with many features in common. This article describes the overall operation of the project, the research questions identified, and some rudiments of meta-analysis. The results of the several meta-analysis are reported in the other articles of this issue of the Journal. The final article in this issue deals with research topics for which data are drawn from one or more of the separate meta-analyses.

  16. Polarized 3He Neutron Spin Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sno, William Michael

    The goal of this grant to Indiana University and subcontractors at Hamilton College and Wisconsin and the associated Interagency Agreement with NIST was to extend the technique of polarized neutron scattering by the development and application of polarized 3He-based neutron spin filters. This effort was blessed with long-term support from the DOE Office of Science, which started in 2003 and continued until the end of a final no-cost extension of the last 3-year period of support in 2013. The steady support from the DOE Office of Science for this long-term development project was essential to its eventual success. Further 3Hemore » neutron spin filter development is now sited at NIST and ORNL.« less

  17. James Webb Space Telescope Optical Telescope Element/Integrated Science Instrument Module (OTIS) Status

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Voyton, Mark; Lander, Juli; Keski-Kuha, Ritva; Matthews, Gary

    2016-01-01

    The James Webb Space Telescope Optical Telescope Element (OTE) and Integrated Science Instrument Module (ISIM) are integrated together to form the OTIS. Once integrated, the OTIS undergoes primary mirror center of curvature optical tests, electrical and operational tests, acoustics and vibration testing at the Goddard Space Flight Center before being shipped to the Johnson Space Center for cryogenic optical testing of the OTIS. In preparation for the cryogenic optical testing, the JWST project has built a Pathfinder telescope and has completed two Optical Ground System Equipment (OGSE) cryogenic optical tests with the Pathfinder. In this paper, we will summarize optical test results to date and status the final Pathfinder test and the OTIS integration and environmental test preparations

  18. Summer of Seasons Workshop Program for Emerging Educators in Earth System Science

    NASA Technical Reports Server (NTRS)

    Chaudhury, S. Raj

    2002-01-01

    Norfolk State University BEST Lab successfully hosted three Summer of Seasons programs from 1998-2001. The Summer of Seasons program combined activities during the summer with additional seminars and workshops to provide broad outreach in the number of students and teachers who participated. Lessons learned from the each of the first two years of this project were incorporated into the design of the final year's activities. The "Summer of Seasons" workshop program provided emerging educators with the familiarity and knowledge to utilize in the classroom curriculum materials developed through NASA sponsorship on Earth System Science. A special emphasis was placed on the use of advanced technologies to dispel the commonly held misconceptions regarding seasonal, climactic and global change phenomena.

  19. The Legacy of the Space Shuttle Program: Scientific and Engineering Accomplishments

    NASA Technical Reports Server (NTRS)

    Torrez, Jonathan

    2009-01-01

    The goal of this project was to assist in the creation of the appendix for the book being written about the Space Shuttle that is titled The Legacy of the Space Shuttle Program: Scientific and Engineering Accomplishments. The specific responsibility of the intern was the creation of the human health and performance (life sciences) and space biology sections of the appendix. This included examining and finalizing the list of flights with life sciences and space biology experiments flown aboard them, researching the experiments performed, synopsizing each experiment into two sentences, and placing the synopses into an appendix template. Overall, approximately 70 flights had their experiments synopsized and a good method for researching and construction of the template was established this summer.

  20. Enabling Students to Develop a Scientific Mindset

    NASA Astrophysics Data System (ADS)

    Kalman, Calvin

    2010-02-01

    This paper is centered on getting students to understand the nature of science (NOS) by considering historical material in relation to modern philosophers of science. This paper incorporates the methodology of contrasting cases in the calculus-based introductory physics course on optics and modern physics. Students study one philosopher all semester as a group project and report regularly on how their philosopher would view the subject matter of the course. Almost all of the students were able to argue successfully on the final examination about all three philosophers. Students become aware that the same textual material can be viewed in a variety of ways. The answers that students give about the NOS have become clearer at the end of the course.

  1. Electron Tomography: A Three-Dimensional Analytic Tool for Hard and Soft Materials Research

    DOE PAGES

    Ercius, Peter; Alaidi, Osama; Rames, Matthew J.; ...

    2015-06-18

    Three-dimensional (3D) structural analysis is essential to understand the relationship between the structure and function of an object. Many analytical techniques, such as X-ray diffraction, neutron spectroscopy, and electron microscopy imaging, are used to provide structural information. Transmission electron microscopy (TEM), one of the most popular analytic tools, has been widely used for structural analysis in both physical and biological sciences for many decades, in which 3D objects are projected into two-dimensional (2D) images. In many cases, 2D-projection images are insufficient to understand the relationship between the 3D structure and the function of nanoscale objects. Electron tomography (ET) is amore » technique that retrieves 3D structural information from a tilt series of 2D projections, and is gradually becoming a mature technology with sub-nanometer resolution. Distinct methods to overcome sample-based limitations have been separately developed in both physical and biological science, although they share some basic concepts of ET. Here, this review discusses the common basis for 3D characterization, and specifies difficulties and solutions regarding both hard and soft materials research. It is hoped that novel solutions based on current state-of-the-art techniques for advanced applications in hybrid matter systems can be motivated. Electron tomography produces quantitative 3D reconstructions for biological and physical sciences from sets of 2D projections acquired at different tilting angles in a transmission electron microscope. Finally, state-of-the-art techniques capable of producing 3D representations such as Pt-Pd core-shell nanoparticles and IgG1 antibody molecules are reviewed.« less

  2. Large-scale water projects in the developing world: Revisiting the past and looking to the future

    NASA Astrophysics Data System (ADS)

    Sivakumar, Bellie; Chen, Ji

    2014-05-01

    During the past half a century or so, the developing world has been witnessing a significant increase in freshwater demands due to a combination of factors, including population growth, increased food demand, improved living standards, and water quality degradation. Since there exists significant variability in rainfall and river flow in both space and time, large-scale storage and distribution of water has become a key means to meet these increasing demands. In this regard, large dams and water transfer schemes (including river-linking schemes and virtual water trades) have been playing a key role. While the benefits of such large-scale projects in supplying water for domestic, irrigation, industrial, hydropower, recreational, and other uses both in the countries of their development and in other countries are undeniable, concerns on their negative impacts, such as high initial costs and damages to our ecosystems (e.g. river environment and species) and socio-economic fabric (e.g. relocation and socio-economic changes of affected people) have also been increasing in recent years. These have led to serious debates on the role of large-scale water projects in the developing world and on their future, but the often one-sided nature of such debates have inevitably failed to yield fruitful outcomes thus far. The present study aims to offer a far more balanced perspective on this issue. First, it recognizes and emphasizes the need for still additional large-scale water structures in the developing world in the future, due to the continuing increase in water demands, inefficiency in water use (especially in the agricultural sector), and absence of equivalent and reliable alternatives. Next, it reviews a few important success and failure stories of large-scale water projects in the developing world (and in the developed world), in an effort to arrive at a balanced view on the future role of such projects. Then, it discusses some major challenges in future water planning and management, with proper consideration to potential technological developments and new options. Finally, it highlights the urgent need for a broader framework that integrates the physical science-related aspects ("hard sciences") and the human science-related aspects ("soft sciences").

  3. NUCLEAR SCIENCE CURRICULUM PROJECT, PROJECT I, INSTRUCTIONAL SPECIFICATIONS.

    ERIC Educational Resources Information Center

    CAMAREN, JAMES

    ON THE PREMISE THAT A KNOWLEDGE OF NUCLEAR SCIENCE IS ESSENTIAL FOR INTELLIGENT DECISION-MAKING REGARDING ITS USES, THE NUCLEAR SCIENCE CURRICULUM PROJECT WAS DEVELOPED. ITS OBJECTIVE IS TO PROVIDE A PROGRAM THAT CAN BE EFFECTIVELY USED IN SCIENCE CLASSES TO PROVIDE AN UNDERSTANDING OF NUCLEAR SCIENCE AND ITS IMPACT ON SOCIETY. THOUGH TEACHER…

  4. The Climate Impacts Research Consortium: Lessons Learned from the Evaluation of Co-production projects

    NASA Astrophysics Data System (ADS)

    Sokolovska, I.; Andrepont, J. A.; Lach, D.

    2017-12-01

    The Pacific Northwest Climate Impacts Research Consortium (CIRC) is a climate-science-to-climate-action team funded by the National Oceanic and Atmospheric Administration (NOAA), member of NOAA's Regional Integrated Sciences and Assessments (RISA) program. The internal evaluation of the last 6 years of CIRC's work focused on the co-production of knowledge process. The evaluation was based on CIRC's Reflection and Logic model and used a mixed methods design. During regular monthly meetings in 2014/15, all CIRC PIs reflected on the co-production process and presented their evaluation of the projects they worked on. Additionally, we conducted semi-structured interviews with CIRC participants, purposefully targeting key informants. The Climate Impacts Research Consortium teams also administered surveys to assess participants' experiences of the coproduction process as they were engaging in it. Identifying and cultivating an informant from the local stakeholder group with deep, accessible roots within the target community can lead to better coproduction results than having to build those relationships from naught. Across projects, most participants agreed that the project increased their understanding of their area's hazards and by the end of the project most participants were confident the project would produce useful results for themselves. Finally, most participants intended to share what they had learned from this experience with their colleagues and we found that co-production built capacities necessary for communities to incorporate climate change in discussions even after the end of CIRC's participation. During the projects, the involvement of non-traditional participants along with experts was critical to success and a lot of work and preparation needs to be put into the planning of any co-production meeting to overcome various barriers to communication and build trust.

  5. Corporate Involvement Fuels Science Education Projects.

    ERIC Educational Resources Information Center

    Wrather, Joan

    1985-01-01

    The American Association for the Advancement of Science is involved in projects to capitalize on resources the scientific community can share with schools. Projects and sponsors include "The National Forum for School Science" (Carnegie Corporation), "Challenge of the Unknown" (Phillips Petroleum), and "Science Resources…

  6. CosmoQuest: Measuring Audience Needs to Obtain Better Science

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; Bakerman, Maya; Gay, Pamela; Reiheld, Alison; CosmoQuest Team

    2018-01-01

    The CosmoQuest Virtual Research Facility provides a place for scientists to recruit people to aid in their science projects via citizen science. Just as students need training to be effective researchers, so do citizen scientists, but their needs are different. In this presentation, we present the results of surveys of members of the CosmoQuest community, including both citizen scientists and educators using citizen science in their classrooms. For all members of the community, we investigated the types of projects that respondents enjoyed doing, the level of difficulty they were willing to engage in, and the amount of time they spent doing citizen science projects. We also investigated what other science-related activities respondents were engaged in, other opportunities they were interested in, and what support and resources they needed to be successful in completing projects. For educators, we investigated the types of projects they wanted to engage in with their students, the ideal length of time for citizen science projects to be used in their classrooms, and the resources they needed to be able to engage students in citizen science projects effectively.

  7. Interdisciplinary Social Science: An Example of Vertical and Horizontal Integrative Strategies

    NASA Astrophysics Data System (ADS)

    Durlabhji, Subhash

    2005-03-01

    A "Concept-Centered" strategy for Integrative Studies was proposed and implemented in the creation of the book Power in Focus: Perspectives from Multiple Disciplines. Essays on the ubiquitous concept of Power were solicited internationally and a final cut of ten essays from ten different disciplines, written specifically for this project, were included. This provides an example of what might be called Horizontal Integration, as it cut across multiple disciplines. One of the essays in the volume provides an example of Vertical Integration, as it applies a psychodynamic hypothesis concerning the development of Power relations among humans across hierarchical levels, from the child to the family to other groups and institutions in society, including finally entire nations and regions of the world.

  8. [School-Based UV-B Monitoring Project in Support of EOS-CHEM

    NASA Technical Reports Server (NTRS)

    Brooks, David R.

    2005-01-01

    This grant is an extension of Grant NAG5-8929 (Drexel Project Number 230026), resulting from extensions necessary to meet changing science objectives as described in the final report for NAG5-8929, a copy of which is attached. The instrument configuration resulting from NAG54929 has remained basically intact. Cosine response measurements conducted by James Slusser s group at Fort Collins, Colorado, in support of the proposal for Aura ground validation mentioned in the final report for NAG5-8929, indicated that there was significant light leakage to the detector through the sides of the nylon housing. This was easily remedied by machining a removable opaque collar (made from the dark same grey rigid plastic plumbing tubing as the collimating tube) that fits around the detector collar. Also during this grant period, data logging procedures were established for the UV-A instrument, to record irradiance before, during, and after an Aura overflight. This is required in order to compare spatial and temporal variability as required for ground validation of data products derived from the Ozone Monitoring Instrument (OMI). Standalone 12-bit loggers from Onset Computer Corporation (the U12 series), which were not available at the start of these projects, makes possible relatively inexpensive logging for these instruments at a usable resolution. configuration and disposition of these instruments, including the final version of a GLOBE protocol for using the instruments, currently depend on action taken on the Aura ground validation proposal submitted in 2004. A copy of that proposal is attached.

  9. Investigating Changes in Student Attitudes and Understanding of Science through Participation in Citizen Science Projects in College Coursework

    NASA Astrophysics Data System (ADS)

    Cardamone, Carolin; Cobb, Bethany E.

    2018-01-01

    Over the last decade, web-based “citizen science” projects such as the Zooniverse have allowed volunteers and professional scientists to work together for the advancement of science. While much attention has been paid to the benefits to science from these new projects, less attention has been paid to their impact on the participants and, in particular, to the projects’ potential to impact students who might engage in these projects through coursework. We report on a study engaging students in introductory astronomy classes at the George Washington University and Wheelock College in an assignment in which each student individually contributed to a “physics” or “space” citizen science project of their choice, and groups of students worked together to understand and articulate the scientific purpose of a citizen science project to which they all contributed. Over the course of approximately four weeks, the students kept logs of their individual contributions to the project, and recorded a brief reflection on each of their visits (noting, for example, interesting or confusing things they might encounter along the way). The project culminated with each group delivering a creative presentation that demonstrated their understanding of both the science goals of the project and the value of their own contributions to the project. In this talk, we report on the experience of the students with the project and on an assessment of the students’ attitudes toward science and knowledge of the process of science completed before the introduction of the assignment and again at its conclusion.

  10. ScienceFEST: Preservice Teachers link Math and Science in Astronomy Lessons

    NASA Astrophysics Data System (ADS)

    DeMuth, N. H.; Kasabian, J.

    2005-05-01

    Funded by the National Science Foundation, Science FEST (Science for Future Elementary School Teachers) aims to develop the science content and pedagogy for project participants by connecting their college coursework to the science they will eventually teach. Working individually and in pairs, future elementary and middle school teachers design a comprehensive module in astronomy that is inquiry-based and reflects the national and state science standards. Project participants then teach their modules in local elementary or middle school classrooms. Science FEST project participants report gaining a deep understanding of the science they are teaching, learning to engage all students to explore science concepts, and reflecting on their teaching and how it can be improved. The session presenters will share some of the instructional materials developed by the college students and how their experiences in Science FEST have enhanced their pre-professional development. The project's website can be found at www.science-fest.org.

  11. myScience—Engaging the public in U.S. Geological Survey science

    USGS Publications Warehouse

    Holl, Sally

    2015-10-19

    myScience (http://txpub.usgs.gov/myscience/) is a Web application developed by the U.S. Geological Survey (USGS) Texas Water Science Center through a partnership with the USGS Community for Data Integration to address the need for increasing public awareness and participation in existing USGS citizen science projects. The myScience application contains data for 20 projects available for public participation representing all USGS mission areas. A visitor to the USGS education Web site (http://education.usgs.gov/) can click on the Citizen Science link to search for citizen science projects by topic or location, select a project of interest, and click “Get Involved.” Within the USGS, an internal version of myScience serves to build a community of practice and knowledge sharing among scientists who lead or would like to lead a crowdsourcing project.

  12. The WFIRST Interim Design Reference Mission: Capabilities, Constraints, and Open Questions

    NASA Technical Reports Server (NTRS)

    Kruk, Jeffrey W.

    2012-01-01

    The Project Office and Science Definition Team for the Wide-Field Infrared Survey Telescope (WFIRST) are in the midst of a pre-Phase A study to establish a Design Reference Mission (DRM). An Interim report was released in June 2011, with a final report due later in 2012. The predicted performance of the Interim DRM Observatory will be described, including optical quality, observing efficiency, and sensitivity for representative observing scenarios. Observing constraints and other limitations on performance will also be presented, with an emphasis on potential Guest Observer programs. Finally, a brief status update will be provided on open trade studies of interest to the scientific community. The final DRM may differ from the Interim DRM presented here. However, the underlying requirements of the scientific programs are not expected to change, hence the capabilities of the IDRM are likely to be maintained even if the implementation changes in significant ways.

  13. Final Report - BRER Core Support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evan B. Douple

    2007-01-09

    This contract provided core support for activities of the advisory committee of experts comprising the Board on Radiation Effects Research (BRER), in The National Academies' Division on Earth and Life Studies. That committee met two times during the funding period. The committee members provided oversight and advice regarding ongoing BRER projects and also assisted in the identification of potential committee members for new studies and the development of proposals for projects in the radiation sciences worthy for future study. In addition, funding provided support for the planning, advertisement, and invited speakers' travel-expense reimbursement for the Third and Fourth Gilbert W.more » Beebe Symposia held at The National Academies on December 1, 2004 and on November 30, 2005, respectively.« less

  14. A decision-theoretic approach to the display of information for time-critical decisions: The Vista project

    NASA Technical Reports Server (NTRS)

    Horvitz, Eric; Ruokangas, Corinne; Srinivas, Sampath; Barry, Matthew

    1993-01-01

    We describe a collaborative research and development effort between the Palo Alto Laboratory of the Rockwell Science Center, Rockwell Space Operations Company, and the Propulsion Systems Section of NASA JSC to design computational tools that can manage the complexity of information displayed to human operators in high-stakes, time-critical decision contexts. We shall review an application from NASA Mission Control and describe how we integrated a probabilistic diagnostic model and a time-dependent utility model, with techniques for managing the complexity of computer displays. Then, we shall describe the behavior of VPROP, a system constructed to demonstrate promising display-management techniques. Finally, we shall describe our current research directions on the Vista 2 follow-on project.

  15. Environmental Remediation Science at Beamline X26A at the National Synchrotron Light Source- Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertsch, Paul

    2013-11-07

    The goal of this project was to provide support for an advanced X-ray microspectroscopy facility at the National Synchrotron Light Source, Brookhaven National Laboratory. This facility is operated by the University of Chicago and the University of Kentucky. The facility is available to researchers at both institutions as well as researchers around the globe through the general user program. This facility was successfully supported during the project period. It provided access to advanced X-ray microanalysis techniques which lead to fundamental advances in understanding the behavior of contaminants and geochemistry that is applicable to environmental remediation of DOE legacy sites asmore » well as contaminated sites around the United States and beyond.« less

  16. Telescience at the University of California, Berkeley

    NASA Technical Reports Server (NTRS)

    Chakrabarti, S.; Marchant, W. T.; Kaplan, G. C.; Dobson, C. A.; Jernigan, J. G.; Lampton, M. L.; Malina, R. F.

    1989-01-01

    The University of California at Berkeley (UCB) is a member of a university consortium involved in telescience testbed activities under the sponsorship of NASA. Our Telescience Testbed Project consists of three experiments using flight hardware being developed for the Extreme Ultraviolet Explorer project at UCB's Space Sciences Laboratory. The first one is a teleoperation experiment investigating remote instrument control using a computer network such as the Internet. The second experiment is an effort to develop a system for operation of a network of remote workstations allowing coordinated software development, evaluation, and use by widely dispersed groups. The final experiment concerns simulation as a method to facilitate the concurrent development of instrument hardware and support software. We describe our progress in these areas.

  17. Gender Differences in Science Interests: An Analysis of Science Fair Projects.

    ERIC Educational Resources Information Center

    Lawton, Carol A.; Bordens, Kenneth S.

    Gender differences in science interests were examined in two studies of projects entered in a regional science fair in kindergarten through grade 12. A content analysis of 1,319 project topics and materials submitted to the Northeastern Indiana Regional Science and Engineering Fair from 1991 through 1993 showed that girls were more likely than…

  18. A Window on Science: Exploring the JASON Project and Student Conceptions of Science.

    ERIC Educational Resources Information Center

    Moss, David M.

    2003-01-01

    Describes how the JASON project was implemented in a self-contained 4th grade classroom and examines this project within the overall context of student-scientist partnership (SSP) models of science education reform. Examines changes in student conceptions of the nature of science as a result of participating in science. (Contains 24 references.)…

  19. A Comparison of Biologic Content in Three Elementary-School Science Curriculum Projects: ESS, S-APA, SCIS

    ERIC Educational Resources Information Center

    Simpson, Ronald D.

    1974-01-01

    Three elementary school science curriculum projects, Elementary Science Study (ESS), Science - A Process Approach (S-APA), and Science Curriculum Improvement Study (SCIS), are compared concerning the biologic content each project contains. The reviewer found a lack of activities designed to represent functions at the cellular level. Two projects…

  20. Project ASTRO NOVA brings Standard Based Astronomy to New Jersey Schools.

    NASA Astrophysics Data System (ADS)

    van der Veen, W.; Vinski, J.; Gallagher, A. C.

    2000-12-01

    Begun in 1998, Project ASTRO NOVA is hosted by the Planetarium at Raritan Valley Community College in Somerville, New Jersey. It is part of a National Network of eleven Project ASTRO sites created by the Astronomical Society of the Pacific with financial support of the National Science Foundation (see other papers at this meeting). Our goal is to bring hands-on inquiry based astronomy into classrooms and help teachers meet the New Jersey Science Standards. New Jersey mandates the teaching of astronomy in grades K-12 and statewide assessment takes place in grades 4 and 8. Capitalizing on New Jersey's record number of amateur astronomers per capita our site has trained 75 astronomers (including 21 professional astronomers) over the last three years. Before the start of each school year a new group of astronomers is trained together with their partner teacher(s) in the use of hands-on and age-appropriate astronomy activities that support the New Jersey Science Standards. Astronomers adopt a classroom and visit the same students at least four times during the year. Currently 53 astronomers are participating during the 2000-2001 school year. The program in New Jersey targets teachers in grades 3-9. A total of 114 teachers have been training at our annual workshops and 75 of them are participating during the 2000-2001 school year. Satisfaction with the program has been high with students, teachers and astronomers. When students meet scientists as role models and experience that doing science can be a lot of fun they become more interested. At the same time teachers are re-energized and gain a better understanding of how to teach science and astronomy. Finally, astronomers have the satisfaction of making a real difference in the lives of thousands of children, gain a better understanding of the issues in K-12 education and learn new teaching strategies for use in their college classes or astronomy clubs. In general we find that students and teachers are becoming better astronomers and scientists and that astronomers are becoming better teachers. Project ASTRO NOVA acknowledges support from the National Science Foundation, the 3M Corporation, the New York Mercantile Exchange Charitable Foundation and the New Jersey Space Grant Consortium.

  1. Satellite Imagery Production and Processing Using Apache Hadoop

    NASA Astrophysics Data System (ADS)

    Hill, D. V.; Werpy, J.

    2011-12-01

    The United States Geological Survey's (USGS) Earth Resources Observation and Science (EROS) Center Land Science Research and Development (LSRD) project has devised a method to fulfill its processing needs for Essential Climate Variable (ECV) production from the Landsat archive using Apache Hadoop. Apache Hadoop is the distributed processing technology at the heart of many large-scale, processing solutions implemented at well-known companies such as Yahoo, Amazon, and Facebook. It is a proven framework and can be used to process petabytes of data on thousands of processors concurrently. It is a natural fit for producing satellite imagery and requires only a few simple modifications to serve the needs of science data processing. This presentation provides an invaluable learning opportunity and should be heard by anyone doing large scale image processing today. The session will cover a description of the problem space, evaluation of alternatives, feature set overview, configuration of Hadoop for satellite image processing, real-world performance results, tuning recommendations and finally challenges and ongoing activities. It will also present how the LSRD project built a 102 core processing cluster with no financial hardware investment and achieved ten times the initial daily throughput requirements with a full time staff of only one engineer. Satellite Imagery Production and Processing Using Apache Hadoop is presented by David V. Hill, Principal Software Architect for USGS LSRD.

  2. A report on the USL NASA/RECON project. Part 1: The development of a transportable, university level, IS and R educational program

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Gallagher, Suzy; Granier, Martin

    1984-01-01

    A project is described which has as its goal the production of a set of system-independent, discipline-independent, transportable college level courses to educate science and engineering students in the use of large-scale information storage and retrieval systems. This project is being conducted with the cooperation and sponsorship of NASA by R and D teams at the University of Southwest Louisiana and Southern University. Chapter 1 is an introduction, providing an overview and a listing of the management phases. Chapter 2 furnishes general information regarding accomplishments in areas under development. Chapter 3 deals with the development of the course materials by presenting a series of diagrams and keys to depict the progress and interrelationships of various tasks and sub-tasks. Chapter 4 presents plans for activities to be conducted to complete and deliver course materials. The final chapter is a summary of project objectives, methods, plans, and accomplishments.

  3. BAO plate archive digitization

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Nikoghosyan, E. H.; Gigoyan, K. S.; Paronyan, G. M.; Abrahamyan, H. V.; Andreasyan, H. R.; Azatyan, N. M.; Kostandyan, G. R.; Khachatryan, K. G.; Vardanyan, A. V.; Gyulzadyan, M. V.; Mikayelyan, G. A.; Farmanyan, S. V.; Knyazyan, A. V.

    Astronomical plate archives created on the basis of numerous observations at many observatories are important part of the astronomical heritage. Byurakan Astrophysical Observatory (BAO) plate archive consists of 37,000 photographic plates and films, obtained at 2.6m telescope, 1m and 0.5m Schmidt telescopes and other smaller ones during 1947-1991. In 2015, we have started a project on the whole BAO Plate Archive digitization, creation of electronic database and its scientific usage. A Science Program Board is created to evaluate the observing material, to investigate new possibilities and to propose new projects based on the combined usage of these observations together with other world databases. The Executing Team consists of 11 astronomers and 2 computer scientists and will use 2 EPSON Perfection V750 Pro scanners for the digitization. The project will run during 3 years in 2015-2017 and the final result will be an electronic database and online interactive sky map to be used for further research projects.

  4. Ruminant methane reduction through livestock development in Tanzania. Final report for US Department of Energy and US Initiative on Joint Implementation--Activities Implemented Jointly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livingston, Roderick

    1999-07-01

    This project was designed to help develop the US Initiative on Joint Implementation activities in Eastern Africa. It has been communicated in meetings with representatives from the Ministry of Environment of Tanzania and the consultant group that developed Tanzania's National Climate Change Action Plan, the Centre for Energy, Environment, Science and Technology, that this project fits very well with the developmental and environmental goals of the Government of Tanzania. The goal of the Activities Implemented Jointly ruminant livestock project is to reduce ruminant methane emissions in Eastern Africa. The project plans a sustainable cattle multiplication unit (CMU) at Mabuki Ranchmore » in the Mwanza Region of Tanzania. This CMU will focus on raising genetically improved animals to be purchased by farmers, developmental organizations, and other CMUs in Tanzania. Through the purchase of these animals farmers will raise their income generation potential and reduce ruminant methane emissions.« less

  5. Final Technical Report for Award # ER64999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metcalf, William W.

    2014-10-08

    This report provides a summary of activities for Award # ER64999, a Genomes to Life Project funded by the Office of Science, Basic Energy Research. The project was entitled "Methanogenic archaea and the global carbon cycle: a systems biology approach to the study of Methanosarcina species". The long-term goal of this multi-investigator project was the creation of integrated, multiscale models that accurately and quantitatively predict the role of Methanosarcina species in the global carbon cycle under dynamic environmental conditions. To achieve these goals we pursed four specific aims: (1) genome sequencing of numerous members of the Order Methanosarcinales, (2) identificationmore » of genomic sources of phenotypic variation through in silico comparative genomics, (3) elucidation of the transcriptional networks of two Methanosarcina species, and (4) development of comprehensive metabolic network models for characterized strains to address the question of how metabolic models scale with genetic distance.« less

  6. Using social media to promote international student partnerships.

    PubMed

    Garrett, Bernard M; Cutting, Roger

    2012-11-01

    This paper describes a project to establish and evaluate online study partnerships, using social networking applications, between final year Canadian nursing students at the University of British Columbia (UBC) and second year undergraduate science education students at the University of Plymouth (UoP) in the UK. The project took place between 2009 and 2010 and evaluated the use of social networking applications with international interdisciplinary partnerships between Canadian and UK students. A multi-method evaluation strategy incorporating questionnaires, online focus groups and web analytics was used to explore the value of social media to promote the exchange of ideas and discussion of scientific philosophy in different contexts, between students working in disciplines with differing philosophical perspectives principally modern/post-modern, quantitative/qualitative, empirical/theoretical. This project resulted in a very successful collaborative partnership between UK and Canadian students. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. The perceptions of pre-service and in-service teachers regarding a project-based STEM approach to teaching science.

    PubMed

    Siew, Nyet Moi; Amir, Nazir; Chong, Chin Lu

    2015-01-01

    Whilst much attention has focused on project-based approaches to teaching Science, Technology, Engineering and Mathematics (STEM) subjects, little has been reported on the views of South-East Asian science teachers on project-based STEM approaches. Such knowledge could provide relevant information for education training institutions on how to influence innovative teaching of STEM subjects in schools. This article reports on a study that investigated the perceptions of 25 pre-service and 21 in-service Malaysian science teachers in adopting an interdisciplinary project-based STEM approach to teaching science. The teachers undertook an eight hour workshop which exposed them to different science-based STEM projects suitable for presenting science content in the Malaysian high school science syllabus. Data on teachers' perceptions were captured through surveys, interviews, open-ended questions and classroom discussion before and at the end of the workshop. Study findings showed that STEM professional development workshops can provide insights into the support required for teachers to adopt innovative, effective, project-based STEM approaches to teaching science in their schools.

  8. Spiral and Project-Based Learning with Peer Assessment in a Computer Science Project Management Course

    ERIC Educational Resources Information Center

    Jaime, Arturo; Blanco, José Miguel; Domínguez, César; Sánchez, Ana; Heras, Jónathan; Usandizaga, Imanol

    2016-01-01

    Different learning methods such as project-based learning, spiral learning and peer assessment have been implemented in science disciplines with different outcomes. This paper presents a proposal for a project management course in the context of a computer science degree. Our proposal combines three well-known methods: project-based learning,…

  9. Development and Validation of a Project Package for Junior Secondary School Basic Science

    ERIC Educational Resources Information Center

    Udofia, Nsikak-Abasi

    2014-01-01

    This was a Research and Developmental study designed to develop and validate projects for Junior Secondary School Basic Science instruction and evaluation. The projects were developed using the project blueprint and sent for validation by experts in science education and measurement and evaluation; using a project validation scale. They were to…

  10. Verbal and social interaction patterns among elementary students during self-guided "I Wonder Projects"

    NASA Astrophysics Data System (ADS)

    Huziak, Tracy Lynn

    National standards for science teaching stress the use of inquiry teaching methods. One example of inquiry teaching is the I Wonder Project, which has been used in the Madison, WI Metropolitan School District for over ten years. The purpose of the I Wonder Project is to promote scientific discourse among elementary students through the publication of their research in a journal, similar in some ways to the scientific discourse within a community of scientists. This research study utilizes the I Wonder Project method to encourage student communication and self-guided project work. Approximately fifteen students ages 6--12 participated in a six-week self-guided inquiry project called I Wonder. Students worked as a cohort to learn science process skills and to build a scientific community. During this time, each student designed and carried out a self-guided inquiry project and wrote an article about their findings, which was presented on the last day of summer camp. A mixed method approach was used conduct this study. Participants were given a pretest and a posttest to determine the changes in scientific process skills as a result of participation in the project. The students were interviewed to determine their ideas about science and how those ideas changed over the time of participation in summer camp. Also the students were observed by the researchers, as well as audio- and video-taped to capture the verbal conversations and debates that take place as a result of discussion of ideas during the program. Students participated in this study as individuals and group members. Teacher and student interactions were noted to follow three main interaction styles: structured, guided and open-ended. These interactions work much like the inquiry levels described in the literature. Students also interacted with each other in three different ways: independently, dependently, and multifunctioning. Some students wished to work alone, while others preferred others to contribute to their work as well. Finally, there were five main types of science talk described by this study based on Gee's (1997) four types of science talk: design and debate, anomaly talk, everyday speculation talk, and explanation talk. What was also noted was an overwhelming amount of prior experience talk. Because students were given free choice in their topics of study, many chose to study topics that they had some interest or prior experience with. This led to a comparison of current findings to those they had already anticipated or expected. This study shows that self-guided inquiry projects require a range of interaction styles between students and also teachers. Many students need differing levels of support in order to be successful. In addition, it is important that students have an opportunity to select a topic of choice so that they have the opportunity to build on their scientific knowledge from their prior experiences.

  11. "Saturday Night Live" Goes to High School: Conducting and Advising a Political Science Fair Project

    ERIC Educational Resources Information Center

    Allen, Meg; Brewer, Paul R.

    2010-01-01

    This article uses a case study to illustrate how science fair projects--which traditionally focus on "hard science" topics--can contribute to political science education. One of the authors, a high school student, conducted an experimental study of politics for her science fair project. The other author, a faculty member, was asked to advise the…

  12. Portsmouth Atmospheric Science School (PASS) Project

    NASA Technical Reports Server (NTRS)

    Coleman, Clarence D.; Hathaway, Roger (Technical Monitor)

    2002-01-01

    The Portsmouth Atmospheric Science School Project (PASS) Project was granted a one-year no cost extension for 2001-2002. In year three of the project, objectives and strategies were modified based on the previous year-end evaluation. The recommendations were incorporated and the program was replicated within most of the remaining elementary schools in Portsmouth, Virginia and continued in the four middle schools. The Portsmouth Atmospheric Science School Project is a partnership, which includes Norfolk State University, Cooperating Hampton Roads Organizations for Minorities in Engineering (CHROME), NASA Langley Research Center, and the City of Portsmouth, Virginia Public Schools. The project seeks to strengthen the knowledge of Portsmouth Public Schools students in the field of atmospheric sciences and enhance teacher awareness of hands on activities in the atmospheric sciences. The project specifically seeks to: 1) increase the interest and participation of elementary and middle school students in science and mathematics; 2) strengthen existing science programs; and 3) facilitate greater achievement in core subjects, which are necessary for math, science, and technical careers. Emphasis was placed on providing training activities, materials and resources for elementary students (grades 3 - 5) and middle school students (grades 6 - 8), and teachers through a CHROME club structure. The first year of the project focused on introducing elementary students to concepts and activities in atmospheric science. Year two of the project built on the first year's activities and utilizes advanced topics and activities appropriate for middle school students. During the third year of the project, in addition to the approaches used in years one and two, emphasis was placed on activities that enhanced the Virginia Standards of Learning (SOL).

  13. "Life in the Universe" Final Event Video Now Available

    NASA Astrophysics Data System (ADS)

    2002-02-01

    ESO Video Clip 01/02 is issued on the web in conjunction with the release of a 20-min documentary video from the Final Event of the "Life in the Universe" programme. This unique event took place in November 2001 at CERN in Geneva, as part of the 2001 European Science and Technology Week, an initiative by the European Commission to raise the public awareness of science in Europe. The "Life in the Universe" programme comprised competitions in 23 European countries to identify the best projects from school students. The projects could be scientific or a piece of art, a theatrical performance, poetry or even a musical performance. The only restriction was that the final work must be based on scientific evidence. Winning teams from each country were invited to a "Final Event" at CERN on 8-11 November, 2001 to present their projects to a panel of International Experts during a special three-day event devoted to understanding the possibility of other life forms existing in our Universe. This Final Event also included a spectacular 90-min webcast from CERN with the highlights of the programme. The video describes the Final Event and the enthusiastic atmosphere when more than 200 young students and teachers from all over Europe met with some of the world's leading scientific experts of the field. The present video clip, with excerpts from the film, is available in four versions: two MPEG files and two streamer-versions of different sizes; the latter require RealPlayer software. Video Clip 01/02 may be freely reproduced. The 20-min video is available on request from ESO, for viewing in VHS and, for broadcasters, in Betacam-SP format. Please contact the ESO EPR Department for more details. Life in the Universe was jointly organised by the European Organisation for Nuclear Research (CERN) , the European Space Agency (ESA) and the European Southern Observatory (ESO) , in co-operation with the European Association for Astronomy Education (EAAE). Other research organisations were associated with the programme, e.g., the European Molecular Biology Laboratory (EMBL) and the European Synchrotron Radiation Facility (ESRF). Detailed information about the "Life in the Universe" programme can be found at the website b>http://www.lifeinuniverse.org and a webcast of this 90-min closing session in one of the large experimental halls at CERN is available on the web via that page. Most of the ESO PR Video Clips at the ESO website provide "animated" illustrations of the ongoing work and events at the European Southern Observatory. The most recent clip was: ESO PR Video Clips 08a-b/01 about The Eagle's EGGs (20 December 2001) . General information is available on the web about ESO videos.

  14. Contemporary Primary Science Curricula in the United Kingdom

    ERIC Educational Resources Information Center

    Henry, John A.

    1976-01-01

    Following a review of the impact of Piaget's theories of cognitive development on science curriculum design, the evolution and development of the Science 5/13 Project, designed to extend the work of Nuffield Junior Science Project, is described. Evaluation studies assessing the aims and objectives of this project are detailed. (BT)

  15. Theme-Based Project Learning: Design and Application of Convergent Science Experiments

    ERIC Educational Resources Information Center

    Chun, Man-Seog; Kang, Kwang Il; Kim, Young H.; Kim, Young Mee

    2015-01-01

    This case study aims to verify the benefits of theme-based project learning for convergent science experiments. The study explores the possibilities of enhancing creative, integrated and collaborative teaching and learning abilities in science-gifted education. A convergent project-based science experiment program of physics, chemistry and biology…

  16. Embracing Open Source for NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Baynes, Katie; Pilone, Dan; Boller, Ryan; Meyer, David; Murphy, Kevin

    2017-01-01

    The overarching purpose of NASAs Earth Science program is to develop a scientific understanding of Earth as a system. Scientific knowledge is most robust and actionable when resulting from transparent, traceable, and reproducible methods. Reproducibility includes open access to the data as well as the software used to arrive at results. Additionally, software that is custom-developed for NASA should be open to the greatest degree possible, to enable re-use across Federal agencies, reduce overall costs to the government, remove barriers to innovation, and promote consistency through the use of uniform standards. Finally, Open Source Software (OSS) practices facilitate collaboration between agencies and the private sector. To best meet these ends, NASAs Earth Science Division promotes the full and open sharing of not only all data, metadata, products, information, documentation, models, images, and research results but also the source code used to generate, manipulate and analyze them. This talk focuses on the challenges to open sourcing NASA developed software within ESD and the growing pains associated with establishing policies running the gamut of tracking issues, properly documenting build processes, engaging the open source community, maintaining internal compliance, and accepting contributions from external sources. This talk also covers the adoption of existing open source technologies and standards to enhance our custom solutions and our contributions back to the community. Finally, we will be introducing the most recent OSS contributions from NASA Earth Science program and promoting these projects for wider community review and adoption.

  17. Cosmic Origins: A Traveling Science Exhibit and Education Program

    NASA Astrophysics Data System (ADS)

    Dusenbery, P. B.; Morrow, C. A.; Harold, J.

    2003-12-01

    The Space Science Institute of Boulder, Colorado, is developing a 3,000 square-foot traveling exhibition, called Cosmic Origins, which will bring origins-related research and discoveries to students and the American public. Cosmic Origins will have three interrelated exhibit areas: Star Formation, Planet Quest, and Search for Life. Exhibit visitors will explore the awesome events surrounding the birth of stars and planets; they will join scientists in the hunt for planets outside our solar system including those that may be in "habitable zones" around other stars; and finally they will be able to learn about the wide range of conditions for life on Earth and how scientists are looking for signs of life beyond Earth. Visitors will also learn about the tools scientists' use, such as space-based and ground-based telescopes, to improve our understanding of the cosmos. Exhibit content will address age-old questions that form the basis of NASA's Origins and Astrobiology programs: Where did we come from? Are we alone? In addition to the exhibit, our project will include workshops for educators and docents at host sites, as well as a public Web site that will use a virtual rendering of exhibit content. The exhibit's size will permit it to visit medium sized museums in underserved regions of the country. It will begin its 3-year tour to 9 host museums and science centers in early 2005. A second 3-year tour is also planned for 2008. The Association of Science-Technology Centers (ASTC) will manage the exhibit's national tour. Current partners in the Cosmic Origins project include ASTC, the Denver Museum of Nature and Science, Lawrence Hall of Science, NASA Astrobiology Institute, NASA missions (e.g. PlanetQuest, SIRTF, and Kepler), New York Hall of Science, the SETI Institute, and the Space Telescope Science Institute. The exhibition is supported by grants from NSF and NASA. This report will focus on the Planet Quest part of the exhibition.

  18. Alien Earths: A Traveling Science Exhibit and Education Program

    NASA Astrophysics Data System (ADS)

    Dusenbery, P. B.; Morrow, C. A.; Harold, J.

    2004-05-01

    Where did we come from? Are we alone? These age-old questions form the basis of NASA's Origins Program, a series of missions spanning the next twenty years that will use a host of space- and ground-based observatories to understand the origin and development of galaxies, stars, planets, and the conditions necessary to support life. The Space Science Institute in Boulder, CO, is developing a 3,000 square-foot traveling exhibition, called Alien Earths, which will bring origins-related research and discoveries to students and the American public. Alien Earths will have four interrelated exhibit areas: Our Place in Space, Star Birth, PlanetQuest, and Search for Life. Exhibit visitors will explore the awesome events surrounding the birth of stars and planets; they will join scientists in the hunt for planets outside our solar system including those that may be in "habitable zones" around other stars; and finally they will be able to learn about the wide range of conditions for life on Earth and how scientists are looking for signs of life beyond Earth. Visitors will also learn about the tools scientists use, such as space-based and ground-based telescopes, to improve our understanding of the cosmos. The exhibit's size will permit it to visit medium sized museums in all regions of the country. It will begin its 3-year tour to 9 host museums and science centers in early 2005 at the Lawrence Hall of Science in Berkeley, California. The Association of Science-Technology Centers (ASTC) will manage the exhibit's national tour. In addition to the exhibit, the project includes workshops for educators and docents at host sites, as well as a public website that will use exhibit content to delve deeper into origins research. Current partners in the Alien Earths project include ASTC, Denver Museum of Nature and Science, Lawrence Hall of Science, NASA Astrobiology Institute, NASA missions (Navigator, SIRTF, and Kepler), the SETI Institute, and the Space Telescope Science Institute. (Supported by grants from NSF and NASA)

  19. Collaboration Among Educators: An Essential Step in Unifying STEM Teaching Resources.

    NASA Astrophysics Data System (ADS)

    McIver, H.; Ellins, K. K.; Bohls-Graham, C. E.; O'dell, D.; Sergent, C.; Jacobs, B. E.; Stocks, E.; Serpa, L. F.; Riggs, E. M.

    2015-12-01

    Increased requirement for Science, Engineering, Technology, and Math (STEM) literacy among US secondary school students has enhanced the need for high-quality teaching resources in the modern STEM classroom. Many relevant resources exist online that could be used to address this issue, but too often these resources are spread throughout the Internet, and have not necessarily been audited for content, alignment with state and national science standards, or current functionality. Because STEM subjects are increasingly difficult to teach, we set out to design a localized platform of year-long teaching 'blueprints' comprising units that cover a range of Earth science topics, researched and compiled by education professionals. The Diversity and Innovation for Geosciences (DIG) Texas Instructional Blueprint project has united teachers from diverse science backgrounds who act as Education Interns and work alongside geoscientists and curriculum experts at the University of Texas Jackson School of Geosciences, Texas A&M University and the University of Texas El Paso. Our DIG collective has employed a cross-disciplinary approach to vetting resources while compiling them in useful, logical sequences for classroom instruction. The DIG team has aligned each blueprint with the Texas Essential Skills and Knowledge (TEKS) standards for Earth and Space Science, the Earth Science Literacy Principles, and the Next Generation Science Standards. Emphasis for the summer 2015 project group was placed upon (1) alignment of the units with these three sets of science standards to allow for use within disparate classroom settings, (2) creating teacher aides including scaffolding notes for practical unit application, and potential real and virtual field trips for unit illustration, and (3) final vetting ensuring units follow a narrative that carries learners from basic principles to a full concept understanding. Here, we present our progress and the essential workflow that has contributed to significant advancement in our goal of providing a unified STEM teaching resource.

  20. The Role of Project Science in the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Weisskopf, Martin C.

    2006-01-01

    The Chandra X-Ray Observatory, one of NASA's Great Observatories, has an outstanding record of scientific and technical success. This success results from the efforts of a team comprising NASA, its contractors, the Smithsonian Astrophysical Observatory, the instrument groups, and other elements of the scientific community, including thousands of scientists who utilize this powerful facility for astrophysical research. We discuss the role of NASA Project Science in the formulation, development, calibration, and operation of the Chandra X-ray Observatory. In addition to representing the scientific community within the Project, Project Science performed what we term "science systems engineering". This activity encompasses translation of science requirements into technical requirements and assessment of the scientific impact of programmatic and technical trades. We briefly describe several examples of science systems engineering conducted by Chandra Project Science.

  1. Reaching for the Horizon: Enabling 21st Century Antarctic Science

    NASA Astrophysics Data System (ADS)

    Rogan-Finnemore, M.; Kennicutt, M. C., II; Kim, Y.

    2015-12-01

    The Council of Managers of National Antarctic Programs' (COMNAP) Antarctic Roadmap Challenges(ARC) project translated the 80 highest priority Antarctic and Southern Ocean scientific questionsidentified by the community via the SCAR Antarctic Science Horizon Scan into the highest prioritytechnological, access, infrastructure and logistics needs to enable the necessary research to answer thequestions. A workshop assembled expert and experienced Antarctic scientists and National AntarcticProgram operators from around the globe to discern the highest priority technological needs includingthe current status of development and availability, where the technologies will be utilized in the Antarctic area, at what temporal scales and frequencies the technologies will be employed,and how broadly applicable the technologies are for answering the highest priority scientific questions.Secondly the logistics, access, and infrastructure requirements were defined that are necessary todeliver the science in terms of feasibility including cost and benefit as determined by expected scientific return on investment. Finally, based on consideration of the science objectives and the mix oftechnologies implications for configuring National Antarctic Program logistics capabilities andinfrastructure architecture over the next 20 years were determined. In particular those elements thatwere either of a complexity, requiring long term investments to achieve and/or having an associated cost that realistically can only (or best) be achieved by international coordination, planning and partnerships were identified. Major trends (changes) in logistics, access, and infrastructure requirements were identified that allow for long-term strategic alignment of international capabilities, resources and capacity. The outcomes of this project will be reported.

  2. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiffen, F. W.; Katoh, Yutai; Melton, Stephanie G.

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the Oak Ridge National Laboratory (ORNL) fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing Department of Energy (DOE) Office of Science fusion energy program while developing materials for fusionmore » power systems. In doing so the program continues to be integrated both with the larger United States (US) and international fusion materials communities, and with the international fusion design and technology communities.This document provides a summary of Fiscal Year (FY) 2015 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for Magnetic Fusion Energy (AT-60-20-10-0) carried out by ORNL. The organization of this report is mainly by material type, with sections on specific technical activities. Four projects selected in the Funding Opportunity Announcement (FOA) solicitation of late 2011 and funded in FY2012-FY2014 are identified by “FOA” in the titles. This report includes the final funded work of these projects, although ORNL plans to continue some of this work within the base program.« less

  3. A needs assessment for climate change education in the Great Lakes region

    NASA Astrophysics Data System (ADS)

    Rutherford, S.; Schneider, L. B.; Walters, H.

    2011-12-01

    The National Science Foundation funded Great Lakes Climate Change Science and Education Systemic Network project is implementing a two year planning effort to create innovative education programs to benefit the public, formal and informal educators, scientists, and journalists in the region. The current partners include Eastern Michigan University, NOAA's Great Lakes Environmental Research Lab, University of Michigan, Michigan State University, Knight Center for Environmental Journalism, Ashland University, Ann Arbor Hands-On Museum, and the College of Exploration. To create a network we are planning to bring together different stakeholders to write two white papers, one from the scientists' perspective and the other from the educators'(both formal and informal) perspective. The current partners' key personnel have produced a list of possible people/institutions to include in a stakeholder survey. Some of the key personnel developed their databases from scratch. Some used listserves, and others tried a snowball email. To identify the best strategy that will inform these various stakeholders and the public regarding the science of climate change in the Great Lakes Region, a survey was developed for each of the different stakeholders. The survey is divided into three parts: 1) questions which convey some understanding of climate science and climate change 2) demographic questions, and finally 3) questions that pertain to the professional concerns or perspectives of the various stakeholders. This survey is being used to provide the project team with a "needs assessment" from the interested members of those stakeholders. The results from this process will be summarized.

  4. An Evaluation of the Science Education Component of the Cross River State Science and Technical Education Project

    ERIC Educational Resources Information Center

    Ekuri, Emmanuel Etta

    2012-01-01

    The Cross River State Science and Technical Education Project was introduced in 1992 by edict number 9 of 20 December 1991, "Cross River State Science and Technical Education Board Edit, 20 December, 1991", with the aim of improving the quality of science teaching and learning in the state. As the success of the project depends…

  5. Electricity and Vital Force: Discussing the Nature of Science Through a Historical Narrative

    NASA Astrophysics Data System (ADS)

    Schiffer, Hermann; Guerra, Andreia

    2015-05-01

    Seeking a historical-philosophical approach to science teaching, narrative texts have been used as pedagogical tools to improve the learning experience of students. A review of the literature of different types of narrative texts and their different rates of effectiveness in science education is presented. This study was developed using the so-called Historical Narrative as a tool to introduce science content from a historical-philosophical approach, aiming to discuss science as a human construction. This project was carried out in a 9th grade Physics class in K-12 school, in Rio de Janeiro, Brazil. The steps involved in constructing a Historical Narrative based on the controversy over animal electrical fluid between Luigi Galvani and Alessandro Volta is reported herein. Finally, qualitative research results of the activities inspired by this Historical Narrative are presented with the purpose of answering the research question: to what extent do Historical Narratives support and enhance discussions about the Nature of Science (NOS), through teaching the scientific content in a historical-philosophical approach with 9th grade students? The results indicate that Historical Narrative, based on historical episodes, is a good "door opener" to teach scientific content in a historical-philosophical approach, introducing discussions about the Nature of Science without neglecting the scientific content or simplifying the discussions about the NOS.

  6. Navigating the science-policy spectrum: Opportunities to work on policies related to your research

    NASA Astrophysics Data System (ADS)

    Licker, R.; Ekwurzel, B.; Goldman, G. T.; DeLonge, M. S.

    2017-12-01

    Many scientists conduct research with direct policy relevance, whether it be producing sea-level projections that are taken-up by local decision-makers, or developing new agricultural technologies. All scientists are affected by policies made by their respective local, regional, and federal governments. For example, budgets affect the grant resources available to conduct research and policies on visas influence the accessibility of new positions for foreign scientists. As a result, many scientists would like to engage with the policy domain, and either bring their science to bear on new policies that are in the works (science-for-policy) or inform policies on the scientific research enterprise (policy-for-science). Some scientists prefer to engage and be neutral to the policy outcome, serving primarily as an information resource. Many may choose to also advocate for a particular outcome based on their expertise and experience. Research shows that policy decisions benefit greatly from the input of scientific experts. We explore the spectrum between informing policies in a "non-prescriptive" manner to working on policies in an advocacy space. We highlight tips for successful engagement along this spectrum. Finally, we review current science-for-policy and policy-for-science issues of relevance to the geophysical sciences.

  7. WFIRST Project Science Activities

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2012-01-01

    The WFIRST Project is a joint effort between GSFC and JPL. The project scientists and engineers are working with the community Science Definition Team to define the requirements and initial design of the mission. The objective is to design an observatory that meets the WFIRST science goals of the Astr02010 Decadal Survey for minimum cost. This talk will be a report of recent project activities including requirements flowdown, detector array development, science simulations, mission costing and science outreach. Details of the interim mission design relevant to scientific capabilities will be presented.

  8. Collaborative Online Projects for English Language Learners in Science

    ERIC Educational Resources Information Center

    Terrazas-Arellanes, Fatima E.; Knox, Carolyn; Rivas, Carmen

    2013-01-01

    This paper summarizes how collaborative online projects (COPs) are used to facilitate science content-area learning for English Learners of Hispanic origin. This is a Mexico-USA partnership project funded by the National Science Foundation. A COP is a 10-week thematic science unit, completely online, and bilingual (Spanish and English) designed to…

  9. The Business of Co-Production: Assessing Efforts to Bridge Science and Decision-Making for Adaptation in California

    NASA Astrophysics Data System (ADS)

    Webber, S.; MacDonald, G. M.

    2016-12-01

    The last decades have seen scholars argue for a greater integration of science and decision-making in order to more effectively respond to climate change. It has been suggested that overcoming the gap between science, on the one hand, and policy-making and management, on the other, requires building bridges through methods of co-production, creating actionable science, or through boundary organizations. In this paper, we review attempts at co-production for policy-making and management in the context of climate change adaptation in California. Building on field research, including numerous interviews conducted with scientists and decision-makers who are co-producers of adaptation projects, we make three arguments. First, we show that an emphasis on co-production and science-informed climate change adaptation decision-making has bolstered a contract-oriented, and decentralized network-based model of producing climate science. Second, reviewing successes and failures in co-production - as reported in interviews - indicates that it is principally in cases of neatly defined, and spatially and temporarily narrow decision-making contexts, and with highly motivated decision-makers, that climate science is used. Finally, we suggest that the ideas of co-production and actionable science may have increased the institutional and organizational burden at the science-decision interface, lengthening the boundary-organization-chain rather than necessarily facilitating adaptive policy-making and management.

  10. Living in a material world: Development and evaluation of a new materials science course for non-science majors

    NASA Astrophysics Data System (ADS)

    Brust, Gregory John

    This study was designed to discover if there is a difference in the scientific attitudes and process skills between a group of students who were instructed with Living in a Material World and groups of students in non-science majors sections of introductory biology, chemistry, and geology courses at the University of Southern Mississippi (USM). Each of the four courses utilized different instructional techniques. Students' scientific attitudes were measured with the Scientific Attitudes Inventory (SAI II) and their knowledge of science process skills were measured with the Test of Integrated Process Skills (TIPS II). The Group Assessment of Logical Thinking (GALT) was also administered to determine if the cognitive levels of students are comparable. A series of four questionnaires called Qualitative Course Assessments (QCA) were also administered to students in the experimental course to evaluate subtle changes in their understanding of the nature and processes of science and attitudes towards science. Student responses to the QCA questionnaires were triangulated with results of the qualitative instruments, and students' work on the final project. Results of the GALT found a significant difference in the cognitive levels of students in the experimental course (PSC 190) and in one of the control group, the introductory biology (BSC 107). Results of the SAI II and the TIPS II found no significant difference between the experimental group and the control groups. Qualitative analyses of students' responses to selected questions from the TIPS II, selected items on the SAI II, QCA questionnaires, and Materials that Fly project reports demonstrate an improvement in the understanding of the nature and processes of science and a change to positive attitude toward science of students in the experimental group. Students indicated that hands-on, inquiry-based labs and performance assessment were the most effective methods for their learning. These results indicate that science courses for non-science majors should focus on connections to students' daily lives while utilizing an STS curriculum and inquiry-based activities. Future research could focus on long term effects of this type of course as well as the effectiveness of these teaching methods for science majors.

  11. Laboratory directed research and development program FY 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.

  12. Final Report 2007: DOE-FG02-87ER60561

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilbourn, Michael R

    2007-04-26

    This project involved a multi-faceted approach to the improvement of techniques used in Positron Emission Tomography (PET), from radiochemistry to image processing and data analysis. New methods for radiochemical syntheses were examined, new radiochemicals prepared for evaluation and eventual use in human PET studies, and new pre-clinical methods examined for validation of biochemical parameters in animal studies. The value of small animal PET imaging in measuring small changes of in vivo biochemistry was examined and directly compared to traditional tissue sampling techniques. In human imaging studies, the ability to perform single experimental sessions utilizing two overlapping injections of radiopharmaceuticals wasmore » tested, and it was shown that valid biochemical measures for both radiotracers can be obtained through careful pharmacokinetic modeling of the PET emission data. Finally, improvements in reconstruction algorithms for PET data from small animal PET scanners was realized and these have been implemented in commercial releases. Together, the project represented an integrated effort to improve and extend all basic science aspects of PET imaging at both the animal and human level.« less

  13. AIMES Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, Daniel S; Jha, Shantenu; Weissman, Jon

    2017-01-31

    This is the final technical report for the AIMES project. Many important advances in science and engineering are due to large-scale distributed computing. Notwithstanding this reliance, we are still learning how to design and deploy large-scale production Distributed Computing Infrastructures (DCI). This is evidenced by missing design principles for DCI, and an absence of generally acceptable and usable distributed computing abstractions. The AIMES project was conceived against this backdrop, following on the heels of a comprehensive survey of scientific distributed applications. AIMES laid the foundations to address the tripartite challenge of dynamic resource management, integrating information, and portable and interoperablemore » distributed applications. Four abstractions were defined and implemented: skeleton, resource bundle, pilot, and execution strategy. The four abstractions were implemented into software modules and then aggregated into the AIMES middleware. This middleware successfully integrates information across the application layer (skeletons) and resource layer (Bundles), derives a suitable execution strategy for the given skeleton and enacts its execution by means of pilots on one or more resources, depending on the application requirements, and resource availabilities and capabilities.« less

  14. AIMES Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weissman, Jon; Katz, Dan; Jha, Shantenu

    2017-01-31

    This is the final technical report for the AIMES project. Many important advances in science and engineering are due to large scale distributed computing. Notwithstanding this reliance, we are still learning how to design and deploy large-scale production Distributed Computing Infrastructures (DCI). This is evidenced by missing design principles for DCI, and an absence of generally acceptable and usable distributed computing abstractions. The AIMES project was conceived against this backdrop, following on the heels of a comprehensive survey of scientific distributed applications. AIMES laid the foundations to address the tripartite challenge of dynamic resource management, integrating information, and portable andmore » interoperable distributed applications. Four abstractions were defined and implemented: skeleton, resource bundle, pilot, and execution strategy. The four abstractions were implemented into software modules and then aggregated into the AIMES middleware. This middleware successfully integrates information across the application layer (skeletons) and resource layer (Bundles), derives a suitable execution strategy for the given skeleton and enacts its execution by means of pilots on one or more resources, depending on the application requirements, and resource availabilities and capabilities.« less

  15. Pupils' Projects from Zambia. Third World Science. A Collection of Third Form Science Projects from Lubushi Seminary, Kasama, Zambia as Written and Drawn by the Pupils Themselves.

    ERIC Educational Resources Information Center

    University Coll. of North Wales, Bangor (United Kingdom). School of Education.

    The Third World Science Project (TWSP) is designed to add a multicultural element to existing science syllabi (for students aged 11-16) in the United Kingdom. The project seeks to develop an appreciation of the: boundless facination of the natural world; knowledge, skills, and expertise possessed by men/women everywhere; application of knowledge…

  16. Blogging the Stories of Citizen Science to Inspire Participation, Build Community, and Increase Public Understanding of Science

    NASA Astrophysics Data System (ADS)

    Gardiner, L. S.; Cavalier, D.; Ohab, J.; Taylor, L.

    2011-12-01

    Sharing citizen science projects and the experiences that people have with science through blogs provides avenues to foster public understanding of science and showcase ways that people can get involved. Blogs, combined with other social media such as Twitter and Facebook, make science social - adding a human element to the process of scientific discovery. We have been sharing stories of citizen science through two blogs. Intended for a general public audience. The Science for Citizens blog (http://scienceforcitizens.net/blog/) was started in 2010 and links blog posts to a growing network of citizen science projects. Citizen Science Buzz (http://www.talkingscience.org/category/citizen-science-buzz/) was started in 2011 on the TalkingScience blog network, a project of the Science Friday Initiative. Both blogs aim to increase the exposure of citizen science projects, inspire people to do citizen science, and connect people with projects that interest them. The timeliness of blogs also provides a good platform for sharing information about one-time citizen science events and short-lived projects. Utilizing Facebook and Twitter increases traffic to blog posts about citizen science events in a timely manner and can help build community around events. Additionally, the timeliness of blogs provides the opportunity to connect citizen science and current events, helping to form geoscience teachable moments out of recent news. For example, highlighting citizen scientists near Birmingham, Alabama who collect weather data after the April 2011 tornado outbreak ravaged that area offers a positive note on how people are volunteering their time to help us all better understand the planet despite a catastrophic event.

  17. The effects of topic choice in project-based instruction on undergraduate physical science students' interest, ownership, and motivation

    NASA Astrophysics Data System (ADS)

    Milner-Bolotin, Marina

    2001-07-01

    Motivating nonscience majors in science and mathematics studies became one of the most interesting and important challenges in contemporary science and mathematics education. Therefore, designing and studying a learning environment, which enhances students' motivation, is an important task. This experimental study sought to explore the implications of student autonomy in topic choice in a project-based Physical Science Course for nonscience majors' on students' motivational orientation. It also suggested and tested a model explaining motivational outcomes of project-based learning environment through increased student ownership of science projects. A project, How Things Work, was designed and implemented in this study. The focus of the project was application of physical science concepts learned in the classroom to everyday life situations. Participants of the study (N = 59) were students enrolled in three selected sections of a Physical Science Course, designed to fulfill science requirements for nonscience majors. These sections were taught by the same instructor over a period of an entire 16-week semester at a large public research university. The study focused on four main variables: student autonomy in choosing a project topic, their motivational orientation, student ownership of the project, and the interest in the project topic. Achievement Goal Orientation theory became the theoretical framework for the study. Student motivational orientation, defined as mastery or performance goal orientation, was measured by an Achievement Goal Orientation Questionnaire. Student ownership was measured using an original instrument, Ownership Measurement Questionnaire, designed and tested by the researchers. Repeated measures yoked design, ANOVA, ANCOVA, and multivariate regression analysis were implemented in the study. Qualitative analysis was used to complement and verify quantitative results. It has been found that student autonomy in the project choice did not make a significant impact on their motivational orientation, while their initial interest in the project topic did. The latter was found to be related to students' ownership of the project, which was found to lead to improved mastery goal orientation. These findings indicate that incorporating project-based learning in science teaching may lead to increased student mastery goal orientation, and may result in improved science learning.

  18. Pathomics: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turteltaub, K W; Ascher, M; Langlois, R

    Pathomics is a research project to explore the feasibility for developing biosignatures for early infectious disease detection in humans, particularly those that represent a threat from bioterrorism. Our goal is to use a science-based approach to better understand the underlying molecular basis of disease and to find sensitive, robust, and specific combinations of biological molecules (biosignatures) in the host that will indicate the presence of developing infection prior to overt symptoms (pre-syndromic). The ultimate goal is develop a national surveillance system for monitoring for the release and managing the consequences of a biothreat agent or an emerging disease. Developing themore » science for a more comprehensive understanding of the molecular basis of infectious disease and the development of biosignature-based diagnostics could help detect both emerging and engineered treats to humans.« less

  19. ALMA specifications and results: report at mid-cycle 3

    NASA Astrophysics Data System (ADS)

    Dent, W. R. F.

    2016-07-01

    ALMA is now nearing the end of its third cycle of operations, and is transitioning from `early science' to regular PI-driven observing. The array has been operated over the complete range of available baseline lengths, from <10m with the ACA out to the maximum of 16km in the long-baseline configuration. Typically 40 12m-diameter antennas are now used at any one time. In this paper, we summarise the advertised capabilities and how they have evolved in the first 5 years, the proposal pressure and `hot spots', and describe some of the issues with the real measured system performance. We also outline the observing statistics, project completion rates, and papers from ALMA. Finally we highlight some of the new transformational science coming from this facility.

  20. Plasma diagnostics package. Volume 2: Spacelab 2 section. Part B: Thesis projects

    NASA Technical Reports Server (NTRS)

    Pickett, Jolene S. (Compiler); Frank, L. A. (Compiler); Kurth, W. S. (Compiler)

    1988-01-01

    This volume (2), which consists of two parts (A and B), of the Plasma Diagnostics Package (PDP) Final Science Report contains a summary of all of the data reduction and scientific analyses which were performed using PDP data obtained on STS-51F as a part of the Spacelab 2 (SL-2) payload. This work was performed during the period of launch, July 29, 1985, through June 30, 1988. During this period the primary data reduction effort consisted of processing summary plots of the data received by 12 of the 14 instruments located on the PDP and submitting these data to the National Space Science Data Center (NSSDC). Three Master's and three Ph.D. theses were written using PDP instrumentation data. These theses are listed in Volume 2, Part B.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kervin, Karina E.; Cook, Robert B.; Michener, William K.

    Conventional wisdom makes the suggestion that there are benefits to the creation of shared repositories of scientific data. Funding agencies require that the data from sponsored projects be shared publicly, but individual researchers often see little personal benefit to offset the work of creating easily sharable data. These conflicting forces have led to the emergence of a new role to support researchers: data managers. This paper identifies key differences between the socio-technical context of data managers and other "human infrastructure" roles articulated previously in Computer Supported Cooperative Work (CSCW) literature and summarizes the challenges that data managers face when acceptingmore » data for archival and reuse. Finally, while data managers' work is critical for advancing science and science policy, their work is often invisible and under-appreciated since it takes place behind the scenes.« less

  2. Evaluation of Project Symbiosis: An Interdisciplinary Science Education Project.

    ERIC Educational Resources Information Center

    Altschuld, James W.

    1993-01-01

    The goal of this report is to provide a summary of the evaluation of Project Symbiosis which focused on enhancing the teaching of science principles in high school agriculture courses. The project initially involved 15 teams of science and agriculture teachers and was characterized by an extensive evaluation component consisting of six formal…

  3. Information Content in Radio Waves: Student Investigations in Radio Science

    NASA Astrophysics Data System (ADS)

    Jacobs, K.; Scaduto, T.

    2013-12-01

    We describe an inquiry-based instructional unit on information content in radio waves, created in the summer of 2013 as part of a MIT Haystack Observatory (Westford, MA) NSF Research Experiences for Teachers (RET) program. This topic is current and highly relevant, addressing science and technical aspects from radio astronomy, geodesy, and atmospheric research areas as well as Next Generation Science Standards (NGSS). Projects and activities range from simple classroom demonstrations and group investigations, to long term research projects incorporating data acquisition from both student-built instrumentation as well as online databases. Each of the core lessons is applied to one of the primary research centers at Haystack through an inquiry project that builds on previously developed units through the MIT Haystack RET program. In radio astronomy, students investigate the application of a simple and inexpensive software defined radio chip (RTL-SDR) for use in systems implementing a small and very small radio telescope (SRT and VSRT). Both of these systems allow students to explore fundamental principles of radio waves and interferometry as applied to radio astronomy. In ionospheric research, students track solar storms from the initial coronal mass ejection (using Solar Dynamics Observatory images) to the resulting variability in total electron density concentrations using data from the community standard Madrigal distributed database system maintained by MIT Haystack. Finally, students get to explore very long-baseline interferometry as it is used in geodetic studies by measuring crustal plate displacements over time. Alignment to NextGen standards is provided for each lesson and activity with emphasis on HS-PS4 'Waves and Their Applications in Technologies for Information Transfer'.

  4. Promoting Learning by Inquiry Among Undergraduates in Soil Sciences: Scaffolding From Project-based Courses to Student-Staff Research Grants by the National Research Agency in Oman

    NASA Astrophysics Data System (ADS)

    Al-Ismaily, Said; Kacimov, Anvar; Al-Maktoumi, Ali

    2016-04-01

    Three strategies in a soil science undergraduate programme with inquiry-based learning (IBL) principles at Sultan Qaboos University, Oman, are presented. The first strategy scaffolds courses into three phases: with direct instructional guidance, structured IBL, and finally, guided to open IBL. The second strategy involves extra-curricular activities of undergraduates, viz. conducting workshops on soils for pupils in grades 7-9 with their teachers. The third strategy promotes the teaching-research nexus through collaboration between the undergraduates and faculty within a student-supporting, government-funded programme through 1-year long research grants of up to 5,500 US/project. The efficiency of the strategies was evaluated by students' evaluations of courses and instructors and questionnaire-based surveys. Statistics of students' responses in teaching evaluations of IBL courses showed a significantly higher level of satisfaction compared with regular courses taught in the department and college. In surveys of other constituencies of the program, viz. the secondary schools, more than 90% of respondents "agreed" or "strongly agreed" that they had learned new information/secrets about soils. The indicators of success in the third strategy are: winning a highly competitive grant and, moreover, earning an even more competitive annual national award for the best executed research project. The two top graduates of the IBL soil programme progressed into the MSc programme with the university and national scholarships. Key words: inquiry based learning, soil science undergraduate program, scaffold of courses, outreach activities, teaching-research nexus, evaluation of program's efficiency

  5. The diversity and evolution of ecological and environmental citizen science.

    PubMed

    Pocock, Michael J O; Tweddle, John C; Savage, Joanna; Robinson, Lucy D; Roy, Helen E

    2017-01-01

    Citizen science-the involvement of volunteers in data collection, analysis and interpretation-simultaneously supports research and public engagement with science, and its profile is rapidly rising. Citizen science represents a diverse range of approaches, but until now this diversity has not been quantitatively explored. We conducted a systematic internet search and discovered 509 environmental and ecological citizen science projects. We scored each project for 32 attributes based on publicly obtainable information and used multiple factor analysis to summarise this variation to assess citizen science approaches. We found that projects varied according to their methodological approach from 'mass participation' (e.g. easy participation by anyone anywhere) to 'systematic monitoring' (e.g. trained volunteers repeatedly sampling at specific locations). They also varied in complexity from approaches that are 'simple' to those that are 'elaborate' (e.g. provide lots of support to gather rich, detailed datasets). There was a separate cluster of entirely computer-based projects but, in general, we found that the range of citizen science projects in ecology and the environment showed continuous variation and cannot be neatly categorised into distinct types of activity. While the diversity of projects begun in each time period (pre 1990, 1990-99, 2000-09 and 2010-13) has not increased, we found that projects tended to have become increasingly different from each other as time progressed (possibly due to changing opportunities, including technological innovation). Most projects were still active so consequently we found that the overall diversity of active projects (available for participation) increased as time progressed. Overall, understanding the landscape of citizen science in ecology and the environment (and its change over time) is valuable because it informs the comparative evaluation of the 'success' of different citizen science approaches. Comparative evaluation provides an evidence-base to inform the future development of citizen science activities.

  6. Competency-Based Transfer Pilot Project--Final Report. Executive Summary [and] Competency-Based Transfer Pilot Project: Final Report on House Bill 1909

    ERIC Educational Resources Information Center

    Washington Higher Education Coordinating Board, 2006

    2006-01-01

    This publication contains the following: (1) Competency-Based Transfer Pilot Project--Final Report. Executive Summary (January 2006); and (2) Competency-Based Transfer Pilot Project: Final Report on House Bill 1909 (January 2005). In 2003, the legislature and governor enacted House Bill 1909 to create a pilot project on competency-based transfer…

  7. 5 CFR 470.311 - Final project approval.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration Projects § 470.311 Final project approval. (a) The Office of Personnel Management will consider all timely...) The Office of Personnel Management shall provide a copy of the final version of the project plan to...

  8. Project ALERT: Forging New Partnerships to Improve Earth System Science Education for Pre-Service and In-Service Teachers

    NASA Astrophysics Data System (ADS)

    Metzger, E. P.; Ambos, E. L.; Ng, E. W.; Skiles, J.; Simila, G.; Garfield, N.

    2002-05-01

    Project ALERT (Augmented Learning Environment and Renewable Teaching) was founded in 1998, with funding from NASA and the California State University (CSU), to improve earth system science education for pre-service teachers. Project ALERT has formed linkages between ten campuses of the CSU, which prepares about 60 percent of California's teachers, and two NASA centers, Ames Research Center and the Jet Propulsion Laboratory. ALERT has also fostered alliances between earth science and science education faculty. The combined expertise of Project ALERT's diverse partners has led to a wide array of activities and products, including: 1) incorporation in university classrooms of NASA-developed imagery, data, and educational resources; 2) creation and/or enhancement of several courses that bring earth systems science to pre-service teachers; 3) fellowships for CSU faculty to participate in collaborative research and education projects at the NASA Centers; 4) development of teaching modules on such varied topics as volcanoes, landslides, and paleoclimate; and 5) a central web site that highlights resources for teaching introductory Earth system science. An outgrowth of Project ALERT is the increased interest on the part of CSU earth scientists in education issues. This has catalyzed their participation in other projects, including NASA's Project NOVA, Earth System Science Education Alliance, and Sun-Earth Connection Education Forum, the Digital Library for Earth System Science Education, and the California Science Project. Project ALERT has also expanded to provide professional development opportunities for in-service teachers, as exemplified by its support of the Bay Area Earth Science Institute (BAESI) at San Jose State University. Each year, BAESI offers 10-15 full-day workshops that supply teachers and teachers-to-be with a blend of science concepts and classroom activities, free instructional materials, and the opportunity to earn inexpensive university credit. These workshops have been enriched by the incorporation of earth and space science information and curricular materials from NASA. In addition, visits to Ames Research Center have given BAESI participants an opportunity to explore the Educator Resource Center, learn about NASA's programs for teachers and students, and experience presentations by NASA scientists engaged in cutting edge research about the earth system. Project ALERT demonstrates the power of a state-based partnership that unites scientists and educators with diverse perspectives and strengths in a synergistic effort to improve science education.

  9. An innovative, multidisciplinary educational program in interactive information storage and retrieval. Presentation visuals. M.S. Thesis Final Report, 1 Jul. 1985 - 31 Dec. 1987

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Gallagher, Mary C.

    1985-01-01

    This Working Paper Series entry represents a collection of presentation visuals associated with the companion report entitled An Innovative, Multidisciplinary Educational Program in Interactive Information Storage and Retrieval, USL/DBMS NASA/RECON Working Paper Series report number DBMS.NASA/RECON-12. The project objectives are to develop a set of transportable, hands-on, data base management courses for science and engineering students to facilitate their utilization of information storage and retrieval programs.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, Bernadette M.; Collis, Samuel Scott; Ceballos, Deanna Rose

    This report summarizes the activities of the Computer Science Research Institute (CSRI) at Sandia National Laboratories during the period January 1, 2005 to December 31, 2005. During this period, the CSRI hosted 182 visitors representing 83 universities, companies and laboratories. Of these, 60 were summer students or faculty. The CSRI partially sponsored 2 workshops and also organized and was the primary host for 3 workshops. These 3 CSRI sponsored workshops had 105 participants, 78 from universities, companies and laboratories, and 27 from Sandia. Finally, the CSRI sponsored 12 long-term collaborative research projects and 3 Sabbaticals.

  11. Demonstration and Validation of Reactive Vitreous Coatings to Prevent Corrosion of Steel Fixtures Attached to Masonry Walls

    DTIC Science & Technology

    2016-12-01

    blend of a hydraulically reactive silicate cement with a glass enameling frit that is fused to steel . Research has shown that when Portland cement is...Silicate Coatings for Protecting and Bonding Reinforcing Steel in Cement -Based Composites,” presented at 26th Army Science Conference, Orlando, FL...Prevent Corrosion of Steel Fixtures Attached to Masonry Walls Final Report on Project F10-AR12 Co ns tr uc tio n En gi ne er in g R es ea rc h La

  12. The global monopole spacetime and its topological charge

    NASA Astrophysics Data System (ADS)

    Tan, Hongwei; Yang, Jinbo; Zhang, Jingyi; He, Tangmei

    2018-03-01

    We show that the global monopole spacetime is one of the exact solutions of the Einstein equations by treating the matter field as a non-linear sigma model, without the weak field approximation applied in the original derivation by Barriola and Vilenkin. Furthermore, we find the physical origin of the topological charge in the global monopole spacetime. Finally, we generalize the proposal which generates spacetime from thermodynamical laws to the case of spacetime with global monopole charge. Project supported by the National Natural Science Foundation of China (Grant Nos. 11273009 and 11303006).

  13. STENCIL: Science Teaching European Network for Creativity and Innovation in Learning

    NASA Astrophysics Data System (ADS)

    Cattadori, M.; Magrefi, F.

    2013-12-01

    STENCIL is an european educational project funded with support of the European Commission within the framework of LLP7 (Lifelong Learning Programme) for a period of 3 years (2011 - 2013). STENCIL includes 21 members from 9 European countries (Bulgaria, Germany, Greece, France, Italy, Malta, Portugal, Slovenia, Turkey.) working together to contribute to the general objective of improving science teaching, by promoting innovative methodologies and creative solutions. Among the innovative methods adept a particolar interest is a joint partnership between a wide spectrum of type of institutions such as schools, school authorities, research centres, universities, science museums, and other organizations, representing differing perspectives on science education. STENCIL offers to practitioners in science education from all over Europe, a platform; the web portal - www.stencil-science.eu - that provides high visibility to schools and institutions involved in Comenius and other similar European funded projects in science education. STENCIL takes advantage of the positive results achieved by the former European projects STELLA - Science Teaching in a Lifelong Learning Approach (2007 - 2009) and GRID - Growing interest in the development of teaching science (2004-2006). The specific objectives of the project are : 1) to identify and promote innovative practices in science teaching through the publication of Annual Reports on Science Education; 2) to bring together science education practitioners to share different experiences and learn from each other through the organisation of periodical study visits and workshops; 3) to disseminate materials and outcomes coming from previous EU funded projects and from isolated science education initiatives through the STENCIL web portal, as well as through international conferences and national events. This contribution aims at explaining the main features of the project together with the achieved results during the project's 3 year lifetime-span.

  14. The Communication in Science Inquiry Project (CISIP): A Project to Enhance Scientific Literacy through the Creation of Science Classroom Discourse Communities

    ERIC Educational Resources Information Center

    Baker, Dale R.; Lewis, Elizabeth B.; Purzer, Senay; Watts, Nievita Bueno; Perkins, Gita; Uysal, Sibel; Wong, Sissy; Beard, Rachelle; Lang, Michael

    2009-01-01

    This study reports on the context and impact of the Communication in Science Inquiry Project (CISIP) professional development to promote teachers' and students' scientific literacy through the creation of science classroom discourse communities. The theoretical underpinnings of the professional development model are presented and key professional…

  15. The Impact of Project 2061 on Science Education in Northeastern Louisiana Classrooms.

    ERIC Educational Resources Information Center

    Webb, Paula Bauer; Pugh, Ava F.

    Project 2061, a broad-based science reform movement, was launched by the American Association for the Advancement of Science, the Carnegie Corporation of New York, and the Andrew W. Mellon Foundation to define the fundamental science and mathematics American students should know. A second phase of Project 2061 translated the defined learning goals…

  16. Seeing a World in a Grain of Sand: Science Teaching in Multicultural Context.

    ERIC Educational Resources Information Center

    Chambers, David Wade

    1999-01-01

    Describes the Imagining Nature Project at Deakin University in Australia, and the Native Eyes Project at the Institute of American Indian Art in New Mexico. Both projects entail the teaching of science and technology to non-science majors of highly diverse cultural origin. They also incorporate innovative strategies to make science and technology…

  17. Science Experiments Index for Young People. 2nd Edition.

    ERIC Educational Resources Information Center

    Pilger, Mary Anne

    The purpose of the index is to guide students in finding information on thousands of science experiments for investigative projects and science projects for science fairs. Experiments range from simple to complex and are from 1527 books that are both old and new. The nature and range of the projects and activities are appropriate for primary…

  18. Science in Action: How Middle School Students Are Changing Their World through STEM Service-Learning Projects

    ERIC Educational Resources Information Center

    Newman, Jane L.; Dantzler, John; Coleman, April N.

    2015-01-01

    The purpose of Science in Action (SIA) was to examine the relationship between implementing quality science, technology, engineering, and math (STEM) service-learning (SL) projects and the effect on students' academic engagement in middle school science, civic responsibility, and resilience to at-risk behaviors. The innovative project funded by…

  19. Citizen science on a smartphone: Participants' motivations and learning.

    PubMed

    Land-Zandstra, Anne M; Devilee, Jeroen L A; Snik, Frans; Buurmeijer, Franka; van den Broek, Jos M

    2016-01-01

    Citizen science provides researchers means to gather or analyse large datasets. At the same time, citizen science projects offer an opportunity for non-scientists to be part of and learn from the scientific process. In the Dutch iSPEX project, a large number of citizens turned their smartphones into actual measurement devices to measure aerosols. This study examined participants' motivation and perceived learning impacts of this unique project. Most respondents joined iSPEX because they wanted to contribute to the scientific goals of the project or because they were interested in the project topics (health and environmental impact of aerosols). In terms of learning impact, respondents reported a gain in knowledge about citizen science and the topics of the project. However, many respondents had an incomplete understanding of the science behind the project, possibly caused by the complexity of the measurements. © The Author(s) 2015.

  20. System engineering at the MEGARA project

    NASA Astrophysics Data System (ADS)

    Pérez-Calpena, A.; García-Vargas, María. Luisa; Gil de Paz, A.; Gallego Maestro, J.; Carrasco Licea, E.; Sánchez Moreno, F.; Iglesias-Páramo, J.

    2014-08-01

    MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi- Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The MEGARA focal plane subsystems are located at one of the GTC focal stations, while the MEGARA refractive VPH based spectrograph is located at one of the Nasmyth platforms. The fiber bundles conduct the light from the focal plane subsystems to the pseudo-slits at the entrance of the spectrograph. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain) and is developed under contract with GRANTECAN. The project is carried out by a multidisciplinary and geographically distributed team, which includes the in-kind contributions of the project partners and personnel from several private companies. The MEGARA system-engineering plan has been tailored to the project and is being applied to ensure the technical control of the project in order to finally meet the science high-level requirements and GTC constrains.

  1. Examining of the Predictors of Pre-Service Teachers' Perceptions of the Quality of the Science Fair Projects in Turkey

    ERIC Educational Resources Information Center

    Tortop, Hasan Said

    2014-01-01

    This study aimed at examining the predictors of quality of science fair (SF) projects in the light of pre-service teachers' evaluation of SF rubric' domains. These projects were selected by judges in A city for the A Regional Exhibition of Science and Mathematics Project Study for Primary School Students: The SF projects were evaluated by thirty…

  2. Using tailored methodical approaches to achieve optimal science outcomes

    NASA Astrophysics Data System (ADS)

    Wingate, Lory M.

    2016-08-01

    The science community is actively engaged in research, development, and construction of instrumentation projects that they anticipate will lead to new science discoveries. There appears to be very strong link between the quality of the activities used to complete these projects, and having a fully functioning science instrument that will facilitate these investigations.[2] The combination of using internationally recognized standards within the disciplines of project management (PM) and systems engineering (SE) has been demonstrated to lead to achievement of positive net effects and optimal project outcomes. Conversely, unstructured, poorly managed projects will lead to unpredictable, suboptimal project outcomes ultimately affecting the quality of the science that can be done with the new instruments. The proposed application of these two specific methodical approaches, implemented as a tailorable suite of processes, are presented in this paper. Project management (PM) is accepted worldwide as an effective methodology used to control project cost, schedule, and scope. Systems engineering (SE) is an accepted method that is used to ensure that the outcomes of a project match the intent of the stakeholders, or if they diverge, that the changes are understood, captured, and controlled. An appropriate application, or tailoring, of these disciplines can be the foundation upon which success in projects that support science can be optimized.

  3. Enhancing literacy practices in science classrooms through a professional development program for Canadian minority-language teachers

    NASA Astrophysics Data System (ADS)

    Rivard, Léonard P.; Gueye, Ndeye R.

    2016-05-01

    Literacy in the Science Classroom Project was a three-year professional development (PD) program supporting minority-language secondary teachers' use of effective language-based instructional strategies for teaching science. Our primary objective was to determine how teacher beliefs and practices changed over time and how these were enacted in different classrooms. We also wanted to identify the challenges and enablers to implementing these literacy strategies and practices at the classroom, school, and district levels. Data collection involved both qualitative and quantitative methodologies: student questionnaires; interviews with teachers, principals, and mentor; and focus groups with students. The findings suggest that the program had an impact on beliefs and practices commensurate with the workshop participation of individual teachers. These language-enhanced teacher practices also had a positive impact on the use of talking, reading and writing by students in the science classroom. Finally, continuing PD support may be needed in certain jurisdictions for strengthening minority-language programs given the high teacher mobility in content-area classrooms evident in this study.

  4. Music and the mind: a new interdisciplinary course on the science of musical experience.

    PubMed

    Prichard, J Roxanne; Cornett-Murtada, Vanessa

    2011-01-01

    In this paper the instructors describe a new team-taught transdisciplinary seminar, "Music and Mind: The Science of Musical Experience." The instructors, with backgrounds in music and neuroscience, valued the interdisciplinary approach as a way to capture student interest and to reflect the inherent interconnectivity of neuroscience. The course covered foundational background information about the science of hearing and musical perception and about the phenomenology of musical creation and experience. This two-credit honors course, which attracted students from eleven majors, integrated experiential learning (active listening, journaling, conducting mini-experiments) with rigorous reflection and discussion of academic research. The course culminated in student-led discussions and presentations of final projects around hot topics in the science of music, such as the 'Mozart Effect,' music and religious experience, etc. Although this course was a two-credit seminar, it could easily be expanded to a four-credit lecture or laboratory course. Student evaluations reveal that the course was successful in meeting the learning objectives, that students were intrinsically motivated to learn more about the discipline, and that the team-taught, experiential learning approach was a success.

  5. Scientists in the Classroom Mentor Model Program - Bringing real time science into the K - 12 classroom

    NASA Astrophysics Data System (ADS)

    Worssam, J. B.

    2017-12-01

    Field research finally within classroom walls, data driven, hands on with students using a series of electronic projects to show evidence of scientific mentor collaboration. You do not want to miss this session in which I will be sharing the steps to develop an interactive mentor program between scientists in the field and students in the classroom. Using next generation science standards and common core language skills you will be able to blend scientific exploration with scientific writing and communication skills. Learn how to make connections in your own community with STEM businesses, agencies and organizations. Learn how to connect with scientists across the globe to make your classroom instruction interactive and live for all students. Scientists, you too will want to participate, see how you can reach out and be a part of the K-12 educational system with students learning about YOUR science, a great component for NSF grants! "Scientists in the Classroom," a model program for all, bringing real time science, data and knowledge into the classroom.

  6. 34 CFR 645.12 - What services may regular Upward Bound and Upward Bound Math-Science projects provide?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false What services may regular Upward Bound and Upward Bound Math-Science projects provide? 645.12 Section 645.12 Education Regulations of the Offices of the... services may regular Upward Bound and Upward Bound Math-Science projects provide? Any project assisted...

  7. 34 CFR 645.12 - What services may regular Upward Bound and Upward Bound Math-Science projects provide?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What services may regular Upward Bound and Upward Bound Math-Science projects provide? 645.12 Section 645.12 Education Regulations of the Offices of the... services may regular Upward Bound and Upward Bound Math-Science projects provide? Any project assisted...

  8. 34 CFR 645.12 - What services may regular Upward Bound and Upward Bound Math-Science projects provide?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false What services may regular Upward Bound and Upward Bound Math-Science projects provide? 645.12 Section 645.12 Education Regulations of the Offices of the... services may regular Upward Bound and Upward Bound Math-Science projects provide? Any project assisted...

  9. 34 CFR 645.12 - What services may regular Upward Bound and Upward Bound Math-Science projects provide?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What services may regular Upward Bound and Upward Bound Math-Science projects provide? 645.12 Section 645.12 Education Regulations of the Offices of the... services may regular Upward Bound and Upward Bound Math-Science projects provide? Any project assisted...

  10. Science project

    NASA Image and Video Library

    2012-08-23

    DRIFTER sensor devices were designed by the Applied Science and Technology Project Office as inexpensive tools that can be used for science projects in local schools. The devices transmit information about water temperature and conductivity for use by Gulf Coast researchers. The DRIFTER project began as an effort to help Gulf Coast oyster fishermen dealing with the effects of fresh water intrusion.

  11. A community engagement project in an undergraduate oceanography course to increase engagement and representation in marine science among high school students

    NASA Astrophysics Data System (ADS)

    Clark, C. D.; Prairie, J. C.; Walters, S. A.

    2016-02-01

    In the context of undergraduate education in oceanography, we are constantly striving for innovative ways to enhance student learning and enthusiasm for marine science. Community engagement is a form of experiential education that not only promotes a better understanding of concepts among undergraduate students but also allows them to interact with the community in a way that is mutually beneficial to both parties. Here I present on my experience in incorporating a community engagement project in my undergraduate physical oceanography course at the University of San Diego (USD) in collaboration with Mission Bay High School (MBHS), a local Title 1 International Baccalaureate high school with a high proportion of low-income students and students from underrepresented groups in STEM. As part of this project, the undergraduate students from my physical oceanography course were challenged to develop interactive workshops to present to the high school students at MBHS on some topic in oceanography. Prior to the workshops, the USD students met with the high school students at MBHS during an introductory meeting in which they could learn about each other's interests and backgrounds. The USD students then worked in teams of three to design a workshop proposal in which they outlined their plan for a workshop that was interactive and engaging, relying on demonstrations and activities rather than lecture. Each of the three teams then presented their workshops on separate days in the Mission Bay High School classroom. Finally, the USD students met again with the high school students at MBHS for a conclusion day in which both sets of students could discuss their experiences with the community engagement project. Through the workshop itself and a reflection essay written afterwards, the USD students learned to approach concepts in oceanography from a different perspective, and think about how student backgrounds can inform teaching these concepts. I will describe preliminary outcomes of this project and discuss the potential of community engagement projects in general to positively impact and integrate both undergraduate and high school education in ocean science.

  12. Project-Based Science

    ERIC Educational Resources Information Center

    Krajcik, Joe

    2015-01-01

    Project-based science is an exciting way to teach science that aligns with the "Next Generation Science Standards" ("NGSS"). By focusing on core ideas along with practices and crosscutting concepts, classrooms become learning environments where teachers and students engage in science by designing and carrying out…

  13. Big Ideas in Volcanology-a new way to teach and think about the subject?

    NASA Astrophysics Data System (ADS)

    Rose, W. I.

    2011-12-01

    As intense work with identifying and presenting earth science to middle school science teachers in the MiTEP project advances, I have realized that tools used to connect with teachers and students of earth science in general and especially to promote higher levels of learning, should be advantageous in graduate teaching as well. In my last of 40 years of teaching graduate volcanology, I have finally organized the class around ideas based on Earth Science Literacy Principles and on common misconceptions. As such, I propose and fully explore the twelve "big ideas" of volcanology at the rate of one per week. This curricular organization highlights the ideas in volcanology that have major impact beyond volcanology itself and explores the roots and global ramifications of these ideas. Together they show how volcanology interfaces with the science world and the "real" world or how volcanologists interface with "real" people. In addition to big ideas we explore difficult and misunderstood concepts and the public misconceptions associated with each. The new organization and its focus on understanding relevant and far reaching concepts and hypotheses provides a refreshing context for advanced learning. It is planned to be the basis for an interactive website.

  14. The beginnings of German governmental sponsorship in astronomy: the solar eclipse expeditions of 1868 as a prelude to the Venus transit expeditions of 1874 and 1882

    NASA Astrophysics Data System (ADS)

    Duerbeck, Hilmar W.

    The origins of the North German expeditions to observe the total solar eclipse of August 18, 1868, are outlined. The incentive was made by politician and science writer Aaron Bernstein, the financing was provided by the North German Federation, and the project was handled by members of the Astronomische Gesellschaft. The astronomical expeditions to Mulwar in India and Aden in South Arabia are summarized, the following archaeological expedition to upper Egypt is also considered. The activities of the participating scientists, also with respect to the preparation of popular accounts, are described. Finally, the impact of these expeditions on the planning of the large-scale project to observe the Venus transits of 1874 and 1882 is investigated.

  15. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1987, volume 1

    NASA Technical Reports Server (NTRS)

    Jones, William B. (Editor); Goldstein, Stanley H. (Editor)

    1987-01-01

    The objective of the NASA/ASEE program were: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent 10 weeks at Johnson Space Center engaged in a research project commensurate with his/her interests and background and worked in collaboration with a NASA/JSC colleague. A compilation is presented of the final reports on the research projects done by the fellows during the summer of 1987. This is volume 1 of a 2 volume report.

  16. Ceramic High Efficiency Particulate Air (HEPA) Filter Final Report CRADA No. TC02102.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, M.; Morse, T.

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermor e National Laboratory (LLNL) and Flanders-Precisionaire (Flanders), to develop ceramic HEP A filters under a Thrust II Initiative for Proliferation Prevention (IPP) project. The research was conducted via the IPP Program at Commonwe alth of Independent States (CIS) Institutes, which are handled under a separate agreement. The institutes (collectively referred to as "CIS Institutes") involved with this project were: Bochvar: Federal State Unitarian Enterprise All-Russia Scientific and Research Institute of Inorganic Materials (FSUE VNIINM); Radium Khlopin: Federal State Unitarian Enterprisemore » NPO Radium Institute named (FSUE NPO Radium Institute); and Bakor: Science and Technology Center Bakor (STC Bakor).« less

  17. A Report of Bethune-Cookman College NASA JOVE Projects

    NASA Technical Reports Server (NTRS)

    Agba, Lawrence C.; David, Sunil K.; Rao, Narsing G.; Rahmani, Munir A.

    1997-01-01

    This document is the final report for the Joint Venture (JOVE) in Space Sciences, and describes the tasks, performed with the support of the contract. These tasks include work in: (1) interfacing microprocessor systems to high performance parallel interface chips, SCSI drive and memory, needed for the implementation of a Space Optical Data Recorder; (2) designing a digital interface architecture for a microprocessor controlled sensors monitoring unit for a NASA Jitter Attenuation and Dynamics Experiment (JADE) project; (3) developing an enhanced back-propagation training algorithm; (4) studying the effect of simulated spaceflight on Aortic Contractility; (5) developing a course in astronomy; and (6) improving internet access by running cables, and installing hubs in various places on the campus; and (7) researching the characteristics of Nd:YALO laser resonator.

  18. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1994, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard; Sickorez, Donn G.

    1995-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to: (1) further the professional knowledge of qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) enrich and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1994.

  19. National Aeronautics and Space Administration (NASA) /American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program. Volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    1997-01-01

    The 1996 JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to (1) further the professional knowledge qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1996.

  20. Integrated Science Assessment (ISA) for Sulfur Oxides – Health Criteria (Final Report, Sep 2008)

    EPA Science Inventory

    EPA announced the availability of the final report, Integrated Science Assessment (ISA) for Sulfur Oxides – Health Criteria final assessment. This report represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scien...

  1. Why Citizen Science Without Usability Testing Will Underperform

    NASA Astrophysics Data System (ADS)

    Romano, C.; Gay, P.; Owens, R.; Burlea, G.

    2017-12-01

    Citizen science projects must undergo usability testing and optimization if they are to meet their stated goals. This presentation will include video of usability tests conducted upon citizen science websites. Usability testing is essential to the success of online interaction, however, citizen science projects have just begun to include this critical activity. Interaction standards in citizen science lag behind those of commercial interests, and published research on this topic is limited. Since online citizen science is by definition, an exchange of information, a clear understanding of how users experience an online project is essential to informed decision-making. Usability testing provides that insight. Usability testing collects data via direct observation of a person while she interacts with a digital product, such as a citizen science website. The test participant verbalizes her thoughts while using the website or application; the moderator follows the participant and captures quantitative measurement of the participant's confidence of success as she advances through the citizen science project. Over 15 years of usability testing, we have observed that users who do not report a consistent sense of progress are likely to abandon a website after as few as three unrewarding interactions. Since citizen science is also a voluntary activity, ensuring seamless interaction for users is mandatory. Usability studies conducted on citizen science websites demonstrate that project teams frequently underestimate a user's need for context and ease of use. Without usability testing, risks to online citizen science projects include high bounce rate (users leave the website without taking any action), abandonment (of the website, tutorials, registration), misunderstanding instructions (causing disorientation and erroneous conclusions), and ultimately, underperforming projects.

  2. REU Site: Yosemite Research Training in Environmental Science

    NASA Astrophysics Data System (ADS)

    Conklin, M. H.; Dayrat, B.

    2009-12-01

    The Yosemite Research Training in Environmental Science offers undergraduate students a unique opportunity to actively experience field research in Environmental Science in a premier National Park, over a nine-week period in the summer. The Yosemite REU is a collaboration between three institutions: the University of California at Merced, Yosemite National Park, and the USGS Western Ecological Research Center. Student activities mainly consist of individual research projects, spanning a broad range of disciplines such as Ecology, Geosciences, Biodiversity, Conservation, Restoration, and Hydrology. All projects include a strong field component. Students are exposed to the benefits of multi-disciplinary research in weekly meetings in which all students talk about their most recent work. Students present their research in Yosemite Valley at the end of the program before a public audience (including visitors). Research training is provided by mentors from UC Merced (Schools of Natural Sciences, Engineering, and Social Sciences) and the USGS Western Ecological Research Center. In addition to their interactions with their mentors and other faculty, students have opportunities to meet with NPS professionals engaged in park-related activities, to learn more about the integration of science with resources management and about potential careers in research and science outside academia. Students also participate in field trips led by UCM, USGS, and NPS scientists, focusing on Yosemite and the Sierra Nevada. Students attend a weekly seminar in Environmental Science with a broad diversity of speakers, including researchers as well as other science-related professionals, such as freelance science writers and illustrators, as well as NPS scientists and staff. Finally, student participants engage in several other activities, including outreach (e.g., a day-long meeting with high-school Central Valley students from underrepresented minorities). The Yosemite REU has already run for 2 years (with funds still available for another summer in 2010). Each year, eight students have been selected from a large pool of at least 150 complete applications, nationwide (with about 20 to 25% being students from under-represented minorities). Each year, five students out of eight have been from under-represented minorities.

  3. Seeing a World in a Grain of Sand: Science Teaching in Multicultural Context

    NASA Astrophysics Data System (ADS)

    Chambers, David Wade

    This paper briefly describes two unusual curriculum plans: the Imagining Nature Project at Deakin University in Geelong, Victoria, Australia and the Native Eyes Project at the Institute of American Indian Art in Santa Fe, New Mexico Among other things, both projects entail the teaching of science and technology studies to non-science majors of highly diverse cultural origin. Both projects also incorporate innovative strategies designed to make science and technology more credible and relevant to indigenous people.

  4. Genetics in the 21st Century: The Benefits & Challenges of Incorporating a Project-Based Genetics Unit in Biology Classrooms

    ERIC Educational Resources Information Center

    Alozie, Nonye; Eklund, Jennifer; Rogat, Aaron; Krajcik, Joseph

    2010-01-01

    How can science instruction help students and teachers engage in relevant genetics content that stimulates learning and heightens curiosity? Project-based science can enhance learning and thinking in science classrooms. We describe how we use project-based science features as a framework for a genetics unit, discuss some of the challenges…

  5. Improving Science Attitude and Creative Thinking through Science Education Project: A Design, Implementation and Assessment

    ERIC Educational Resources Information Center

    Sener, Nilay; Türk, Cumhur; Tas, Erol

    2015-01-01

    The purpose of this study is to examine the effects of a science education project implemented in different learning environments on secondary school students' creative thinking skills and their attitudes to science lesson. Within this scope, a total of 50 students who participated in the nature education project in Samsun City in 2014 make up the…

  6. Mapping Our City: Learning To Use Spatial Data in the Middle School Science Classroom.

    ERIC Educational Resources Information Center

    McWilliams, Harold; Rooney, Paul

    Mapping Our City is a two-year project in which middle school teachers and students in Boston explore the uses of Geographic Information Systems (GIS) in project-based science, environmental education, and geography. The project is funded by the National Science Foundation and is being field tested in three Boston middle school science classrooms.…

  7. A Study on the Evaluation of Science Projects of Primary School Students Based on Scientific Criteria

    ERIC Educational Resources Information Center

    Gungor, Sema Nur; Ozer, Dilek Zeren; Ozkan, Muhlis

    2013-01-01

    This study re-evaluated 454 science projects that were prepared by primary school students between 2007 and 2011 within the scope of Science Projects Event for Primary School Students. Also, submitted to TUBITAK BIDEB Bursa regional science board by MNE regional work groups in accordance with scientific research methods and techniques, including…

  8. Mapping epistemic cultures and learning potential of participants in citizen science projects.

    PubMed

    Vallabh, Priya; Lotz-Sisitka, Heila; O'Donoghue, Rob; Schudel, Ingrid

    2016-06-01

    The ever-widening scope and range of global change and interconnected systemic risks arising from people-environment relationships (social-ecological risks) appears to be increasing concern among, and involvement of, citizens in an increasingly diversified number of citizen science projects responding to these risks. We examined the relationship between epistemic cultures in citizen science projects and learning potential related to matters of concern. We then developed a typology of purposes and a citizen science epistemic-cultures heuristic and mapped 56 projects in southern Africa using this framework. The purpose typology represents the range of knowledge-production purposes, ranging from laboratory science to social learning, whereas the epistemic-cultures typology is a relational representation of scientist and citizen participation and their approach to knowledge production. Results showed an iterative relationship between matters of fact and matters of concern across the projects; the nexus of citizens' engagement in knowledge-production activities varied. The knowledge-production purposes informed and shaped the epistemic cultures of all the sampled citizen science projects, which in turn influenced the potential for learning within each project. Through a historical review of 3 phases in a long-term river health-monitoring project, we found that it is possible to evolve the learning curve of citizen science projects. This evolution involved the development of scientific water monitoring tools, the parallel development of pedagogic practices supporting monitoring activities, and situated engagement around matters of concern within social activism leading to learning-led change. We conclude that such evolutionary processes serve to increase potential for learning and are necessary if citizen science is to contribute to wider restructuring of the epistemic culture of science under conditions of expanding social-ecological risk. © 2016 Society for Conservation Biology.

  9. TRIGA Mark II nuclear reactor facility. Final report, 1 July 1980--30 June 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, B.C.

    1997-05-01

    This report is a final culmination of activities funded through the Department of Energy`s (DOE) University Reactor Sharing Program, Grant DE-FG02-80ER10273, during the period 1 July 1980 through 30 June 1995. Progress reports have been periodically issued to the DOE, namely the Reactor Facility Annual Reports C00-2082/2219-7 through C00-2082/10723-21, which are contained as an appendix to this report. Due to the extent of time covered by this grant, summary tables are presented. Table 1 lists the fiscal year financial obligations of the grant. As listed in the original grant proposals, the DOE grant financed 70% of project costs, namely themore » total amount spent of these projects minus materials costs and technical support. Thus the bulk of funds was spent directly on reactor operations. With the exception of a few years, spending was in excess of the grant amount. As shown in Tables 2 and 3, the Reactor Sharing grant funded a immense number of research projects in nuclear engineering, geology, animal science, chemistry, anthropology, veterinary medicine, and many other fields. A list of these users is provided. Out of the average 3000 visitors per year, some groups participated in classes involving the reactor such as Boy Scout Merit Badge classes, teacher`s workshops, and summer internships. A large number of these projects met the requirements for the Reactor Sharing grant, but were funded by the University instead.« less

  10. Level-2 Milestone 3244: Deploy Dawn ID Machine for Initial Science Runs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, D

    2009-09-21

    This report documents the delivery, installation, integration, testing, and acceptance of the Dawn system, ASC L2 milestone 3244: Deploy Dawn ID Machine for Initial Science Runs, due September 30, 2009. The full text of the milestone is included in Attachment 1. The description of the milestone is: This milestone will be a result of work started three years ago with the planning for a multi-petaFLOPS UQ-focused platform (Sequoia) and will be satisfied when a smaller ID version of the final system is delivered, installed, integrated, tested, accepted, and deployed at LLNL for initial science runs in support of SSP mission.more » The deliverable for this milestone will be a LA petascale computing system (named Dawn) usable for code development and scaling necessary to ensure effective use of a final Sequoia platform (expected in 2011-2012), and for urgent SSP program needs. Allocation and scheduling of Dawn as an LA system will likely be performed informally, similar to what has been used for BlueGene/L. However, provision will be made to allow for dedicated access times for application scaling studies across the entire Dawn resource. The milestone was completed on April 1, 2009, when science runs began running on the Dawn system. The following sections describe the Dawn system architecture, current status, installation and integration time line, and testing and acceptance process. A project plan is included as Attachment 2. Attachment 3 is a letter certifying the handoff of the system to a nuclear weapons stockpile customer. Attachment 4 presents the results of science runs completed on the system.« less

  11. A Decade of Project 2061

    NASA Astrophysics Data System (ADS)

    Lagowski, J. J.

    1996-04-01

    Ten years ago the American Association for the Advancement of Science (AAAS) launched Project 2061, the first of the truly systemic projects focused on reform in K--12 science education. Project 2061 addresses science literacy for all people rather than only those in the more narrowly construed basic science disciplines; it includes the natural and social sciences, mathematics, and technology. Because it deals with the influence of science on all people's lives, Project 2061 is irrefutably systemic. The general strategy of Project 2061 was to forge a consensus on learning goals as the basis for all other changes to the system of science education. Up front, the designers of Project 2061 announced that it would require at least 25 years to achieve its goals. The fact that the project has survived its tenth year is a tribute to the funding agencies and their confidence in the 2061 concept and its designers. The original supporters--the Carnegie Corporation and the Andrew W. Mellon Foundation--continue to support Project 2061. From the start, Project 2061 emphasized the importance of science as one of the great human activities, much like the visual arts, literature, and music. The basic premise of the project was that the excitement in science should be made available to all students if they are to become science literate. The project's first major report, Science for All Americans, traced the lack of science literacy to problems derived from administrative and curricular issues like the crushing workloads of teachers; antiquated support systems; poor training; textbooks and methods of instruction that impede inquiry, critical thought, and recognition of connections among ideas; and an overstuffed curriculum that offered some topics in needless detail while overlooking ideas and skills critical to science literacy. The chief intent of Science for All Americans, was to provide a fresh, critical look at what science was most worth learning. Put another way, the question was: What should all high school graduates know and be able to do in science, mathematics, and technology? Science for All Americans established the ground rules for what has become to be known as systematic reform. Thus, reform must be comprehensive in the sense that it involves all children, all grades, and all subjects; and, it must be long term. The approach to curriculum development was ambitious. Curriculum reform should be shaped by a vision of the lasting knowledge and skills students need to acquire by the time they become adults. Moreover, the common core of learning in science, mathematics, and technology should center on science literacy. A common set of learning goals did not imply a uniform curriculum, funding methods, or materials. But above all, schools should not try to teach more, but less. In other words, the new curriculum to be developed was not the accretion of additional layers of material on top of the existing structure; that's why the designers suggested it might take a quarter of a century to achieve its goals. Science for All Americans construed the notion of science literacy broadly, by focusing on interconnected understanding in the natural and social sciences, mathematics, and technology. After the publication of Science for All Americans, Project 2061 turned its attention to developing tools to help redesign curricula around the science literacy goals and to helping teachers think through the implications for other aspects of the education system. To illustrate the flexibility of this approach, Project 2061 established school district teams in six diverse geographical areas--three rural school districts in Georgia; the school districts in Philadelphia, San Antonio, San Diego, and San Francisco; and a small suburban school district near Madison, Wisconsin. Planning for 13 years of schooling in science, mathematics, and technology involved teams of teachers in each ISD. Each team included five elementary teachers, five middle school teachers, ten high school teachers, one principal from each level, and two curricula specialists. The teachers were drawn from a wide range of disciplines, including the life and physical sciences, social sciences, mathematics, technology, and even the humanities. Initially, the teams set out to design curriculum models that the school districts involved could use to plan curricula responsive to local needs, but still focused on the science literacy goals for all. Working backward from these adult literacy goals, the teams were able to identify a series of learning goals for younger students. Working to gather them created a common set of learning goals for various levels, which were the focus for the second major publication of Project 2061, Benchmarks for Science Literacy. Benchmarks is a tool to be used in designing curriculum that makes local sense for meeting the goals for science literacy that are recommended in Science for All Americans. Benchmarks specifies thresholds rather than averages or advanced performance. In the course of the last 10 years, Project 2061 has produced a wide spectrum of resources describing most of the developments that occurred during the evaluation of the project. These are, perhaps, its most important legacy. We can only hope that the project will be sustained for at least another 15 years, as conceived by its designers. The 10-year report of Project 2061, which includes a useful set of references, is available from AAAS, 1333 H St., N.W., Washington, DC 20005.

  12. Language Development through Holistic Learning (Mathematics, Art, Science, Technology, and Education Resources). Project MASTER, 1988-89. OREA Report.

    ERIC Educational Resources Information Center

    Berney, Tomi D.; Barrera, Marbella

    In its fourth year, Project MASTER served 477 Spanish-speaking students in 5 elementary schools in the Bronx. The teaching strategy was holistic, integrating all aspects of the curriculum with English-language learning through science projects. The project developed curriculum materials, stressing attitudes toward and knowledge of science topics,…

  13. On the Cutting Edge of Creativity: The Use of Art Projects in Community College Science Classes.

    ERIC Educational Resources Information Center

    Price, Elsa C.

    This paper reports on the results of a class experiment in which advanced Human Anatomy and Physiology and beginning General Biology science students selected a science project using art as the medium of expression and demonstration. Students were allowed to select their own project, with the instructor's approval. Once a project was decided upon,…

  14. Science Fair Projects: The Environment.

    ERIC Educational Resources Information Center

    Bonnet, Bob; Keen, Dan

    This book approaches the development of science fair projects from the point of view that science should be enjoyable, interesting, and thought-provoking. The scientific concepts introduced here will later help young students to understand more advanced scientific principles. These projects develop skills such as classification, making measured…

  15. Science Teaching Orientations and Technology-Enhanced Tools for Student Learning

    NASA Astrophysics Data System (ADS)

    Campbell, Todd; Longhurst, Max; Duffy, Aaron M.; Wolf, Paul G.; Shelton, Brett E.

    2013-10-01

    This qualitative study examines teacher orientations and technology-enhanced tools for student learning within a science literacy framework. Data for this study came from a group of 10 eighth grade science teachers. Each of these teachers was a participant in a professional development (PD) project focused on reformed and technology-enhanced science instruction shaped by national standards documents. The research is focused on identifying teacher orientations and use of technology-enhanced tools prior to or unaffected by PD. The primary data sources for this study are drawn from learning journals and classroom observations. Qualitative methods were used to analyze learning journals, while descriptive statistics were used from classroom observations to further explore and triangulate the emergent qualitative findings. Two teacher orientation teacher profiles were developed to reveal the emergent teacher orientation dimensions and technology-enhanced tool categories found: "more traditional teacher orientation profile" and "toward a reformed-based teacher orientation profile." Both profiles were founded on "knowledge of" beliefs about the goals and purposes for science education, while neither profile revealed sophisticated beliefs about the nature of science. The "traditional" profile revealed more teacher-centered beliefs about science teaching and learning, and the "towards reformed-based" profile revealed student-centered beliefs. Finally, only technology-enhanced tools supportive of collaborative construction of science knowledge were found connected to the "towards reformed-based" profile. This research is concluded with a proposed "reformed-based teacher orientation profile" as a future target for science teaching and learning with technology-enhanced tools in a science literacy framework.

  16. Team Science Approach to Developing Consensus on Research Good Practices for Practice-Based Research Networks: A Case Study.

    PubMed

    Campbell-Voytal, Kimberly; Daly, Jeanette M; Nagykaldi, Zsolt J; Aspy, Cheryl B; Dolor, Rowena J; Fagnan, Lyle J; Levy, Barcey T; Palac, Hannah L; Michaels, LeAnn; Patterson, V Beth; Kano, Miria; Smith, Paul D; Sussman, Andrew L; Williams, Robert; Sterling, Pamela; O'Beirne, Maeve; Neale, Anne Victoria

    2015-12-01

    Using peer learning strategies, seven experienced PBRNs working in collaborative teams articulated procedures for PBRN Research Good Practices (PRGPs). The PRGPs is a PBRN-specific resource to facilitate PBRN management and staff training, to promote adherence to study protocols, and to increase validity and generalizability of study findings. This paper describes the team science processes which culminated in the PRGPs. Skilled facilitators used team science strategies and methods from the Technology of Participation (ToP®), and the Consensus Workshop Method to support teams to codify diverse research expertise in practice-based research. The participatory nature of "sense-making" moved through identifiable stages. Lessons learned include (1) team input into the scope of the final outcome proved vital to project relevance; (2) PBRNs with diverse domains of research expertise contributed broad knowledge on each topic; and (3) ToP® structured facilitation techniques were critical for establishing trust and clarifying the "sense-making" process. © 2015 Wiley Periodicals, Inc.

  17. Preparing new nurses with complexity science and problem-based learning.

    PubMed

    Hodges, Helen F

    2011-01-01

    Successful nurses function effectively with adaptability, improvability, and interconnectedness, and can see emerging and unpredictable complex problems. Preparing new nurses for complexity requires a significant change in prevalent but dated nursing education models for rising graduates. The science of complexity coupled with problem-based learning and peer review contributes a feasible framework for a constructivist learning environment to examine real-time systems data; explore uncertainty, inherent patterns, and ambiguity; and develop skills for unstructured problem solving. This article describes a pilot study of a problem-based learning strategy guided by principles of complexity science in a community clinical nursing course. Thirty-five senior nursing students participated during a 3-year period. Assessments included peer review, a final project paper, reflection, and a satisfaction survey. Results were higher than expected levels of student satisfaction, increased breadth and analysis of complex data, acknowledgment of community as complex adaptive systems, and overall higher level thinking skills than in previous years. 2011, SLACK Incorporated.

  18. Team Science Approach to Developing Consensus on Research Good Practices for Practice‐Based Research Networks: A Case Study

    PubMed Central

    Daly, Jeanette M.; Nagykaldi, Zsolt J.; Aspy, Cheryl B.; Dolor, Rowena J.; Fagnan, Lyle J.; Levy, Barcey T.; Palac, Hannah L.; Michaels, LeAnn; Patterson, V. Beth; Kano, Miria; Smith, Paul D.; Sussman, Andrew L.; Williams, Robert; Sterling, Pamela; O'Beirne, Maeve; Neale, Anne Victoria

    2015-01-01

    Abstract Using peer learning strategies, seven experienced PBRNs working in collaborative teams articulated procedures for PBRN Research Good Practices (PRGPs). The PRGPs is a PBRN‐specific resource to facilitate PBRN management and staff training, to promote adherence to study protocols, and to increase validity and generalizability of study findings. This paper describes the team science processes which culminated in the PRGPs. Skilled facilitators used team science strategies and methods from the Technology of Participation (ToP®), and the Consensus Workshop Method to support teams to codify diverse research expertise in practice‐based research. The participatory nature of “sense‐making” moved through identifiable stages. Lessons learned include (1) team input into the scope of the final outcome proved vital to project relevance; (2) PBRNs with diverse domains of research expertise contributed broad knowledge on each topic; and (3) ToP® structured facilitation techniques were critical for establishing trust and clarifying the “sense‐making” process. PMID:26602516

  19. An interdisciplinary approach to mapping through scientific cartography, design and artistic expression

    NASA Astrophysics Data System (ADS)

    Gardener, Joanna; Cartwright, William; Duxbury, Lesley

    2018-05-01

    This paper reports on the initial findings of an interdisciplinary study exploring perceptions of space and place through alternate ways of mapping. The research project aims to bring depth and meaning to places by utilising a combination of diverse influences and responses, including emotional, sensory, memory and imaginary. It investigates mapping from a designer's perspective, with further narration from both the cartographic science and fine art perspectives. It examines the role of design and artistic expression in the cartographic process, and its capacity to effect and transform the appearance, reading and meaning of the final cartographic outcome (Robinson 2010). The crossover between the cartographic sciences and the work of artists who explore space and place enables an interrogation of where these fields collide or alternatively merge, in order to challenge the definition of a map. By exploring cartography through the overlapping of the distinct fields of science and art, this study challenges and questions the tipping point of when a map ceases to be a map and becomes art.

  20. The Importance Of Integrating Narrative Into Health Care Decision Making.

    PubMed

    Dohan, Daniel; Garrett, Sarah B; Rendle, Katharine A; Halley, Meghan; Abramson, Corey

    2016-04-01

    When making health care decisions, patients and consumers use data but also gather stories from family and friends. When advising patients, clinicians consult the medical evidence but also use professional judgment. These stories and judgments, as well as other forms of narrative, shape decision making but remain poorly understood. Furthermore, qualitative research methods to examine narrative are rarely included in health science research. We illustrate how narratives shape decision making and explain why it is difficult but necessary to integrate qualitative research on narrative into the health sciences. We draw on social-scientific insights on rigorous qualitative research and our ongoing studies of decision making by patients with cancer, and we describe new tools and approaches that link qualitative research findings with the predominantly quantitative health science scholarship. Finally, we highlight the benefits of more fully integrating qualitative research and narrative analysis into the medical evidence base and into evidence-based medical practice. Project HOPE—The People-to-People Health Foundation, Inc.

  1. Terra e Arte Project: Soils connecting Art and Education

    NASA Astrophysics Data System (ADS)

    Muggler, Cristine Carole; Rozenberg, Bianca; de Cássia Francisco, Talita; Gramacho de Oliveira, Elisa

    2015-04-01

    The "Terra e Arte" project was designed to combine science and art by approaching soil contents in basic education schools in Viçosa, Minas Gerais, Brazil. The project was developed to awake, sensitize and create awareness about soils and their importance to life and environment within school communities. It was proposed and realized by the Earth Sciences Museum Alexis Dorofeef (MCTAD) of the Federal University of Viçosa (UFV), as part of the celebrations of its 20th anniversary. Since all the schools of the town visit the museum at least once a year and most of them have received and carried out pedagogic projects on soil themes in the last 20 years, it was proposed to them to develop a soil subject with any of their groups and combine it with painting using soil materials. Each group interested in joining the project received a basic set of material to produce soil paints. They were expected to develop a soil theme and its contents for a few weeks and to finalize it with a figurative and textual collective creation that synthetized their learning. 16 of the 24 visited schools joined the project and realized it for an average of two months. During this time, the school groups visited the museum and/or borrowed the itinerant exposition on soils from the museum to work with in in the school community. At the end of the projects, the productions were presented at the Knowledge Market (Feira do Conhecimento) that happens every year in the central square of the town, as part of the National Week of Science and Technology. At the event, 58 works were presented by 14 schools, involving directly 700 pupils and their teachers. They approached themes from soil formation and properties to agroecology and urban occupation and impacts on the soils. 30 of the works were selected for a commemorative exposition and 12 were chosen for a table calendar 2014. The movement created around the project mobilized many people and had strong impact on the school communities, especially after the distribution of the calendar to all schools. The result stimulated the museum to propose another project for the 21st anniversary that was intensely sought after by all schools of the town. The mobilization that has been created by those projects contributes to expand and to strengthen the word about soils within the schools and to increase the perception of soils in the town community.

  2. Upcoming approved ALMA studies and new projects

    NASA Astrophysics Data System (ADS)

    Wootten, Al

    2016-09-01

    Science results from the Atacama Large Millimeter/submillimeter Array (ALMA) have been transforming astronomy, and more than 400 papers have been published on a wide range of topics to date, from nearly one thousand delivered datasets. Installation and commissioning of two of the final three of the ten receiver bands defined in the specifications and requirements are in progress. Final installation of its ten bands empower ALMA to operate at wavelengths from 7mm to 0.3mm across a decade of frequency access as enabled by broad bandwidth ALMA receivers, powerful correlators and spectacular site. The ALMA specifications, contracts and construction began in 2003. The impetus to development of cutting edge technology spurred by ALMA construction has resulted in enormous advances since that time. Having invested ˜$1.3B USD to realize the largest historical advance in groundbased astronomy, it is vital to maintain and expand ALMA capabilities. The ALMA Development Program provides resources for that; the science community will define the scientific goals to drive that program into the future. Studies undertaken throughout the ALMA partnership have identified high-impact initiatives providing major advances in ALMA sensitivity, instantaneous bandwidth and spectral coverage, spatial resolution, and imaging speed. An overview of those initiatives will be given to spur further discussion of the science goals they will enable, and to provide further guiding scientific vision.

  3. Exploring Earth Systems Through STEM

    NASA Astrophysics Data System (ADS)

    Chen, Loris; Salmon, Jennifer; Burns, Courtney

    2015-04-01

    During the 2010 school year, grade 8 science teachers at Dwight D. Eisenhower Middle School in Wyckoff, New Jersey, began using the draft of A Framework for K-12 Science Education to transition to the Next Generation Science Standards. In an evolutionary process of testing and revising, teachers work collaboratively to develop problem-based science, technology, engineering, and mathematics (STEM) units that integrate earth science, physical science, and life science topics. Students explore the interconnections of Earth's atmosphere, lithosphere, hydrosphere, and biosphere through problem-based learning. Problem-based learning engages students in (1) direct observations in the field and classroom, (2) collection and analysis of data from remote sensors and hand-held sensors, and (3) analysis of physical, mathematical, and virtual models. Students use a variety of technologies and applications in their investigations, for example iPad apps, Google Classroom, and Vernier sensors. Data from NASA, NOAA, non-government organizations, and scientific research papers inspire student questions and spark investigations. Teachers create materials and websites to support student learning. Teachers curate reading, video, simulations, and other Internet resources for students. Because curriculum is standards-based as opposed to textbook-based, teacher participation in workshops and institutes frequently translates into new or improved study units. Recent programs include Toyota International Teacher Program to Costa Rica, Japan Society Going Global, Siemens STEM Academy, U.S. Naval Academy SET Sail, and NJSTA Maitland P. Simmons Memorial Award Summer Institute. Unit themes include weather and climate, introduction to general chemistry and biochemistry, and cells and heredity. Each if the three 12-week units has embedded engineering challenges inspired by current events, community needs, and/or the work of scientists. The unit segments begin with a problem, progress to observations and data collection, and end with an engineering application. English language arts and mathematics skills are developed through performance assessments that include written arguments that require students to state a claim and support the claim with evidence, analysis, and reasoning. Student selected capstone projects are completed during the final three weeks of the school year. Partnerships with universities, research scientists, and science centers are essential to the development of unit challenges. Collaborative projects have included studies of iron cycling in the Ross Sea with scientists from Rutgers University, climate and climate change using NASA data and resources from Liberty Science Center, human and natural impacts on endangered species with San Diego Zoo Institute for Conservation Research, and air quality monitoring with the University of Northern Iowa. Grant funds have supported student research projects involving air quality improvement, urban heat island mitigation, alternative energies, and sustainability.

  4. Citizen science participation in research in the environmental sciences: key factors related to projects' success and longevity.

    PubMed

    Cunha, Davi G F; Marques, Jonatas F; Resende, Juliana C DE; Falco, Patrícia B DE; Souza, Chrislaine M DE; Loiselle, Steven A

    2017-01-01

    The potential impacts of citizen science initiatives are increasing across the globe, albeit in an imbalanced manner. In general, there is a strong element of trial and error in most projects, and the comparison of best practices and project structure between different initiatives remains difficult. In Brazil, the participation of volunteers in environmental research is limited. Identifying the factors related to citizen science projects' success and longevity within a global perspective can contribute for consolidating such practices in the country. In this study, we explore past and present projects, including a case study in Brazil, to identify the spatial and temporal trends of citizen science programs as well as their best practices and challenges. We performed a bibliographic search using Google Scholar and considered results from 2005-2014. Although these results are subjective due to the Google Scholar's algorithm and ranking criteria, we highlighted factors to compare projects across geographical and disciplinary areas and identified key matches between project proponents and participants, project goals and local priorities, participant profiles and engagement, scientific methods and funding. This approach is a useful starting point for future citizen science projects, allowing for a systematic analysis of potential inconsistencies and shortcomings in this emerging field.

  5. Student-Teachers' Dialectically Developed Motivation for Promoting Student-Led Science Projects

    ERIC Educational Resources Information Center

    Bencze, J. Lawrence; Bowen, G. Michael

    2009-01-01

    School science systems tend to emphasize teaching and learning about achievements of science (such as laws and theories) at the expense of providing students with opportunities to develop realistic conceptions about science and science inquiry and expertise they could use to conduct their own science inquiry projects. Among reasons for such an…

  6. Student and Community Engagement in Earth, Space, and Environmental Sciences Through Experiential Learning and Citizen Science as Part of Research Broader Impact

    NASA Astrophysics Data System (ADS)

    Ibrahim, Alaa; Ahmed, Yasmin

    2015-04-01

    Fulfilling the broader impact of a research project in Earth and environmental sciences is an excellent opportunity for educational and outreach activities that connect scientists and society and enhance students and community engagement in STEM fields in general and in Earth, space, and environmental sciences in particular. Here we present the experience developed in this endeavor as part of our Partnerships for Enhanced Engagement in Research (PEER) project sponsored by USAID/NSF/NAS. The project introduced educational and outreach activities that included core curriculum course development for university students from all majors, community-based learning projects, citizen science and outreach programs to school students and community members. Through these activities, students worked with the project scientists on a variety of activities that ranged from citizen science and undergraduate research to run mass experiments that measure the quality of air, drinking water, and ultraviolet level in greater Cairo, Egypt, to community awareness campaigns through the production of short documentaries and communicating them with stakeholders and target groups, including schools and TV stations. The activities enhanced students learning and the public awareness on climate change and the underlying role of human activities. It also connected effectively the project scientists with college and university students a well as the wider segments of the society, which resulted in a host of benefits including better scientific literacy and appreciation to the role of scientists, promoting scientists as role models, sharing the values of science, and motivating future generations to puruse a career in science This work is part of the PEER research project 2-239 sponsored by USAID/NSF/NAS Project Link (at National Academies website): http://sites.nationalacademies.org/PGA/dsc/peerscience/PGA_084046.htm website: http://CleanAirEgypt.org Links to cited work: Core Curriculum Course: http://bit.ly/FutureLife Citizen Science Project: Quality of Air, Drinking Water, and U.V. Level in Greater Cairo: Map 1: http://bit.ly/AirWaterLightMap1 Map 2: http://bit.ly/AirWaterLightMap2 Short Documentaries Student Projects: https://vimeo.com/science2society/videos Project video: https://vimeo.com/100427525

  7. Student and Community Engagement in Earth, Space, and Environmental Sciences Through Experiential Learning and Citizen Science as Part of Research Broader Impact

    NASA Astrophysics Data System (ADS)

    Ibrahim, A. I.; Tutwiler, R.; Zakey, A.; Shokr, M. E.; Ahmed, Y.; Jereidini, D.; Eid, M.

    2014-12-01

    Fulfilling the broader impact of a research project in Earth and environmental sciences is an excellent opportunity for educational and outreach activities that connect scientists and society and enhance students and community engagement in STEM fields in general and in Earth, space, and environmental sciences in particular. Here we present the experience developed in this endeavor as part of our Partnerships for Enhanced Engagement in Research (PEER) project sponsored by USAID/NSF/NAS. The project introduced educational and outreach activities that included core curriculum course development for university students from all majors, community-based learning projects, citizen science and outreach programs to school students and community members. Through these activities, students worked with the project scientists on a variety of activities that ranged from citizen science and undergraduate research to run mass experiments that measure the quality of air, drinking water, and ultraviolet level in greater Cairo, Egypt, to community awareness campaigns through the production of short documentaries and communicating them with stakeholders and target groups, including schools and TV stations. The activities enhanced students learning and the public awareness on climate change and the underlying role of human activities. It also connected effectively the project scientists with college and university students a well as the wider segments of the society, which resulted in a host of benefits including better scientific literacy and appreciation to the role of scientists, promoting scientists as role models, sharing the values of science, and motivating future generations to puruse a career in science Note: This presentation is a PEER project sponsored by USAID/NSF/NAS Project Link (at National Academies website): http://sites.nationalacademies.org/PGA/dsc/peerscience/PGA_084046.htmwebsite: http://CleanAirEgypt.orgLinks to cited work: Core Curriculum Course: http://bit.ly/FutureLife Citizen Science Project: Quality of Air, Drinking Water, and U.V. Level in Greater Cairo: Map 1: http://bit.ly/AirWaterLightMap1 Map 2: http://bit.ly/AirWaterLightMap2 Short Documentaries Student Projects: https://vimeo.com/science2society/videos Project video: http://CleanAirEgypt.org

  8. SkWwatch: Introducing European Youth to the World of Scientific Research through Interactive Utilisation of a Global Network of Robotic Telescopes

    NASA Astrophysics Data System (ADS)

    Sotiriou, M.; Vrazopoulos, H.; Ioannou, P.; Sotiriou, S.; Vagenas, E.

    2005-12-01

    The SkyWatch project is co-fi nanced by the European Community, within the FP6 framework of Science and Society, The SkyWatch consortium is composed by the following partners: Q-PLAN (GR), EDEN - Open Classroom (UK), Astrophysics Research Institute - Liverpool John Moores University (UK), European Physical Society (FR), Ellinogermaniki Agogi (GR), Stockholm University (SE), SCIENCE PROJECTS (UK) and University of Duisburg-Essen (DE). The aim of the SkyWatch project is to build up the number of youngsters involved in a series of science projects to create a virtual community of prospective young researchers promoting scientifi c culture. The project will allow young people to access and use robotic telescopes remotely in real-time, perform observations, analyze data and results and fi nally to develop and suggest solutions to selected research/scientifi c topics, all achieved through an innovative web-based learning environment. The dissemination of the project's activities is also served by a European Science Contest on science topics and projects, a series of popular science distance learning courses (Science Days) for European youth, promotion of concepts and ideas of science of a multidisciplinary nature: astronomy, physics, mathematics, chemistry, etc. The young participants are prompted to organize teams (school classes, groups of students, etc.) and to design, develop and implement projects and activities with the use of robotic telescopes under the guidance and the continuous support of a team of experts.

  9. Isn't Citizen Science a Hoot? A Case-study Exploring the Effectiveness of Citizen Science As an Instrument to Teach the Nature of Science through a Local Nocturnal Owl-monitoring Project

    NASA Astrophysics Data System (ADS)

    Kreofsky, Tess Marie

    Citizen science projects present a distinctive opportunity for professional and volunteer scientists to coordinate their efforts to gather unique sets of data that can benefit the scientific and local communities. These projects are assumed to be an effective educational tool to teach nature of science (NOS) to participants (Brossard, Lewenstein, Bonney, 2005). This case study evaluates the effectiveness of participation in a citizen science project as a way to learn about NOS. Through enhancement of the Tryon Creek Owl Monitoring Project the researcher reviewed the characteristics of a citizen science project that were thought to be necessary to impact the volunteers' knowledge of NOS. The study also explored the benefits and limitations to organizing the citizen science protect using the principles of action research. Analysis of participants' knowledge and the effectiveness of active research theory, was evaluated through pre- and post- questionnaires and interviews. Although volunteers were able to explore the core themes of NOS through actively engaging in the scientific process, they did not experience a statistically significant change in their demonstration of understanding. For a multitude of reasons, participants had a positive experience with the presence of an embedded researcher within the project. This case study supports the use of active research as a guide to ensure that within each project the needs of both the scientific community and the volunteer scientists are met.

  10. Sun-Earth Connection EPO's with Multiple Uses and Audiences

    NASA Astrophysics Data System (ADS)

    Foster, S. Q.; Johnson, R. M.; Russell, R.; Lu, G.; Richmond, A.; Maute, A.; Haller, D.; Conery, C.; Bintner, G.; Kiessling, D.; Hughes, W. J.

    2005-05-01

    The three-year life of an EPO grant can be a journey guided by clear goals and enriched by collaborative and outreach opportunities connecting Space sciences to Earth sciences for both K-12 and public audiences. This point is illustrated by two EPO projects funded by NASA Sun-Earth Connection research grants to the High Altitude Observatory (HAO) at the National Center for Atmospheric Research. They are entering their final year coordinated by the Office of Education and Outreach at University Corporation for Atmospheric Research. The content focus of both projects is well aligned with HAO's research mission and the expertise of our scientists, addressing solar dynamics, space weather, and the impacts of solar events on the magnetosphere, as well as societies inhabiting Earth's surface. The first project (Gang Lu, PI) develops presentation resources, inquiry activities, and tips that will help HAO scientists be better prepared to visit K-12 classrooms. Unexpectedly, the simultaneous development of a Teachers' Guide to NCAR's new Climate Discovery exhibit, which takes an Earth system approach to climate and global change, has created a niche for this EPO resource to be revised and repurposed for a needed unit in the guide about the exhibit's graphic panels on Sun-Earth connections. The second project (Art Richmond, PI) engages two high school "Teachers in Residence" to develop resources they can utilize with their students. Excited by exceptional educational graphics and animations in the new Physics of the Aurora: Earth Systems module co-produced by HAO and the COMET Program for advanced undergraduate courses, they chose to adapt appropriate sections of the module to enrich Earth science and math concepts addressed in their 9th and 10th grade astronomy and general physics classes. Simultaneously, the Windows to the Universe web site, which continuously updates space science content and is now developing a new Space Weather section with support from the Center for Integrated Space Weather Modeling at Boston University, is able to integrate the resources developed through the EPOs and widely disseminate the high school version of the module to a large global audience. Thus, UCAR/NCAR-based EPOs are finding it beneficial to bring space sciences "down to Earth" to educate public and K-12 audiences.

  11. Data Publication in the Meteorological Sciences: the OJIMS project

    NASA Astrophysics Data System (ADS)

    Callaghan, Sarah; Hewer, Fiona; Pepler, Sam; Hardaker, Paul; Gadian, Alan

    2010-05-01

    Historically speaking, scientific publication has mainly focussed on the analysis, interpretation and conclusions drawn from a given dataset, as these are the information that can be easily published in hard copy text format with the aid of diagrams. Examining the raw data that forms the dataset is often difficult to do, as datasets are usually stored in digital media, in a variety of (often proprietary or non-standard) formats. This means that the peer-review process is generally only applied to the methodology and final conclusions of a piece of work, and not the underlying data itself. Yet for the conclusions to stand, the data must be of good quality, and the peer-review process must be used to judge the data quality. Data publication, involving the peer-review of datasets, would be of benefit to many sectors of the academic community. For the data scientists, who often spend considerable time and effort ensuring that their data and metadata is complete, valid and stored in an accredited data repository, this would provide academic credit in the form of extra publications and citations. Data publication would benefit the wider community, allowing discovery and reuse of useful datasets, ensuring their curation and providing the best possible value for money. Overlay journals are a technology which is already being used to facilitate peer review and publication on-line. The Overlay Journal Infrastructure for Meteorological Sciences (OJIMS) Project aimed to develop the mechanisms that could support both a new (overlay) Journal of Meteorological Data and an Open-Access Repository for documents related to the meteorological sciences. The OJIMS project was conducted by a partnership between the UK's Royal Meteorological Society (RMetS) and two members of the National Centre for Atmospheric Science (NCAS), the British Atmospheric Data Centre (BADC) and the University of Leeds. Conference delegates at the NCAS Conference in Bristol of 8-10 December 2008 were invited to complete a survey to assess the potential implications for the meteorological sciences should a data journal and an open access subject repository be created and operated. Supervised run-throughs of a demonstrator Journal of Meteorological Data were also carried out by seven volunteers at the conference. The feedback from the surveys and demonstrations became part of the reports and recommendations produced by the project. This included discussion of the benefits to data creators, the review process, branding, version control and citations. The project concluded that standard online journal technologies are suitable for the development and operation of a data journal as they allow the use of all the functions of journals without the need to engineer new solutions. The user surveys and interviews also showed that there is a significant desire in the meteorological sciences community for a data journal.

  12. Aqua Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Graham, S. M.; Parkinson, C. L.; Chambers, L. H.; Ray, S. E.

    2011-12-01

    NASA's Aqua satellite was launched on May 4, 2002, with six instruments designed to collect data about the Earth's atmosphere, biosphere, hydrosphere, and cryosphere. Since the late 1990s, the Aqua mission has involved considerable education and public outreach (EPO) activities, including printed products, formal education, an engineering competition, webcasts, and high-profile multimedia efforts. The printed products include Aqua and instrument brochures, an Aqua lithograph, Aqua trading cards, NASA Fact Sheets on Aqua, the water cycle, and weather forecasting, and an Aqua science writers' guide. On-going formal education efforts include the Students' Cloud Observations On-Line (S'COOL) Project, the MY NASA DATA Project, the Earth System Science Education Alliance, and, in partnership with university professors, undergraduate student research modules. Each of these projects incorporates Aqua data into its inquiry-based framework. Additionally, high school and undergraduate students have participated in summer internship programs. An earlier formal education activity was the Aqua Engineering Competition, which was a high school program sponsored by the NASA Goddard Space Flight Center, Morgan State University, and the Baltimore Museum of Industry. The competition began with the posting of a Round 1 Aqua-related engineering problem in December 2002 and concluded in April 2003 with a final round of competition among the five finalist teams. The Aqua EPO efforts have also included a wide range of multimedia products. Prior to launch, the Aqua team worked closely with the Special Projects Initiative (SPI) Office to produce a series of live webcasts on Aqua science and the Cool Science website aqua.nasa.gov/coolscience, which displays short video clips of Aqua scientists and engineers explaining the many aspects of the Aqua mission. These video clips, the Aqua website, and numerous presentations have benefited from dynamic visualizations showing the Aqua launch, instrument deployments, instrument sensing, and the Aqua orbit. More recently, in 2008 the Aqua team worked with the ViewSpace production team from the Space Telescope Science Institute to create an 18-minute ViewSpace feature showcasing the science and applications of the Aqua mission. Then in 2010 and 2011, Aqua and other NASA Earth-observing missions partnered with National CineMedia on the "Know Your Earth" (KYE) project. During January and July 2010 and 2011, KYE ran 2-minute segments highlighting questions that promoted global climate literacy on lobby LCD screens in movie theaters throughout the U.S. Among the ongoing Aqua EPO efforts is the incorporation of Aqua data sets onto the Dynamic Planet, a large digital video globe that projects a wide variety of spherical data sets. Aqua also has a highly successful collaboration with EarthSky communications on the production of an Aqua/EarthSky radio show and podcast series. To date, eleven productions have been completed and distributed via the EarthSky network. In addition, a series of eight video podcasts (i.e., vodcasts) are under production by NASA Goddard TV in conjunction with Aqua personnel, highlighting various aspects of the Aqua mission.

  13. One Health in social networks and social media

    PubMed Central

    Mekaru, S.R.; Brownstein, J.S.

    2015-01-01

    Summary In the rapidly evolving world of social media, social networks, mobile applications and citizen science, online communities can develop organically and separately from larger or more established organisations. The One Health online community is experiencing expansion from both the bottom up and the top down. In this paper, the authors review social media’s strengths and weaknesses, earlier work examining Internet resources for One Health, the current state of One Health in social media (e.g. Facebook, Twitter, YouTube) and online social networking sites (e.g. LinkedIn and ResearchGate), as well as social media in One Health-related citizen science projects. While One Health has a fairly strong presence on websites, its social media presence is more limited and has an uneven geographic distribution. In work following the Stone Mountain Meeting, the One Health Global Network Task Force Report recommended the creation of an online community of practice. Professional social networks as well as the strategic use of social media should be employed in this effort. Finally, One Health-related research projects using volunteers (citizen science) often use social media to enhance their recruitment. Including these researchers in a community of practitioners would take full advantage of their existing social media presence. In conclusion, the interactive nature of social media, combined with increasing global Internet access, provides the One Health community with opportunities to meaningfully expand their community and promote their message. PMID:25707189

  14. Let's do science with children

    NASA Astrophysics Data System (ADS)

    Paolini, Mara

    2013-04-01

    The school where I worked in 2011,was for primary school teachers-to-be. Classes were formed by a high number of students with a handicapped student in each class. The school was attended mainly by girls with low self-esteem and difficulties in fulfilling their homework. Moreover secondary school students often find science far from their world and rather boring. So helping them understand the relationship between science and everyday life, between chemistry and society was my main objective . Simple / elementary experiments were chosen : if presented and carried out with scientific method, they can prove very useful in the development of specific abilities, from simple observation to the more complex and vital ability to grasp cause and effect relation. I think that the direct observation of facts and phenomena is the foundation to stimulate the process of learning and abstracting experiments: A. The pressure as a force, the behavior of the hot and cold water. 1. the implosion of the can 2. the candle 3. the balloon and the bottle 4. the egg in the bottle Monitoring and evaluation The direct observation of students during operations and final written reports were the ways which was evaluated the project. Results of the project carried out: The students were able to use scientific language correctly, to explain the phenomenon to primary school children using their own ideas. they also devised a table where to list the experiments carried out

  15. One Health in social networks and social media.

    PubMed

    Mekaru, S R; Brownstein, J S

    2014-08-01

    In the rapidly evolving world of social media, social networks, mobile applications and citizen science, online communities can develop organically and separately from larger or more established organisations. The One Health online community is experiencing expansion from both the bottom up and the top down. In this paper, the authors review social media's strengths and weaknesses, earlier work examining Internet resources for One Health, the current state of One Health in social media (e.g. Facebook, Twitter, YouTube) and online social networking sites (e.g. LinkedIn and ResearchGate), as well as social media in One Health-related citizen science projects. While One Health has a fairly strong presence on websites, its social media presence is more limited and has an uneven geographic distribution. In work following the Stone Mountain Meeting,the One Health Global Network Task Force Report recommended the creation of an online community of practice. Professional social networks as well as the strategic use of social media should be employed in this effort. Finally, One Health-related research projects using volunteers (citizen science) often use social media to enhance their recruitment. Including these researchers in a community of practitioners would take full advantage of their existing social media presence. In conclusion, the interactive nature of social media, combined with increasing global Internet access, provides the One Health community with opportunities to meaningfully expand their community and promote their message.

  16. Pattern transition from nanohoneycomb to nanograss on germanium by gallium ion bombardment

    NASA Astrophysics Data System (ADS)

    Zheng Xiao-Hu郑, 晓虎; Zhang Miao张, 苗; Huang An-Ping黄, 安平; Xiao Zhi-Song肖, 志松; Paul, K. Chu朱 剑 豪; Wang Xi王, 曦; Di Zeng-Feng狄, 增峰

    2015-05-01

    During the irradiation of Ge surface with Ga+ ions up to 1017 ions·cm-2, various patterns from ordered honeycomb to nanograss structure appear to be decided by the ion beam energy. The resulting surface morphologies have been studied by scanning electron microscopy and atomic force microscopy. For high energy Ga+ irradiation (16-30 keV), by controlling the ion fluence, we have captured that the equilibrium nanograss morphology also originates from the ordered honeycomb structure. When honeycomb holes are formed by ion erosion, heterogeneous distribution of the deposited energy along the holes leads to viscous flow from the bottom to the plateau. Redistribution of target atoms results in the growth of protuberances on the plateau, and finally the pattern evolution from honeycomb to nanograss with an equilibrium condition. Project supported by the National Natural Science Funds for Excellent Young Scholar, China (Grant No. 51222211), the National Natural Science Foundation of China (Grant Nos. 61176001 and 61006088), the National Basic Research Program of China (Grant No. 2010CB832906), the Pujiang Talent Project of Shanghai, China (Grant No. 11PJ1411700), the Hong Kong Research Grants Council (RGC) General Research Funds (GRF), China (Grant No. 112212), the City University of Hong Kong of Hong Kong Applied Research Grant (ARG), China (Grant No. 9667066), and the International Collaboration and Innovation Program on High Mobility Materials Engineering of Chinese Academy of Sciences.

  17. What Works: Building Natural Science Communities. Resources for Reform. Strengthening Undergraduate Science and Mathematics. A Report of Project Kaleidoscope. Volume Two.

    ERIC Educational Resources Information Center

    Narum, Jeanne L., Ed.

    The purpose of Project Kaleidoscope is to be a catalyst for action to encourage a national environment for reform in undergraduate education in science and mathematics in the United States. This report, the second of two volumes, presents ideas from Project Kaleidoscope that involve changing undergraduate science and mathematics education through…

  18. Scientific literacy of adult participants in an online citizen science project

    NASA Astrophysics Data System (ADS)

    Price, Charles Aaron

    Citizen Science projects offer opportunities for non-scientists to take part in scientific research. Scientific results from these projects have been well documented. However, there is limited research about how these projects affect their volunteer participants. In this study, I investigate how participation in an online, collaborative astronomical citizen science project can be associated with the scientific literacy of its participants. Scientific literacy is measured through three elements: attitude towards science, belief in the nature of science and competencies associated with learning science. The first two elements are measured through a pre-test given to 1,385 participants when they join the project and a post-test given six months later to 125 participants. Attitude towards science was measured using nine Likert-items custom designed for this project and beliefs in the nature of science were measured using a modified version of the Nature of Science Knowledge scale. Responses were analyzed using the Rasch Rating Scale Model. Competencies are measured through analysis of discourse occurring in online asynchronous discussion forums using the Community of Inquiry framework, which describes three types of presence in the online forums: cognitive, social and teaching. Results show that overall attitudes did not change, p = .225. However, there was significant change towards attitudes about science in the news (positive) and scientific self efficacy (negative), p < .001 and p = .035 respectively. Beliefs in the nature of science exhibited a small, but significant increase, p = .04. Relative positioning of scores on the belief items did not change much, suggesting the increase is mostly due to reinforcement of current beliefs. The cognitive and teaching presence in the online forums did not change, p = .807 and p = .505 respectively. However, the social presence did change, p = .011. Overall, these results suggest that multi-faceted, collaborative citizen science projects can have an impact on some aspects of scientific literacy. Using the Rasch Model allowed us to uncover effects that may have otherwise been hidden. Future projects may want to include social interactivity between participants and also make participants specifically aware of how they are contributing to the entire scientific process.

  19. Expedition Zenith: Experiences of eighth grade girls in a non-traditional math/science program

    NASA Astrophysics Data System (ADS)

    Ulm, Barbara Jean

    2004-11-01

    This qualitative study describes the experiences of a group of sixteen, eighth grade girls participating in a single-sex, math/science program based on gender equity research and constructivist theory. This phenomenological case study highlights the individual changes each girl perceives in herself as a result of her involvement in this program which was based at a suburban middle school just north of New York City. Described in narrative form is what took place during this single-sex program. At the start of the program the girls worked cooperatively in groups to build canoes. The canoes were then used to study a wetland during the final days of the program. To further immerse the participants into nature, the girls also camped during these final days. Data were collected from a number of sources to uncover, as fully as possible, the true essence of the program and the girls' experiences in it. The data collection methods included direct observation; in-depth, open-ended interviews; and written documentation. As a result of data collection, the girls' perceived outcomes and assessment of the program, as well as their recommendations for future math/science programs are revealed. The researcher in this study also acted as teacher, directing the program, and as participant to better understand the experiences of the girls involved in the program. Thus, unique insights could be made. The findings in this study provide insight into the learning of the participants, as well as into the relationships they formed both inside and outside of the program. Their perceived experiences and assessment of the program were then used to develop a greater understanding as to the effectiveness of this non-traditional program. Although this study echoed much of what research says about the needs of girls in learning situations, and therefore, reinforces previously accepted beliefs, it also reveals significant findings in areas previously unaddressed by gender studies. For example, when girls feel supported they can experience success in math and science-based projects that are challenging, especially when such projects offer an opportunity to appreciate a sense of real-life relevancy. Positive effects can be seen when such projects build upon previous student experiences. But when an experience is new, investigating a scientific phenomenon in a less structured manner before developing more in-depth, formal studies provides an initial foundation upon which to build. Also, this study emphasizes the need for role models. Both teacher and parent involvement play a very important role in a girl's development.

  20. The use of animals in national high school student science fair projects in the United States.

    PubMed

    Miller-Spiegel, Crystal

    2004-06-01

    Science fair projects can provide a sound opportunity to teach students the value of scientific methodology without relying on the routine and unnecessary use of animals. Unfortunately, students are often encouraged to use animals in an expendable manner that both duplicates previous experiments and neglects the opportunity to "think outside the box" in order to generate new hypotheses/theories about human health, physiological processes or basic biological concepts. Although at least one national science fair sponsor has changed its policy regarding students' utilisation of vertebrate animals, others continue to encourage the more traditional in vivo experimental projects. This paper will review the guidelines of two major national science fairs in the USA; types of projects conducted that involve animals; numbers of animals involved; interview responses by some student finalists who used vertebrates in their projects; successful initiatives by animal advocates in the USA to eliminate the use of animals in science fairs; and potential areas of outreach to science educators, science fair sponsors, high schools and students.

Top