Sample records for science flight program

  1. Ground-Based Research within NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Ground-based research in Materials Science for NASA's Microgravity program serves several purposes, and includes approximately four Principal Investigators for every one in the flight program. While exact classification is difficult. the ground program falls roughly into the following categories: (1) Intellectual Underpinning of the Flight Program - Theoretical Studies; (2) Intellectual Underpinning of the Flight Program - Bringing to Maturity New Research; (3) Intellectual Underpinning of the Flight Program - Enabling Characterization; (4) Intellectual Underpinning of the Flight Program - Thermophysical Property Determination; (5) Radiation Shielding; (6) Preliminary In Situ Resource Utilization; (7) Biomaterials; (8) Nanostructured Materials; (9) Materials Science for Advanced Space Propulsion. It must be noted that while the first four categories are aimed at using long duration low gravity conditions, the other categories pertain more to more recent NASA initiatives in materials science. These new initiatives address NASA's future materials science needs in the realms of crew health and safety, and exploration, and have been included in the most recent NASA Research Announcements (NRA). A description of each of these nine categories will be given together with examples of the kinds of research being undertaken.

  2. Recognizing and optimizing flight opportunities with hardware and life sciences limitations.

    PubMed

    Luttges, M W

    1992-01-01

    The availability of orbital space flight opportunities to conduct life sciences research has been limited. It is possible to use parabolic flight and sounding rocket programs to conduct some kinds of experiments during short episodes (seconds to minutes) of reduced gravity, but there are constraints and limitations to these programs. Orbital flight opportunities are major undertakings, and the potential science achievable is often a function of the flight hardware available. A variety of generic types of flight hardware have been developed and tested, and show great promise for use during NSTS flights. One such payload configuration is described which has already flown.

  3. Microgravity

    NASA Image and Video Library

    1998-09-30

    The Electrostatic Levitator (ESL) Facility established at Marshall Space Flight Center (MSFC) supports NASA's Microgravity Materials Science Research Program. NASA materials science investigations include ground-based, flight definition and flight projects. Flight definition projects, with demanding science concept review schedules, receive highest priority for scheduling experiment time in the Electrostatic Levitator (ESL) Facility.

  4. Budget estimates, fiscal year 1995. Volume 1: Agency summary, human space flight, and science, aeronautics and technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The NASA budget request has been restructured in FY 1995 into four appropriations: human space flight; science, aeronautics, and technology; mission support; and inspector general. The human space flight appropriations provides funding for NASA's human space flight activities. This includes the on-orbit infrastructure (space station and Spacelab), transportation capability (space shuttle program, including operations, program support, and performance and safety upgrades), and the Russian cooperation program, which includes the flight activities associated with the cooperative research flights to the Russian Mir space station. These activities are funded in the following budget line items: space station, Russian cooperation, space shuttle, and payload utilization and operations. The science, aeronautics, and technology appropriations provides funding for the research and development activities of NASA. This includes funds to extend our knowledge of the earth, its space environment, and the universe and to invest in new technologies, particularly in aeronautics, to ensure the future competitiveness of the nation. These objectives are achieved through the following elements: space science, life and microgravity sciences and applications, mission to planet earth, aeronautical research and technology, advanced concepts and technology, launch services, mission communication services, and academic programs.

  5. National Report on the NASA Sounding Rocket and Balloon Programs

    NASA Technical Reports Server (NTRS)

    Eberspeaker, Philip; Fairbrother, Debora

    2013-01-01

    The U. S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a total of 30 to 40 missions per year in support of the NASA scientific community and other users. The NASA Sounding Rockets Program supports the science community by integrating their experiments into the sounding rocket payloads, and providing both the rocket vehicle and launch operations services. Activities since 2011 have included two flights from Andoya Rocket Range, more than eight flights from White Sands Missile Range, approximately sixteen flights from Wallops Flight Facility, two flights from Poker Flat Research Range, and four flights from Kwajalein Atoll. Other activities included the final developmental flight of the Terrier-Improved Malemute launch vehicle, a test flight of the Talos-Terrier-Oriole launch vehicle, and a host of smaller activities to improve program support capabilities. Several operational missions have utilized the new Terrier-Malemute vehicle. The NASA Sounding Rockets Program is currently engaged in the development of a new sustainer motor known as the Peregrine. The Peregrine development effort will involve one static firing and three flight tests with a target completion data of August 2014. The NASA Balloon Program supported numerous scientific and developmental missions since its last report. The program conducted flights from the U.S., Sweden, Australia, and Antarctica utilizing standard and experimental vehicles. Of particular note are the successful test flights of the Wallops Arc Second Pointer (WASP), the successful demonstration of a medium-size Super Pressure Balloon (SPB), and most recently, three simultaneous missions aloft over Antarctica. NASA continues its successful incremental design qualification program and will support a science mission aboard WASP in late 2013 and a science mission aboard the SPB in early 2015. NASA has also embarked on an intra-agency collaboration to launch a rocket from a balloon to conduct supersonic decelerator tests. An overview of NASA's Sounding Rockets and Balloon Operations, Technology Development and Science support activities will be presented.

  6. Research and technology, 1984: Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Moorehead, T. W. (Editor)

    1984-01-01

    The Marshall Space Flight Center conducts research programs in space sciences, materials processing in space, and atmospheric sciences, as well as technology programs in such areas as propulsion, materials, processes, and space power. This Marshall Space Flight Center 1984 Annual Report on Research and Technology contains summaries of the more significant scientific and technical results obtained during FY-84.

  7. New Millenium Program Serving Earth and Space Sciences

    NASA Technical Reports Server (NTRS)

    Li, Fuk

    1999-01-01

    A cross-Enterprise program is to identify and validate flight breakthrough technologies that will significantly benefit future space science and earth science missions. The breakthrough technologies are: enable new capabilities to meet earth and space science needs and reducing costs of future missions. The flight validation are: mitigates risks to first users and enables rapid technology infusion into future missions.

  8. Atmospheric Measurements for Flight Test at NASAs Neil A. Armstrong Flight Research Center

    NASA Technical Reports Server (NTRS)

    Teets, Edward H.

    2016-01-01

    Information enclosed is to be shared with students of Atmospheric Sciences, Engineering and High School STEM programs. Information will show the relationship between atmospheric Sciences and aeronautical flight testing.

  9. NASA's Microgravity Science Program

    NASA Technical Reports Server (NTRS)

    Salzman, Jack A.

    1994-01-01

    Since the late 1980s, the NASA Microgravity Science Program has implemented a systematic effort to expand microgravity research. In 1992, 114 new investigators were selected to enter the program and more US microgravity experiments were conducted in space than in all the years combined since Skylab (1973-74). The use of NASA Research Announcements (NRA's) to solicit research proposals has proven to be highly successful in building a strong base of high-quality peer-reviewed science in both the ground-based and flight experiment elements of the program. The ground-based part of the program provides facilities for low gravity experiments including drop towers and aircraft for making parabolic flights. Program policy is that investigations should not proceed to the flight phase until all ground-based investigative capabilities have been exhausted. In the space experiments program, the greatest increase in flight opportunities has been achieved through dedicated or primary payload Shuttle missions. These missions will continue to be augmented by both mid-deck and GAS-Can accommodated experiments. A US-Russian cooperative flight program envisioned for 1995-97 will provide opportunities for more microgravity research as well as technology demonstration and systems validation efforts important for preparing for experiment operations on the Space Station.

  10. Goddard Space Flight Center: 1994 Maryland/GSFC Earth and Environmental Science Teacher Ambassador Program

    NASA Technical Reports Server (NTRS)

    Latham, James

    1995-01-01

    The Maryland/Goddard Space Flight Center (GSFC) Earth and Environmental Science Teacher Ambassador Program was designed to enhance classroom instruction in the Earth and environmental science programs in the secondary schools of the state of Maryland. In October 1992, more than 100 school system administrators from the 24 local Maryland school systems, the Maryland State Department of Education, and the University of Maryland met with NASA GSFC scientists and education officers to propose a cooperative state-wide secondary school science teaching enhancement initiative.

  11. NASA Earth Science Update with Information Science Technology

    NASA Technical Reports Server (NTRS)

    Halem, Milton

    2000-01-01

    This viewgraph presentation gives an overview of NASA earth science updates with information science technology. Details are given on NASA/Earth Science Enterprise (ESE)/Goddard Space Flight Center strategic plans, ESE missions and flight programs, roles of information science, ESE goals related to the Minority University-Space Interdisciplinary Network, and future plans.

  12. Space Science Research and Technology at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Johnson, Charles L.

    2007-01-01

    This presentation will summarize the various projects and programs managed in the Space Science Programs and Projects Office at NASA's Marshall Space Flight Center in Huntsville, Alabama. Projects in the portfolio include NASA's Chandra X-Ray telescope, Hinode solar physics satellite, various advanced space propulsion technologies, including solar sails and tethers, as well as NASA's Discovery and New Frontiers Programs.

  13. Phase 1 research program overview

    NASA Technical Reports Server (NTRS)

    Uri, J. J.; Lebedev, O. N.

    2001-01-01

    The Phase 1 research program was unprecedented in its scope and ambitious in its objectives. The National Aeronautics and Space Administration committed to conducting a multidisciplinary long-duration research program on a platform whose capabilities were not well known, not to mention belonging to another country. For the United States, it provided the first opportunity to conduct research in a long-duration space flight environment since the Skylab program in the 1970's. Multiple technical as well as cultural challenges were successfully overcome through the dedicated efforts of a relatively small cadre of individuals. The program developed processes to successfully plan, train for and execute research in a long-duration environment, with significant differences identified from short-duration space flight science operations. Between August 1994 and June 1998, thousands of kilograms of research hardware was prepared and launched to Mir, and thousands of kilograms of hardware and data products were returned to Earth. More than 150 Principal Investigators from eight countries were involved in the program in seven major research disciplines: Advanced Technology; Earth Sciences; Fundamental Biology; Human Life Sciences; International Space Station Risk Mitigation; Microgravity; and Space Sciences. Approximately 75 long-duration investigations were completed on Mir, with additional investigations performed on the Shuttle flights that docked with Mir. The flight phase included the participation of seven US astronauts and 20 Russian cosmonauts. The successful completion of the Phase 1 research program not only resulted in high quality science return but also in numerous lessons learned to make the ISS experience more productive. The cooperation developed during the program was instrumental in its success. c2001 AIAA. Published by Elsevier Science Ltd.

  14. Phase 1 research program overview.

    PubMed

    Uri, J J; Lebedev, O N

    2001-01-01

    The Phase 1 research program was unprecedented in its scope and ambitious in its objectives. The National Aeronautics and Space Administration committed to conducting a multidisciplinary long-duration research program on a platform whose capabilities were not well known, not to mention belonging to another country. For the United States, it provided the first opportunity to conduct research in a long-duration space flight environment since the Skylab program in the 1970's. Multiple technical as well as cultural challenges were successfully overcome through the dedicated efforts of a relatively small cadre of individuals. The program developed processes to successfully plan, train for and execute research in a long-duration environment, with significant differences identified from short-duration space flight science operations. Between August 1994 and June 1998, thousands of kilograms of research hardware was prepared and launched to Mir, and thousands of kilograms of hardware and data products were returned to Earth. More than 150 Principal Investigators from eight countries were involved in the program in seven major research disciplines: Advanced Technology; Earth Sciences; Fundamental Biology; Human Life Sciences; International Space Station Risk Mitigation; Microgravity; and Space Sciences. Approximately 75 long-duration investigations were completed on Mir, with additional investigations performed on the Shuttle flights that docked with Mir. The flight phase included the participation of seven US astronauts and 20 Russian cosmonauts. The successful completion of the Phase 1 research program not only resulted in high quality science return but also in numerous lessons learned to make the ISS experience more productive. The cooperation developed during the program was instrumental in its success. c2001 AIAA. Published by Elsevier Science Ltd.

  15. Aerothermodynamic Insight From The HIFIRE Program

    NASA Astrophysics Data System (ADS)

    Kimmel, Roger L.; Adamczak, David; Dolvin, Douglas; Borg, Matthew; Stanfield, Scott

    2011-05-01

    The HIFiRE (Hypersonic International Flight Research and Experimentation) program is a joint venture of the United States Air Force Research Laboratory and Australian Defence Science and Technology Organisation to utilize economical flight research opportunities in the exploration of flight science issues for space access systems. Flights 1 and 5 focus on collecting high-resolution experimental data on critical aerothermodynamic phenomena, including laminar-turbulent transition and shock/boundary layer interactions. Flight 1, successfully flown in March 2010, employed a test article composed of a 7-deg right angle cone, followed by a cylinder and flare. The test article remained attached to the second-stage booster throughout the ballistic trajectory. Flight 5, to be launched in a similar fashion, will feature a 2:1 elliptic cross-section cone as the test article. For both flights significant resources have been invested in pre-flight aerothermodynamic analysis and testing. This manuscript will summarize the overall strategy of the HIFiRE program, review the pre-flight aerothermodynamic analysis for Flights 1 and 5, and present a brief look at preliminary results from the post-flight analysis of Flight 1.

  16. The New Millenium Program: Serving Earth and Space Sciences

    NASA Technical Reports Server (NTRS)

    Li, Fuk K.

    2000-01-01

    NASA has exciting plans for space science and Earth observations during the next decade. A broad range of advanced spacecraft and measurement technologies will be needed to support these plans within the existing budget and schedule constraints. Many of these technology needs are common to both NASA's Office of Earth Science (OES) and Office of Space Sciences (OSS). Even though some breakthrough technologies have been identified to address these needs, project managers have traditionally been reluctant to incorporate them into flight programs because their inherent development risk. To accelerate the infusion of new technologies into its OES and OSS missions, NASA established the New Millennium Program (NMP). This program analyzes the capability needs of these enterprises, identifies candidate technologies to address these needs, incorporates advanced technology suites into validation flights, validates them in the relevant space environment, and then proactively infuses the validated technologies into future missions to enhance their capabilities while reducing their life cycle cost. The NMP employs a cross-enterprise Science Working Group, the NASA Enterprise science and technology roadmaps to define the capabilities needed by future Earth and Space science missions. Additional input from the science community is gathered through open workshops and peer-reviewed NASA Research Announcement (NRAs) for advanced measurement concepts. Technology development inputs from the technology organizations within NASA, other government agencies, federally funded research and development centers (FFRDC's), U.S. industry, and academia are sought to identify breakthrough technologies that might address these needs. This approach significantly extends NASA's technology infrastructure. To complement other flight test programs that develop or validate of individual components, the NMP places its highest priority on system-level validations of technology suites in the relevant space environment. This approach is not needed for all technologies, but it is usually essential to validate advanced system architectures or new measurement concepts. The NMP has recently revised its processes for defining candidate validation flights, and selecting technologies for these flights. The NMP now employs integrated project formulation teams, 'Which include scientists, technologists, and mission planners, to incorporate technology suites into candidate validation flights. These teams develop competing concepts, which can be rigorously evaluated prior to selection for flight. The technology providers for each concept are selected through an open, competitive, process during the project formulation phase. If their concept is selected for flight, they are incorporated into the Project Implementation Team, which develops, integrates, tests, launches, and operates the technology validation flight. Throughout the project implementation phase, the Implementation Team will document and disseminate their validation results to facilitate the infusion of their validated technologies into future OSS and OES science missions. The NMP has successfully launched its first two Deep Space flights for the OSS, and is currently implementing its first two Earth Orbiting flights for the OES. The next OSS and OES flights are currently being defined. Even though these flights are focused on specific Space Science and Earth Science themes, they are designed to validate a range of technologies that could benefit both enterprises, including advanced propulsion, communications, autonomous operations and navigation, multifunctional structures, microelectronics, and advanced instruments. Specific examples of these technologies will be provided in our presentation. The processes developed by the NMP also provide benefits across the Space and Earth Science enterprises. In particular, the extensive, nation-wide technology infrastructure developed by the NMP enhances the access to breakthrough technologies for both enterprises.

  17. Problem Solving: The "Wright" Math. The Centennial of Flight Special Edition. An Educator Guide with Activities in Mathematics, Science, and Technology. NASA CONNECT[TM].

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    NASA CONNECT is an annual series of integrated mathematics, science, and technology instructional distance learning programs for students in grades 6-8. This program is designed for students to learn about the evolution of flight. The program has three components--television broadcast, Web activity, and lesson guide--which are designed as an…

  18. Scientific involvement in Skylab by the Space Sciences Laboratory of the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Winkler, C. E. (Editor)

    1973-01-01

    The involvement of the Marshall Space Flight Center's Space Sciences Laboratory in the Skylab program from the early feasibility studies through the analysis and publication of flight scientific and technical results is described. This includes mission operations support, the Apollo telescope mount, materials science/manufacturing in space, optical contamination, environmental and thermal criteria, and several corollary measurements and experiments.

  19. NASA-Ames Life Sciences Flight Experiments program - 1980 status report

    NASA Technical Reports Server (NTRS)

    Berry, W. E.; Dant, C. C.; Macleod, G.; Williams, B. A.

    1980-01-01

    The paper deals with the ESA's Spacelab LSFE (Life Sciences Flight Experiments) program which, once operational, will provide new and unique opportunities to conduct research into the effects of spaceflight and weightlessness on living organisms under conditions approximating ground-based laboratories. Spacelab missions, launched at 18-month intervals, will enable scientists to test hypotheses from such disciplines as vestibular physiology, developmental biology, biochemistry, cell biology, plant physiology, and similar life sciences.

  20. The Airborne Astronomy Ambassadors (AAA) Program and NASA Astrophysics Connections

    NASA Astrophysics Data System (ADS)

    Backman, Dana Edward; Clark, Coral; Harman, Pamela

    2018-01-01

    The NASA Airborne Astronomy Ambassadors (AAA) program is a three-part professional development (PD) experience for high school physics, astronomy, and earth science teachers. AAA PD consists of: (1) blended learning via webinars, asynchronous content delivery, and in-person workshops, (2) a STEM immersion experience at NASA Armstrong’s B703 science research aircraft facility in Palmdale, California, including interactions with NASA astrophysics & planetary science Subject Matter Experts (SMEs) during science flights on SOFIA, and (3) continuing post-flight opportunities for teacher & student connections with SMEs.

  1. A New Direction for the NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for the flight research environment. A summary will explain the concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program.

  2. History of nutrition in space flight: overview

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Feeback, Daniel L.

    2002-01-01

    Major accomplishments in nutritional sciences for support of human space travel have occurred over the past 40 y. This article reviews these accomplishments, beginning with the early Gemini program and continuing through the impressive results from the first space station Skylab program that focused on life sciences research, the Russian contributions through the Mir space station, the US Shuttle life sciences research, and the emerging International Space Station missions. Nutrition is affected by environmental conditions such as radiation, temperature, and atmospheric pressures, and these are reviewed. Nutrition with respect to space flight is closely interconnected with other life sciences research disciplines including the study of hematology, immunology, as well as neurosensory, cardiovascular, gastrointestinal, circadian rhythms, and musculoskeletal physiology. These relationships are reviewed in reference to the overall history of nutritional science in human space flight. Cumulative nutritional research over the past four decades has resulted in the current nutritional requirements for astronauts. Space-flight nutritional recommendations are presented along with the critical path road map that outlines the research needed for future development of nutritional requirements.

  3. History of nutrition in space flight: overview.

    PubMed

    Lane, Helen W; Feeback, Daniel L

    2002-10-01

    Major accomplishments in nutritional sciences for support of human space travel have occurred over the past 40 y. This article reviews these accomplishments, beginning with the early Gemini program and continuing through the impressive results from the first space station Skylab program that focused on life sciences research, the Russian contributions through the Mir space station, the US Shuttle life sciences research, and the emerging International Space Station missions. Nutrition is affected by environmental conditions such as radiation, temperature, and atmospheric pressures, and these are reviewed. Nutrition with respect to space flight is closely interconnected with other life sciences research disciplines including the study of hematology, immunology, as well as neurosensory, cardiovascular, gastrointestinal, circadian rhythms, and musculoskeletal physiology. These relationships are reviewed in reference to the overall history of nutritional science in human space flight. Cumulative nutritional research over the past four decades has resulted in the current nutritional requirements for astronauts. Space-flight nutritional recommendations are presented along with the critical path road map that outlines the research needed for future development of nutritional requirements.

  4. Flight Opportunities for Science Teacher EnRichment

    NASA Astrophysics Data System (ADS)

    Koch, D.; Devore, E.; Gillespie, C., Jr.; Hull, G.

    1994-12-01

    The Kuiper Airborne Observatory (KAO) is NASA's unique stratospheric infrared observatory. Science on board the KAO involves many disciplines and technologies. NASA Astrophysics Division supports a pre-college teacher program to provide Flight Opportunities for Science Teacher EnRichment (FOSTER). To date, forty-five teachers are participating, and the program is designed to nation-wide to serve fifty teachers per year on board the KAO. FOSTER is a pilot program for K-12 educational outreach for NASA's future Stratospheric Observatory for Infrared Astronomy (SOFIA) which will directly involve more than one-hundred teachers each year in airborne astronomical research missions. FOSTER aims to enrich precollege teachers' experiences and understanding of science, mathematics and technology. Teachers meet at NASA Ames Research Center for summer workshops on astronomy and contemporary astrophysics, and to prepare for flights. Further, teachers receive Internet training and support to create a FOSTER teacher network across the country, and to sustain communication with the airborne astronomy community. Each research flight of the KAO is a microcosm of the scientific method. Flying teachers obtain first-hand, real-time experiences of the scientific process: its excitement, hardships, challenges, discoveries, teamwork, and educational value. The FOSTER experience gives teachers pride and a sense of special achievement. They bring the excitement and adventure of doing first-class science to their students and communities. Flight Opportunities for Science Teacher EnRichment is funded by a NASA's Astrophysics Division grant, NAGW 3291, and supported by the SETI Institute and NASA Ames Research Center.

  5. The path to an experiment in space (from concept to flight)

    NASA Technical Reports Server (NTRS)

    Salzman, Jack A.

    1994-01-01

    The following are discussed in this viewgraph presentation on developing flight experiments for NASA's Microgravity Science and Applications Program: time from flight PI selection to launch; key flight experiment phases and schedule drivers; microgravity experiment definition/development process; definition and engineering development phase; ground-based reduced gravity research facilities; project organization; responsibilities and duties of principle investigator/co-investigators, project scientist, and project manager; the science requirements document; flight development phase; experiment cost and schedule; and keys to experiment success.

  6. Materials science on parabolic aircraft: The FY 1987-1989 KC-135 microgravity test program

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A. (Editor)

    1993-01-01

    This document covers research results from the KC-135 Materials Science Program managed by MSFC for the period FY87 through FY89. It follows the previous NASA Technical Memorandum for FY84-86 published in August 1988. This volume contains over 30 reports grouped into eight subject areas covering acceleration levels, space flight hardware, transport and interfacial studies, thermodynamics, containerless processing, welding, melt/crucible interactions, and directional solidification. The KC-135 materials science experiments during FY87-89 accomplished direct science, preparation for space flight experiments, and justification for new experiments in orbit.

  7. History of POIC Capabilities and Limitations to Conduct International Space Station Payload Operations

    NASA Technical Reports Server (NTRS)

    Grimaldi, Rebecca; Horvath, Tim; Morris, Denise; Willis, Emily; Stacy, Lamar; Shell, Mike; Faust, Mark; Norwood, Jason

    2011-01-01

    Payload science operations on the International Space Station (ISS) have been conducted continuously twenty-four hours per day, 365 days a year beginning February, 2001 and continuing through present day. The Payload Operations Integration Center (POIC), located at the Marshall Space Flight Center in Huntsville, Alabama, has been a leader in integrating and managing NASA distributed payload operations. The ability to conduct science operations is a delicate balance of crew time, onboard vehicle resources, hardware up-mass to the vehicle, and ground based flight control team manpower. Over the span of the last ten years, the POIC flight control team size, function, and structure has been modified several times commensurate with the capabilities and limitations of the ISS program. As the ISS vehicle has been expanded and its systems changed throughout the assembly process, the resources available to conduct science and research have also changed. Likewise, as ISS program financial resources have demanded more efficiency from organizations across the program, utilization organizations have also had to adjust their functionality and structure to adapt accordingly. The POIC has responded to these often difficult challenges by adapting our team concept to maximize science research return within the utilization allocations and vehicle limitations that existed at the time. In some cases, the ISS and systems limitations became the limiting factor in conducting science. In other cases, the POIC structure and flight control team size were the limiting factors, so other constraints had to be put into place to assure successful science operations within the capabilities of the POIC. This paper will present the POIC flight control team organizational changes responding to significant events of the ISS and Shuttle programs.

  8. 77 FR 34093 - NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... persons, scientific and technical information relevant to program planning. DATES: Monday, July 2, 2012, 9... Division Overview and Program Status --Flight Mission Status Report --Heliophysics Science Performance...

  9. An Overview of the NASA Sounding Rocket and Balloon Programs

    NASA Technical Reports Server (NTRS)

    Eberspeaker, Philip J.; Smith, Ira S.

    2003-01-01

    The U.S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a total of 50 to 60 missions per year in support of the NASA scientific community. These missions support investigations sponsored by NASA's Offices of Space Science, Life and Microgravity Sciences & Applications, and Earth Science. The Goddard Space Flight Center has management and implementation responsibility for these programs. The NASA Sounding Rockets Program provides the science community with payload development support, environmental testing, launch vehicles, and launch operations from fixed and mobile launch ranges. Sounding rockets continue to provide a cost-effective way to make in situ observations from 50 to 1500 km in the near-earth environment and to uniquely cover the altitude regime between 50 km and 130 km above the Earth's surface. New technology efforts include GPS payload event triggering, tailored trajectories, new vehicle configuration development to expand current capabilities, and the feasibility assessment of an ultra high altitude sounding rocket vehicle. The NASA Balloon Program continues to make advancements and developments in its capabilities for support of the scientific ballooning community. The Long Duration Balloon (LDB) is capable of providing flight durations in excess of two weeks and has had many successful flights since its development. The NASA Balloon Program is currently engaged in the development of the Ultra Long Duration Balloon (ULDB), which will be capable of providing flight times up to 100-days. Additional development efforts are focusing on ultra high altitude balloons, station keeping techniques and planetary balloon technologies.

  10. Agreements/subagreements Applicable to Wallops, 12 Nov. 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The status of space science agreements are noted. A general overview of the Wallops Flight Facility (WFF) is given. The geography, history, and mission of the facility are briefly surveyed. Brief accounts are given of NASA earth science activities at the WFF, including atmospheric dynamics, atmospheric optics, ocean physics, microwave altimetry, ocean color research, wind-wave-current interaction, flight support activities, the Sounding Rocket Program, and the NASA Balloon Program. Also discussed are the WFF launch range, the research airport, aircraft airborne science, telemetry, data systems, communications, and command and control.

  11. Data systems and computer science programs: Overview

    NASA Technical Reports Server (NTRS)

    Smith, Paul H.; Hunter, Paul

    1991-01-01

    An external review of the Integrated Technology Plan for the Civil Space Program is presented. The topics are presented in viewgraph form and include the following: onboard memory and storage technology; advanced flight computers; special purpose flight processors; onboard networking and testbeds; information archive, access, and retrieval; visualization; neural networks; software engineering; and flight control and operations.

  12. Pathfinder in flight over Hawaii

    NASA Image and Video Library

    1997-08-28

    Pathfinder, NASA's solar-powered, remotely-piloted aircraft is shown while it was conducting a series of science flights to highlight the aircraft's science capabilities while collecting imagery of forest and coastal zone ecosystems on Kauai, Hawaii. The flights also tested two new scientific instruments, a high spectral resolution Digital Array Scanned Interferometer (DASI) and a high spatial resolution Airborne Real-Time Imaging System (ARTIS). The remote sensor payloads were designed by NASA's Ames Research Center, Moffett Field, California, to support NASA's Mission to Planet Earth science programs.

  13. FOSTER-Flight Opportunities for Science Teacher EnRichment, A New IDEA Program From NASA Astrophysics

    NASA Astrophysics Data System (ADS)

    Devore, E.; Gillespie, C.; Hull, G.; Koch, D.

    1993-05-01

    Flight Opportunities for Science Teacher EnRichment (FOSTER) is a new educational program from the Imitative to Develop Education through Astronomy in the Astrophysics Division at NASA Headquarters. Now in its first year of the pilot program, the FOSTER project brings eleven Bay Area teaaaachers to NASA Ames to participate in a year-long program of workshops, educational programs at their schools and the opportunity to fly aboard the Kuiper Airborne Observatory (KAO) on research missions. As science and math educators, FOSTER teachers get a close-up look at science in action and have the opportunity to interact with the entire team of scientists, aviators and engineers that support the research abord the KAO. In June, a second group of FOSTER teachers will participate in a week-long workshop at ASes to prepare for flights during the 1993-94 school year. In addition, the FOSTER project trains teachers to use e-mail for ongoing communication with scientists and the KAO team, develops educational materials and supports opportunities for scientists to become directly involved in local schools. FOSTER is supported by a NASA grant (NAGW 3291).

  14. The first dedicated life sciences Spacelab mission

    NASA Technical Reports Server (NTRS)

    Perry, T. W.; Rummel, J. A.; Griffiths, L. D.; White, R. J.; Leonard, J. I.

    1984-01-01

    JIt is pointed out that the Shuttle-borne Spacelab provides the capability to fly large numbers of life sciences experiments, to retrieve and rescue experimental equipment, and to undertake multiple-flight studies. A NASA Life Sciences Flight Experiments Program has been organized with the aim to take full advantages of this capability. A description is provided of the scientific aspects of the most ambitious Spacelab mission currently being conducted in connection with this program, taking into account the First Dedicated Life Sciences Spacelab Mission. The payload of this mission will contain the equipment for 24 separate investigations. It is planned to perform the mission on two separate seven-day Spacelab flights, the first of which is currently scheduled for early 1986. Some of the mission objectives are related to the study of human and animal responses which occur promptly upon achieving weightlessness.

  15. Materials Science

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Materials Science Program is structured so that NASA s headquarters is responsible for the program content and selection, through the Enterprise Scientist, and MSFC provides for implementation of ground and flight programs with a Discipline Scientist and Discipline Manager. The Discipline Working Group of eminent scientists from outside of NASA acts in an advisory capacity and writes the Discipline Document from which the NRA content is derived. The program is reviewed approximately every three years by groups such as the Committee on Microgravity Research, the National Materials Advisory Board, and the OBPR Maximization and Prioritization (ReMaP) Task Force. The flight program has had as many as twenty-six principal investigators (PIs) in flight or flight definition stage, with the numbers of PIs in the future dependent on the results of the ReMaP Task Force and internal reviews. Each project has a NASA-appointed Project Scientist, considered a half-time job, who assists the PI in understanding and preparing for internal reviews such as the Science Concept Review and Requirements Definition Review. The Project Scientist also insures that the PI gets the maximum science support from MSFC, represents the PI to the MSFC community, and collaborates with the Project Manager to insure the project is well-supported and remains vital. Currently available flight equipment includes the Materials Science Research Rack (MSRR-1) and Microgravity Science Glovebox. Ground based projects fall into one or more of several categories. Intellectual Underpinning of Flight Program projects include theoretical studies backed by modeling and computer simulations; bring to maturity new research, often by young researchers, and may include preliminary short duration low gravity experiments in the KC-135 aircraft or drop tube; enable characterization of data sets from previous flights; and provide thermophysical property determinations to aid PIs. Radiation Shielding and preliminary In Situ Resource Utilization (ISRU) studies work towards future long duration missions. Biomaterials support materials issues affecting crew health. Nanostructured Materials are currently considered to be maturing new research, and Advanced Materials for Space Transportation has as yet no PIs. PIs are assigned a NASA Technical Monitor to maintain contact, a position considered to be a 5 percent per PI effort. Currently 33 PIs are supported on the 1996 NRA, which is about to expire, and 59 on the 1998 NRA. Two new NRAs, one for Radiation Shielding and one for Materials Science for Advanced Space Propulsion are due to be announced by the 2003 fiscal year. MSFC has a number of facilities supporting materials science. These include the Microgravity Development Laboratory/SD43; Electrostatic Levitator Facility; SCN Purification Facility; Electron Microscope/Microprobe Facility; Static and Rotating Magnetic Field Facility; X-Ray Diffraction Facility; and the Furnace Development Laboratory.

  16. Mars Science Laboratory Workstation Test Set

    NASA Technical Reports Server (NTRS)

    Henriquez, David A.; Canham, Timothy K.; Chang, Johnny T.; Villaume, Nathaniel

    2009-01-01

    The Mars Science Laboratory developed the Workstation TestSet (WSTS) is a computer program that enables flight software development on virtual MSL avionics. The WSTS is the non-real-time flight avionics simulator that is designed to be completely software-based and run on a workstation class Linux PC.

  17. Issues in Informal Education: Event-Based Science Communication Involving Planetaria and the Internet

    NASA Technical Reports Server (NTRS)

    Adams, M.; Gallagher, D. L.; Whitt, A.; Six, N. Frank (Technical Monitor)

    2002-01-01

    For the past four years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of science communication through the web resources on the Internet. The program includes extended stories about NAS.4 science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases broadcasts accommodate active feedback and questions from Internet participants. We give here, examples of events, problems, and lessons learned from these activities.

  18. NASA Airborne Astronomy Ambassadors (AAA) Professional Development and NASA Connections

    NASA Astrophysics Data System (ADS)

    Backman, D. E.; Clark, C.; Harman, P. K.

    2017-12-01

    NASA's Airborne Astronomy Ambassadors (AAA) program is a three-part professional development (PD) experience for high school physics, astronomy, and earth science teachers. AAA PD consists of: (1) blended learning via webinars, asynchronous content learning, and in-person workshops, (2) a STEM immersion experience at NASA Armstrong's B703 science research aircraft facility in Palmdale, California, and (3) ongoing opportunities for connection with NASA astrophysics and planetary science Subject Matter Experts (SMEs). AAA implementation in 2016-18 involves partnerships between the SETI Institute and seven school districts in northern and southern California. AAAs in the current cohort were selected by the school districts based on criteria developed by AAA program staff working with WestEd evaluation consultants. The selected teachers were then randomly assigned by WestEd to a Group A or B to support controlled testing of student learning. Group A completed their PD during January - August 2017, then participated in NASA SOFIA science flights during fall 2017. Group B will act as a control during the 2017-18 school year, then will complete their professional development and SOFIA flights during 2018. A two-week AAA electromagnetic spectrum and multi-wavelength astronomy curriculum aligned with the Science Framework for California Public Schools and Next Generation Science Standards was developed by program staff for classroom delivery. The curriculum (as well as the AAA's pre-flight PD) capitalizes on NASA content by using "science snapshot" case studies regarding astronomy research conducted by SOFIA. AAAs also interact with NASA SMEs during flight weeks and will translate that interaction into classroom content. The AAA program will make controlled measurements of student gains in standards-based learning plus changes in student attitudes towards STEM, and observe & record the AAAs' implementation of curricular changes. Funded by NASA: NNX16AC51

  19. The 1991 Marshall Space Flight Center research and technology

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A compilation of 194 articles addressing research and technology activities at the Marshall Space Flight Center (MSFC) is given. Activities are divided into three major areas: advanced studies addressing transportation systems, space systems, and space science activities conducted primarily in the Program Development Directorate; research tasks carried out in the Space Science Laboratory; and technology programs hosted by a wide array of organizations at the Center. The theme for this year's report is 'Building for the Future'.

  20. The Future of New Discoveries on the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald; Trach, Brian

    2000-01-01

    The Materials Science program is one of the five Microgravity research disciplines in NASA's Human Exploration and Development of Space (HEDS). This research uses the low gravity environment to obtain the fundamental understanding of various phenomena effects and it's relationship to structure, processing, and properties of materials. The International Space Station (ISS) will complete the first major assembly phase within the next year thus providing the opportunity for on-orbit research and scientific utilization in early 2001. Research will become routine as the final Space Station configuration is completed. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules. This paper addresses the current scope of the flight investigator program that will utilize the various capabilities on ISS. The type of research and classification of materials that are addressed using multiple types of flight apparatus will be explained. The various flight and ground facilities that are used to support the NASA program are described. The early utilization schedule for the materials science payloads with associated hardware will be covered. The Materials Science Research Facility and related international experiment modules serves as the foundation for this capability. The potential applications and technologies obtained from the Materials Science program are described.

  1. USSR Space Life Sciences Digest, volume 2, no.1

    NASA Technical Reports Server (NTRS)

    Paulson, L. D.

    1981-01-01

    An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology; and life sciences technology.

  2. USSR Space Life Sciences Digest, volume 1, no. 3

    NASA Technical Reports Server (NTRS)

    Wallace, P. M.

    1980-01-01

    An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology; and life sciences technology.

  3. Issues in Informal Education: Event-Based Science Communication Involving Planetaria and the Internet

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Gallagher, D. L.; Whitt, A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. The focus of sharing real-time science related events has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases broadcasts accommodate active feedback and questions from Internet participants. Panel participation will be used to communicate the problems and lessons learned from these activities over the last three years.

  4. X-15: Extending the Frontiers of Flight

    NASA Technical Reports Server (NTRS)

    Jenkins, Dennis R.

    2007-01-01

    A history of the design and achievements of the high-speed, 1950s-era X-15 airplane is presented. The following chapters are included: A New Science; A Hypersonic Research Airplane; Conflict and Innovation; The Million-Horsepower Engine; High Range and Dry Lakes; Preparations; The Flight Program; and the Research Program. Selected biographies, flight logs and physical characteristics of the X-15 Airplane are included in the appendices.

  5. Guidelines for NASA Missions to Engage the User Community as a Part of the Mission Life Cycle

    NASA Astrophysics Data System (ADS)

    Escobar, V. M.; Friedl, L.; Bonniksen, C. K.

    2017-12-01

    NASA continues to improve the Earth Science Directorate in the areas of thematic integration, stakeholder feedback and Project Applications Program tailoring for missions to transfer knowledge between scientists and projects. The integration of application themes and the implementation of application science activities in flight projects have evolved to formally include user feedback and stakeholder integration. NASA's new Flight Applied Science Program Guidelines are designed to bridge NASA Earth Science Directorates in Flight, Applied Sciences and Research and Development by agreeing to integrate the user community into mission life cycles. Thus science development and science applications will guide all new instruments launched by NASAs ESD. The continued integration with the user community has enabled socio-economic considerations into NASA Earth Science projects to advance significantly. Making users a natural part of mission science leverages future socio-economic impact research and provides a platform for innovative and more actionable product to be used in decision support systems by society. This presentation will give an overview of the new NASA Guidelines and provide samples that demonstrate how the user community can be a part of NASA mission designs.

  6. An Overview of the NASA Sounding Rockets and Balloon Programs

    NASA Technical Reports Server (NTRS)

    Flowers, Bobby J.; Needleman, Harvey C.

    1999-01-01

    The U.S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a combined total of approximately fifty to sixty missions per year in support of the NASA scientific community. These missions are provided in support of investigations sponsored by NASA'S Offices of Space Science, Life and Microgravity Sciences & Applications, and Earth Science. The Goddard Space Flight Center has management and implementation responsibility for these programs. The NASA Sounding Rockets Program has continued to su,pport the science community by integrating their experiments into the sounding rocket payload and providing the rocket vehicle and launch operations necessary to provide the altitude/time required obtain the science objectives. The sounding rockets continue to provide a cost-effective way to make in situ observations from 50 to 1500 km in the near-earth environment and to uniquely cover the altitude regime between 50 km and 130 km above the Earth's surface, which is physically inaccessible to either balloons or satellites. A new architecture for providing this support has been introduced this year with the establishment of the NASA Sounding Rockets Contract. The Program has continued to introduce improvements into their operations and ground and flight systems. An overview of the NASA Sounding Rockets Program with special emphasis on the new support contract will be presented. The NASA Balloon Program continues to make advancements and developments in its capabilities for support of the scientific ballooning community. Long duration balloon (LDB) is a prominent aspect of the program with two campaigns scheduled for this calendar year. Two flights are scheduled in the Northern Hemisphere from Fairbanks, Alaska, in June and two flights are scheduled from McMurdo, Antarctica, in the Southern Hemisphere in December. The comprehensive balloon research and development (R&D) effort has continued with advances being made across the spectrum of balloon related disciplines. As a result of these technology advancements a new ultra long duration balloon project (ULDB) for the development of a 100- day duration balloon capability has been initiated. The ULDB will rely upon new balloon materials and designs to accomplish its goals. The Program has also continued to introduce new technology and improvements into flights systems, ground systems and operational techniques. An overview of the various aspects of the NASA Balloon Program will be presented.

  7. The Life Sciences program at the NASA Ames Research Center - An overview

    NASA Technical Reports Server (NTRS)

    Vernikos-Danellis, Joan; Sharp, Joseph C.

    1989-01-01

    The research projects planned for the Life Sciences program have a goal of answering basic questions concerning the nature of life itself and its evolution in the universe from basic elements, as well as the search for extraterrestrial intelligence. The program also includes studies of the evolution and development of life on the planet earth, and the global changes occurring today that affect life on the earth. The paper describes the simulation models developed to study the effects of space, the flight projects of the program, and the biomedical program, which currently focuses on the physiological changes in the human body that are associated with space flights and the interactions among these changes.

  8. Life sciences flight experiments program, life sciences project division, procurement quality provisions

    NASA Technical Reports Server (NTRS)

    House, G.

    1980-01-01

    Methods are defined for implementing quality assurance policy and requirements for life sciences laboratory equipment, experimental hardware, integration and test support equipment, and integrated payloads.

  9. Space Science in Project SMART: A UNH High School Outreach Program

    NASA Astrophysics Data System (ADS)

    Smith, C. W.; Broad, L.; Goelzer, S.; Lessard, M.; Levergood, R.; Lugaz, N.; Moebius, E.; Schwadron, N.; Torbert, R. B.; Zhang, J.; Bloser, P. F.

    2016-12-01

    Every summer for the past 25 years the University of New Hampshire (UNH) has run a month-long, residential outreach program for high school students considering careers in mathematics, science, or engineering. Space science is one of the modules. Students work directly with UNH faculty performing original work with real spacecraft data and hardware and present the results of that effort at the end of the program. Recent research topics have included interplanetary waves and turbulence as recorded by the ACE and Voyager spacecraft, electromagnetic ion cyclotron (EMIC) waves seen by the RBSP spacecraft, interplanetary coronal mass ejections (ICME) acceleration and interstellar pickup ions as seen by the STEREO spacecraft, and prototyping CubeSat hardware. Student research efforts can provide useful results for future research efforts by the faculty while the students gain unique exposure to space physics and a science career. In addition, the students complete a team project. Since 2006, that project has been the construction and flight of a high-altitude balloon payload and instruments. The students typically build the instruments they fly. In the process, students learn circuit design and construction, microcontroller programming, and core atmospheric and space science. Our payload design has evolved significantly since the first flight of a simple rectangular box and now involves a stable descent vehicle that does not require a parachute, an on-board flight control computer, in-flight autonomous control and data acquisition of multiple student-built instruments, and real-time camera images sent to ground. This is a program that can be used as a model for other schools to follow and that high schools can initiate. More information can be found at .

  10. Flight opportunities for science teacher enrichment

    NASA Technical Reports Server (NTRS)

    Devore, Edna; Gillespie, Carlton, Jr.; Hull, Garth; Koch, David

    1995-01-01

    NASA Astrophysics Division supports a pre-college teacher program to provide Flight Opportunities for Science Teacher EnRichment (FOSTER). To date, forty-five teachers are participating, and the program will expand nation-wide to serve fifty teachers per year on board the Kuiper Airborne Observatory. In the future, the Stratospheric Observatory for Infrared Astronomy (SOFIA) will bring more than one-hundred teachers per year on board for astronomical research mission. FOSTER is supported by a grant to the SETI Institute from the NASA Astrophysics Division, NAGW-3291.

  11. Flight- and Ground-Based Materials Science Programs at NASA

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1999-01-01

    The Microgravity Research Division of NASA funds research programs in all branches of materials science including ceramics and glasses. A NASA Research Announcement (NRA)is currently planned with proposals due in March 1999. Proposals are accepted for both flight- definition and ground- based research projects with a main criterion being a strong justification for microgravity. A review of the program in its entirety will be given, with special emphasis on microgravity related ceramics research. The topics of current interest in the NRA will be discussed in terms of International Space Station research and NASA's Human Exploration and Development of Space (HEDS) initiative.

  12. Laminar and Turbulent Flow Calculations for the Hifire-5B Flight Test

    DTIC Science & Technology

    2017-11-01

    STATES AIR FORCE AFRL-RQ-WP-TP-2017-0172 LAMINAR AND TURBULENT FLOW CALCULATIONS FOR THE HIFIRE-5B FLIGHT TEST Roger L. Kimmel Hypersonic Sciences...LAMINAR AND TURBULENT FLOW CALCULATIONS FOR THE HIFIRE-5B FLIGHT TEST 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Clearance Date: 28 Apr 2017 14. ABSTRACT The HIFiRE-5b program launched an experimental FLight test vehicle to study laminar-turbulent transition

  13. USSR Space Life Sciences Digest, volume 1, no. 4

    NASA Technical Reports Server (NTRS)

    Paulson, L. D.

    1980-01-01

    An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology, and life sciences and technology.

  14. What's New in...Science Teacher Preparation.

    ERIC Educational Resources Information Center

    Borowiec, Jonathan B., James, Robert K.

    2000-01-01

    Argues that NASA's 20-year research effort which will culminate with a manned flight to Mars is an opportunity to involve students in the science of that effort. Describes the National Space Biomedical Research Institute (NSBRI) Teacher Academy Program, a program designed to reach science teachers so that they can prepare their students to…

  15. USSR Space Life Sciences Digest, volume 2, no. 2

    NASA Technical Reports Server (NTRS)

    Paulson, L. D.

    1981-01-01

    An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology; and life sciences and technology.

  16. An Ada Object Oriented Missile Flight Simulation

    DTIC Science & Technology

    1991-09-01

    identify by block number) This thesis uses the Ada programming language in the design and development of an air-to-air missile flight simulation with...object oriented techniques and sound software engineering principles. The simulation is designed to be more understandable, modifiable, efficient and...Department of Computer Science ii ABSTRACT This thesis uses the Ada programming language in the design and development of an air-to-air missile flight

  17. Status report on the land processes aircraft science management operations working group

    NASA Technical Reports Server (NTRS)

    Lawless, James G.; Mann, Lisa J.

    1991-01-01

    Since its inception three years ago, the Land Processes Aircraft Science Management Operations Working Group (MOWG) provided recommendations on the optimal use of the Agency's aircraft in support of the Land Processes Science Program. Recommendations covered topics such as aircraft and sensor usage, development of long-range plans, Multisensor Airborne Campaigns (MAC), program balance, aircraft sensor databases, new technology and sensor development, and increased University scientist participation in the program. Impacts of these recommendations improved the efficiency of various procedures including the flight request process, tracking of flight hours, and aircraft usage. The group also created a bibliography focused on publications produced by Land Processes scientists from the use of the aircraft program, surveyed NASA funded PI's on their participation in the aircraft program, and developed a planning template for multi-sensor airborne campaigns. Benefits from these activities are summarized.

  18. Overview of the NASA Suborbital Program

    NASA Astrophysics Data System (ADS)

    Jones, W. Vernon

    2014-08-01

    The NASA Suborbital Program consists of Sounding Rocket and Balloon Projects managed, respectively, by the Heliophysics and Astrophysics Divisions of the Science Mission Directorate, which maintains “Program” Offices at the NASA Wallops Flight Facility. Suborbital missions have for several decades enabled investigations with significant results from relatively modest investments. Some have been competitive with orbital missions, while others have enabled orbital missions. NASA launches suborbital missions from sites established in the U.S. and around the world to meet investigators’ needs. A sea change in scientific ballooning occurred with the inauguration of 8 - 20 day flights around Antarctica in the early 1990’s. The U.S. National Science Foundation supports these circumpolar flights, which have been spectacularly successful with many investigations utilizing multiple flights of payloads that are recovered, refurbished, and reused to minimize life-cycle costs. The attainment of 25 - 32 day and 35 - 55 day flights in two and three circumnavigations, respectively, of the Antarctic continent has greatly increased expectations of scientific users. The 55-day Super-TIGER flight over Antarctica during the 2012-13 season broke the 42-day CREAM record during the 2004-05 season, as well as the 54-day super pressure balloon test flight in 2008-09. Qualification of super pressure flights to support 1000 kg science instruments for up to 100 days at 33 km have proceeded in parallel with plans to increase the altitude for less massive instruments requiring less atmospheric overburden. The nearly constant volume of super-pressure balloons allows stable altitude flights at non-polar latitudes. Long-duration flights in both polar and non-polar regions will confirm the important contributions that ballooning can make in traditional Astrophysics, Solar and Heliophysics, and Earth Science disciplines. With two comets approaching the sun in 2013-14, the Planetary Science community has shown increased interest in remote observations of comets, planets, and other objects in the Solar System.

  19. Microgravity Science and Applications Flight Programs, January - March 1987, selected papers, volume 1

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A compilation of papers presented at this conference is given. The science dealing with materials and fluids and with fundamental studies in physics and chemistry in a low gravity environment is examined. Program assessments are made along with directions for progress in the future use of the space shuttle program.

  20. Research and technology report, 1981

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Marshall Space Flight Center programs of research and technology for 1981 in various areas of aerospace science are reviewed. Each activity reviewed has a high probability of application to current or future programs or is an application of the results of current programs. Projects in atmospheric and magnetospheric science, solar physics, astronomy, and space technology are included.

  1. Space transportation system biomedical operations support study

    NASA Technical Reports Server (NTRS)

    White, S. C.

    1983-01-01

    The shift of the Space Transportation System (STS) flight tests of the orbiter vehicle to the preparation and flight of the payloads is discussed. Part of this change is the transition of the medical and life sciences aspects of the STS flight operations to reflect the new state. The medical operations, the life sciences flight experiments support requirements and the intramural research program expected to be at KSC during the operational flight period of the STS and a future space station are analyzed. The adequacy of available facilities, plans, and resources against these future needs are compared; revisions and/or alternatives where appropriate are proposed.

  2. Incorporation of Scientific Ballooning into Science Education

    NASA Astrophysics Data System (ADS)

    Chanover, N.; Stochaj, S.; Petty, C.

    1999-12-01

    We are augmenting the science curriculum of the Roswell Independent School District in Roswell, NM, to take advantage of the proximity of a NASA scientific balloon base. The basic science related to balloon experimentation is being incorporated into the K-12 science curriculum via the discussion of topics such as atmospheric properties, weather, phases of matter, plotting skills, and communications in the context of a high-altitude balloon flight. These efforts will culminate in the construction of balloon-borne instruments by high school students, which will be launched during the spring of 2000. A demonstration flight, launched in the spring of 1999, was used to build student enthusiasm and community support for this program, which is funded by the NASA/IDEAS program.

  3. Science at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2012-01-01

    The Sciences and Exploration Directorate of the NASA Goddard Space Flight Center (GSFC) is the largest Earth and space science research organization in the world. Its scientists advance understanding of the Earth and its life-sustaining environment, the Sun, the solar system, and the wider universe beyond. Researchers in the Sciences and Exploration Directorate work with engineers, computer programmers, technologists, and other team members to develop the cutting-edge technology needed for space-based research. Instruments are also deployed on aircraft, balloons, and Earth's surface. I will give an overview of the current research activities and programs at GSFC including the James Web Space Telescope (JWST), future Earth Observing programs, experiments that are exploring our solar system and studying the interaction of the Sun with the Earth's magnetosphere.

  4. Flight Qualification of the NASA's Super Pressure Balloon

    NASA Astrophysics Data System (ADS)

    Cathey, Henry; Said, Magdi; Fairbrother, Debora

    Designs of new balloons to support space science require a number of actual flights under various flight conditions to qualify them to as standard balloon flight offerings to the science community. Development of the new Super Pressure Balloon for the National Aeronautics and Space Administration’s Balloon Program Office has entailed employing new design, analysis, and production techniques to advance the state of the art. Some of these advances have been evolutionary steps and some have been revolutionary steps requiring a maturing understanding of the materials, designs, and manufacturing approaches. The NASA Super Pressure Balloon development end goal is to produce a flight vehicle that is qualified to carry a ton of science instrumentation, at an altitude greater than 33 km while maintaining a near constant pressure altitude for extended periods of up to 100 days, and at any latitude on the globe. The NASA’s Balloon Program Office has pursued this development in a carefully executed incremental approach by gradually increasing payload carrying capability and increasing balloon volume to reach these end goal. A very successful test flight of a ~200,700 m3 balloon was launch in late 2008 from Antarctica. This balloon flew for over 54 days at a constant altitude and circled the Antarctic continent almost three times. A larger balloon was flown from Antarctica in early 2011. This ~422,400 m3 flew at a constant altitude for 22 days making one circuit around Antarctica. Although the performance was nominal, the flight was terminated via command to recover high valued assets from the payload. The balloon designed to reach the program goals is a ~532,200 m3 pumpkin shaped Super Pressure Balloon. A test flight of this balloon was launched from the Swedish Space Corporation’s Esrange Balloon Launch Facilities near Kiruna, Sweden on 14 August, 2012. This flight was another success for this development program. Valuable information was gained from this short test flight by successfully demonstrated balloon vehicle performance, obtained a large amount of videos, measured balloon differential pressure, obtained temperature and altitude data, assessed structure strength through pressurization, and demonstrated the balloon vehicles altitude stability. This flight was the first of several to qualify this design for the science community. Results of the most recent flights will be presented. Some of the related material characterization testing which is vital to the balloon design development for the balloon will also be presented. Additionally, this paper will provide a current overview of the development and qualification approach pursued for the NASA’s Super Pressure Balloon. Future plans and goals of future test flights will also be presented. This will include the projected balloon volumes, payload capabilities, test flight locations, and proposed flight schedule.

  5. A New Direction for NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)

    2001-01-01

    NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be included to explain the changing concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program. Finally, the paper will address the initial utilization schedule and strategy for the various materials science payloads including their corresponding hardware.

  6. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Cushman, Paula P.

    1997-01-01

    Preliminary definition of all of the necessary materials, labor, services, and facilities necessary to provide science requirement definition, initiate hardware development activities, and provide an update flight program proposal consistent with the NRA selection letter. The major tasks identified in this SOW are in the general category of science requirements determination, instrument definition, and updated flight program proposal. The Contractor shall define preliminary management, technical and integration requirements for the program, including improved cost/schedule estimates. The Contractor shall identify new technology requirements, define experiment accommodations and operational requirements and negotiate procurement of any long lead items, if required, with the government.

  7. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    1997-01-01

    Preliminary definition of all of the necessary materials, labor, services, and facilities necessary to provide science requirement definition, initiate hardware development activities, and provide an updated flight program proposal consistent with the NRA selection letter. The major tasks identified in this SOW are in the general category of science requirements determination, instrument definition, and updated flight program proposal. The Contractor shall define preliminary management, technical and integration requirements for the program, including improved cost/schedule estimates. The Contractor shall identify new technology requirements, define experiment accommodations and operational requirements and negotiate procurement of any long lead items, if required, with the government.

  8. Radio-science performance analysis software

    NASA Astrophysics Data System (ADS)

    Morabito, D. D.; Asmar, S. W.

    1995-02-01

    The Radio Science Systems Group (RSSG) provides various support functions for several flight project radio-science teams. Among these support functions are uplink and sequence planning, real-time operations monitoring and support, data validation, archiving and distribution functions, and data processing and analysis. This article describes the support functions that encompass radio-science data performance analysis. The primary tool used by the RSSG to fulfill this support function is the STBLTY program set. STBLTY is used to reconstruct observable frequencies and calculate model frequencies, frequency residuals, frequency stability in terms of Allan deviation, reconstructed phase, frequency and phase power spectral density, and frequency drift rates. In the case of one-way data, using an ultrastable oscillator (USO) as a frequency reference, the program set computes the spacecraft transmitted frequency and maintains a database containing the in-flight history of the USO measurements. The program set also produces graphical displays. Some examples and discussions on operating the program set on Galileo and Ulysses data will be presented.

  9. Radio-Science Performance Analysis Software

    NASA Astrophysics Data System (ADS)

    Morabito, D. D.; Asmar, S. W.

    1994-10-01

    The Radio Science Systems Group (RSSG) provides various support functions for several flight project radio-science teams. Among these support functions are uplink and sequence planning, real-time operations monitoring and support, data validation, archiving and distribution functions, and data processing and analysis. This article describes the support functions that encompass radio science data performance analysis. The primary tool used by the RSSG to fulfill this support function is the STBLTY program set. STBLTY is used to reconstruct observable frequencies and calculate model frequencies, frequency residuals, frequency stability in terms of Allan deviation, reconstructed phase, frequency and phase power spectral density, and frequency drift rates. In the case of one-way data, using an ultrastable oscillator (USO) as a frequency reference, the program set computes the spacecraft transmitted frequency and maintains a database containing the in-flight history of the USO measurements. The program set also produces graphical displays. Some examples and discussion on operating the program set on Galileo and Ulysses data will be presented.

  10. Radio-science performance analysis software

    NASA Technical Reports Server (NTRS)

    Morabito, D. D.; Asmar, S. W.

    1995-01-01

    The Radio Science Systems Group (RSSG) provides various support functions for several flight project radio-science teams. Among these support functions are uplink and sequence planning, real-time operations monitoring and support, data validation, archiving and distribution functions, and data processing and analysis. This article describes the support functions that encompass radio-science data performance analysis. The primary tool used by the RSSG to fulfill this support function is the STBLTY program set. STBLTY is used to reconstruct observable frequencies and calculate model frequencies, frequency residuals, frequency stability in terms of Allan deviation, reconstructed phase, frequency and phase power spectral density, and frequency drift rates. In the case of one-way data, using an ultrastable oscillator (USO) as a frequency reference, the program set computes the spacecraft transmitted frequency and maintains a database containing the in-flight history of the USO measurements. The program set also produces graphical displays. Some examples and discussions on operating the program set on Galileo and Ulysses data will be presented.

  11. Real-Time On-Board Airborne Demonstration of High-Speed On-Board Data Processing for Science Instruments (HOPS)

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Ng, Tak-Kwong; Davis, Mitchell J.; Adams, James K.; Bowen, Stephen C.; Fay, James J.; Hutchinson, Mark A.

    2015-01-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program since April, 2012. The HOPS team recently completed two flight campaigns during the summer of 2014 on two different aircrafts with two different science instruments. The first flight campaign was in July, 2014 based at NASA Langley Research Center (LaRC) in Hampton, VA on the NASA's HU-25 aircraft. The science instrument that flew with HOPS was Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) funded by NASA's Instrument Incubator Program (IIP). The second campaign was in August, 2014 based at NASA Armstrong Flight Research Center (AFRC) in Palmdale, CA on the NASA's DC-8 aircraft. HOPS flew with the Multifunctional Fiber Laser Lidar (MFLL) instrument developed by Excelis Inc. The goal of the campaigns was to perform an end-to-end demonstration of the capabilities of the HOPS prototype system (HOPS COTS) while running the most computationally intensive part of the ASCENDS algorithm real-time on-board. The comparison of the two flight campaigns and the results of the functionality tests of the HOPS COTS are presented in this paper.

  12. Microgravity science and applications. Program tasks and bibliography for FY 1994

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This annual report includes research projects funded by the Office of Life and Microgravity Sciences and Applications, Microgravity Science and Applications Division, during FY 1994. It is a compilation of program tasks (objective, description, significance, progress, students funded under research, and bibliographic citations) for flight research and ground-based research in five major scientific disciplines: benchmark science, biotechnology, combustion science, fluid physics, and materials science. ATD (Advanced Technology Development) program task descriptions are also included. The bibliography cites the related PI (Principal Investigator) publications and presentations for these program tasks in FY 1994. Three appendices include Table of Acronyms, Guest Investigator Index, and Principal Investigator Index.

  13. Microgravity science & applications. Program tasks and bibliography for FY 1995

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This annual report includes research projects funded by the Office of Life and Microgravity Sciences and Applications, Microgravity Science and Applications Division, during FY 1994. It is a compilation of program tasks (objective, description, significance, progress, students funded under research, and bibliographic citations) for flight research and ground based research in five major scientific disciplines: benchmark science, biotechnology, combustion science, fluid physics, and materials science. Advanced technology development (ATD) program task descriptions are also included. The bibliography cites the related principle investigator (PI) publications and presentations for these program tasks in FY 1994. Three appendices include a Table of Acronyms, a Guest Investigator index and a Principle Investigator index.

  14. Training Early Career Scientists in Flight Instrument Design Through Experiential Learning: NASA Goddard's Planetary Science Winter School.

    NASA Technical Reports Server (NTRS)

    Bleacher, L. V.; Lakew, B.; Bracken, J.; Brown, T.; Rivera, R.

    2017-01-01

    The NASA Goddard Planetary Science Winter School (PSWS) is a Goddard Space Flight Center-sponsored training program, managed by Goddard's Solar System Exploration Division (SSED), for Goddard-based postdoctoral fellows and early career planetary scientists. Currently in its third year, the PSWS is an experiential training program for scientists interested in participating on future planetary science instrument teams. Inspired by the NASA Planetary Science Summer School, Goddard's PSWS is unique in that participants learn the flight instrument lifecycle by designing a planetary flight instrument under actual consideration by Goddard for proposal and development. They work alongside the instrument Principal Investigator (PI) and engineers in Goddard's Instrument Design Laboratory (IDL; idc.nasa.gov), to develop a science traceability matrix and design the instrument, culminating in a conceptual design and presentation to the PI, the IDL team and Goddard management. By shadowing and working alongside IDL discipline engineers, participants experience firsthand the science and cost constraints, trade-offs, and teamwork that are required for optimal instrument design. Each PSWS is collaboratively designed with representatives from SSED, IDL, and the instrument PI, to ensure value added for all stakeholders. The pilot PSWS was held in early 2015, with a second implementation in early 2016. Feedback from past participants was used to design the 2017 PSWS, which is underway as of the writing of this abstract.

  15. Suborbital Science Program: Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    DelFrate, John

    2008-01-01

    This viewgraph presentation reviews the suborbital science program at NASA Dryden Flight Research Center. The Program Objectives are given in various areas: (1) Satellite Calibration and Validation (Cal/val)--Provide methods to perform the cal/val requirements for Earth Observing System satellites; (2) New Sensor Development -- Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations; (3) Process Studies -- Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects; and (4) Airborne Networking -- Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden supports the NASA Airborne Science Program and the nation in several elements: ER-2, G-3, DC-8, Ikhana (Predator B) & Global Hawk and Reveal. These are reviewed in detail in the presentation.

  16. Life sciences report 1987

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Highlighted here are the major research efforts of the NASA Life Sciences Division during the past year. Topics covered include remote health care delivery in space, space biomedical research, gravitational biology, biospherics (studying planet Earth), the NASA Closed Ecological Life Support System (CELSS), exobiology, flight programs, international cooperation, and education programs.

  17. Life sciences flight experiments program - Overview

    NASA Technical Reports Server (NTRS)

    Berry, W. E.; Dant, C. C.

    1981-01-01

    The considered LSFE program focuses on Spacelab life sciences missions planned for the 1984-1985 time frame. Life Sciences Spacelab payloads, launched at approximately 18-months intervals, will enable scientists to test hypotheses from such disciplines as vestibular physiology, developmental biology, biochemistry, cell biology, plant physiology, and a variety of other life sciences. An overview is presented of the LSFE program that will take advantage of the unique opportunities for biological experimentation possible on Spacelab. Program structure, schedules, and status are considered along with questions of program selection, and the science investigator working groups. A description is presented of the life sciences laboratory equipment program, taking into account the general purpose work station, the research animal holding facility, and the plant growth unit.

  18. The New Millennium Program Space Technology 5 (ST-5) Mission

    NASA Technical Reports Server (NTRS)

    Webb, Evan H.; Carlisle, Candace C.; Slavin, James A.

    2005-01-01

    The Space Technology 5 (ST-5) Project is part of NASA's New Millennium Program. ST-5 will consist of a constellation of three 25kg microsatellites. The mission goals are to demonstrate the research-quality science capability of the ST-5 spacecraft; to operate the three spacecraft as a constellation; and to design, develop and flight-validate three capable microsatellites with new technologies. ST-5 will be launched by a Pegasus XL into an elliptical polar (sun-synchronous) orbit. The three-month flight demonstration phase, beginning in March 2006, will validate the ability to perform science measurements, as well as the technologies and constellation operations. ST-5's technologies and concepts will enable future microsatellite science missions.

  19. Flight project data book, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Office of Space Science and Applications (OSSA) is responsible for planning, directing, executing, and evaluating that part of the overall NASA program that has as its goal the use of the unique characteristics of the space environment to conduct a scientific study of the universe, to solve practical problems on Earth, and to provide the scientific research foundation for expanding human presence beyond Earth into the solar system. OSSA manages the development of NASA's flight instrumentation for space science and applications including free flying spacecraft, Shuttle and Space Station payloads, and the suborbital sounding rockets, balloons, and aircraft programs. A summary is provided of future flight missions, including those approved and currently under development and those which appear in the OSSA strategic plan.

  20. Perseus B Taxi Tests in Preparation for a New Series of Flight Tests

    NASA Image and Video Library

    1998-04-27

    The Perseus B remotely piloted aircraft taxis on the runway at Edwards Air Force Base, California, before a series of development flights at NASA's Dryden flight Research Center. The Perseus B is the latest of three versions of the Perseus design developed by Aurora Flight Sciences under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  1. Perseus B Taxi Tests in Preparation for a New Series of Flight Tests

    NASA Image and Video Library

    1998-04-27

    The Perseus B remotely piloted aircraft on the runway at Edwards Air Force Base, California at the conclusion of a development flight at NASA's Dryden flight Research Center. The Perseus B is the latest of three versions of the Perseus design developed by Aurora Flight Sciences under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  2. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  3. Flight Project Data Book

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Office of Space Science and Applications (OSSA) is responsible for the overall planning, directing, executing, and evaluating that part of the overall NASA program that has the goal of using the unique characteristics of the space environment to conduct a scientific study of the universe, to understand how the Earth works as an integrated system, to solve practical problems on Earth, and to provide the scientific and technological research foundation for expanding human presence beyond Earth orbit into the solar system. OSSA guides its program toward leadership through its pursuit of excellence across the full spectrum of disciplines. OSSA pursues these goals through an integrated program of ground-based laboratory research and experimentation, suborbital flight of instruments on airplanes, balloons, and sounding rockets; flight of instruments and the conduct of research on the Shuttle/Spacelab system and on Space Station Freedom; and development and flight of automated Earth-orbiting and interplanetary spacecraft. The OSSA program is conducted with the participation and support of other Government agencies and facilities, universities throughout the United States, the aerospace contractor community, and all of NASA's nine Centers. In addition, OSSA operates with substantial international participation in many aspects of our Space Science and Applications Program. OSSA's programs currently in operation, those approved for development, and those planned for future missions are described.

  4. Aeronautics. An Educator's Guide with Activities in Science, Mathematics, and Technology Education: What Pilot, Astronaut, or Aeronautical Engineer didn't Start out with a Toy Glider?

    NASA Technical Reports Server (NTRS)

    Biggs, Pat (Editor); Huetter, Ted (Editor)

    1998-01-01

    Welcome to the exciting world of aeronautics. The term aeronautics originated in France, and was derived from the Greek words for "air" and "to sail." It is the study of flight and the operation of aircraft. This educator guide explains basic aeronautical concepts, provides a background in the history of aviation, and sets them within the context of the flight environment (atmosphere, airports, and navigation). The activities in this guide are designed to be uncomplicated and fun. They have been developed by NASA Aerospace Education Services Program specialists, who have successfully used them in countless workshops and student programs around the United States. The activities encourage students to explore the nature of flight, and experience some real-life applications of mathematics, science, and technology. The subject of flight has a wonderful power to inspire learning.

  5. Electrically Driven Thermal Management: Flight Validation, Experiment Development, Future Technologies

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2018-01-01

    Electrically Driven Thermal Management is an active research and technology development initiative incorporating ISS technology flight demonstrations (STP-H5), development of Microgravity Science Glovebox (MSG) flight experiment, and laboratory-based investigations of electrically based thermal management techniques. The program targets integrated thermal management for future generations of RF electronics and power electronic devices. This presentation reviews four program elements: i.) results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched in February 2017 ii.) development of the Electrically Driven Liquid Film Boiling Experiment iii.) two University based research efforts iv.) development of Oscillating Heat Pipe evaluation at Goddard Space Flight Center.

  6. NASA Microgravity Combustion Science Research Plans for the ISS

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    2003-01-01

    A peer-reviewed research program in Microgravity Combustion Science has been chartered by the Physical Sciences Research Division of the NASA Office of Biological and Physical Research. The scope of these investigations address both fundamental combustion phenomena and applied combustion research topics of interest to NASA. From this pool of research, flight investigations are selected which benefit from access to a microgravity environment. Fundamental research provides insights to develop accurate simulations of complex combustion processes and allows developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion (fires, explosions). Through its spacecraft fire safety program, applied research is conducted to decrease risks to humans living and working in space. The Microgravity Combustion Science program implements a structured flight research process utilizing the International Space Station (ISS) and two of its premier facilities- the Combustion Integrated Rack of the Fluids and Combustion Facility and the Microgravity Science Glovebox - to conduct space-based research investigations. This paper reviews the current plans for Microgravity Combustion Science research on the International Space Station from 2003 through 2012.

  7. Advances in the NASA Earth Science Division Applied Science Program

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Bonniksen, C. K.; Escobar, V. M.

    2016-12-01

    The NASA Earth Science Division's Applied Science Program advances the understanding of and ability to used remote sensing data in support of socio-economic needs. The integration of socio-economic considerations in to NASA Earth Science projects has advanced significantly. The large variety of acquisition methods used has required innovative implementation options. The integration of application themes and the implementation of application science activities in flight project is continuing to evolve. The creation of the recently released Earth Science Division, Directive on Project Applications Program and the addition of an application science requirement in the recent EVM-2 solicitation document NASA's current intent. Continuing improvement in the Earth Science Applications Science Program are expected in the areas of thematic integration, Project Applications Program tailoring for Class D missions and transfer of knowledge between scientists and projects.

  8. Pathfinder over runway in Hawaii

    NASA Image and Video Library

    1997-08-28

    Pathfinder, NASA's solar-powered, remotely-piloted aircraft is shown while it was conducting a series of science flights to highlight the aircraft's science capabilities while collecting imagery of forest and coastal zone ecosystems on Kauai, Hawaii. The flights also tested two new scientific instruments, a high-spectral-resolution Digital Array Scanned Interferometer (DASI) and a high-spatial-resolution Airborne Real-Time Imaging System (ARTIS). The remote sensor payloads were designed by NASA's Ames Research Center, Moffett Field, California, to support NASA's Mission to Planet Earth science programs.

  9. Development of a Remote Sensing and Microgravity Student GAS Payload

    NASA Technical Reports Server (NTRS)

    Branly, Rolando; Ritter, Joe; Friedfeld, Robert; Ackerman, Eric; Carruthers, Carl; Faranda, Jon

    1999-01-01

    The G-781 Terrestrial and Atmospheric Multi-Spectral Explorer payload (TAMSE) is the result of an educational partnership between Broward and Brevard Community Colleges with the Association of Small Payload Researchers (ASPR) and the Florida Space Institute, University of Central Florida. The effort focuses on flying nine experiments, including three earth viewing remote sensing experiments, three microgravity experiments involving crystal growth, and three radiation measurement experiments. The G-781 science team, composed of both student and faculty members, has been working on this payload since 1995. The dream of flying the first Florida educational GAS experiment led to the flight of a passive Radiation dosimetry experiment on STS-91 (ASPR-GraDEx-I), which will be reflown as part of TAMSE. This project has lead to the development of a mature space science program within the schools. Many students have been positively touched by direct involvement with NASA and the GAS program as well as with other flight programs e.g. the KC-135 flight program. Several students have changed majors, and selected physics, engineering, and other science career paths as a result of the experience. The importance of interdisciplinary training is fundamental to this payload and to the teaching of the natural sciences. These innovative student oriented projects will payoff not only in new science data, but also in accomplishing training for the next generation of environmental and space scientists. The details the TAMSE payload design are presented in this paper.

  10. Apollo Program Summary Report: Synopsis of the Apollo Program Activities and Technology for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Overall program activities and the technology developed to accomplish lunar exploration are discussed. A summary of the flights conducted over an 11-year period is presented along with specific aspects of the overall program, including lunar science, vehicle development and performance, lunar module development program, spacecraft development testing, flight crew summary, mission operations, biomedical data, spacecraft manufacturing and testing, launch site facilities, equipment, and prelaunch operations, and the lunar receiving laboratory. Appendixes provide data on each of the Apollo missions, mission type designations, spacecraft weights, records achieved by Apollo crewmen, vehicle histories, and a listing of anomalous hardware conditions noted during each flight beginning with Apollo 4.

  11. Overview of NASA Cryocooler Programs

    NASA Technical Reports Server (NTRS)

    Boyle, R. F.; Ross, R. G., Jr.; Krebs, Carolyn A. (Technical Monitor)

    2001-01-01

    Mechanical cryocoolers represent a significant enabling technology for NASA's Earth and Space Science Enterprises, as well as augmenting existing capabilities in space exploration. An over-view is presented of on-going efforts at the Goddard Space Flight Center and the Jet Propulsion Laboratory in support of current flight projects, near-term flight instruments, and long-term technology development.

  12. Spacelab Accomplishments Forum 4

    NASA Technical Reports Server (NTRS)

    Emond, J. (Editor); Bennet, N. (Compiler); McCauley, D. (Compiler); Murphy, K. (Compiler); Baugher, Charles R. (Technical Monitor)

    1999-01-01

    The Spacelab Module, exposed platforms, and supporting instrumentation were designed and developed by the European Space Agency to house advanced experiments inside the Space Shuttle cargo bay. The Spacelab program has hosted a cross-disciplinary research agenda over a 17-year flight history. Several variations of Spacelab were used to host payloads for almost every space research discipline that NASA pursues-life sciences, microgravity research, space sciences, and earth observation studies. After seventeen years of flight, Spacelab modules, pallets, or variations thereof flew on the Shuttle 36 times for a total of 375 flight days.

  13. Legacy of Operational Space Medicine During the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Stepaniakm, P.; Gilmore, S.; Johnston, S.; Chandler, M.; Beven, G.

    2011-01-01

    The Johnson Space Center s Medical Science Division branches were involved in preparing astronauts for space flight during the 30 year period of the Space Shuttle Program. These branches included the Flight Medicine Clinic, Medical Operations and the Behavioral Health Program. The components of each facet of these support services were: the Flight Medicine Clinic s medical selection process and medical care; the Medical Operations equipment, training, procedures and emergency medical services; and the Behavioral Health and Performance operations. Each presenter will discuss the evolution of its operations, implementations, lessons learned and recommendations for future vehicles and short duration space missions.

  14. Summer High School Apprenticeship Research Program (SHARP) of the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A total of 125 talented high school students had the opportunity to gain first hand experience about science and engineering careers by working directly with a NASA scientist or engineer during the summer. This marked the fifth year of operation for NASA's Summer High School Apprenticehsip Research Program (SHARP). Ferguson Bryan served as the SHARP contractor and worked closely with NASA staff at Headquarters and the eight participating sites to plan, implement, and evaluate the Program. The main objectives were to strengthen SHARP and expand the number of students in the Program. These eight sites participated in the Program: Ames Research Center North, Ames' Dryden Flight Research Facility, Goddard Space Flight Center, Goddard's Wallops Flight Facility, Kennedy Space Center, Langley Research Center, Lewis Research Center, and Marshall Space Flight Center.

  15. Members of House Committee on Science and Astronautics Visited MSFC

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather firsthand information of the nation's space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. The subcommittee was briefed on MSFC's manned space efforts earlier in the day and then inspected mockups of the Saturn I Workshop and the Apollo Telescope Mount, two projects developed by MSFC for the post-Apollo program. In this photograph, MSFC Director, Dr. Wernher von Braun and Joe Waggoner, Democratic representative of Louisiana, discuss Apollo models.

  16. GSFC Heliophysics Science Division 2008 Science Highlights

    NASA Technical Reports Server (NTRS)

    Gilbert, Holly R.; Strong, Keith T.; Saba, Julia L. R.; Firestone, Elaine R.

    2009-01-01

    This report is intended to record and communicate to our colleagues, stakeholders, and the public at large about heliophysics scientific and flight program achievements and milestones for 2008, for which NASA Goddard Space Flight Center's Heliophysics Science Division (HSD) made important contributions. HSD comprises approximately 261 scientists, technologists, and administrative personnel dedicated to the goal of advancing our knowledge and understanding of the Sun and the wide variety of domains that its variability influences. Our activities include Lead science investigations involving flight hardware, theory, and data analysis and modeling that will answer the strategic questions posed in the Heliophysics Roadmap; Lead the development of new solar and space physics mission concepts and support their implementation as Project Scientists; Provide access to measurements from the Heliophysics Great Observatory through our Science Information Systems, and Communicate science results to the public and inspire the next generation of scientists and explorers.

  17. GSFC Heliophysics Science Division 2009 Science Highlights

    NASA Technical Reports Server (NTRS)

    Strong, Keith T.; Saba, Julia L. R.; Strong, Yvonne M.

    2009-01-01

    This report is intended to record and communicate to our colleagues, stakeholders, and the public at large about heliophysics scientific and flight program achievements and milestones for 2009, for which NASA Goddard Space Flight Center's Heliophysics Science Division (HSD) made important contributions. HSD comprises approximately 299 scientists, technologists, and administrative personnel dedicated to the goal of advancing our knowledge and understanding of the Sun and the wide variety of domains that its variability influences. Our activities include: Leading science investigations involving flight hardware, theory, and data analysis and modeling that will answer the strategic questions posed in the Heliophysics Roadmap; Leading the development of new solar and space physics mission concepts and support their implementation as Project Scientists; Providing access to measurements from the Heliophysics Great Observatory through our Science Information Systems; and Communicating science results to the public and inspiring the next generation of scientists and explorers.

  18. [Activities of Goddard Earth Sciences and Technology Center, Maryland University

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Goddard Space Flight Center (GSFC) is recognized as a world leader in the application of remote sensing and modeling aimed at improving knowledge of the Earth system. The Goddard Earth Sciences Directorate plays a central role in NASA's Earth Observing System and the U.S. Global Change Research Program. Goddard Earth Sciences and Technology (GEST) is organized as a cooperative agreement with the GSFC to promote excellence in the Earth sciences, and is a consortium of universities and corporations (University of Maryland Baltimore County, Howard University, Hampton University, Caelum Research Corporation and Northrop Grumman Corporation). The aim of this new program is to attract and introduce promising students in their first or second year of graduate studies to Oceanography and Earth system science career options through hands-on instrumentation research experiences on coastal processes at NASA's Wallops Flight Facility on the Eastern Shore of Virginia.

  19. The ninth Dr. Albert Plesman memorial lecture: The Future of Space Flight

    NASA Technical Reports Server (NTRS)

    Moore, J. W.

    1984-01-01

    The history of space flight is reviewed and major NASA programs (Mercury, Gemini, Apollo, Skylab, Apollo-Soyuz, Science and Applications, Space Shuttle, Space Station) are summarized. Developments into the early 21st century are predicted.

  20. HIFiRE-5 Flight Vehicle Design

    NASA Technical Reports Server (NTRS)

    Kimmel, Roger L.; Adamczak, David; Berger, Karen; Choudhari, Meelan

    2010-01-01

    The Hypersonic International Flight Research Experimentation (HIFiRE) program is a hypersonic flight test program executed by the Air Force Research Laboratories (AFRL) and Australian Defence Science and Technology Organization (DSTO). HIFiRE flight 5 is devoted to measuring transition on a three-dimensional body. This paper summarizes payload configuration, trajectory, vehicle stability limits and roughness tolerances. Results show that the proposed configuration is suitable for testing transition on a three-dimensional body. Transition is predicted to occur within the test window, and a design has been developed that will allow the vehicle to be manufactured within prescribed roughness tolerances

  1. Recent Results and Near Term Outlook for the NASA Balloon Science Program

    NASA Astrophysics Data System (ADS)

    Jones, William Vernon

    Long-duration and conventional balloon flights in the traditional Astrophysics, Solar and Heliophysics, and Earth Science disciplines have continued in both polar and non-polar regions since the 39th COSPAR Assembly in Mysore, India. One of these established a new flight record of 55 days over Antarctica during the 2012-2013 austral season. That Super-TIGER science flight broke both the 42-day record of the CREAM science flight during the 2004-2005 season and the 54-day super pressure balloon test flight in 2008-2009. With two comets approaching the sun in 2013-2014, the Planetary Science community has shown increased interest in remote observations of comets, planets, and other objects in the Solar System. All of the above science disciplines are interested in super pressure balloon (SPB) flights, which have been under development by NASA, and which were strongly supported by the Astro2010 Decadal Study. A 532,152 m3 (18.8 MCF) SPB with a major gamma ray astrophysics payload is planned for an ultra-long duration balloon (ULDB) test flight around and from Antarctica during the upcoming 2014-2015 season. Flights for SPB qualification to support 1000 kg science instruments to 33 km altitude have proceeded in parallel with planning for options to increase the altitude for less massive instruments that require less atmospheric overburden. The nearly constant SPB volume will provide stable altitude long-duration flights at non-polar latitudes, thereby supporting a much broader range of scientific investigations. Scientific ballooning continues to complement and enable space missions, while training young scientists and systems engineers for the workforce needed to conduct future missions. Highlights of results from past balloon-borne measurements and expected results from ongoing and planned balloon-borne experiments will be presented.

  2. The 1985 National Aeronautics and Space Administration's Summer High School Apprenticeship Research Program (SHARP)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In 1985, a total of 126 talented high school students gained first hand knowledge about science and engineering careers by working directly with a NASA scientist or engineer during the summer. This marked the sixth year of operation for NASA's Summer High School Apprenticeship Research Program (SHARP). The major priority of maintaining the high standards and success of prior years was satisfied. The following eight sites participated in the Program: Ames Research Center, Ames' Dryden Flight Research Facility, Goddard Space Flight Center, Goddard's Wallop Flight Facility, Kennedy Space Center, Langley Research Center, Lewis Research Center, and Marshall Space Flight Center. Tresp Associates served as the SHARP contractor and worked closely with NASA staff at headquarters and the sites just mentioned to plan, implement, and evaluate the program.

  3. Strategic implementation plan

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Life Science Division of the NASA Office of Space Science and Applications (OSSA) describes its plans for assuring the health, safety, and productivity of astronauts in space, and its plans for acquiring further fundamental scientific knowledge concerning space life sciences. This strategic implementation plan details OSSA's goals, objectives, and planned initiatives. The following areas of interest are identified: operational medicine; biomedical research; space biology; exobiology; biospheric research; controlled ecological life support; flight programs and advance technology development; the life sciences educational program; and earth benefits from space life sciences.

  4. 78 FR 49297 - NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... persons, scientific and technical information relevant to program planning. DATES: Tuesday, September 17... topics: -- Heliophysics Division Overview and Program Status -- Flight Mission Status Report...

  5. The Impact of Apollo-Era Microbiology on Human Space Flight

    NASA Technical Reports Server (NTRS)

    Elliott, T. F; Castro, V. A.; Bruce, R. J.; Pierson, D. L.

    2014-01-01

    The microbiota of crewmembers and the spacecraft environment contributes significant risk to crew health during space flight missions. NASA reduces microbial risk with various mitigation methods that originated during the Apollo Program and continued to evolve through subsequent programs: Skylab, Shuttle, and International Space Station (ISS). A quarantine of the crew and lunar surface samples, within the Lunar Receiving Laboratory following return from the Moon, was used to prevent contamination with unknown extraterrestrial organisms. The quarantine durations for the crew and lunar samples were 21 days and 50 days, respectively. A series of infections among Apollo crewmembers resulted in a quarantine before launch to limit exposure to infectious organisms. This Health Stabilization Program isolated the crew for 21 days before flight and was effective in reducing crew illness. After the program developed water recovery hardware for Apollo spacecraft, the 1967 National Academy of Science Space Science Board recommended the monitoring of potable water. NASA implemented acceptability limits of 10 colony forming units (CFU) per mL and the absence of viable E. coli, anaerobes, yeasts, and molds in three separate 150 mL aliquots. Microbiological investigations of the crew and spacecraft environment were conducted during the Apollo program, including the Apollo-Soyuz Test Project and Skylab. Subsequent space programs implemented microbial screening of the crew for pathogens and acceptability limits on spacecraft surfaces and air. Microbiology risk mitigation methods have evolved since the Apollo program. NASA cancelled the quarantine of the crew after return from the lunar surface, reduced the duration of the Health Stabilization Program; and implemented acceptability limits for spacecraft surfaces and air. While microbial risks were not a main focus of the early Mercury and Gemini programs, the extended duration of Apollo flights resulted in the increased scrutiny of impact of the space flight environment on crew health. The lessons learned during that era of space flight continue to impact microbiology risk mitigation in space programs today.

  6. The NASA Goddard Space Flight Center Virtual Science Fair

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeff; Walden, Harvey; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This report describes the development of the NASA Goddard Space Flight Center Virtual Science Fair, including its history and outgrowth from the traditional regional science fairs supported by NASA. The results of the 1999 Virtual Science Fair pilot program, the mechanics of running the 2000 Virtual Science Fair and its results, and comments and suggestions for future Virtual Science Fairs are provided. The appendices to the report include the original proposal for this project, the judging criteria, the user's guide and the judge's guide to the Virtual Science Fair Web site, the Fair publicity brochure and the Fair award designs, judges' and students' responses to survey questions about the Virtual Science Fair, and lists of student entries to both the 1999 and 2000 Fairs.

  7. Perseus B Heads for Landing on Edwards AFB Runway

    NASA Image and Video Library

    1997-04-30

    The Perseus B remotely piloted aircraft nears touchdown at Edwards Air Force Base, Calif. at the conclusion of a development flight at NASA's Dryden Flight Research Center. The Perseus B is the latest of three versions of the Perseus design developed by Aurora Flight Sciences under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  8. UNH Project SMART 2017: Space Science for High School Students

    NASA Astrophysics Data System (ADS)

    Smith, C. W.; Broad, L.; Goelzer, S.; Levergood, R.; Lugaz, N.; Moebius, E.

    2017-12-01

    Every summer for the past 26 years the University of New Hampshire (UNH) has run a month-long, residential outreach program for high school students considering careers in mathematics, science, or engineering. Space science is one of the modules. Students work directly with UNH faculty performing original work with real spacecraft data and hardware and present the results of that effort at the end of the program. This year the student research projects used data from the Messenger, STEREO, and Triana missions. In addition, the students build and fly a high-altitude balloon payload with instruments of their own construction. Students learn circuit design and construction, microcontroller programming, and core atmospheric and space science along with fundamental concepts in space physics and engineering. Our payload design has evolved significantly since the first flight of a simple rectangular box and now involves a stable descent vehicle that does not require a parachute. Our flight hardware includes an on-board flight control computer, in-flight autonomous control and data acquisition of multiple student-built instruments, and real-time camera images sent to ground. This year we developed, built and flew a successful line cutter based on GPS location information that prevents our payload from falling into the ocean while also separating the payload from the balloon remains for a cleaner descent. We will describe that new line cutter design and implementation along with the shielded Geiger counters that we flew as part of our cosmic ray air shower experiment. This is a program that can be used as a model for other schools to follow and that high schools can initiate. More information can be found at .

  9. 77 FR 58413 - NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... persons, scientific and technical information relevant to program planning. DATES: Wednesday, October 10... Division Overview and Program Status --Flight Mission Status Report --Heliophysics Division Comments on...

  10. Members of House Committee on Science and Astronautics Visited MSFC

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather firsthand information of the nation's space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. Standing at the Apollo Applications Program Cluster Model in building 4745 are (left-to-right): Dr. Wernher von Braun, MSFC; Congressman Joe D. Waggoner, Democratic representative of Louisiana; Congressman Earle Cabell, Democratic representative of Texas; Subcommittee Chairman Olin E. Teague, Democratic representative of Texas; Congressman James G. Fulton, Republican representative of Pennsylvania; and Dr. Ernst Stuhlinger, associate MSFC director for science. The subcommittee was briefed on MSFC's manned space efforts earlier in the day and then inspected mockups of the Saturn I Workshop and the Apollo Telescope Mount, two projects developed by MSFC for the post-Apollo program.

  11. James Webb Space Telescope Optical Telescope Element Mirror Coatings

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva A.; Bowers, Charles W.; Quijada, Manuel A.; Heaney, James B.; Gallagher, Benjamin; McKay, Andrew; Stevenson, Ian

    2012-01-01

    James Webb Space Telescope (JWST) Optical Telescope Element (OTE) mirror coating program has been completed. The science goals of the JWST mission require a uniform, low stress, durable optical coating with high reflectivity over the JWST spectral region. The coating has to be environmentally stable, radiation resistant and compatible with the cryogenic operating environment. The large size, 1.52 m point to point, light weight, beryllium primary mirror (PM) segments and flawless coating process during the flight mirror coating program that consisted coating of 21 flight mirrors were among many technical challenges. This paper provides an overview of the JWST telescope mirror coating program. The paper summarizes the coating development program and performance of the flight mirrors.

  12. A crisis in the NASA space and earth sciences programme

    NASA Technical Reports Server (NTRS)

    Lanzerotti, Louis, J.; Rosendhal, Jeffrey D.; Black, David C.; Baker, D. James; Banks, Peter M.; Bretherton, Francis; Brown, Robert A.; Burke, Kevin C.; Burns, Joseph A.; Canizares, Claude R.

    1987-01-01

    Problems in the space and earth science programs are examined. Changes in the research environment and requirements for the space and earth sciences, for example from small Explorer missions to multispacecraft missions, have been observed. The need to expand the computational capabilities for space and earth sciences is discussed. The effects of fluctuations in funding, program delays, the limited number of space flights, and the development of the Space Station on research in the areas of astronomy and astrophysics, planetary exploration, solar and space physics, and earth science are analyzed. The recommendations of the Space and Earth Science Advisory Committee on the development and maintenance of effective space and earth sciences programs are described.

  13. GSFC Heliophysics Science Division FY2010 Annual Report

    NASA Technical Reports Server (NTRS)

    Gilbert, Holly R.; Strong, Keith T.; Saba, Julia L. R.; Clark, Judith B.; Kilgore, Robert W.; Strong, Yvonne M.

    2010-01-01

    This report is intended to record and communicate to our colleagues, stakeholders, and the public at large about heliophysics scientific and flight program achievements and milestones for 2010, for which NASA Goddard Space Flight Center's Heliophysics Science Division (HSD) made important contributions. HSD comprises approximately 323 scientists, technologists, and administrative personnel dedicated to the goal of advancing our knowledge and understanding of the Sun and the wide variety of domains that its variability influences. Our activities include: Leading science investigations involving flight hardware, theory, and data analysis and modeling that will answer the strategic questions posed in the Heliophysics Roadmap; Leading the development of new solar and space physics mission concepts and support their implementation as Project Scientists; Providing access to measurements from the Heliophysics Great Observatory through our Science Information Systems; and Communicating science results to the public and inspiring the next generation of scientists and explorers.

  14. First Middle East Aircraft Parabolic Flights for ISU Participant Experiments

    NASA Astrophysics Data System (ADS)

    Pletser, Vladimir; Frischauf, Norbert; Cohen, Dan; Foster, Matthew; Spannagel, Ruven; Szeszko, Adam; Laufer, Rene

    2017-06-01

    Aircraft parabolic flights are widely used throughout the world to create microgravity environment for scientific and technology research, experiment rehearsal for space missions, and for astronaut training before space flights. As part of the Space Studies Program 2016 of the International Space University summer session at the Technion - Israel Institute of Technology, Haifa, Israel, a series of aircraft parabolic flights were organized with a glider in support of departmental activities on `Artificial and Micro-gravity' within the Space Sciences Department. Five flights were organized with manoeuvres including several parabolas with 5 to 6 s of weightlessness, bank turns with acceleration up to 2 g and disorientation inducing manoeuvres. Four demonstration experiments and two experiments proposed by SSP16 participants were performed during the flights by on board operators. This paper reports on the microgravity experiments conducted during these parabolic flights, the first conducted in the Middle East for science and pedagogical experiments.

  15. Research and technology, fiscal year 1983

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The responibilities and programs of the Goddard Space Flight Center are ranged from basic research in the space and Earth sciences through the management of numerous flight projects to operational responsibility for the tracking of and data acquisition from NASA's Earth orbiting satellites, Progress in the areas of spacecraft technology, sensor development and data system development, as well as in the basic and applied to research in the space and Earth sciences that they support is highlighted.

  16. Members of House Committee on Science and Astronautics Visited MSFC

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather firsthand information of the nation's space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. The subcommittee was briefed on MSFC's manned space efforts earlier in the day and then inspected mockups of the Saturn I Workshop and the Apollo Telescope Mount, two projects developed by MSFC for the post-Apollo program. In this photograph, MSFC Director, Dr. Wernher von Braun, bids farewell to Texas Democratic Representative Olin E. Teague before departure at the Redstone Arsenal Airstrip.

  17. Members of House Committee on Science and Astronautics Visited MSFC

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather firsthand information of the nation's space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. The subcommittee was briefed on MSFC's manned space efforts earlier in the day and then inspected mockups of the Saturn I Workshop and the Apollo Telescope Mount, two projects developed by MSFC for the post-Apollo program. In this photograph, MSFC Director, Dr. Wernher von Braun and Richard L. Roudebush, Republican representative of Indiana, discuss Apollo models.

  18. Life sciences interests in Mars missions

    NASA Technical Reports Server (NTRS)

    Rummel, John D.; Griffiths, Lynn D.

    1989-01-01

    NASA's Space Life Sciences research permeates plans for Mars missions and the rationale for the exploration of the planet. The Space Life Sciences program has three major roles in Mars mission studies: providing enabling technology for piloted missions, conducting scientific exploration related to the origin and evolution of life, and protecting space crews from the adverse physiological effects of space flight. This paper presents a rationale for exploration and some of the issues, tradeoffs, and visions being addressed in the Space Life Sciences program in preparation for Mars missions.

  19. Perseus B Heads for Landing on Edwards AFB Runway

    NASA Image and Video Library

    1998-04-30

    The Perseus B remotely piloted aircraft approaches the runway at Edwards Air Force Base, Calif. at the conclusion of a development flight at NASA's Dryden flight Research Center in April 1998. The Perseus B is the latest of three versions of the Perseus design developed by Aurora Flight Sciences under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  20. The NASA Goddard Space Flight Center Virtual Science Fair

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeff; Walden, Harvey; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    This report describes the development of the NASA Goddard Space Flight Center Virtual Science Fair, including its history and outgrowth from the traditional regional science fairs supported by NASA. The results of the 1999 Virtual Science Fair pilot program, the mechanics of running the 2000 Virtual Science Fair and its results, and comments and suggestions for future Virtual Science Fairs are provided. The appendices to the report contain supporting documentation, including the original proposal for this project, the judging criteria, the user's guide and the judge's guide to the Virtual Science Fair Web site, the Fair publicity brochure and the Fair award designs, judges' and students' responses to survey questions about the Virtual Science Fair, and lists of student entries to both the 1999 and 2000 Fairs.

  1. Flying the Infrared Skies: An Authentic SOFIA Educator Experience

    NASA Astrophysics Data System (ADS)

    Manning, J. G.

    2015-11-01

    The NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA) flagship education effort is its Airborne Astronomy Ambassadors (AAA) program. The program flies teams of teachers on SOFIA research flights as part of an educator professional development effort enabling these teachers to experience first-hand the workings of the airborne observatory, to interact with scientists and technologists, to observe research in progress and how scientists use technology—all in support of national STEM goals. The presenter will share his own experience as an EPO escort on a recent SOFIA flight including two educator teams, providing a first-hand account of how an “authentic” science experience can exploit unique NASA assets to improve science teaching, inspire students, inform local communities, and contribute to the elevation of public science literacy.

  2. Spacelab program's scientific benefits to mankind

    NASA Technical Reports Server (NTRS)

    Graft, Harry G., Jr.; Marmann, Richard A.

    1993-01-01

    The paper describes the important scientific discoveries and accomplishments achieved by the Spacelab program during the ten years of its operation starting with the first flight in 1983, with emphasis on the discoveries and accomplishments in the fields of astronomy and astrophysics, atmospheric science, life sciences, microgravity science, plasma physics, and earth observations. The Spacelab systems performance and operations are discussed with particular attention given to the operations applicable to the Space Station era.

  3. Clock Technology Development for the Laser Cooling and Atomic Physics (LCAP) Program

    NASA Technical Reports Server (NTRS)

    Klipstein, W. M.; Thompson, R. J.; Seidel, D. J.; Kohel, J.; Maleki, L.

    1998-01-01

    The Time and Frequency Sciences and Technology Group at Jet Propulsion Laboratory (JPL) has developed a laser cooling capability for flight and has been selected by NASA to support the Laser-Cooling and Atomic Physics (LCAP) program. Current work in the group includes design and development for tee two laser-cooled atomic clock experiments which have been selected for flight on the International Space Station.

  4. HIFIRE Flight 2 Overview and Status Update 2011

    NASA Technical Reports Server (NTRS)

    Jackson, Kevin R.; Gruber, Mark R.; Buccellato, Salvatore

    2011-01-01

    A collaborative international effort, the Hypersonic International Flight Research Experimentation (HIFiRE) Program aims to study basic hypersonic phenomena through flight experimentation. HIFiRE Flight 2 teams the United States Air Force Research Lab (AFRL), NASA, and the Australian Defence Science and Technology Organisation (DSTO). Flight 2 will develop an alternative test technique for acquiring high enthalpy scramjet flight test data, allowing exploration of accelerating hydrocarbon-fueled scramjet performance and dual-to-scram mode transition up to and beyond Mach 8 flight. The generic scramjet flowpath is research quality and the test fuel is a simple surrogate for an endothermically cracked liquid hydrocarbon fuel. HIFiRE Flight 2 will be a first of its kind in contribution to scramjets. The HIFiRE program builds upon the HyShot and HYCAUSE programs and aims to leverage the low-cost flight test technique developed in those programs. It will explore suppressed trajectories of a sounding rocket propelled test article and their utility in studying ramjet-scramjet mode transition and flame extinction limits research. This paper describes the overall scramjet flight test experiment mission goals and objectives, flight test approach and strategy, ground test and analysis summary, development status and project schedule. A successful launch and operation will present to the scramjet community valuable flight test data in addition to a new tool, and vehicle, with which to explore high enthalpy scramjet technologies.

  5. Aeroacoustics Research Program in JIAFS

    NASA Technical Reports Server (NTRS)

    Myers, Michael K.

    2000-01-01

    This paper presents a final report on Aeroacoustics Research Program in JIAFS (Joint Institute For Advancement of Flight Sciences). The objectives of the program were to conduct research at the NASA Langley Research Center and to provide a comprehensive education program at the Center leading to advanced degrees in aeroacoustics.

  6. USRA's NCSEFSE: a new National Center for Space, Earth, and Flight Sciences Education

    NASA Astrophysics Data System (ADS)

    Livengood, T. A.; Goldstein, J.; Vanhala, H.; Hamel, J.; Miller, E. A.; Pulkkinen, K.; Richards, S.

    2005-08-01

    A new National Center for Space, Earth, and Flight Sciences Education (NCSEFSE) has been created in the Washington, DC metropolitan area under the auspices of the Universities Space Research Association. The NCSEFSE provides education and public outreach services in the areas of NASA's research foci in programs of both national and local scope. Present NCSEFSE programs include: Journey through the Universe, which unites formal and informal education within communities and connects a nationally-distributed network of communities from Hilo, HI to Washington, DC with volunteer Visiting Researchers and thematic education modules; the Voyage Scale Model Solar System exhibition on the National Mall, a showcase for planetary science placed directly outside the National Air and Space Museum; educational module development and distribution for the MESSENGER mission to Mercury through a national cadre of MESSENGER Educator Fellows; Teachable Moments in the News, which capitalizes on current events in space, Earth, and flight sciences to teach the science that underlies students' natural interests; the Voyages Across the Universe Speakers' Bureau; and Family Science Night at the National Air and Space Museum, which reaches audiences of 2000--3000 each year, drawn from the Washington metropolitan area. Staff scientists of NCSEFSE maintain active research programs, presently in the areas of planetary atmospheric composition, structure, and dynamics, and in solar system formation. NCSEFSE scientists thus are able to act as authentic representatives of frontier scientific research, and ensure accuracy, relevance, and significance in educational products. NCSEFSE instructional designers and educators ensure pedagogic clarity and effectiveness, through a commitment to quantitative assessment.

  7. Microgravity sciences application visiting scientist program

    NASA Technical Reports Server (NTRS)

    Glicksman, Martin; Vanalstine, James

    1995-01-01

    Marshall Space Flight Center pursues scientific research in the area of low-gravity effects on materials and processes. To facilitate these Government performed research responsibilities, a number of supplementary research tasks were accomplished by a group of specialized visiting scientists. They participated in work on contemporary research problems with specific objectives related to current or future space flight experiments and defined and established independent programs of research which were based on scientific peer review and the relevance of the defined research to NASA microgravity for implementing a portion of the national program. The programs included research in the following areas: protein crystal growth, X-ray crystallography and computer analysis of protein crystal structure, optimization and analysis of protein crystal growth techniques, and design and testing of flight hardware.

  8. The ISS flight of Richard Garriott: a template for medicine and science investigation on future spaceflight participant missions.

    PubMed

    Jennings, Richard T; Garriott, Owen K; Bogomolov, Valery V; Pochuev, Vladimir I; Morgun, Valery V; Garriott, Richard A

    2010-02-01

    A total of eight commercial spaceflight participants have launched to the International Space Station (ISS) on Soyuz vehicles. Based on an older mean age compared to career astronauts and an increased prevalence of medical conditions, spaceflight participants have provided the opportunity to learn about the effect of space travel on crewmembers with medical problems. The 12-d Soyuz TMA-13/12 ISS flight of spaceflight participant Richard Garriott included medical factors that required preflight intervention, risk mitigation strategies, and provided the opportunity for medical study on-orbit. Equally important, Mr. Garriott conducted extensive medical, scientific, and educational payload operations during the flight. These included 7 medical experiments and a total of 15 scientific projects such as protein crystal growth, Earth observations/photography, educational projects with schools, and amateur radio. The medical studies included the effect of microgravity on immune function, sleep, bone loss, corneal refractive surgery, low back pain, motion perception, and intraocular pressure. The overall mission success resulted from non-bureaucratic agility in mission planning, cooperation with investigators from NASA, ISS, International Partners, and the Korean Aerospace Research Institute, in-flight support and leadership from a team with spaceflight and Capcom experience, and overall mission support from the ISS program. This article focuses on science opportunities that suborbital and orbital spaceflight participant flights offer and suggests that the science program on Richard Garriott's flight be considered a model for future orbital and suborbital missions. The medical challenges are presented in a companion article.

  9. Explorers Program Management

    NASA Technical Reports Server (NTRS)

    Volpe, Frank; Comberiate, Anthony B. (Technical Monitor)

    2001-01-01

    The mission of the Explorer Program is to provide frequent flight opportunities for world-class scientific investigations from space within the following space science themes: 1) Astronomical Search for Origins and Planetary Systems; 2) Structure and Evolution of the Universe; and 3) The Sun-Earth Connection. America's space exploration started with Explorer 1 which was launched February 1, 1958 and discovered the Van Allen Radiation Belts. Over 75 Explorer missions have flown. The program seeks to enhance public awareness of, and appreciation for, space science and to incorporate. educational and public outreach activities as integral parts of space science investigations.

  10. Program of Research in Aeronautics

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A prospectus of the educational and research opportunities available at the Joint Institute for Advancement of Flight Sciences, operated at NASA Langley Research Center in conjunction with George Washington University's School of Engineering and Applied Sciences is presented. Requirements of admission to various degree programs are given as well as the course offerings in the areas of acoustics, aeronautics, environmental modelling, materials science, and structures and dynamics. Research facilities for each field of study are described. Presentations and publications (including dissertations and theses) generated by each program are listed as well as faculty members visting scientists and engineers.

  11. Theseus in Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Theseus research aircraft in flight over Rogers Dry Lake, Edwards, California, during a 1996 research flight. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden's Project Manager was John Del Frate.

  12. Life Sciences Accomplishments 1994

    NASA Technical Reports Server (NTRS)

    Burnell, Mary Lou (Editor)

    1993-01-01

    The NASA Life and Biomedical Sciences and Applications Division (LBSAD) serves the Nation's life sciences community by managing all aspects of U.S. space-related life sciences research and technology development. The activities of the Division are integral components of the Nation's overall biological sciences and biomedical research efforts. However, NASA's life sciences activities are unique, in that space flight affords the opportunity to study and characterize basic biological mechanisms in ways not possible on Earth. By utilizing access to space as a research tool, NASA advances fundamental knowledge of the way in which weightlessness, radiation, and other aspects of the space-flight environment interact with biological processes. This knowledge is applied to procedures and technologies that enable humans to live and work in and explore space and contributes to the health and well-being of people on Earth. The activities of the Division are guided by the following three goals: Goal 1) Use microgravity and other unique aspects of the space environment to enhance our understanding of fundamental biological processes. Goal 2) Develop the scientific and technological foundations for supporting exploration by enabling productive human presence in space for extended periods. Goal 3) Apply our unique mission personnel, facilities, and technology to improve education, the quality of life on Earth, and U.S. competitiveness. The Division pursues these goals with integrated ground and flight programs involving the participation of NASA field centers, industry, and universities, as well as interactions with other national agencies and NASA's international partners. The published work of Division-sponsored researchers is a record of completed research in pursuit of these goals. During 1993, the LBSAD instituted significant changes in its experiment solicitation and peer review processes. For the first time, a NASA Research Announcement (NRA) was released requesting proposals for ground-based and flight research for all programs. Areas of particular interest to NASA were defined Proposals due April 29, 1994, will be peer reviewed - externally for scientific merit. This annual NRA process is now the mechanism for recruiting both extramural and intramural investigations. As an overview of LBSAD activities in 1993, this accomplishments document covers each of the major organizational components of the Division and the accomplishments of each. The second section is a review of the Space Life Sciences Research programs Space Biology, Space Physiology and Countermeasures, Radiation Health, Environmental Health, Space Human Factors, Advanced Life Support, and Global Monitoring and Disease Prediction, The third section, Research in Space Flight, describes the substantial contributions of the Spacelab Life Sciences 2 (SLS-2) mission to life sciences research and the significant contributions of the other missions flown in 1993, along with plans for future missions. The Division has greatly expanded and given high priority to its Education and Outreach Programs, which are presented in the fourth section. The fifth and final section, Partners for Space, shows the Divisions Cooperative efforts with other national and international agencies to achieve common goals, along with the accomplishments of joint research and analysis programs.

  13. NASA CONNECT(TradeMark): Space Suit Science in the Classroom

    NASA Technical Reports Server (NTRS)

    Williams, William B.; Giersch, Chris; Bensen, William E.; Holland, Susan M.

    2003-01-01

    NASA CONNECT's(TradeMark) program titled Functions and Statistics: Dressed for Space initially aired on Public Broadcasting Stations (PBS) nationwide on May 9, 2002. The program traces the evolution of past space suit technologies in the design of space suits for future flight. It serves as the stage to provide educators, parents, and students "space suit science" in the classroom.

  14. Commerce Lab - A program of commercial flight opportunities

    NASA Technical Reports Server (NTRS)

    Robertson, J.; Atkins, H. L.; Williams, J. R.

    1985-01-01

    Commerce Lab is conceived as an adjunct to the National Space Transportation System (NSTS) by providing a focal point for commercial missions which could utilize existing NSTS carrier and resource capabilities for on-orbit experimentation in the microgravity sciences. In this context, the Commerce Lab program provides mission planning for private sector involvement in the space program, in general, and the commercial exploitation of the microgravity environment for materials processing research and development. It is expected that Commerce Lab will provide a logical transition between currently planned NSTS missions and future microgravity science and commercial R&D missions centered around the Space Station. The present study identifies candidate Commerce Lab flight experiments and their development status and projects a mission traffic model that can be used in commercial mission planning.

  15. Soviet Space Programs: 1976-80 (With Supplementary Data through 1983). Manned Space Programs and Space Life Sciences. Part 2. Prepared at the Request of Hon. Bob Packwood, Chairman, Committee on Commerce, Science, and Transportation, United States Senate, Ninety-Eighth Congress, Second Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on Commerce, Science, and Transportation.

    This report, the second of a three-part study of Soviet space programs, examines their manned space programs and reviews their quest for a permanently manned presence in space. Also included is information concerning the physiological and psychological findings related to the extended duration of Soviet manned flights and an executive summary.…

  16. Research and technology operating plan summary: Fiscal year 1975 research and technology program. [space programs, energy technology, and aerospace sciences

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Summaries are presented of Research and Technology Operating Plans currently in progress throughout NASA. Citations and abstracts of the operating plans are presented along with a subject index, technical monitor index, and responsible NASA organization index. Research programs presented include those carried out in the Office of Aeronautics and Space Technology, Office of Energy Programs, Office of Applications, Office of Space Sciences, Office of Tracking and Data Acquisition, and the Office of Manned Space Flight.

  17. The NASA Space Radiation Health Program

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Sulzman, F. M.

    1994-01-01

    The NASA Space Radiation Health Program is a part of the Life Sciences Division in the Office of Space Science and Applications (OSSA). The goal of the Space Radiation Health Program is development of scientific bases for assuring adequate radiation protection in space. A proposed research program will determine long-term health risks from exposure to cosmic rays and other radiation. Ground-based animal models will be used to predict risk of exposures at varying levels from various sources and the safe levels for manned space flight.

  18. Current status and future direction of NASA's Space Life Sciences Program

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Lujan, Barbara F.

    1989-01-01

    The elements of the NASA Life Sciences Program that are related to manned space flight and biological scientific studies in space are reviewed. Projects included in the current program are outlined and the future direction of the program is discussed. Consideration is given to issues such as long-duration spaceflight, medical support in space, readaptation to the gravity field of earth, considerations for the Space Station, radiation hazards, environmental standards for space habitation, and human operator interaction with computers, robots, and telepresence systems.

  19. A Research Program in Flight Sciences

    NASA Technical Reports Server (NTRS)

    Whitesides, John L.; Waggoner, Edgar G. (Technical Monitor)

    2005-01-01

    Since its inception in January 2003, thc program has provided support for 1 faculty and a total of 7 Graduate Research Scholar Assistants, of these all 7 have completed their MS degree program. The program has generated 5 MS thesis and 2 MS project reports. Attachment: Appendix A, B, C, and D.

  20. Taking Science to Special Needs and At-Risk Youth in the San Francisco Bay Area

    NASA Astrophysics Data System (ADS)

    Scherrer, D. K.; Yager, D.; Blair, J.; McCully, D.; Alameda, E.; Crawford, K.

    2009-12-01

    Youth in Juvenile Detention Facilities do attend (in-house) school, but rarely receive any instruction in science. We report on a new program to bring science to students at the Santa Clara County Juvenile Detention Facilitirs. Working in partnership with the Knock Out Dog Fighting campaign put together by Kris Crawford of For Pits Sake, Inc., our program provides alternatives to inappropriate behavior so often seen in inner city environments by introducing students to hands-on, inquiry based science activities. Likewise, we report on using similar materials to provide hands-on science activities to special needs students in Santa Clara and Santa Cruz Counties through “Take Flight for Kids” events organized by Dean McCully of Cisco Systems. Through “Take Flight for Kids”, amateur pilots offer special needs students rides in light aircraft and invite them to explore science and other activities through a community fair hosted by hundreds of local organizations. The fair highlights science opportunities and is supported and attended by a wide variety of NASA, NSF, and other science-related organizations. Our poster will focus on techniques and materials we use to excite special young people about science and opportunities for them in STEM fields.

  1. 78 FR 64253 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... community and other persons, scientific and technical information relevant to program planning. DATES....m., Local Time. ADDRESSES: This meeting will take place at the NASA Goddard Space Flight Center... Flight Center and must state that they are attending the NASA Advisory Council's Planetary Protection...

  2. Commerce Lab - An enabling facility and test bed for commercial flight opportunities

    NASA Technical Reports Server (NTRS)

    Robertson, Jack; Atkins, Harry L.; Williams, John R.

    1986-01-01

    Commerce Lab is conceived as an adjunct to the National Space Transportation System (NSTS) by providing a focal point for commercial missions which could utilize existing NSTS carrier and resource capabilities for on-orbit experimentation in the microgravity sciences. In this context, the Commerce Lab provides an enabling facility and test bed for commercial flight opportunities. Commerce Lab program activities to date have focused on mission planning for private sector involvement in the space program to facilitate the commercial exploitation of the microgravity environment for materials processing research and development. It is expected that Commerce Lab will provide a logical transition between currently planned NSTS missions and future microgravity science and commercial R&D missions centered around the Space Station. The present study identifies candidate Commerce Lab flight experiments and their development status and projects a mission traffic model that can be used in commercial mission planning.

  3. STS-79 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1996-01-01

    STS-79 was the fourth of nine planned missions to the Russian Mir Space Station. This report summarizes the activities such as rendezvous and docking and spaceborne experiment operations. The report also discusses the Orbiter, External Tank (ET), Solid Rocket Boosters (SRB), Reusable Solid Rocket Motor (RSRM) and the space shuttle main engine (SSME) systems performance during the flight. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and exchange a Mir Astronaut. A double Spacehab module carried science experiments and hardware, risk mitigation experiments (RME's) and Russian logistics in support of program requirements. Additionally, phase 1 program science experiments were carried in the middeck. Spacehab-05 operations were performed. The secondary objectives of the flight were to perform the operations necessary for the Shuttle Amateur Radio Experiment-2 (SAREX-2). Also, as a payload of opportunity, the requirements of Midcourse Space Experiment (MSX) were completed.

  4. Inflated concepts for the earth science geostationary platform and an associated flight experiment

    NASA Technical Reports Server (NTRS)

    Friese, G.

    1992-01-01

    Large parabolic reflectors and solar concentrators are of great interest for microwave transmission, solar powered rockets, and Earth observations. Collector subsystems have been under slow development for a decade. Inflated paraboloids have a great weight and package volume advantage over mechanically erected systems and, therefore, have been receiving greater attention recently. The objective of this program was to produce a 'conceptual definition of an experiment to assess in-space structural damping characteristics and effects of the space meteoroid environment upon structural integrity and service life of large inflatable structures.' The flight experiment was to have been based upon an inflated solar concentration, but much of that was being done on other programs. To avoid redundancy, the Earth Science Geostationary Platform (ESGP) was selected as a focus mission for the experiment. Three major areas were studied: the ESGP reflector configuration; flight experiment; and meteoroids.

  5. Activities of the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Work accomplished by the Jet Propulsion Laboratory (JPL) under contract to NASA in 1985 is described. The work took place in the areas of flight projects, space science, geodynamics, materials science, advanced technology, defense and civil programs, telecommunications systems, and institutional activities.

  6. NASA's Earth Science Flight Program Meets the Challenges of Today and Tomorrow

    NASA Technical Reports Server (NTRS)

    Ianson, Eric E.

    2016-01-01

    NASA's Earth science flight program is a dynamic undertaking that consists of a large fleet of operating satellites, an array of satellite and instrument projects in various stages of development, a robust airborne science program, and a massive data archiving and distribution system. Each element of the flight program is complex and present unique challenges. NASA builds upon its successes and learns from its setbacks to manage this evolving portfolio to meet NASA's Earth science objectives. NASA fleet of 16 operating missions provide a wide range of scientific measurements made from dedicated Earth science satellites and from instruments mounted to the International Space Station. For operational missions, the program must address issues such as an aging satellites operating well beyond their prime mission, constellation flying, and collision avoidance with other spacecraft and orbital debris. Projects in development are divided into two broad categories: systematic missions and pathfinders. The Earth Systematic Missions (ESM) include a broad range of multi-disciplinary Earth-observing research satellite missions aimed at understanding the Earth system and its response to natural and human-induced forces and changes. Understanding these forces will help determine how to predict future changes, and how to mitigate or adapt to these changes. The Earth System Science Pathfinder (ESSP) program provides frequent, regular, competitively selected Earth science research opportunities that accommodate new and emerging scientific priorities and measurement capabilities. This results in a series of relatively low-cost, small-sized investigations and missions. Principal investigators whose scientific objectives support a variety of studies lead these missions, including studies of the atmosphere, oceans, land surface, polar ice regions, or solid Earth. This portfolio of missions and investigations provides opportunity for investment in innovative Earth science that enhances NASA's capability for better understanding the current state of the Earth system. ESM and ESSP projects often involve partnerships with other US agencies and/or international organizations. This adds to the complexity of mission development, but allows for a greater scientific return on NASA's investments. The Earth Science Airborne Science Program provides manned and unmanned aircraft systems that further science and advance the use of satellite data. NASA uses these assets worldwide in campaigns to investigate extreme weather events, observe Earth system processes, obtain data for Earth science modeling activities, and calibrate instruments flying aboard Earth science spacecraft. The Airborne Science Program has six dedicated aircraft and access to many other platforms. The Earth Science Multi-Mission Operations program acquires, preserves, and distributes observational data from operating spacecraft to support Earth Science research focus areas. The Earth Observing System Data and Information System (EOSDIS), which has been in operations since 1994, primarily accomplishes this. EOSDIS acquires, processes, archives, and distributes Earth Science data and information products. The archiving of NASA Earth Science information happens at eight Distributed Active Archive Centers (DAACs) and four disciplinary data centers located across the United States. The DAACs specialize by topic area, and make their data available to researchers around the world. The DAACs currently house over 9 petabytes of data, growing at a rate of 6.4 terabytes per day. NASA's current Earth Science portfolio is responsive to the National Research Council (NRC) 2007 Earth Science Decadal Survey and well as the 2010 NASA Response to President Obama's Climate Plan. As the program evolves into the future it will leverage the lessons learned from the current missions in operations and development, and plan for adjustments to future objectives in response to the anticipated 2017 NRC Decadal Survey.

  7. Technologies Advance UAVs for Science, Military

    NASA Technical Reports Server (NTRS)

    2010-01-01

    A Space Act Agreement with Goddard Space Flight Center and West Virginia University enabled Aurora Flight Sciences Corporation, of Manassas, Virginia, to develop cost-effective composite manufacturing capabilities and open a facility in West Virginia. The company now employs 160 workers at the plant, tasked with crafting airframe components for the Global Hawk unmanned aerial vehicle (UAV) program. While one third of the company's workforce focuses on Global Hawk production, the rest of the company develops advanced UAV technologies that are redefining traditional approaches to unmanned aviation. Since the company's founding, Aurora s cutting-edge work has been supported with funding from NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs.

  8. Members of House Committee on Science and Astronautics Visited MSFC

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather firsthand information of the nation's space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. They were briefed on MSFC's manned space efforts earlier in the day and then inspected mockups of the Saturn I Workshop and the Apollo Telescope Mount, two projects developed by MSFC for the post-Apollo program. Pictured left-to-right are Dieter Grau, MSFC; Konrad Dannenberg, MSFC; James G. Fulton, Republican representative for Pennsylvania; Joe Waggoner, Democratic representative for Louisiana; and Dr. Wernher von Braun, Director of MSFC.

  9. NASA/MSFC/NSSTC Science Communication Roundtable

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Gallagher, D. L.; Koczor, R. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The Directorate's Science Roundtable includes active researchers, NASA public relations, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. Science stories cover a variety of space-related subjects and are expressed in simple terms everyone can understand. The sites address such questions as: what is space weather, what's in the heart of a hurricane, can humans live on Mars, and what is it like to live aboard the International Space Station? Along with a new look, the new format now offers articles organized by subject matter, such as astronomy, living in space, earth science or biology. The focus of sharing real-time science related events has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases broadcasts accommodate active feedback and questions from Internet participants. Information will be provided about each member of the Science@NASA web sites.

  10. Our First Quarter Century of Achievement... Just the Beginning

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Space flight, space science, space applications, aeronautics, tracking and data acquisition, international programs, technology utilization, NASA installations, the NASA launch record, astronauts, and the fine arts program are reviewed in light of NASA's 25th anniversary.

  11. A Technology Plan for Enabling Commercial Space Business

    NASA Technical Reports Server (NTRS)

    Lyles, Garry M.

    1997-01-01

    The National Aeronautics and Space Administration's (NASA) Advanced Space Transportation Program is a customer driven, focused technology program that supports the NASA Strategic Plan and considers future commercial space business projections. The initial cycle of the Advanced Space Transportation Program implementation planning was conducted from December 1995 through February 1996 and represented increased NASA emphasis on broad base technology development with the goal of dramatic reductions in the cost of space transportation. The second planning cycle, conducted in January and February 1997, updated the program implementation plan based on changes in the external environment, increased maturity of advanced concept studies, and current technology assessments. The program has taken a business-like approach to technology development with a balanced portfolio of near, medium, and long-term strategic targets. Strategic targets are influenced by Earth science, space science, and exploration objectives as well as commercial space markets. Commercial space markets include those that would be enhanced by lower cost transportation as well as potential markets resulting in major increases in space business induced by reductions in transportation cost. The program plan addresses earth-to-orbit space launch, earth orbit operations and deep space systems. It also addresses all critical transportation system elements; including structures, thermal protection systems, propulsion, avionics, and operations. As these technologies are matured, integrated technology flight experiments such as the X-33 and X-34 flight demonstrator programs support near-term (one to five years) development or operational decisions. The Advanced Space Transportation Program and the flight demonstrator programs combine business planning, ground-based technology demonstrations and flight demonstrations that will permit industry and NASA to commit to revolutionary new space transportation systems beginning at the turn of the century and continuing far into the future.

  12. A visiting scientist program in atmospheric sciences for the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Davis, M. H.

    1989-01-01

    A visiting scientist program was conducted in the atmospheric sciences and related areas at the Goddard Laboratory for Atmospheres. Research was performed in mathematical analysis as applied to computer modeling of the atmospheres; development of atmospheric modeling programs; analysis of remotely sensed atmospheric, surface, and oceanic data and its incorporation into atmospheric models; development of advanced remote sensing instrumentation; and related research areas. The specific research efforts are detailed by tasks.

  13. NASA Microgravity Science and Applications Program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Key elements of the microgravity research program as conducted by the Microgravity Science and Applications Division (MSAD) within the Office of Space Science and Applications (OSSA) during fiscal year (FY) 1992 are described. This NASA funded program supported investigators from the university, industry, and government research communities. The program's goals, the approach taken to achieve those goals, and the resources that were available are summarized. It provides a 'snapshot' of the Program's status at the end of FY 1992 and reviews highlights and progress in the ground and flight-based research during the year. It also describes four major space missions that flew during FY 1992, the advanced technology development (ATD) activities, and the plans to use the research potential of Space Station Freedom and other advanced carriers. The MSAD program structure encompassed five research areas: (1) Biotechnology, (2) Combustion Science, (3) Fluid Physics, (4) Materials Science, and (5) Benchmark Physics.

  14. Science requirements for free-flying imaging radar (FIREX) experiment for sea ice, renewable resources, nonrenewable resources and oceanography

    NASA Technical Reports Server (NTRS)

    Carsey, F.

    1982-01-01

    A future bilateral SAR program was studied. The requirements supporting a SAR mission posed by science and operations in sea-ice-covered waters, oceanography, renewable resources, and nonrenewable resources are addressed. The instrument, mission, and program parameters were discussed. Research investigations supporting a SAR flight and the subsequent overall mission requirements and tradeoffs are summarized.

  15. NASA Tech Briefs, May 1989. Volume 13, No. 5

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This issue contains a special feature on the flight station of the future, discussing future enhancements to Aircraft cockpits. Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, and Mathematics and Information Sciences.

  16. 77 FR 2327 - Meeting of NASA Advisory Council Science Committee Heliophysics Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-17

    ... persons, scientific and technical information relevant to program planning. DATES: Monday, February 27... Terrestrial Probes Program --Status of Current Flight Missions --Research and Analysis Programs --Heliophysics Budget Status --Heliophysics Strategic Planning It is imperative that the meeting be held on these dates...

  17. Theseus Assembly Sequence #1

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Theseus prototype research aircraft being assembled at NASA's Dryden Flight Research Center, Edwards, California, in May of 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden's Project Manager was John Del Frate.

  18. Theseus Assembly Sequence #3

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Theseus prototype research aircraft being assembled at NASA's Dryden Flight Research Center, Edwards, California, in May of 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden's Project Manager was John Del Frate.

  19. New challenges for Life Sciences flight project management

    NASA Technical Reports Server (NTRS)

    Huntoon, C. L.

    1999-01-01

    Scientists have conducted studies involving human spaceflight crews for over three decades. These studies have progressed from simple observations before and after each flight to sophisticated experiments during flights of several weeks up to several months. The findings from these experiments are available in the scientific literature. Management of these flight experiments has grown into a system fashioned from the Apollo Program style, focusing on budgeting, scheduling and allocation of human and material resources. While these areas remain important to the future, the International Space Station (ISS) requires that the Life Sciences spaceflight experiments expand the existing project management methodology. The use of telescience with state-the-art information technology and the multi-national crews and investigators challenges the former management processes. Actually conducting experiments on board the ISS will be an enormous undertaking and International Agreements and Working Groups will be essential in giving guidance to the flight project management Teams forged in this matrix environment must be competent to make decisions and qualified to work with the array of engineers, scientists, and the spaceflight crews. In order to undertake this complex task, data systems not previously used for these purposes must be adapted so that the investigators and the project management personnel can all share in important information as soon as it is available. The utilization of telescience and distributed experiment operations will allow the investigator to remain involved in their experiment as well as to understand the numerous issues faced by other elements of the program The complexity in formation and management of project teams will be a new kind of challenge for international science programs. Meeting that challenge is essential to assure success of the International Space Station as a laboratory in space.

  20. New challenges for Life Sciences flight project management.

    PubMed

    Huntoon, C L

    1999-01-01

    Scientists have conducted studies involving human spaceflight crews for over three decades. These studies have progressed from simple observations before and after each flight to sophisticated experiments during flights of several weeks up to several months. The findings from these experiments are available in the scientific literature. Management of these flight experiments has grown into a system fashioned from the Apollo Program style, focusing on budgeting, scheduling and allocation of human and material resources. While these areas remain important to the future, the International Space Station (ISS) requires that the Life Sciences spaceflight experiments expand the existing project management methodology. The use of telescience with state-the-art information technology and the multi-national crews and investigators challenges the former management processes. Actually conducting experiments on board the ISS will be an enormous undertaking and International Agreements and Working Groups will be essential in giving guidance to the flight project management Teams forged in this matrix environment must be competent to make decisions and qualified to work with the array of engineers, scientists, and the spaceflight crews. In order to undertake this complex task, data systems not previously used for these purposes must be adapted so that the investigators and the project management personnel can all share in important information as soon as it is available. The utilization of telescience and distributed experiment operations will allow the investigator to remain involved in their experiment as well as to understand the numerous issues faced by other elements of the program The complexity in formation and management of project teams will be a new kind of challenge for international science programs. Meeting that challenge is essential to assure success of the International Space Station as a laboratory in space.

  1. New challenges for life sciences flight project management

    NASA Astrophysics Data System (ADS)

    Huntoon, Carolyn L.

    1999-09-01

    Scientists have conducted studies involving human spaceflight crews for over three decades. These studies have progressed from simple observations before and after each flight to sophisticated experiments during flights of several weeks up to several months. The findings from these experiments are available in the scientific literature. Management of these flight experiments has grown into a system fashioned from the Apollo Program style, focusing on budgeting, scheduling and allocation of human and material resources. While these areas remain important to the future, the International Space Station (ISS) requires that the Life Sciences spaceflight experiments expand the existing project management methodology. The use of telescience with state-of-the-art information technology and the multi-national crews and investigators challenges the former management processes. Actually conducting experiments on board the ISS will be an enormous undertaking and International Agreements and Working Groups will be essential in giving guidance to the flight project management Teams forged in this matrix environment must be competent to make decisions and qualified to work with the array of engineers, scientists, and the spaceflight crews. In order to undertake this complex task, data systems not previously used for these purposes must be adapted so that the investigators and the project management personnel can all share in important information as soon as it is available. The utilization of telescience and distributed experiment operations will allow the investigator to remain involved in their experiment as well as to understand the numerous issues faced by other elements of the program. The complexity in formation and management of project teams will be a new kind of challenge for international science programs. Meeting that challenge is essential to assure success of the International Space Station as a laboratory in space.

  2. The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students

    NASA Astrophysics Data System (ADS)

    Livengood, Timothy A.; Goldstein, J. J.; Vanhala, H. A. T.; Johnson, M.; Hulslander, M.

    2012-10-01

    The Student Spaceflight Experiments Program (SSEP) has flown 42 experiments to space, on behalf of students from middle school through community college, on 3 missions: each of the last 2 Space Shuttle flights, and the first SpaceX resupply flight to the International Space Station (ISS). SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. Over 9000 students participated in the initial 3 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 2 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches (that also fly to space). Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory.

  3. Robotic Lunar Landers for Science and Exploration

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Hill, L. A.; Bassler, J. A.; Chavers, D. G.; Hammond, M. S.; Harris, D. W.; Kirby, K. W.; Morse, B. J.; Mulac, B. D.; Reed, C. L. B.

    2010-01-01

    NASA Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory has been conducting mission studies and performing risk reduction activities for NASA s robotic lunar lander flight projects. In 2005, the Robotic Lunar Exploration Program Mission #2 (RLEP-2) was selected as a Exploration Systems Mission Directorate precursor robotic lunar lander mission to demonstrate precision landing and definitively determine if there was water ice at the lunar poles; however, this project was canceled. Since 2008, the team has been supporting NASA s Science Mission Directorate designing small lunar robotic landers for diverse science missions. The primary emphasis has been to establish anchor nodes of the International Lunar Network (ILN), a network of lunar science stations envisioned to be emplaced by multiple nations. This network would consist of multiple landers carrying instruments to address the geophysical characteristics and evolution of the moon. Additional mission studies have been conducted to support other objectives of the lunar science community and extensive risk reduction design and testing has been performed to advance the design of the lander system and reduce development risk for flight projects. This paper describes the current status of the robotic lunar mission studies that have been conducted by the MSFC/APL Robotic Lunar Lander Development team, including the ILN Anchor Nodes mission. In addition, the results to date of the lunar lander development risk reduction efforts including high pressure propulsion system testing, structure and mechanism development and testing, long cycle time battery testing and combined GN&C and avionics testing will be addressed. The most visible elements of the risk reduction program are two autonomous lander test articles: a compressed air system with limited flight durations and a second version using hydrogen peroxide propellant to achieve significantly longer flight times and the ability to more fully exercise flight sensors and algorithms. Robotic Lunar Lander design and development will have significant feed-forward to other missions to the Moon and, indeed, to other airless bodies such as Mercury, asteroids, and Europa, to which similar science and exploration objectives are applicable.

  4. First Cryo-Vacuum Test of the JWST Integrated Science Instrument Module

    NASA Astrophysics Data System (ADS)

    Kimble, Randy A.; Antonille, S. R.; Balzano, V.; Comber, B. J.; Davila, P. S.; Drury, M. D.; Glasse, A.; Glazer, S. D.; Lundquist, R.; Mann, S. D.; McGuffey, D. B.; Novo-Gradac, K. J.; Penanen, K.; Ramey, D. D.; Sullivan, J.; Van Campen, J.; Vila, M. B.

    2014-01-01

    The integration and test program for the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) calls for three cryo-vacuum tests of the ISIM hardware. The first is a risk-reduction test aimed at checking out the test hardware and procedures; this will be followed by two formal verification tests that will bracket other key aspects of the environmental test program (e.g. vibration and acoustics, EMI/EMC). The first of these cryo-vacuum tests, the risk-reduction test, was executed at NASA’s Goddard Space Flight Center starting in late August, 2013. Flight hardware under test included two (of the eventual four) flight instruments, the Mid-Infrared Instrument (MIRI) and the Fine Guidance Sensor/Near-Infrared Imager and Slitless Spectrograph (FGS/NIRISS), mounted to the ISIM structure, as well as the ISIM Electronics Compartment (IEC). The instruments were cooled to their flight operating temperatures 40K for FGS/NIRISS, ~6K for MIRI) and optically tested against a cryo-certified telescope simulator. Key goals for the risk reduction test included: 1) demonstration of controlled cooldown and warmup, stable control at operating temperature, and measurement of heat loads, 2) operation of the science instruments with ISIM electronics systems at temperature, 3) health trending of the science instruments against instrument-level test results, 4) measurement of the pupil positions and six degree of freedom alignment of the science instruments against the simulated telescope focal surface, 5) detailed optical characterization of the NIRISS instrument, 6) verification of the signal-to-noise performance of the MIRI, and 7) exercise of the Onboard Script System that will be used to operate the instruments in flight. In addition, the execution of the test is expected to yield invaluable logistical experience - development and execution of procedures, communications, analysis of results - that will greatly benefit the subsequent verification tests. At the time of this submission, the hardware had reached operating temperature and was partway through the cryo test program. We report here on the test configuration, the overall process, and the results that were ultimately obtained.

  5. Wallops Station and the Creation of an American Space Program. Master's Degree awarded by Univ. of Maryland-Baltimore County

    NASA Technical Reports Server (NTRS)

    Wallace, Harold D., Jr.

    1997-01-01

    As part of the NASA history series a detailed history of Wallops Space Flight Facility from 1957 to 1966 is given. Discussions of Sputnik, NASA, Piloted Space Flight, Space Science Research, and comments on the changes the facility went through during the period are presented. Several appendices are attached as well covering R&D Launches, the NACA Era, organizational charts, Wallops' complement, and selected international cooperative programs.

  6. NASA/State Education Cooperation

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA is cooperating with state departments of education in a number of special education programs. An example is Maryland Summer Centers for Gifted and Talented Students sponsored by the Maryland State Department of Education. Some 2,600 students participated in the 1990 program. One of the 12 centers is the Center for Space Science and Technology at Goddard Space Flight Center, which provides instruction to students of the 9-12 grade level. This center is operated by a three organization partnership that includes the Maryland State Department of Education, the University of Maryland and Goddard Space Flight Center, which hosts the instructional program and provides volunteer scientists and engineers as instructors. Typical two-week space intern program includes panel discussions, lectures, tours, field trips and hands-on activity focusing on various space science topics. Senior high students benefit from a one-to-one mentor relationship with a volunteer scientist or engineer. Another example was the Paducah (Kentucky) NASA Community Involvement Project, a joint educational effort of Langley and Lewis Research Centers, Marshall Space Flight Center, the Kentucky Department of Education, the City of Paducah and Paducah Independent Schools. It was a 16 day exposition/symposium featuring seminars on space subjects.

  7. Microgravity science and applications program tasks, 1991 revision

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Presented here is a compilation of the active research tasks for FY 1991 sponsored by the Microgravity Science and Applications Division of the NASA Office of Space Science and Applications. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. Included is an introductory description of the program, the strategy and overall goal, identification of the organizational structures and the people involved, and a description of each. The tasks are grouped into several categories: electronic materials; solidification of metals, alloys, and composites; fluids, interfaces, and transport; biotechnology; combustion science; glasses and ceramics; experimental technology, instrumentation, and facilities; and Physical and Chemistry Experiments (PACE). The tasks cover both the ground based and flight programs.

  8. Around Marshall

    NASA Image and Video Library

    1962-03-08

    The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather firsthand information of the nation’s space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. Standing at the Apollo Applications Program Cluster Model in building 4745 are (left-to-right): Dr. Wernher von Braun, MSFC; Congressman Joe D. Waggoner, Democratic representative of Louisiana; Congressman Earle Cabell, Democratic representative of Texas; Subcommittee Chairman Olin E. Teague, Democratic representative of Texas; Congressman James G. Fulton, Republican representative of Pennsylvania; and Dr. Ernst Stuhlinger, associate MSFC director for science. The subcommittee was briefed on MSFC’s manned space efforts earlier in the day and then inspected mockups of the Saturn I Workshop and the Apollo Telescope Mount, two projects developed by MSFC for the post-Apollo program.

  9. High Altitude Balloons as a Platform for Space Radiation Belt Science

    NASA Astrophysics Data System (ADS)

    Mazzino, L.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Johnson, W.; Mann, I. R.; Rae, J.; University of Alberta High Altitude Balloons (UA-HAB)

    2011-12-01

    The goals of the University of Alberta High Altitude Balloons Program (UA-HAB) are to i) use low cost balloons to address space radiation science, and ii) to utilise the excitement of "space mission" involvement to promote and facilitate the recruitment of undergraduate and graduate students in physics, engineering, and atmospheric sciences to pursue careers in space science and engineering. The University of Alberta High Altitude Balloons (UA-HAB) is a unique opportunity for University of Alberta students (undergraduate and graduate) to engage in the hands-on design, development, build, test and flight of a payload to operate on a high altitude balloon at around 30km altitude. The program development, including formal design and acceptance tests, reports and reviews, mirror those required in the development of an orbital satellite mission. This enables the students to gain a unique insight into how space missions are flown. UA-HAB is a one and half year program that offers a gateway into a high-altitude balloon mission through hands on experience, and builds skills for students who may be attracted to participate in future space missions in their careers. This early education will provide students with the experience necessary to better assess opportunities for pursuing a career in space science. Balloons offer a low-cost alternative to other suborbital platforms which can be used to address radiation belt science goals. In particular, the participants of this program have written grant proposal to secure funds for this project, have launched several 'weather balloon missions', and have designed, built, tested, and launched their particle detector called "Maple Leaf Particle Detector". This detector was focussed on monitoring cosmic rays and space radiation using shielded Geiger tubes, and was flown as one of the payloads from the institutions participating in the High Altitude Student Platform (HASP), organized by the Louisiana State University and the Louisiana Space Consortium (LaSpace), and sponsored by NASA. The HASP platform was launched from Fort Sumner, New Mexico, and to an altitude of about 36kilometers with flight durations of 15 to 20 hours using a small volume, low pressure balloon. The main objectives of the program, the challenges involved in developing it, and the major achievements and outcomes will be discussed. Future opportunities for the use of high altitude balloons for solar-terrestrial science, such as the diagnosis of radiation belt loss through the flight of alternative X-ray scintillator payloads, on short duration weather balloon flights will also be discussed. The UA-HAB project is undertaken with the financial support of the Canadian Space Agency.

  10. Reusable Launch Vehicle Technology Program

    NASA Technical Reports Server (NTRS)

    Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, R. Eugene

    1996-01-01

    Industry/NASA Reusable Launch Vehicle (RLV) Technology Program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low-cost program. This paper reviews the current status of the Reusable Launch Vehicle Technology Program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion, and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight tests. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost-effective, reusable launch vehicle systems.

  11. Endeavour Lands at LAX

    NASA Image and Video Library

    2012-09-21

    The space shuttle Endeavour, atop the Shuttle Carrier Aircraft, or SCA, lands at Los Angeles International Airport on Tuesday, Sept. 21, 2012 in Los Angeles where it will be placed on public display at the California Science Center. Today's flight marks the final scheduled ferry flight of the Space Shuttle Program. Photo Credit: (NASA/Matt Hedges)

  12. Endeavour Lands at LAX

    NASA Image and Video Library

    2012-09-21

    The space shuttle Endeavour, atop the Shuttle Carrier Aircraft, or SCA, performs a fly-by of Los Angeles International Airport on Tuesday, Sept. 21, 2012 in Los Angeles where it will be placed on public display at the California Science Center. Today's flight marks the final scheduled ferry flight of the Space Shuttle Program. Photo Credit: (NASA/Joel Kowsky)

  13. Human Spaceflight. Activities for the Primary Student. Aerospace Education Services Project.

    ERIC Educational Resources Information Center

    Hartsfield, John W.; Hartsfield, Kendra J.

    Since its beginning, the space program has caught the attention of young people. This space science activity booklet was designed to provide information and learning activities for students in elementary grades. It contains chapters on: (1) primitive beliefs about flight; (2) early fantasies of flight; (3) the United States human spaceflight…

  14. Legacy of Biomedical Research During the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Hayes, Judith C.

    2011-01-01

    The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over 30 years and represented the longest and largest US human spaceflight program. Outcomes of the research were understanding the effect of spaceflight on human physiology and performance, countermeasures, operational protocols, and hardware. The Shuttle flights were relatively short, < 16 days and routinely had 4 to 6 crewmembers for a total of 135 flights. Biomedical research was conducted on the Space Shuttle using various vehicle resources. Specially constructed pressurized laboratories called Spacelab and SPACEHAB housed many laboratory instruments to accomplish experiments in the Shuttle s large payload bay. In addition to these laboratory flights, nearly every mission had dedicated human life science research experiments conducted in the Shuttle middeck. Most Shuttle astronauts participated in some life sciences research experiments either as test subjects or test operators. While middeck experiments resulted in a low sample per mission compared to many Earth-based studies, this participation allowed investigators to have repetition of tests over the years on successive Shuttle flights. In addition, as a prelude to the International Space Station (ISS), NASA used the Space Shuttle as a platform for assessing future ISS hardware systems and procedures. The purpose of this panel is to provide an understanding of science integration activities required to implement Shuttle research, review biomedical research, characterize countermeasures developed for Shuttle and ISS as well as discuss lessons learned that may support commercial crew endeavors. Panel topics include research integration, cardiovascular physiology, neurosciences, skeletal muscle, and exercise physiology. Learning Objective: The panel provides an overview from the Space Shuttle Program regarding research integration, scientific results, lessons learned from biomedical research and countermeasure development.

  15. NASA Sounding Rocket Program educational outreach

    NASA Astrophysics Data System (ADS)

    Eberspeaker, P. J.

    2005-08-01

    Educational and public outreach is a major focus area for the National Aeronautics and Space Administration (NASA). The NASA Sounding Rocket Program (NSRP) shares in the belief that NASA plays a unique and vital role in inspiring future generations to pursue careers in science, mathematics, and technology. To fulfill this vision, the NASA Sounding Rocket Program engages in a host of student flight projects providing unique and exciting hands-on student space flight experiences. These projects include single stage Orion missions carrying "active" high school experiments and "passive" Explorer School modules, university level Orion and Terrier-Orion flights, and small hybrid rocket flights as part of the Small-scale Educational Rocketry Initiative (SERI) currently under development. Efforts also include educational programs conducted as part of major campaigns. The student flight projects are designed to reach students ranging from Kindergarteners to university undergraduates. The programs are also designed to accommodate student teams with varying levels of technical capabilities - from teams that can fabricate their own payloads to groups that are barely capable of drilling and tapping their own holes. The program also conducts a hands-on student flight project for blind students in collaboration with the National Federation of the Blind. The NASA Sounding Rocket Program is proud of its role in inspiring the "next generation of explorers" and is working to expand its reach to all regions of the United States and the international community as well.

  16. Cardiopulmonary discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Life sciences research in the cardiopulmonary discipline must identify possible consequences of space flight on the cardiopulmonary system, understand the mechanisms of these effects, and develop effective and operationally practical countermeasures to protect crewmembers inflight and upon return to a gravitational environment. The long-range goal of the NASA Cardiopulmonary Discipline Research Program is to foster research to better understand the acute and long-term cardiovascular and pulmonary adaptation to space and to develop physiological countermeasures to ensure crew health in space and on return to Earth. The purpose of this Discipline Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive area of cardiopulmonary sciences. It covers the significant research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in the subdiscipline areas of both cardiovascular and pulmonary function. It contains a general plan that will be used by both NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational (intramural and extramural) research and development activities in this area.

  17. Apollo lunar orbital sciences program alpha and X-ray spectrometers

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of the alpha and X-ray spectrometers which were used on the Apollo 15 and 16 flights is discussed. Specific subjects presented are: (1) lunar program management, (2) scientific and technical approach, (3) major test programs, (4) reliability, quality assurance, and safety, and (5) subcontract management.

  18. Life Sciences Data Archive Scientific Development

    NASA Technical Reports Server (NTRS)

    Buckey, Jay C., Jr.

    1995-01-01

    The Life Sciences Data Archive will provide scientists, managers and the general public with access to biomedical data collected before, during and after spaceflight. These data are often irreplaceable and represent a major resource from the space program. For these data to be useful, however, they must be presented with enough supporting information, description and detail so that an interested scientist can understand how, when and why the data were collected. The goal of this contract was to provide a scientific consultant to the archival effort at the NASA-Johnson Space Center. This consultant (Jay C. Buckey, Jr., M.D.) is a scientist, who was a co-investigator on both the Spacelab Life Sciences-1 and Spacelab Life Sciences-2 flights. In addition he was an alternate payload specialist for the Spacelab Life Sciences-2 flight. In this role he trained on all the experiments on the flight and so was familiar with the protocols, hardware and goals of all the experiments on the flight. Many of these experiments were flown on both SLS-1 and SLS-2. This background was useful for the archive, since the first mission to be archived was Spacelab Life Sciences-1. Dr. Buckey worked directly with the archive effort to ensure that the parameters, scientific descriptions, protocols and data sets were accurate and useful.

  19. Customer requirements process

    NASA Technical Reports Server (NTRS)

    Russell, Yvonne; Falsetti, Christine M.

    1991-01-01

    Customer requirements are presented through three viewgraphs. One graph presents the range of services, which include requirements management, network engineering, operations, and applications support. Another viewgraph presents the project planning process. The third viewgraph presents the programs and/or projects actively supported including life sciences, earth science and applications, solar system exploration, shuttle flight engineering, microgravity science, space physics, and astrophysics.

  20. KSC-03pd0128

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- Against a backdrop of blue sky and the blue Atlantic Ocean, launch of Space Shuttle Columbia is reflected in the nearby water. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day STS-107 research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  1. Growing protein crystals in microgravity - The NASA Microgravity Science and Applications Division (MSAD) Protein Crystal Growth (PCG) program

    NASA Technical Reports Server (NTRS)

    Herren, B.

    1992-01-01

    In collaboration with a medical researcher at the University of Alabama at Birmingham, NASA's Marshall Space Flight Center in Huntsville, Alabama, under the sponsorship of the Microgravity Science and Applications Division (MSAD) at NASA Headquarters, is continuing a series of space experiments in protein crystal growth which could lead to innovative new drugs as well as basic science data on protein molecular structures. From 1985 through 1992, Protein Crystal Growth (PCG) experiments will have been flown on the Space Shuttle a total of 14 times. The first four hand-held experiments were used to test hardware concepts; later flights incorporated these concepts for vapor diffusion protein crystal growth with temperature control. This article provides an overview of the PCG program: its evolution, objectives, and plans for future experiments on NASA's Space Shuttle and Space Station Freedom.

  2. NASA/MSFC/NSSTC Science Communication Roundtable

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Gallagher, D. L.; Koczor, R.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The Science Directorate at Marshall Space Flight Center (MSFC) conducts a diverse program of Internet-based science communication through a Science Roundtable process. The Roundtable includes active researchers, writers, NASA public relations staff, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news to inform, involve, and inspire students and the public about science. We describe here the process of producing stories, results from research to understand the science communication process, and we highlight each member of our Web family.

  3. The Legacy of the Space Shuttle Program: Scientific and Engineering Accomplishments

    NASA Technical Reports Server (NTRS)

    Torrez, Jonathan

    2009-01-01

    The goal of this project was to assist in the creation of the appendix for the book being written about the Space Shuttle that is titled The Legacy of the Space Shuttle Program: Scientific and Engineering Accomplishments. The specific responsibility of the intern was the creation of the human health and performance (life sciences) and space biology sections of the appendix. This included examining and finalizing the list of flights with life sciences and space biology experiments flown aboard them, researching the experiments performed, synopsizing each experiment into two sentences, and placing the synopses into an appendix template. Overall, approximately 70 flights had their experiments synopsized and a good method for researching and construction of the template was established this summer.

  4. 1997 Graduate Student Researchers Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In 1980, NASA initiated the Graduate Student Research Program (GSRP) to cultivate additional research ties to the academic community and to support a culturally diverse group of students pursuing advanced degrees in science and engineering. Eligibility requirements for this program are described, and program administrators are listed. Research areas are detailed for NASA Headquarters and all Research and Flight Centers.

  5. Engaging students in STEM outside the classroom walls: preliminary evaluation of two informal science education programs at NASA Goddard Space Flight Center

    NASA Astrophysics Data System (ADS)

    Robbins, G.; Delaney, M. P.; Conaty, C.

    2011-12-01

    "School is not where most Americans learn most of their science" (Falk, Dierking). With a recent focus on summer learning and the understanding that much of the achievement gap may be directly related to "unequal access to summer learning opportunities" (Russo), educators are targeting after-school and summer times to fill the gap. For those students who "don't get it" during the day, a longer school day may not be the solution. More of the same is not always better. Different, on the other hand, may well be the key to improved learning. The nature of this investigation was to identify those informal science education programs at NASA Goddard Space Flight Center that instilled STEM inspiration and engagement in participants. During 2011, NASA Goddard Space Flight Center hosted two such programs: an open house event for the general public and a museum educators' workshop. The open house drew approximately 15,000 people and the workshop supported 30 participants from museums across the United States. Each was a very unique experience. Formative evaluation of these programs was implemented and preliminary results indicated high level of engagement, desire for follow-on learning, and interest in additional hands-on, internship or partnership opportunities. These results confirmed the design of the museum workshop and lead to the development of a new student summer experience and educator professional development, planned for 2012.

  6. Theseus in Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Theseus prototype research aircraft shows off its unique design as it flies low over Rogers Dry Lake during a 1996 test flight from NASA's Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden's Project Manager was John Del Frate.

  7. Theseus in Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The twin pusher engines of the prototype Theseus research aircraft can be clearly seen in this photo of the aircraft during a 1996 research flight from the Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden's Project Manager was John Del Frate.

  8. Theseus in Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The twin pusher propeller-driven engines of the Theseus research aircraft can be clearly seen in this photo, taken during a 1996 research flight at NASA's Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden's Project Manager was John Del Frate.

  9. Theseus Waits on Lakebed for First Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Theseus prototype research aircraft waits on the lakebed before its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden's Project Manager was John Del Frate.

  10. Theseus on Take-off for First Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Theseus prototype research aircraft takes off for its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden's Project Manager was John Del Frate.

  11. Theseus Waits on Lakebed for First Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Theseus prototype remotely-piloted aircraft (RPA) waits on the lakebed before its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden's Project Manager was John Del Frate.

  12. Theseus Landing Following Maiden Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Theseus prototype research aircraft shows off its high aspect-ratio wing as it comes in for a landing on Rogers Dry Lake after its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden's Project Manager was John Del Frate.

  13. Theseus First Flight - May 24, 1996

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Theseus prototype research aircraft shows off its high aspect-ratio wing as it lifts off from Rogers Dry Lake during its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden's Project Manager was John Del Frate.

  14. International programs

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Brief summaries are given of NASA's participation in international space programs. This participation can be categorized in five principal areas: manned space flight, space sciences, space applications, ground support of space operations, and cooperative international aeronautics research. All projects are carried out on a cooperative or reimbursable basis.

  15. NASA Stratospheric Observatory For Infrared Astronomy (SOFIA) Airborne Astronomy Ambassador Program Evaluation Results To Date

    NASA Astrophysics Data System (ADS)

    Harman, Pamela K.; Backman, Dana E.; Clark, Coral

    2015-08-01

    SOFIA is an airborne observatory, capable of making observations that are impossible for even the largest and highest ground-based telescopes, and inspires instrumention development.SOFIA is an 80% - 20% partnership of NASA and the German Aerospace Center (DLR), consisting of a modified Boeing 747SP aircraft carrying a diameter of 2.5 meters (100 inches) reflecting telescope. The SOFIA aircraft is based at NASA Armstrong Flight Research Center, Building 703, in Palmdale, California. The Science Program Office and Outreach Office is located at NASA Ames Research center. SOFIA is one of the programs in NASA's Science Mission Directorate, Astrophysics Division.SOFIA will be used to study many different kinds of astronomical objects and phenomena, including star birth and death, formation of new solar systems, identification of complex molecules in space, planets, comets and asteroids in our solar system, nebulae and dust in galaxies, and ecosystems of galaxies.Airborne Astronomy Ambassador Program:The SOFIA Education and Communications program exploits the unique attributes of airborne astronomy to contribute to national goals for the reform of science, technology, engineering, and math (STEM) education, and to the elevation of public scientific and technical literacy.SOFIA’s Airborne Astronomy Ambassadors (AAA) effort is a professional development program aspiring to improve teaching, inspire students, and inform the community. To date, 55 educators from 21 states; in three cohorts, Cycles 0, 1 and 2; have completed their astronomy professional development and their SOFIA science flight experience. Cycle 3 cohort of 28 educators will be completing their flight experience this fall. Evaluation has confirmed the program’s positive impact on the teacher participants, on their students, and in their communities. Teachers have incorporated content knowledge and specific components of their experience into their curricula, and have given hundreds of presentations and implemented teacher professional development workshops. Their efforts have impacted thousands of students and teachers.

  16. Members of House Committee on Science and Astronautics Visited MSFC

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on January 3, 1962 to gather firsthand information of the nation's space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. Shown here at MSFC's Manufacturing Engineering Laboratory are (left to right): Dr. Eberhard Rees, MSFC; Congressman George P. Miller, Democratic representative of California; Congressman F. Edward Hebert, Democratic representative of Louisiana; Congressman Robert R. Casey, Democratic representative of Texas; and Werner Kuers, MSFC.

  17. Applications Integration Strategy in the Mission Development Process

    NASA Astrophysics Data System (ADS)

    Cox, E. L., Jr.

    2016-12-01

    NASA's Earth Science Applied Science Program has worked for the past four to five years with the Earth Science Division's Flight Program to cultivate an understanding of the importance of satellite remote sensing impacts on decision-making policy and decision support tools utilized by academia, state and local governments, other government agencies, private sector companies, and non-profit organizations. It has long been recognized that applications projects and studies in areas such as Health and Air Quality, Water Resources, Disasters, and Ecological Forecasting, have benefited and been enhanced through the use of satellite remote sensing. Applications researchers often use remote sensing data once it becomes available after the post-launch evaluation phase in the format and level of fidelity that is available. The results from the many applications projects, over the years, have been significant and there are countless examples of improvements and enhancements to operational systems and decision-making policies in the Applied Sciences community. However, feedback received from the applications community regarding the need for improved data availability and latency; processing and formatting, to name a few, prompted the idea of applied science involvement early in the life cycle of mission development. Over time, the Applied Science Program personnel have learned a great deal from the flight mission development life cycle process and recognized key areas of alignment. This presentation will discuss specific aspects of applied science that investigators should consider when proposing to future announcements involving an applications dimension. The Program's experience with user community needs, decision-making requirements, and stakeholder operations requirements will be highlighted.

  18. Defense Science and Technology RELIANCE. Defense Technology Objectives Success Stories

    DTIC Science & Technology

    2001-03-01

    27 MD.04 Medical Countermeasures for Botulinum Toxin ...flexibility of U.S. forces. Completed. 1998 SPONSORS DoD Chemical and Biological Defense Program MEDICAL COUNTERMEASURES FOR BOTULINUM TOXIN (MD.04) 29...system operates satisfactorily against a high-level jamming environment in the target area. On four AGTFT free flights, the AGTFT flight test vehicles

  19. Report of the Presidential Commission on the Space Shuttle Challenger Accident, Volume 5

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This volume contains all the hearings of the Presidential Commission on the Space Shuttle Challenger accident from 26 February to 2 May 1986. Among others is the testimony of L. Mulloy, Manager, Space Shuttle Solid Rocket Booster Program, Marshall Space Flight Center and G. Hardy, Deputy Director, Science and Engineering, Marshall Space Flight Center.

  20. Guidance, Navigation and Control Innovations at the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ericsson, Aprille Joy

    2002-01-01

    A viewgraph presentation on guidance navigation and control innovations at the NASA Goddard Space Flight Center is presented. The topics include: 1) NASA's vision; 2) NASA's Mission; 3) Earth Science Enterprise (ESE); 4) Guidance, Navigation and Control Division (GN&C); 5) Landsat-7 Earth Observer-1 Co-observing Program; and 6) NASA ESE Vision.

  1. Space shuttle and life sciences

    NASA Technical Reports Server (NTRS)

    Mason, J. A.

    1977-01-01

    During the 1980's, some 200 Spacelab missions will be flown on space shuttle in earth-orbit. Within these 200 missions, it is planned that at least 20 will be dedicated to life sciences research, projects which are yet to be outlined by the life sciences community. Objectives of the Life Sciences Shuttle/Spacelab Payloads Program are presented. Also discussed are major space life sciences programs including space medicine and physiology, clinical medicine, life support technology, and a variety of space biology topics. The shuttle, spacelab, and other life sciences payload carriers are described. Concepts for carry-on experiment packages, mini-labs, shared and dedicated spacelabs, as well as common operational research equipment (CORE) are reviewed. Current NASA planning and development includes Spacelab Mission Simulations, an Announcement of Planning Opportunity for Life Sciences, and a forthcoming Announcement of Opportunity for Flight Experiments which will together assist in forging a Life Science Program in space.

  2. Flight Planning in the Cloud

    NASA Technical Reports Server (NTRS)

    Flores, Sarah L.; Chapman, Bruce D.; Tung, Waye W.; Zheng, Yang

    2011-01-01

    This new interface will enable Principal Investigators (PIs), as well as UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) members to do their own flight planning and time estimation without having to request flight lines through the science coordinator. It uses an all-in-one Google Maps interface, a JPL hosted database, and PI flight requirements to design an airborne flight plan. The application will enable users to see their own flight plan being constructed interactively through a map interface, and then the flight planning software will generate all the files necessary for the flight. Afterward, the UAVSAR team can then complete the flight request, including calendaring and supplying requisite flight request files in the expected format for processing by NASA s airborne science program. Some of the main features of the interface include drawing flight lines on the map, nudging them, adding them to the current flight plan, and reordering them. The user can also search and select takeoff, landing, and intermediate airports. As the flight plan is constructed, all of its components are constantly being saved to the database, and the estimated flight times are updated. Another feature is the ability to import flight lines from previously saved flight plans. One of the main motivations was to make this Web application as simple and intuitive as possible, while also being dynamic and robust. This Web application can easily be extended to support other airborne instruments.

  3. The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stagg, Elizabeth

    2004-01-01

    In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations. Some initial results from the first three materials experiments are given.

  4. Regulatory physiology discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the Regulatory Physiology discipline of the Space Physiology and Countermeasures Program is twofold. First, to determine and study how microgravity and associated factors of space flight affect the regulatory mechanisms by which humans adapt and achieve homeostasis and thereby regulate their ability to respond to internal and external signals; and, second, to study selected physiological systems that have been demonstrated to be influenced by gravity. The Regulatory Physiology discipline, as defined here, is composed of seven subdisciplines: (1) Circadian Rhythms, (2) Endocrinology, (3) Fluid and Electrolyte Regulation, (4) Hematology, (5) Immunology, (6) Metabolism and Nutrition, and (7) Temperature Regulation. The purpose of this Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the area of regulatory physiology. It covers the research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in regulatory physiology. It contains a general plan that will be used by both NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational intramural and extramural research and development activities in this area.

  5. The Construction (Using Multi-Media Techniques) of Certain Modules of a Programmed Course in Astronomy-Space Sciences for NASA Personnel of The Goddard Space Flight Center, Greenbelt, Maryland.

    ERIC Educational Resources Information Center

    Collagan, Robert B.

    This paper describes the development of a self-instructional multi-media course in astronomy-space sciences for non-technical NASA personnel. The course consists of a variety of programed materials including slides, films, film-loops, filmstrips video-tapes and audio-tapes, on concepts of time, space, and matter in our solar system and galaxy.…

  6. Theseus Take-off from Rogers Dry Lake

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Theseus prototype research aircraft shows off its high aspect-ratio wing in this rear view of the aircraft as it takes off on its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden's Project Manager was John Del Frate.

  7. Flight Mechanics Experiment Onboard NASA's Zero Gravity Aircraft

    ERIC Educational Resources Information Center

    Matthews, Kyle R.; Motiwala, Samira A.; Edberg, Donald L.; García-Llama, Eduardo

    2012-01-01

    This paper presents a method to promote STEM (Science, Technology, Engineering, and Mathematics) education through participation in a reduced gravity program with NASA (National Aeronautics and Space Administration). Microgravity programs with NASA provide students with a unique opportunity to conduct scientific research with innovative and…

  8. KSC-2009-4336

    NASA Image and Video Library

    2009-07-30

    CAPE CANAVERAL, Fla. – NASA Kennedy Space Center's Center Director Bob Cabana (right) speaks during the meeting of the Augustine Commission in Cocoa Beach, Fla. At the conference table in the foreground are members of the commission: (from left) Bohdan Bejmuk, chair of Constellation Program Standing Review Board; Jeff Greason, co-founder and CEO of XCOR Aerospace; Dr. Christopher Chyba, professor of Astrophysical Sciences and international Affairs at Princeton University; and Phil McAlister, special assistant for Program Analysis in NASA's Office of Program Analysis and Evaluation. At the request of the Office of Science and Technology Policy, NASA established the Review of U.S. Human Space Flight Plans Committee, known as the Augustine Commission. Chaired by Norman R. Augustine, retired chairman and CEO of Lockheed Martin Corp., the committee is conducting an independent review of ongoing U.S. human spaceflight plans and programs, as well as alternatives, to ensure the nation is pursuing the best trajectory for the future of human space flight - one that is safe, innovative, affordable, and sustainable. Photo credit: NASA/Jim Grossmann

  9. Supporting Research at NASA's Goddard Space Flight Center Through Focused Education and Outreach Programs

    NASA Astrophysics Data System (ADS)

    Ireton, F.; Closs, J.

    2003-12-01

    NASA research scientists work closely with Science Systems and Applications, Inc. (SSAI) personnel at Goddard Space Flight Center (GSFC) on a large variety of education and public outreach (E/PO) initiatives. This work includes assistance in conceptualizing E/PO plans, then carrying through in the development of materials, publication, cataloging, warehousing, and product distribution. For instance, outreach efforts on the Terra, Aqua, and Aura-still in development-EOS missions, as well as planetary and visualization programs, have been coordinated by SSAI employees. E/PO support includes convening and taking part in sessions at professional meetings and workshops. Also included is the coordination of exhibits at professional meetings such as the AGU, AAAS, AMS and educational meetings such as the National Science Teachers Association. Other E/PO efforts include the development and staffing of booths; arranges for booth space and furnishings; shipping of exhibition materials and products; assembling, stocking, and disassembling of booths. E/PO personnel work with organizations external to NASA such as the Smithsonian museum, Library of Congress, U.S. Geological Survey, and associations or societies such as the AGU, American Chemical Society, and National Science Teachers Association to develop products and programs that enhance NASA mission E/PO efforts or to provide NASA information for use in their programs. At GSFC, E/PO personnel coordinate the efforts of the education and public outreach sub-committees in support of the Space and Earth Sciences Data Analysis (SESDA) contract within the GSFC Earth Sciences Directorate. The committee acts as a forum for improving communication and coordination among related Earth science education projects, and strives to unify the representation of these programs among the science and education communities. To facilitate these goals a Goddard Earth Sciences Directorate Education and Outreach Portal has been developed to provide a repository and clearinghouse for upcoming education events, and a speaker's bureau. The committees are planning a series of workshops in the near future to expand participation, and further leverage respective Earth science education and outreach efforts through cooperative work with other NASA centers. Founded in 1977 as a minority, women-owned business, SSAI's staff includes a large and varied pool of scientists, E/PO employees covering a broad range of training and talents. SSAI provides support on a number of NASA related projects at Goddard Space Flight Center (GSFC) in Greenbelt, Maryland ranging from science research to data acquisition, storage, and distribution.

  10. NASA Airborne Astronomy Ambassadors (AAA)

    NASA Astrophysics Data System (ADS)

    Backman, D. E.; Harman, P. K.; Clark, C.

    2016-12-01

    NASA's Airborne Astronomy Ambassadors (AAA) is a three-part professional development (PD) program for high school physics and astronomy teachers. The AAA experience consists of: (1) blended-learning professional development composed of webinars, asynchronous content learning, and a series of hands-on workshops (2) a STEM immersion experience at NASA Armstrong Flight Research Center's B703 science research aircraft facility in Palmdale, California, and (3) ongoing participation in the AAA community of practice (CoP) connecting participants with astrophysics and planetary science Subject Matter Experts (SMEs). The SETI Institute (SI) is partnering with school districts in Santa Clara and Los Angeles Counties during the AAA program's "incubation" period, calendar years 2016 through 2018. AAAs will be selected by the school districts based on criteria developed during spring 2016 focus group meetings led by the program's external evaluator, WestEd.. Teachers with 3+ years teaching experience who are assigned to teach at least 2 sections in any combination of the high school courses Physics (non-AP), Physics of the Universe (California integrated model), Astronomy, or Earth & Space Sciences are eligible. Partner districts will select at least 48 eligible applicants with SI oversight. WestEd will randomly assign selected AAAs to group A or group B. Group A will complete PD in January - June of 2017 and then participate in SOFIA science flights during fall 2017 (SOFIA Cycle 5). Group B will act as a control during the 2017-18 school year. Group B will then complete PD in January - June of 2018 and participate in SOFIA science flights in fall 2018 (Cycle 6). Under the current plan, opportunities for additional districts to seek AAA partnerships with SI will be offered in 2018 or 2019. A nominal two-week AAA curriculum component will be developed by SI for classroom delivery that will be aligned with selected California Draft Science Framework Disciplinary Core Ideas, Crosscutting Concepts, and Science and Engineering Practices. (The California Draft Framework in turn is aligned with NGSS). The AAA program will demonstrate student gains in standards-based student learning, measure changes in student attitudes towards STEM, and observe & record Ambassadors' implementation of curricular changes.

  11. Mars Miniature Science Instruments

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Hayati, Samad; Lavery, David; McBrid, Karen

    2006-01-01

    For robotic Mars missions, all the science information is gathered through on-board miniature instruments that have been developed through many years of R&D. Compared to laboratory counterparts, the rover instruments require miniaturization, such as low mass (1-2 kg), low power (> 10 W) and compact (1-2 liter), yet with comparable sensitivity. Since early 1990's, NASA recognized the need for the miniature instruments and launched several instrument R&D programs, e.g., PIDDP (Planetary Instrument Definition and Development). However, until 1998, most of the instrument R&D programs supported only up to a breadboard level (TRL 3, 4) and there is a need to carry such instruments to flight qualifiable status (TU 5, 6) to respond to flight AOs (Announcement of Opportunity). Most of flight AOs have only limited time and financial resources, and can not afford such instrument development processes. To bridge the gap between instrument R&D programs and the flight instrument needs, NASA's Mars Technology Program (MTP) created advanced instrumentation program, Mars Instrument Development Project (MIDP). MIDP candidate instruments are selected through NASA Research Announcement (NRA) process [l]. For example, MIDP 161998-2000) selected and developed 10 instruments, MIDP II (2003-2005) 16 instruments, and MIDP III (2004-2006) II instruments.Working with PIs, JPL has been managing the MIDP tasks since September 1998. All the instruments being developed under MIDP have been selected through a highly competitive NRA process, and employ state-of-the-art technology. So far, four MIDP funded instruments have been selected by two Mars missions (these instruments have further been discussed in this paper).

  12. Radioastron flight operations

    NASA Technical Reports Server (NTRS)

    Altunin, V. I.; Sukhanov, K. G.; Altunin, K. R.

    1993-01-01

    Radioastron is a space-based very-long-baseline interferometry (VLBI) mission to be operational in the mid-90's. The spacecraft and space radio telescope (SRT) will be designed, manufactured, and launched by the Russians. The United States is constructing a DSN subnet to be used in conjunction with a Russian subnet for Radioastron SRT science data acquisition, phase link, and spacecraft and science payload health monitoring. Command and control will be performed from a Russian tracking facility. In addition to the flight element, the network of ground radio telescopes which will be performing co-observations with the space telescope are essential to the mission. Observatories in 39 locations around the world are expected to participate in the mission. Some aspects of the mission that have helped shaped the flight operations concept are: separate radio channels will be provided for spacecraft operations and for phase link and science data acquisition; 80-90 percent of the spacecraft operational time will be spent in an autonomous mode; and, mission scheduling must take into account not only spacecraft and science payload constraints, but tracking station and ground observatory availability as well. This paper will describe the flight operations system design for translating the Radioastron science program into spacecraft executed events. Planning for in-orbit checkout and contingency response will also be discussed.

  13. KSC-03pd0117

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. - A crowd by the countdown clock watches as Space Shuttle Columbia roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  14. KSC-03pd0116

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. - Seconds after launch, Space Shuttle Columbia appears as a flaming tip of the smoke column it trails. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  15. KSC-03pd0119

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- Seconds after launch, Space Shuttle Columbia appears as a flaming tip of the smoke column it trails. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  16. KSC-03pd0115

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- Trailing a twisting column of smoke, Space Shuttle Columbia hurtles toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  17. KSC-03pd0114

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia hurtles through a perfect blue Florida sky following a flawless and uneventful countdown. Liftoff of Columbia on mission STS-107 occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program

  18. Microgravity Science and Applications: Program Tasks and Bibliography for Fiscal Year 1996

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA's Microgravity Science and Applications Division (MSAD) sponsors a program that expands the use of space as a laboratory for the study of important physical, chemical, and biochemical processes. The primary objective of the program is to broaden the value and capabilities of human presence in space by exploiting the unique characteristics of the space environment for research. However, since flight opportunities are rare and flight research development is expensive, a vigorous ground-based research program, from which only the best experiments evolve, is critical to the continuing strength of the program. The microgravity environment affords unique characteristics that allow the investigation of phenomena and processes that are difficult or impossible to study an Earth. The ability to control gravitational effects such as buoyancy driven convection, sedimentation, and hydrostatic pressures make it possible to isolate phenomena and make measurements that have significantly greater accuracy than can be achieved in normal gravity. Space flight gives scientists the opportunity to study the fundamental states of physical matter-solids, liquids and gasses-and the forces that affect those states. Because the orbital environment allows the treatment of gravity as a variable, research in microgravity leads to a greater fundamental understanding of the influence of gravity on the world around us. With appropriate emphasis, the results of space experiments lead to both knowledge and technological advances that have direct applications on Earth. Microgravity research also provides the practical knowledge essential to the development of future space systems. The Office of Life and Microgravity Sciences and Applications (OLMSA) is responsible for planning and executing research stimulated by the Agency's broad scientific goals. OLMSA's Microgravity Science and Applications Division (MSAD) is responsible for guiding and focusing a comprehensive program, and currently manages its research and development tasks through five major scientific areas: biotechnology, combustion science, fluid physics, fundamental physics, and materials science. FY 1996 was an important year for MSAD. NASA continued to build a solid research community for the coming space station era. During FY 1996, the NASA Microgravity Research Program continued investigations selected from the 1994 combustion science, fluid physics, and materials science NRAS. MSAD also released a NASA Research Announcement in microgravity biotechnology, with more than 130 proposals received in response. Selection of research for funding is expected in early 1997. The principal investigators chosen from these NRAs will form the core of the MSAD research program at the beginning of the space station era. The third United States Microgravity Payload (USMP-3) and the Life and Microgravity Spacelab (LMS) missions yielded a wealth of microgravity data in FY 1996. The USMP-3 mission included a fluids facility and three solidification furnaces, each designed to examine a different type of crystal growth.

  19. A Core Program in JIAFS

    NASA Technical Reports Server (NTRS)

    Whitesides, John L.

    2000-01-01

    This paper presents appendices listing and summarizing funding of, and participants in the project, for a final report on A Core Program in JIAFS (Joint Institute for Advancement of Flight Sciences). The objectives of the program were to conduct high-risk innovative research, administer and direct the on-going programs, and appoint additional Graduate Research Scholar Assistants depending on availability of applicants and funds.

  20. Neuroscience discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Over the past two decades, NASA's efforts in the neurosciences have developed into a program of research directed at understanding the acute changes that occur in the neurovestibular and sensorimotor systems during short-duration space missions. However, the proposed extended-duration flights of up to 28 days on the Shuttle orbiter and 6 months on Space Station Freedom, a lunar outpost, and Mars missions of perhaps 1-3 years in space, make it imperative that NASA's Life Sciences Division begin to concentrate research in the neurosciences on the chronic effects of exposure to microgravity on the nervous system. Major areas of research will be directed at understanding (1) central processing, (2) motor systems, (3) cognitive/spatial orientation, and (4) sensory receptors. The purpose of the Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive area of neurosciences. It covers the significant research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in the subdiscipline areas of nervous system function. It contains a general plan that will be used by NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational intramural and extramural research and development activities in this area.

  1. NASA's International Lunar Network Anchor Nodes and Robotic Lunar Lander Project Update

    NASA Technical Reports Server (NTRS)

    Morse, Brian J.; Reed, Cheryl L. B.; Kirby, Karen W.; Cohen, Barbara A.; Bassler, Julie A.; Harris, Danny W.; Chavers, D. Gregory

    2010-01-01

    In early 2008, NASA established the Lunar Quest Program, a new lunar science research program within NASA s Science Mission Directorate. The program included the establishment of the anchor nodes of the International Lunar Network (ILN), a network of lunar science stations envisioned to be emplaced by multiple nations. This paper describes the current status of the ILN Anchor Nodes mission development and the lander risk-reduction design and test activities implemented jointly by NASA s Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory. The lunar lander concepts developed by this team are applicable to multiple science missions, and this paper will describe a mission combining the functionality of an ILN node with an investigation of lunar polar volatiles.

  2. Space Science Curricula

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Johnson High School, Huntsville, Alabama started an international magnet program in 1987. One of the courses in the curriculum was in space science. They appealed to Marshall Space Flight Center (MSFC) when they couldn't find a suitable textbook, nor locate other classes in space science to provide a guideline. MSFC agreed to help and placed the school under an official 'Adopt-A-School' program. MSFC's chief scientist and others at the space center helped prepare a very comprehensive space science program. Examples of the subjects covered include problems of space travel, materials processing in space, technology utilization, robotics, space colonization, etc. MSFC followed up by working with Johnson High to determine if the curriculum is generally usable and workable. If it is, MSFC may make it available to other schools. MSFC not only developed the space science curriculum; they continue to support the program by sponsoring hands- on activities and tours of space research facilities.

  3. Budget estimates: Fiscal year 1994. Volume 3: Research and program management

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The research and program management (R&PM) appropriation provides the salaries, other personnel and related costs, and travel support for NASA's civil service workforce. This FY 1994 budget funds costs associated with 23,623 full-time equivalent (FTE) work years. Budget estimates are provided for all NASA centers by categories such as space station and new technology investments, space flight programs, space science, life and microgravity sciences, advanced concepts and technology, center management and operations support, launch services, mission to planet earth, tracking and data programs, aeronautical research and technology, and safety, reliability, and quality assurance.

  4. KSC-2009-4329

    NASA Image and Video Library

    2009-07-30

    CAPE CANAVERAL, Fla. – Members of the Augustine Commission are meeting in Cocoa Beach, Fla. From left are Dr. Christopher Chyba, Professor of Astrophysical Sciences and international Affairs at Princeton University; Jeff Greason, co-founder and CEO of XCOR Aerospace; and Bohdan Bejmuk, chair of Constellation Program Standing Review Board. At the request of the Office of Science and Technology Policy, NASA established the Review of U.S. Human Space Flight Plans Committee, known as the Augustine Commission. Chaired by Norman R. Augustine, retired chairman and CEO of Lockheed Martin Corp., the committee is conducting an independent review of ongoing U.S. human spaceflight plans and programs, as well as alternatives, to ensure the nation is pursuing the best trajectory for the future of human space flight - one that is safe, innovative, affordable, and sustainable. Photo credit: NASA/Kim Shiflett

  5. HERO: Program Status and Fist Images from a Balloon-Borne Focusing Hard-X-ray Telescope

    NASA Technical Reports Server (NTRS)

    Ramsey, B. D.; Alexander, C. D.; Apple, J. A.; Benson, C. M.; Dietz, K. L.; Elsner, R. F.; Engelhaupt. D. E.; Ghosh, K. K.; Kolodziejczak, J. J.; ODell, S. L.; hide

    2001-01-01

    HERO is a balloon payload featuring shallow-graze angle replicated optics for hard-x-ray imaging. When completed, the instrument will offer unprecedented sensitivity in the hard-x-ray region, giving thousands of sources to choose from for detailed study on long flights. A recent proof-of-concept flight captured the first hard-x-ray focused images of the Crab Nebula, Cygnus X-1 and GRS 1915+105. Full details of the HERO program are presented, including the design and performance of the optics, the detectors and the gondola. Results from the recent proving flight are discussed together with expected future performance when the full science payload is completed.

  6. Hinds Community College MSEIP program

    NASA Image and Video Library

    2005-06-24

    Student Assistant Antoinette Davis (left) of Utica; Carmella Forsythe, 13, of Clinton; Terri Henderson, 14, of Clinton; Tyra Greer, 12, of Port Gibson; and Kala Battle, 14, of Edwards, answer curriculum questions about NASA's Return to Flight mission exhibit at StenniSphere, the visitor center at NASA's Stennis Space Center (SSC) near Bay St. Louis, Miss. The girls were on a field trip to StenniSphere with fellow participants in Hinds Community College's MSEIP (Minority Science Engineering Improvement Program) summer program. MSEIP encourages students to pursue and prepare for careers in science, technology, engineering and math.

  7. Hinds Community College MSEIP program

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Student Assistant Antoinette Davis (left) of Utica; Carmella Forsythe, 13, of Clinton; Terri Henderson, 14, of Clinton; Tyra Greer, 12, of Port Gibson; and Kala Battle, 14, of Edwards, answer curriculum questions about NASA's Return to Flight mission exhibit at StenniSphere, the visitor center at NASA's Stennis Space Center (SSC) near Bay St. Louis, Miss. The girls were on a field trip to StenniSphere with fellow participants in Hinds Community College's MSEIP (Minority Science Engineering Improvement Program) summer program. MSEIP encourages students to pursue and prepare for careers in science, technology, engineering and math.

  8. Theseus Nose and Pod Cones Being Unloaded

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Crew members are seen here unloading the nose and pod cones of the Theseus prototype research aircraft at NASA's Dryden Flight Research Center, Edwards, California, in May of 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden's Project Manager was John Del Frate.

  9. Theseus Tail Being Unloaded

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The tail of the Theseus prototype research aircraft is seen here being unloaded at NASA's Dryden Flight Research Center, Edwards, California, in May of 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden's Project Manager was John Del Frate.

  10. Theseus Engine Being Unloaded

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Crew members are seen here unloading an engine of the Theseus prototype research aircraft at NASA's Dryden Flight Research Center, Edwards, California, in May of 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden's Project Manager was John Del Frate.

  11. Theseus Assembly Sequence #2

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Crew members are seen here assembling the tail of the Theseus prototype research aircraft at NASA's Dryden Flight Research Center, Edwards, California, in May of 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden's Project Manager was John Del Frate.

  12. The Mars Science Laboratory Entry, Descent, and Landing Flight Software

    NASA Technical Reports Server (NTRS)

    Gostelow, Kim P.

    2013-01-01

    This paper describes the design, development, and testing of the EDL program from the perspective of the software engineer. We briefly cover the overall MSL flight software organization, and then the organization of EDL itself. We discuss the timeline, the structure of the GNC code (but not the algorithms as they are covered elsewhere in this conference) and the command and telemetry interfaces. Finally, we cover testing and the influence that testability had on the EDL flight software design.

  13. Managing schedule and financial risk in a faster, better, cheaper development

    NASA Technical Reports Server (NTRS)

    Boyd, R. W.

    2000-01-01

    The X2000 Program is a technology development program that will provide next generation avionics for missions to deep space. The goal of the X2000 Program is to develop revolutionary flight and ground systems which can be replicated by missions at a low cost, affording timely new science and mission opportunities to investigators and institutions.

  14. Research and Education Program for Underrepresented Minority Engineering Students in the JIAFS

    NASA Technical Reports Server (NTRS)

    Whitesides, John L.

    2000-01-01

    This paper is a final report on Research and Education Program for Underrepresented Minority Engineering Students in the JIAFS (Joint Institute for Advancement of Flight Sciences). The objectives of the program were to conduct research at the NASA Langley Research Center and to increase the number of underrepresented minorities in aerospace engineering.

  15. High Definition Sounding System Test and Integration with NASA Atmospheric Science Program Aircraft

    DTIC Science & Technology

    2013-09-30

    of the High Definition Sounding System (HDSS) on NASA high altitude Airborne Science Program platforms, specifically the NASA P-3 and NASA WB-57. When...demonstrate the system reliability in a Global Hawk’s 62000’ altitude regime of thin air and very cold temperatures. APPROACH: Mission Profile One or more WB...57 test flights will prove airworthiness and verify the High Definition Sounding System (HDSS) is safe and functional at high altitudes , essentially

  16. Development and Flight-testing of Astronomical Instrumentation for Future NASA Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    France, Kevin

    We propose a four year suborbital research program to continue the University of Colorado's efforts in the development and flight testing of instrument designs and critical path technologies for ultraviolet spectroscopy in support of future NASA Explorer, Probe-, and Flagship-class missions. This proposal builds on our existing program of high-resolution spectroscopy for the 100 - 160 nm bandpass with the development of a new high-efficiency imaging spectrograph operating in the same band. The ultimate goal of the University of Colorado ultraviolet rocket program is to develop the technical capabilities to enable a future, highly multiplexed ultraviolet spectrograph (with both high-resolution and imaging spectroscopy modes), e.g., an analog to the successful HST-STIS instrument, with an order-of-magnitude higher efficiency. We do this in the framework of a university led program where undergraduate, graduate, and postdoctoral training is paramount and cutting edge science investigations support our baseline technology development program. In the proposed effort, we will optimize our high-resolution (R > 100,000) echelle spectrograph payload (CHESS) with the first science flight of a new, large-format CCD array provided by our collaborators at JPL and Arizona State University. We will launch CHESS to study our local interstellar environment with spectral resolving power and bandpass that cannot be achieved with any suite of current or planned space missions. In parallel with the proposed science flights of CHESS, we will design, calibrate, and launch a new high-throughput imaging spectrograph (SISTINE); the first sub-arcsecond imaging, medium spectral resolution (R = 10,000), spectrograph ever flown with spectral coverage over the entire 100 - 160 nm bandpass. SISTINE incorporates several novel optical technologies that were highlighted as major hardware drivers for NASA's next large ultraviolet/optical/near-IR observatory by the 2014 Cosmic Origins Technology Report, including advanced mirror coatings with high broadband reflectivity (including > 20% efficiency gains below 115 nm), the first demonstration and flight test of these coatings on a shaped 0.5-meter telescope, and large-format, high-QE photon counting detectors. SISTINE will be launched to study the energetic radiation environment in the habitable zones around nearby low-mass exoplanet host stars, systems that are the top priority in NASA's search for the signatures of biological activity in the coming decade. SISTINE addresses the highest science priority in the 2010 Astronomy and Astrophysics Decadal Survey and is a crucial step towards meeting NASA's technology needs for future space observatories.

  17. Space Processing Applications Rocket (SPAR) project: SPAR 10

    NASA Technical Reports Server (NTRS)

    Poorman, R. (Compiler)

    1986-01-01

    The Space Processing Applications Rocket Project (SPAR) X Final Report contains the compilation of the post-flight reports from each of the Principal Investigators (PIs) on the four selected science payloads, in addition to the engineering report as documented by the Marshall Space Flight Center (MSFC). This combined effort also describes pertinent portions of ground-based research leading to the ultimate selection of the flight sample composition, including design, fabrication and testing, all of which are expected to contribute to an improved comprehension of materials processing in space. The SPAR project was coordinated and managed by MSFC as part of the Microgravity Science and Applications (MSA) program of the Office of Space Science and Applications (OSSA) of NASA Headquarters. This technical memorandum is directed entirely to the payload manifest flown in the tenth of a series of SPAR flights conducted at the White Sands Missile Range (WSMR) and includes the experiments entitled, Containerless Processing Technology, SPAR Experiment 76-20/3; Directional Solidification of Magnetic Composites, SPAR Experiment 76-22/3; Comparative Alloy Solidification, SPAR Experiment 76-36/3; and Foam Copper, SPAR Experiment 77-9/1R.

  18. Planetary Balloon-Based Science Platform Evaluation and Program Implementation

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Kremic, Tibor; Hibbitts, Karl; Young, Eliot F.; Landis, Rob

    2016-01-01

    This report describes a study evaluating the potential for a balloon-based optical telescope as a planetary science asset to achieve decadal class science. The study considered potential science achievable and science traceability relative to the most recent planetary science decadal survey, potential platform features, and demonstration flights in the evaluation process. Science Potential and Benefits: This study confirms the cost the-benefit value for planetary science purposes. Forty-four (44) important questions of the decadal survey are at least partially addressable through balloon based capabilities. Planetary science through balloon observations can provide significant science through observations in the 300 nm to 5 m range and at longer wavelengths as well. Additionally, balloon missions have demonstrated the ability to progress from concept to observation to publication much faster than a space mission increasing the speed of science return. Planetary science from a balloon-borne platform is a relatively low-cost approach to new science measurements. This is particularly relevant within a cost-constrained planetary science budget. Repeated flights further reduce the cost of the per unit science data. Such flights offer observing time at a very competitive cost. Another advantage for planetary scientists is that a dedicated asset could provide significant new viewing opportunities not possible from the ground and allow unprecedented access to observations that cannot be realized with the time allocation pressures faced by current observing assets. In addition, flight systems that have a relatively short life cycle and where hardware is generally recovered, are excellent opportunities to train early career scientists, engineers, and project managers. The fact that balloon-borne payloads, unlike space missions, are generally recovered offers an excellent tool to test and mature instruments and other space craft systems. Desired Gondola Features: Potential gondola characteristics are assessed in this study and a concept is recommended, the Gondola for High-Altitude Planetary Science (GHAPS). This first generation platform is designed around a 1 m or larger aperture, narrow-field telescope with pointing accuracies better than one arc-second. A classical Cassegrain, or variant like Ritchey-Chretien, telescope is recommended for the primary telescope. The gondola should be designed for multiple flights so it must be robust and readily processed at recovery. It must be light-weighted to the extent possible to allow for long-duration flights on super-pressure balloons. Demonstration Flights: Recent demonstration flights achieved several significant accomplishments that can feed forward to a GHAPS gondola project. Science results included the first ever Earth-based measurements for CO2 in a comet, first measurements for CO2 and H2O in an Oort cloud comet, and the first measurement of 1 Ceres at 2.73 m to refine the shape of the infrared water absorption feature. The performance of the Fine Steering Mirror (FSM) was also demonstrated. The BOPPS platform can continue to be leveraged on future flights even as GHAPS is being developed. The study affirms the planetary decadal recommendations, and shows that a number of Top Priority science questions can be achieved. A combination GHAPS and BOPPS would provide the best value for PSD for realizing that science.

  19. Members of House Committee on Science and Astronautics Visited MSFC

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather first-hand information of the nation's space exploration program. The congressional group was composed of members of the Subcommittee on Marned Space Flight. Headed by Representative Olin E. Teague of Texas, other members were James G. Fulton, Pennsylvania; Ken Heckler, West Virginia; R. Walter Riehlman, New York; Richard L. Roudebush, Indiana; John W. Davis, Georgia; James C. Corman, California; Joseph Waggoner, Louisiana; J. Edgar Chenoweth, Colorado; and William G. Bray, Indiana.

  20. Members of House Committee on Science and Astronautics Visited MSFC

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather first-hand information of the nation's space exploration program. The congressional group was composed of members of the Subcommittee on Marned Space Flight. Headed by Representative Olin E. Teague of Texas, other members were James G. Fulton, Pennsylvania; Ken Heckler, West Virginia; R. Walter Riehlman, New York; Richard L. Roudebush,, Indiana; John W. Davis, Georgia; James C. Corman, California; Joseph Waggoner, Louisiana; J. Edgar Chenoweth, Colorado; and William G. Bray, Indiana.

  1. Flight demonstration of laser diode initiated ordnance

    NASA Technical Reports Server (NTRS)

    Boucher, Craig J.; Schulze, Norman R.

    1995-01-01

    A program has been initiated by NASA Headquarters to validate laser initiated ordnance in flight applications. The primary program goal is to bring together a team of government and industry members to develop a laser initiated ordnance system having the test and analysis pedigree to be flown on launch vehicles. The culmination of this effort was a flight of the Pegasus launch vehicle which had two fin rockets initiated by this laser system. In addition, a laser initiated ordnance squib was fired into a pressure bomb during thrusting flight. The complete ordnance system comprising a laser diode firing unit, fiber optic cable assembly, laser initiated detonator, and laser initiated squib was designed and built by The Ensign Bickford Company. The hardware was tested to the requirements of the Pegasus launch vehicle and integrated into the vehicle by The Ensign Bickford Company and the Orbital Sciences Corporation. Discussions include initial program concept, contract implementation, team member responsibilities, analysis results, vehicle integration, safing architecture, ordnance interfaces, mission timeline and telemetry data. A complete system description, summary of the analyses, the qualification test results, and the results of flight are included.

  2. 77 FR 4370 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... persons, scientific and technical information relevant to program planning. DATES: Thursday, February 23... topics: --Astrophysics Division Update --Update on Balloons Return to Flight Changes --James Webb Space...

  3. Project LASER Volunteer, Marshall Space Flight Center Education Program

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Through Marshall Space Flight Center (MSFC) Education Department, over 400 MSFC employees have volunteered to support educational program during regular work hours. Project LASER (Learning About Science, Engineering, and Research) provides support for mentor/tutor requests, education tours, classroom presentations, and curriculum development. This program is available to teachers and students living within commuting distance of the NASA/MSFC in Huntsville, Alabama (approximately 50-miles radius). This image depicts students viewing their reflections in an x-ray mirror with Marshall optic engineer Vince Huegele at the Discovery Laboratory, which is an onsite MSFC laboratory facility that provides hands-on educational workshop sessions for teachers and students learning activities.

  4. 77 FR 38680 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... persons, scientific and technical information relevant to program planning. DATES: Monday, July 23, 2012... Goddard Space Flight Center (GSFC), Building 1, Room E100D, 8800 Greenbelt Road, Greenbelt, MD 20771. FOR... Session with the NAC Science Committee on Mars Program Planning Group and Joint Robotic Precursor...

  5. The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students

    NASA Astrophysics Data System (ADS)

    Livengood, Timothy A.; Goldstein, J. J.; Hamel, S.; Manber, J.; Hulslander, M.

    2013-10-01

    The Student Spaceflight Experiments Program (SSEP) has flown 53 experiments to space, on behalf of students from middle school through community college, on 4 missions: each of the last 2 Space Shuttle flights, the first SpaceX demonstration flight to the International Space Station (ISS), and on SpaceX-1 to ISS. Two more missions to ISS have payloads flying in Fall 2013. SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. 21,600 students participated in the initial 6 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 3 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches, which also fly to space. Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory.

  6. Training for life science experiments in space at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Rodrigues, Annette T.; Maese, A. Christopher

    1993-01-01

    As this country prepares for exploration to other planets, the need to understand the affects of long duration exposure to microgravity is evident. The National Aeronautics and Space Administration (NASA) Ames Research Center's Space Life Sciences Payloads Office is responsible for a number of non-human life sciences payloads on NASA's Space Shuttle's Spacelab. Included in this responsibility is the training of those individuals who will be conducting the experiments during flight, the astronauts. Preparing a crew to conduct such experiments requires training protocols that build on simple tasks. Once a defined degree of performance proficiency is met for each task, these tasks are combined to increase the complexity of the activities. As tasks are combined into in-flight operations, they are subjected to time constraints and the crew enhances their skills through repetition. The science objectives must be completely understood by the crew and are critical to the overall training program. Completion of the in-flight activities is proof of success. Because the crew is exposed to the background of early research and plans for post-flight analyses, they have a vested interest in the flight activities. The salient features of this training approach is that it allows for flexibility in implementation, consideration of individual differences, and a greater ability to retain experiment information. This training approach offers another effective alternative training tool to existing methodologies.

  7. NPP Clouds and the Earth's Radiant Energy System (CERES) Predicted Sensor Performance Calibration and Preliminary Data Product Performance

    NASA Technical Reports Server (NTRS)

    Priestly, Kory; Smith, George L.; Thomas, Susan; Maddock, Suzanne L.

    2009-01-01

    Continuation of the Earth Radiation Budget (ERB) Climate Data Record (CDR) has been identified as critical in the 2007 NRC Decadal Survey, the Global Climate Observing System WCRP report, and in an assessment titled Impacts of NPOESS Nunn-McCurdy Certification on Joint NASA-NOAA Climate Goals. In response, NASA, NOAA and NPOESS agreed in early 2008 to fly the final existing CERES Flight Model (FM-5) on the NPP spacecraft for launch in 2010. Future opportunities for ERB CDR continuity consist of procuring an additional CERES Sensor with modest performance upgrades for flight on the NPOESS C1 spacecraft in 2013, followed by a new CERES follow-on sensor for flight in 2018 on the NPOESS C3 spacecraft. While science goals remain unchanged for the long-term ERB Climate Data Record, it is now understood that the task of achieving these goals is more difficult for two reasons. The first is an increased understanding of the dynamics of the Earth/atmosphere system which demonstrates that rigorous separation of natural variability from anthropogenic change on decadal time scales requires higher accuracy and stability than originally envisioned. Secondly, future implementation scenarios involve less redundancy in flight hardware (1 vs. 2 orbits and operational sensors) resulting in higher risk of loss of continuity and reduced number of independent observations to characterize performance of individual sensors. Although EOS CERES CDR's realize a factor of 2 to 4 improvement in accuracy and stability over previous ERBE CDR's, future sensors will require an additional factor of 2 improvement to answer rigorously the science questions moving forward. Modest investments, defined through the CERES Science Team s 30-year operational history of the EOS CERES sensors, in onboard calibration hardware and pre-flight calibration and test program will ensure meeting these goals while reducing costs in re-processing scientific datasets. The CERES FM-5 pre-flight radiometric characterization program benefited from the 30-year operational experience of the CERES EOS sensors, as well as a stronger emphasis of radiometric characterization in the Statement of Work with the sensor provider. Improvements to the pre-flight program included increased spectral, spatial, and temporal sampling under vacuum conditions as well as additional tests to characterize the primary and transfer standards in the calibration facility. Future work will include collaboration with NIST to further enhance the understanding of the radiometric performance of this equipment prior to flight. The current effort summarizes these improvements to the CERES FM-5 pre-flight sensor characterization program, as well as modifications to inflight calibration procedures and operational tasking. In addition, an estimate of the impacts to the system level accuracy and traceability is presented.

  8. NASA Applied Sciences Program. Overview Presentation; Discovering and Demonstrating Innovative and Practical Applications of Earth Science

    NASA Technical Reports Server (NTRS)

    Irwin, Daniel

    2010-01-01

    Goal 1: Enhance Applications Research Advance the use of NASA Earth science in policy making, resource management and planning, and disaster response. Key Actions: Identify priority needs, conduct applied research to generate innovative applications, and support projects that demonstrate uses of NASA Earth science. Goal 2: Increase Collaboration Establish a flexible program structure to meet diverse partner needs and applications objectives. Key Actions: Pursue partnerships to leverage resources and risks and extend the program s reach and impact. Goal 3:Accelerate Applications Ensure that NASA s flight missions plan for and support applications goals in conjunction with their science goals, starting with mission planning and extending through the mission life cycle. Key Actions: Enable identification of applications early in satellite mission lifecycle and facilitate effective ways to integrate end-user needs into satellite mission planning

  9. ASSESS program: Shuttle Spacelab simulation using a Lear jet aircraft (mission no. 2)

    NASA Technical Reports Server (NTRS)

    Reller, J. O., Jr.; Neel, C. B.; Mason, R. H.; Pappas, C. C.

    1974-01-01

    The second shuttle Spacelab simulation mission of the ASSESS program was conducted at Ames Research Center by the Airborne Science Office (ASO) using a Lear jet aircraft based at a site remote from normal flight operations. Two experimenters and the copilot were confined to quarters on the site during the mission, departing only to do in-flight research in infrared astronomy. A total of seven flights were made in a period of 4 days. Results show that experimenters with relatively little flight experience can plan and carry out a successful research effort under isolated and physically rigorous conditions, much as would more experienced scientists. Perhaps the margin of success is not as great, but the primary goal of sustained acquisition of significant data over a 5-day period can be achieved.

  10. Family Science Night: Changing Perceptions One Family at a Time

    NASA Technical Reports Server (NTRS)

    Pesnell, W. D.; Drobnes, E.; Mitchell, S.; Colina-Trujillo, M.

    2007-01-01

    If students are not encouraged to succeed in science, mathematics, and technology classes at school, efforts to improve the quality of content and teaching in these subjects may be futile. Parents and families are in a unique position to encourage children to enroll and achieve in these classes. The NASA Goddard Space Flight Center Family Science Night program invites middle school students and their families to explore the importance of science and technology in our daily lives by providing a venue for families to comfortably engage in learning activities that change their perception and understanding of science - making it more practical and approachable for participants of all ages. Family Science Night strives to change the way that students and their families participate in science, within the program and beyond.

  11. Purging sensitive science instruments with nitrogen in the STS environment

    NASA Technical Reports Server (NTRS)

    Lumsden, J. M.; Noel, M. B.

    1983-01-01

    Potential contamination of extremely sensitive science instruments during prelaunch, launch, and earth orbit operations are a major concern to the Galileo and International Solar Polar Mission (ISPM) Programs. The Galileo Program is developing a system to purify Shuttle supplied nitrogen gas for in-flight purging of seven imaging and non-imaging science instruments. Monolayers of contamination deposited on critical surfaces can degrade some instrument sensitivities as much as fifty percent. The purging system provides a reliable supply of filtered and fried nitrogen gas during these critical phases of the mission when the contamination potential is highest. The Galileo and ISPM Programs are including the system as Airborne Support Equipment (ASE).

  12. SOFIA: Flying the Telescope

    NASA Technical Reports Server (NTRS)

    Asher, Troy A.; Cumming, Stephen B.

    2012-01-01

    The primary focus of this paper is how the flight test team for the Stratospheric Observatory For Infrared Astronomy (SOFIA) re-cast an extensive developmental test program to meet key milestones while simultaneously ensuring safe certification of the airframe and delivery of an operationally relevant platform, ultimately saving the overall program from financial demise. Following a brief introduction to the observatory and what it is designed to do, SOFIAs planned developmental test program is summarized, including analysis and design philosophy, envelope expansion, model validation and airframe certification. How NASA used lessons learned from other aircraft that employed open cavities in flight is explained as well as how and why the chosen design was selected. The approach to aerodynamic analysis, including bare airframe testing, wind tunnel testing, computational fluid dynamics and finite element modeling proved absolutely critical. Despite a solid analytical foundation, many unknowns remained. History provides several examples of disastrous effects on both systems and flight safety if cavity design is not approached properly. For these reasons, an extensive test plan was developed to ensure a safe and thorough build-up for envelope expansion, airframe certification and early science missions. Unfortunately, as is often the case, because of chronic delays in overall program execution, severe schedule and funding pressures were present. If critical milestones were not met, domestic as well as international funding was in serious jeopardy, and the demise of the entire program loomed large. Concentrating on rigorous model validation, the test team challenged certification requirements, increased test efficiency and streamlined engineering analysis. This resulted in the safe reduction of test point count by 72%, meeting all program milestones and a platform that soundly satisfied all operational science requirements. Results from early science missions are shown and a proof of concept mission for which SOFIA was opportunely positioned is showcased. Success on this time-critical mission to observe a rare astronomical event proved the usefulness of an airborne observatory and the value in waiting for the capability provided by SOFIA. Finally, lessons learned in the test program are presented with emphasis on how lessons from previous aircraft and successful test programs were applied to SOFIA. Effective application of these lessons was crucial to the success of the SOFIA flight test program. SOFIA is an international cooperative program between NASA and the German Space Agency, DLR. It is a 2.5 meter (100-inch) telescope mounted in a Boeing 747SP aircraft used for astronomical observations at altitudes above 35,000 feet. SOFIA will accommodate a host of scientific instruments from the international science community and has a planned operational lifespan of more than 20 years.

  13. Research and technology at the Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1983 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Advanced Programs tasks funded by the Office of Space Flight; and Solar System Explorations, Life Sciences, and Earth Sciences and Applications research funded by the Office of Space Sciences and Applications. Summary sections describing the role of the Johnson Space Center in each program are followed by one-page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  14. HIFiRE-1 Turbulent Shock Boundary Layer Interaction - Flight Data and Computations

    NASA Technical Reports Server (NTRS)

    Kimmel, Roger L.; Prabhu, Dinesh

    2015-01-01

    The Hypersonic International Flight Research Experimentation (HIFiRE) program is a hypersonic flight test program executed by the Air Force Research Laboratory (AFRL) and Australian Defence Science and Technology Organisation (DSTO). This flight contained a cylinder-flare induced shock boundary layer interaction (SBLI). Computations of the interaction were conducted for a number of times during the ascent. The DPLR code used for predictions was calibrated against ground test data prior to exercising the code at flight conditions. Generally, the computations predicted the upstream influence and interaction pressures very well. Plateau pressures on the cylinder were predicted well at all conditions. Although the experimental heat transfer showed a large amount of scatter, especially at low heating levels, the measured heat transfer agreed well with computations. The primary discrepancy between the experiment and computation occurred in the pressures measured on the flare during second stage burn. Measured pressures exhibited large overshoots late in the second stage burn, the mechanism of which is unknown. The good agreement between flight measurements and CFD helps validate the philosophy of calibrating CFD against ground test, prior to exercising it at flight conditions.

  15. KSC-03pd0122

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- As billows of smoke and steam roll across the landscape, the fiery launch of Space Shuttle Columbia on mission STS-107 is reflected in nearby water. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  16. KSC-03pd0120

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- Silhouetted against the blue Atlantic Ocean, Space Shuttle Columbia breaks free of the launch pad as it roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  17. KSC-03pd0121

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- A twisting column of smoke points the way to Space Shuttle Columbia at its tip as the Shuttle hurtles toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  18. KSC-03pd0129

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- Pulling free of Earth's gravity, and leaving a trail of smoke behind, Space Shuttle Columbia roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  19. KSC-03pd0127

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- After a perfect launch, spectators try to catch a last glimpse of Space Shuttle Columbia, barely visible at the top end of the twisted column of smoke. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. Headed for a 16-day research mission, Columbia's crew will be taking part in more than 80 experiment, including FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  20. KSC-03pd0134

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia seems to leap from amid the trees as it roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program. [Photo courtesy of Scott Andrews

  1. KSC-03pp0142

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. - A closeup camera view shows Space Shuttle Columbia as it lifts off from Launch Pad 39A on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  2. KSC-03pd0125

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. - All eyes in the VIP stand at KSC focus on Space Shuttle Columbia as it roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  3. KSC-03pd0111

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- Photographers and spectators watch from across the turn basin as Space Shuttle Columbia begins a perfect launch from Pad 39A following a flawless and uneventful countdown. Liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  4. KSC-03pd0130

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia seems to leap from amid the trees as it roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  5. KSC-03pd0118

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. - Competing with the brilliant blue sky, flames behind Space Shuttle Columbia trail a column of smoke as the Shuttle hurtles toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  6. KSC-03pp0139

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. - Space Shuttle Columbia leaps off Launch Pad 39A and the clouds of smoke and steam as it races toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  7. KSC-03pd0123

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- A twisting column of smoke points the way to Space Shuttle Columbia at its tip as the Shuttle hurtles toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  8. KSC-03pd0113

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. - Through a cloud-washed blue sky above Launch Pad 39A, Space Shuttle Columbia hurtles toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  9. Results of the life sciences DSOs conducted aboard the space shuttle 1981-1986

    NASA Technical Reports Server (NTRS)

    Bungo, Michael W.; Bagian, Tandi M.; Bowman, Mark A.; Levitan, Barry M.

    1987-01-01

    Results are presented for a number of life sciences investigations sponsored by the Space Biomedical Research Institute at the NASA Lyndon B. Johnson Space Center and conducted as Detailed Supplementary Objectives (DSOs) on Space Shuttle flights between 1981 and 1986. An introduction and a description of the DSO program are followed by summary reports on the investigations. Reports are grouped into the following disciplines: Biochemistry and Pharmacology, Cardiovascular Effects and Fluid Shifts, Equipment Testing and Experiment Verification, Microbiology, Space Motion Sickness, and Vision. In the appendix, the status of every medical/life science DSO is presented in graphical form, which enables the flight history, the number of subjects tested, and the experiment results to be reviewed at a glance.

  10. KSC-03pp0143

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. --Framed by branches across from Launch Pad 39A, Space Shuttle Columbia leaps toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  11. KSC-03pp0141

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. - Viewed from among branches across from Launch Pad 39A, Space Shuttle Columbia leaps toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  12. NASA Family Science Night: Changing perceptions one family at a time

    NASA Astrophysics Data System (ADS)

    Mitchell, Sara E.; Drobnes, Emilie; Sol Colina-Trujillo, M.; Noel-Storr, Jacob

    2008-12-01

    Parents and families have the greatest influence on children's attitudes towards education and career choices. If students' attitudes towards science, particularly the physical sciences, are not influenced positively by parental/familial attitudes, efforts to improve the quality of content and teaching of these subjects in school may be futile. Research shows that parental involvement increases student achievement outcomes, and family-oriented programs have a direct impact on student performance. Based on this premise, the NASA Goddard Space Flight Center started a series of Family Science Nights for middle school students and their families. The program provides a non-threatening venue for families to explore the importance of science and technology in our daily lives by engaging in learning activities that change their perception and understanding of science - making it more practical and approachable for participants of all ages. Family Science Night strives to change the way that students and their families participate in science, within the program and beyond.

  13. Antares Post Launch Press Conference

    NASA Image and Video Library

    2013-09-18

    Alan Lindenmoyer, program manager, NASA's Commercial Crew and Cargo Program, left, and, Frank Culbertson, executive vice president, Orbital Sciences Corporation,are seen during a press conference held after the successful launch of the Orbital Sciences Antares rocket, with the Cygnus cargo spacecraft aboard, Wednesday, Sept. 18, 2013, NASA Wallops Flight Facility, Virginia. Cygnus is on its way to rendezvous with the space station. The spacecraft will deliver about 1,300 pounds (589 kilograms) of cargo, including food and clothing, to the Expedition 37 crew. Photo Credit: (NASA/Bill Ingalls)

  14. 75 FR 33837 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... community and other persons scientific and technical information relevant to program planning. DATES... Discussion --Update of Flight Missions It is imperative that the meeting be held on these dates to...

  15. KSC-2012-5454

    NASA Image and Video Library

    2012-09-19

    CAPE CANAVERAL, Fla. – Space shuttle Endeavour, mounted atop NASA's Shuttle Carrier Aircraft or SCA, taxis down the runway at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The SCA, a modified 747 jetliner, will fly Endeavour to Los Angeles where it will be placed on public display at the California Science Center. This is the final ferry flight scheduled in the Space Shuttle Program era. For more information on the shuttles' transition and retirement, visit http://www.nasa.gov/transition. Photo credit: NASA/Rusty Backer The SCA, a modified 747 jetliner, will fly Endeavour to Los Angeles where it will be placed on public display at the California Science Center. This is the final ferry flight scheduled in the Space Shuttle Program era. For more information on the shuttles' transition and retirement, visit http://www.nasa.gov/transition. Photo credit: NASA/Jim Grossmann

  16. Mars Science Laboratory Entry Capsule Aerothermodynamics and Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Hollis, Brian R.; Dyakonov, Artem A.; Laub, Bernard; Wright, Michael J.; Rivellini, Tomasso P.; Slimko, Eric M.; Willcockson, William H.

    2007-01-01

    The Mars Science Laboratory (MSL) spacecraft is being designed to carry a large rover (greater than 800 kg) to the surface of Mars using a blunt-body entry capsule as the primary decelerator. The spacecraft is being designed for launch in 2009 and arrival at Mars in 2010. The combination of large mass and diameter with non-zero angle-of-attack for MSL will result in unprecedented convective heating environments caused by turbulence prior to peak heating. Navier-Stokes computations predict a large turbulent heating augmentation for which there are no supporting flight data1 and little ground data for validation. Consequently, an extensive experimental program has been established specifically for MSL to understand the level of turbulent augmentation expected in flight. The experimental data support the prediction of turbulent transition and have also uncovered phenomena that cannot be replicated with available computational methods. The result is that the flight aeroheating environments predictions must include larger uncertainties than are typically used for a Mars entry capsule. Finally, the thermal protection system (TPS) being used for MSL has not been flown at the heat flux, pressure, and shear stress combinations expected in flight, so a test program has been established to obtain conditions relevant to flight. This paper summarizes the aerothermodynamic definition analysis and TPS development, focusing on the challenges that are unique to MSL.

  17. Aviation. Fifth Grade. Anchorage School District Elementary Science Program.

    ERIC Educational Resources Information Center

    Defendorf, Jean, Ed.

    This unit of study is designed to teach the science of flight to students in the intermediate grades. Included are a list of materials for the unit, a discussion of the use of process skills, a list of unit objectives, vocabulary, teacher background information, 12 lessons, 5 quizzes, math problems, and a unit test. Lessons are oriented toward…

  18. Targeted Research and Technology Within NASA's Living With a Star Program

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2003-01-01

    NASA's Living With a Star (LWS) initiative is a systematic, goal-oriented research program targeting those aspects of the Sun-Earth system that affect society. The Targeted Research and Technology (TR&T) component of LWS provides the theory, modeling, and data analysis necessary to enable an integrated, system-wide picture of Sun-Earth connection science with societal relevance. Recognizing the central and essential role that TR&T would have for the success of the LWS initiative, the LWS Science Architecture Team (SAT) recommended that a Science Definition Team (SDT), with the same status as a flight mission definition team, be formed to design and coordinate a TR&T program having prioritized goals and objectives that focused on practical societal benefits. This report details the SDT recommendations for the TR&T program.

  19. Earth Science Microwave Remote Sensing at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center (GSFC) was established as NASA's first space flight center in 1959. Its 12,000 personnel are active in the Earth and space sciences, astronomy, space physics, tracking and communications. GSFC's mission is to expand our knowledge of the Earth and its environment, the solar system, and the universe through observations from space. The main Goddard campus is located in Greenbelt, Maryland, USA, just north of Washington, D.C. The Wallops Flight Facility (operational since 1945), located on the Atlantic coast of Virginia was consolidated with the Goddard Space Flight Center in 1982. Wallops is now NASA's principal facility for management and implementation of suborbital research programs, and supports a wide variety of airborne science missions as well. As the lead Center for NASA's Earth Science Enterprise (ESE)--a long-term, coordinated research effort to study the Earth as a global environmental system--GSFC scientists and engineers are involved in a wide range of Earth Science remote sensing activities. Their activities range from basic geoscience research to the development of instruments and technology for space missions, as well as the associated Calibration/Validation (Cal/Val) work. The shear breadth of work in these areas precludes an exhaustive description here. Rather, this article presents selected brief overviews of microwave-related Earth Science applications and the ground-based, airborne, and space instruments that are in service, under development, or otherwise significantly involving GSFC. Likewise, contributing authors are acknowledged for each section, but the results and projects they describe represent the cumulative efforts of many persons at GSFC as well as at collaborating institutions. For further information, readers are encouraged to consult the listed websites and references.

  20. Orbital Sciences Pegasus XL Flight Simulation

    NASA Image and Video Library

    2007-02-28

    At Vandenberg Air Force Base in California, workers monitor the data produced by the second flight simulation of the Orbital Sciences Pegasus XL rocket. The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  1. Orbital Sciences Pegasus XL Flight Simulation

    NASA Image and Video Library

    2007-02-28

    At Vandenberg Air Force Base in California, the Orbital Sciences Pegasus XL rocket undergoes its second flight simulation. The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  2. Orbital Sciences Pegasus XL Flight Simulation

    NASA Image and Video Library

    2007-02-28

    At Vandenberg Air Force Base in California, a worker monitors the data produced by the second flight simulation of the Orbital Sciences Pegasus XL rocket. The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  3. Orbital Sciences Pegasus XL Flight Simulation

    NASA Image and Video Library

    2007-02-28

    At Vandenberg Air Force Base in California, a worker monitors the Orbital Sciences Pegasus XL rocket after a second flight simulation. The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  4. The Altus Cumulus Electrification Study (ACES): A UAV-based Investigation of Thunderstorms

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard; Arnold, James E. (Technical Monitor)

    2001-01-01

    The Altus Cumulus Electrification Study (ACES) is a NASA-sponsored and -led science investigation that utilizes an uninhabited aerial vehicle (UAV) to investigate thunderstorms in the vicinity of the NASA Kennedy Space Center, Florida. As part of NASA's UAV-based science demonstration program, ACES will provide a scientifically useful demonstration of the utility and promise of UAV platforms for Earth science and applications observations. ACES will employ the Altus 11 aircraft, built by General Atomics-Aeronautical Systems, Inc. By taking advantage of its slow flight speed (70 to 100 knots), long endurance, and high-altitude flight (up to 55,000 feet), the Altus will be flown near, and when possible, above (but never into) thunderstorms for long periods of time, allowing investigations to be conducted over entire storm life cycles. Key science objectives simultaneously addressed by ACES are to: (1) investigate lightning-storm relationships, (2) study storm electrical budgets, and (3) provide Lightning Imaging Sensor validation. The ACES payload, already developed and flown on Altus, includes electrical, magnetic, and optical sensors to remotely characterize the lightning activity and the electrical environment within and around thunderstorms. The ACES field campaign will be conducted during July 2002 with a goal of performing 8 to 10 UAV flights. Each flight will require about 4 to 5 hours on station at altitudes from 40,000 ft to 55,000 ft. The ACES team is comprised of scientists from the NASA Marshall Space Flight Center and NASA Goddard Space Flight Centers partnered with General Atomics and IDEA, LLC.

  5. Science Community Interface

    NASA Technical Reports Server (NTRS)

    Neupert, Werner M.

    1991-01-01

    The interface is described between NASA HQ, NASA Goddard, and the rocket Principal Investigators. The proposal selection process is described along with the cycle time to flight, constraints imposed by science objectives on operations, campaign modes, and coordination with ground based facilities. There were questions about the success rate of proposals and the primary sources of funding for the payloads program from the branches of the science divisions in OSSA, especially space physics, astrophysics, Earth sciences, and solar system exploration. The presentation is given in the form of viewgraphs.

  6. NASA Dryden's UAS Service Capabilities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeff

    2007-01-01

    The vision of NASA s Dryden Flight Research Center is to "fly what others only imagine." Its mission is to advance technology and science through flight. Objectives supporting the mission include performing flight research and technology integration to revolutionize aviation and pioneer aerospace technology, validating space exploration concepts, conducting airborne remote sensing and science missions, and supporting operations of the Space Shuttle and the International Space Station. A significant focus of effort in recent years has been on Unmanned Aircraft Systems (UAS), both in support of the Airborne Science Program and as research vehicles to advance the state of the art in UAS. Additionally, the Center has used its piloted aircraft in support of UAS technology development. In order to facilitate greater access to the UAS expertise that exists at the Center, that expertise has been organized around three major capabilities. The first is access to high-altitude, long-endurance UAS. The second is the establishment of a test range for small UAS. The third is safety case assessment support.

  7. Mars Ascent Vehicle Test Requirements and Terrestrial Validation

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Cathey, Henry M.; Smith, David A.

    2011-01-01

    The Mars robotic sample return mission has been a potential flagship mission for NASA s science mission directorate for decades. The Mars Exploration Program and the planetary science decadal survey have highlighted both the science return of the Mars Sample Return mission, but also the need for risk reduction through technology development. One of the critical elements of the MSR mission is the Mars Ascent Vehicle, which must launch the sample from the surface of Mars and place it into low Mars orbit. The MAV has significant challenges to overcome due to the Martian environments and the Entry Descent and Landing system constraints. Launch vehicles typically have a relatively low success probability for early flights, and a thorough system level validation is warranted. The MAV flight environments are challenging and in some cases impossible to replicate terrestrially. The expected MAV environments have been evaluated and a first look of potential system test options has been explored. The terrestrial flight requirements and potential validation options are presented herein.

  8. Quarantine provisions for unmanned extra-terrestrial missions

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This document sets forth requirements applicable to unmanned planetary flight programs which are necessary to enable the Associate Administrator for Space Science to fulfill those responsibilities pertaining to planetary quarantine as stated in NPD 8020.7 and NPD 8020.10A. This document is specifically directed to the control of terrestrial microbial contamination associated with unmanned space vehicles intended to encounter, orbit, flyby, or otherwise be in the vicinity of extra-terrestrial solar system bodies. The requirements of this document apply to all unmanned planetary flight programs. This includes solar system exploratory missions to the major planets as well as missions to planet satellites, or to other solar system objects that may be of scientific interest. This document is not applicable to terrestrial (including lunar) missions and manned missions. NASA officials having cognizance of applicable flight programs will invoke these requirements in such directives or contractual instruments as may be necessary to assure their implementation.

  9. A Status Report on the Parachute Development for NASA's Next Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Sinclair, Robert

    2008-01-01

    NASA has determined that the parachute portion of the Landing System for the Crew Exploration Vehicle (CEV) will be Government Furnished Equipment (GFE). The Earth Landing System has been designated CEV Parachute Assembly System (CPAS). Thus a program team was developed consisting of NASA Johnson Space Center (JSC) and Jacobs Engineering through their Engineering and Science Contract Group (ESCG). Following a rigorous competitive phase, Airborne Systems North America was selected to provide the parachute design, testing and manufacturing role to support this team. The development program has begun with some early flight testing of a Generation 1 parachute system. Future testing will continue to refine the design and complete a qualification phase prior to manned flight of the spacecraft. The program team will also support early spacecraft system testing, including a Pad Abort Flight Test in the Fall of 2008

  10. Lessons Learned from Real-Time, Event-Based Internet Science Communications

    NASA Technical Reports Server (NTRS)

    Phillips, T.; Myszka, E.; Gallagher, D. L.; Adams, M. L.; Koczor, R. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The Directorate's Science Roundtable includes active researchers, NASA public relations, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. The focus of sharing science activities in real-time has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases, broadcasts accommodate active feedback and questions from Internet participants. Through these projects a pattern has emerged in the level of interest or popularity with the public. The pattern differentiates projects that include science from those that do not, All real-time, event-based Internet activities have captured public interest at a level not achieved through science stories or educator resource material exclusively. The worst event-based activity attracted more interest than the best written science story. One truly rewarding lesson learned through these projects is that the public recognizes the importance and excitement of being part of scientific discovery. Flying a camera to 100,000 feet altitude isn't as interesting to the public as searching for viable life-forms at these oxygen-poor altitudes. The details of these real-time, event-based projects and lessons learned will be discussed.

  11. Space biology class as part of science education programs for high schools in Japan.

    PubMed

    Kamada, Motoshi; Takaoki, Muneo

    2004-11-01

    Declining incentives and scholastic abilities in science class has been concerned in Japan. The Ministry of Education, Culture, Sports, Science and Technology encourages schools to cooperate with research institutions to raise student's interest in natural sciences. The Science Partnership Program (SPP) and the Super Science High-School (SSH) are among such efforts. Our short SPP course consists of an introductory lecture on space biology in general and a brief laboratory practice on plant gravitropism. Space biology class is popular to students, despite of the absence of flight experiments. We suppose that students are delighted when they find that their own knowledge is not a mere theory, but has very practical applications. Space biology is suitable in science class, since it synthesizes mathematics, physics, chemistry and many other subjects that students might think uninteresting.

  12. NASA earth science and applications division: The program and plans for FY 1988-1989-1990

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Described here are the Division's research goals, priorities and emphases for the next several years and an outline of longer term plans. Included are highlights of recent accomplishments, current activities in FY 1988, research emphases in FY 1989, and longer term future plans. Data and information systems, the Geodynamics Program, the Land Processes Program, the Oceanic Processes Program, the Atmospheric Dynamics and Radiation Program, the Atmospheric Chemistry Program, and space flight programs are among the topic covered.

  13. KSC-2009-4332

    NASA Image and Video Library

    2009-07-30

    CAPE CANAVERAL, Fla. – Phil McAlister, special assistant for Program Analysis in NASA's Office of Program Analysis and Evaluation, introduces the Augustine Commission, meeting in Cocoa Beach, Fla. At the request of the Office of Science and Technology Policy, NASA established the Review of U.S. Human Space Flight Plans Committee, known as the Augustine Commission. Chaired by Norman R. Augustine, retired chairman and CEO of Lockheed Martin Corp., the committee is conducting an independent review of ongoing U.S. human spaceflight plans and programs, as well as alternatives, to ensure the nation is pursuing the best trajectory for the future of human space flight - one that is safe, innovative, affordable, and sustainable. Photo credit: NASA/Jim Grossmann

  14. Around Marshall

    NASA Image and Video Library

    1962-03-08

    The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather firsthand information of the nation’s space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. The subcommittee was briefed on MSFC’s manned space efforts earlier in the day and then inspected mockups of the Saturn I Workshop and the Apollo Telescope Mount, two projects developed by MSFC for the post-Apollo program. In this photograph, MSFC Director, Dr. Wernher von Braun and Joe Waggoner, Democratic representative of Louisiana, discuss Apollo models.

  15. Around Marshall

    NASA Image and Video Library

    1962-03-08

    The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather firsthand information of the nation’s space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. The subcommittee was briefed on MSFC’s manned space efforts earlier in the day and then inspected mockups of the Saturn I Workshop and the Apollo Telescope Mount, two projects developed by MSFC for the post-Apollo program. In this photograph, MSFC Director, Dr. Wernher von Braun, bids farewell to Texas Democratic Representative Olin E. Teague before departure at the Redstone Arsenal Airstrip.

  16. Digital Imaging Star Camera

    DTIC Science & Technology

    2009-09-30

    NRL Code 8221) is the Lead Thermal Engineer for heater and blanket design for the mission. WORK COMPLETED The program developed a briefing...development of such science-enabling technology is critical for space-flight mission on small spacecraft , such as CubeSats, that cannot afford the mass, power...critical for space-flight mission on small spacecraft , such as CubeSats, that cannot afford the mass, power or cost of traditional star trackers but

  17. NASA SMD Airborne Science Capabilities for Development and Testing of New Instruments

    NASA Technical Reports Server (NTRS)

    Fladeland, Matthew

    2015-01-01

    The SMD NASA Airborne Science Program operates and maintains a fleet of highly modified aircraft to support instrument development, satellite instrument calibration, data product validation and earth science process studies. This poster will provide an overview of aircraft available to NASA researchers including performance specifications and modifications for instrument support, processes for requesting aircraft time and developing cost estimates for proposals, and policies and procedures required to ensure safety of flight.

  18. Particle Engulfment and Pushing by Solidifying Interfaces (PEPSI)

    NASA Technical Reports Server (NTRS)

    Stefanescu, Doru Michael; Curreri, Peter A.; Juretsko, F.; Pang, H.; Phalnikar, R.

    1993-01-01

    The preliminary definition phase included the following actions: producing a science requiring document (draft), producing a science requirements document (preliminary), updating the flight program proposal, project review at NASA Marshall Space Flight Center, and research work as defined in the statement of work. The first three items of this plan have been delivered by the University of Alabama to NASA according to schedule. A project review meeting was held at MSFC on June 29, 1993. Consequently, this part of the report will address the results of the research work performed in the Solidification Laboratory at the University of Alabama during the first six months of the project.

  19. Planning and management of science programs on Skylab

    NASA Technical Reports Server (NTRS)

    Parker, R. A. R.; Sevier, J. R.

    1974-01-01

    Discussion of the experience gained in experiment operation planning during the Skylab mission. The Skylab flight planning activity allowed the experimenters to interact with the system and provided the flexibility to respond to contingencies both major and minor. Both these aspects contributed to make efficient use of crew time thus helping to increase the science return from the mission. Examples of the need for real time scheduling response and of the tradeoffs considered between conflicting experiment requirements are presented. General management principles derived from this experience are developed. The Skylab mission experiences, together with previous Apollo mission experiences, are shown to provide a good background for Shuttle flight planning.

  20. Mars Scout 2007 - a current status

    NASA Technical Reports Server (NTRS)

    Matousek, Steve

    2003-01-01

    The Mars Program institutes the Mars Scout Missions in order to address science goals in the program not otherwise covered in baseline Mars plans. Mars Scout missions will be Principal-Investigator (PI) led science missions. Analogous to the Discovery Program, PI-led investigations optimize the use of limited resources to accomplish focused science and allow the flexibility to quickly respond to discoveries at Mars. Scout missions also require unique investments in technology and reliance upon Mars-based infrastructure such as telecom relay orbiters. Scouts utilize a two-step competitive process for selection. In Dec, 2002, the Step 2 selections by NASA were announced and then approximately five month studies will result in a selection for flight around August, 2003 for a mission to be launched in 2007.

  1. The NASA Space Life Sciences Training Program - Preparing the way

    NASA Technical Reports Server (NTRS)

    Biro, Ronald; Munsey, Bill; Long, Irene

    1990-01-01

    Attention is given to the goals and methods adopted in the NASA Space Life Sciences Training Program (SLSTP) for preparing scientists and engineers for space-related life-sciences research and operations. The SLSTP is based on six weeks of projects and lectures which give an overview of payload processing and experiment flow in the space environment. The topics addressed in the course of the program include descriptions of space vehicles, support hardware, equipment, and research directions. Specific lecture topics include the gravity responses of plants, mission integration of a flight experiment, and the cardiovascular deconditioning. The SLSTP is shown to be an important part of the process of recruiting and training qualified scientists and engineers to support space activities.

  2. NASA Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Gillies, D. C. (Compiler); McCauley, D. E. (Compiler)

    1999-01-01

    The Microgravity Materials Science Conference was held July 14-16, 1998 at the Von Braun Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications. It was the third NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 125 investigations and 100 principal investigators in FY98, almost all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement scheduled for release in late 1998 by the Microgravity Research Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the Marshall Space Flight Center microgravity research facilities was held on July 16, 1998. This volume is comprised of the research reports submitted by the principal investigators after the conference.

  3. Life sciences flight experiments program mission science requirements document. The first life sciences dedicated Spacelab mission, part 1

    NASA Technical Reports Server (NTRS)

    Rummel, J. A.

    1982-01-01

    The Mission Science Requirements Document (MSRD) for the First Dedicated Life Sciences Mission (LS-1) represents the culmination of thousands of hours of experiment selection, and science requirement definition activities. NASA life sciences has never before attempted to integrate, both scientifically and operationally, a single mission dedicated to life sciences research, and the complexity of the planning required for such an endeavor should be apparent. This set of requirements completes the first phase of a continual process which will attempt to optimize (within available programmatic and mission resources) the science accomplished on this mission.

  4. The FOT tool kit concept

    NASA Technical Reports Server (NTRS)

    Fatig, Michael

    1993-01-01

    Flight operations and the preparation for it has become increasingly complex as mission complexities increase. Further, the mission model dictates that a significant increase in flight operations activities is upon us. Finally, there is a need for process improvement and economy in the operations arena. It is therefore time that we recognize flight operations as a complex process requiring a defined, structured, and life cycle approach vitally linked to space segment, ground segment, and science operations processes. With this recognition, an FOT Tool Kit consisting of six major components designed to provide tools to guide flight operations activities throughout the mission life cycle was developed. The major components of the FOT Tool Kit and the concepts behind the flight operations life cycle process as developed at NASA's GSFC for GSFC-based missions are addressed. The Tool Kit is therefore intended to increase productivity, quality, cost, and schedule performance of the flight operations tasks through the use of documented, structured methodologies; knowledge of past lessons learned and upcoming new technology; and through reuse and sharing of key products and special application programs made possible through the development of standardized key products and special program directories.

  5. Project Mercury: Man-In-Space Program of the National Aeronautics and Space Administration. [Report of the Committee on Aeronautical and Space Sciences United States Senate

    NASA Technical Reports Server (NTRS)

    1959-01-01

    The purpose of this staff study, made at the request of the chairman, is to serve members of the Committee on Aeronautical and Space Sciences as a source of basic information on Project Mercury, the man-in-space program of the National Aeronautics and Space Administration. The study is largely derived from unclassified information released by the National Aeronautics and Space Administration and testimony concerning Project Mercury given during hearings before this committee. The program descriptions are based upon current program planning. Since this is a highly advanced research and development program, the project is obviously subject to changes that may result from future developments and accomplishments characteristic of such research activities. Certain information with respect to revised schedules, obtained on a classified basis by the committee during inspection trips, is necessarily omitted. The appendixes to the study include information that may prove helpful on various aspects of space flight and exploration. Included are unofficial comments and observations relating to Russia's manned space flight activities and also a complete chronology of all satellites, lunar probes, and space probes up to the present.

  6. Balloon Program Wraps up in Antarctica, Heading to New Zealand

    NASA Image and Video Library

    2015-02-02

    Caption: A NASA Super Pressure Balloon with the COSI payload is ready for launch from McMurdo, Antarctica. Credit: NASA More info: NASA’s globetrotting Balloon Program Office is wrapping up its 2014-2015 Antarctic campaign while prepping for an around-the-world flight launching out of Wanaka, New Zealand, in March. After 16 days, 12 hours, and 56 minutes of flight, operators successfully conducted a planned flight termination of the Suborbital Polarimeter for Inflation Dust and the Epoch of Reionization (SPIDER) mission Saturday, Jan. 18, the final mission of the campaign. Other flights in the 2014-2015 Antarctic campaign included the Antarctic Impulsive Transient Antenna (ANITA-III) mission as well as the Compton Spectrometer and Imager (COSI) payload flown on the developmental Super Pressure Balloon (SPB). ANITA-III successfully wrapped up Jan. 9 after 22 days, 9 hours, and 14 minutes of flight. Flight controllers terminated the COSI flight 43 hours into the mission after detecting a small gas leak in the balloon. Crews are now working to recover all three instruments from different locations across the continent. The 6,480-pound SPIDER payload is stationary at a position about 290 miles from the United Kingdom’s Sky Blu Logistics Facility in Antarctica. The 4,601 pound ANITA-III payload, located about 100 miles from Australia’s Davis Station, and the 2,866 pound COSI payload, located about 340 miles from the United States McMurdo Station both had numerous key components recovered in the past few days. Beginning in late January, the Balloon Program Office will deploy a team to Wanaka, New Zealand, to begin preparations for an SPB flight, scheduled to launch in March. The Program Office seeks to fly the SPB more than 100 days, which would shatter the current flight duration record of 55 days, 1 hour, and 34 minutes for a large scientific balloon. “We’re looking forward to the New Zealand campaign and hopefully a history-making flight with the Super Pressure Balloon,” said Debbie Fairbrother, NASA’s Balloon Program Office Chief. Most scientific balloons see altitude variances based on temperature changes in the atmosphere at night and during the day. The SPB is capable of missions on the order of 100 days or more at constant float altitudes due to the pressurization of the balloon. “Stable, long-duration flights at near-space altitudes above more than 99 percent of the atmosphere are highly desirable in the science community, and we’re ready to deliver,” said Fairbrother. In addition to the SPB flight in March, the Balloon Program Office has 10 more balloon missions planned through September 2015 to include scheduled test flights of the Low-Density Supersonic Decelerator, which is testing new technologies for landing larger, heavier payloads on Mars. NASA’s Wallops Flight Facility manages the agency’s Scientific Balloon Program with 10 to 15 flights each year from launch sites worldwide. The balloons are massive in volume; the average-sized balloon could hold the volume of nearly 200 blimps. Previous work on balloons have contributed to confirming the Big Bang Theory. For more information on NASA’s Scientific Balloon Program, see: sites.wff.nasa.gov/code820/index.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. KSC-03pd0138

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. - Seeming to be perched on twin columns of fire, Space Shuttle Columbia leaps off Launch Pad 39A and races toward space on missions STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program. [Photo courtesy of Scott Andrews

  8. KSC-03pd0136

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- Spewing flames and billowing clouds of smoke across Launch Pad 39A, Space Shuttle Columbia roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program. [Photo courtesy of Scott Andrews

  9. KSC-03pd0132

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- A mirror image in nearby water reflects the perfect launch of Space Shuttle Columbia on a perfect Florida day. Following a flawless and uneventful countdown, liftoff of the Shuttle on mission STS-107 occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  10. KSC-03pd0135

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- Spewing flames and billowing clouds of smoke across Launch Pad 39A, Space Shuttle Columbia roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program. [Photo courtesy of Scott Andrews

  11. KSC-03pd0112

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- Billows of white clouds of steam and smoke frame Space Shuttle Columbia as it rises above the launch tower on Launch Pad 39A on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  12. KSC-03pd0131

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- A mirror image in nearby water reflects the perfect launch of Space Shuttle Columbia on a perfect Florida day. Following a flawless and uneventful countdown, liftoff of the Shuttle on mission STS-107 occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  13. KSC-03pd0133

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- As billows of smoke and steam roll across the landscape, the fiery launch of Space Shuttle Columbia on mission STS-107 is reflected in nearby water. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program. [Photo courtesy of Scott Andrews

  14. KSC-03pp0140

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. - Space Shuttle Columbia outraces the multi-colored clouds of smoke and steam rising below it from Launch Pad 39A as it races toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  15. KSC-03pd0126

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. - The VIP stand at KSC is filled with not only friends and families of the astronauts, but also representatives of Israel who came to support the first Israeli to fly on a Shuttle, Ilan Ramon. As a payload specialist, Ramon will take part in some of the research on the mission. He is also a colonel in the Israel Air Force. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  16. NASA's Space Life Sciences Training Program.

    PubMed

    Coulter, G; Lewis, L; Atchison, D

    1994-01-01

    The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D.C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.

  17. NASA's Space Life Sciences Training Program

    NASA Technical Reports Server (NTRS)

    Coulter, G.; Lewis, L.; Atchison, D.

    1994-01-01

    The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D. C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.

  18. Initiating the 2002 Mars Science Laboratory (MSL) Technology Program

    NASA Technical Reports Server (NTRS)

    Caffrey, Robert T.; Udomkesmalee, Gabriel; Hayati, Samad A.; Henderson, Rebecca

    2004-01-01

    The Mars Science Laboratory (MSL) Project is an aggressive mission launching in 2009 to investigate the Martian environment and requires new capabilities that are currently are not available. The MSL Technology Program is developing a wide-range of technologies needed for this Mission and potentially other space missions. The MSL Technology Program reports to both the MSL Project and the Mars Technology Program (MTP). The dual reporting process creates a challenging management situation, but ensures the new technology meets both the specific MSL requirements and the broader Mars Program requirements. MTP is a NASA-wide technology development program managed by JPL and is divided into a Focused Program and a Base Program. The MSL Technology Program is under the focused program and is tightly coupled to MSL's mission milestones and deliverables. The technology budget is separate from the flight Project budget, but the technology's requirements and the development process are tightly coordinated with the Project. The MSL Technology Program combines the proven management techniques of flight projects with the commercial technology management strategies of industry and academia, to create a technology management program that meets the short-term requirements of MSL and the long-term requirements of MTP. This paper examines the initiation of 2002 MSL Technology program. Some of the areas discussed in this paper include technology definition, task selection, technology management, and technology assessment. This paper also provides an update of the 2003 MSL technology program and examines some of the drivers that changed the program from its initiation.

  19. Living with a Star (LWS) Space Environment Testbeds (SET), Mission Carrier Overview and Capabilities

    NASA Technical Reports Server (NTRS)

    Patschke, Robert; Barth, Janet; Label, Ken; Mariano, Carolyn; Pham, Karen; Brewer, Dana; Cuviello, Michael; Kobe, David; Wu, Carl; Jarosz, Donald

    2004-01-01

    NASA has initiated the Living With a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affect life and society. A goal of the program is to bridge the gap between science, engineering, and user application communities. This will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The three program elements of the LWS Program are Science Missions; Targeted Research and Technology; and Space Environment Testbeds (SETS). SET is an ideal platform for small experiments performing research on space environment effects on technologies and on the mitigation of space weather effects. A short description of the LWS Program will be given, and the SET will be described in detail, giving the mission objectives, available carrier services, and upcoming flight opportunities.

  20. Fly's Eye GLM Simulator

    NASA Image and Video Library

    2017-07-27

    The Fly’s Eye GLM Simulator (FEGS) is an airborne array of multi-spectral radiometers optimized to measure the optical emission from lightning. The instrument was designed by the Lightning Group in the Earth Science Office at the Marshall Space Flight Center as part of the validation effort for the first Geostationary Lightning Mapper (GLM) onboard GOES-16. From March to May of 2017, FEGS was flown on the NASA Armstrong Flight Research Center ER-2 along with a payload of other instruments during the GOES-16 Validation Flight Campaign. Data collected during the campaign are being analyzed by scientists at NASA and collaborating institutions to test the accuracy of GLM and other GOES-16 instruments. FEGS adds the capability to investigate sub-millisecond lightning energetics to the NASA Airborne Earth Science program. When flown with its complimentary suite of instruments, the FEGS package observes lightning radiation signatures that span from radio frequencies to gamma-ray emission. Learn more about the GOES-16 Validation Flight Campaign here: https://www.youtube.com/watch?v=rCTIk...

  1. Commercial Crew Astronauts Visit Kennedy on This Week @NASA – August 12, 2016

    NASA Image and Video Library

    2016-08-12

    Two of the NASA astronauts training for the first flight tests for the agency’s Commercial Crew Program visited with employees during an Aug. 11 event at Kennedy Space Center. Astronauts Eric Boe and Suni Williams, alongside Commercial Crew Program Manager Kathy Lueders, responded to questions during a panel discussion, moderated by Kennedy Director Robert Cabana. NASA has contracted with Boeing and SpaceX to develop crew transportation systems and provide crew transportation services to and from the International Space Station. The agency will select the commercial crew astronauts from the group that includes Boe, Williams, Bob Behnken and Doug Hurley The first flight tests are targeted for next year. Also, Air Quality Flight over California Wildfire, CYGNSS Media Day, Putting NASA Earth Science to Work, and more!

  2. Microgravity science and applications: Program tasks and bibliography for FY 1992

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report is a compilation of the FY 1992 Principal Investigator program task descriptions funded by the Microgravity Science and Applications Division (MSAD), NASA Headquarters, Washington, DC. The document also provides a bibliography of FY 1992 publications and presentations cited by MSAD Principal Investigators, and an index of the Principal Investigators and their affiliations. The purpose of the document is to provide an overview and progress report for the funded tasks for scientists and researchers in industry, university, and government communities. The tasks are grouped into three categories appropriate to the type of research being done-space flight, ground based, and advanced technology development-and by science discipline. The science disciplines are: biotechnology, combustion science,, electronic materials, fluid physics, fundamental physics, glass and ceramics, metals and alloys, and protein crystal growth.

  3. Overview of a Proposed Flight Validation of Aerocapture System Technology for Planetary Missions

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Hall, Jeffery L.; Oh, David; Munk, Michelle M.

    2006-01-01

    Aerocapture System Technology for Planetary Missions is being proposed to NASA's New Millennium Program for flight aboard the Space Technology 9 (ST9) flight opportunity. The proposed ST9 aerocapture mission is a system-level flight validation of the aerocapture maneuver as performed by an instrumented, high-fidelity flight vehicle within a true in-space and atmospheric environment. Successful validation of the aerocapture maneuver will be enabled through the flight validation of an advanced guidance, navigation, and control system as developed by Ball Aerospace and two advanced Thermal Protection System (TPS) materials, Silicon Refined Ablative Material-20 (SRAM-20) and SRAM-14, as developed by Applied Research Associates (ARA) Ablatives Laboratory. The ST9 aerocapture flight validation will be sufficient for immediate infusion of these technologies into NASA science missions being proposed for flight to a variety of Solar System destinations possessing a significant planetary atmosphere.

  4. Microelectronics bioinstrumentation systems

    NASA Technical Reports Server (NTRS)

    Ko, W. H.

    1977-01-01

    Microelectronic bioinstrumentation systems to be employed in the Cardiovascular Deconditioning Program were developed. Implantable telemetry systems for long-term monitoring of animals on earth were designed to collect physiological data necessary for the understanding of the mechanisms of cardiovascular deconditioning. In-flight instrumentation systems, microelectronic instruments, and RF powering techniques for other life science experiments in the NASA program were studied.

  5. Targeted Research and Technology Within NASA's Living With a Star Program

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro; Baker, Kile; Bellaire, Paul; Blake, Bern; Crowley, Geoff; Eddy, Jack; Goodrich, Charles; Gopalswamy, Nat; Gosling, Jack; Hesse, Michael

    2004-01-01

    Targeted Research & Technology (TR&T) NASA's Living With a Star (LWS) initiative is a systematic, goal-oriented research program targeting those aspects of the Sun-Earth system that affect society. The Targeted Research and Technology (TR&T) component of LWS provides the theory, modeling, and data analysis necessary to enable an integrated, system-wide picture of Sun-Earth connection science with societal relevance. Recognizing the central and essential role that TR&T would have for the success of the LWS initiative, the LWS Science Architecture Team (SAT) recommended that a Science Definition Team (SDT), with the same status as a flight mission definition team, be formed to design and coordinate a TR&T program having prioritized goals and objectives that focused on practical societal benefits. This report details the SDT recommendations for the TR&T program.

  6. Summer graduate research program for interns in science and engineering

    NASA Technical Reports Server (NTRS)

    Lee, Clinton B.

    1992-01-01

    The goal of the 10 week graduate intern program was to increase the source of candidates for positions in science and engineering at the Goddard Space Flight Center. Students participating in this program submitted papers on the work they performed over the 10 week period and also filled out questionnaires on the program's effectiveness, their own performance, and suggestions on improvements. The topics covered by the student's papers include: microsoft excel applications; fast aurora zone analysis; injection seeding of a Q-switched alexandrite laser; use of high temperature superconductors; modifications on a communication interface board; modeling of space network activities; prediction of atmospheric ozone content; and applications of industrial engineering.

  7. Summer graduate research program for interns in science and engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.B.

    1992-03-01

    The goal of the 10 week graduate intern program was to increase the source of candidates for positions in science and engineering at the Goddard Space Flight Center. Students participating in this program submitted papers on the work they performed over the 10 week period and also filled out questionnaires on the program's effectiveness, their own performance, and suggestions on improvements. The topics covered by the student's papers include: microsoft excel applications; fast aurora zone analysis; injection seeding of a Q-switched alexandrite laser; use of high temperature superconductors; modifications on a communication interface board; modeling of space network activities; predictionmore » of atmospheric ozone content; and applications of industrial engineering.« less

  8. Life sciences payloads for Shuttle

    NASA Technical Reports Server (NTRS)

    Dunning, R. W.

    1974-01-01

    The Life Sciences Program for utilization of the Shuttle in the 1980's is presented. Requirements for life sciences research experiments in space flight are discussed along with study results of designs to meet these requirements. The span of life sciences interests in biomedicine, biology, man system integration, bioinstrumentation and life support/protective systems is described with a listing of the research areas encompassed in these descriptions. This is followed by a description of the approach used to derive from the life sciences disciplines, the research functions and instrumentation required for an orbital research program. Space Shuttle design options for life sciences experiments are identified and described. Details are presented for Spacelab laboratories for dedicated missions, mini-labs with carry on characteristics and carry on experiments for shared payload missions and free flying satellites to be deployed and retrieved by the Shuttle.

  9. Research and technology, Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1984 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Advanced Programs tasks funded by the Office of Space Flight; and Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications. Summary sections describing the role of the Johnson Space Center in each program are followed by one page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  10. Research and technology of the Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1987 are highlighted. Included are research projects funded by the Office of Aeronautics and Space Technology, Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications, and advanced Programs tasks funded by the Office of Space Flight. Summary sections describing the role of the Johnson Space Center in each program are followed by descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  11. Nasa Program Plan

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Major facts are given for NASA'S planned FY-1981 through FY-1985 programs in aeronautics, space science, space and terrestrial applications, energy technology, space technology, space transportation systems, space tracking and data systems, and construction of facilities. Competition and cooperation, reimbursable launchings, schedules and milestones, supporting research and technology, mission coverage, and required funding are considered. Tables and graphs summarize new initiatives, significant events, estimates of space shuttle flights, and major missions in astrophysics, planetary exploration, life sciences, environmental and resources observation, and solar terrestrial investigations. The growth in tracking and data systems capabilities is also depicted.

  12. Animal experimentation in Spacelab - Present and future U.S. plans

    NASA Technical Reports Server (NTRS)

    Berry, W. E.; Dant, C. C.

    1983-01-01

    Current development of life-sciences hardware and experiments for the fourth Spacelab mission in the Life Sciences Flight Experiments Program at NASA Ames is reviewed. The research-animal holding facility, the general-purpose work station, and the life sciences laboratory equipment are characterized, and the 14 Ames projects accepted for the mission are listed and discussed. Several hardware systems and experimental procedures will be verified on the Spacelab-3 mission scheduled for late 1984.

  13. The Moon is a Planet Too: Lunar Science and Robotic Exploration

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara

    2008-01-01

    The first decades of the 21st century will be marked by major lunar science and exploration activities. The Moon is a witness to 4.5 billion years of solar system history, recording that history more completely and more clearly than any other planetary body. Lunar science encompasses early planetary evolution and differentiation, lava eruptions and fire fountains, impact scars throughout time, and billions of years of volatile input. I will cover the main outstanding issues in lunar science today and the most intriguing scientific opportunities made possible by renewed robotic and human lunar exploration. Barbara is a planetary scientist at NASA s Marshall Space Flight Center. She studies meteorites from the Moon, Mars and asteroids and has been to Antarctica twice to hunt for them. Barbara also works on the Mars Exploration Rovers Spirit and Opportunity and has an asteroid named after her. She is currently helping the Lunar Precursor Robotics Program on the Lunar Mapping and Modeling Project, a project tasked by the Exploration System Mission Directorate (ESMD) to develop maps and tools of the Moon to benefit the Constellation Program lunar planning. She is also supporting the Science Mission Directorate s (SMD) lunar flight projects line at Marshall as the co-chair of the Science Definition Team for NASA s next robotic landers, which will be nodes of the International Lunar Network, providing geophysical information about the Moon s interior structure and composition.

  14. The NASA Earth Science Program and Small Satellites

    NASA Technical Reports Server (NTRS)

    Neeck, Steven P.

    2015-01-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions. Some examples are the aforementioned Orbiting Carbon Observatory-2 (OCO-2), the Gravity Recovery and Climate Experiment Follow On (GRACE FO), and the Cyclone Global Navigation Satellite System (CYGNSS) microsatellite constellation. Small satellites also support ESD in space validation and risk reduction of enabling technologies (components and systems). The status of the ESD Flight Program and the role of small satellites will be discussed.

  15. A Spacelab Expert System for Remote Engineering and Science

    NASA Technical Reports Server (NTRS)

    Groleau, Nick; Colombano, Silvano; Friedland, Peter (Technical Monitor)

    1994-01-01

    NASA's space science program is based on strictly pre-planned activities. This approach does not always result in the best science. We describe an existing computer system that enables space science to be conducted in a more reactive manner through advanced automation techniques that have recently been used in SLS-2 October 1993 space shuttle flight. Advanced computing techniques, usually developed in the field of Artificial Intelligence, allow large portions of the scientific investigator's knowledge to be "packaged" in a portable computer to present advice to the astronaut operator. We strongly believe that this technology has wide applicability to other forms of remote science/engineering. In this brief article, we present the technology of remote science/engineering assistance as implemented for the SLS-2 space shuttle flight. We begin with a logical overview of the system (paying particular attention to the implementation details relevant to the use of the embedded knowledge for system reasoning), then describe its use and success in space, and conclude with ideas about possible earth uses of the technology in the life and medical sciences.

  16. Rocket Science 101 Interactive Educational Program

    NASA Technical Reports Server (NTRS)

    Armstrong, Dennis; Funkhouse, Deborah; DiMarzio, Donald

    2007-01-01

    To better educate the public on the basic design of NASA s current mission rockets, Rocket Science 101 software has been developed as an interactive program designed to retain a user s attention and to teach about basic rocket parts. This program also has helped to expand NASA's presence on the Web regarding educating the public about the Agency s goals and accomplishments. The software was designed using Macromedia s Flash 8. It allows the user to select which type of rocket they want to learn about, interact with the basic parts, assemble the parts to create the whole rocket, and then review the basic flight profile of the rocket they have built.

  17. Overview of the Nasa/science Mission Directorate University Student Instrument Project (usip)

    NASA Astrophysics Data System (ADS)

    Pierce, D. L.

    2016-12-01

    These are incredible times of space and Earth science discovery related to the Earth system, our Sun, the planets, and the universe. The National Aeronautics and Space Administration (NASA) Science Mission Directorate (SMD) provides authentic student-led hands-on flight research projects as a component part of the NASA's science program. The goal of the Undergraduate Student Instrument Project (USIP) is to enable student-led scientific and technology investigations, while also providing crucial hands-on training opportunities for the Nation's future researchers. SMD, working with NASA's Office of Education (OE), the Space Technology Mission Directorate (STMD) and its Centers (GSFC/WFF and AFRC), is actively advancing the vision for student flight research using NASA's suborbital and small spacecraft platforms. Recently proposed and selected USIP projects will open up opportunities for undergraduate researchers in conducting science and developing space technologies. The paper will present an overview of USIP, results of USIP-I, and the status of current USIP-II projects that NASA is sponsoring and expects to fly in the near future.

  18. IcePod - A versatile Science Platform for the New York Air National Guard's LC-130 Aircraft

    NASA Astrophysics Data System (ADS)

    Frearson, N.; Bell, R. E.; Zappa, C. J.

    2011-12-01

    The ICEPOD program is a five-year effort to develop an ice imaging system mounted on New York Air National Guard (NYANG) LC-130 aircraft to map the surface and sub-surface topography of ice sheets, ice streams and outlet glaciers for the NSF Major Research Instrumentation program. The project is funded by the American Recovery and Reinvestment Act. The fundamental goal of the ICEPOD program is to develop an instrumentation package that can capture the dynamics of the changing polar regions, focusing on ice and ocean systems. The vision is that this instrumentation will be operated both on routine flights of the NYANG in the polar regions, such as on missions between McMurdo and South Pole Station, and on targeted science missions, from mapping sea ice and outlet glaciers such as those surrounding Ross Island or Greenland to quantifying the drainage systems from large subglacial lakes in East Antarctica. It is a key aspect of the design that at the conclusion of this program, the Pod, Deployment Arm and Data Acquisition and Management system will become available for use by the science community at large to install their own instruments onto. The science requirements for the primary instruments in the Icepod program have been defined and can be viewed on-line at www.ldeo.columbia.edu/icepod. As a consequence, the instrumentation will consist of a scanning laser for precise measurements of the ice surface, stereo-photogrammetry from both visible and infrared imaging cameras to document the ice surface and temperature, a VHF coherent, pulsed radar to recover ice thickness and constrain the distribution of water at the ice sheet bed and an L-band radar to measure surface accumulation or sea-ice thickness. All instrument data sets will be time-tagged and geo-referenced by recording precision GPS satellite data integrated with inertial measurement technology integrated into the pod. There will also be two operational modes - a low altitude flight mode that will optimize the imaging systems and a high altitude flight mode that will facilitate wider use of the instrumentation suite on routine NYANG support missions. Proposals for new observations are welcome. The sensor system will become a research facility operated for the science community, and data will be maintained at and provided through a polar data center.

  19. The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students

    NASA Astrophysics Data System (ADS)

    Livengood, T. A.; Goldstein, J. J.; Hamel, S.; Manber, J.; Hulslander, M.

    2013-12-01

    The Student Spaceflight Experiments Program (SSEP) has flown 53 experiments to space, on behalf of students from middle school through community college, on 4 missions: each of the last 2 Space Shuttle flights, the first SpaceX demonstration flight to the International Space Station (ISS), and on SpaceX-1 to ISS. Two more missions to ISS have payloads flying in Fall 2013. SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. 21,600 students participated in the initial 6 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 3 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches, which also fly to space. Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory. 2012 Oct 06 - Astronaut Sunita Williams operating a Fluid Mixing Enclosure during SSEP Mission 2 on the International Space Station.

  20. KSC-2009-4330

    NASA Image and Video Library

    2009-07-30

    CAPE CANAVERAL, Fla. – Members of the Augustine Commission are meeting in Cocoa Beach, Fla. At left is Chairman Norman R. Augustine, retired chairman and CEO of Lockheed Martin Corp., and, at right, is Phil McAlister, special assistant for Program Analysis in NASA's Office of Program Analysis and Evaluation. At the request of the Office of Science and Technology Policy, NASA established the Review of U.S. Human Space Flight Plans Committee, known as the Augustine Commission. The committee is conducting an independent review of ongoing U.S. human spaceflight plans and programs, as well as alternatives, to ensure the nation is pursuing the best trajectory for the future of human space flight - one that is safe, innovative, affordable, and sustainable. Photo credit: NASA/Kim Shiflett

  1. Shuttle spacelab simulation using a Lear jet aircraft: Mission no. 3 (ASSESS program)

    NASA Technical Reports Server (NTRS)

    Reller, J. O., Jr.; Neel, C. B.; Mason, R. H.

    1974-01-01

    The third ASSESS mission using a Lear Jet aircraft conducted to continue the study of scientific experiment operations in a simulated Spacelab environment. Prior to the mission, research planning and equipment preparation were observed and documented. A flight readiness review for the experiment was conducted. Nine of the ten scheduled flights were completed during simulation mission and all major science objectives were accomplished. The equipment was well qualified for flight and gave little trouble; telescope malfunctions occurred early in the mission and were corrected. Both real-time and post-observation data evaluation were used to assess research progress and to plan subsequent flight observations for maximum effectiveness.

  2. International Observe the Moon Night

    NASA Image and Video Library

    2017-10-28

    Volunteer Billy Hix with his telescope at International Observe the Moon Night. The event, hosted by the Planetary Missions Program at NASA's Marshall Space Flight Center, encourages observation and appreciation of the Moon and its connection to NASA planetary science and exploration, as well as our cultural and personal connections to it. Children attending the event had the opportunity to participate in planetary, science-based, hands-on activities

  3. Microgravity Science and Applications Program tasks, 1990 revision

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The active research tasks as of the end of the fiscal year 1990 sponsored by the Microgravity Science and Applications Division of the NASA Office of Space Science and Applications are compiled. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The report includes an introductory description of the program, the strategy and overall goal; an index of principle investigators; and a description of each task. A list of recent publications is also provided. The tasks are grouped into six major categories: electronic materials; solidification of metals, alloys, and composites; fluid dynamics and transport phenomena; biotechnology; glasses and ceramics; combustion; experimental technology; facilities; and Physics And Chemistry Experiments (PACE). The tasks are divided into ground-based and flight experiments.

  4. Bridging the Technology Readiness "Valley of Death" Utilizing Nanosats

    NASA Technical Reports Server (NTRS)

    Bauer, Robert A.; Millar, Pamela S.; Norton, Charles D.

    2015-01-01

    Incorporating new technology is a hallmark of space missions. Missions demand ever-improving tools and techniques to allow them to meet the mission science requirements. In Earth Science, these technologies are normally expressed in new instrument capabilities that can enable new measurement concepts, extended capabilities of existing measurement techniques, or totally new detection capabilities, and also, information systems technologies that can enhance data analysis or enable new data analyses to advance modeling and prediction capabilities. Incorporating new technologies has never been easy. There is a large development step beyond demonstration in a laboratory or on an airborne platform to the eventual space environment that is sometimes referred to as the "technology valley of death." Studies have shown that non-validated technology is a primary cause of NASA and DoD mission delays and cost overruns. With the demise of the New Millennium Program within NASA, opportunities for demonstrating technologies in space have been rare. Many technologies are suitable for a flight project after only ground testing. However, some require validation in a relevant or a space flight environment, which cannot be fully tested on the ground or in airborne systems. NASA's Earth Science Technology Program has initiated a nimble program to provide a fairly rapid turn-around of space validated technologies, and thereby reducing future mission risk in incorporating new technologies. The program, called In-Space Validation of Earth Science Technology (InVEST), now has five tasks in development. Each are 3U CubeSats and they are targeted for launch opportunities in the 2016 time period. Prior to formalizing an InVEST program, the technology program office was asked to demonstrate how the program would work and what sort of technologies could benefit from space validation. Three projects were developed and launched, and have demonstrated the technologies that they set out to validate. This paper will provide a brief status of the pre-InVEST CubeSats, and discuss the development and status of the InVEST program. Figure

  5. Members of House Committee on Science and Astronautics Visited MSFC

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather firsthand information of the nation's space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. Pictured from left-to-right are Congressman Ken Hechler, Democratic representative of West Virginia; Dieter Grau, MSFC; Congressman John W. Davis, Democratic representative of Georgia; Congressman Joe Waggoner, Democratic representative of Louisiana; Congressman Richard L. Roudebush, Republican representative of Indiana; Congressman R. Walter Riehlman, Republican representative of New York; Congressman James G. Fulton, Republican representative of Pennsylvania; Dr. Wernher von Braun, MSFC; and Congressman Olin E. Teague, Democratic representative of Texas.

  6. KSC-2009-4338

    NASA Image and Video Library

    2009-07-30

    CAPE CANAVERAL, Fla. – Dr. Christopher Chyba, professor of Astrophysical Sciences and International Affairs at Princeton University, speaks during the Augustine Commission, meeting in Cocoa Beach, Fla. At the request of the Office of Science and Technology Policy, NASA established the Review of U.S. Human Space Flight Plans Committee, known as the Augustine Commission. Chaired by Norman R. Augustine, retired chairman and CEO of Lockheed Martin Corp., the committee is conducting an independent review of ongoing U.S. human spaceflight plans and programs, as well as alternatives, to ensure the nation is pursuing the best trajectory for the future of human space flight - one that is safe, innovative, affordable, and sustainable. Photo credit: NASA/Jim Grossmann

  7. n/a

    NASA Image and Video Library

    1962-03-08

    The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather firsthand information of the nation's space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. They were briefed on MSFC's manned space efforts earlier in the day and then inspected mockups of the Saturn I Workshop and the Apollo Telescope Mount, two projects developed by MSFC for the post-Apollo program. Pictured left-to-right are Dieter Grau, MSFC; Konrad Dannenberg, MSFC; James G. Fulton, Republican representative for Pennsylvania; Joe Waggoner, Democratic representative for Louisiana; and Dr. Wernher von Braun, Director of MSFC.

  8. KSC-2012-2865

    NASA Image and Video Library

    2012-05-19

    CAPE CANAVERAL, Fla. – Student investigator Emily Soice is interviewed by the media in the NASA Newsroom at Kennedy Space Center in Florida during prelaunch activities for the SpaceX demonstration test flight. Soice is an eighth-grade student at Johnston Middle School in Houston, Texas. Her experiment, “Hepatocyte Development in Bioscaffolds Infused with TGFB3 in Microgravity,” is one of 15 in the Student Spaceflight Experiments Program, or SSEP, being ferried to the International Space Station inside the Dragon capsule. The launch will be the second demonstration test flight for SpaceX for NASA's Commercial Orbital Transportation Services program, or COTS. SSEP, which began operation in June 2010 through a partnership of the National Center for Earth and Space Science Education with NanoRacks LLC, is a U.S. national science, technology, engineering and mathematics STEM education initiative that gives students across a community the opportunity to propose and design real experiments to fly in low Earth orbit. SSEP experiments flew on space shuttle missions STS-134 and STS-135 in 2011, the final flights of space shuttles Endeavour and Atlantis. For more information on SSEP, visit http://www.nasa.gov/audience/foreducators/station-here-we-come.html. Photo credit: NASA/Gianni Woods

  9. KSC-04pd1398

    NASA Image and Video Library

    2004-06-30

    KENNEDY SPACE CENTER, FLA. - Kimberly Beck is a Controlled Biological Systems trainee in the Spaceflight and Life Sciences Training Program. She is helping with growth studies supporting the WONDER (Water Offset Nutrient Delivery Experiment) flight payload, which is investigating hydroponic plant crop production in microgravity.

  10. Science Operation in Space: Lessons

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This program (conceived by a group of veteran Shuttle astronauts) shows prospective experimenters how they can better design their experiments for operation onboard Shuttle flights. Shuttle astronauts Dunbar, Seddon, Hoffman, Cleave, Ross, and ChangDiaz also show how crews live and work in space.

  11. KSC-04PD-1398

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Kimberly Beck is a Controlled Biological Systems trainee in the Spaceflight and Life Sciences Training Program. She is helping with growth studies supporting the WONDER (Water Offset Nutrient Delivery Experiment) flight payload, which is investigating hydroponic plant crop production in microgravity.

  12. KSC-03pd0137

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. - In this view, Space Shuttle Columbia is almost dwarfed by the rolling clouds of smoke and steam across Launch Pad 39A. Following a flawless and uneventful countdown, launch of Columbia on mission STS-107 occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program. [Photo courtesy of Scott Andrews

  13. Physical sciences research plans for the International Space Station.

    PubMed

    Trinh, E H

    2003-01-01

    The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  14. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).

  15. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. A larger image is available without labels (No. 0101755).

  16. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101830, and TBD).

  17. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).

  18. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830).

  19. Physical sciences research plans for the International Space Station

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.

    2003-01-01

    The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  20. Lidar Past, Present, and Future in NASA's Earth and Space Science Programs

    NASA Technical Reports Server (NTRS)

    Einaudi, Franco; Schwemmer, Geary K.; Gentry, Bruce M.; Abshire, James B.

    2004-01-01

    Lidar is firmly entrenched in the family of remote sensing technologies that NASA is developing and using. Still a relatively new technology, lidar should continue to experience significant advances and progress. Lidar is used in each one of the major research themes, including planetary exploration, in the Earth Sciences Directorate at Goddard Space Flight Center. NASA has and will continue to generate new lidar applications from ground, air and space for both Earth science and planetary exploration.

  1. Students Participate in Rocket Launch Project

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, the combined efforts of students from UAH and AM sent this rocket soaring into flight. Students at UAH built the rocket and AM students developed its scientific payload, an experiment that measures the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.

  2. Students Participate in Rocket Launch Project

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) Program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, the university students prepare their rocket for flight on the launch pad. Students at UAH built the rocket and AM students developed its scientific payload, an experiment that measures the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.

  3. Around Marshall

    NASA Image and Video Library

    2002-05-23

    Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, the combined efforts of students from UAH and AM sent this rocket soaring into flight. Students at UAH built the rocket and AM students developed its scientific payload, an experiment that measures the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.

  4. Around Marshall

    NASA Image and Video Library

    2002-05-22

    Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) Program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, the university students prepare their rocket for flight on the launch pad. Students at UAH built the rocket and AM students developed its scientific payload, an experiment that measures the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.

  5. NASA Space Cryocooler Programs: A 2003 Overview

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.; Boyle, R. F.; Kittel, P.

    2004-01-01

    Mechanical cryocoolers represent a significant enabling technology for NASA's Earth and Space Science missions. An overview is presented of ongoing cryocooler activities within NASA in support of current flight projects, near-term flight instruments, and long-term technology development. NASA programs in Earth and space science observe a wide range of phenomena, from crop dynamics to stellar birth. Many of the instruments require cryogenic refrigeration to improve dynamic range, extend wavelength coverage, and enable the use of advanced detectors. Although, the largest utilization of coolers over the last decade has been for instruments operating at medium to high cryogenic temperatures (55 to 150 K), reflecting the relative maturity of the technology at these temperatures, important new developments are now focusing at the lower temperature range from 4 to 20 K in support of studies of the origin of the universe and the search for planets around distant stars. NASA's development of a 20K cryocooler for the European Planck spacecraft and its new Advanced Cryocooler Technology Development Program (ACTDP) for 6-18 K coolers are examples of the thrust to provide low temperature cooling for this class of missions.

  6. Exploring the living universe: A strategy for space life sciences

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The knowledge obtained by space life sciences will play a pivotal role as humankind reaches out to explore the solar system. Information is needed concerning the existence of life beyond the Earth, the potential interactions between planets and living organisms, and the possibilities for humans to inhabit space safely and productively. Programs in the involved disciplines are an integral part of NASA's current and future missions. To realize their objectives, the development and operation of diverse ground and flight facilities and clost coordination with numerous scientific and governmental organizations in the U.S. and abroad are required. The status and goals of the life sciences programs are examined. Ways and means for attaining these goals are suggested.

  7. Space life sciences pilot user development program for the midwest region

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The use of space for research by the life science community was promoted through a series of informal one-day seminars with personal follow-up as circumstances dictated. The programs were planned to: (1) describe the space shuttle vehicle and some of its intended uses; (2) discuss problems of manned space flight; (3) stimulate ideas for biological research in space; (4) discuss costs and potential for industrial and; government sponsorship; and (5) show the researcher or corporate planner how to become an active participant in life sciences research in space. An outline of seminar topics is included along with a description of the seminar organization and lists of participants and materials used.

  8. Life science experiments during parabolic flight: The McGill experience

    NASA Technical Reports Server (NTRS)

    Watt, D. G. D.

    1988-01-01

    Over the past twelve years, members of the Aerospace Medical Research Unit of McGill University have carried out a wide variety of tests and experiments in the weightless condition created by parabolic flight. This paper discusses the pros and cons of that environment for the life scientist, and uses examples from the McGill program of the types of activities which can be carried out in a transport aircraft such as the NASA KC-135.

  9. Physiology, medicine, long-duration space flight and the NSBRI

    NASA Technical Reports Server (NTRS)

    McPhee, J. C.; White, R. J.

    2003-01-01

    The hazards of long-duration space flight are real and unacceptable. In order for humans to participate effectively in long-duration orbital missions or continue the exploration of space, we must first secure the health of the astronaut and the success of such missions by assessing in detail the biomedical risks of space flight and developing countermeasures to these hazards. Acquiring the understanding necessary for building a sound foundation for countermeasure development requires an integrated approach to research in physiology and medicine and a level of cooperative action uncommon in the biomedical sciences. The research program of the National Space Biomedical Research Institute (NSBRI) was designed to accomplish just such an integrated research goal, ameliorating or eliminating the biomedical risks of long-duration space flight and enabling safe and productive exploration of space. The fruits of these labors are not limited to the space program. We can also use the gained understanding of the effects and mechanisms of the physiological changes engendered in space and the applied preventive and rehabilitative methods developed to combat these changes to the benefit of those on Earth who are facing similar physiological and psychological difficulties. This paper will discuss the innovative approach the NSBRI has taken to integrated research management and will present some of the successes of this approach. c2003 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

  10. Space human factors discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The purpose of this Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive areas of behavior, performance, and human factors. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, defines critical questions in the subdiscipline areas, and identifies technological priorities. It covers the significant research areas critical to NASA's programmatic requirements for the Extended Duration Orbiter, Space Station Freedom, and Exploration mission science activities. These science activities include ground-based and flight; basic, applied and operational; and animal and human research and development. This document contains a general plan that will be used by both NASA Headquarters program offices and the field centers to review and plan basic, applied, and operational research and development activities, both intramural and extramural, in this area.

  11. Microgravity Science and Applications Program tasks, 1987 revision

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A compilation is presented of the active research tasks as of the end of the FY87 of the Microgravity Science and Applications Program, NASA-Office of Space Science and Applications, involving several NASA centers and other organizations. An overview is provided of the program scope for managers and scientists in industry, university, and government communities. An introductory description is provided of the program along with the strategy and overall goal, identification of the organizational structures and people involved, and a description of each task. A list of recent publications is also provided. The tasks are grouped into six major categories: Electronic Materials; Solidification of Metals, Alloys, and Composites; Fluid Dynamics and Transport Phenomena; Biotechnology; Glasses and Ceramics; and Combustion. Other categories include Experimental Technology, General Studies and Surveys; Foreign Government Affiliations; Industrial Affiliations; and Physics and Chemistry Experiments (PACE). The tasks are divided into ground based and flight experiments.

  12. Project LASER: Learning about science, engineering, and research

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The number of American students entering science and engineering careers and their ranking in comparison with other countries is on the decline. This decline has alarmed Congress which, in 1987, established a Task Force on Women, Minorities, and the Handicapped in Science and Technology to define the problem and find solutions. If left unchanged, the task force has warned that the prospects for maintaining an advanced industrial society will diminish. NASA is supportive of the six goals outlined by the task force, which are paraphrase herein, and is carefully assessing its education programs to identify those offering the greatest potential for achieving the task force objectives with a reasonable range of resources. A major initiative is under way on behalf of NASA at its Marshall Space Flight Center, where highly effective features of several NASA education programs along with innovations are being integrated into a comprehensive pilot program. This program, dubbed Project LASER, is discussed.

  13. Microgravity Science and Applications Program tasks, 1988 revision

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The active research tasks as of the end of the fiscal year 1988 of the Microgravity Science and Applications Program, NASA-Office of Space Science and Applications, involving several NASA centers and other organizations are compiled. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. Also included are an introductory description of the program, the strategy and overall goal, identification of the organizational structures and people involved, and a description of each task. A list of recent publications is provided. The tasks are grouped into six major categories: electronic materials; solidification of metals, alloys, and composites; fluid dynamics and transport phenomena; biotechnology; glasses and ceramics; and combustion. Other categories include experimental technology, general studies and surveys; foreign government affiliations; industrial affiliations; and Physics And Chemistry Experiments (PACE). The tasks are divided into ground-based and flight experiments.

  14. Lockheed L-1011 TriStar first flight to support Adaptive Performance Optimization study

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Bearing the logos of the National Aeronautics and Space Administration and Orbital Sciences Corporation, Orbital's L-1011 Tristar lifts off the Meadows Field Runway at Bakersfield, California, on its first flight May 21, 1997, in NASA's Adaptive Performance Optimization project. Developed by engineers at NASA's Dryden Flight Research Center, Edwards, California, the experiment seeks to reduce fuel consumption of large jetliners by improving the aerodynamic efficency of their wings at cruise conditions. A research computer employing a sophisticated software program adapts to changing flight conditions by commanding small movements of the L-1011's outboard ailerons to give the wings the most efficient - or optimal - airfoil. Up to a dozen research flights will be flown in the current and follow-on phases of the project over the next couple years.

  15. STS-40 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1991-01-01

    The STS-40 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-first flight of the Space Shuttle and the eleventh flight of the Orbiter Vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) designated as ET-41 (LWT-34), three Space Shuttle main engines (SSME's) (serial numbers 2015, 2022, and 2027 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-044. The primary objective of the STS-40 flight was to successfully perform the planned operations of the Spacelab Life Sciences-1 (SLS-1) payload. The secondary objectives of this flight were to perform the operations required by the Getaway Special (GAS) payloads and the Middeck O-Gravity Dynamics Experiment (MODE) payload.

  16. STS-40 Space Shuttle mission report

    NASA Astrophysics Data System (ADS)

    Fricke, Robert W.

    1991-07-01

    The STS-40 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-first flight of the Space Shuttle and the eleventh flight of the Orbiter Vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) designated as ET-41 (LWT-34), three Space Shuttle main engines (SSME's) (serial numbers 2015, 2022, and 2027 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-044. The primary objective of the STS-40 flight was to successfully perform the planned operations of the Spacelab Life Sciences-1 (SLS-1) payload. The secondary objectives of this flight were to perform the operations required by the Getaway Special (GAS) payloads and the Middeck O-Gravity Dynamics Experiment (MODE) payload.

  17. NASA Performance Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Introduction NASA's mission is to advance and communicate scientific knowledge and understanding of Earth, the solar system, and the universe; to advance human exploration, use, and development of space; and to research, develop, verify, and transfer advanced aeronautics, space, and related technologies. In support of this mission, NASA has a strategic architecture that consists of four Enterprises supported by four Crosscutting Processes. The Strategic Enterprises are NASA's primary mission areas to include Earth Science, Space Science, Human Exploration and Development of Space, and Aerospace Technology. NASA's Crosscutting Processes are Manage Strategically, Provide Aerospace Products and Capabilities, Generate Knowledge and Communicate Knowledge. The implementation of NASA programs, science, and technology research occurs primarily at our Centers. NASA consists of a Headquarters, nine Centers, and the Jet Propulsion Laboratory, as well as several ancillary installations and offices in the United States and abroad. The nine Centers are as follows: (1) Ames Research Center, (2) Dryden Flight Research Center (DFRC), (3) Glenn Research Center (GRC), (4) Goddard Space Flight Center (GSFC), (5) Johnson Space Center, (6) Kennedy Space Center (KSC), (7) Langley Research Center (LaRC), (8) Marshall Space Flight Center (MSFC), and (9) Stennis Space Center (SSC).

  18. CESDIS

    NASA Technical Reports Server (NTRS)

    1994-01-01

    CESDIS, the Center of Excellence in Space Data and Information Sciences was developed jointly by NASA, Universities Space Research Association (USRA), and the University of Maryland in 1988 to focus on the design of advanced computing techniques and data systems to support NASA Earth and space science research programs. CESDIS is operated by USRA under contract to NASA. The Director, Associate Director, Staff Scientists, and administrative staff are located on-site at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The primary CESDIS mission is to increase the connection between computer science and engineering research programs at colleges and universities and NASA groups working with computer applications in Earth and space science. The 1993-94 CESDIS year included a broad range of computer science research applied to NASA problems. This report provides an overview of these research projects and programs as well as a summary of the various other activities of CESDIS in support of NASA and the university research community, We have had an exciting and challenging year.

  19. NASA Space Biology Plant Research for 2010-2020

    NASA Technical Reports Server (NTRS)

    Levine, H. G.; Tomko, D. L.; Porterfield, D. M.

    2012-01-01

    The U.S. National Research Council (NRC) recently published "Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era" (http://www.nap.edu/catalog.php?record id=13048), and NASA completed a Space Biology Science Plan to develop a strategy for implementing its recommendations ( http://www.nasa.gov/exploration/library/esmd documents.html). The most important recommendations of the NRC report on plant biology in space were that NASA should: (1) investigate the roles of microbial-plant systems in long-term bioregenerative life support systems, and (2) establish a robust spaceflight program of research analyzing plant growth and physiological responses to the multiple stimuli encountered in spaceflight environments. These efforts should take advantage of recently emerged analytical technologies (genomics, transcriptomics, proteomics, metabolomics) and apply modern cellular and molecular approaches in the development of a vigorous flight-based and ground-based research program. This talk will describe NASA's strategy and plans for implementing these NRC Plant Space Biology recommendations. New research capabilities for Plant Biology, optimized by providing state-of-the-art automated technology and analytical techniques to maximize scientific return, will be described. Flight experiments will use the most appropriate platform to achieve science results (e.g., ISS, free flyers, sub-orbital flights) and NASA will work closely with its international partners and other U.S. agencies to achieve its objectives. One of NASA's highest priorities in Space Biology is the development research capabilities for use on the International Space Station and other flight platforms for studying multiple generations of large plants. NASA will issue recurring NASA Research Announcements (NRAs) that include a rapid turn-around model to more fully engage the biology community in designing experiments to respond to the NRC recommendations. In doing so, NASA's Space Biology research will optimize ISS research utilization, develop and demonstrate technology and hardware that will enable new science, and contribute to the base of fundamental knowledge that will facilitate development of new tools for human space exploration and Earth applications. By taking these steps, NASA will energize the Space Biology user community and advance our knowledge of the effect of the space flight environment on living systems.

  20. Marshall Space Flight Center Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Six, N. F.; Damiani, R. (Compiler)

    2017-01-01

    The 2017 Marshall Faculty Fellowship Program involved 21 faculty in the laboratories and departments at Marshall Space Flight Center. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2017 Marshall Faculty Fellowship program, along with the Program Announcement (Appendix A) and the Program Description (Appendix B). The research affected the following six areas: (1) Materials (2) Propulsion (3) Instrumentation (4) Spacecraft systems (5) Vehicle systems (6) Space science The materials investigations included composite structures, printing electronic circuits, degradation of materials by energetic particles, friction stir welding, Martian and Lunar regolith for in-situ construction, and polymers for additive manufacturing. Propulsion studies were completed on electric sails and low-power arcjets for use with green propellants. Instrumentation research involved heat pipes, neutrino detectors, and remote sensing. Spacecraft systems research was conducted on wireless technologies, layered pressure vessels, and two-phase flow. Vehicle systems studies were performed on life support-biofilm buildup and landing systems. In the space science area, the excitation of electromagnetic ion-cyclotron waves observed by the Magnetospheric Multiscale Mission provided insight regarding the propagation of these waves. Our goal is to continue the Marshall Faculty Fellowship Program funded by Center internal project offices. Faculty Fellows in this 2017 program represented the following minority-serving institutions: Alabama A&M University and Oglala Lakota College.

  1. STS-76 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1996-01-01

    The STS-76 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-sixth flight of the Space Shuttle Program, the fifty-first flight since the return-to-flight, and the sixteenth flight of the Orbiter Atlantis (OV-104). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-77; three SSME's that were designated as serial numbers 2035, 2109, and 2019 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-079. The RSRM's, designated RSRM-46, were installed in each SRB and the individual RSRM's were designated as 360TO46A for the left SRB, and 360TO46B for the right SRB. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and transfer one U.S. Astronaut to the Mir. A single Spacehab module carried science equipment and hardware, Risk Mitigation Experiments (RME's), and Russian Logistics in support of the Phase 1 Program requirements. In addition, the European Space Agency (ESA) Biorack operations were performed. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT) and mission elapsed time (MET).

  2. The X-43A hypersonic research aircraft and its modified Pegasus booster rocket nestled under the wi

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The X-43A hypersonic research aircraft and its modified Pegasus booster rocket are nestled under the wing of NASA's NB-52B carrier aircraft during pre-flight systems testing at the Dryden Flight Research Center, Edwards, Calif. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ('scramjet') engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va. After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  3. NASA Astrophysics E/PO Impact: NASA SOFIA AAA Program Evaluation Results

    NASA Astrophysics Data System (ADS)

    Harman, Pamela; Backman, Dana E.; Clark, Coral; Inverness Research Sofia Aaa Evaluation Team, Wested Sofia Aaa Evaluation Team

    2015-01-01

    SOFIA is an airborne observatory, studying the universe at infrared wavelengths, capable of making observations that are impossible for even the largest and highest ground-based telescopes. SOFIA also inspires the development of new scientific instrumentation and fosters the education of young scientists and engineers.SOFIA is an 80% - 20% partnership of NASA and the German Aerospace Center (DLR), consisting of an extensively modified Boeing 747SP aircraft carrying a reflecting telescope with an effective diameter of 2.5 meters (100 inches). The SOFIA aircraft is based at NASA Armstrong Flight Research Center, Building 703, in Palmdale, California. The Science Program and Outreach Offices are located at NASA Ames Research center. SOFIA is a program in NASA's Science Mission Directorate, Astrophysics Division.Data will be collected to study many different kinds of astronomical objects and phenomena, including star cycles, solar system formation, identification of complex molecules in space, our solar system, galactic dust, nebulae and ecosystems.Airborne Astronomy Ambassador (AAA) Program:The SOFIA Education and Communications program exploits the unique attributes of airborne astronomy to contribute to national goals for the reform of science, technology, engineering, and math (STEM) education, and to elevate public scientific and technical literacy.The AAA effort is a professional development program aspiring to improve teaching, inspire students, and inform the community. To date, 55 educators from 21 states; Cycles 0, 1 and 2; have completed their astronomy professional development and their SOFIA science flight experience. Evaluation has confirmed the program's positive impact on the teacher participants, on their students, and in their communities. The inspirational experience has positively impacted their practice and career trajectory. AAAs have incorporated content knowledge and specific components of their experience into their curricula, and have given hundreds of presentations and implemented teacher professional development workshops. Their efforts have impacted thousands of students and teachers.

  4. Space technology research plans

    NASA Technical Reports Server (NTRS)

    Hook, W. Ray

    1992-01-01

    Development of new technologies is the primary purpose of the Office of Aeronautics and Space Technology (OAST). OAST's mission includes the following two goals: (1) to conduct research to provide fundamental understanding, develop advanced technology and promote technology transfer to assure U.S. preeminence in aeronautics and to enhance and/or enable future civil space missions: and (2) to provide unique facilities and technical expertise to support national aerospace needs. OAST includes both NASA Headquarters operations as well as programmatic and institutional management of the Ames Research Center, the Langley Research Center and the Lewis Research Center. In addition. a considerable portion of OAST's Space R&T Program is conducted through the flight and science program field centers of NASA. Within OAST, the Space Technology Directorate is responsible for the planning and implementation of the NASA Space Research and Technology Program. The Space Technology Directorate's mission is 'to assure that OAST shall provide technology for future civil space missions and provide a base of research and technology capabilities to serve all national space goals.' Accomplishing this mission entails the following objectives: y Identify, develop, validate and transfer technology to: (1) increase mission safety and reliability; (2) reduce flight program development and operations costs; (3) enhance mission performance; and (4) enable new missions. Provide the capability to: (1) advance technology in critical disciplines; and (2) respond to unanticipated mission needs. In-space experiments are an integral part of OAST's program and provides for experimental studies, development and support for in-space flight research and validation of advanced space technologies. Conducting technology experiments in space is a valuable and cost effective way to introduce advanced technologies into flight programs. These flight experiments support both the R&T base and the focussed programs within OAST.

  5. Comparison of Two Methods of Obtaining Digital Orthodontic Models: Direct vs. Indirect

    DTIC Science & Technology

    2013-05-17

    companies whose materials are discussed in this article. DEPARTMENT OF THE AIR FORCE AIR FORCE POST GRADUATE DENTAL SCHOOL ORTHODONTIC FLIGHT 2133...Orthodontic Residency Program Air Force Post Graduate Dental School Date: 06/06/13 Uniformed Services University of the Health Sciences Manuscript...Science in Oral Biology 3. School/Department/Center: Air Force Postgraduate Dental School (AFPDS), Tri- Service Orthodontic Dental School 4. Phone: (210

  6. Australian DefenceScience. Volume 12, Number 3, Spring

    DTIC Science & Technology

    2004-01-01

    Australian DEFENCESCIENCE Spring Issue Volume 12 Number 3 2004 Autonomous UAV flight a world first Missile countermeasures – from flares to lasers...4. TITLE AND SUBTITLE Australian DefenceScience. Volume 12 , Number 3 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12 . DISTRIBUTION/AVAILABILITY STATEMENT Approved for public

  7. Rodent Research on the International Space Station - A Look Forward

    NASA Technical Reports Server (NTRS)

    Kapusta, A. B.; Smithwick, M.; Wigley, C. L.

    2014-01-01

    Rodent Research on the International Space Station (ISS) is one of the highest priority science activities being supported by NASA and is planned for up to two flights per year. The first Rodent Research flight, Rodent Research-1 (RR-1) validates the hardware and basic science operations (dissections and tissue preservation). Subsequent flights will add new capabilities to support rodent research on the ISS. RR-1 will validate the following capabilities: animal husbandry for up to 30 days, video downlink to support animal health checks and scientific analysis, on-orbit dissections, sample preservation in RNA. Later and formalin, sample transfer from formalin to ethanol (hindlimbs), rapid cool-down and subsequent freezing at -80 of tissues and carcasses, sample return and recovery. RR-2, scheduled for SpX-6 (Winter 20142015) will add the following capabilities: animal husbandry for up to 60 days, RFID chip reader for individual animal identification, water refill and food replenishment, anesthesia and recovery, bone densitometry, blood collection (via cardiac puncture), blood separation via centrifugation, soft tissue fixation in formalin with transfer to ethanol, and delivery of injectable drugs that require frozen storage prior to use. Additional capabilities are also planned for future flights and these include but are not limited to male mice, live animal return, and the development of experiment unique equipment to support science requirements for principal investigators that are selected for flight. In addition to the hardware capabilities to support rodent research the Crew Office has implemented a training program in generic rodent skills for all USOS crew members during their pre-assignment training rotation. This class includes training in general animal handling, euthanasia, injections, and dissections. The dissection portion of this training focuses on the dissection of the spleen, liver, kidney with adrenals, brain, eyes, and hindlimbs. By achieving and maintaining proficiency in these basic skills as part of the nominal astronaut training curriculum this allows the rodent research program to focus the mission specific crew training on scientific requirements of research and operations flow.

  8. 13kW Advanced Electric Propulsion Flight System Development and Qualification

    NASA Technical Reports Server (NTRS)

    Jackson, Jerry; Allen, May; Myers, Roger; Soendker, Erich; Welander, Benjamin; Tolentino, Artie; Hablitzel, Sam; Yeatts, Chyrl; Xu, Steven; Sheehan, Chris; hide

    2017-01-01

    The next phase of robotic and human deep space exploration missions is enhanced by high performance, high power solar electric propulsion systems for large-scale science missions and cargo transportation. Aerojet Rocketdynes Advanced Electric Propulsion System (AEPS) program is completing development, qualification and delivery of five flight 13.3kW EP systems to NASA. The flight AEPS includes a magnetically-shielded, long-life Hall thruster, power processing unit (PPU), xenon flow controller (XFC), and intrasystem harnesses. The Hall thruster, originally developed and demonstrated by NASAs Glenn Research Center and the Jet Propulsion Laboratory, operates at input powers up to 12.5kW while providing a specific impulse over 2600s at an input voltage of 600V. The power processor is designed to accommodate an input voltage range of 95 to 140V, consistent with operation beyond the orbit of Mars. The integrated system is continuously throttleable between 3 and 13.3kW. The program has completed the system requirement review; the system, thruster, PPU and XFC preliminary design reviews; development of engineering models, and initial system integration testing. This paper will present the high power AEPS capabilities, overall program and design status and the latest test results for the 13.3kW flight system development and qualification program.

  9. Research and technology: 1986 annual report of the Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1986 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications; and Advanced Programs tasks funded by the Office of Space Flight. Summary sections describing the role of the Johnson Space Center in each program are followed by one-page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  10. Research and technology: 1985 annual report of the Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1985 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications; and Advanced Programs tasks funded by the Office of Space Flight. Summary sections describing the role of the Johnson Space Center in each program are followed by one-page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  11. The FOSTER Project: Teacher Enrichment Through Participation in NASA's Airborne Astronomy Program

    NASA Technical Reports Server (NTRS)

    Koch, David; Hull, G.; Gillespie, C., Jr.; DeVore, E.; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    NASA's airborne astronomy program offers a unique opportunity for K-12 science teacher enrichment and for NASA to reach out and serve the educational community. Learning from a combination of summer workshops, curriculum supplement materials, training in Internet skills and ultimately flying on NASA's C-141 airborne observatory, the teachers are able to share the excitement of scientific discovery with their students and convey that excitement from first hand experience rather than just from reading about science in a textbook. This year the program has expanded to include teachers from the eleven western states served by NASA Ames Research Center's Educational Programs Office as well as teachers from communities from around the country where the scientist who fly on the observatory reside. Through teacher workshops and inservice presentations, the FOSTER (Flight Opportunities for Science Teacher EnRichment) teachers are sharing the resources and experiences with many hundreds of other teachers. Ultimately, the students are learning first hand about the excitement of science, the scientific method in practice, the team work involved, the relevance of science to their daily lives and the importance of a firm foundation in math and science in today's technologically oriented world.

  12. Strategies in transition

    NASA Technical Reports Server (NTRS)

    Diaz, Alphonso V.

    1993-01-01

    A new vision has emerged within the Office of Space Science and Applications (OSSA), and within the agency as a whole, for how to design missions to be responsive to the changing budget environment of the 1990s. The overall space science and applications program had to be looked at, restructuring the most expensive and complex projects to bring down costs and ensure their place in the mission queue of the future. The recent restructuring of some of OSSA's largest programs in development and the work to improve efficiency for those in operation is part of OSSA's effort to free funds for more frequent space science missions in the future. Instead of more great observatories, we are looking toward a new vision encompassing a level of great activity through small, frequent missions. The strategy developed for attaining this vision was to lower costs by reducing size and complexity through new technology, while at the same time making progress in space science. The strategy comprises two interwoven parts: the flight program strategy of each of the science disciplines and OSSA's new-technology strategy. The overall purpose of all OSSA's efforts to date has been to free resources for maximizing the space science program in a tough fiscal environment.

  13. The X-43A hypersonic research aircraft and its modified Pegasus® booster rocket nestled under the wing of NASA's NB-52B carrier aircraft during pre-flight systems testing

    NASA Image and Video Library

    2001-03-15

    The X-43A hypersonic research aircraft and its modified Pegasus® booster rocket are nestled under the wing of NASA's NB-52B carrier aircraft during pre-flight systems testing at the Dryden Flight Research Center, Edwards, Calif. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va. After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  14. Science and Observation Recommendations for Future NASA Carbon Cycle Research

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Collatz, G. J.; Kawa, S. R.; Gregg, W. W.; Gervin, J. C.; Abshire, J. B.; Andrews, A. E.; Behrenfeld, M. J.; Demaio, L. D.; Knox, R. G.

    2002-01-01

    Between October 2000 and June 2001, an Agency-wide planning, effort was organized by elements of NASA Goddard Space Flight Center (GSFC) to define future research and technology development activities. This planning effort was conducted at the request of the Associate Administrator of the Office of Earth Science (Code Y), Dr. Ghassem Asrar, at NASA Headquarters (HQ). The primary points of contact were Dr. Mary Cleave, Deputy Associate Administrator for Advanced Planning at NASA HQ (Headquarters) and Dr. Charles McClain of the Office of Global Carbon Studies (Code 970.2) at GSFC. During this period, GSFC hosted three workshops to define the science requirements and objectives, the observational and modeling requirements to meet the science objectives, the technology development requirements, and a cost plan for both the science program and new flight projects that will be needed for new observations beyond the present or currently planned. The plan definition process was very intensive as HQ required the final presentation package by mid-June 2001. This deadline was met and the recommendations were ultimately refined and folded into a broader program plan, which also included climate modeling, aerosol observations, and science computing technology development, for contributing to the President's Climate Change Research Initiative. This technical memorandum outlines the process and recommendations made for cross-cutting carbon cycle research as presented in June. A separate NASA document outlines the budget profiles or cost analyses conducted as part of the planning effort.

  15. Space science at NASA - Retrospect and prospect

    NASA Technical Reports Server (NTRS)

    Rosendhal, Jeffrey D.

    1988-01-01

    Following a brief overview of past accomplishments in space science, a status report is given concerning progress toward recovering from the Challenger accident and a number of trends are described which are likely to have a major influence on the future of the NASA Space Science program. Key changes in process include a trend toward a program centered on the use of large, long-lived facilities, the emergence of strong space capabilities outside the U.S., and steps being taken toward the diversification of NASA's launch capability. A number of recent planning activities are also discussed. Major considerations which will specifically need to be taken into account in NASA's prgram planning include the need for provision of a spectrum of flight activities and the need to recognize likely resource limitations and to do more realistic program planning.

  16. Aircraft operations management manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The NASA aircraft operations program is a multifaceted, highly diverse entity that directly supports the agency mission in aeronautical research and development, space science and applications, space flight, astronaut readiness training, and related activities through research and development, program support, and mission management aircraft operations flights. Users of the program are interagency, inter-government, international, and the business community. This manual provides guidelines to establish policy for the management of NASA aircraft resources, aircraft operations, and related matters. This policy is an integral part of and must be followed when establishing field installation policy and procedures covering the management of NASA aircraft operations. Each operating location will develop appropriate local procedures that conform with the requirements of this handbook. This manual should be used in conjunction with other governing instructions, handbooks, and manuals.

  17. Around Marshall

    NASA Image and Video Library

    1962-03-03

    Members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on January 3, 1962 to gather firsthand information of the nation’s space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. Shown here at MSFC’s Manufacturing Engineering Laboratory are (left to right): Dr. Eberhard Rees, MSFC; Congressman George P. Miller, Democratic representative of California; Congressman F. Edward Hebert, Democratic representative of Louisiana; Congressman Robert R. Casey, Democratic representative of Texas; and Werner Kuers, MSFC.

  18. Medical Challenges of the First Canadian Long-Duration Space Mission: Lessons Learned

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas R.; Thirsk, Robert; Gray, Gary; Lange, marv; Comtois, Jean Marc

    2009-01-01

    In 2008, Dr. Thirsk was assigned to the crew of Expedition 20/21. This Expedition represented a milestone for the Canadian Space Program since it was the first time that a Canadian would take part in a long-duration mission. Robert Thirsk had the privilege of expanding the boundaries of space exploration by living and working on board the International Space Station for six months. The launch took place on May 27, 2009 aboard a Soyuz rocket from the Cosmodrome in Baikonur, Kazakhstan. This abstract was written before Dr. Thirsk returned to Kazakhstan. Objective: To gather all medically relevant data needed to support the first Canadian long-duration mission in space, and process it to derive lessons learned for presentation and for public disclosure. Methods: Sources of data used for analysis for Expedition 20 on International Space Station included flight selection data, maintenance annual physicals, Flight Medicine Clinic visits, parabolic flight experiments, preflight exams and baseline data collections, daily in-flight exercise countermeasure and science payloads, weekly periodic fitness, nutrition, radiation and payload assessments, postflight medical exams, rehabilitation, and science activities.

  19. Optical Fiber Assemblies for Space Flight from the NASA Goddard Space Flight Center, Photonics Group

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Thoma, William Joe; LaRocca, Frank; Chuska, Richard; Switzer, Robert; Day, Lance

    2009-01-01

    The Photonics Group at NASA Goddard Space Flight Center in the Electrical Engineering Division of the Advanced Engineering and Technologies Directorate has been involved in the design, development, characterization, qualification, manufacturing, integration and anomaly analysis of optical fiber subsystems for over a decade. The group supports a variety of instrumentation across NASA and outside entities that build flight systems. Among the projects currently supported are: The Lunar Reconnaissance Orbiter, the Mars Science Laboratory, the James Webb Space Telescope, the Express Logistics Carrier for the International Space Station and the NASA Electronic Parts. and Packaging Program. A collection of the most pertinent information gathered during project support over the past year in regards to space flight performance of optical fiber components is presented here. The objective is to provide guidance for future space flight designs of instrumentation and communication systems.

  20. Robotic Lunar Landers for Science and Exploration

    NASA Technical Reports Server (NTRS)

    Chavers, D. G.; Cohen, B. A.; Bassler, J. A.; Hammond, M. S.; Harris, D. W.; Hill, L. A.; Eng, D.; Ballard, B. W.; Kubota, S. D.; Morse, B. J.; hide

    2010-01-01

    NASA Marshall Space Flight Center (MSFC) and The Johns Hopkins University Applied Physics Laboratory (APL) have been conducting mission studies and performing risk reduction activities for NASA s robotic lunar lander flight projects. This paper describes some of the lunar lander concepts derived from these studies conducted by the MSFC/APL Robotic Lunar Lander Development Project team. In addition, the results to date of the lunar lander development risk reduction efforts including high pressure propulsion system testing, structure and mechanism development and testing, long cycle time battery testing and combined GN&C and avionics testing will be addressed. The most visible elements of the risk reduction program are two autonomous lander flight test vehicles: a compressed air system with limited flight durations and a second version using hydrogen peroxide propellant to achieve significantly longer flight times and the ability to more fully exercise flight sensors and algorithms.

  1. Easier Analysis With Rocket Science

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Analyzing rocket engines is one of Marshall Space Flight Center's specialties. When Marshall engineers lacked a software program flexible enough to meet their needs for analyzing rocket engine fluid flow, they overcame the challenge by inventing the Generalized Fluid System Simulation Program (GFSSP), which was named the co-winner of the NASA Software of the Year award in 2001. This paper describes the GFSSP in a wide variety of applications

  2. The NASA Earth Science Flight Program: an update

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.

    2015-10-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the space based observing systems and infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions and selected instruments to assure availability of key climate data sets, operational missions to ensure sustained land imaging provided by the Landsat system, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Some examples are the NASA-ISRO Synthetic Aperture Radar (NISAR), Surface Water and Ocean Topography (SWOT), ICESat-2, SAGE III on ISS, Gravity Recovery and Climate Experiment Follow On (GRACE FO), Tropospheric Emissions: Monitoring of Pollution (TEMPO), Cyclone Global Navigation Satellite System (CYGNSS), ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), and Global Ecosystem Dynamics Investigation (GEDI) Lidar missions. An overview of plans and current status will be presented.

  3. Expedition 6 Crew Interviews: Don Pettit, Flight Engineer 2/ International Space Station (ISS) Science Officer (SO)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition 6 member Don Pettit (Flight Engineer 2/ International Space Station (ISS) Science Officer (SO)) is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut and his career path. Pettit, who had been training as a backup crewmember, discusses the importance of training backups for ISS missions. He gives details on the goals and significance of the ISS, regarding experiments in various scientific disciplines such as the life sciences and physical sciences. Pettit also comments on the value of conducting experiments under microgravity. He also gives an overview of the ISS program to date, including the ongoing construction, international aspects, and the routines of ISS crewmembers who inhabit the station for four months at a time. He gives a cursory description of crew transfer procedures that will take place when STS-113 docks with ISS to drop off Pettit and the rest of Expedition 6, and retrieve the Expedition 5 crew.

  4. NASA Dryden Flight Research Center: Unmanned Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Pestana, Mark

    2010-01-01

    This slide presentation reviews several topics related to operating unmanned aircraft in particular sharing aspects of unmanned aircraft from the perspective of a pilot. There is a section on the Global Hawk project which contains information about the first Global Hawk science mission, (i.e., Global Hawk Pacific (GloPac). Included in this information is GloPac science highlights, a listing of the GloPac Instruments. The second Global Hawk science mission was Genesis and Rapid Intensification Process (GRIP), for the NASA Hurricane Science Research Team. Information includes the instrumentation and the flights that were undertaken during the program. A section on Ikhana is next. This section includes views of the Ground Control Station (GCS), and a discussion of how the piloting of UAS is different from piloting in a manned aircraft. There is also discussion about displays and controls of aircraft. There is also discussion about what makes a pilot. The last section relates the use of Ikhana in the western states fire mission.

  5. Research Opportunities in Nutrition and Metabolism in Space

    NASA Technical Reports Server (NTRS)

    Altman, Philip L. (Editor); Fisher, Kenneth D. (Editor)

    1986-01-01

    The objectives of the Life Sciences Research Office (LSRO) study on nutrient requirements for meeting metabolic needs in manned space flights are as follows: review extant knowledge on the subject; identify significant gaps in knowledge; formulate suggestions for possible research; and produce a documented report of the foregoing items that can be used for program planning. In accordance with NASA's request for this study, the report focuses on issues of nutrition and metabolism that relate primarily to the contemplated United States Space Station, secondarily to the Shuttle Program as an orbital test bed for operational studies, and incidentally to scenarios for future long-term space flights. Members of the LSRO ad hoc Working Group on Nutrition and Metabolism were provided with pertinent articles and summaries on the subject. At the meeting of the Working Group, presentations were made by NASA Headquarters program staff on past experiences relative to space-flight nutrition and metabolism, as well as scenarios for future flights. The discussions of the ad hoc Working Group focused on the following: (1) metabolic needs related to work and exercise; (2) nutrients required to meet such needs; (3) food types, management, and records; and (4) nutritional amelioration or prevention of space-related physiological and behavioral changes.

  6. Citizen Science and Citizen Space Exploration: Potentials for Professional Collaboration

    NASA Astrophysics Data System (ADS)

    Wright, E.

    2012-12-01

    Citizens in Space is a project of the United States Rocket Academy, with the goal of promoting citizen science and citizen space exploration. This goal is enabled by the new reusable suborbital spacecraft now under development by multiple companies in the US. For the first phase of this project, we have acquired a contract for 10 flights on the Lynx suborbital spacecraft, which is under construction by XCOR Aerospace in Mojave, CA. This represents, to the best of our knowledge, the largest single bulk purchase of suborbital flights to date. Citizens in Space has published an open call for experiments to fly on these missions, which we expect will begin in late 2013 or early 2014. We will be selecting approx. 100 small experiments and 10 citizen astronauts to fly as payload operators. Although our primary goal is to encourage citizen science, these flight opportunities are also open to professional researchers who have payloads that meet our criteria. We believe that the best citizen-science projects are collaborations between professional and citizen scientists. We will discuss various ways in which professional scientists can collaborate with citizen scientists to take advantage of the flight opportunities provided by our program. We will discuss the capabilities of the Lynx vehicle, the 1u- and 2u-CubeSat form factor we are using for our payloads, and general considerations for payload integration. As an example of the payloads we can accommodate, we will discuss a NASA-inspired experiment to collect particles from the upper atmosphere.;

  7. Significant accomplishments in science and technology, Goddard Space Flight Center, 1974. [proceedings - NASA programs

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Topics covered are: (1) earth resources (climatology, oceanography, soils, strip mines), and (2) astronomy (magnetic fields and atmospheres of the planets and the sun; galactic and interstellar gas; cosmic and X-ray radiation). Photographs of satellite observations are included.

  8. Classroom Antarctica

    ERIC Educational Resources Information Center

    Gozzard, David

    2017-01-01

    Australian company Antarctica Flights runs summer sightseeing trips out of Australian capital cities to tour the Antarctic coast. The Laby Foundation of the University of Melbourne, through its "Classroom Antarctica" program, sponsored Kent Street High School science teacher, Ms Suzy Urbaniak and 18 of her students to take the trip, to…

  9. Flight Planning for the International Space Station-Levitation Observation of Dendrite Evolution in Steel Ternary Alloy Rapid Solidification

    NASA Technical Reports Server (NTRS)

    Flemings, M. C.; Matson, D. M.; Loser, W.; Hyers, R. W.; Rogers, J. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The paper is an overview of the status and science for the LODESTARS research project. The program is aimed at understanding how melt convection influences phase selection and the evolution of rapid solidification microstructures

  10. Skylab

    NASA Image and Video Library

    1970-09-01

    This photograph shows Skylab's Nuclear Emulsion experiment, a Skylab science facility that was mounted inside the Multiple Docking Adapter used to record the relative abundance of primary, high-energy heavy nuclei outside the Earth's atmosphere. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  11. Members of House Committee on Science and Astronautics Visited MSFC

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather firsthand information of the nation's space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. The subcommittee was briefed on MSFC's manned space efforts earlier in the day and then inspected mockups of the Saturn I Workshop and the Apollo Telescope Mount, two projects developed by MSFC for the post-Apollo program. In this photograph, MSFC Director, Dr. Wernher von Braun meets with Congressmen in the MSFC boardroom. Pictured from left to right are: Jack Cramer, NASA Headquarters; Joe Waggoner, Democratic representative of Louisiana; John W. Davis, Democratic representative of Georgia; R. Walter Riehlman, Republican representative of New York; Olin E. Teague, Democratic representative of Texas; Dr. Wernher von Braun, Director of MSFC; James G. Fulton, Republican representative of Pennsylvania; Ken Hechler, Democratic representative of West Virginia; and Erich Neubert of MSFC.

  12. SOFIA pointing history

    NASA Astrophysics Data System (ADS)

    Kärcher, Hans J.; Kunz, Nans; Temi, Pasquale; Krabbe, Alfred; Wagner, Jörg; Süß, Martin

    2014-07-01

    The original pointing accuracy requirement of the Stratospheric Observatory for Infrared Astronomy SOFIA was defined at the beginning of the program in the late 1980s as very challenging 0.2 arcsec rms. The early science flights of the observatory started in December 2010 and the observatory has reached in the mean time nearly 0.7 arcsec rms, which is sufficient for most of the SOFIA science instruments. NASA and DLR, the owners of SOFIA, are planning now a future 4 year program to bring the pointing down to the ultimate 0.2 arcsec rms. This may be the right time to recall the history of the pointing requirement and its verification and the possibility of its achievement via early computer models and wind tunnel tests, later computer aided end-to-end simulations up to the first commissioning flights some years ago. The paper recollects the tools used in the different project phases for the verification of the pointing performance, explains the achievements and may give hints for the planning of the upcoming final pointing improvement phase.

  13. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD). This image is from a digital still camera; higher resolution is not available.

  14. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Here the transparent furnace is extracted for servicing. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).

  15. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, and TBD). This composite is from a digital still camera; higher resolution is not available.

  16. KSC-2009-4337

    NASA Image and Video Library

    2009-07-30

    CAPE CANAVERAL, Fla. – Bohdan Bejmuk, chair of Constellation Program Standing Review Board, is seated at the conference table for the introduces the Augustine Commission, meeting in Cocoa Beach, Fla. At the request of the Office of Science and Technology Policy, NASA established the Review of U.S. Human Space Flight Plans Committee, known as the Augustine Commission. Chaired by Norman R. Augustine, retired chairman and CEO of Lockheed Martin Corp., the committee is conducting an independent review of ongoing U.S. human spaceflight plans and programs, as well as alternatives, to ensure the nation is pursuing the best trajectory for the future of human space flight - one that is safe, innovative, affordable, and sustainable. Photo credit: NASA/Jim Grossmann

  17. KSC-2009-4331

    NASA Image and Video Library

    2009-07-30

    CAPE CANAVERAL, Fla. – Spectators interested in the future of the Space Program discuss statements made during the public meeting of the Augustine Commission in Cocoa Beach, Fla. At the request of the Office of Science and Technology Policy, NASA established the Review of U.S. Human Space Flight Plans Committee, known as the Augustine Commission. Chaired by Norman R. Augustine, retired chairman and CEO of Lockheed Martin Corp., the committee is conducting an independent review of ongoing U.S. human spaceflight plans and programs, as well as alternatives, to ensure the nation is pursuing the best trajectory for the future of human space flight - one that is safe, innovative, affordable, and sustainable. Photo credit: NASA/Jim Grossmann

  18. Microgravity Science in Space Flight Gloveboxes

    NASA Technical Reports Server (NTRS)

    Baugher, Charles; Bennett, Nancy; Cockrell, David; Jex, David; Musick, Barry; Poe, James; Roark, Walter

    1998-01-01

    Microgravity science studies the influences of gravity on phenomena in fluids, materials processes, combustion, and human cell growth in the low acceleration environment of space flight. During the last decade, the accomplishment of the flight research in the field has evolved into an effective cooperation between the flight crew in the Shuttle and the ground-based investigator using real-time communication via voice and video links. This team structure has led to interactive operations in which the crew performs the experimentation while guided, as necessary, by the science investigator who formulated the investigation and who will subsequently interpret and analyze the data. One of the primary challenges to implementing this interactive research has been the necessity of structuring a means of handling fluids, gases, and hazardous materials in a manned laboratory that exhibits the novelty of weightlessness. Developing clever means of designing experiments in closed vessels is part of the solution- but the space flight requirement for one and two failure-tolerant containment systems leads to serious complications in the physical handling of sample materials. In response to the conflict between the clear advantage of human operation and judgment, versus the necessity to isolate the experiment from the crewmember and the spacecraft environment, the Microgravity Research Program has initiated a series of Gloveboxes in the various manned experiment carriers. These units provide a sealed containment vessel whose interior is under a negative pressure with respect to the ambient environment but is accessible to a crewmember through the glove ports.

  19. A High School Research-Oriented Academy

    NASA Astrophysics Data System (ADS)

    Adkins, J.

    2011-12-01

    For the past several years Deer Valley High School (Antioch, CA) has hosted a science research academy (DVSRA). This academy has promoted original student primary research in engineering, behavior science, astronomy and physics topics and initiated the school's first entries into science fair and directed a number of students into science careers. During the previous school year the Antioch Unified School District has supported the expansion of the academy into a general research academy encompassing all areas of science and humanities, a move into a new building, purchase of a new planetarium and the development of a collegiate academy model making it easier to integrate the academy into the larger school's academic program. The presentation will discuss the design of the academy and the involvement of students in projects connected to the Teachers in Space Suborbital Flight Opportunity program, NASA's WISE, Mars Global Surveyor, Spitzer, and other missions.

  20. Black Carbon Measurements in SOLVE-2

    NASA Technical Reports Server (NTRS)

    Kok, Gregory L.; Baumgardner, Darrel R.

    2004-01-01

    Droplet Measurement Technologies (DMT), under funding from NASA s Radiation Sciences Program, participated in the SOLVE II field campaign with measurements of light absorbing particles (black carbon and metals). These measurements were made with the Single Particle Soot Photometer (SP-2) on the NASA DC-8. The SP-2 is a new measurement technique that was developed under the SBIR program with funding from the Office of Naval Research. The original instrument suite for the DC-8 did not include the SP-2 and its addition and operation during SOLVE II was intended solely as a means to test its functionality and prepare it for future flight operations. For this reason it required several flights in the early stages of the project to tune its operation and fix some problems that arose. During the flights of January 26, 29, and 30, and February 2, 4 and 6, however, it worked as designed and acquired credible data.

  1. SR-71 Ship #1 - Ultraviolet Experiment

    NASA Technical Reports Server (NTRS)

    1994-01-01

    NASA's SR-71 streaks into the twilight on a night/science flight from the Dryden Flight Research Center, Edwards, California. Mounted in the nose of the SR-71 was an ultraviolet video camera aimed skyward to capture images of stars, asteroids and comets. The science portion of the flight is a project of the Jet Propulsion Laboratory, Pasadena, California. Two SR-71 aircraft have been used by NASA as test beds for high-speed and high-altitude aeronautical research. One early research project flown on one of Dryden's SR-71s consisted of a proposal for a series of flights using the SR-71 as a science camera platform for the Jet Propulsion Laboratory (JPL) of the California Institute of Technology, which operates under contract to NASA in much the way that NASA centers do. In March 1993, an upward-looking ultraviolet (UV) video camera placed in the SR-71's nosebay studied a variety of celestial objects in the ultraviolet light spectrum. The SR-71 was proposed as a test bed for the experiment because it is capable of flying at altitudes above 80,000 feet for an extended length of time. Observation of ultraviolet radiation is not possible from the Earth's surface because the atmosphere's ozone layer absorbs UV rays. Study of UV radiation is important because it is known to cause skin cancer with prolonged exposure. UV radiation is also valuable to study from an astronomical perspective. Satellite study of ultraviolet radiation is very expensive. As a result, the South West Research Institute (SWRI) in Texas developed the hypothesis of using a high-flying aircraft such as the SR-71 to conduct UV observations. The SR-71 is capable of flying above 90 percent of the Earth's atmosphere. The flight program was also designed to test the stability of the aircraft as a test bed for UV observation. A joint flight program was developed between the JPL and NASA's Ames-Dryden Flight Research Facility (redesignated the Dryden Flight Research Center, Edwards, California, in 1994) in conjunction with SWRI to test the hypothesis. Dryden modified the nosebay of the SR-71, creating an upward-observing window to carry SWRI's ultraviolet CCD camera so it could make observations. According to Dryden's SR-71 Project Manager Dave Lux, a single flight of the aircraft confirmed the aircraft's capability and stability as a test bed for UV observations. SWRI's principle investigator was Dr. Allen Stern.

  2. The Lunar Crater Observation and Sensing Satellite (LCROSS) Payload Development and Performance in Flight

    NASA Astrophysics Data System (ADS)

    Ennico, Kimberly; Shirley, Mark; Colaprete, Anthony; Osetinsky, Leonid

    2012-05-01

    The primary objective of the Lunar Crater Observation and Sensing Satellite (LCROSS) was to confirm the presence or absence of water ice in a permanently shadowed region (PSR) at a lunar pole. LCROSS was classified as a NASA Class D mission. Its payload, the subject of this article, was designed, built, tested and operated to support a condensed schedule, risk tolerant mission approach, a new paradigm for NASA science missions. All nine science instruments, most of them ruggedized commercial-off-the-shelf (COTS), successfully collected data during all in-flight calibration campaigns, and most importantly, during the final descent to the lunar surface on October 9, 2009, after 112 days in space. LCROSS demonstrated that COTS instruments and designs with simple interfaces, can provide high-quality science at low-cost and in short development time frames. Building upfront into the payload design, flexibility, redundancy where possible even with the science measurement approach, and large margins, played important roles for this new type of payload. The environmental and calibration approach adopted by the LCROSS team, compared to existing standard programs, is discussed. The description, capabilities, calibration and in-flight performance of each instrument are summarized. Finally, this paper goes into depth about specific areas where the instruments worked differently than expected and how the flexibility of the payload team, the knowledge of instrument priority and science trades, and proactive margin maintenance, led to a successful science measurement by the LCROSS payload's instrument complement.

  3. KSC-2014-3952

    NASA Image and Video Library

    2014-09-18

    CAPE CANAVERAL, Fla. – Members of an ISS Earth Science: Tracking Ocean Winds Panel brief media representatives in Kennedy Space Center’s Press Site auditorium in preparation for the launch of the SpaceX CRS-4 mission to resupply the International Space Station. From left are Steve Cole, NASA Public Affairs, Steve Volz, associate director for flight programs, Earth Science Division, Science Mission Directorate, NASA Headquarters, Ernesto Rodriquez, ISS RapidScat project scientist, NASA Jet Propulsion Laboratory or JPL, and Howard Eisen, ISS RapidScat project manager, JPL. The mission is the fourth of 12 SpaceX flights NASA contracted with the company to resupply the space station. It will be the fifth trip by a Dragon spacecraft to the orbiting laboratory. The spacecraft’s 2.5 tons of supplies, science experiments, and technology demonstrations include critical materials to support 255 science and research investigations that will occur during the station's Expeditions 41 and 42. Liftoff is targeted for an instantaneous window at 2:14 a.m. EDT. To learn more about the mission, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Jim Grossmann

  4. KSC-2014-3960

    NASA Image and Video Library

    2014-09-18

    CAPE CANAVERAL, Fla. – Media representatives ask questions of the ISS Earth Science: Tracking Ocean Winds Panel in Kennedy Space Center’s Press Site auditorium in preparation for the launch of the SpaceX CRS-4 mission to resupply the International Space Station. On the dais from left are Steve Cole, NASA Public Affairs, Steve Volz, associate director for flight programs, Earth Science Division, Science Mission Directorate, NASA Headquarters, Ernesto Rodriquez, ISS RapidScat project scientist, NASA Jet Propulsion Laboratory or JPL, and Howard Eisen, ISS RapidScat project manager, JPL. The mission is the fourth of 12 SpaceX flights NASA contracted with the company to resupply the space station. It will be the fifth trip by a Dragon spacecraft to the orbiting laboratory. The spacecraft’s 2.5 tons of supplies, science experiments, and technology demonstrations include critical materials to support 255 science and research investigations that will occur during the station's Expeditions 41 and 42. Liftoff is targeted for an instantaneous window at 2:14 a.m. EDT. To learn more about the mission, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Jim Grossmann

  5. KSC-2014-3959

    NASA Image and Video Library

    2014-09-18

    CAPE CANAVERAL, Fla. – Members of an ISS Earth Science: Tracking Ocean Winds Panel brief media representatives in Kennedy Space Center’s Press Site auditorium in preparation for the launch of the SpaceX CRS-4 mission to resupply the International Space Station. From left are Steve Cole, NASA Public Affairs, Steve Volz, associate director for flight programs, Earth Science Division, Science Mission Directorate, NASA Headquarters, Ernesto Rodriquez, ISS RapidScat project scientist, NASA Jet Propulsion Laboratory or JPL, and Howard Eisen, ISS RapidScat project manager, JPL. The mission is the fourth of 12 SpaceX flights NASA contracted with the company to resupply the space station. It will be the fifth trip by a Dragon spacecraft to the orbiting laboratory. The spacecraft’s 2.5 tons of supplies, science experiments, and technology demonstrations include critical materials to support 255 science and research investigations that will occur during the station's Expeditions 41 and 42. Liftoff is targeted for an instantaneous window at 2:14 a.m. EDT. To learn more about the mission, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Jim Grossmann

  6. The Airborne Research Instrumentation Testing Opportunity (ARISTO)

    NASA Astrophysics Data System (ADS)

    Wolff, C.; Romashkin, P.; Lussier, L.; Baeuerle, B.; Stith, J. L.

    2016-12-01

    In 2015 the National Science Foundation (NSF) began a program to sponsor an annual flight campaign on one of its research aircraft (the C-130 and GV) operated by the National Center for Atmospheric Research (NCAR). The aircraft are managed by the Research Aviation Facility (RAF), which is part of the Earth Observing Laboratory (EOL) and responsible for planning and executing the campaigns. The purpose of this program, known as the Airborne Research Instrumentation Testing Opportunity or ARISTO, is to provide regular flight test opportunities for newly developed or highly modified instruments as part of their development effort. The NSF community has expressed a strong desire for regularly scheduled flight-testing programs to be able to test instrumentation, data systems, inlets, and software. ARISTO allows this testing in a low-pressure environment where any issues or problems will not affect the scientific goals of a large-scale field campaign. For this reason it is also a good experience for students who may be learning about the operation of an instrument or have not had previous exposure to a field project. They are also able to contribute to flight planning exercises and gain experience in acting as an instrument scientist during the program. A goal of the program is to incorporate students into the project operations to prepare the next generation of airborne researchers. ARISTO is conducted at the Research Aviation Facility at Rocky Mountain Metropolitan Airport in Broomfield, Colorado. The flight campaign consists of 20 flight hours, spread over three weeks. Flights are planned to allow the ARISTO participants to successfully test their instruments based on requirements they described in the initial application. Due to the limited hours most flights are focused in and around Colorado, though some have gone as far as Oklahoma and the Pacific Northwest to find the right conditions to meet testing requirements. Two ARISTO campaigns were successfully completed in 2015 and 2016, and a summary of these projects will be presented. Preparations for the 2017 campaign are underway, with flights scheduled to take place in February and March. The next ARISTO campaign is likely to occur in the summer of 2018, and details on the schedule and how to apply will be discussed.

  7. International Observe the Moon Night

    NASA Image and Video Library

    2017-10-28

    A volunteer assists an eager participant at International Observe the Moon Night Oct. 28 at the U.S. Space & Rocket Center. The event, hosted by the Planetary Missions Program at NASA's Marshall Space Flight Center, encourages observation and appreciation of the Moon and its connection to NASA planetary science and exploration, as well as our cultural and personal connections to it. Children attending the event had the opportunity to participate in planetary, science-based, hands-on activities

  8. Microgravity Science Glovebox Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In the Destiny laboratory aboard the International Space Station (ISS), European Space Agency (ESA) astronaut Pedro Duque of Spain is seen working at the Microgravity Science Glovebox (MSG). He is working with the PROMISS experiment, which will investigate the growth processes of proteins during weightless conditions. The PROMISS is one of the Cervantes program of tests (consisting of 20 commercial experiments). The MSG is managed by NASA's Marshall Space Flight Center (MSFC).

  9. The SDO Social Media Program: Walking the cat back into the bag

    NASA Astrophysics Data System (ADS)

    Wawro, Martha; Van Norden, Wendy; Young, C. Alex; Durscher, Romeo

    2013-03-01

    As social media continues to grow as a way to communicate with the public about science missions, data and other STEM related topics, there has become a need for more organized and regimented Social Media programs and plans. In the Heliophysics science division at Goddard Space Flight Center we have been working on creating a template for social media programs which incorporates not just the goals for the program, as well as identifying an audience, but also deals with concerns about messaging, collaboration with other organizations, controversial topics, and evaluation. We hope that through creating a more unified approach we can develop a social media program that not only meets the needs of the audience but incorporates the needs of all of the different entities including the scientists, EPO Professionals and Office of Communications.

  10. Airborne Research Experience for Educators

    NASA Astrophysics Data System (ADS)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data collection, and subsequent data analysis. Their pedagogical skills in teaching STEM content were enhanced through the collaborative development of curriculum units, critique of curriculum plans by education faculty experts, and exploration of NASA educational resources. AREE also engaged educators in the NASA-sponsored Classroom of the Future's Virtual Design Center (http://vdc.cet.edu/overview.htm), which provides curriculum designers with research-based guidelines to help them design inquiry-based learning activities. The AREE Master Teachers are currently in process of a pilot implementation of their developed curricula, with results due at the end of October 2009. This session will report on program evaluation data and identify best practices for replication of the model. Three perspectives will be provided, including views from the NASA Flight Operations Director, AREE Project Manager, and University Science Education Faculty Mentor. Three AREE Master Educators will present examples of their curriculum materials.

  11. Materials Science Laboratory

    NASA Technical Reports Server (NTRS)

    Jackson, Dionne

    2005-01-01

    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  12. Enhancements and Evolution of the Real Time Mission Monitor

    NASA Technical Reports Server (NTRS)

    Goodman, Michael; Blakeslee, Richard; Hardin, Danny; Hall, John; He, Yubin; Regner, Kathryn

    2008-01-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. RTMM has proven extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, mission scientists, instrument scientists and program managers alike appreciate the contributions that RTMM makes to their flight projects. We have received numerous plaudits from a wide variety of scientists who used RTMM during recent field campaigns including the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) missions, the 2007-2008 NOAA-NASA Aerosonde Hurricane flights and the 2008 Soil Moisture Active-Passive Validation Experiment (SMAP-VEX). Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated for altitude, latitude, longitude, flight leg distance, cumulative distance, flight leg time, cumulative time, and satellite overpass intersections. The resultant flight plan is then generated in KML and quickly posted to the Google Earth-based RTMM for interested scientists to view the planned flight track and then compare it to the actual real time flight progress. A description of the system architecture, components, and applications along with reviews and animations of RTMM during the field campaigns, plus planned enhancements and future opportunities will be presented.

  13. NASA Historical Data Book. Volume 5; NASA Launch Systems, Space Transportation, Human Spaceflight and Space Science, 1979-1988

    NASA Technical Reports Server (NTRS)

    Rumerman, Judy A. (Compiler)

    1999-01-01

    In 1973, NASA published the first volume of the NASA Historical Data Book, a hefty tome containing mostly tabular data on the resources of the space agency between 1958 and 1968. There, broken into detailed tables, were the facts and figures associated with the budget, facilities, procurement, installations, and personnel of NASA during that formative decade. In 1988, NASA reissued that first volume of the data book and added two additional volumes on the agency's programs and projects, one each for 1958-1968 and 1969-1978. NASA published a fourth volume in 1994 that addressed NASA resources for the period between 1969 and 1978. This fifth volume of the NASA Historical Data Book is a continuation of those earlier efforts. This fundamental reference tool presents information, much of it statistical, documenting the development of four critical areas of NASA responsibility for the period between 1979 and 1988. This volume includes detailed information on the development and operation of launch systems, space transportation, human spaceflight, and space science during this era. As such, it contains in-depth statistical information about the early Space Shuttle program through the return to flight in 1988, the early efforts to build a space station, the development of new launch systems, and the launching of seventeen space science missions. A companion volume will appear late in 1999, documenting the space applications, support operations, aeronautics, and resources aspects of NASA during the period between 1979 and 1988. NASA began its operations as the nation's civilian space agency in 1958 following the passage of the National Aeronautics and Space Act. It succeeded the National Advisory Committee for Aeronautics (NACA). The new organization was charged with preserving the role of the United States "as a leader in aeronautical and space science and technology" and in its application, with expanding our knowledge of the Earth's atmosphere and space, and with exploring flight both within and outside the atmosphere. By the 1980s, NASA had established itself as an agency with considerable achievements on record. The decade was marked by the inauguration of the Space Shuttle flights and haunted by the 1986 Challenger accident that temporarily halted the program. The agency also enjoyed the strong support of President Ronald Reagan, who enthusiastically announced the start of both the Space Station program and the National Aerospace Plane program.

  14. John B. McKay after X-15 flight #3-27-44

    NASA Image and Video Library

    1964-03-13

    John B. McKay was one of the first pilots assigned to the X-15 flight research program at NASA's Flight Research Center, Edwards, Calif. As a civilian research pilot and aeronautical engineer, he made 30 flights in X-15s from October 28, 1960, until September 8, 1966. His peak altitude was 295,600 feet, and his highest speed was 3863 mph (Mach 5.64). McKay was with the NACA and NASA from February 8,1951 until October 5, 1971 and specialized in high-speed flight research programs. He began as an NACA intern, but assumed pilot status on July 11, 1952. In addition to the X-l5, he flew such experimental aircraft as the D-558-1, D-558-2, X-lB, and the X-lE. He has also served as a research pilot on flight programs involving the F-100, F-102, F-104, and the F-107. Born on December 8, 1922, in Portsmouth, Va., McKay graduated from Virginia Polytechnic Institute in 195O with a Bachelor of Science degree in Aeronautical Engineering. During World War II he served as a Navy pilot in the Pacific Theater, earning the Air Medal and Two Clusters, and a Presidential Unit Citation. McKay wrote several technical papers, and was a member of the American Institute of Aeronautics and Astronautics, as well as the Society of Experimental Test Pilots. He passed away on April 27, 1975.

  15. KSC-2012-2863

    NASA Image and Video Library

    2012-05-19

    CAPE CANAVERAL, Fla. – Student investigator Ryan Puri is interviewed by the media in the NASA Newsroom at Kennedy Space Center in Florida during prelaunch activities for the SpaceX demonstration test flight. Puri, a tenth-grade student at San Marino High School in San Marino, Calif., is co-investigator of the student-developed experiment “Effect of Microgravity on the Antibacterial Resistance of P. aeruginosa.” The experiment is one of 15 in the Student Spaceflight Experiments Program, or SSEP, being ferried to the International Space Station inside the Dragon capsule. The launch will be the second demonstration test flight for SpaceX for NASA's Commercial Orbital Transportation Services program, or COTS. SSEP, which began operation in June 2010 through a partnership of the National Center for Earth and Space Science Education with NanoRacks LLC, is a U.S. national science, technology, engineering and mathematics STEM education initiative that gives students across a community the opportunity to propose and design real experiments to fly in low Earth orbit. SSEP experiments flew on space shuttle missions STS-134 and STS-135 in 2011, the final flights of space shuttles Endeavour and Atlantis. For more information on SSEP, visit http://www.nasa.gov/audience/foreducators/station-here-we-come.html. Photo credit: NASA/Gianni Woods

  16. KSC-2012-2864

    NASA Image and Video Library

    2012-05-19

    CAPE CANAVERAL, Fla. – Student investigators Cameron Zandstra, Jack Barth and JP Peerbolte are interviewed by the media in the NASA Newsroom at Kennedy Space Center in Florida during prelaunch activities for the SpaceX demonstration test flight. The team members are seventh- and eighth-grade students at Highland Christian School in Lake County, Ind. Their experiment, “The Effect of Microgravity on the Quality and Nutritional Value of the Seed Sprout of Germinated 92M72 Genetically-Modified Soy Bean,” is one of 15 in the Student Spaceflight Experiments Program, or SSEP, being ferried to the International Space Station inside the Dragon capsule. The launch will be the second demonstration test flight for SpaceX for NASA's Commercial Orbital Transportation Services program, or COTS. SSEP, which began operation in June 2010 through a partnership of the National Center for Earth and Space Science Education with NanoRacks LLC, is a U.S. national science, technology, engineering and mathematics STEM education initiative that gives students across a community the opportunity to propose and design real experiments to fly in low Earth orbit. SSEP experiments flew on space shuttle missions STS-134 and STS-135 in 2011, the final flights of space shuttles Endeavour and Atlantis. For more information on SSEP, visit http://www.nasa.gov/audience/foreducators/station-here-we-come.html. Photo credit: NASA/Gianni Woods

  17. Flight Testing of the TWiLiTE Airborne Molecular Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Machan, Roman; Reed, Daniel; Cargo, Ryan; Wilkens, David J.; Hart, William; Yorks, John; Scott, Stan; Wake, Shane; hide

    2010-01-01

    In September, 2009 the TWiLiTE (Tropospheric Wind Lidar Technology Experiment) direct detection Doppler lidar was integrated for engineering flight testing on the NASA ER-2 high altitude aircraft. The TWiI,iTE Doppler lidar measures vertical profiles of wind by transmitting a short ultraviolet (355 nm) laser pulse into the atmosphere, collecting the laser light scattered back to the lidar by air molecules and measuring the Doppler shifted frequency of that light. The magnitude of the Doppler shift is proportional to the wind speed of the air in the parcel scattering the laser light. TWiLiTE was developed with funding from the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (11P). The primary objectives of the TWiLiTE program are twofold: 1) to advance the development of key technologies and subsystems critical for a future space based Global 3-1) Wind Mission, as recommended by the National Research Council in the recent Decadal Survey for Earth Science [1] and 2) to develop, for the first time, a fully autonomous airborne Doppler lidar and to demonstrate tropospheric wind profile measurements from a high altitude downward looking, moving platform to simulate spaceborne measurements. In this paper we will briefly describe the instrument followed by a discussion of the results from the 2009 engineering test flights

  18. KSC-2012-2867

    NASA Image and Video Library

    2012-05-19

    CAPE CANAVERAL, Fla. – Teacher Anthonette Pena is interviewed by the media in the NASA Newsroom at Kennedy Space Center in Florida during prelaunch activities for the SpaceX demonstration test flight. Pena is the facilitator for the student experiment developed by a team of eighth-graders at the Capitol Hill Cluster School in Washington, D.C. The experiment, “Does Hay Bacillus Break Down Human Waste Represented by Brown Egg in Microgravity as Well as in Earth Gravity?” is one of 15 in the Student Spaceflight Experiments Program, or SSEP, being ferried to the International Space Station inside the Dragon capsule. The launch will be the second demonstration test flight for SpaceX for NASA's Commercial Orbital Transportation Services program, or COTS. SSEP, which began operation in June 2010 through a partnership of the National Center for Earth and Space Science Education with NanoRacks LLC, is a U.S. national science, technology, engineering and mathematics STEM education initiative that gives students across a community the opportunity to propose and design real experiments to fly in low Earth orbit. SSEP experiments flew on space shuttle missions STS-134 and STS-135 in 2011, the final flights of space shuttles Endeavour and Atlantis. For more information on SSEP, visit http://www.nasa.gov/audience/foreducators/station-here-we-come.html. Photo credit: NASA/Gianni Woods

  19. Space Station Systems Analysis Study. Volume 2: Program options, book 1, parts 1 and 2

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Program options are defined and requirements are determined for integrating crew, mass, volume, and electrical power for a space construction base which incorporates the space shuttle external tanks. Orbits, stabilization, flight control hardware, as well as modules and aids for orbital assembly and servicing are considered. The effectiveness of various program options for life science and radio astronomy missions, for the solar terrestrial observatory, and for public service platforms is assessed. Technology development items are identified and costs are estimated.

  20. Joint University Program for Air Transportation Research, 1986

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1988-01-01

    The research conducted under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA and the FAA, one each with the Mass. Inst. of Tech., Ohio Univ., and Princeton Univ. Completed works, status reports, and bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of activities is presented.

  1. The 1985 long-range program plan

    NASA Technical Reports Server (NTRS)

    1984-01-01

    That continual evolution of NASA's research and development, is reflected in the missions, goals, and objectives planned for FY1985 and later years, in accordance with the responsibilities by the National Aeronautics and Space Act of 1958, as amended. New starts for the next ten years and space program activities to year 2000 are highlighted including space science and applications, space flight, space station, space tracking and data systems, and space research and technology. Space programs for the early 21st century and aeronautics programs up to and beyond the year 2000 are also covered.

  2. The X-43A hypersonic research aircraft and its modified Pegasus booster rocket recently underwent c

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first of three X-43A hypersonic research aircraft and its modified Pegasus booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, Calif. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ('scramjet') engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va.,After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  3. Japanese Balloon Program

    NASA Astrophysics Data System (ADS)

    Yoshida, Tetsuya; Fuke, Hideyuki; Shoji, Yasuhiro; Iijima, Issei; Izutsu, Naoki; Kato, Yoichi; Matsuzaka, Yukihiko; Mizuta, Eiichi; Sato, Takatoshi; Tamura, Keisuke; Saito, Yoshitaka; Kakehashi, Yuya

    2012-07-01

    Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency conducts domestic balloon campaigns at Taiki Aerospace Research Field (TARF) in Hokkaido since 2008. The ballooning at TARF becomes stable after four year operation. Because the field faces to the Pacific Ocean, heavy balloons and payloads can be launched safely using a very unique sliding launcher. Recoveries at the inshore along the Tokachi coast can be done very quickly and smoothly. Unfortunately, flight opportunities are recently limited due to unfriendly weather condition. Unstable Jet stream also prevents us to have so-called `boomerang flight' to achieve long flight duration more than several hours. Six balloon-borne experiments were carried out in 2010 and 2011. Three of them were demonstrations of challenges of space engineering, two were in-situ atmospheric observation, and one was the technical flight of new high-resolution γ-ray telescope. In addition to these flights, we carried out two launches for next generation balloons: one for Tawara-shaped superpressure balloon and the other for ultra-thin high-altitude balloon. In this paper, recent activities of the Japanese scientific balloon program will be introduced. On-going development of the balloon system will also be presented.

  4. What Makes Earth and Space Science Sexy? A Model for Developing Systemic Change in Earth and Space Systems Science Curriculum and Instruction

    NASA Astrophysics Data System (ADS)

    Slutskin, R. L.

    2001-12-01

    Earth and Space Science may be the neglected child in the family of high school sciences. In this session, we examine the strategies that Anne Arundel County Public Schools and NASA Goddard Space Flight Center used to develop a dynamic and highly engaging program which follows the vision of the National Science Education Standards, is grounded in key concepts of NASA's Earth Science Directorate, and allows students to examine and apply the current research of NASA scientists. Find out why Earth/Space Systems Science seems to have usurped biology and has made students, principals, and teachers clamor for similar instructional practices in what is traditionally thought of as the "glamorous" course.

  5. Space Shuttle security policies and programs

    NASA Astrophysics Data System (ADS)

    Keith, E. L.

    The Space Shuttle vehicle consists of the orbiter, external tank, and two solid rocket boosters. In dealing with security two major protective categories are considered, taking into account resource protection and information protection. A review is provided of four basic programs which have to be satisfied. Aspects of science and technology transfer are discussed. The restrictions for the transfer of science and technology information are covered under various NASA Management Instructions (NMI's). There were two major events which influenced the protection of sensitive and private information on the Space Shuttle program. The first event was a manned space flight accident, while the second was the enactment of a congressional bill to establish the rights of privacy. Attention is also given to national resource protection and national defense classified operations.

  6. Space Shuttle security policies and programs

    NASA Technical Reports Server (NTRS)

    Keith, E. L.

    1985-01-01

    The Space Shuttle vehicle consists of the orbiter, external tank, and two solid rocket boosters. In dealing with security two major protective categories are considered, taking into account resource protection and information protection. A review is provided of four basic programs which have to be satisfied. Aspects of science and technology transfer are discussed. The restrictions for the transfer of science and technology information are covered under various NASA Management Instructions (NMI's). There were two major events which influenced the protection of sensitive and private information on the Space Shuttle program. The first event was a manned space flight accident, while the second was the enactment of a congressional bill to establish the rights of privacy. Attention is also given to national resource protection and national defense classified operations.

  7. Greenland ice sheet is changing

    NASA Image and Video Library

    2015-08-27

    At 1 p.m. EDT (10 a.m. PDT) on Friday, Aug. 28, NASA's Goddard Space Flight Center in Greenbelt, Maryland, will host a live TV program about agency research into how and why the massive Greenland ice sheet is changing. The event features scientists actively conducting field work in Greenland, along with extensive video footage of their work performed over this summer. Panelists include: Tom Wagner (cryosphere program scientist with NASA's Earth Science Division), Laurence Smith (chair of the University of California, Los Angeles Department of Geography), Mike Bevis (professor of geodynamics at Ohio State University in Columbus), Sophie Nowicki (physical scientist at Goddard), and Josh Willis (JPL). The Friday program will air live on NASA TV and stream online at: www.nasa.gov/nasatv. To ask questions via social media during the televised event, use the hashtag #askNASA. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Rodent Habitat on ISS: Advances in Capability for Determining Spaceflight Effects on Mammalian Physiology

    NASA Technical Reports Server (NTRS)

    Globus, R. K.; Choi, S.; Gong, C.; Leveson-Gower, D.; Ronca, A.; Taylor, E.; Beegle, J.

    2016-01-01

    Rodent research is a valuable essential tool for advancing biomedical discoveries in life sciences on Earth and in space. The National Research Counsel's Decadal survey (1) emphasized the importance of expanding NASAs life sciences research to perform long duration, rodent experiments on the International Space Station (ISS). To accomplish this objective, new flight hardware, operations, and science capabilities were developed at NASA ARC to support commercial and government-sponsored research. The flight phases of two separate spaceflight missions (Rodent Research-1 and Rodent Research-2) have been completed and new capabilities are in development. The first flight experiments carrying 20 mice were launched on Sept 21, 2014 in an unmanned Dragon Capsule, SpaceX4; Rodent Research-1 was dedicated to achieving both NASA validation and CASIS science objectives, while Rodent Reesearch-2 extended the period on orbit to 60 days. Groundbased control groups (housed in flight hardware or standard cages) were maintained in environmental chambers at Kennedy Space Center. Crewmembers previously trained in animal handling transferred mice from the Transporter into Habitats under simultaneous veterinary supervision by video streaming and were deemed healthy. Health and behavior of all mice on the ISS was monitored by video feed on a daily basis, and post-flight quantitative analyses of behavior were performed. The 10 mice from RR-1 Validation (16wk old, female C57Bl6/J) ambulated freely and actively throughout the Habitat, relying heavily on their forelimbs for locomotion. The first on-orbit dissections of mice were performed successfully, and high quality RNA (RIN values>9) and liver enzyme activities were obtained, validating the quality of sample recovery. Post-flight sample analysis revealed that body weights of FLT animals did not differ from ground controls (GC) housed in the same hardware, or vivarium controls (VIV) housed in standard cages. Organ weights analyzed post-flight showed that there were no differences between FLT and GC groups in adrenal gland and spleen weights, whereas FLT thymus and liver weights exceeded those of GC. Minimal differences between the control groups (GC and VIV) were observed. In addition, Over 3,000 aliquots collected post-flight from the four groups of mice were deposited into the Ames Life Science Data Archives for the Biospecimen Sharing Program and Genelab project. New capabilities recently developed include DEXA scanning, grip strength tests and male mice. In conclusion, new capability for long duration rodent habitation of group-housed rodents was developed and includes in-flight sample collection, thus avoiding the complication of reentry. Results obtained to date reveal the possibility of striking differences between the effects of short duration vs. long duration spaceflight. This Rodent Research system enables achievement of both basic science and translational research objectives to advance human exploration of space.

  9. NASA Scientific Balloon in Antarctica

    NASA Image and Video Library

    2017-12-08

    NASA image captured December 25, 2011 A NASA scientific balloon awaits launch in McMurdo, Antarctica. The balloon, carrying Indiana University's Cosmic Ray Electron Synchrotron Telescope (CREST), was launched on December 25. After a circum-navigational flight around the South Pole, the payload landed on January 5. The CREST payload is one of two scheduled as part of this seasons' annual NASA Antarctic balloon Campaign which is conducted in cooperation with the National Science Foundation's Office of Polar Programs. The campaign's second payload is the University of Arizona's Stratospheric Terahertz Observatory (STO). You can follow the flights at the Columbia Scientific Balloon Facility's web site at www.csbf.nasa.gov/antarctica/ice.htm Credit: NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. STS-114 Flight Day 6 Highlights

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Day 6 is a relatively quiet day for the STS-114 crew. The main responsibility for crew members of Space Shuttle Discovery (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) and the Expedition 11 crew of the International Space Station (ISS) (Commander Sergei Krikalev and NASA ISS Science Officer and Flight Engineer John Phillips) is to unload supplies from the shuttle payload bay and from the Raffaello Multipurpose Logistics Module onto the ISS. Several of the astronauts answer interview questions from the news media, with an emphasis on the significance of their mission for the Return to Flight, shuttle damage and repair, and the future of the shuttle program. Thomas announces the winners of an essay contest for Australian students about the importance of science and mathematics education. The video includes the installation of a stowage rack for the Human Research Facility onboard the ISS, a brief description of the ISS modules, and an inverted view of the Nile Delta.

  11. Balloons on Ice: NASA Launches Antarctica Scientific Balloon Campaign

    NASA Image and Video Library

    2017-12-08

    Cosmic rays and the chemicals and atoms that make up the interstellar space between stars are the focus of this year’s NASA Antarctica Long Duration Balloon Flight Campaign, which kicked into high gear with the launch of the Boron And Carbon Cosmic rays in the Upper Stratosphere (BACCUS) payload Nov. 28. The University of Maryland’s BACCUS mission is the first of three payloads taking flight from a balloon launch site on Antarctica’s Ross Ice Shelf near McMurdo Station with support from the National Science Foundation’s United States Antarctic Program. Read more: go.nasa.gov/2gCMtyP NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. NASA Dryden Flight Research Center: We Fly What Others Only Imagine

    NASA Technical Reports Server (NTRS)

    Ennix-Sandhu, Kimberly

    2006-01-01

    A powerpoint presentation of NASA Dryden's historical and future flight programs is shown. The contents include: 1) Getting To Know NASA; 2) Our Namesake; 3) To Fly What Others Only Imagine; 4) Dryden's Mission: Advancing Technology and Science Through Flight; 5) X-1 The First of the Rocket-Powered Research Aircraft; 6) X-1 Landing; 7) Lunar Landing Research Vehicle (LLRV) Liftoff and Landing; 8) Linear Aerospike SR-71 Experiment (LASRE) Ground Test; 9) M2-F1 (The Flying Bathtub); 10) M2-F2 Drop Test; 11) Enterprise Space Shuttle Prototype; 12) Space Shuttle Columbia STS-1; 13) STS-114 Landing-August 2005; 14) Crew Exploration Vehicle (CEV); 15) What You Can Do To Succeed!; and 16) NASA Dryden Flight Research Center: This is What We Do!

  13. Cryo-Vacuum Testing of the JWST Integrated Science Instrument Module

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Vila, M. Begona; Van Campen, Julie M.; Birkmann, Stephen M.; Comber, Brian J.; Fatig, Curtis C.; Glasse, Alistair C. H.; Glazer, Stuart D.; Kelly, Douglas M.; Mann, Steven D.; hide

    2016-01-01

    In late 2015 early 2016, a major cryo-vacuum test was carried out for the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope. This test comprised the final cryo-certification and calibration test of the ISIM before its delivery for integration with the rest of the JWST observatory. Over the roughly 100-day period of the round-the-clock test program, the full complement of ISIM flight instruments, structure, harness radiator, and electronics were put through a comprehensive program of thermal, optical, electrical, and operational tests. We briefly summarize the goals, setup, execution, and key results for this critical JWST milestone.

  14. Innovative Approaches to Remote Sensing in NASA's Earth System Science Pathfinder (ESSP) Program

    NASA Technical Reports Server (NTRS)

    Peri, Frank; Volz, Stephen

    2013-01-01

    NASA's Earth Venture class (EV) of mission are competitively selected, Principal Investigator (PI) led, relatively low cost and narrowly focused in scientific scope. Investigations address a full spectrum of earth science objectives, including studies of the atmosphere, oceans, land surface, polar ice regions, and solid Earth. EV has three program elements: EV-Suborbital (EVS) are suborbital/airborne investigations; EV-Mission (EVM) element comprises small complete spaceborne missions; and EV-Instrument (EVI) element develops spaceborne instruments for flight as missions-of-opportunity (MoO). To ensure the success of EV, the management approach of each element is tailored according to the specific needs of the element.

  15. KSC-04pd1397

    NASA Image and Video Library

    2004-06-30

    KENNEDY SPACE CENTER, FLA. - Kimberly Beck, a college trainee in Controlled Biological Systems in the Spaceflight and Life Sciences Training Program, is helping with growth studies supporting payload development. Behind her is part of the WONDER (Water Offset Nutrient Delivery Experiment) flight payload that is investigating hydroponic plant crop production in microgravity.

  16. Nuclear Emulsion - Skylab Experiment S009

    NASA Technical Reports Server (NTRS)

    1970-01-01

    This photograph shows Skylab's Nuclear Emulsion experiment, a Skylab science facility that was mounted inside the Multiple Docking Adapter used to record the relative abundance of primary, high-energy heavy nuclei outside the Earth's atmosphere. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  17. KSC-04PD-1397

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Kimberly Beck, a college trainee in Controlled Biological Systems in the Spaceflight and Life Sciences Training Program, is helping with growth studies supporting payload development. Behind her is part of the WONDER (Water Offset Nutrient Delivery Experiment) flight payload that is investigating hydroponic plant crop production in microgravity.

  18. iss053e210425

    NASA Image and Video Library

    2017-11-07

    iss053e210425 (Nov. 7, 2017) --- Flight Engineer Joe Acaba holds a children's book that he is reading from as part of the Story Time From Space program. Astronauts read aloud from a STEM-related children's book while being videotaped and demonstrate simple science concepts and experiments aboard the International Space Station.

  19. KSC-2013-1385

    NASA Image and Video Library

    2013-02-08

    VANDENBERG AIR FORCE BASE, Calif. -- Media attend a mission science briefing at Vandenberg Air Force Base in California in preparation for the launch of the Landsat Data Continuity Mission LDCM. From left are Rani Gran of NASA Public Affairs, LDCM project scientist Dr. Jim Irons from NASA's Goddard Space Flight Center, senior scientist and co-chair of the Landsat Science Team U.S. Geological Survey Earth Resources Observation and Science EROS Center Dr. Thomas Loveland, Landsat scientist and president of Kass Green and Associates Kass Green, and senior research scientist Dr. Mike Wulder of the Landsat Science Team Canadian Forest Service, Natural Resources Canada. Launch of LDCM aboard a United Launch Alliance Atlas V rocket from Vandenberg's Space Launch Complex-3E is planned for Feb. 11 during a 48-minute launch window that opens at 10:02 a.m. PST, or 1:02 p.m. EST. LDCM is the eighth satellite in the Landsat Program series of Earth-observing missions and will continue the program’s critical role in monitoring, understanding and managing the resources needed for human sustainment, such as food, water and forests. NASA's Goddard Space Flight Center in Greenbelt, Md., is responsible for LDCM project management. Orbital Sciences Corp. built the LDCM satellite. NASA's Launch Services Program at the Kennedy Space Center in Florida provides launch management. After launch and the initial checkout phase, the U. S. Geological Survey will take operational control of LDCM, and it will be renamed Landsat 8. Photo credit: NASA/Kim Shiflett

  20. Kenneth J. Szalai

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Kenneth J. Szalai was Director of the NASA Hugh L. Dryden Flight Research Center, Edwards, Calif., from January 1994 through July 1998. He retired from NASA at the end of July to join IBP Aerospace Group, Inc., as the company's new president and chief operating officer. As NASA's primary installation for flight research for more than half a century, Dryden is chartered to conceive and conduct experimental flight research for integrated flight and propulsion controls; advanced optical sensors and controls; viscous drag reduction; advanced configurations; high-altitude, long-endurance aircraft; remotely piloted vehicle technology; hypersonic vehicle experiments; high-speed research for civil transportation; atmospheric tests of advanced rocket and airbreathing propulsion concepts; instrumentation systems; and flight loads predictions. In carrying out this mission, Dryden operates some of the most advanced research aircraft in the nation. When Dryden was administratively a part of the NASA Ames Research Center, Moffett Field, Calif., Szalai was director and also held the position of Ames Deputy Director for Dryden from December 1990 until assuming his current position From 1982 until December 1990, Szalai directed the Dryden Research Engineering Division. He served as Associate Director of the Ames Research Center in 1989. Prior to 1982 he was chief of the Research Engineering Division's Dynamics and Control Branch, and chief of the Flight Control Section. Szalai began his NASA career at Dryden in 1964 following graduation from the University of Wisconsin, where he attended both the Milwaukee and Madison campuses. His bachelor of science degree is in electrical engineering. He also received a master of science degree in mechanical engineering from the University of Southern California in 1970. Szalai was principal investigator on the F-8 Digital Fly-By-Wire program, which successfully flew the first aircraft equipped with a digital electronic flight control system without any mechanical reversion capability. Szalai also held research and systems engineering positions on several research aircraft programs investigating flying qualities, integrated flight controls, and fault tolerant-flight critical systems. He was also flight test engineer and principal investigator on the NASA Airborne Simulator before assuming management positions within the Research Engineering Division. Szalai has worked in various technical and management positions on such programs as the F-111 IPCS, AFTI/F-16, HiMAT, F-15 DEEC, F-15 HIDEC, X-29, X-31, F-16XL Laminar Flow, Space Shuttle Orbiter, Pathfinder Solar Powered Aircraft, SR-71 Sonic Boom, F-15 and MD-11 Propulsion Controlled Aircraft, X-33, and X-38. Szalai has authored over 25 papers and reports and has been a lecturer for the NATO Advisory Group for Aeronautical Research and Development (AGARD). He has served on various technical committees and subcommittees for the American Institute of Aeronautics and Astronautics (AIAA) and Society of Automotive Engineers (SAE). Szalai, a Fellow of the AIAA, also served on the National Academy of Science's 'Aeronautics-2000' study. Among the awards Szalai has received are NASA's Exceptional Service Medal, the NASA Outstanding Leadership Medal, and the Presidential Meritorious and Distinguished Rank awards. Szalai was born June 1, 1942, in Milwaukee, Wisc., where he graduated from West Division High School.

  1. Strategic considerations for support of humans in space and Moon/Mars exploration missions. Life sciences research and technology programs, volume 2

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Summary charts of the following topics are presented: the Percentage of Critical Questions in Constrained and Robust Programs; the Executive Committee and AMAC Disposition of Critical Questions for Constrained and Robust Programs; and the Requirements for Ground-based Research and Flight Platforms for Constrained and Robust Programs. Data Tables are also presented and cover the following: critical questions from all Life Sciences Division Discipline Science Plans; critical questions listed by category and criticality; all critical questions which require ground-based research; critical questions that would utilize spacelabs listed by category and criticality; critical questions that would utilize Space Station Freedom (SSF) listed by category and criticality; critical questions that would utilize the SSF Centrifuge; facility listed by category and criticality; critical questions that would utilize a Moon base listed by category and criticality; critical questions that would utilize robotic missions listed by category and criticality; critical questions that would utilize free flyers listed by category and criticality; and critical questions by deliverables.

  2. Stereo Science Update

    NASA Image and Video Library

    2009-04-13

    Michael Kaiser, project scientist, Solar Terrestrial Relations Observatory (STEREO) at Goddard Space Flight Center, left, makes a point during a Science Update on the STEREO mission at NASA Headquarters in Washington, Tuesday, April 14, 2009, as Angelo Vourlidas, project scientist, Sun Earth Connection Coronal and Heliospheric Investigation, at the Naval Research Laboratory, Toni Galvin, principal investigator, Plasma and Superthermal Ion Composition instrument at the University of New Hampshire and Madhulika Guhathkurta, STEREO program scientist, right, look on. Photo Credit: (NASA/Paul E. Alers)

  3. BIOSPEX: Biological space experiments, a compendium of life sciences experiments carried on US spacecraft

    NASA Technical Reports Server (NTRS)

    Anderson, M.; Rummel, J. A. (Editor); Deutsch, S. (Editor)

    1979-01-01

    United States space life science experiments, encompassing 27 years of experience beginning with sounding rocket flights carrying primates (1948) to the last U.S. spaceflight, the joint US/USSR Apollo Test Project (1975), are presented. The information for each experiment includes Principal Investigators, the program and mission on which it was flown, the specimens used, the objectives, protocol, equipment, results, conclusions, and bibliographic reference citations for publications derived from each experiment.

  4. Materials Science

    NASA Image and Video Library

    1998-09-30

    Dr. Jan Rogers, project scientist for the Electrostatic Levitator (ESL) at NASA's Marshall Space Flight Center(MSFC). The ESL uses static electricity to suspend an obejct (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials sciences program.

  5. The_Price_Of_Flight

    NASA Image and Video Library

    2017-06-01

    Josh Cassada made a bet with his wife when he applied to become a NASA astronaut—find out about the wager, what he’s doing to get himself ready for his first trip to space, and the questions he gets asked most often by kids, in this video from the International Space Station’s Program Science Office. For more on ISS science, visit us online: https://www.nasa.gov/mission_pages/station/research/index.html www.twitter.com/iss_research

  6. Digital signal processing in the radio science stability analyzer

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    1995-01-01

    The Telecommunications Division has built a stability analyzer for testing Deep Space Network installations during flight radio science experiments. The low-frequency part of the analyzer operates by digitizing wave signals with bandwidths between 80 Hz and 45 kHz. Processed outputs include spectra of signal, phase, amplitude, and differential phase; time series of the same quantities; and Allan deviation of phase and differential phase. This article documents the digital signal-processing methods programmed into the analyzer.

  7. Data Reduction and Analysis from the SOHO Spacecraft

    NASA Technical Reports Server (NTRS)

    Ipavich, F. M.

    1999-01-01

    This paper presents a final report on Data Reduction and Analysis from The SOHO Spacecraft from November 1, 1996-October 31, 1999. The topics include: 1) Instrumentation; 2) Health of Instrument; 3) Solar Wind Web Page; 3) Data Analysis; and 4) Science. This paper also includes appendices describing routine SOHO (Solar and Heliospheric Observatory) tasks, SOHO Science Procedures in the UMTOF (University Mass Determining Time-of-Flight) System, SOHO Programs on UMTOF and a list of publications.

  8. Enhancements and Evolution of the Real Time Mission Monitor

    NASA Astrophysics Data System (ADS)

    Goodman, M.; Blakeslee, R.; Hardin, D.; Hall, J.; He, Y.; Regner, K.

    2008-12-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual earth application. RTMM has proven extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, mission scientists, instrument scientists and program managers alike appreciate the contributions that RTMM makes to their flight projects. RTMM has received numerous plaudits from a wide variety of scientists who used RTMM during recent field campaigns including the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) missions, the 2007-2008 NOAA-NASA Aerosonde Hurricane flights and the 2008 Soil Moisture Active-Passive Validation Experiment (SMAP-VEX). Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated for altitude, latitude, longitude, flight leg distance, cumulative distance, flight leg time, cumulative time, and satellite overpass intersections. The resultant flight plan is then generated in KML and quickly posted to the Google Earth-based RTMM for planning discussions, as well as comparisons to real time flight tracks in progress. A description of the system architecture, components, and applications along with reviews and animations of RTMM during the field campaigns, plus planned enhancements and future opportunities will be presented.

  9. Lockheed L-1011 Test Station installation in support of the Adaptive Performance Optimization flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Technicians John Huffman, Phil Gonia and Mike Kerner of NASA's Dryden Flight Research Center, Edwards, California, carefully insert a monitor into the Research Engineering Test Station during installation of equipment for the Adaptive Performance Optimization experiment aboard Orbital Sciences Corporation's Lockheed L-1011 in Bakersfield, California, May, 6, 1997. The Adaptive Performance Optimization project is designed to reduce the aerodynamic drag of large subsonic transport aircraft by varying the camber of the wing through real-time adjustment of flaps or ailerons in response to changing flight conditions. Reducing the drag will improve aircraft efficiency and performance, resulting in signifigant fuel savings for the nation's airlines worth hundreds of millions of dollars annually. Flights for the NASA experiment will occur periodically over the next couple of years on the modified wide-bodied jetliner, with all flights flown out of Bakersfield's Meadows Field. The experiment is part of Dryden's Advanced Subsonic Transport Aircraft Research program.

  10. High and Dry: Trading Water Vapor, Fuel and Observing Time for SOFIA

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Kurklu, Elif

    2005-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is NASA's next generation airborne astronomical observatory. The facility consists of a 747-SP modified to accommodate a 2.5 meter telescope. SOFIA is expected to fly an average of 140 science flights per year over it's 20 year lifetime, and will commence operations in early 2005. The SOFIA telescope is mounted aft of the wings on the port side of the aircraft and is articulated through a range of 20 deg to 60 deg of elevation. A significant problem in future SOFIA operations is that of scheduling Facility Instrument (E) flights in support of the SOFIA General Investigator (GI) program. GIs are expected to propose small numbers of observations, and many observations must be grouped together to make up single flights. Approximately 70 GI flight per year are expected, with 5-15 observations per flight.

  11. Large Volume, Optical and Opto-Mechanical Metrology Techniques for ISIM on JWST

    NASA Technical Reports Server (NTRS)

    Hadjimichael, Theo

    2015-01-01

    The final, flight build of the Integrated Science Instrument Module (ISIM) element of the James Webb Space Telescope is the culmination of years of work across many disciplines and partners. This paper covers the large volume, ambient, optical and opto-mechanical metrology techniques used to verify the mechanical integration of the flight instruments in ISIM, including optical pupil alignment. We present an overview of ISIM's integration and test program, which is in progress, with an emphasis on alignment and optical performance verification. This work is performed at NASA Goddard Space Flight Center, in close collaboration with the European Space Agency, the Canadian Space Agency, and the Mid-Infrared Instrument European Consortium.

  12. Nanotechnology Concepts at Marshall Space Flight Center: Engineering Directorate

    NASA Technical Reports Server (NTRS)

    Bhat, B.; Kaul, R.; Shah, S.; Smithers, G.; Watson, M. D.

    2001-01-01

    Nanotechnology is the art and science of building materials and devices at the ultimate level of finesse: atom by atom. Our nation's space program has need for miniaturization of components, minimization of weight, and maximization of performance, and nanotechnology will help us get there. Marshall Space Flight Center's (MSFC's) Engineering Directorate is committed to developing nanotechnology that will enable MSFC missions in space transportation, space science, and space optics manufacturing. MSFC has a dedicated group of technologists who are currently developing high-payoff nanotechnology concepts. This poster presentation will outline some of the concepts being developed including, nanophase structural materials, carbon nanotube reinforced metal and polymer matrix composites, nanotube temperature sensors, and aerogels. The poster will outline these concepts and discuss associated technical challenges in turning these concepts into real components and systems.

  13. Microgravity

    NASA Image and Video Library

    2001-06-05

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101830, and TBD).

  14. Microgravity

    NASA Image and Video Library

    2001-06-05

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830).

  15. Microgravity

    NASA Image and Video Library

    2001-06-05

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. A larger image is available without labels (No. 0101755).

  16. Microgravity

    NASA Image and Video Library

    2001-06-05

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).

  17. Flight equipment supporting metabolic experiments on SLS-1

    NASA Technical Reports Server (NTRS)

    Leach, Carolyn S.; Inners, L. D.

    1991-01-01

    Five experiments in different aspects of human metabolism will be performed on Spacelab Life Sciences-1. Nine items of equipment from the Life Sciences Laboratory Equipment inventory will be used: the rack-mounted centrifuge, the hematocrit centrifuge, the low-gravity centrifuge, a body-mass measurement device, a urine monitoring system, the Spacelab refrigerator/freezer, the Orbiter refrigerator, an in-flight blood collection system, and a pocket voice recorder. In addition, each experiment will require some specialized equipment such as incubators and culture blocks for an immunology experiment, and tracers for a fluid and electrolyte experiment and a hematology experiment. The equipment for these experiments has been developed over many years, in some cases since the Skylab program in the early 1970s, and has been certified for use on the Space Shuttle.

  18. Analysis of Data in Accordance with Space Flight Mission Environmental Requirements

    NASA Technical Reports Server (NTRS)

    Shei, Monica

    2011-01-01

    The Environmental Assurance Program sets forth standards to ensure that all flight hardware is compatible with the environments that will be encountered during a spacecraft mission. It outlines the design, test and analysis, and risk control standards for the mission and certifies that it will survive in any external or self-induced environments that the spacecraft may experience. The Environmental Requirements Document (ERD) is the most important document in the Environmental Assurance Program, providing the design and test requirements for the project's flight system, subsystems, assemblies, and instruments. This summer's project was to assist Environmental Requirements Engineers (ERE's) in completing the Environmental Assurance Program Summary Report for both the Juno Project and Mars Science Laboratory (MSL) Project. The Summary Report is a document summarizing the environmental tests and analyses of each spacecraft at both the assembly and system level. It compiles a source of all relevant information such as waivers and Problem/Failure Reports (PFRs) into a single report for easy reference of how well the spacecraft met the requirements of the project.

  19. NASA's Zero-g aircraft operations

    NASA Technical Reports Server (NTRS)

    Williams, R. K.

    1988-01-01

    NASA's Zero-g aircraft, operated by the Johnson Space Center, provides the unique weightless or zero-g environment of space flight for hardware development and test and astronaut training purposes. The program, which began in 1959, uses a slightly modified Boeing KC-135A aircraft, flying a parabolic trajectory, to produce weightless periods of 20 to 25 seconds. The program has supported the Mercury, Gemini, Apollo, Skylab, Apollo-Soyuz and Shuttle programs as well as a number of unmanned space operations. Typical experiments for flight in the aircraft have included materials processing experiments, welding, fluid manipulation, cryogenics, propellant tankage, satellite deployment dynamics, planetary sciences research, crew training with weightless indoctrination, space suits, tethers, etc., and medical studies including vestibular research. The facility is available to microgravity research organizations on a cost-reimbursable basis, providing a large, hands-on test area for diagnostic and support equipment for the Principal Investigators and providing an iterative-type design approach to microgravity experiment development. The facility allows concepts to be proven and baseline experimentation to be accomplished relatively inexpensively prior to committing to the large expense of a space flight.

  20. NBS (National Bureau of Standards): Materials measurements

    NASA Technical Reports Server (NTRS)

    Manning, J. R.

    1984-01-01

    Work in support of NASA's Microgravity Science and Applications Program is described. The results of the following three tasks are given in detail: (1) surface tensions and their variations with temperature and impurities; (2) convection during unidirectional solidification; and (3) measurement of high temperature thermophysical properties. Tasks 1 and 2 were directed toward determining how the reduced gravity obtained in space flight can affect convection and solidification processes. Emphasis in task 3 was on development of levitation and containerless processing techniques which can be applied in space flight to provide thermodynamic measurements of reactive materials.

  1. Marshall Space Flight Center Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Six, N. F.; Karr, G.

    2017-01-01

    The research projects conducted by the 2016 Faculty Fellows at NASA Marshall Space Flight Center included propulsion studies on propellant issues, and materials investigations involving plasma effects and friction stir welding. Spacecraft Systems research was conducted on wireless systems and 3D printing of avionics. Vehicle Systems studies were performed on controllers and spacecraft instruments. The Science and Technology group investigated additive construction applied to Mars and Lunar regolith, medical uses of 3D printing, and unique instrumentation, while the Test Laboratory measured pressure vessel leakage and crack growth rates.

  2. NASA' s life sciences and space radiation biology.

    PubMed

    Rambaut, P; Nicogossian, A

    1984-01-01

    Plans for the various missions in which men and women are expected to participate during the next 10 years are outlined. Such missions include flights of up to three months duration in low earth orbit as well as possible short excursions to geosynchronous orbit. Research activities are described which cover the full spectrum of physiological and psychological responses to space flight. These activities are shown to contribute to the ongoing Shuttle program and the future Space Station. The paper includes a summary of the major technical thrusts needed to support extended habitation in space.

  3. The Orion Pad Abort 1 Flight Test A Highly Successful Test

    NASA Technical Reports Server (NTRS)

    Sinclair, Robert; Taylor, Anthony P. (Tony); Johnston, Justin

    2011-01-01

    The Orion Pad Abort 1 (PA-1) flight test was designed as an early demonstration of the Launch Abort System (LAS) for the Orion capsule. The LAS was designed developed and manufactured by the Lockheed Martin/Orbital Sciences team. At inception it was realized that recovery of the Orion Capsule simulator would be useful from an engineering analysis and data recovery point of view. Additionally this test represented a flight opportunity for the Orion parachute system, which in a real abort would provide final landing deceleration. The Orion parachute program is named CPAS (CEV Parachute Assembly System). Thus CPAS became a part of the PA-1 flight, as a secondary test objective. At program kick off, the CPAS system was in the design state described below. Airbag land landing of the spacecraft was the program baseline. This affected the rigging of the parachutes. The system entry deployment conditions and vehicle mass have both evolved since that original design. It was decided to use the baseline CPAS Generation 1 (Gen 1) parachute system for the recovery of the PA-1 flight. As CPAS was a secondary test objective, the system would be delivered in its developmental state. As the PA-1 program evolved, the parachute recovery system (CPAS) moved from a secondary objective to a more important portion of the program. Tests were added, weights and deployment conditions changed and some hardware portions of the CPAS configuration were not up to the new challenges. Additional tests were added to provide confidence in the developmental system. This paper will review a few of these aspects with the goal of showing some preliminary and qualitative results from what we believe was a highly successful test.

  4. KSC-2014-2064

    NASA Image and Video Library

    2014-04-13

    CAPE CANAVERAL, Fla. – During a news conference at NASA's Kennedy Space Center in Florida, agency and contractor officials discussed science and technology experiment payloads being transported to the International Space Station by the SpaceX-3 Commercial Resupply Services mission. Participating in the briefing is Camille Alleyne, assistant program scientist in the NASA ISS Program Science Office. Scheduled for launch on April 14, 2014 atop a Falcon 9 rocket, the Dragon spacecraft will be marking its fourth trip to the space station. The SpaceX-3 mission carrying almost 2.5 tons of supplies, technology and science experiments is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/ Kim Shiflett

  5. Opportunities for Small Satellites in NASA's Earth System Science Pathfinder (ESSP) Program

    NASA Technical Reports Server (NTRS)

    Peri, Frank; Law, Richard C.; Wells, James E.

    2014-01-01

    NASA's Earth Venture class (EV) of missions are competitively selected, Principal Investigator (PI) led, relatively low cost and narrowly focused in scientific scope. Investigations address a full spectrum of earth science objectives, including studies of the atmosphere, oceans, land surface, polar ice regions, and solid Earth. EV has three program elements: EV-Suborbital (EVS) are suborbital/airborne investigations; EV-Mission (EVM) element comprises small complete spaceborne missions; and EV-Instrument (EVI) element develops spaceborne instruments for flight as Missions-of-Opportunity (MoO). To ensure the success of EV, frequent opportunities for selecting missions has been established in NASA's Earth Science budget. This paper will describe those opportunities and how the management approach of each element is tailored according to the specific needs of the element.

  6. Radioisotope Power Systems Program Status and Expectations

    NASA Technical Reports Server (NTRS)

    Zakrajsek, June F.; Hamley, John A.; Sutliff, Thomas J.; Mccallum, Peter W.; Sandifer, Carl E.

    2017-01-01

    The Radioisotope Power Systems (RPS) Programs goal is to make RPS available for the exploration of the solar system in environments where conventional solar or chemical power generation is impractical or impossible to use to meet mission needs. To meet this goal, the RPS Program manages investments in RPS system development and RPS technologies. The RPS Program exists to support NASA's Science Mission Directorate (SMD). The RPS Program provides strategic leadership for RPS, enables the availability of RPS for use by the planetary science community, successfully executes RPS flight projects and mission deployments, maintains a robust technology development portfolio, manages RPS related National Environmental Policy Act (NEPA) and Nuclear Launch Safety (NLS) approval processes for SMD, maintains insight into the Department of Energy (DOE) implementation of NASA funded RPS production infrastructure operations, including implementation of the NASA funded Plutonium-238 production restart efforts. This paper will provide a status of recent RPS activities.

  7. The Balloon-borne Large Aperture Submillimeter Telescope: BLAST

    NASA Astrophysics Data System (ADS)

    Truch, Matthew D. P.; Ade, P. A. R.; Bock, J. J.; Chapin, E. L.; Chung, J.; Devlin, M. J.; Dicker, S.; Griffin, M.; Gundersen, J. O.; Halpern, M.; Hargrave, P. C.; Hughes, D. H.; Klein, J.; MacTavish, C. J.; Marsden, G.; Martin, P. G.; Martin, T. G.; Mauskopf, P.; Netterfield, C. B.; Olmi, L.; Pascale, E.; Patanchon, G.; Rex, M.; Scott, D.; Semisch, C.; Thomas, N. E.; Tucker, C.; Tucker, G. S.; Viero, M. P.; Wiebe, D. V.

    2009-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a suborbital surveying experiment designed to study the evolutionary history and processes of star formation in local galaxies (including the Milky Way) and galaxies at cosmological distances. The BLAST continuum camera, which consists of 270 detectors distributed between three arrays, observes simultaneously in broadband (30%) spectral windows at 250, 350, and 500 microns. The optical design is based on a 2 m diameter telescope, providing a diffraction-limited resolution of 30" at 250 microns. The gondola pointing system enables raster mapping of arbitrary geometry, with a repeatable positional accuracy of 30"; postflight pointing reconstruction to <5" rms is achieved. The onboard telescope control software permits autonomous execution of a preselected set of maps, with the option of manual override. On this poster, we describe the primary characteristics and measured in-flight performance of BLAST. BLAST performed a test flight in 2003 and has since made two scientifically productive long-duration balloon flights: a 100 hour flight from ESRANGE (Kiruna), Sweden to Victoria Island, northern Canada in 2005 June; and a 250 hour, circumpolar flight from McMurdo Station, Antarctica in 2006 December. The BLAST collaboration acknowledges the support of NASA through grants NAG5-12785, NAG5-13301, and NNGO-6GI11G, the Canadian Space Agency (CSA), the Science and Technology Facilities Council (STFC), Canada's Natural Sciences and Engineering Research Council (NSERC), the Canada Foundation for Innovation, the Ontario Innovation Trust, the Puerto Rico Space Grant Consortium, the Fondo Institucional para la Investigacion of the University of Puerto Rico, and the National Science Foundation Office of Polar Programs.

  8. Report of the Defense Science Board Task Force on National Aero-Space Plane (NASP) Program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Six years ago, the Defense Science Board (DSB) initiated a review of the concept, technical basis, program content, and missions of the National Aerospace Plane (NASP) program. The report was completed in Sep. 1988, and the recommendations contributed to strengthening the technical efforts in the NASP program. Since then, substantial technological progress has been made in the technology development phase (Phase 2) of the program. Phase 2 of the program is currently scheduled to end in late Fiscal Year 1993, with a decision whether to proceed to the experimental flight vehicle phase (Phase 3) to be made at that time. This decision will be a very significant one for the Department of Defense (DoD) and the National Aeronautics and Space Administration (NASA). In February of this year, the DSB was chartered to revisit the NASP program to assess the degree to which the many technical challenges of the program have been resolved, or are likely to be resolved by the end of Phase 2.

  9. First Post-Flight Status Report for the Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    Baugher, Charles R., III

    2003-01-01

    The Microgravity Science Glovebox (MSG) was launched to the International Space Station (ISS) this year on the second Utilization Flight (UF2). After successful on-orbit activation, the facility began supporting an active microgravity research program. The inaugural NASA experiments operated in the unit were the Solidification Using a Baffle in Sealed Ampoules (SUBSA, A. Ostrogorski, PI), and the Pore Formation and Mobility (PFMI, R. Grugel, PI) experiments. Both of these materials science investigations demonstrated the versatility of the facility through extensive use of telescience. The facility afforded the investigators with the capability of monitoring and operating the experiments in real-time and provided several instances in which the unique combination of scientists and flight crew were able to salvage situations which would have otherwise led to the loss of a science experiment in an unmanned, or automated, environment. The European Space Agency (ESA) also made use of the facility to perform a series of four experiments that were carried to the ISS via a Russian Soyuz and subsequently operated by a Belgium astronaut during a ten day Station visit. This imaginative approach demonstrated the ability of the MSG integration team to handle a rapid integration schedule (approximately seven months) and an intensive operations interval. Interestingly, and thanks to aggressive attention from the crew, the primary limitation to experiment thru-put in these early operational phases is proving to be the restrictions on the up-mass to the Station, rather than the availability of science operations.

  10. The SDO Social Media Planning Process: Walking the cat back into the bag

    NASA Astrophysics Data System (ADS)

    Wawro, M.; Young, C.; Van Norden, W. M.; Durscher, R.

    2012-12-01

    As social media continues to grow as a way to communicate with the public about science missions, data and other STEM related topics, there has become a need for more organized and regimented Social Media programs and plans. In the Heliophysics science division at Goddard Space Flight Center we have been working on creating a template for social media programs which incorporates not just the goals for the program, as well as identifying an audience, but also deals with concerns about messaging, collaboration with other organizations, controversial topics, and evaluation. We hope that through creating a more unified approach we can develop a social media program that not only meets the needs of the audience but incorporates the needs of all of the different entities including the scientists, EPO Professionals and Office of Communications.

  11. KSC-2014-2062

    NASA Image and Video Library

    2014-04-13

    CAPE CANAVERAL, Fla. – During a news conference at NASA's Kennedy Space Center in Florida, agency and contractor officials discussed science and technology experiment payloads being transported to the International Space Station by the SpaceX-3 Commercial Resupply Services mission. Participating in the briefing, from the left, are Mike Curie of NASA Public Affairs, Camille Alleyne, assistant program scientist in the NASA ISS Program Science Office, and Michael Roberts, senior research pathway manager with the Center for the Advancement of Science in Space CASIS. Scheduled for launch on April 14, 2014 atop a Falcon 9 rocket, the Dragon spacecraft will be marking its fourth trip to the space station. The SpaceX-3 mission carrying almost 2.5 tons of supplies, technology and science experiments is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/ Kim Shiflett

  12. KSC-2014-2066

    NASA Image and Video Library

    2014-04-13

    CAPE CANAVERAL, Fla. – During a news conference at NASA's Kennedy Space Center in Florida, agency and contractor officials discussed science and technology experiment payloads being transported to the International Space Station by the SpaceX-3 Commercial Resupply Services mission. Participating in the briefing, from the left, are Camille Alleyne, assistant program scientist in the NASA ISS Program Science Office, and Michael Roberts, senior research pathway manager with the Center for the Advancement of Science in Space CASIS. Scheduled for launch on April 14, 2014 atop a Falcon 9 rocket, the Dragon spacecraft will be marking its fourth trip to the space station. The SpaceX-3 mission carrying almost 2.5 tons of supplies, technology and science experiments is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/ Kim Shiflett

  13. Environmental health discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The purpose of this plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in environmental health. It covers the significant research areas critical to NASA's programmatic requirements for the Extended Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; animal and human subjects; and research and development. This document summarizes the history and current status of the program elements, outlines available knowledge, establishes goals and objectives, identifies scientific priorities, and defines critical questions in the three disciplines: (1) Barophysiology, (2) Toxicology, and (3) Microbiology. This document contains a general plan that will be used by both NASA Headquarters Program Officers and the field centers to review and plan basic, applied, and operational research and development activities, both intramural and extramural, in this area. The document is divided into sections addressing these three disciplines.

  14. Microgravity Combustion Diagnostics Workshop

    NASA Technical Reports Server (NTRS)

    Santoro, Gilbert J. (Editor); Greenberg, Paul S. (Editor); Piltch, Nancy D. (Editor)

    1988-01-01

    Through the Microgravity Science and Applications Division (MSAD) of the Office of Space Science and Applications (OSSA) at NASA Headquarters, a program entitled, Advanced Technology Development (ATD) was promulgated with the objective of providing advanced technologies that will enable the development of future microgravity science and applications experimental flight hardware. Among the ATD projects one, Microgravity Combustion Diagnostics (MCD), has the objective of developing advanced diagnostic techniques and technologies to provide nonperturbing measurements of combustion characteristics and parameters that will enhance the scientific integrity and quality of microgravity combustion experiments. As part of the approach to this project, a workshop was held on July 28 and 29, 1987, at the NASA Lewis Research Center. A small group of laser combustion diagnosticians met with a group of microgravity combustion experimenters to discuss the science requirements, the state-of-the-art of laser diagnostic technology, and plan the direction for near-, intermediate-, and long-term programs. This publication describes the proceedings of that workshop.

  15. Using AUTORAD for Cassini File Uplinks: Incorporating Automated Commanding into Mission Operations

    NASA Technical Reports Server (NTRS)

    Goo, Sherwin

    2014-01-01

    As the Cassini spacecraft embarked on the Solstice Mission in October 2010, the flight operations team faced a significant challenge in planning and executing the continuing tour of the Saturnian system. Faced with budget cuts that reduced the science and engineering staff by over a third in size, new and streamlined processes had to be developed to allow the Cassini mission to maintain a high level of science data return with a lower amount of available resources while still minimizing the risk. Automation was deemed an important key in enabling mission operations with reduced workforce and the Cassini flight team has made this goal a priority for the Solstice Mission. The operations team learned about a utility called AUTORAD which would give the flight operations team the ability to program selected command files for radiation up to seven days in advance and help minimize the need for off-shift support that could deplete available staffing during the prime shift hours. This paper will describe how AUTORAD is being utilized by the Cassini flight operations team and the processes that were developed or modified to ensure that proper oversight and verification is maintained in the generation and execution of radiated command files.

  16. Microgravity Science and Applications. Program Tasks and Bibliography for FY 1993

    NASA Technical Reports Server (NTRS)

    1994-01-01

    An annual report published by the Microgravity Science and Applications Division (MSAD) of NASA is presented. It represents a compilation of the Division's currently-funded ground, flight and Advanced Technology Development tasks. An overview and progress report for these tasks, including progress reports by principal investigators selected from the academic, industry and government communities, are provided. The document includes a listing of new bibliographic data provided by the principal investigators to reflect the dissemination of research data during FY 1993 via publications and presentations. The document also includes division research metrics and an index of the funded investigators. The document contains three sections and three appendices: Section 1 includes an introduction and metrics data, Section 2 is a compilation of the task reports in an order representative of its ground, flight or ATD status and the science discipline it represents, and Section 3 is the bibliography. The three appendices, in the order of presentation, are: Appendix A - a microgravity science acronym list, Appendix B - a list of guest investigators associated with a biotechnology task, and Appendix C - an index of the currently funded principal investigators.

  17. The X-43A hypersonic research aircraft and its modified Pegasus® booster rocket mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, California

    NASA Image and Video Library

    2001-03-13

    The first of three X-43A hypersonic research aircraft and its modified Pegasus® booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, California. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. One of the major goals of the Hyper-X program is flight validation of airframe-integrated, air-breathing propulsion system, which so far have only been tested in ground facilities, such as wind tunnels. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine capable of operating at hypersonic speeds above Mach 5 (five times the speed of sound). The X-43A design uses the underbody of the aircraft to form critical elements of the engine. The forebody shape helps compress the intake airflow, while the aft section acts as a nozzle to direct thrust. The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster, built by Orbital Sciences Corp., Dulles, Va., will accelerate the X-43A after the X-43A/booster "stack" is air-launched from NASA's venerable NB-52 mothership. The X-43A will separate from the rocket at a predetermined altitude and speed and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  18. AOIPS 3 user's guide. Volume 2: Program descriptions

    NASA Technical Reports Server (NTRS)

    Schotz, Steve S.; Piper, Thomas S.; Negri, Andrew J.

    1990-01-01

    The Atmospheric and Oceanographic Information Processing System (AOIPS) 3 is the version of the AOIPS software as of April 1989. The AOIPS software was developed jointly by the Goddard Space Flight Center and General Sciences Corporation. A detailed description of very AOIPS program is presented. It is intended to serve as a reference for such items as program functionality, program operational instructions, and input/output variable descriptions. Program descriptions are derived from the on-line help information. Each program description is divided into two sections. The functional description section describes the purpose of the program and contains any pertinent operational information. The program description sections lists the program variables as they appear on-line, and describes them in detail.

  19. Supernova Remnant Observations with Micro-X

    NASA Astrophysics Data System (ADS)

    Figueroa, Enectali

    Micro-X is a sounding rocket payload that combines an X-ray microcalorimeter with an imaging mirror to offer breakthrough science from high spectral resolution observations of extended X-ray sources. This payload has been in design and development for the last five years and is now completely built and undergoing integration; its first flight will be in November, 2012, as part of our current NASA award. This four-year follow-on proposal seeks funding for: (1) analysis of the first flight data, (2) the second flight and its data analysis, (3) development of payload upgrades and launch of the third flight, and (4) third flight data analysis. The scientific payload consists of a Transition Edge Sensor (TES) microcalorimeter array at the focus of a flight-proven conical imaging mirror. Micro-X capitalizes on three decades of NASA investment in the development of microcalorimeters and X-ray imaging optics. Micro-X offers a unique combination of bandpass, collecting area, and spectral and angular resolution. The spectral resolution goal across the 0.2 - 3.0 keV band is 2 - 4 eV Full-Width at Half Maximum (FWHM). The measured angular resolution of the mirror is 2.4 arcminute Half-Power Diameter (HPD). The effective area of the mirror, 300 square centimeters at 1 keV, is sufficient to provide observations of unprecedented quality of several astrophysical X-ray sources, even in a brief sounding rocket exposure of 300 sec. Our scientific program for this proposal will focus on supernova remnants (SNRs), whose spatial extent has made high-energy resolution observations with grating instruments extremely challenging. X-ray observations of SNRs with microcalorimeters will enable the study of the detailed atomic physics of the plasma; the determination of temperature, turbulence, and elemental abundances; and in conjunction with historical data, full three dimensional mapping of the kinematics of the remnant. These capabilities will open new avenues towards understanding the explosion mechanisms of supernovae and their roles in energy and heavy-element injection into galaxies, their evolution into SNRs, their interactions with their environments, and finally their roles as particle accelerators. For the first flight, we will observe an ejecta region in the Puppis A SNR. The Puppis A bright eastern knot (BEK), is the target of second flight in 2014. The third flight, in late 2015 or early 2016, will make an observation of the Cas A SNR. We will continue to advance the technology readiness of TES microcalorimeters while enhancing the science capability of the payload by implementing a series of improvements for the third flight. For the observation of Cas A in the third flight, we will upgrade from the 128-pixel array with 1 arcminute pixels used in the first two flights to a higher-energy resolution (1 eV FWHM) 256-pixel array with 20 arcsecond pixels and a new 30 arcsecond HPD mirror to enable improved imaging spectroscopy with our payload. The Micro-X team includes leaders in the development of microcalorimeters, SQUID readout systems, and segmented and full-shell grazing incidence X-ray optics, as well as highly experienced sounding rocket instrument developers, and scientific experts on supernova remnants. These investigators are located at institutions with strong space instrumentation traditions with the infrastructure to ensure a successful flight program. With Micro-X, we have designed a versatile payload capable of providing high-resolution science and a testbed for new technology. The first flight this year will make significant scientific contributions well ahead of the Astro-H mission. The program will also aid in the understanding and development of future flight-qualified microcalorimeter systems for larger orbiting missions. Finally, it will continue to attract talented young scientists to X-ray astrophysics and thus serve as a direct pipeline of future leaders of NASA missions.

  20. NASA Tech Briefs, April 1995. Volume 19, No. 4

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This issue of the NASA Tech Briefs has a special focus section on video and imaging, a feature on the NASA invention of the year, and a resource report on the Dryden Flight Research Center. The issue also contains articles on electronic components and circuits, electronic systems, physical sciences, materials, computer programs, mechanics, machinery, manufacturing/fabrication, mathematics and information sciences and life sciences. In addition to the standard articles in the NASA Tech brief, this contains a supplement entitled "Laser Tech Briefs" which features an article on the National Ignition Facility, and other articles on the use of Lasers.

Top