Line drawing Scientific Instrument Module and lunar orbital science package
NASA Technical Reports Server (NTRS)
1970-01-01
A line drawing of the Scientific Instrument Module (SIM) with its lunar orbital science package. The SIM will be mounted in a previously vacant sector of the Apollo Service Module. It will carry specialized cameras and instrumentation for gathering lunar orbit scientific data.
NASA Astrophysics Data System (ADS)
Rockwell, A.; Clark, R. D.; Stevermer, A.
2017-12-01
The National Center for Atmospheric Research Earth Observing Laboratory, Millersville University and The COMET Program are collaborating to produce a series of nine online modules on the the topic of meteorological instrumentation and measurements. These interactive, multimedia educational modules can be integrated into undergraduate and graduate meteorology courses on instrumentation, measurement science, and observing systems to supplement traditional pedagogies and enhance blended instruction. These freely available and open-source training tools are designed to supplement traditional pedagogies and enhance blended instruction. Three of the modules are now available and address the theory and application of Instrument Performance Characteristics, Meteorological Temperature Instrumentation and Measurements, and Meteorological Pressure Instrumentation and Measurements. The content of these modules is of the highest caliber as it has been developed by scientists and engineers who are at the forefront of the field of observational science. Communicating the availability of these unique and influential educational resources with the community is of high priority. These modules will have a profound effect on the atmospheric observational sciences community by fulfilling a need for contemporary, interactive, multimedia guided education and training modules integrating the latest instructional design and assessment tools in observational science. Thousands of undergraduate and graduate students will benefit, while course instructors will value a set of high quality modules to use as supplements to their courses. The modules can serve as an alternative to observational research training and fill the void between field projects or assist those schools that lack the resources to stage a field- or laboratory-based instrumentation experience.
NASA Technical Reports Server (NTRS)
Packard, Edward A.
2004-01-01
This viewgraph presentation provides information on the design, construction, and operation of a cryogenic chamber, and its use in testing the Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST).
The James Webb Space Telescope Integrated Science Instrument Module
NASA Technical Reports Server (NTRS)
Greenhouse, Matthew A.; Sullivan, Pamela C.; Boyce, Leslye A.; Glazer, Stuart D.; Johnson, Eric L.; McCloskey, John C.; Voyton, Mark F.
2004-01-01
The Integrated Science Instrument Module of the James Webb Space Telescope is described from a systems perspective with emphasis on unique and advanced technology aspects. The major subsystems of this flight element are described including: structure, thermal, command and data handling, and software.
NASA Astrophysics Data System (ADS)
Rockwell, A.; Clark, R. D.; Stevermer, A.
2016-12-01
The study of observational science crosses all other subject areas and requires a new innovative paradigm: a collaboration of experts to create high quality, content-rich learning modules that will elevate the scientific literacy and technical competency of undergraduate and graduate students. This collaborative project will design, develop, and openly distribute a series of interactive, multimedia, online modules that can be effectively integrated into meteorology courses on instrumentation, measurement science, and observing systems to supplement traditional pedagogies and enhance blended instruction. The modules will address topics such as principles of instrumentation and measurement to the theory and practice of measuring a host of meteorological variables. The impact will have a profound effect on the atmospheric observational sciences community by fulfilling a need for contemporary, interactive, multimedia guided education and training modules integrating the latest instructional design and assessment tools in observational science. Thousands of undergraduate and graduate students will benefit, while course instructors will value a set of high quality modules to use as supplements to their courses. The modules can serve as an alternative to observational research training and fill the void between field projects or assist those schools that lack the resources to stage a field- or laboratory-based instrumentation experience. This project brings together the intellectual capital of the scientists and engineers of National Center for Atmospheric Research Earth Observing Laboratory as subject matter experts, the artistic talents and instructional design acumen of the COMET program, and the project leadership, vision, teaching expertise in instruments and observational science at Millersville University.
Status of the JWST Integrated Science Instrument Module
NASA Astrophysics Data System (ADS)
Greenhouse, Matthew A.; Dunn, Jamie; Kimble, Randy A.; Lambros, Scott; Lundquist, Ray; Rauscher, Bernard J.; Van Campen, Julie
2015-01-01
The James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) is the science instrument payload of the JWST. It is one of three system elements that comprise the JWST space vehicle. It consists of four science sensors, a fine guidance sensor, and nine other subsystems that support them. At 1.4 metric tons, it comprises approximately 20% of the JWST mass. The ISIM is currently at 100% integration and has completed 2 of 3 planned element-level space simulation tests. The ISIM is on schedule to be delivered for integration with the Optical Telescope Element during 2015. In this poster, we present an overview of the ISIM and its status.
The NGST Yardstick Integrated Science Instrument Module (ISIM) Feasibility Study
NASA Astrophysics Data System (ADS)
Greenhouse, M. A.; NGST ISIM Team
1999-05-01
The Next Generation Space Telescope (NGST) Integrated Science Instrument Module (ISIM) is a distributed system consisting of a cryogenic instrument module that is integrated with the Optical Telescope Assembly (OTA) and science processors, software, and other electronics located in the Space Support Module (SSM). The ISIM system provides structure, environment, and data handling for several modular science instruments as well as several components of the OTA optics train. An ISIM baseline design and feasibility study is ongoing at GSFC. This pre-Phase A design was developed for integration with the Yardstick NGST architecture and packaging in a 5 m class EELV fairing. The goals of this study are to: [1] demonstrate mission science feasibility, [2] assess ISIM engineering and cost feasibility, [3] identify ISIM technology challenge areas,and [4] enable smart customer procurement of the NGST. In depth results from this work beyond those displayed here can be found at: http://www701.gsfc.nasa.gov/isim/isim.htm The flight ISIM will be developed by a GSFC led IPT that includes members from the STScI and, during Phase A/B, will grow to include the NGST Prime Contractor, and science instrument development teams from European, Canadian , and US science communities. Science instruments will be competitively procured from the science community, and will be integrated into the ISIM by GSFC. The flight qualified ISIM will then be delivered by GSFC to the NGST Prime Contractor for observatory level integration. At the start of NGST Phase A (Spring 1999), two competing prime contractors will begin development of separate NGST architectures, and the ISIM IPT will develop two ISIM designs corresponding to these architectures. Down selection to a single design will occur during mid 2001. The ISIM team welcomes science community feedback. Contact the IPT lead: Matt Greenhouse: matt@stars.gsfc.nasa.gov.
NASA Technical Reports Server (NTRS)
Lundquist, Ray; Aymergen, Cagatay; VanCampen, Julie; Abell, James; Smith, Miles; Driggers, Phillip
2008-01-01
The Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST) provides the critical functions and the environment for the four science instruments on JWST. This complex system development across many international organizations presents unique challenges and unique solutions. Here we describe how the requirement flow has been coordinated through the documentation system, how the tools and processes are used to minimize impact to the development of the affected interfaces, how the system design has matured, how the design review process operates, and how the system implementation is managed through reporting to ensure a truly world class scientific instrument compliment is created as the final product.
Cryo-Vacuum Testing of the Integrated Science Instrument Module for the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Kimble, Randy A.; Davila, P. S.; Drury, M. P.; Glazer, S. D.; Krom, J. R.; Lundquist, R. A.; Mann, S. D.; McGuffey, D. B.; Perry, R. L.; Ramey, D. D.
2011-01-01
With delivery of the science instruments for the James Webb Space Telescope (JWST) to Goddard Space Flight Center (GSFC) expected in 2012, current plans call for the first cryo-vacuum test of the Integrated Science Instrument Module (ISIM) to be carried out at GSFC in early 2013. Plans are well underway for conducting this ambitious test, which will perform critical verifications of a number of optical, thermal, and operational requirements of the IS 1M hardware, at its deep cryogenic operating temperature. We describe here the facilities, goals, methods, and timeline for this important Integration & Test milestone in the JWST program.
NASA Technical Reports Server (NTRS)
Rohrbach, Scott O.; Kubalak, David A.; Gracey, Renee M.; Sabatke, Derek S.; Howard, Joseph M.; Telfer, Randal C.; Zielinski, Thomas P.
2016-01-01
This paper describes the critical instrument alignment terms associated with the six-degree of freedom alignment of each the Science Instrument (SI) in the James Webb Space Telescope (JWST), including focus, pupil shear, pupil clocking, and boresight. We present the test methods used during cryogenic-vacuum tests to directly measure the performance of each parameter, the requirements levied on each, and the impact of any violations of these requirements at the instrument and Observatory level.
NASA Technical Reports Server (NTRS)
Packard, Ed
2016-01-01
This presentation describes the test objectives, test summary, test configuration and test performance of the James Webb Space Telescope Integrated Science Instrument Module CryoVac 3 Thermal Vacuum Test. Verify the ISIM System in its final configuration after environmental exposure and provide a post-environmental performance baseline, including critical ground calibrations needed for science data processing in flight.
Thermal vacuum chamber repressurization with instrument purging
NASA Astrophysics Data System (ADS)
Woronowicz, Michael S.
2016-09-01
At the conclusion of cryogenic vacuum testing of the James Webb Space Telescope Optical Telescope Element Integrated Science Instrument Module (JWST-OTIS) in NASA Johnson Space Center's (JSCs) thermal vacuum (TV) Chamber A, contamination control (CC) engineers are postulating that chamber particulate material stirred up by the repressurization process may be kept from falling into the Integrated Science Instrument Module (ISIM) interior to some degree by activating instrument purge flows over some initial period before opening the chamber valves. This manuscript describes development of a series of models designed to describe this process. The models are strung together in tandem with a fictitious set of conditions to estimate overpressure evolution from which net outflow velocity behavior may be obtained. Creeping flow assumptions are then used to determine the maximum particle size that may be kept suspended above the ISIM aperture, keeping smaller particles from settling within the instrument module.
Thermal Vacuum Chamber Repressurization with Instrument Purging
NASA Technical Reports Server (NTRS)
Woronowicz, Michael S.
2014-01-01
At the conclusion of cryogenic vacuum testing of the James Webb Space Telescope Optical Telescope Element Integrated Science Instrument Module (JWST-OTIS) in NASA Johnson Space Center’s (JSCs) thermal vacuum (TV) Chamber A, contamination control (CC) engineers are postulating that chamber particulate material stirred up by the repressurization process may be kept from falling into the Integrated Science Instrument Module (ISIM) interior to some degree by activating instrument purge flows over some initial period before opening the chamber valves. This manuscript describes development of a series of models designed to describe this process. The models are strung together in tandem with a fictitious set of conditions to estimate overpressure evolution from which net outflow velocity behavior may be obtained. Creeping flow assumptions are then used to determine the maximum particle size that may be kept suspended above the ISIM aperture, keeping smaller particles from settling within the instrument module.
Status of the JWST Science Instrument Payload
NASA Technical Reports Server (NTRS)
Greenhouse, Matt
2016-01-01
The James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) system consists of five sensors (4 science): Mid-Infrared Instrument (MIRI), Near Infrared Imager and Slitless Spectrograph (NIRISS), Fine Guidance Sensor (FGS), Near InfraRed Camera (NIRCam), Near InfraRed Spectrograph (NIRSpec); and nine instrument support systems: Optical metering structure system, Electrical Harness System; Harness Radiator System, ISIM Electronics Compartment, ISIM Remote Services Unit, Cryogenic Thermal Control System, Command and Data Handling System, Flight Software System, Operations Scripts System.
NASA Technical Reports Server (NTRS)
Gracey, Renee; Bartoszyk, Andrew; Cofie, Emmanuel; Comber, Brian; Hartig, George; Howard, Joseph; Sabatke, Derek; Wenzel, Greg; Ohl, Raymond
2016-01-01
The James Webb Space Telescope includes the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. We performed extensive structural, thermal, and optical performance(STOP) modeling in support of all phases of ISIM development. In this paper, we focus on modeling and results associated with test and verification. ISIMs test program is bound by ground environments, mostly notably the 1g and test chamber thermal environments. This paper describes STOP modeling used to predict ISIM system performance in 0g and at various on-orbit temperature environments. The predictions are used to project results obtained during testing to on-orbit performance.
The development of a high-capacity instrument module heat transport system, appendixes
NASA Technical Reports Server (NTRS)
1981-01-01
Data sheets provide temperature requirements for 82 individual instruments that are under development or planned for grouping on a space platform or pallet. The scientific objectives of these instrument packages are related to solar physics, space plasma physics, astronomy, high energy astrophysics, resources observations, environmental observations, materials processing, and life sciences. System specifications are given for a high capacity instrument module heat transport system to be used with future payloads.
Russian contribution to the ExoMars project
NASA Astrophysics Data System (ADS)
Zelenyi, L.; Korablev, O.; Rodionov, D.; Khartov, V.; Martynov, M.; Lukyanchikov, A.
2014-04-01
The ExoMars ESA-led mission is dedicated to study of Mars and in particular its habitability. It consists of two launches, one planned in 2016 to deliver to Mars a telecommunication and science orbiter Trace Gas Orbiter (TGO) and a demonstrator of entry into the atmosphere and landing on the Mars surface, Entry, Descent and Landing Demonstrator Module (EDM). In 2018 a rover with drilling capability will be delivered to the surface of Mars. Since 2012 this mission, previously planned in cooperation with NASA is being developed in cooperation with Roscosmos. Both launches are planned with Proton-Breeze. In 2016 Russia contributes a significant part of the TGO science payload. In 2018 the landing will be provided by a joint effort capitalizing on the EDM technology. Russia contributes few science instruments for the rover, and leads the development of a long-living geophysical platform on the surface of Mars. Russian science instruments for TGO, the Atmospheric Chemistry Suite (ACS) and the Fine Resolution Epithermal Neutrons Detector (FREND) constituent a half of its scientific payload, European instrument being NOMAD for mapping and detection of trace species, and CASSIS camera for high-resolution mapping of target areas. The ACS package consists of three spectrometers covering spectral range from 0.7 to 17 μm with spectral resolving power reaching 50000. It is dedicated to studies of the composition of the Martian atmosphere and the Martian climate. FREND is a neutron detector with a collimation module, which significantly narrows the field of view of the instrument, allowing to create higher resolution maps of hydrogen-abundant regions on Mars. The spatial resolution of FREND will be ~40 km from the 400- km TGO orbit that is ~10 times better than HEND on Mars-Odyssey. Additionally, FREND includes a dosimeter module for monitoring radiation levels in orbit around Mars. In the 2018 mission, Russia takes the major responsibility of the descent module. The primary goal of the descent module consists of the delivery of the 300-kg rover on the surface. The full mass of the module should not exceed 2000 kg. An aerodynamic shield and a parachute system assure the entry phase. A descent scenario with integrated retro-propulsion engines and landing on feet is being developed. Subsystems of the descend module are supplied by both Roscosmos and ESA. On the rover, Russia contributes two science instruments. ADRON-RM is a passive neutron detector to assess water contents in the Mars surface along the rover track. ISEM is a pencil-beam infrared spectrometer mounted at the mast of the rover and is primarily dedicated for the assessment of mineralogical composition, operating in coordination with high-resolution channel of PANCAM. Both instruments will assist with planning rover traverse, rover targeting operations, and sample selection. A major effort of the Russian science is concentrated on the 2018 landing platform. This is the part of the descent module remaining immobile after the rover egress. The platform, or the longliving geophysical station shall have guaranteed lifetime of one Martian year, and will be able to accommodate up to 50 kg of science payload. The final list of science investigations, which is yet to be finalized, includes the meteorological station, instruments to analyse atmospheric composition, geophysical instruments. Other investigations will provide analyses of the surface/shallow subsurface material complimentary to these on the rover, and other experiments, if resources permit. Current status of the project and the developments will be presented
Cryo Testing of tbe James Webb Space Telescope's Integrated Science Instrument Module
NASA Technical Reports Server (NTRS)
VanCampen, Julie
2004-01-01
The Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope will be integrated and tested at the Environmental Test Facilities at Goddard Space Flight Center (GSFC). The cryogenic thermal vacuum testing of the ISIM will be the most difficult and problematic portion of the GSFC Integration and Test flow. The test is to validate the coupled interface of the science instruments and the ISIM structure and to sufficiently stress that interface while validating image quality of the science instruments. The instruments and the structure are not made from the same materials and have different CTE. Test objectives and verification rationale are currently being evaluated in Phase B of the project plan. The test program will encounter engineering challenges and limitations, which are derived by cost and technology many of which can be mitigated by facility upgrades, creative GSE, and thorough forethought. The cryogenic testing of the ISIM will involve a number of risks such as the implementation of unique metrology techniques, mechanical, electrical and optical simulators housed within the cryogenic vacuum environment. These potential risks are investigated and possible solutions are proposed.
Development and Sizing of the JWST Integrated Science Instrument Module (ISIM) Metering Structure
NASA Technical Reports Server (NTRS)
Johnston, John; Kunt, Cengiz; Bartoszyk, Andrew; Hendricks, Steve; Cofie, Emmanuel
2006-01-01
The JWST Integrated Science Instrument Module (ISIM) includes a large metering structure (approx. 2m x 2m x 1.5m) that houses the science instruments and guider. Stringent dimensional stability and repeatability requirements combined with mass limitations led to the selection of a composite bonded frame design comprised of biased laminate tubes. Even with the superb material specific stiffness, achieving the required frequency for the given mass allocations in conjunction with severe spatial limitations imposed by the instrument complement has proven challenging. In response to the challenge, the ISIM structure team considered literally over 100 primary structure topology and kinematic mount configurations, and settled on a concept comprised of over 70 m of tubes, over 50 bonded joint assemblies, and a "split bi-pod" kinematic mount configuration. In this paper, we review the evolution of the ISIM primary structure topology and kinematic mount configuration to the current baseline concept.
NASA Technical Reports Server (NTRS)
McCloskey, John
2016-01-01
This paper describes the electromagnetic compatibility (EMC) tests performed on the Integrated Science Instrument Module (ISIM), the science payload of the James Webb Space Telescope (JWST), at NASAs Goddard Space Flight Center (GSFC) in August 2015. By its very nature of being an integrated payload, it could be treated as neither a unit level test nor an integrated spacecraft/observatory test. Non-standard test criteria are described along with non-standard test methods that had to be developed in order to evaluate them. Results are presented to demonstrate that all test criteria were met in less than the time allocated.
Cryo-Vacuum Testing of the JWST Integrated Science Instrument Module
NASA Technical Reports Server (NTRS)
Kimble, Randy A.; Vila, M. Begona; Van Campen, Julie M.; Birkmann, Stephen M.; Comber, Brian J.; Fatig, Curtis C.; Glasse, Alistair C. H.; Glazer, Stuart D.; Kelly, Douglas M.; Mann, Steven D.;
2016-01-01
In late 2015 early 2016, a major cryo-vacuum test was carried out for the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope. This test comprised the final cryo-certification and calibration test of the ISIM before its delivery for integration with the rest of the JWST observatory. Over the roughly 100-day period of the round-the-clock test program, the full complement of ISIM flight instruments, structure, harness radiator, and electronics were put through a comprehensive program of thermal, optical, electrical, and operational tests. We briefly summarize the goals, setup, execution, and key results for this critical JWST milestone.
A Self Rating Scale as a Pre and Post Assessment Tool for Use with Instructional Modules.
ERIC Educational Resources Information Center
Gotts, Sandra Harris
This article describes a self rating pre- and post-assessment instrument that has been developed at the Central Michigan University (CMU). Nine instructional modules have been developed and are being used in science methods courses at CMU. Each module focuses on an identified area of competency for elementary science teachers and contains a…
NASA Astrophysics Data System (ADS)
Rohrbach, Scott O.; Irvin, Ryan G.; Seals, Lenward T.; Skelton, Dennis L.
2016-09-01
This paper describes an integrated stray light model of each Science Instrument (SI) in the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) and the Optical Telescope Element Simulator (OSIM), the light source used to characterize the performance of ISIM in cryogenic-vacuum tests at the Goddard Space Flight Center (GSFC). We present three cases where this stray light model was integral to solving questions that arose during the testing campaign - 1) ghosting and coherent diffraction from hardware surfaces in the Near Infrared Imager and Slitless Spectrograph (NIRISS) GR700XD grism mode, 2) ghost spots in the Near Infrared Camera (NIRCam) GRISM modes, and 3) scattering from knife edges of the NIRCam focal plane array masks.
Next Generation Space Telescope Integrated Science Module Data System
NASA Technical Reports Server (NTRS)
Schnurr, Richard G.; Greenhouse, Matthew A.; Jurotich, Matthew M.; Whitley, Raymond; Kalinowski, Keith J.; Love, Bruce W.; Travis, Jeffrey W.; Long, Knox S.
1999-01-01
The Data system for the Next Generation Space Telescope (NGST) Integrated Science Module (ISIM) is the primary data interface between the spacecraft, telescope, and science instrument systems. This poster includes block diagrams of the ISIM data system and its components derived during the pre-phase A Yardstick feasibility study. The poster details the hardware and software components used to acquire and process science data for the Yardstick instrument compliment, and depicts the baseline external interfaces to science instruments and other systems. This baseline data system is a fully redundant, high performance computing system. Each redundant computer contains three 150 MHz power PC processors. All processors execute a commercially available real time multi-tasking operating system supporting, preemptive multi-tasking, file management and network interfaces. These six processors in the system are networked together. The spacecraft interface baseline is an extension of the network, which links the six processors. The final selection for Processor busses, processor chips, network interfaces, and high-speed data interfaces will be made during mid 2002.
Cryogenic Pupil Alignment Test Architecture for Aberrated Pupil Images
NASA Technical Reports Server (NTRS)
Bos, Brent; Kubalak, David A.; Antonille, Scott; Ohl, Raymond; Hagopian, John G.
2009-01-01
A document describes cryogenic test architecture for the James Webb Space Telescope (JWST) integrated science instrument module (ISIM). The ISIM element primarily consists of a mechanical metering structure, three science instruments, and a fine guidance sensor. One of the critical optomechanical alignments is the co-registration of the optical telescope element (OTE) exit pupil with the entrance pupils of the ISIM instruments. The test architecture has been developed to verify that the ISIM element will be properly aligned with the nominal OTE exit pupil when the two elements come together. The architecture measures three of the most critical pupil degrees-of-freedom during optical testing of the ISIM element. The pupil measurement scheme makes use of specularly reflective pupil alignment references located inside the JWST instruments, ground support equipment that contains a pupil imaging module, an OTE simulator, and pupil viewing channels in two of the JWST flight instruments. Pupil alignment references (PARs) are introduced into the instrument, and their reflections are checked using the instrument's mirrors. After the pupil imaging module (PIM) captures a reflected PAR image, the image will be analyzed to determine the relative alignment offset. The instrument pupil alignment preferences are specularly reflective mirrors with non-reflective fiducials, which makes the test architecture feasible. The instrument channels have fairly large fields of view, allowing PAR tip/tilt tolerances on the order of 0.5deg.
Key Science Instrument Installed into Webb Structure
2013-05-03
A technician is installing the bolts that will hold the MIRI, or Mid-Infrared Instrument, to the composite Integrated Science Instrument Module (ISIM) structure, or the black frame. The MIRI is attached to a balance beam, called the Horizontal Integration Tool (HIT), hanging from a precision overhead crane. That's the same tool that Hubble engineers used to prepare hardware for its servicing missions. Photo Credit: NASA/Chris Gunn; Text Credit: NASA/Laura Betz ---- Engineers worked meticulously to implant the James Webb Space Telescope's Mid-Infrared Instrument into the ISIM, or Integrated Science Instrument Module, in the cleanroom at NASA's Goddard Space Flight Center in Greenbelt, Md. As the successor to NASA's Hubble Space Telescope, the Webb telescope will be the most powerful space telescope ever built. It will observe the most distant objects in the universe, provide images of the first galaxies formed and see unexplored planets around distant stars. For more information, visit: www.jwst.nasa.gov NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Cryo-vacuum testing of the JWST Integrated Science Instrument Module (SPIE)
NASA Technical Reports Server (NTRS)
Kimble, Randy A.; Vila, M. Begona; Van Campen, Julie; Birkmann, Stephan M.; Comber, Brian J.; Fatig, Curtis C.; Glasse, Alistair C. H.; Glazer, Stuart D.; Kelly, Douglas M.; Mann, Steven D.;
2016-01-01
In late 2015/early 2016, a major cryo-vacuum test was carried out for the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST). This test comprised the final cryo-certification and calibration test of the ISIM, after its ambient environmental test program (vibration, acoustics, EMI/EMC), and before its delivery for integration with the rest of the JWST observatory. Over the 108-day period of the round-the-clock test program, the full complement of ISIM flight instruments, structure, harness radiator, and electronics were put through a comprehensive program of thermal, optical, electrical, and operational tests. The test verified the health and excellent performance of the instruments and ISIM systems, proving the ISIM element's readiness for integration with the telescope. We report here on the context, goals, setup, execution, and key results for this critical JWST milestone.
NGST Yardstick Integrated Science Instrument Module (ISIM) Feasibility Study
NASA Astrophysics Data System (ADS)
Greenhouse, M. A.; Dipirro, M.; Federline, B.; Gardner, Jonathan P.; Guy, P.; Hagopian, J.; Hein, J.; Jurotich, M.; Lawrence, J.; Martineau, B.; Mather, J. C.; Mentzell, E.; Satyapal, S.; Stanley, D.; Teplitz, H. I.; Travis, J.; Bely, P.; Petro, L. D.; Stockman, P.; Burg, R.; Bitzel, R.
1998-12-01
We display portions of the baseline design concept for the NGST Integrated Science Instrument Module (ISIM). This ISIM design is under ongoing development for integration with the "Yardstick" and other NGST 8 m architectures that are intended for packaging in an EELV or Ariane 5 meter class fairing. The goals of this activity are to: [1] demonstrate mission science feasibility, [2] identify ISIM technology challenge areas, [3] assess ISIM engineering and cost feasibility, [5] identify ISIM/NGST interface constraints, and [6] enable smart customer procurement of the ISIM. In this poster, we display a snap shot of work in progress including: optical design, opto-mechanical layout, thermal modeling, focal plane array design, and electronics design. Ongoing progress can be monitored via ISIM team web site: http://ngst.gsfc.nasa.gov/
Optical Alignment of the JWST ISIM to the OTE Simulator (OSIM): Current Concept and Design Studies
NASA Technical Reports Server (NTRS)
Frey, Bradley J.; Davila, Pamela S.; Marsh, James M.; Ohl, Raymond G.; Sullivan, Joseph
2007-01-01
The James Webb Space Telescope's (JWST) Integrated Science Instrument Module (ISIM) is the scientific payload of the observatory and contai ns four science instruments. During alignment and test of the integrated ISIM (i.e. ISIM + science instruments) at NASA's Goddard Space Fli ght Center (GSFC), the Optical telescope element SIMulator (OSIM) wil l be used to optically stimulate the science instruments to verify their operation and performance. In this paper we present the design of two cryogenic alignment fixtures that will be used to determine and verify the proper alignment of OSIM to ISIM during testing at GSFC. The se fixtures, the Master Alignment Target Fixture (MATF) and the ISIM Alignment Target Fixture (IATF), will provide continuous, 6 degree of freedom feedback to OSIM during initial ambient alignment as well as during cryogenic vacuum testing.
NASA Technical Reports Server (NTRS)
Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.
2016-01-01
The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES). In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing (also known as phase retrieval), and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) plate scale measurements made using a Pseudo-Nonredundant Mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated andor rotated across the exit pupil of the system.Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the uncertainties of the wavefront error maps.
NASA Technical Reports Server (NTRS)
Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.
2016-01-01
The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES) test chamber. In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing, and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) F-number and pupil-distortion measurements made using a pseudo-nonredundant mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated and/or rotated across the exit pupil of the system. Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the uncertainties of the wavefront-error maps.
Science Instrument Sensitivities to Radioisotope Power System Environment
NASA Technical Reports Server (NTRS)
Bairstow, Brian; Lee, Young; Smythe, William; Zakrajsek, June
2016-01-01
Radioisotope Power Systems (RPS) have been and will be enabling or significantly enhancing for many missions, including several concepts identified in the 2011 Planetary Science Decadal Survey. Some mission planners and science investigators might have concerns about possible impacts from RPS-induced conditions upon the scientific capabilities of their mission concepts. To alleviate these concerns, this paper looks at existing and potential future RPS designs, and examines their potential radiation, thermal, vibration, electromagnetic interference (EMI), and magnetic fields impacts on representative science instruments and science measurements. Radiation impacts from RPS on science instruments are of potential concern for instruments with optical detectors and instruments with high-voltage electronics. The two main areas of concern are noise effects on the instrument measurements, and long-term effects of instrument damage. While RPS by their nature will contribute to total radiation dose, their addition for most missions should be relatively small. For example, the gamma dose rate from one Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) would be an order of magnitude lower than the environmental dose rate at Mars, and would have a correspondingly lower contribution to instrument noise and to any permanent damage to payload sensors. Increasing the number of General Purpose Heat Source (GPHS) modules used in an RPS would be expected to increase the generated radiation proportionally; however, the effect of more GPHS modules is mitigated from a strictly linear relationship by self-shielding effects. The radiation field of an RPS is anisotropic due to the deviation of the modules from a point-source-geometry. For particularly sensitive instruments the total radiation dose could be mitigated with separation or application of spot shielding. Though a new, higher-power RPS could generate more heat per unit than current designs, thermal impact to the flight system could be mitigated with shading and pointing if required by the mission. Alternatively, excess heat could prove beneficial in providing needed heat to spacecraft components and instruments in some thermal environments. Vibration for a new higher-power Stirling Radioisotope Generator (SRG) would be expected to be similar to the recent Advanced Stirling Radioisotope Generator (ASRG) design. While vibration should be low, it must be considered and addressed during spacecraft and instrument design. EMI and magnetic fields for new RPS concepts are expected to be low as for the current RPS, but must be considered and addressed if the mission includes sensitive instruments such as magnetometers. The assessment conducted for this paper focused on orbiter instrument payloads for two representative mission concepts- a Titan Saturn System Mission (TSSM) and a Uranus Orbiter and Probe (UOP)-since both of these Decadal Survey concepts would include many diverse instruments on board. Quick-look design studies using notional new RPS concepts were carried out for these two mission concepts, and their specific instrument packages were analyzed for their interactions with new RPS designs. The original Decadal Survey TSSM and UOP concepts did not have complete instrument performance requirements so typical measurement requirements were used where needed. Then, the general RPS environments were evaluated for impacts to various types of instruments. This paper describes how the potential impacts of the RPS on science instruments and measurements were assessed, which impacts were addressed, proposed mitigation strategies against those impacts, and provides an overview of future work.
NASA Technical Reports Server (NTRS)
Feinberg, Lee; Voyton, Mark; Lander, Julie; Keski-Kuha, Ritva; Matthews, Gary
2016-01-01
The James Webb Space Telescope Optical Telescope Element (OTE) and Integrated ScienceInstrument Module (ISIM)are integrated together to form the OTIS. Once integrated, the OTIS undergoes primary mirrorcenter of curvatureoptical tests, electrical and operational tests, acoustics and vibration testing at the Goddard SpaceFlight Center beforebeing shipped to the Johnson Space Center for cryogenic optical testing of the OTIS. In preparationfor the cryogenicoptical testing, the JWST project has built a Pathfinder telescope and has completed two OpticalGround SystemEquipment (OGSE) cryogenic optical tests with the Pathfinder. In this paper, we will summarize opticaltest results todate and status the final Pathfinder test and the OTIS integration and environmental test preparations
NASA Technical Reports Server (NTRS)
Sullivan, D. V.
2015-01-01
The Link Module described in this paper was developed for the NASA Uninhabited Aerial System (UAS) Global Hawk Pacific Mission (GloPAC) Airborne Science Campaign; four flights of 30 hour duration, supporting the Aura Validation Experiment (AVE). It was used again during the Genesis and Rapid Intensification Processes (GRIP) experiment, a NASA Earth Science field experiment to better understand how tropical storms form and develop into major hurricanes. In these missions, the Link Module negotiated all communication over the high bandwidth Ku satellite link, archived all the science data from onboard experiments in a spatially enabled database, routed command and control of the instruments from the Global Hawk Operations Center, and re-transmitted select data sets directly to experimenters control and analysis systems. The availability of aggregated information from collections of sensors, and remote control capabilities, in real-time, is revolutionizing the way Airborne Science is being conducted. The Link Module NG now being flown in support of the NASA Earth Venture missions, the Hurricane and Severe Storm Sentinel (HS3) mission, and Airborne Tropical Tropopause Experiment (A TTREX) mission, has advanced data fusion technologies that are further advancing the Scientific productivity, flexibility and robustness of these systems. On-the-fly traffic shaping has been developed to allow the high definition video, used for critical flight control segments, to dynamically allocate variable bandwidth on demand. Historically, the Link Module evolved from the instrument and communication interface controller used by NASA's Pathfinder and Pathfinder plus solar powered UAS's in the late 1990' s. It later was expanded for use in the AIRDAS four channel scanner flown on the NASA Altus UAS, and then again to a module in the AMS twelve channel multispectral scanner flying on the NASA (Predator-b) Ikhana UAS. The current system is the answer to the challenges imposed by extremely long duration UASs, with on-board multi-instrument (>= 12) Sensor Webs.
NASA Technical Reports Server (NTRS)
Drury, Michael; Becker, Neil; Bos, Brent; Davila, Pamela; Frey, Bradley; Hylan, Jason; Marsh, James; McGuffey, Douglas; Novak, Maria; Ohl, Raymond;
2007-01-01
The James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (approx.40K). The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The SIs and Guider are mounted to a composite metering structure with outer dimensions of 2.1x2.2x1.9m. The SI and Guider units are integrated to the ISIM structure and optically tested at NASA/Goddard Space Flight Center as an instrument suite using a high-fidelity, cryogenic JWST telescope simulator that features a 1.5m diameter powered mirror. The SIs are integrated and aligned to the structure under ambient, clean room conditions. SI performance, including focus, pupil shear and wavefront error, is evaluated at the operating temperature. We present an overview of the ISIM integration within the context of Observatory-level construction. We describe the integration and verification plan for the ISIM element, including an overview of our incremental verification approach, ambient mechanical integration and test plans and optical alignment and cryogenic test plans. We describe key ground support equipment and facilities.
NASA Technical Reports Server (NTRS)
Glazer, Stuart; Comber, Brian (Inventor)
2016-01-01
The James Webb Space Telescope is a large infrared telescope with a 6.5-meter primary mirror, designed as a successor to the Hubble Space Telescope when launched in 2018. Three of the four science instruments contained within the Integrated Science Instrument Module (ISIM) are passively cooled to their operational temperature range of 36K to 40K with radiators, and the fourth instrument is actively cooled to its operational temperature of approximately 6K. Thermal-vacuum testing of the flight science instruments at the ISIM element level has taken place in three separate highly challenging and extremely complex thermal tests within a gaseous helium-cooled shroud inside Goddard Space Flight Centers Space Environment Simulator. Special data acquisition software was developed for these tests to monitor over 1700 flight and test sensor measurements, track over 50 gradients, component rates, and temperature limits in real time against defined constraints and limitations, and guide the complex transition from ambient to final cryogenic temperatures and back. This extremely flexible system has proven highly successful in safeguarding the nearly $2B science payload during the 3.5-month-long thermal tests. Heat flow measurement instrumentation, or Q-meters, were also specially developed for these tests. These devices provide thermal boundaries o the flight hardware while measuring instrument heat loads up to 600 mW with an estimated uncertainty of 2 mW in test, enabling accurate thermal model correlation, hardware design validation, and workmanship verification. The high accuracy heat load measurements provided first evidence of a potentially serious hardware design issue that was subsequently corrected. This paper provides an overview of the ISIM-level thermal-vacuum tests and thermal objectives; explains the thermal test configuration and thermal balances; describes special measurement instrumentation and monitoring and control software; presents key test thermal results; lists problems encountered during testing and lessons learned.
First Cryo-Vacuum Test of the JWST Integrated Science Instrument Module
NASA Astrophysics Data System (ADS)
Kimble, Randy A.; Antonille, S. R.; Balzano, V.; Comber, B. J.; Davila, P. S.; Drury, M. D.; Glasse, A.; Glazer, S. D.; Lundquist, R.; Mann, S. D.; McGuffey, D. B.; Novo-Gradac, K. J.; Penanen, K.; Ramey, D. D.; Sullivan, J.; Van Campen, J.; Vila, M. B.
2014-01-01
The integration and test program for the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) calls for three cryo-vacuum tests of the ISIM hardware. The first is a risk-reduction test aimed at checking out the test hardware and procedures; this will be followed by two formal verification tests that will bracket other key aspects of the environmental test program (e.g. vibration and acoustics, EMI/EMC). The first of these cryo-vacuum tests, the risk-reduction test, was executed at NASA’s Goddard Space Flight Center starting in late August, 2013. Flight hardware under test included two (of the eventual four) flight instruments, the Mid-Infrared Instrument (MIRI) and the Fine Guidance Sensor/Near-Infrared Imager and Slitless Spectrograph (FGS/NIRISS), mounted to the ISIM structure, as well as the ISIM Electronics Compartment (IEC). The instruments were cooled to their flight operating temperatures 40K for FGS/NIRISS, ~6K for MIRI) and optically tested against a cryo-certified telescope simulator. Key goals for the risk reduction test included: 1) demonstration of controlled cooldown and warmup, stable control at operating temperature, and measurement of heat loads, 2) operation of the science instruments with ISIM electronics systems at temperature, 3) health trending of the science instruments against instrument-level test results, 4) measurement of the pupil positions and six degree of freedom alignment of the science instruments against the simulated telescope focal surface, 5) detailed optical characterization of the NIRISS instrument, 6) verification of the signal-to-noise performance of the MIRI, and 7) exercise of the Onboard Script System that will be used to operate the instruments in flight. In addition, the execution of the test is expected to yield invaluable logistical experience - development and execution of procedures, communications, analysis of results - that will greatly benefit the subsequent verification tests. At the time of this submission, the hardware had reached operating temperature and was partway through the cryo test program. We report here on the test configuration, the overall process, and the results that were ultimately obtained.
NASA Technical Reports Server (NTRS)
Malumuth, Eliot; Birkmann, Stephan; Kelly, Douglas M.; Kimble, Randy A.; Lindler, Don; Martel, Andre; Ohl, Raymond G.; Rieke, Marcia J.; Rowlands, Neil; Te Plate, Maurice
2016-01-01
Data were obtained for the purpose of measuring the relative throughput of the Near-IR Science Instruments (SIs) of the James Webb Space Telescope (JWST) as part of the second and third cryogenic-vacuum tests (CV2CV3) of the Integrated Science Instrument Module (ISIM) conducted at the Goddard Space Flight Center (GSFC) in 2014 and 20152016, at the beginning and end of the environmental test program, respectively. This Poster focuses on data obtained as part of the Initial Optical Baseline and as part of the Final Performance test -- two epochs that roughly bracket the CV3 test. The purpose of the test is to trend relative throughput to monitor for any potential changes from gross problems such as contamination or degradation of an optical element. Point source data were taken at a variety of wavelengths for NIRCam Module A and Module B, NIRSpec, NIRISS, Guider 1 and Guider 2 using the Laser Diode (LD) 1.06 micron, LD 1.55 micron, 2.1 micron LED and 3.5 micron LED, as well as for NIRCam Mod A and B and NIRISS using a tungsten source and the F277W, and F480M filters. Spectra were taken using the G140M, G235M, and G395M gratings for NIRSpec, the GRISMR grism for NIRCam Mod A and B and the GR150C grism for NIRISS. The results of these measurements are compared to what would be expected given the efficiency of each of the optical elements in each SI. Although these data were taken as a check against gross problems, they can also be used to provide the first relative throughput estimate for each SI through the various filters source wavelengths measured in their flight-like configurations.
NASA Technical Reports Server (NTRS)
Feinberg, Lee; Voyton, Mark; Lander, Juli; Keski-Kuha, Ritva; Matthews, Gary
2016-01-01
The James Webb Space Telescope Optical Telescope Element (OTE) and Integrated Science Instrument Module (ISIM) are integrated together to form the OTIS. Once integrated, the OTIS undergoes primary mirror center of curvature optical tests, electrical and operational tests, acoustics and vibration testing at the Goddard Space Flight Center before being shipped to the Johnson Space Center for cryogenic optical testing of the OTIS. In preparation for the cryogenic optical testing, the JWST project has built a Pathfinder telescope and has completed two Optical Ground System Equipment (OGSE) cryogenic optical tests with the Pathfinder. In this paper, we will summarize optical test results to date and status the final Pathfinder test and the OTIS integration and environmental test preparations
NASA Astrophysics Data System (ADS)
Maszkiewicz, Michael
2017-11-01
The James Webb Space Telescope (JWST) is a 6.5 m diameter deployable telescope that will orbit the L2 Earth-Sun point beginning in 2018. NASA is leading the development of the JWST mission with their partners, the European Space Agency and the Canadian Space Agency. The Canadian contribution to the mission is the Fine Guidance Sensor (FGS). Originally, the FGS incorporated a flexible narrow spectral band science imaging capability in the form of the Tunable Filter Imaging Module -TFI, based on a scanning Fabry-Perot etalon. In the course of building and testing of the TFI flight model, numerous technical issues arose with unforeseeable length of required mitigation effort. In addition to that, emerging new science priorities caused that in summer of 2011 a decision was taken to replace TFI with a new instrument called Near Infrared Imager and Slitless Spectrograph (NIRISS). NIRISS preserves most of the TFI opto-mechanical design: focusing mirror, collimator and camera TMA telescopes, dual filter and pupil wheel and detectors but, instead of a tunable etalon, uses set of filters and grisms for wavelength selection and dispersion. The FGS-Guider and NIRISS have completed their instrument-level cryogenic testing and were delivered to NASA Goddard in late July 2012 for incorporation into the Integrated Science Instrument Module (ISIM).
Sample Analysis at Mars Instrument Simulator
NASA Technical Reports Server (NTRS)
Benna, Mehdi; Nolan, Tom
2013-01-01
The Sample Analysis at Mars Instrument Simulator (SAMSIM) is a numerical model dedicated to plan and validate operations of the Sample Analysis at Mars (SAM) instrument on the surface of Mars. The SAM instrument suite, currently operating on the Mars Science Laboratory (MSL), is an analytical laboratory designed to investigate the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples. SAMSIM was developed using Matlab and Simulink libraries of MathWorks Inc. to provide MSL mission planners with accurate predictions of the instrument electrical, thermal, mechanical, and fluid responses to scripted commands. This tool is a first example of a multi-purpose, full-scale numerical modeling of a flight instrument with the purpose of supplementing or even eliminating entirely the need for a hardware engineer model during instrument development and operation. SAMSIM simulates the complex interactions that occur between the instrument Command and Data Handling unit (C&DH) and all subsystems during the execution of experiment sequences. A typical SAM experiment takes many hours to complete and involves hundreds of components. During the simulation, the electrical, mechanical, thermal, and gas dynamics states of each hardware component are accurately modeled and propagated within the simulation environment at faster than real time. This allows the simulation, in just a few minutes, of experiment sequences that takes many hours to execute on the real instrument. The SAMSIM model is divided into five distinct but interacting modules: software, mechanical, thermal, gas flow, and electrical modules. The software module simulates the instrument C&DH by executing a customized version of the instrument flight software in a Matlab environment. The inputs and outputs to this synthetic C&DH are mapped to virtual sensors and command lines that mimic in their structure and connectivity the layout of the instrument harnesses. This module executes, and thus validates, complex command scripts prior to their up-linking to the SAM instrument. As an output, this module generates synthetic data and message logs at a rate that is similar to the actual instrument.
NASA Technical Reports Server (NTRS)
Coulter, Phillip; Beaton, Alexander; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hayden, Joseph E.; Hummel, Susann; Hylan, Jason E.; Lee, David; Madison, Timothy J.; Maszkiewicz, Michael;
2014-01-01
The James Webb Space Telescope science instruments are in the final stages of being integrated into the Integrated Science Instrument Module (ISIM) element. Each instrument is tied into a common coordinate system through mechanical references that are used for optical alignment and metrology within ISIM after element-level assembly. In addition, a set of ground support equipment (GSE) consisting of large, precisely calibrated, ambient, and cryogenic structures are used as alignment references and gauges during various phases of integration and test (I&T). This GSE, the flight instruments, and ISIM structure feature different types of complimentary metrology targeting. These GSE targets are used to establish and track six degrees of freedom instrument alignment during I&T in the vehicle coordinate system (VCS). This paper describes the optomechanical metrology conducted during science instrument integration and alignment in the Spacecraft Systems Development and Integration Facility (SSDIF) cleanroom at NASA Goddard Space Flight Center (GSFC). The measurement of each instrument's ambient entrance pupil location in the telescope coordinate system is discussed. The construction of the database of target locations and the development of metrology uncertainties is also discussed.
Manufacturing and Integration Status of the JWST OSIM Optical Simulator
NASA Technical Reports Server (NTRS)
Sullivan, Joe; Eichhorn, William; vonHandorf, Rob; Sabatke, Derek; Barr, Nick; Nyquist, Rich; Pederson, Bob; Bennett, Rick; Volmer, Paul; Happs, Dave;
2010-01-01
OSIM is a full field, cryogenic, optical simulator of the James Webb Space Telescope (JWST) Optical Telescope Element (OTE). It provides simulated point source/star images for optical performance testing of the JWST Integrated Science Instrument Module (ISIM). OSIM is currently being assembled at the Goddard Space Flight Center (GSFC). In this paper, we describe the capabilities, design, manufacturing and integration status, and uses of the OSIM during the optical test program of ISIM and the Science Instruments. Where applicable, the ISIM tests are also described.
Spacelab Accomplishments Forum 4
NASA Technical Reports Server (NTRS)
Emond, J. (Editor); Bennet, N. (Compiler); McCauley, D. (Compiler); Murphy, K. (Compiler); Baugher, Charles R. (Technical Monitor)
1999-01-01
The Spacelab Module, exposed platforms, and supporting instrumentation were designed and developed by the European Space Agency to house advanced experiments inside the Space Shuttle cargo bay. The Spacelab program has hosted a cross-disciplinary research agenda over a 17-year flight history. Several variations of Spacelab were used to host payloads for almost every space research discipline that NASA pursues-life sciences, microgravity research, space sciences, and earth observation studies. After seventeen years of flight, Spacelab modules, pallets, or variations thereof flew on the Shuttle 36 times for a total of 375 flight days.
Thermal Vacuum Chamber Repressurization with Instrument Purging
NASA Technical Reports Server (NTRS)
Woronowicz, Michael
2016-01-01
At the end of James Webb Space Telescope (JWST) OTIS (Optical Telescope Element-OTE-Integrated Science Instrument Module-ISIM) cryogenic vacuum testing in NASA Johnson Space Centers (JSCs) thermal vacuum (TV) Chamber A, contamination control (CC) engineers are mooting the idea that chamber particulate material stirred up by the repressurization process may be kept from falling into the ISIM interior to some degree by activating instrument purge flows over some initial period before opening the chamber valves. This memo describes development of a series of models designed to describe this process. These are strung together in tandem to estimate overpressure evolution from which net outflow velocity behavior may be obtained. Creeping flow assumptions are then used to determine the maximum particle size that may be kept suspended above the ISIM aperture, keeping smaller particles from settling within the instrument module.
Thermal Vacuum Chamber Repressurization with Instrument Purging
NASA Technical Reports Server (NTRS)
Woronowicz, Michael
2017-01-01
At the end of James Webb Space Telescope (JWST) OTIS (Optical Telescope Element-OTE-Integrated Science Instrument Module-ISIM) cryogenic vacuum testing in NASA Johnson Space Centers (JSCs) thermal vacuum (TV) Chamber A, contamination control (CC) engineers are mooting the idea that chamber particulate material stirred up by the repressurization process may be kept from falling into the ISIM interior to some degree by activating instrument purge flows over some initial period before opening the chamber valves. This memo describes development of a series of models designed to describe this process. These are strung together in tandem to estimate overpressure evolution from which net outflow velocity behavior may be obtained. Creeping flow assumptions are then used to determine the maximum particle size that may be kept suspended above the ISIM aperture, keeping smaller particles from settling within the instrument module.
NASA Technical Reports Server (NTRS)
Mitchell, Alissa; Capon, Thomas; Guzek, Jeffrey; Hakun, Claef; Haney, Paul; Koca, Corina
2014-01-01
Calibration and testing of the instruments on the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) is being performed by the use of a cryogenic, full-field, optical simulator that was constructed for this purpose. The Pupil Select Mechanism (PSM) assembly is one of several mechanisms and optical elements that compose the Optical Telescope Element SIMulator, or OSIM. The PSM allows for several optical elements to be inserted into the optical plane of OSIM, introducing a variety of aberrations, distortions, obscurations, and other calibration states into the pupil plane. The following discussion focuses on the details of the design evolution, analysis, build, and test of this mechanism along with the challenges associated with creating a sub arc-minute positioning mechanism operating in an extreme cryogenic environment. In addition, difficult challenges in the control system design will be discussed including the incorporation of closed-loop feedback control into a system that was designed to operate in an open-loop fashion.
NASA Technical Reports Server (NTRS)
Mitchell, Alissa; Capon, Thomas; Guzek, Jeffrey; Hakun, Claef; Haney, Paul; Koca, Corina
2014-01-01
Calibration and testing of the instruments on the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) is being performed by the use of a cryogenic, full-field, optical simulator that was constructed for this purpose. The Pupil Select Mechanism (PSM) assembly is one of several mechanisms and optical elements that compose the Optical Telescope Element SIMulator, or OSIM. The PSM allows for several optical elements to be inserted into the optical plane of OSIM, introducing a variety of aberrations, distortions, obscurations, and other calibration states into the pupil plane. The following discussion focuses on the details of the design evolution, analysis, build, and test of this mechanism along with the challenges associated with creating a sub arc-minute positioning mechanism operating in an extreme cryogenic environment. In addition, difficult challenges in the control system design will be discussed including the incorporation of closed-loop feedback control into a system that was designed to operate in an open-loop fashion.
An Information NEXUS: The NASA Global Hawk Link Module
NASA Technical Reports Server (NTRS)
Sullivan, D. V.
2012-01-01
The Link Module described in this paper was first developed for the NASA Global Hawk Pacific Mission (GloPAC), four flights of 30 hour duration, supporting the Aura Validation Experiment (AVE). Its second use was during the Genesis and Rapid Intensification Processes (GRIP) experiment, a NASA Earth Science field experiment to better understand how tropical storms form and develop into major hurricanes. In these missions, the Link module negotiated all communication over the high bandwidth Ku satellite link, archived al the science data from onboard experiments in a spatially enable database, routed command and control of the instruments from the Global Hawk Operations Center, and retransmitted select data sets directly to experimenters control and analysis systems. The availability of aggregated information from collections of sensors, and remote control capabilities, in real-time, is revolutionizing the way Airborne Science is being conducted. Also described is the next generation Link Module now being designed and tested to support the NASA Earth Venture missions, the Hurricane and Severe Storm Sentinel (HS3) mission, and Airborne Tropical Tropopause Experiment (ATTREX) mission. Advanced data fusion technologies being developed will further advance the Scientific productivity, flexibility and robustness of these systems. Historically, the Link module evolved from the instrument and communication interface controller used by NASA's Pathfinder and Pathfinder plus solar powered UAS's in the late 1990's. It later was expanded for use in the AIRDAS four channel scanner flown on the NASA Altus UAS, and then again to a module in the AMS twelve channel multispectral scanner flying on the NASA (Predator-b) Ikhana UAS. The current system is the next step in the evolution, a multi board system packaged in a Curtiss Wright MIL-spec, flight qualified enclosure.
Unresolved Galaxy Classifier for ESA/Gaia mission: Support Vector Machines approach
NASA Astrophysics Data System (ADS)
Bellas-Velidis, Ioannis; Kontizas, Mary; Dapergolas, Anastasios; Livanou, Evdokia; Kontizas, Evangelos; Karampelas, Antonios
A software package Unresolved Galaxy Classifier (UGC) is being developed for the ground-based pipeline of ESA's Gaia mission. It aims to provide an automated taxonomic classification and specific parameters estimation analyzing Gaia BP/RP instrument low-dispersion spectra of unresolved galaxies. The UGC algorithm is based on a supervised learning technique, the Support Vector Machines (SVM). The software is implemented in Java as two separate modules. An offline learning module provides functions for SVM-models training. Once trained, the set of models can be repeatedly applied to unknown galaxy spectra by the pipeline's application module. A library of galaxy models synthetic spectra, simulated for the BP/RP instrument, is used to train and test the modules. Science tests show a very good classification performance of UGC and relatively good regression performance, except for some of the parameters. Possible approaches to improve the performance are discussed.
NASA Astrophysics Data System (ADS)
Racca, Giuseppe D.; Laureijs, René; Stagnaro, Luca; Salvignol, Jean-Christophe; Lorenzo Alvarez, José; Saavedra Criado, Gonzalo; Gaspar Venancio, Luis; Short, Alex; Strada, Paolo; Bönke, Tobias; Colombo, Cyril; Calvi, Adriano; Maiorano, Elena; Piersanti, Osvaldo; Prezelus, Sylvain; Rosato, Pierluigi; Pinel, Jacques; Rozemeijer, Hans; Lesna, Valentina; Musi, Paolo; Sias, Marco; Anselmi, Alberto; Cazaubiel, Vincent; Vaillon, Ludovic; Mellier, Yannick; Amiaux, Jérôme; Berthé, Michel; Sauvage, Marc; Azzollini, Ruyman; Cropper, Mark; Pottinger, Sabrina; Jahnke, Knud; Ealet, Anne; Maciaszek, Thierry; Pasian, Fabio; Zacchei, Andrea; Scaramella, Roberto; Hoar, John; Kohley, Ralf; Vavrek, Roland; Rudolph, Andreas; Schmidt, Micha
2016-07-01
Euclid is a space-based optical/near-infrared survey mission of the European Space Agency (ESA) to investigate the nature of dark energy, dark matter and gravity by observing the geometry of the Universe and on the formation of structures over cosmological timescales. Euclid will use two probes of the signature of dark matter and energy: Weak gravitational Lensing, which requires the measurement of the shape and photometric redshifts of distant galaxies, and Galaxy Clustering, based on the measurement of the 3-dimensional distribution of galaxies through their spectroscopic redshifts. The mission is scheduled for launch in 2020 and is designed for 6 years of nominal survey operations. The Euclid Spacecraft is composed of a Service Module and a Payload Module. The Service Module comprises all the conventional spacecraft subsystems, the instruments warm electronics units, the sun shield and the solar arrays. In particular the Service Module provides the extremely challenging pointing accuracy required by the scientific objectives. The Payload Module consists of a 1.2 m three-mirror Korsch type telescope and of two instruments, the visible imager and the near-infrared spectro-photometer, both covering a large common field-of-view enabling to survey more than 35% of the entire sky. All sensor data are downlinked using K-band transmission and processed by a dedicated ground segment for science data processing. The Euclid data and catalogues will be made available to the public at the ESA Science Data Centre.
NASA Technical Reports Server (NTRS)
Yew, Calinda; Whitehouse, Paul; Lui, Yan; Banks, Kimberly
2016-01-01
JWST Integrated Science Instruments Module (ISIM) has completed its system-level testing program at the NASA Goddard Space Flight Center (GSFC). In March 2016, ISIM was successfully delivered for integration with the Optical Telescope Element (OTE) after the successful verification of the system through a series of three cryo-vacuum (CV) tests. The first test served as a risk reduction test; the second test provided the initial verification of the fully-integrated flight instruments; and the third test verified the system in its final flight configuration. The complexity of the mission has generated challenging requirements that demand highly reliable system performance and capabilities from the Space Environment Simulator (SES) vacuum chamber. As JWST progressed through its CV testing campaign, deficiencies in the test configuration and support equipment were uncovered from one test to the next. Subsequent upgrades and modifications were implemented to improve the facility support capabilities required to achieve test requirements. This paper: (1) provides an overview of the integrated mechanical and thermal facility systems required to achieve the objectives of JWST ISIM testing, (2) compares the overall facility performance and instrumentation results from the three ISIM CV tests, and (3) summarizes lessons learned from the ISIM testing campaign.
NASA Technical Reports Server (NTRS)
Yew, Calinda; Lui, Yan; Whitehouse, Paul; Banks, Kimberly
2016-01-01
JWST Integrated Science Instruments Module (ISIM) completed its system-level space simulation testing program at the NASA Goddard Space Flight Center (GSFC). In March 2016, ISIM was successfully delivered to the next level of integration with the Optical Telescope Element (OTE), to form OTIS (OTE + ISIM), after concluding a series of three cryo-vacuum (CV) tests. During these tests, the complexity of the mission has generated challenging requirements that demand highly reliable system performance and capabilities from the Space Environment Simulator (SES) vacuum chamber. The first test served as a risk reduction test; the second test provided the initial verification of the fully-integrated flight instruments; and the third test verified the system in its final flight configuration following mechanical environmental tests (vibration and acoustics). From one test to the next, shortcomings of the facility were uncovered and associated improvements in operational capabilities and reliability of the facility were required to enable the project to verify system-level requirements. This paper: (1) provides an overview of the integrated mechanical and thermal facility systems required to achieve the objectives of JWST ISIM testing, (2) compares the overall facility performance and instrumentation results from the three ISIM CV tests, and (3) summarizes lessons learned from the ISIM testing campaign.
1991-01-01
In this photograph, Dr. Gerald Fishman of the Marshall Space Flight Center (MSFC), a principal investigator of the Compton Gamma-Ray Observatory's (GRO's) instrument, the Burst and Transient Source Experiment (BATSE), works on the BATSE detector module. For nearly 9 years, GRO's BATSE, designed and built by MSFC, kept an unblinking watch on the universe to alert scientist to the invisible, mysterious gamma-ray bursts. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of star, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. Because gamma-rays are so powerful, they pass through conventional telescope mirrors. Instead of a mirror, the heart of each BATSE module was a large, flat, transparent crystal that generated a tiny flash of light when struck by a gamma-ray. With an impressive list of discoveries and diverse accomplishments, BATSE could claim to have rewritten astronomy textbooks. Launched aboard the Space Shuttle Orbiter Atlantis during the STS-35 mission in April 1991, the GRO reentered the Earth's atmosphere and ended its successful 9-year mission in June 2000.
Thermal Design, Analysis, and Testing of the Quench Module Insert Bread Board
NASA Technical Reports Server (NTRS)
Breeding, Shawn; Khodabandeh, Julia
2002-01-01
Contents include the following: Quench Module Insert (QMI) science requirements. QMI interfaces. QMI design layout. QMI thermal analysis and design methodology. QMI bread board testing and instrumentation approach. QMI thermal probe design parameters. Design features for gradient measurement. Design features for heated zone measurements. Thermal gradient analysis results. Heated zone analysis results. Bread board thermal probe layout. QMI bread board correlation and performance. Summary and conclusions.
End-to-end simulations of the visible tunable filter for the Daniel K. Inouye Solar Telescope
NASA Astrophysics Data System (ADS)
Schmidt, Wolfgang; Schubert, Matthias; Ellwarth, Monika; Baumgartner, Jörg; Bell, Alexander; Fischer, Andreas; Halbgewachs, Clemens; Heidecke, Frank; Kentischer, Thomas; von der Lühe, Oskar; Scheiffelen, Thomas; Sigwarth, Michael
2016-08-01
The Visible Tunable Filter (VTF) is a narrowband tunable filter system for imaging spectroscopy and spectropolarimetry based. The instrument will be one of the first-light instruments of the Daniel K. Inouye Solar Telescope that is currently under construction on Maui (Hawaii). The VTF is being developed by the Kiepenheuer Institut fuer Sonnenphysik in Freiburg as a German contribution to the DKIST. We perform end-to-end simulations of spectropolarimetric observations with the VTF to verify the science requirements of the instrument. The instrument is simulated with two Etalons, and with a single Etalon. The clear aperture of the Etalons is 250 mm, corresponding to a field of view with a diameter of 60 arcsec in the sky (42,000 km on the Sun). To model the large-scale figure errors we employ low-order Zernike polynomials (power and spherical aberration) with amplitudes of 2.5 nm RMS. We use an ideal polarization modulator with equal modulation coefficients of 3-1/2 for the polarization modulation We synthesize Stokes profiles of two iron lines (630.15 nm and 630.25 nm) and for the 854.2 nm line of calcium, for a range of magnetic field values and for several inclination angles. We estimated the photon noise on the basis of the DKIST and VTF transmission values, the atmospheric transmission and the spectral flux from the Sun. For the Fe 630.25 nm line, we obtain a sensitivity of 20 G for the longitudinal component and for 150 G for the transverse component, in agreement with the science requirements for the VTF.
Space telescope phase B definition study. Volume 2A: Science instruments, f48/96 planetary camera
NASA Technical Reports Server (NTRS)
Grosso, R. P.; Mccarthy, D. J.
1976-01-01
The analysis and preliminary design of the f48/96 planetary camera for the space telescope are discussed. The camera design is for application to the axial module position of the optical telescope assembly.
NASA Technical Reports Server (NTRS)
Antonille, Scott R.; Miskey, Cherie L.; Ohl, Raymond G.; Rohrbach, Scott O.; Aronstein, David L.; Bartoszyk, Andrew E.; Bowers, Charles W.; Cofie, Emmanuel; Collins, Nicholas R.; Comber, Brian J.;
2016-01-01
NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (40K). The JWST Observatory includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) that contains four science instruments (SI) and the fine guider. The SIs are mounted to a composite metering structure. The SI and guider units were integrated to the ISIM structure and optically tested at the NASA Goddard Space Flight Center as a suite using the Optical Telescope Element SIMulator (OSIM). OSIM is a full field, cryogenic JWST telescope simulator. SI performance, including alignment and wave front error, were evaluated using OSIM. We describe test and analysis methods for optical performance verification of the ISIM Element, with an emphasis on the processes used to plan and execute the test. The complexity of ISIM and OSIM drove us to develop a software tool for test planning that allows for configuration control of observations, associated scripts, and management of hardware and software limits and constraints, as well as tools for rapid data evaluation, and flexible re-planning in response to the unexpected. As examples of our test and analysis approach, we discuss how factors such as the ground test thermal environment are compensated in alignment. We describe how these innovative methods for test planning and execution and post-test analysis were instrumental in the verification program for the ISIM element, with enough information to allow the reader to consider these innovations and lessons learned in this successful effort in their future testing for other programs.
NASA Astrophysics Data System (ADS)
Antonille, Scott R.; Miskey, Cherie L.; Ohl, Raymond G.; Rohrbach, Scott O.; Aronstein, David L.; Bartoszyk, Andrew E.; Bowers, Charles W.; Cofie, Emmanuel; Collins, Nicholas R.; Comber, Brian J.; Eichhorn, William L.; Glasse, Alistair C.; Gracey, Renee; Hartig, George F.; Howard, Joseph M.; Kelly, Douglas M.; Kimble, Randy A.; Kirk, Jeffrey R.; Kubalak, David A.; Landsman, Wayne B.; Lindler, Don J.; Malumuth, Eliot M.; Maszkiewicz, Michael; Rieke, Marcia J.; Rowlands, Neil; Sabatke, Derek S.; Smith, Corbett T.; Smith, J. Scott; Sullivan, Joseph F.; Telfer, Randal C.; Te Plate, Maurice; Vila, M. Begoña.; Warner, Gerry D.; Wright, David; Wright, Raymond H.; Zhou, Julia; Zielinski, Thomas P.
2016-09-01
NASA's James Webb Space Telescope (JWST) is a 6.5m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM), that contains four science instruments (SI) and the Fine Guidance Sensor (FGS). The SIs are mounted to a composite metering structure. The SIs and FGS were integrated to the ISIM structure and optically tested at NASA's Goddard Space Flight Center using the Optical Telescope Element SIMulator (OSIM). OSIM is a full-field, cryogenic JWST telescope simulator. SI performance, including alignment and wavefront error, was evaluated using OSIM. We describe test and analysis methods for optical performance verification of the ISIM Element, with an emphasis on the processes used to plan and execute the test. The complexity of ISIM and OSIM drove us to develop a software tool for test planning that allows for configuration control of observations, implementation of associated scripts, and management of hardware and software limits and constraints, as well as tools for rapid data evaluation, and flexible re-planning in response to the unexpected. As examples of our test and analysis approach, we discuss how factors such as the ground test thermal environment are compensated in alignment. We describe how these innovative methods for test planning and execution and post-test analysis were instrumental in the verification program for the ISIM element, with enough information to allow the reader to consider these innovations and lessons learned in this successful effort in their future testing for other programs.
The CALorimetric Electron Telescope (CALET) Launch and Early On-Orbit Performance
NASA Astrophysics Data System (ADS)
Guzik, T. Gregory; Calet Collaboration
2016-03-01
The CALET space experiment, has been developed by collaborators in Japan, Italy and the United States, will study electrons to 20 TeV, gamma rays above 10 GeV and nuclei with Z =1 to 40 up to 1,000 TeV during a five-year mission on the International Space Station. The instrument consists of a particle charge identification module, a thin imaging calorimeter (3 r.l. in total) with tungsten plates interleaving scintillating fiber planes, and a thick calorimeter (27 r.l.) composed of lead tungstate logs. CALET has the depth, imaging capabilities and energy resolution for excellent separation between hadrons, electrons and gamma rays. The instrument was launched into orbit on August 19, 2015 and on August 25, 2015 was mounted as an attached payload on the International Space Station (ISS) Japanese Experiment Module - Exposed Facility (JEM-EF). The experiment has successfully completed on-orbit checkout and has now been transitioned to normal science operations. This presentation summarizes the instrument design, science goals and early on-orbit performance. This effort is supported by NASA in the United States, by JAXA in Japan, and ASI in Italy.
1983-11-28
A Space Shuttle mission STS-9 onboard view show's Spacelab-1 (SL-1) module in orbiter Columbia's payload bay. Spacelab-1 was a cooperative venture of NASA and the European Space Agency. Scientists from eleven European nations plus Canada, Japan and the U.S. provided instruments and experimental procedures for over 70 different investigations in five research areas of disciplines: astronomy and solar physics, space plasma physics, atmospheric physics and Earth observations, life sciences and materials science.
When Height Carries Weight: Communicating Hidden Object Properties for Joint Action.
Schmitz, Laura; Vesper, Cordula; Sebanz, Natalie; Knoblich, Günther
2018-06-24
In the absence of pre-established communicative conventions, people create novel communication systems to successfully coordinate their actions toward a joint goal. In this study, we address two types of such novel communication systems: sensorimotor communication, where the kinematics of instrumental actions are systematically modulated, versus symbolic communication. We ask which of the two systems co-actors preferentially create when aiming to communicate about hidden object properties such as weight. The results of three experiments consistently show that actors who knew the weight of an object transmitted this weight information to their uninformed co-actors by systematically modulating their instrumental actions, grasping objects of particular weights at particular heights. This preference for sensorimotor communication was reduced in a fourth experiment where co-actors could communicate with weight-related symbols. Our findings demonstrate that the use of sensorimotor communication extends beyond the communication of spatial locations to non-spatial, hidden object properties. © 2018 The Authors. Cognitive Science - A Multidisciplinary Journal published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.
JWST Integrated Science Instrument Module Alignment Optimization Tool
NASA Technical Reports Server (NTRS)
Bos, Brent
2013-01-01
During cryogenic vacuum testing of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM), the global alignment of the ISIM with respect to the designed interface of the JWST optical telescope element (OTE) will be measured through a series of optical characterization tests. These tests will determine the locations and orientations of the JWST science instrument projected focal surfaces and entrance pupils with respect to their corresponding OTE optical interfaces. If any optical performance non-compliances are identified, the ISIM will be adjusted to improve its performance. In order to understand how to manipulate the ISIM's degrees of freedom properly and to prepare for the ISIM flight model testing, a series of optical-mechanical analyses have been completed to develop and identify the best approaches for bringing a non-compliant ISIM element into compliance. In order for JWST to meet its observatory-level optical requirements and ambitious science goals, the ISIM element has to meet approximately 150 separate optical requirements. Successfully achieving many of those optical requirements depends on the proper alignment of the ISIM element with respect to the OTE. To verify that the ISIM element will meet its optical requirements, a series of cryogenic vacuum tests will be conducted with an OTE Simulator (OSIM). An optical Ray Trace and Geometry Model tool was developed to help solve the multi-dimensional alignment problem. The tool allows the user to determine how best to adjust the alignment of the JWST ISIM with respect to the ideal telescope interfaces so that the approximately 150 ISIM optical performance requirements can be satisfied. This capability has not existed previously.
NASA's Webb Telescope ISIM Gets Cubed for Gravity Test
2017-12-08
The James Webb Space Telescope's ISIM structure recently endured a "gravity sag test" as it was rotated in what looked like giant cube in a NASA clean room. The Integrated Science Instrument Module (ISIM) that will fly on the Webb telescope was rotated upside down inside a cube-like structure in the cleanroom at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The purpose of "cubing" the ISIM was to test it for "gravity sag," which is to see how much the structure changes under its own weight due to gravity. The Integrated Science Instrument Module (ISIM) is one of three major elements that comprise the Webb Observatory flight system. The others are the Optical Telescope Element (OTE) and the Spacecraft Element (Spacecraft Bus and Sunshield). Read more: 1.usa.gov/1ze7u2l Credit: NASA/Goddard/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2017-12-08
On Jan. 22, 2015, robotic flight controllers successfully installed NASA’s Cloud Aerosol Transport System (CATS) onboard the International Space Station. CATS will collect data about clouds, volcanic ash plumes and tiny airborne particles that can help improve our understanding of aerosol and cloud interactions, and improve the accuracy of climate change models. CATS had been mounted inside the SpaceX Dragon cargo craft’s unpressurized trunk since it docked at the station on Jan. 12. Ground controllers at NASA’s Johnson Space Center in Houston, Texas, used one of the space station’s robotic arms, called the Special Purpose Dexterous Manipulator, to extract the instrument from the capsule. The NASA-controlled arm passed the instrument to a second robotic arm— like passing a baton in a relay race. This second arm, called the Japanese Experiment Module Remote Manipulator System, is controlled by the Japanese Aerospace Exploration Agency. The Japanese-controlled arm installed the instrument to the Space Station’s Japanese Experiment Module, making CATS the first NASA-developed payload to fly on the Japanese module. CATS is a lidar remote-sensing instrument designed to last from six months to three years. It is specifically intended to demonstrate a low-cost, streamlined approach to developing science payloads on the space station. CATS launched aboard the SpaceX Dragon spacecraft on Jan. 10 at Cape Canaveral Air Force Station in Florida. To learn more about the impact of CATS data, visit: www.nasa.gov/cats/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
Hadjimichael, Theo; Ohl, Raymond G.; Berrier, Joshua; Gum, Jeffery; Hayden, Joseph; Khreishi, Manal; McLean, Kyle; Redman, Kevin; Sullivan, Joseph; Wenzel, Greg;
2017-01-01
NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element which contains four science instruments (SIs). Prior to integration with the spacecraft, theJWST optical assembly is put through rigorous launch condition environmental testing. This work reports on the metrology operations conducted to determine any changes in subassembly alignment, including primary mirror segments with respect to each other, the secondary mirror to its support structure, the tertiary mirror assembly to the backplane of the telescope and ultimately to the ISIM.
NASA Technical Reports Server (NTRS)
Hadjimichael, Theo; Ohl, Raymond G.; Berrier, Joshua; Gum, Jeff; Hayden, Joseph; Khreishi, Manal; Mclean, Kyle; Redman, Kevin; Sullivan, Joseph; Wenzel, Greg;
2017-01-01
NASAs James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element which contains four science instruments (SIs). Prior to integration with the spacecraft, the JWST optical assembly is put through rigorous launch condition environmental testing. This work reports on the metrology operations conducted to determine any changes in subassembly alignment, including primary mirror segments with respect to each other, the secondary mirror to its support structure, the tertiary mirror assembly to the backplane of the telescope and ultimately to the ISIM.
MagAO: Status and on-sky performance of the Magellan adaptive optics system
NASA Astrophysics Data System (ADS)
Morzinski, Katie M.; Close, Laird M.; Males, Jared R.; Kopon, Derek; Hinz, Phil M.; Esposito, Simone; Riccardi, Armando; Puglisi, Alfio; Pinna, Enrico; Briguglio, Runa; Xompero, Marco; Quirós-Pacheco, Fernando; Bailey, Vanessa; Follette, Katherine B.; Rodigas, T. J.; Wu, Ya-Lin; Arcidiacono, Carmelo; Argomedo, Javier; Busoni, Lorenzo; Hare, Tyson; Uomoto, Alan; Weinberger, Alycia
2014-07-01
MagAO is the new adaptive optics system with visible-light and infrared science cameras, located on the 6.5-m Magellan "Clay" telescope at Las Campanas Observatory, Chile. The instrument locks on natural guide stars (NGS) from 0th to 16th R-band magnitude, measures turbulence with a modulating pyramid wavefront sensor binnable from 28×28 to 7×7 subapertures, and uses a 585-actuator adaptive secondary mirror (ASM) to provide at wavefronts to the two science cameras. MagAO is a mutated clone of the similar AO systems at the Large Binocular Telescope (LBT) at Mt. Graham, Arizona. The high-level AO loop controls up to 378 modes and operates at frame rates up to 1000 Hz. The instrument has two science cameras: VisAO operating from 0.5-1μm and Clio2 operating from 1-5 μm. MagAO was installed in 2012 and successfully completed two commissioning runs in 2012-2013. In April 2014 we had our first science run that was open to the general Magellan community. Observers from Arizona, Carnegie, Australia, Harvard, MIT, Michigan, and Chile took observations in collaboration with the MagAO instrument team. Here we describe the MagAO instrument, describe our on-sky performance, and report our status as of summer 2014.
NASA Technical Reports Server (NTRS)
1991-01-01
A study was performed to determine the feasibility of conducting a flight test of the Superconducting Gravity Gradiometer (SGG) Experiment Module on one of the reflights of the European Retrievable Carrier (EURECA). EURECA was developed expressly to accommodate space science experimentation, while providing a high quality microgravity environment. As a retrievable carrier, it offers the ability to recover science experiments after a nominal six months of operations in orbit. The study concluded that the SGG Experiment Module can be accommodated and operated in a EURECA reflight mission. It was determined that such a flight test would enable the verification of the SGG Instrument flight performance and validate the design and operation of the Experiment Module. It was also concluded that a limited amount of scientific data could be obtained on this mission.
Project TIMS (Teaching Integrated Math/Science)
NASA Technical Reports Server (NTRS)
Edwards, Leo, Jr.
1993-01-01
The goal of this project is to increase the scientific knowledge and appreciation bases and skills of pre-service and in-service middle school teachers, so as to impact positively on teaching, learning, and student retention. This report lists the objectives and summarizes the progress thus far. Included is the working draft of the TIMS (Teaching Integrated Math/Science) curriculum outline. Seven of the eight instructional subject-oriented modules are also included. The modules include informative materials and corresponding questions and educational activities in a textbook format. The subjects included here are the universe and stars; the sun and its place in the universe; our solar system; astronomical instruments and scientific measurements; the moon and eclipses; the earth's atmosphere: its nature and composition; and the earth: directions, time, and seasons. The module not included regards winds and circulation.
Status of the Neutron Imaging and Diffraction Instrument IMAT
NASA Astrophysics Data System (ADS)
Kockelmann, Winfried; Burca, Genoveva; Kelleher, Joe F.; Kabra, Saurabh; Zhang, Shu-Yan; Rhodes, Nigel J.; Schooneveld, Erik M.; Sykora, Jeff; Pooley, Daniel E.; Nightingale, Jim B.; Aliotta, Francesco; Ponterio, Rosa C.; Salvato, Gabriele; Tresoldi, Dario; Vasi, Cirino; McPhate, Jason B.; Tremsin, Anton S.
A cold neutron imaging and diffraction instrument, IMAT, is currently being constructed at the ISIS second target station. IMAT will capitalize on time-of-flight transmission and diffraction techniques available at a pulsed neutron source. Analytical techniques will include neutron radiography, neutron tomography, energy-selective neutron imaging, and spatially resolved diffraction scans for residual strain and texture determination. Commissioning of the instrument will start in 2015, with time-resolving imaging detectors and two diffraction detector prototype modules. IMAT will be operated as a user facility for material science applications and will be open for developments of time-of-flight imaging methods.
Renewing solar science: The solar maximum repair mission
NASA Technical Reports Server (NTRS)
Neal, V.
1985-01-01
The purpose of the Solar Maximum Repair Mission is to restore the operational capacity of the satellite by replacing the attitude control system module and servicing two of the scientific instruments on board. The mission will demonstrate the satellite servicing capacity of the Space Shuttle for the first time.
Key Science Instrument Installed into Webb Structure
2017-12-08
Engineers Tom Huber (behind MIRI) and Mick Wilks (inside black ISIM Structure) check that MIRI is integrated precisely. The engineers have to make sure that MIRI, the only instrument on the Webb telescope that 'sees' mid-infrared light, is precisely positioned so that it and the other instruments can glimpse the formation of galaxies and see deeper into the universe than ever before. Photo Credit: NASA/Chris Gunn; Text Credit: NASA/Laura Betz ---- Engineers worked meticulously to implant the James Webb Space Telescope's Mid-Infrared Instrument into the ISIM, or Integrated Science Instrument Module, in the cleanroom at NASA's Goddard Space Flight Center in Greenbelt, Md. As the successor to NASA's Hubble Space Telescope, the Webb telescope will be the most powerful space telescope ever built. It will observe the most distant objects in the universe, provide images of the first galaxies formed and see unexplored planets around distant stars. For more information, visit: www.jwst.nasa.gov NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
Cohen, Tamar E.; Lees, David S.; Deans, Matthew C.; Lim, Darlene S. S.; Lee, Yeon Jin Grace
2018-01-01
Exploration Ground Data Systems (xGDS) supports rapid scientific decision making by synchronizing video in context with map, instrument data visualization, geo-located notes and any other collected data. xGDS is an open source web-based software suite developed at NASA Ames Research Center to support remote science operations in analog missions and prototype solutions for remote planetary exploration. (See Appendix B) Typical video systems are designed to play or stream video only, independent of other data collected in the context of the video. Providing customizable displays for monitoring live video and data as well as replaying recorded video and data helps end users build up a rich situational awareness. xGDS was designed to support remote field exploration with unreliable networks. Commercial digital recording systems operate under the assumption that there is a stable and reliable network between the source of the video and the recording system. In many field deployments and space exploration scenarios, this is not the case - there are both anticipated and unexpected network losses. xGDS' Video Module handles these interruptions, storing the available video, organizing and characterizing the dropouts, and presenting the video for streaming or replay to the end user including visualization of the dropouts. Scientific instruments often require custom or expensive software to analyze and visualize collected data. This limits the speed at which the data can be visualized and limits access to the data to those users with the software. xGDS' Instrument Module integrates with instruments that collect and broadcast data in a single snapshot or that continually collect and broadcast a stream of data. While seeing a visualization of collected instrument data is informative, showing the context for the collected data, other data collected nearby along with events indicating current status helps remote science teams build a better understanding of the environment. Further, sharing geo-located, tagged notes recorded by the scientists and others on the team spurs deeper analysis of the data.
Optical alignment of the JWST ISIM to the OTE simulator (OSIM): current concept and design studies
NASA Astrophysics Data System (ADS)
Frey, Bradley J.; Davila, Pamela S.; Hagopian, John G.; Marsh, James M.; Ohl, Raymond G.; Wilson, Mark E.; Young, Philip J.
2007-09-01
The James Webb Space Telescope's (JWST) Integrated Science Instrument Module (ISIM) contains the observatory's four science instruments and their support subsystems. During alignment and test of the integrated ISIM at NASA's Goddard Space Flight Center (GSFC), the Optical telescope element SIMulator (OSIM) will be used to optically stimulate the science instruments to verify their operation and performance. In this paper we present the design of two cryogenic alignment fixtures that will be used to align the OSIM to the ISIM during testing at GSFC. These fixtures, the Master Alignment Target Fixture (MATF) and the ISIM Alignment Target Fixture (IATF), will provide continuous, six degree of freedom feedback to OSIM during initial ambient alignment as well as during cryogenic vacuum testing. These fixtures will allow us to position the OSIM and detect OSIM-ISIM absolute alignment to better than 180 microns in translation and 540 micro-radians in rotation. We will provide a brief overview of the OSIM system and we will also discuss the relevance of these fixtures in the context of the overall ISIM alignment and test plan.
NASA's James Webb Space Telescope Science Instruments Begin Final Super Cold Test at Goddard
2017-12-08
At NASA's James Webb Space Telescope's final destination in space, one million miles away from Earth, it will operate at incredibly cold temperatures of -387 degrees Fahrenheit, or 40 degrees Kelvin. This is 260 degrees Fahrenheit colder than any place on the Earth’s surface has ever been. So first, this final super cold test at Goddard will prepare the Integrated Science Instrument Module (ISIM), or the “heart” of the telescope, for space. Read more: go.nasa.gov/1KFPwJG Credit: NASA/Goddard/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Gradient Heating Facility in the Materials Science Double Rack (MSDR) on Spacelab-1 Module
NASA Technical Reports Server (NTRS)
1983-01-01
The Space Shuttle was designed to carry large payloads into Earth orbit. One of the most important payloads is Spacelab. The Spacelab serves as a small but well-equipped laboratory in space to perform experiments in zero-gravity and make astronomical observations above the Earth's obscuring atmosphere. In this photograph, Payload Specialist, Ulf Merbold, is working at Gradient Heating Facility on the Materials Science Double Rack (MSDR) inside the science module in the Orbiter Columbia's payload bay during STS-9, Spacelab-1 mission. Spacelab-1, the joint ESA (European Space Agency)/NASA mission, was the first operational flight for the Spacelab, and demonstrated new instruments and methods for conducting experiments that are difficult or impossible in ground-based laboratories. This facility performed, in extremely low gravity, a wide variety of materials processing experiments in crystal growth, fluid physics, and metallurgy. The Marshall Space Flight Center had overall management responsibilities.
2012-08-16
This patch represents the essential elements associated with pressurized Earth science research aboard the International Space Station. At the top of the patch Klingon script spells out the acronym WORF making reference to the famed Star Trek character of the same name. In doing so it attests to the foresight, honor, integrity, and persistence of all those who made the WORF possible. To the right of the Klingon script is a single four pointed star in the form of a cross to honor the late Dr. Jack Estes and Dr. Dave Amsbury, the individuals most responsible for seeing to it that an optical quality, Earth science research window was added to the United States laboratory module, Destiny. The "flying eyeball" represents the ability of the ISS to allow scientists and astronauts to make and record continuous observations of natural and manmade processes on the surface of the Earth. The Destiny laboratory is depicted on the right of the patch above the Flag of the United States of America and highlights the position of the nadir looking, optical quality, science window in the module. The light emanating from the window from the lighted interior of the module appropriately illuminates the National Ensign for display during both day and night time. In the center of the patch, below the flying eyeball is a graphic representation of the WORF rack. A science instrument is mounted on the WORF payload shelf and is recording data of the Earth's surface through the nadir looking, science window over which the WORF rack is mounted. An astronaut represented by Mario Runco Jr., a designer, developer, and manager of the WORF and depicted as Star Trek's Mr. Spock, is to the left of the WORF rack and is shown in his flight suit with his STS-44 mission patch operating an imaging instrument, emphasizing the importance of astronaut participation to achieve the maximum scientific return from orbital research.
1972-11-17
S72-53470 (November 1972) --- The Far-Ultraviolet Spectrometer, Experiment S-169, one of the lunar orbital science experiments which will be mounted in the SIM bay of the Apollo 17 Service Module. Controls for activating and deactivating the experiment and for opening and closing a protective cover are located in the Command Module. Atomic composition, density and scale height for several constituents of the lunar atmosphere will be measured by the far-ultraviolet spectrometer. Solar far-UV radiation reflected from the lunar surface as well as UV radiation emitted by galactic sources also will be detected by the instrument.
Power Distribution for Cryogenic Instruments at 6-40K The James Webb Space Telescope Case
NASA Technical Reports Server (NTRS)
Rumler, Peter; Lundquist, Ray; Alvarez, Jose Lorenzo; Sincell, Jeff; Tuttle, Jim
2011-01-01
The Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) operates its instruments passively cooled at around 40 Kelvin (K), with a warm Instrument Electronic Compartment (IEC) at 300K attached to it. From the warm electronics all secondary signal and power harnesses have to bridge this 300-40K temperature difference and minimize the power dissipation and parasitic heat leak into the cold region. After an introduction of the ISIM with its instruments, the IEC with the electronics, and the harness architecture with a special radiator, this paper elaborates on the cryogenic wire selection and tests performed to establish current de-rating rules for different wire types. Finally failure modes are analyzed for critical instrument interfaces that could inject excessive currents and heat into the harness and cold side, and several solutions for the removal of such failures are presented.
Power Distribution For Cryogenic Instruments At 6-40K The James Webb Space Telescope Case
NASA Astrophysics Data System (ADS)
Rumler, Peter; Lundquist, Ray; Alvarez, Jose Lorenzo; Sincell, Jeff; Tuttle, Jim
2011-10-01
The Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) operates its instruments passively cooled at around 40 Kelvin (K), with a warm Instrument Electronic Compartment (IEC) at 300K attached to it. From the warm electronics all secondary signal and power harnesses have to bridge this 300-40K temperature difference and minimize the power dissipation and parasitic heat leak into the cold region. After an introduction of the ISIM with its instruments, the IEC with the electronics, and the harness architecture with a special radiator, this paper elaborates on the cryogenic wire selection and tests performed to establish current de-rating rules for different wire types. Finally failure modes are analyzed for critical instrument interfaces that could inject excessive currents and heat into the harness and cold side, and several solutions for the removal of such failures are presented.
STS-107 Crew Interviews: David Brown MS1
NASA Technical Reports Server (NTRS)
2002-01-01
STS-107 Mission Specialist 1 David Brown is seen during this preflight interview where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career. Brown outlines his role in the mission in general, and specifically during the conducting of on-board science experiments. Brown discusses the following instruments and experiments in detail: ARMS (Advanced Respiratory Monitoring System), MEIDEX (Mediterranean Israeli Dust Experiment), Combustion Module 2, and FREESTAR (Fast Reaction Enables Science Technology and Research). He also describes the new primary payload carrier, the SPACEHAB research double module which doubles the amount of space available for research. Brown shares his thoughts about the importance of international cooperation in mission planning and the need for scientific research in space.
Large Volume, Optical and Opto-Mechanical Metrology Techniques for ISIM on JWST
NASA Technical Reports Server (NTRS)
Hadjimichael, Theo
2015-01-01
The final, flight build of the Integrated Science Instrument Module (ISIM) element of the James Webb Space Telescope is the culmination of years of work across many disciplines and partners. This paper covers the large volume, ambient, optical and opto-mechanical metrology techniques used to verify the mechanical integration of the flight instruments in ISIM, including optical pupil alignment. We present an overview of ISIM's integration and test program, which is in progress, with an emphasis on alignment and optical performance verification. This work is performed at NASA Goddard Space Flight Center, in close collaboration with the European Space Agency, the Canadian Space Agency, and the Mid-Infrared Instrument European Consortium.
NASA Technical Reports Server (NTRS)
Comber, Brian; Glazer, Stuart
2012-01-01
The James Webb Space Telescope (JWST) is an upcoming flagship observatory mission scheduled to be launched in 2018. Three of the four science instruments are passively cooled to their operational temperature range of 36K to 40K, and the fourth instrument is actively cooled to its operational temperature of approximately 6K. The requirement for multiple thermal zoned results in the instruments being thermally connected to five external radiators via individual high purity aluminum heat straps. Thermal-vacuum and thermal balance testing of the flight instruments at the Integrated Science Instrument Module (ISIM) element level will take place within a newly constructed shroud cooled by gaseous helium inside Goddard Space Flight Center's (GSFC) Space environment Simulator (SES). The flight external radiators are not available during ISIM-level thermal vacuum/thermal testing, so they will be replaced in test with stable and adjustable thermal boundaries with identical physical interfaces to the flight radiators. Those boundaries are provided by specially designed test hardware which also measures the heat flow within each of the five heat straps to an accuracy of less than 2 mW, which is less than 5% of the minimum predicted heat flow values. Measurement of the heat loads to this accuracy is essential to ISIM thermal model correlation, since thermal models are more accurately correlated when temperature data is supplemented by accurate knowledge of heat flows. It also provides direct verification by test of several high-level thermal requirements. Devices that measure heat flow in this manner have historically been referred to a "Q-meters". Perhaps the most important feature of the design of the JWST Q-meters is that it does not depend on the absolute accuracy of its temperature sensors, but rather on knowledge of precise heater power required to maintain a constant temperature difference between sensors on two stages, for which a table is empirically developed during a calibration campaign in a small chamber at GSFC. This paper provides a brief review of Q-meter design, and discusses the Q-meter calibration procedure including calibration chamber modifications and accommodations, handling of differing conditions between calibration and usage, the calibration process itself, and the results of the tests used to determine if the calibration is successful.
The GEOFLOW experiment missions in the Fluid Science Laboratory on ISS
NASA Astrophysics Data System (ADS)
Picker, Gerold; Carpy, Rodrigo; Fabritius, Gerd; Dettmann, Jan; Minster, Olivier; Winter, Josef; Ranebo, Hans; Dewandre, Thierry; Castiglione, Luigi; Mazzoni, Stefano; Egbers, Christoph; Futterer, Birgit
The GEOFLOW I experiment has been successfully performed on the International Space Sta-tion (ISS) in 2008 in the Columbus module in order to study the stability, pattern formation and transition to turbulence in a viscous incompressible fluid layer enclosed in two concentric co-rotating spheres subject to a radial temperature gradient and a radial volumetric force field. The objective of the study is the experimental investigation of large scale astrophysical and geophysical phenomena in spherical geometry stipulated by rotation, thermal convections and radial gravity fields. These systems include earth outer core or mantle convection, differen-tial rotation effects in the sun, atmosphere of gas planets as well as a variety of engineering applications. The GEOFLOW I experimental instrument consists of an experiment insert for operation in the Fluid Science Laboratory, which is part of the Columbus Module of the ISS. It was first launched in February 2008 together with Columbus Module on STS 122, operated periodically for 9 month and returned to ground after 14 month on orbit with STS 119. The primary objective was the experimental modelling of outer earth core convection flow. In order to allow for variations of the characteristic scaling for different physical phenomena, the experiment was designed and qualified for a total of nine flights to the ISS, with ground refurbishment and geometrical or fluid modification after each mission. The second mission of GEOFLOW (II) is currently under preparation in terms of hardware refurbishment and modification, as well as science parameter development in order to allow use of a new experimental model fluid with a strongly temperature dependent viscosity, a adaptation of the experimental thermal parameter range in order to provide a representative model for earth mantle convection. The GEOFLOW II instrument is foreseen to be launched with the second mission of the Eu-ropean Automated Transfer Vehicle (ATV). The flight to ISS is planned on ATV 2 "Johannes-Kepler" and foreseen for launch with Ariane 5 in November / December 2010. The objective of the presentation is to give an overview on the Geoflow instrument, its scien-tific performances, the experimental procedures with particular focus on the evolution of the instrument and experiment from its first mission to the second mission. The GEOFLOW project is funded by ESA/ESTEC for the industrial activities and the support of the GEOFLOW science topical team and by German Aerospace Center DLR for the ground based research at BTU Cottbus/Germany. The flight hardware was developed and built by an industrial team led by ASTRIUM Space Transportation Friedrichshafen/Germany.
Exomars orbiter science and data-relay mission / looking for trace gases on Mars
NASA Astrophysics Data System (ADS)
Fratacci, Olivier
EXOMARS Orbiter Module: looking for trace gas on Mars and providing data relay support for future Mars Surface assets O.Fratacci, M.Mesrine, H.Renault, Thales Alenia Space France B.Musetti, M.Montagna, Thales Alenia Space Italy M.Kesselmann, M.Barczewski OHB P.Mitschdoerfer, D.Dellantonio Euro-pean Space Agency / ESTEC The European Space Agency (ESA) in a joint cooperation with NASA, will launch in 2016 the EXOMARS spacecraft composite to develop European landing technologies and provide a science orbiter with data-relay capability around Mars until end 2022. The spacecraft composite is composed of the Orbitr Module (OM), provided by TAS-France, an entry descent and landing demonstrator module (EDM) provided by TAS-Italy, and a set of six scientific payloads to be selected by the JPL during 2010. Recent observations of the planet Mars have indicated detection of methane as well as temporal, perhaps spatial variability in the detected signal while current photochemical models cannot explain the presence of methane in the atmosphere of Mars nor its reported rapid variations in space and time. The triple scientific objectives that drive the selection of these six instruments for the Exomars 2016 mission is to detect trace gases in Mars atmosphere, to characterise their spatial and temporal variation and to explore the source of the key trace gases (e.g. methane) on the surface. The launch is scheduled in January 2016 from Kennedy Space Center (KSC) using an ATLAS V 421 launcher with a total launch mass of 4.4 tons. After release of the EDM on Mars, the OM will perform the Mars Orbit Insertion manoeuvre and then reduce its elliptic orbit by implementing the first European Aerobraking around Mars for about 6 to 9 months, to finally end on a circular 400x400km orbit with an altitude in the range of 350km to 420km. From this orbit, a science phase will follow lasting 2 years in which the Mars atmosphere and surface is continuously observed. Science instruments composed of spectrometers, mapper and imagers will be embarked, providing an enhanced science return compared to already flying instruments on previous Mars missions like MGS, MEX and MRO. In particular trace gases detection by sun occultation is promoted as first priority followed by quasi continuous limb to limb atmosphere scan and strategic surface high resolution imaging. The multiple instrument pointing requirements combined with a non-Sun-synchronous orbit, led to selection of a "Sun-nadir yaw steering" pointing strategy. A designated axis is pointed to nadir, while the yaw orientation about nadir is controlled to keep the long axis of the solar arrays normal to the Sun vector. This pointing strategy keeps a spacecraft face always pointed away from both the Sun and Mars allowing implementation of the radiators of cryogenic instruments. After the 2 years science phase the OM will also provide a data-relay function with a UHF proximity link for about four years to all future Mars surface assets including the Exomars Rover planned for launch in 2018. Thales Alenia Space will build the CRSM on the basis of the existing Spacebus telecommunication platform to reduce costs and meet the Exomars challenging performance and schedule. The OHB company in Bremen will procure and assemble the Mechanical, Thermal and Propulsion subsystems. The system PDR is planned end of 2010 and the announcement of opportunities for science payloads was issued in January 2010.
Key Science Instrument Installed into Webb Structure
2017-12-08
The MIRI itself weighs 181 pounds (82 kg) and is being held by a special balance beam (on the left of the photo), which is being maneuvered using a precision overhead crane by the engineer at the base of the ladder. Photo Credit: NASA/Chris Gunn; Text Credit: NASA/Laura Betz ---- Engineers worked meticulously to implant the James Webb Space Telescope's Mid-Infrared Instrument into the ISIM, or Integrated Science Instrument Module, in the cleanroom at NASA's Goddard Space Flight Center in Greenbelt, Md. As the successor to NASA's Hubble Space Telescope, the Webb telescope will be the most powerful space telescope ever built. It will observe the most distant objects in the universe, provide images of the first galaxies formed and see unexplored planets around distant stars. For more information, visit: www.jwst.nasa.gov NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Internet Protocol Over Telemetry Testing for Earth Science Capability Demo Summary
NASA Technical Reports Server (NTRS)
Franz, Russ; Pestana, Mark; Bessent, Shedrick; Hang, Richard; Ng, Howard
2006-01-01
The development and flight tests described here focused on utilizing existing pulse code modulation (PCM) telemetry equipment to enable on-vehicle networks of instruments and computers to be a simple extension of the ground station network. This capability is envisioned as a necessary component of a global range that supports test and development of manned and unmanned airborne vehicles.
Analysis of pre-flight modulator voltage calibration data for the Voyager plasma science experiment
NASA Technical Reports Server (NTRS)
Nastov, Ognen
1988-01-01
The Voyager Plasma Science (PLS) modulator calibration (MVM) data analysis was undertaken in order to check the correctness of the fast A/D converter formulas that connect low voltage monitor signals (MV) with digital outputs (DN), to determine the proportionality constants between the actual modulator grid potential (V) and the monitor voltage (MV), and to establish an algorithm to link the digitized readouts (DN) with the actual grid potential (V). The analysis results are surprising in that the derived conversion constants deviate by fairly significant amounts from their nominal values. However, it must be kept in mind that the test results which were used for analysis may be very imprecise. Even if it is assumed that the test result errors are very large, they do no appear to be capable to account for all discrepancies between the theoretical expectations and the results of the analysis. Measurements with the flight spare instrument appear to be the only means of investigating these effects further.
NASA's James Webb Space Telescope Science Instruments Begin Final Super Cold Test at Goddard
2017-12-08
At NASA's James Webb Space Telescope's final destination in space, one million miles away from Earth, it will operate at incredibly cold temperatures of -387 degrees Fahrenheit, or 40 degrees Kelvin. This is 260 degrees Fahrenheit colder than any place on the Earth’s surface has ever been. So first, this final super cold test at Goddard will prepare the Integrated Science Instrument Module (ISIM), or the “heart” of the telescope, for space. Read more: go.nasa.gov/1KFPwJG Contamination Control Engineer Alan Abeel conducts final inspections and places contamination foils before the start of the test. Credit: NASA/Goddard/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Teaching calculus using module based on cooperative learning strategy
NASA Astrophysics Data System (ADS)
Arbin, Norazman; Ghani, Sazelli Abdul; Hamzah, Firdaus Mohamad
2014-06-01
The purpose of the research is to evaluate the effectiveness of a module which utilizes the cooperative learning for teaching Calculus for limit, derivative and integral. The sample consists of 50 semester 1 students from the Science Programme (AT 16) Sultan Idris Education University. A set of questions of related topics (pre and post) has been used as an instrument to collect data. The data is analyzed using inferential statistics involving the paired sample t-test and the independent t-test. The result shows that students have positive inclination towards the modulein terms of understanding.
The use of high-frequency data to engage students in quantitative reasoning and scientific discourse
NASA Astrophysics Data System (ADS)
O'Reilly, C.; Meixner, T.; Bader, N.; Carey, C.; Castendyk, D.; Gougis-Darner, R.; Fuller, R.; Gibson, C.; Klug, J.; Richardson, D.; Stomberg, J.
2014-12-01
Scientists are increasingly using sensor-collected, high-frequency datasets to study environmental processes. To expose undergraduate students to similar experiences, our team has developed six classroom modules that utilize large, long-term, and sensor-based, datasets for science courses designed to: 1) Improve quantitative skills and reasoning; 2) Develop scientific discourse and argumentation; and 3) Increase student engagement in science. A team of ten interdisciplinary faculty from both private and public research universities and undergraduate institutions have developed flexible modules suitable for a variety of undergraduate courses. These modules meet a series of pedagogical goals that include: 1) Developing skills required to manipulate large datasets at different scales to conduct inquiry-based investigations; 2) Developing students' reasoning about statistical variation; and 3) Fostering desirable conceptions about the nature of environmental science. Six modules on the following topics are being piloted during the 2014-15 and 2015-16 academic years prior to broad dissemination: 1) Temporal stream discharge evaluation using USGS data; 2) Temporal stream nutrient loads and eutrophication risk using USGS and MCM-LTER data; 3) Climate change using NOAA weather and Vostok ice core data; 4) Lake ice-off dates using GLEON data; 5) Thermal dynamics in lakes using GLEON data; and 6) Lake metabolism dynamics using GLEON data. To assess achievement of the pedagogical goals, we will use pre/post questionnaires and video-recordings of students working on modules. Questionnaires will contain modified items from the Experimental Design Ability Test (Sirum & Humberg 2011), the Views on the Nature of Science questionnaire (Lederman et al. 2001), and a validated instrument to measure students' ideas about variation (Watson et al. 2003). Information gained from these assessments and recordings will allow us to determine whether our modules are effective at engaging students and increasing their quantitative skills. Feedback will also be used by the faculty to revise the modules before they are posted online for widespread dissemination in 2016. This project is funded by an NSF TUES grant.
Intensity-Modulated Continuous-Wave Lidar at 1.57 Micrometer for Atmospheric CO2 Measurements
NASA Technical Reports Server (NTRS)
Lin, Bing; Ismail, Syed; Browell, Edward; Meadows, Byron; Nehrir, Amin; Harrison, Wallace F.; Dobler, Jeremy; Obland, Michael
2014-01-01
Understanding the earth's carbon cycle is essential for diagnosing current and predicting future climates, which requires precise global measurements of atmospheric CO2 through space missions. The Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission will provide accurate global atmospheric CO2 measurements to meet carbon science requirements. The joint team of NASA Langley Research Center and ITT Exelis, Inc proposes to use the intensity-modulated, continuous-wave (IM-CW) lidar approach for the ASCENDS mission. Prototype instruments have been developed and used to demonstrate the power, signal-to-noise ratio, precision and accuracy, spectral purity, and stability of the measurement and the instrument needed for atmospheric CO2 observations from space. The ranging capability from laser platform to ground surfaces or intermediate backscatter layers is achieved by transmitted range-encoded IM laser signals. Based on the prototype instruments and current lidar technologies, space lidar systems and their CO2 column measurements are analyzed. These studies exhibit a great potential of using IM-CW lidar system for the active space CO2 mission ASCENDS.
The James Webb Space Telescope: Contamination Control and Materials
NASA Technical Reports Server (NTRS)
Stewart, Elaine M.; Wooldridge, Eve M.
2017-01-01
The James Webb Space Telescope (JWST), expected to launch in 2018 or early 2019, will be the premier observatory for astronomers worldwide. It is optimized for infrared wavelengths and observation from up to 1 million miles from Earth. JWST includes an Integrated Science Instrument Module (ISIM) containing the four main instruments used to observe deep space: Near-Infrared Camera (NIRCam), Near-Infrared Spectrograph (NIRSpec), Mid-Infrared Instrument (MIRI), and Fine Guidance Sensor/Near InfraRed Imager and Slitless Spectrograph (FGS/NIRISS). JWST is extremely sensitive to contamination directly resulting in degradation in performance of the telescope. Contamination control has been an essential focus of this mission since the beginning of this observatory. A particular challenge has been contamination challenges in vacuum chamber operations.
The NIRspec assembly integration and test status
NASA Astrophysics Data System (ADS)
Wettemann, Thomas; Ehrenwinkler, Ralf; Johnson, Thomas E.; Maschmann, Marc; Mosner, Peter; te Plate, Maurice; Rödel, Andreas
2017-11-01
The Near-Infrared Spectrograph (NIRSpec) is one of the four instruments on the James Webb Space Telescope (JWST) scheduled for launch in 2018. NIRSpec has been manufactured and tested by an European industrial consortium led by Airbus Defence and Space and delivered to the European Space Agency (ESA) and NASA in September 2013. Since then it has successfully been integrated into the JWST Integrated Science Instrument Module (ISIM) and is currently in ISIM Cryo-Vacuum Test#2. Since however two of its most important assemblies, the Focal Plane Assembly (FPA) and the Micro-Shutter Assembly (MSA) need to be replaced by new units we will present the status of the instrument, the status of its new flight assemblies in manufacturing and testing and give an outlook on the planned exchange activities and the following instrument re-verification.
U.S. mission plans for Spacelab
NASA Technical Reports Server (NTRS)
Sander, M. J.
1982-01-01
Mission configurations, instrumentation, and objectives for Spacelab sorties on board the Shuttle beginning in Sept. 1983 are reviewed. The first two flights will serve to verify the Spacelab systems and will be followed by operational status, including the fifth flight, which will be a reimbursible venture. Scientific investigations in the fields of atmospheric physics and environmental observation, space plasma physics, astronomy and solar physics, materials processing, and life sciences will be performed using the habitable long module, instrument pallets, and/or an instrument igloo mounted in the payload bay. Instrumentation, such as the imaging spectrometric observatory, which was developed in the U.S., will originate in either the U.S. or Europe. Details of the first four Spacelab flights are presented, noting that the OSS-3 through -7 missions will feature the first time that entire NASA payloads have returned to space.
NASA Astrophysics Data System (ADS)
Odell, M.; Ellins, K. K.; Polito, E. J.; Castillo Comer, C. A.; Stocks, E.; Manganella, K.; Ledley, T. S.
2010-12-01
TERC’s EarthLabs project provides rigorous and engaging Earth and environmental science labs. Four existing modules illustrate sequences for learning science concepts through data analysis activities and hands-on experiments. A fifth module, developed with NSF, comprises a series of linked inquiry based activities focused on the cryosphere to help students understand concepts around change over time on multiple and embedded time scales. Teachers recruited from the NSF-OEDG-sponsored Texas Earth and Space Science (TXESS) Revolution teacher professional development program conducted a pedagogical review of the Cryosphere EarthLabs module and provided feedback on how well the materials matched high school needs in Texas and were aligned with state and national standards. Five TXESS Revolution teachers field tested the materials in their classrooms and then trained other TXESS Revolution teachers on their implementation during spring and summer 2010. Here we report on the results of PD delivery during the summer 2010 TXESS Revolution summer institute as determined by (1) a set of evaluation instruments that included a pre-post concept map activity to assess changes in workshop teachers’ understanding of the concepts presented, a pre-post test content knowledge test, and a pre-post survey of teachers’ comfort in teaching the Texas Earth and Space Science standards addressed by the module; (2) teacher reflections; and (3) focus group responses. The findings reveal that the teachers liked the module activities and felt they could use them to teach Environmental and Earth Science. They appreciated that the sequence of activities contributed to a deeper understanding and observed that the variety of methods used to present the information accommodates different learning styles. Information about the cryosphere was new to all the teachers. The content knowledge tests reveal that although teachers made appreciable gains, their understanding of cryosphere, how it changes over time, and it’s role in Earth’s climate system remains weak. Our results clearly reflect the challenges of addressing the complexity of climate science and critical need for climate literacy education.
1996-01-01
In this photograph, Dr. Gerald Fishman of the Marshall Space Flight Center (MSFC), a principal investigator of the Compton Gamma-Ray Observatory's (GRO's) instrument, the Burst and Transient Source Experiment (BATSE), and Dr. Chryssa Kouveliotou of Universities Space Research Associates review data from the BATSE. For nearly 9 years, GRO's Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center, kept a blinking watch on the universe to alert scientist to the invisible, mysterious gamma-ray bursts. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. Because gamma-rays are so powerful, they pass through conventional telescope mirrors. Instead of a mirror, the heart of each BATSE module was a large, flat, transparent crystal that generated a tiny flash of light when struck by a gamma-ray. With an impressive list of discoveries and diverse accomplishments, BATSE could claim to have rewritten astronomy textbooks. Launched aboard the Space Shuttle Orbiter Atlantis during the STS-35 mission in April 1991, the GRO reentered the Earth's atmosphere and ended its successful 9-year mission in June 2000.
NASA Technical Reports Server (NTRS)
Groff, Tyler D.
2017-01-01
Given the limited observing time and demanding scenarios of the WFIRST coronagraph instrument (CGI), it is critical to consider how Subaru observations can benefit its observing program. Subaru telescope has a suite of instruments with their adaptive optics (AO) and extreme adaptive optics modules (SCExAO). With SCExAO, the Subaru telescope is capable of detection and spectral characterization of binaries and bright (greater than 5(exp -6) contrast) companions in the near-infrared. This will enable the vetting of targets, disk detection and characterization, and potentially some additional science should CGI identify interesting targets during its technology demonstration and potential guest observer program. Additionally, large companions that are within the inner working angle of the coronagraph can be identified using the VAMPIRES aperture masking interferometer. With highly complementary target brightness and significantly overlapping fields of view, there is a great deal of potential for combined observations with Subaru and CGI. This will represent the first time single observations spanning the visible to near-infrared will be possible for high contrast imaging. We will discuss the overlap of instrumentation over time, the implication of instrument evolution as TMT comes online, and how this can be used to improve both science and technology demonstrations for CGI.
Synchronization for Optical PPM with Inter-Symbol Guard Times
NASA Astrophysics Data System (ADS)
Rogalin, R.; Srinivasan, M.
2017-05-01
Deep space optical communications promises orders of magnitude growth in communication capacity, supporting high data rate applications such as video streaming and high-bandwidth science instruments. Pulse position modulation is the modulation format of choice for deep space applications, and by inserting inter-symbol guard times between the symbols, the signal carries the timing information needed by the demodulator. Accurately extracting this timing information is crucial to demodulating and decoding this signal. In this article, we propose a number of timing and frequency estimation schemes for this modulation format, and in particular highlight a low complexity maximum likelihood timing estimator that significantly outperforms the prior art in this domain. This method does not require an explicit synchronization sequence, freeing up channel resources for data transmission.
2012-11-03
CAPE CANAVERAL, Fla. – The Astronaut Scholarship Foundation hosts a dinner at the Radisson Resort at the Port in Cape Canaveral celebrating the 40th anniversary of Apollo 17. An auction of space-related memorabilia was held with proceeds supporting college scholarships for students who exhibit imagination and exceptional performance in science, technology, engineering and math. The gala commemorating the anniversary of Apollo 17 included mission commander Eugene Cernan and other astronauts who flew Apollo missions. Launched Dec. 7, 1972, Cernan and lunar module pilot Harrison Schmitt landed in the moon's Taurus-Littrow highlands while command module pilot Ronald Evans remained in lunar orbit operating a scientific instrument module. For more information, visit http://www-pao.ksc.nasa.gov/history/apollo/apollo-17/apollo-17.htm Photo credit: NASA/Kim Shiflett
Hardware Demonstration: Radiated Emissions as a Function of Common Mode Current
NASA Technical Reports Server (NTRS)
Mc Closkey, John; Roberts, Jen
2016-01-01
This presentation describes the electromagnetic compatibility (EMC) tests performed on the Integrated Science Instrument Module (ISIM), the science payload of the James Webb Space Telescope (JWST), at NASAs Goddard Space Flight Center (GSFC) in August 2015. By its very nature of being an integrated payload, it could be treated as neither a unit level test nor an integrated spacecraft observatory test. Non-standard test criteria are described along with non-standard test methods that had to be developed in order to evaluate them. Results are presented to demonstrate that all test criteria were met in less than the time allocated.
EMC Test Challenges for NASAs James Webb Space Telescope
NASA Technical Reports Server (NTRS)
McCloskey, John
2016-01-01
This presentation describes the electromagnetic compatibility (EMC) tests performed on the Integrated Science Instrument Module (ISIM), the science payload of the James Webb Space Telescope (JWST), at NASAs Goddard Space Flight Center (GSFC) in August 2015. By its very nature of being an integrated payload, it could be treated as neither a unit level test nor an integrated spacecraft observatory test. Non-standard test criteria are described along with non-standard test methods that had to be developed in order to evaluate them. Results are presented to demonstrate that all test criteria were met in less than the time allocated.
EMC Test Challenges for NASA's James Webb Space Telescope
NASA Technical Reports Server (NTRS)
McCloskey, John
2016-01-01
This presentation describes the electromagnetic compatibility (EMC) tests performed on the Integrated Science Instrument Module (ISIM), the science payload of the James Webb Space Telescope (JWST), at NASAs Goddard Space Flight Center (GSFC) in August 2015. By its very nature of being an integrated payload, it could be treated as neither a unit level test nor an integrated spacecraft observatory test. Non-standard test criteria are described along with non-standard test methods that had to be developed in order to evaluate them. Results are presented to demonstrate that all test criteria were met in less than the time allocated.
Analysis of Photogrammetry Data from ISIM Mockup, June 1, 2007
NASA Technical Reports Server (NTRS)
Nowak, Maria; Hill, Mike
2007-01-01
During ground testing of the Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST), the ISIM Optics group plans to use a Photogrammetry Measurement System for cryogenic calibration of specific target points on the ISIM composite structure and Science Instrument optical benches and other GSE equipment. This testing will occur in the Space Environmental Systems (SES) chamber at Goddard Space Flight Center. Close range photogrammetry is a 3 dimensional metrology system using triangulation to locate custom targets in 3 coordinates via a collection of digital photographs taken from various locations and orientations. These photos are connected using coded targets, special targets that are recognized by the software and can thus correlate the images to provide a 3 dimensional map of the targets, and scaled via well calibrated scale bars. Photogrammetry solves for the camera location and coordinates of the targets simultaneously through the bundling procedure contained in the V-STARS software.
ATHENA: system design and implementation for a next-generation x-ray telescope
NASA Astrophysics Data System (ADS)
Ayre, M.; Bavdaz, M.; Ferreira, I.; Wille, E.; Lumb, D.; Linder, M.; Stefanescu, A.
2017-08-01
ATHENA, Europe's next generation x-ray telescope, is currently under Assessment Phase study with parallel candidate industrial Prime contractors after selection for the 'L2' slot in ESA's Cosmic Vision Programme, with a mandate to address the 'Hot and Energetic Universe' Cosmic Vision science theme. This paper will consider the main technical requirements of the mission, and their mapping to resulting design choices at both mission and spacecraft level. The reference mission architecture and current reference spacecraft design will then be described, with particular emphasis given to description of the Science Instrument Module (SIM) design, currently under the responsibility of the ESA Study Team. The SIM is a very challenging item due primarily to the need to provide to the instruments (i) a soft ride during launch, and (ii) a very large ( 3 kW) heat dissipation capability at varying interface temperatures and locations.
Spaceflight Ka-Band High-Rate Radiation-Hard Modulator
NASA Technical Reports Server (NTRS)
Jaso, Jeffery M.
2011-01-01
A document discusses the creation of a Ka-band modulator developed specifically for the NASA/GSFC Solar Dynamics Observatory (SDO). This flight design consists of a high-bandwidth, Quadriphase Shift Keying (QPSK) vector modulator with radiation-hardened, high-rate driver circuitry that receives I and Q channel data. The radiationhard design enables SDO fs Ka-band communications downlink system to transmit 130 Mbps (300 Msps after data encoding) of science instrument data to the ground system continuously throughout the mission fs minimum life of five years. The low error vector magnitude (EVM) of the modulator lowers the implementation loss of the transmitter in which it is used, thereby increasing the overall communication system link margin. The modulator comprises a component within the SDO transmitter, and meets the following specifications over a 0 to 40 C operational temperature range: QPSK/OQPSK modulator, 300-Msps symbol rate, 26.5-GHz center frequency, error vector magnitude less than or equal to 10 percent rms, and compliance with the NTIA (National Telecommunications and Information Administration) spectral mask.
The Kepler Science Data Processing Pipeline Source Code Road Map
NASA Technical Reports Server (NTRS)
Wohler, Bill; Jenkins, Jon M.; Twicken, Joseph D.; Bryson, Stephen T.; Clarke, Bruce Donald; Middour, Christopher K.; Quintana, Elisa Victoria; Sanderfer, Jesse Thomas; Uddin, Akm Kamal; Sabale, Anima;
2016-01-01
We give an overview of the operational concepts and architecture of the Kepler Science Processing Pipeline. Designed, developed, operated, and maintained by the Kepler Science Operations Center (SOC) at NASA Ames Research Center, the Science Processing Pipeline is a central element of the Kepler Ground Data System. The SOC consists of an office at Ames Research Center, software development and operations departments, and a data center which hosts the computers required to perform data analysis. The SOC's charter is to analyze stellar photometric data from the Kepler spacecraft and report results to the Kepler Science Office for further analysis. We describe how this is accomplished via the Kepler Science Processing Pipeline, including, the software algorithms. We present the high-performance, parallel computing software modules of the pipeline that perform transit photometry, pixel-level calibration, systematic error correction, attitude determination, stellar target management, and instrument characterization.
NASA Technical Reports Server (NTRS)
1971-01-01
A detailed discussion is presented of the Apollo 15 mission, which conducted exploration of the moon over longer periods, greater ranges, and with more instruments of scientific data acquisition than previous missions. The topics include trajectory, lunar surface science, inflight science and photography, command and service module performance, lunar module performance, lunar surface operational equipment, pilot's report, biomedical evaluation, mission support performance, assessment of mission objectives, launch phase summary, anomaly summary, and vehicle and equipment descriptions. The capability of transporting larger payloads and extending time on the moon were demonstrated. The ground-controlled TV camera allowed greater real-time participation by earth-bound personnel. The crew operated more as scientists and relied more on ground support team for systems monitoring. The modified pressure garment and portable life support system provided better mobility and extended EVA time. The lunar roving vehicle and the lunar communications relay unit were also demonstrated.
Microscope-Based Fluid Physics Experiments in the Fluids and Combustion Facility on ISS
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Malarik, Diane C.
2000-01-01
At the NASA Glenn Research Center, the Microgravity Science Program is planning to conduct a large number of experiments on the International Space Station in both the Fluid Physics and Combustion Science disciplines, and is developing flight experiment hardware for use within the International Space Station's Fluids and Combustion Facility. Four fluids physics experiments that require an optical microscope will be sequentially conducted within a subrack payload to the Fluids Integrated Rack of the Fluids and Combustion Facility called the Light Microscopy Module, which will provide the containment, changeout, and diagnostic capabilities to perform the experiments. The Light Microscopy Module is planned as a fully remotely controllable on-orbit microscope facility, allowing flexible scheduling and control of experiments within International Space Station resources. This paper will focus on the four microscope-based experiments, specifically, their objectives and the sample cell and instrument hardware to accommodate their requirements.
Quantitative Detection of Combustion Species using Ultra-Violet Diode Lasers
NASA Technical Reports Server (NTRS)
Pilgrim, J. S.; Peterson, K. A.
2001-01-01
Southwest Sciences is developing a new microgravity combustion diagnostic based on UV diode lasers. The instrument will allow absolute concentration measurements of combustion species on a variety of microgravity combustion platforms including the Space Station. Our approach uses newly available room temperature UV diode lasers, thereby keeping the instrument compact, rugged and energy efficient. The feasibility of the technique was demonstrated by measurement of CH radicals in laboratory flames. Further progress in fabrication technology of UV diode lasers at shorter wavelengths and higher power will result in detection of transient species in the deeper UV. High sensitivity detection of combustion radicals is provided with wavelength modulation absorption spectroscopy.
Phase and Pupil Amplitude Recovery for JWST Space-Optics Control
NASA Technical Reports Server (NTRS)
Dean, B. H.; Zielinski, T. P.; Smith, J. S.; Bolcar, M. R.; Aronstein, D. L.; Fienup, J. R.
2010-01-01
This slide presentation reviews the phase and pupil amplitude recovery for the James Webb Space Telescope (JWST) Near Infrared Camera (NIRCam). It includes views of the Integrated Science Instrument Module (ISIM), the NIRCam, examples of Phase Retrieval Data, Ghost Irradiance, Pupil Amplitude Estimation, Amplitude Retrieval, Initial Plate Scale Estimation using the Modulation Transfer Function (MTF), Pupil Amplitude Estimation vs lambda, Pupil Amplitude Estimation vs. number of Images, Pupil Amplitude Estimation vs Rotation (clocking), and Typical Phase Retrieval Results Also included is information about the phase retrieval approach, Non-Linear Optimization (NLO) Optimized Diversity Functions, and Least Square Error vs. Starting Pupil Amplitude.
Response function of modulated grid Faraday cup plasma instruments
NASA Technical Reports Server (NTRS)
Barnett, A.; Olbert, S.
1986-01-01
Modulated grid Faraday cup plasma analyzers are a very useful tool for making in situ measurements of space plasmas. One of their great attributes is that their simplicity permits their angular response function to be calculated theoretically. An expression is derived for this response function by computing the trajectories of the charged particles inside the cup. The Voyager plasma science experiment is used as a specific example. Two approximations to the rigorous response function useful for data analysis are discussed. Multisensor analysis of solar wind data indicates that the formulas represent the true cup response function for all angles of incidence with a maximum error of only a few percent.
Hypothesis driven assessment of an NMR curriculum
NASA Astrophysics Data System (ADS)
Cossey, Kimberly
The goal of this project was to develop a battery of assessments to evaluate an undergraduate NMR curriculum at Penn State University. As a chemical education project, we sought to approach the problem of curriculum assessment from a scientific perspective, while remaining grounded in the education research literature and practices. We chose the phrase hypothesis driven assessment to convey this process of relating the scientific method to the study of educational methods, modules, and curricula. We began from a hypothesis, that deeper understanding of one particular analytical technique (NMR) will increase undergraduate students' abilities to solve chemical problems. We designed an experiment to investigate this hypothesis, and data collected were analyzed and interpreted in light of the hypothesis and several related research questions. The expansion of the NMR curriculum at Penn State was funded through the NSF's Course, Curriculum, and Laboratory Improvement (CCLI) program, and assessment was required. The goal of this project, as stated in the grant proposal, was to provide NMR content in greater depth by integrating NMR modules throughout the curriculum in physical chemistry, instrumental, and organic chemistry laboratory courses. Hands-on contact with the NMR spectrometer and NMR data and repeated exposure of the analytical technique within different contexts (courses) were unique factors of this curriculum. Therefore, we maintained a focus on these aspects throughout the evaluation process. The most challenging and time-consuming aspect of any assessment is the development of testing instruments and methods to provide useful data. After key variables were defined, testing instruments were designed to measure these variables based on educational literature (Chapter 2). The primary variables measured in this assessment were: depth of understanding of NMR, basic NMR knowledge, problem solving skills (HETCOR problem), confidence for skills used in class (within the hands-on NMR modules), confidence for NMR tasks (not practiced), and confidence for general science tasks. Detailed discussion of the instruments, testing methods and experimental design used in this assessment are provided (Chapter 3). All data were analyzed quantitatively using methods adapted from the educational literature (Chapter 4). Data were analyzed and the descriptive statistics, independent t-tests between the experimental and control groups, and correlation statistics were calculated for each variable. In addition, for those variables included on the pretest, dependent t-tests between pretest and posttest scores were also calculated. The results of study 1 and study 2 were used to draw conclusions based on the hypothesis and research questions proposed in this work (Chapter 4). Data collected in this assessment were used to answer the following research questions: (1) Primary research question: Is depth of understanding of NMR linked to problem solving skills? (2) Are the NMR modules working as intended? Do they promote depth of understanding of NMR? (a) Will students who complete NMR modules have a greater depth of understanding of NMR than students who do not complete the modules? (b) Is depth of understanding increasing over the course of the experiment? (3) Is confidence an intermediary between depth of understanding and problem solving skills? Is it linked to both variables? (4) What levels of confidence are affected by the NMR modules? (a) Will confidence for the NMR class skills used in the modules themselves be greater for those who have completed the modules? (b) Will confidence for NMR tasks not practiced in the course be affected? (c) Will confidence for general science tasks be affected? (d) Are different levels of confidence (class skills, NMR tasks, general science tasks) linked to each other? Results from this NMR curriculum assessment could also have implications outside of the courses studied, and so there is potential to impact the chemical education community (section 5.2.1). In addition to providing reliable testing instruments/measures that could be used outside the university, the results of this research contribute to the study of problem solving in chemistry, learner characteristics within the context of chemical education studies, and NMR specific educational evaluations. Valuable information was gathered through the current method of evaluation for the NMR curriculum. However, improvements could be made to the existing assessment, and an alternate assessment that could supplement the information found in this study has been proposed (Chapter 5).
2012-11-03
CAPE CANAVERAL, Fla. – A guest checks out an item available for auction at the Astronaut Scholarship Foundation's dinner at the Radisson Resort at the Port in Cape Canaveral celebrating the 40th anniversary of Apollo 17. The auction of space-related memorabilia was held with proceeds supporting college scholarships for students who exhibit imagination and exceptional performance in science, technology, engineering and math. The gala commemorating the anniversary of Apollo 17 included mission commander Eugene Cernan and other astronauts who flew Apollo missions. Launched Dec. 7, 1972, Cernan and lunar module pilot Harrison Schmitt landed in the moon's Taurus-Littrow highlands while command module pilot Ronald Evans remained in lunar orbit operating a scientific instrument module. For more information, visit http://www-pao.ksc.nasa.gov/history/apollo/apollo-17/apollo-17.htm Photo credit: NASA/Kim Shiflett
NIRCam: Development and Testing of the JWST Near-Infrared Camera
NASA Technical Reports Server (NTRS)
Greene, Thomas; Beichman, Charles; Gully-Santiago, Michael; Jaffe, Daniel; Kelly, Douglas; Krist, John; Rieke, Marcia; Smith, Eric H.
2011-01-01
The Near Infrared Camera (NIRCam) is one of the four science instruments of the James Webb Space Telescope (JWST). Its high sensitivity, high spatial resolution images over the 0.6 - 5 microns wavelength region will be essential for making significant findings in many science areas as well as for aligning the JWST primary mirror segments and telescope. The NIRCam engineering test unit was recently assembled and has undergone successful cryogenic testing. The NIRCam collimator and camera optics and their mountings are also progressing, with a brass-board system demonstrating relatively low wavefront error across a wide field of view. The flight model?s long-wavelength Si grisms have been fabricated, and its coronagraph masks are now being made. Both the short (0.6 - 2.3 microns) and long (2.4 - 5.0 microns) wavelength flight detectors show good performance and are undergoing final assembly and testing. The flight model subsystems should all be completed later this year through early 2011, and NIRCam will be cryogenically tested in the first half of 2011 before delivery to the JWST integrated science instrument module (ISIM).
The power of inexpensive satellite constellations
NASA Astrophysics Data System (ADS)
Dyrud, Lars P.; La Tour, Rose; Swartz, William H.; Nag, Sreeja; Lorentz, Steven R.; Hilker, Thomas; Wiscombe, Warren J.; Papadakis, Stergios J.
2014-06-01
Two thematic drivers are motivating the science community towards constellations of small satellites, the revelation that many next generation system science questions are uniquely addressed with sufficient numbers of simultaneous space based measurements, and the realization that space is historically expensive, and in an environment of constrained costs, we must innovate to ―do more with less‖. We present analysis that answers many of the key questions surrounding constellations of scientific satellites, including research that resulted from the GEOScan community based effort originally intended as hosted payloads on Iridium NEXT. We present analysis that answers the question how many satellites does global system science require? Perhaps serendipitously, the analyses show that many of the key science questions independently converge towards similar results, i.e. that approximately 60+ satellites are needed for transformative, as opposed to incremental capability in system science. The current challenge is how to effectively transition products from design to mass production for space based instruments and vehicles. Ideally, the lesson learned from past designs and builds of various space products should pave the way toward a better manufacturing plan that utilizes just a fraction of the prototype`s cost. Using the commercial products industry implementations of mass customization as an example, we will discuss about the benefits of standardization in design requirements for space instruments and vehicles. For example, the instruments (payloads) are designed to have standardized elements, components, or modules that interchangeably work together within a linkage system. We conclude with a discussion on implementation plans and the new paradigms for community and international cooperation enabled by small satellite constellations.
CAN-DOO: The Climate Action Network through Direct Observations and Outreach
NASA Astrophysics Data System (ADS)
Taubman, B.; Sherman, J. P.; Perry, L. B.; Markham, J.; Kelly, G.
2011-12-01
The urgency of climate change demands a greater understanding of our climate system, not only by the leaders of today, but by the scientists, policy makers, and citizens of tomorrow. Unfortunately, a large segment of the population currently possesses inadequate knowledge of climate science. In direct response to a need for greater scientific literacy with respect to climate science, researchers from Appalachian State University's Appalachian Atmospheric Interdisciplinary Research (AppalAIR) group, with support from NASA, have developed CAN-DOO: the Climate Action Network through Direct Observations and Outreach. CAN-DOO addresses climate science literacy by 1) Developing the infrastructure for sustaining and expanding public outreach through long-term climate measurements capable of complementing existing NASA measurements, 2) Enhancing public awareness of climate science and NASA's role in advancing our understanding of the Earth System, and 3) Introducing Science, Technology, Engineering, and Mathematics principles to homeschooled, public school, and Appalachian State University students through applied climate science activities. Project partners include the Grandfather Mountain Stewardship Foundation, Pisgah Astronomical Research Institute, and local elementary schools. In partnership with Grandfather Mountain, climate science awareness is promoted through citizen science activities, interactive public displays, and staff training. CAN-DOO engages students by involving them in the entire scientific investigative process as applied to climate science. We introduce local elementary and middle school students, homeschooled students throughout North Carolina, and undergraduate students in a new Global Climate Change course and select other courses at Appalachian State University to instrument assembly, measurement techniques, data collection, hypothesis testing, and drawing conclusions. Results are placed in the proper context via comparisons with other student data products, local research-grade measurements, and NASA measurements. Several educational modules have been developed that address specific topics in climate science. The modules are scalable and have been successfully implemented at levels ranging from 2nd grade through first-year graduate as well as with citizen science groups. They also can be applied in user-desired segments to a variety of Earth Science units. In this paper, we will introduce the project activities and present results from the first year of observations and outreach, with a special emphasis on two of the developed modules, the surface energy balance and aerosol optical depth module.
NASA Testing the Webb Telescope's MIRI Thermal Shield
2017-12-08
NASA engineer Acey Herrera recently checked out copper test wires inside the thermal shield of the Mid-Infrared Instrument, known as MIRI, that will fly aboard NASA's James Webb Space Telescope. The shield is designed to protect the vital MIRI instrument from excess heat. At the time of the photo, the thermal shield was about to go through rigorous environmental testing to ensure it can perform properly in the extreme cold temperatures that it will encounter in space. Herrera is working in a thermal vacuum chamber at NASA's Goddard Space Flight Center in Greenbelt, Md. As the MIRI shield lead, Herrera along with a thermal engineer and cryo-engineer verify that the shield is ready for testing. On the Webb telescope, the pioneering camera and spectrometer that comprise the MIRI instrument sit inside the Integrated Science Instrument Module flight structure, that holds Webb's four instruments and their electronic systems during launch and operations. Read more: 1.usa.gov/15I0wrS Credit: NASA/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
Lin, Bing
2014-01-01
Understanding the earth's carbon cycle is essential for diagnosing current and predicting future climates, which requires precise global measurements of atmospheric CO2 through space missions. The Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission will provide accurate global atmospheric CO2 measurements to meet carbon science requirements. The joint team of NASA Langley Research Center and ITT Exelis, Inc. proposes to use the intensity-modulated, continuous-wave (IM-CW) laser absorption spectrometer (LAS) approach for the ASCENDS mission. Prototype LAS instruments have been developed and used to demonstrate the power, signal-to-noise ratio, precision and accuracy, spectral purity, and stability of the measurement and the instrument needed for atmospheric CO2 observations from space. The ranging capability from laser platform to ground surfaces or intermediate backscatter layers is achieved by transmitted range-encoded IM laser signals. Based on the prototype instruments and current lidar technologies, space LAS systems and their CO2 column measurements are analyzed. These studies exhibit a great potential of using IM-CW LAS system for the active space CO2 mission ASCENDS.
Advanced Devices for Cryogenic Thermal Management
NASA Astrophysics Data System (ADS)
Bugby, D.; Stouffer, C.; Garzon, J.; Beres, M.; Gilchrist, A.
2006-04-01
This paper describes six advanced cryogenic thermal management devices/subsystems developed by Swales Aerospace for ground/space-based applications of interest to NASA, DoD, and the commercial sector. The devices/subsystems described herein include the following: (a) a differential thermal expansion cryogenic thermal switch (DTE-CTSW) constructed with high purity aluminum end-pieces and an Ultem support rod for the 6 K Mid-Infrared Instrument (MIRI) on the James Webb Space Telescope (JWST) (b) a quad-redundant DTE-CTSW assembly for the 35 K science instruments (NIRCam, NIRSpec, and FGS) mounted on the JWST Integrated Science Instrument Module (ISIM) (c) a cryogenic diode heat pipe (CDHP) thermal switching system using methane as the working fluid for the 100 K CRISM hyperspectral mapping instrument on the Mars Reconnaissance Orbiter (MRO) and (d) three additional devices/subsystems developed during the AFRL-sponsored CRYOTOOL program, which include a dual DTE-CTSW/dual cryocooler test bed, a miniaturized neon cryogenic loop heat pipe (mini-CLHP), and an across gimbal cryogenic thermal transport system (GCTTS). For the first three devices/subsystems mentioned above, this paper describes key aspects of the development efforts including concept definition, design, fabrication, and testing. For the latter three, this paper provides brief overview descriptions as key details are provided in a related paper.
NASA Astrophysics Data System (ADS)
Rowlands, Neil; Hutchings, John; Murowinski, Richard G.; Alexander, Russ
2003-03-01
Instrumentation for the Next Generation Space Telescope (NGST) is currently in the Phase A definition stage. We have developed a concept for the NGST Fine Guidance Sensor or FGS. The FGS is a detector array based imager which resides in the NGST focal plane. We report here on tradeoff studies aimed at defining an overall configuration of the FGS which will meet the performance and interface requirements. A key performance requirement is a noise equivalent angle of 3 milli-arcseconds to be achieved with 95% probability for any pointing of the observatory in the celestial sphere. A key interface requirement is compatibility with the architecture of the Integrated Science Instrument Module (ISIM). The concept developed consists of two independent and redundant FGS modules, each with a 4' x 2' field of view covered by two 2048 x 2048 infrared detector arrays, providing 60 milli-arcsecond sampling. Performance modeling supporting the choice of this architecture and the trade space considered is presented. Each module has a set of readout electronics which perform star detection, pixel-by-pixel correction, and in fine guiding mode, centroid calculation. These readout electronics communicate with the ISIM Command &Data Handling Units where the FGS control software is based. Rationale for this choice of architecture is also presented.
NASA Technical Reports Server (NTRS)
Quijada, Manuel A.; Threat, Felix; Garrison, Matt; Perrygo, Chuck; Bousquet, Robert; Rashford, Robert
2008-01-01
The James Webb Space Telescope (JWST) consists of an infrared-optimized Optical Telescope Element (OTE) that is cooled down to 40 degrees Kelvin. A second adjacent component to the OTE is the Integrated Science Instrument Module, or ISIM. This module includes the electronic compartment, which provides the mounting surfaces and ambient thermally controlled environment for the instrument control electronics. Dissipating the 200 watts generated from the ISIM structure away from the OTE is of paramount importance so that the spacecraft's own heat does not interfere with the infrared light detected from distant cosmic sources. This technical challenge is overcome by a thermal subsystem unit that provides passive cooling to the ISIM control electronics. The proposed design of this thermal radiator consists of a lightweight structure made out of composite materials and low-emittance metal coatings. In this paper, we will present characterizations of the coating emittance, bidirectional reflectance, and mechanical structure design that will affect the performance of this passive cooling system.
Lunar and Planetary Science XXXV: Future Missions to the Moon
NASA Technical Reports Server (NTRS)
2004-01-01
This document contained the following topics: A Miniature Mass Spectrometer Module; SELENE Gamma Ray Spectrometer Using Ge Detector Cooled by Stirling Cryocooler; Lunar Elemental Composition and Investigations with D-CIXS X-Ray Mapping Spectrometer on SMART-1; X-Ray Fluorescence Spectrometer Onboard the SELENE Lunar Orbiter: Its Science and Instrument; Detectability of Degradation of Lunar Impact Craters by SELENE Terrain Camera; Study of the Apollo 16 Landing Site: As a Standard Site for the SELENE Multiband Imager; Selection of Targets for the SMART-1 Infrared Spectrometer (SIR); Development of a Telescopic Imaging Spectrometer for the Moon; The Lunar Seismic Network: Mission Update.
Spacelab Life Sciences 1 - The stepping stone
NASA Technical Reports Server (NTRS)
Dalton, B. P.; Leon, H.; Hogan, R.; Clarke, B.; Tollinger, D.
1988-01-01
The Spacelab Life Sciences (SLS-1) mission scheduled for launch in March 1990 will study the effects of microgravity on physiological parameters of humans and animals. The data obtained will guide equipment design, performance of activities involving the use of animals, and prediction of human physiological responses during long-term microgravity exposure. The experiments planned for the SLS-1 mission include a particulate-containment demonstration test, integrated rodent experiments, jellyfish experiments, and validation of the small-mass measuring instrument. The design and operation of the Research Animal Holding Facility, General-Purpose Work Station, General-Purpose Transfer Unit, and Animal Enclosure Module are discussed and illustrated with drawings and diagrams.
NASA Technical Reports Server (NTRS)
Barrowman, James
2003-01-01
The spacecraft was nearly integrated and had passed some of its early mechanical and electrical testing. One of its instruments, the Proportional Counter Array (PCA), had a gas leak in one of the five proportional counter modules that made up the array. The science division where the instrument was being developed wanted a gas replenishment system added to assure the PCA would last for the entire mission. Adding a gas replenishment system would mean interrupting spacecraft integration and testing; developing a new subsystem and integrating it onto the spacecraft; modifying all the PCA modules; including a complex integration of the instrument onto the spacecraft; and implementing a more complex performance and environmental test process. It was the wrong answer because it made a simple design more complex and added little value to the mission at a major cost in time and dollars. Our mission couldn't afford the additional budget and schedule risks. XTE was the latest of a long line of projects being managed by my Explorer Program Office, but it was unique in being the first project we had agreed to do for a fixed price. NASA HQ agreed, in return, to provide us with the funding profile we needed to make it happen. We were both trying to break the unhealthy spiral in the Explorer program that saw current missions overrunning and pushing subsequent missions downstream to the point where their science was becoming marginal. The science community was upset and wanted better performance from NASA. I summarized my arguments to the director. The Engineering Directorate had taken responsibility for the spacecraft development when we established XTE as an in-house project at Goddard Space Flight Center, and also was supporting the PCA development. "It adds complexity," I reiterated. "It's a significant cost impact for only a marginal reliability increase". His response was music to my ears, "Jim, I won't stand in your way, but you'll have to convince the scientists and engineers."
The Primordial Inflation Polarization Explorer (PIPER)
NASA Technical Reports Server (NTRS)
Kogut, Alan J.
2012-01-01
The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne instrument to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the polarization of the cosmic microwave background. PIPER combines cold (1.5 K) optics, 5120 bolometric detectors, and rapid polarization modulation using VPM grids to achieve both high sensitivity and excellent control of systematic errors. A series of flights alternating between northern and southern hemisphere launch sites will produce maps in Stokes I, Q, U, and V parameters at frequencies 200, 270, 350, and 600 GHz (wavelengths 1500, 1100, 850, and 500 microns) covering 85% of the sky. We describe the PIPER instrument and discuss the current status and expected science returns from the mission.
NASA Astrophysics Data System (ADS)
Mote, A. S.; Ellins, K. K.; Haddad, N.
2011-12-01
Humans are modifying planet Earth at an alarming rate without fully understanding how our actions will affect the atmosphere, hydrosphere, or biosphere. Recognizing the value of educating people to become citizens who can make informed decisions about Earth's resources and challenges, Texas currently offers Earth and Space Science as a rigorous high school capstone course. The new course has created a need for high quality instructional resources and professional development to equip teachers with the most up to date content knowledge, pedagogical approaches, and technological skills to be able to teach a rigorous Earth and Space Science course. As a participant in the NSF-sponsored Texas Earth and Space Science (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to create Earth System Science and climate change resources for the EarthLabs collection. To this end, I am involved in multiple phases of the EarthLabs project, including reviewing the lab-based units during the development phase, pilot teaching the units with my students, participating in research, and ultimately delivering professional development to other teachers to turn them on to the new modules. My partnership with the EarthLabs project has strengthened my teaching practice by increasing my involvement with curriculum development and collaboration and interaction with other Earth science educators. Critically evaluating the lab modules prior to delivering the lessons to my students has prepared me to more effectively teach the EarthLabs modules in my classroom and present the material to other teachers during professional development workshops. The workshop was also strengthened by planning meetings held with EarthLabs partner teachers in which we engaged in lively discussions regarding misconceptions in Earth science, held by both students and adults, and pedagogical approaches to uncover these misconceptions. Collaboration and discussion among members of the EarthLabs team and partner teachers was instrumental to improving the quality of the EarthLabs modules and the professional development workshop. Furthermore, leading the workshop alongside other partner teachers gave me the confidence and experience to deliver professional development to my colleagues and introduce the newly developed EarthLabs modules to other teachers. In this session I will share my experiences and report on the successes, challenges, and lessons learned from being a part of the EarthLabs curriculum and professional development process.
NASA Technical Reports Server (NTRS)
Turpie, Kevin; Veraverbeke, Sander; Wright, Robert; Anderson, Martha; Prakash, Anupma; Quattrochi, Dale
2014-01-01
The Hyperspectral Infrared Imager (HyspIRI) mission was recommended for implementation by the 2007 report from the U.S. National Research Council Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, also known as the Earth Science Decadal Survey. The HyspIRI mission is science driven and will address a set of science questions identified by the Decadal Survey and broader science community. The mission includes a visible shortwave infrared (VSWIR) imaging spectrometer, a multispectral thermal infrared (TIR) imager and an intelligent payload module (IPM). The IPM enables on-board processing and direct broadcast for those applications with short latency requirements. The science questions are organized as VSWIR-only, TIR-only and Combined science questions, the latter requiring data from both instruments. In order to prepare for the mission NASA is undertaking pre-phase A studies to determine the optimum mission implementation, in particular, cost and risk reduction activities. Each year the HyspIRI project is provided with feedback from NASA Headquarters on the pre-phase A activities in the form of a guidance letter which outlines the work that should be undertaken the subsequent year. The 2013 guidance letter included a recommendation to undertake a study to determine the science impact of deploying the instruments from separate spacecraft in sun synchronous orbits with various time separations and deploying both instruments on the International Space Station (ISS). This report summarizes the results from that study. The approach taken was to evaluate the impact on the combined science questions of time separations between the VSWIR and TIR data of <3 minutes, <1 week and a few months as well as deploying both instruments on the ISS. Note the impact was only evaluated for the combined science questions which require data from both instruments (VSWIR and TIR). The study concluded the impact of a separation of <3 minutes was minimal, e.g. if the instruments were on separate platforms that followed each other in a train. The impact of a separation of <1 week was strongly dependent on the question that was being addressed with no impact for some questions and a severe impact for others. The impact of a time separation of several months was severe and in many cases it was no longer possible to answer the sub-question. The impact of deploying the instruments on the ISS which is in a precessive (non-sun synchronous) orbit was also very question dependent, in some cases it was possible to go beyond the original question, e.g. to examine the impact of the diurnal cycle, whereas in other cases the question could not be addressed for example if the question required observations from the polar regions. As part of the study, the participants were asked to estimate, as a percentage, how completely a given sub-question could be answered with 100% indicating the question could be completely answered. These estimations should be treated with caution but nonetheless can be useful in assessing the impact. Averaging the estimates for each of the combined questions the results indicate that 97% of the questions could be answered with a separation of < 3 minutes. With a separation of < 1 week, 67% of the questions could be answered and with a separation of several months only 21% of the questions could be answered.
NASA Technical Reports Server (NTRS)
Mcnutt, Ralph L., Jr.
1988-01-01
The Voyager Plasma Science (PLS) instrument is capable of returning integral (DC) current measurements, similar in some respects to measurements made with a Langmuir probe or a retarding potential analyzer, although there are significant differences. The integral measurements were made during a calibration sequence in the solar wind, during Cruise Science Maneuvers, and within the magnetospheres of Jupiter and Saturn by Voyager 1. After the failure of the PLS experiment following the Saturn encounter, that instrument was placed in the DC return mode returning possibly usable data from early 1981 through early 1985. The DC return measurements are difficult to interpret and are above threshold values only for relatively large fluxes; the determination of the measured current level is dependent on the operating temperature of the preamplifiers which further complicates the interpretation. Nevertheless, these measurements can be used to determine the efficiency of the suppressor grid at preventing the loss of secondary electrons off the collector plate. Some DC return measurements have been invaluable in aiding in the interpretation of some electron plasma measurements not previously understood. It is found that electron spectra can be significantly modified by the presence of second generation secondary electrons produced by either first generation secondaries or photoelectrons on the support ring of the negative high voltage modulator grid within the instrument housing.
A radiation hardened digital fluxgate magnetometer for space applications
NASA Astrophysics Data System (ADS)
Miles, D. M.; Bennest, J. R.; Mann, I. R.; Millling, D. K.
2013-09-01
Space-based measurements of Earth's magnetic field are required to understand the plasma processes responsible for energising particles in the Van Allen radiation belts and influencing space weather. This paper describes a prototype fluxgate magnetometer instrument developed for the proposed Canadian Space Agency's (CSA) Outer Radiation Belt Injection, Transport, Acceleration and Loss Satellite (ORBITALS) mission and which has applications in other space and suborbital applications. The magnetometer is designed to survive and operate in the harsh environment of Earth's radiation belts and measure low-frequency magnetic waves, the magnetic signatures of current systems, and the static background magnetic field. The new instrument offers improved science data compared to its predecessors through two key design changes: direct digitisation of the sensor and digital feedback from two cascaded pulse-width modulators combined with analog temperature compensation. These provide an increase in measurement bandwidth up to 450 Hz with the potential to extend to at least 1500 Hz. The instrument can resolve 8 pT on a 65 000 nT field with a magnetic noise of less than 10 pT/√Hz at 1 Hz. This performance is comparable with other recent digital fluxgates for space applications, most of which use some form of sigma-delta (ΣΔ) modulation for feedback and omit analog temperature compensation. The prototype instrument was successfully tested and calibrated at the Natural Resources Canada Geomagnetics Laboratory.
NASA Astrophysics Data System (ADS)
Pound, M. W.; Wolfire, M. G.; Amarnath, N. S.
2004-07-01
The Dust InfraRed ToolBox (DIRT - a part of the Web Infrared ToolShed, or WITS {http://dustem.astro.umd.edu}) is a Java applet for modeling astrophysical processes in circumstellar shells around young and evolved stars. DIRT has been used by the astrophysics community for about 5 years. Users can automatically and efficiently search grids of pre-calculated models to fit their data. A large set of physical parameters and dust types are included in the model database, which contains over 500,000 models. We are adding new functionality to DIRT to support new missions like SIRTF and SOFIA. A new Instrument module allows for plotting of the model points convolved with the spatial and spectral responses of the selected instrument. This lets users better fit data from specific instruments. Currently, we have implemented modules for the Infrared Array Camera (IRAC) and Multiband Imaging Photometer (MIPS) on SIRTF. The models are based on the dust radiation transfer code of Wolfire & Cassinelli (1986) which accounts for multiple grain sizes and compositions. The model outputs are averaged over the instrument bands using the same weighting (νFν = constant) as the SIRTF data pipeline which allows the SIRTF data products to be compared directly with the model database. This work was supported in part by a NASA AISRP grant NAG 5-10751 and the SIRTF Legacy Science Program provided by NASA through an award issued by JPL under NASA contract 1407.
2012-11-03
CAPE CANAVERAL, Fla. – Kennedy Space Center Director Bob Cabana checks out an item available for auction at the Astronaut Scholarship Foundation's dinner at the Radisson Resort at the Port in Cape Canaveral celebrating the 40th anniversary of Apollo 17. The auction of space-related memorabilia was held with proceeds supporting college scholarships for students who exhibit imagination and exceptional performance in science, technology, engineering and math. The gala commemorating the anniversary of Apollo 17 included mission commander Eugene Cernan and other astronauts who flew Apollo missions. Launched Dec. 7, 1972, Cernan and lunar module pilot Harrison Schmitt landed in the moon's Taurus-Littrow highlands while command module pilot Ronald Evans remained in lunar orbit operating a scientific instrument module. For more information, visit http://www-pao.ksc.nasa.gov/history/apollo/apollo-17/apollo-17.htm Photo credit: NASA/Kim Shiflett
Dr. Gerald Fishman Working on the Burst and Transient Source Experiment (BATSE)
NASA Technical Reports Server (NTRS)
1991-01-01
In this photograph, Dr. Gerald Fishman of the Marshall Space Flight Center (MSFC), a principal investigator of the Compton Gamma-Ray Observatory's (GRO's) instrument, the Burst and Transient Source Experiment (BATSE), works on the BATSE detector module. For nearly 9 years, GRO's BATSE, designed and built by MSFC, kept an unblinking watch on the universe to alert scientist to the invisible, mysterious gamma-ray bursts. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of star, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. Because gamma-rays are so powerful, they pass through conventional telescope mirrors. Instead of a mirror, the heart of each BATSE module was a large, flat, transparent crystal that generated a tiny flash of light when struck by a gamma-ray. With an impressive list of discoveries and diverse accomplishments, BATSE could claim to have rewritten astronomy textbooks. Launched aboard the Space Shuttle Orbiter Atlantis during the STS-35 mission in April 1991, the GRO reentered the Earth's atmosphere and ended its successful 9-year mission in June 2000.
Science Data Report for the Optical Properties Monitor (OPM) Experiment
NASA Technical Reports Server (NTRS)
Wilkes, D. R.; Zwiener, J. M.; Carruth, Ralph (Technical Monitor)
2001-01-01
This science data report describes the Optical Properties Monitor (OPM) experiment and the data gathered during its 9-mo exposure on the Mir space station. Three independent optical instruments made up OPM: an integrating sphere spectral reflectometer, vacuum ultraviolet spectrometer, and a total integrated scatter instrument. Selected materials were exposed to the low-Earth orbit, and their performance monitored in situ by the OPM instruments. Coinvestigators from four NASA Centers, five International Space Station contractors, one university, two Department of Defense organizations, and the Russian space company, Energia, contributed samples to this experiment. These materials included a number of thermal control coatings, optical materials, polymeric films, nanocomposites, and other state-of-the-art materials. Degradation of some materials, including aluminum conversion coatings and Beta cloth, was greater than expected. The OPM experiment was launched aboard the Space Shuttle on mission STS-81 in January 1997 and transferred to the Mir space station. An extravehicular activity (EVA) was performed in April 1997 to attach the OPM experiment to the outside of the Mir/Shuttle Docking Module for space environment exposure. OPM was retrieved during an EVA in January 1998 and was returned to Earth on board the Space Shuttle on mission STS-89.
Solar-A Prelaunch Mission Operation Report (MOR)
NASA Technical Reports Server (NTRS)
1991-01-01
The Solar-A mission is a Japanese-led program with the participation of the United States and the United Kingdom. The Japanese Institute of Space and Astronautical Science (ISAS) is providing the Solar-A spacecraft, two of the four science instruments, the launch vehicle and launch support, and the principal ground station with Operational Control Center. NASA is providing a science instrument, the Soft X-ray Telescope (SXT)and tracking support using the Deep Space Network (DSN) ground stations. The United Kingdom s Science and Engineering Research Council (SERC) provides the Bragg Crystal Spectrometer. The Solar-A mission will study solar flares using a cluster of instruments on a satellite in a 600 km altitude, 31 degree inclination circular orbit. The emphasis of the mission is on imaging and spectroscopy of hard and soft X-rays. The principal instruments are a pair of X-ray imaging instruments, one for the hard X-ray range and one for the soft X-ray range. The Hard X-Ray Telescope (HXT), provided by ISAS, operates in the energy range of 10-100 keV and uses an array of modulation collimators to record Fourier transform images of the non-thermal and hot plasmas that are formed during the early phases of a flare. These images are thought to be intimately associated with the sites of primary energy release. The Soft X-Ray Telescope (SXT), jointly provided by NASA and ISAS, operates in the wavelength range of 3-50 Angstroms and uses a grazing incidence mirror to form direct images of the lower temperature (but still very hot) plasmas that form as the solar atmosphere responds to the injection of energy. The SXT instrument is a joint development effort between the Lockheed Palo Alto Research Laboratory and the National Astronomical Observatory of Japan. The U.S. effort also involves Stanford University, the University of California at Berkeley and the University of Hawaii, who provide support in the areas of theory, data analysis and interpretation, and ground-based observations. The hard and soft X-ray telescopes both have an alignment sensor, operating in the visual region of the spectrum, to provide co-alignment information.
2010-03-17
A view inside the NASA Goddard clean room where the James Webb Space Telescope (JWST) is being built. This images shows Goddard technicians lifting the ISIM (Integrated Science Instrument Module) onto the ITS (ISIM Test Structure). ISIM will sit atop this platform during space environmental testing. Credit: NASA/GSFC/Chris Gunn For more information on JWST go to: www.jwst.nasa.gov/ For more information on Goddard Space Flight Center go to: www.nasa.gov/centers/goddard/home/index.html
Spacelab Life Sciences 1, development towards successive life sciences flights
NASA Technical Reports Server (NTRS)
Dalton, B. P.; Jahns, G.; Hogan, R.
1992-01-01
A general review is presented of flight data and related hardware developments for Spacelab Life Sciences (SLS) 1 with an eye toward applying this knowledge to projected flight planning. Specific attention is given to the Research Animal Holding Facility (RAHF), the General Purpose Work Station (GPWS), the Small Mass Measuring Instrument (SMMI), and the Animal Enclosure Module (AEM). Preflight and in-flight testing methods are detailed including biocompatibility tests, parametric engineering sensitivity analyses, measurements of environmental parameters, and studies of operational interfaces. Particulate containment is demonstrated for some of the equipment, and successful use of the GPWS, RAHF, AEM, and SMMI are reported. The in-flight data are useful for developing more advanced hardware such as the AEM for SLS flight 2 and the modified RAHF for SLS flight 3.
A new open-source Python-based Space Weather data access, visualization, and analysis toolkit
NASA Astrophysics Data System (ADS)
de Larquier, S.; Ribeiro, A.; Frissell, N. A.; Spaleta, J.; Kunduri, B.; Thomas, E. G.; Ruohoniemi, J.; Baker, J. B.
2013-12-01
Space weather research relies heavily on combining and comparing data from multiple observational platforms. Current frameworks exist to aggregate some of the data sources, most based on file downloads via web or ftp interfaces. Empirical models are mostly fortran based and lack interfaces with more useful scripting languages. In an effort to improve data and model access, the SuperDARN community has been developing a Python-based Space Science Data Visualization Toolkit (DaViTpy). At the center of this development was a redesign of how our data (from 30 years of SuperDARN radars) was made available. Several access solutions are now wrapped into one convenient Python interface which probes local directories, a new remote NoSQL database, and an FTP server to retrieve the requested data based on availability. Motivated by the efficiency of this interface and the inherent need for data from multiple instruments, we implemented similar modules for other space science datasets (POES, OMNI, Kp, AE...), and also included fundamental empirical models with Python interfaces to enhance data analysis (IRI, HWM, MSIS...). All these modules and more are gathered in a single convenient toolkit, which is collaboratively developed and distributed using Github and continues to grow. While still in its early stages, we expect this toolkit will facilitate multi-instrument space weather research and improve scientific productivity.
Space Science in Project SMART: A UNH High School Outreach Program
NASA Astrophysics Data System (ADS)
Smith, C. W.; Broad, L.; Goelzer, S.; Lessard, M.; Levergood, R.; Lugaz, N.; Moebius, E.; Schwadron, N.; Torbert, R. B.; Zhang, J.; Bloser, P. F.
2016-12-01
Every summer for the past 25 years the University of New Hampshire (UNH) has run a month-long, residential outreach program for high school students considering careers in mathematics, science, or engineering. Space science is one of the modules. Students work directly with UNH faculty performing original work with real spacecraft data and hardware and present the results of that effort at the end of the program. Recent research topics have included interplanetary waves and turbulence as recorded by the ACE and Voyager spacecraft, electromagnetic ion cyclotron (EMIC) waves seen by the RBSP spacecraft, interplanetary coronal mass ejections (ICME) acceleration and interstellar pickup ions as seen by the STEREO spacecraft, and prototyping CubeSat hardware. Student research efforts can provide useful results for future research efforts by the faculty while the students gain unique exposure to space physics and a science career. In addition, the students complete a team project. Since 2006, that project has been the construction and flight of a high-altitude balloon payload and instruments. The students typically build the instruments they fly. In the process, students learn circuit design and construction, microcontroller programming, and core atmospheric and space science. Our payload design has evolved significantly since the first flight of a simple rectangular box and now involves a stable descent vehicle that does not require a parachute, an on-board flight control computer, in-flight autonomous control and data acquisition of multiple student-built instruments, and real-time camera images sent to ground. This is a program that can be used as a model for other schools to follow and that high schools can initiate. More information can be found at .
Design and implementation of ATCA-based 100Gbps DP-QPSK optical signal test instrument
NASA Astrophysics Data System (ADS)
Su, Shaojing; Qin, Jiangyi; Huang, Zhiping; Liu, Chenwu
2014-11-01
In order to achieve the receiving task of 100Gbps Dual Polarization-Quadrature Phase Shift Keying (DP-QPSK) optical signal acquisition instrument, improve acquisition performance of the instrument, this paper has deeply researched DP-QPSK modulation principles, demodulation techniques and the key technologies of optical signal acquisition. The theories of DP-QPSK optical signal transmission are researched. The DP-QPSK optical signal transmission model is deduced. And the clock and data recovery in high-speed data acquisition and offset correction of multi-channel data are researched. By reasonable hardware circuit design and software system construction, the utilization of high performance Advanced Telecom Computing Architecture (ATCA), this paper proposes a 100Gbps DP-QPSK optical signal acquisition instrument which is based on ATCA. The implementations of key modules are presented by comparison and argumentation. According to the modularization idea, the instrument can be divided into eight modules. Each module performs the following functions. (1) DP-QPSK coherent detection demodulation module; (2) deceleration module; (3) FPGA (Field Programmable Gate Array); (4) storage module; (5) data transmission module; (6) clock module; (7) power module; (8) JTAG debugging, configuration module; What is more, this paper has put forward two solutions to test optical signal acquisition instrument performance. The first scenario is based on a standard STM-256 optical signal format and exploits the SignalTap of QuartusII software to monitor the optical signal data. Another scenario is to use a pseudo-random signal series to generate data, acquisition module acquires a certain amount of data signals, and then the signals are transferred to a computer by the Gigabit Ethernet to analyze. Two testing results show that the bit error rate of optical signal acquisition instrument is low. And the instrument fully meets the requirements of signal receiving system. At the same time this design has an important significance in practical applications.
Adjustable extender for instrument module
Sevec, J.B.; Stein, A.D.
1975-11-01
A blank extender module used to mount an instrument module in front of its console for repair or test purposes has been equipped with a rotatable mount and means for locking the mount at various angles of rotation for easy accessibility. The rotatable mount includes a horizontal conduit supported by bearings within the blank module. The conduit is spring-biased in a retracted position within the blank module and in this position a small gear mounted on the conduit periphery is locked by a fixed pawl. The conduit and instrument mount can be pulled into an extended position with the gear clearing the pawl to permit rotation and adjustment of the instrument.
MOSES: a modular sensor electronics system for space science and commercial applications
NASA Astrophysics Data System (ADS)
Michaelis, Harald; Behnke, Thomas; Tschentscher, Matthias; Mottola, Stefano; Neukum, Gerhard
1999-10-01
The camera group of the DLR--Institute of Space Sensor Technology and Planetary Exploration is developing imaging instruments for scientific and space applications. One example is the ROLIS imaging system of the ESA scientific space mission `Rosetta', which consists of a descent/downlooking and a close-up imager. Both are parts of the Rosetta-Lander payload and will operate in the extreme environment of a cometary nucleus. The Rosetta Lander Imaging System (ROLIS) will introduce a new concept for the sensor electronics, which is referred to as MOSES (Modula Sensor Electronics System). MOSES is a 3D miniaturized CCD- sensor-electronics which is based on single modules. Each of the modules has some flexibility and enables a simple adaptation to specific application requirements. MOSES is mainly designed for space applications where high performance and high reliability are required. This concept, however, can also be used in other science or commercial applications. This paper describes the concept of MOSES, its characteristics, performance and applications.
Photometer Performance Assessment in TESS SPOC Pipeline
NASA Astrophysics Data System (ADS)
Li, Jie; Caldwell, Douglas A.; Jenkins, Jon Michael; Twicken, Joseph D.; Wohler, Bill; Chen, Xiaolan; Rose, Mark; TESS Science Processing Operations Center
2018-06-01
This poster describes the Photometer Performance Assessment (PPA) software component in the Transiting Exoplanet Survey Satellite (TESS) Science Processing Operations Center (SPOC) pipeline, which is developed based on the Kepler science pipeline. The PPA component performs two tasks: the first task is to assess the health and performance of the instrument based on the science data sets collected during each observation sector, identifying out of bounds conditions and generating alerts. The second is to combine the astrometric data collected for each CCD readout channel to construct a high fidelity record of the pointing history for each of the 4 cameras and an attitude solution for the TESS spacecraft for each 2-min data collection interval. PPA is implemented with multiple pipeline modules: PPA Metrics Determination (PMD), PMD Aggregator (PAG), and PPA Attitude Determination (PAD). The TESS Mission is funded by NASA's Science Mission Directorate. The SPOC is managed and operated by NASA Ames Research Center.
View of Scientific Instrument Module to be flown on Apollo 15
NASA Technical Reports Server (NTRS)
1971-01-01
Close-up view of the Scientific Instrument Module (SIM) to be flown for the first time on the Apollo 15 mission. Mounted in a previously vacant sector of the Apollo Service Module, the SIM carries specialized cameras and instrumentation for gathering lunar orbit scientific data.
Kepler Science Operations Center Architecture
NASA Technical Reports Server (NTRS)
Middour, Christopher; Klaus, Todd; Jenkins, Jon; Pletcher, David; Cote, Miles; Chandrasekaran, Hema; Wohler, Bill; Girouard, Forrest; Gunter, Jay P.; Uddin, Kamal;
2010-01-01
We give an overview of the operational concepts and architecture of the Kepler Science Data Pipeline. Designed, developed, operated, and maintained by the Science Operations Center (SOC) at NASA Ames Research Center, the Kepler Science Data Pipeline is central element of the Kepler Ground Data System. The SOC charter is to analyze stellar photometric data from the Kepler spacecraft and report results to the Kepler Science Office for further analysis. We describe how this is accomplished via the Kepler Science Data Pipeline, including the hardware infrastructure, scientific algorithms, and operational procedures. The SOC consists of an office at Ames Research Center, software development and operations departments, and a data center that hosts the computers required to perform data analysis. We discuss the high-performance, parallel computing software modules of the Kepler Science Data Pipeline that perform transit photometry, pixel-level calibration, systematic error-correction, attitude determination, stellar target management, and instrument characterization. We explain how data processing environments are divided to support operational processing and test needs. We explain the operational timelines for data processing and the data constructs that flow into the Kepler Science Data Pipeline.
The Geostationary Fourier Transform Spectrometer
NASA Technical Reports Server (NTRS)
Key, Richard; Sander, Stanley; Eldering, Annmarie; Miller, Charles; Frankenberg, Christian; Natra, Vijay; Rider, David; Blavier, Jean-Francois; Bekker, Dmitriy; Wu, Yen-Hung
2012-01-01
The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for an earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. The GeoFTS instrument is a half meter cube size instrument designed to operate in geostationary orbit as a secondary "hosted" payload on a commercial geostationary satellite mission. The advantage of GEO is the ability to continuously stare at a region of the earth, enabling frequent sampling to capture the diurnal variability of biogenic fluxes and anthropogenic emissions from city to continental scales. The science goal is to obtain a process-based understanding of the carbon cycle from simultaneous high spatial resolution measurements of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) many times per day in the near infrared spectral region to capture their spatial and temporal variations on diurnal, synoptic, seasonal and interannual time scales. The GeoFTS instrument is based on a Michelson interferometer design with a number of advanced features incorporated. Two of the most important advanced features are the focal plane arrays and the optical path difference mechanism. A breadboard GeoFTS instrument has demonstrated functionality for simultaneous measurements in the visible and IR in the laboratory and subsequently in the field at the California Laboratory for Atmospheric Remote Sensing (CLARS) observatory on Mt. Wilson overlooking the Los Angeles basin. A GeoFTS engineering model instrument is being developed which will make simultaneous visible and IR measurements under space flight like environmental conditions (thermal-vacuum at 180 K). This will demonstrate critical instrument capabilities such as optical alignment stability, interferometer modulation efficiency, and high throughput FPA signal processing. This will reduce flight instrument development risk and show that the GeoFTS design is mature and flight ready.
The JWST/NIRSpec instrument: update on status and performances
NASA Astrophysics Data System (ADS)
Birkmann, Stephan M.; Ferruit, Pierre; Rawle, Tim; Sirianni, Marco; Alves de Oliveira, Catarina; Böker, Torsten; Giardino, Giovanna; Lützgendorf, Nora; Marston, Anthony; Stuhlinger, Martin; te Plate, Maurice B. J.; Jensen, Peter; Rumler, Peter; Dorner, Bernhard; Karl, Hermann; Mosner, Peter; Wright, Raymond H.; Rapp, Robert
2016-07-01
The Near-Infrared Spectrograph (NIRSpec) is one of the four instruments on the James Webb Space Telescope (JWST) which is scheduled for launch in 2018. NIRSpec is developed by the European Space Agency (ESA) with Airbus Defense and Space Germany as prime contractor. The instrument offers seven dispersers covering the wavelength range from 0.6 to 5.3 micron with resolutions from R ˜ 100 to R ˜ 2700. NIRSpec will be capable of obtaining spectra for more than 100 objects simultaneously using an array of micro-shutters. It also features an integral field unit with 3" x 3" field of view and a range of slits for high contrast spectroscopy of individual objects and time series observations of e.g. transiting exoplanets. NIRSpec is in its final flight configuration and underwent cryogenic performance testing at the Goddard Space Flight Center in Winter 2015/16 as part of the Integrated Science Instrument Module (ISIM). We present the current status of the instrument and also provide an update on NIRSpec performances based on results from the ISIM level test campaign.
WebbPSF: Updated PSF Models Based on JWST Ground Testing Results
NASA Astrophysics Data System (ADS)
Osborne, Shannon; Perrin, Marshall D.; Melendez Hernandez, Marcio
2018-06-01
WebbPSF is a widely-used package that allows astronomers to create simulated point spread functions (PSFs) for the James Webb Space Telescope (JWST). WebbPSF provides the user with the flexibility to produce PSFs for direct imaging and coronographic modes, for a range of filters and masks, and across all the JWST instruments. These PSFs can then be analyzed with built-in evaluation tools or can be output to be used with users’ own tools. In the most recent round of updates, the accuracy of the PSFs have been improved with updated analyses of the instrument test data from NASA Goddard and with the new data from the testing of the combined Optical Telescope Element and Integrated Science Instrument Module (OTIS) at NASA Johnson. A post-processing function applying detector effects and pupil distortions to input PSFs has also been added to the WebbPSF package.
Characteristics of an Imaging Polarimeter for the Powell Observatory
NASA Astrophysics Data System (ADS)
Hall, Shannon; Henson, G.
2010-01-01
A dual-beam imaging polarimeter has been built for use on the 14 inch Schmidt-Cassegrain telescope at the ETSU Harry D. Powell Observatory. The polarimeter includes a rotating half-wave plate and a Wollaston prism to separate light into two orthogonal linearly polarized rays. A TEC cooled CCD camera is used to detect the modulated polarized light. We present here measurements of the polarization of polarimetric standard stars. By measuring unpolarized and polarized standard stars we are able to establish the instrumental polarization and the efficiency of the instrument. The polarimeter will initially be used as a dedicated instrument in an ongoing project to monitor the eclipsing binary star, Epsilon Aurigae. This project was funded by a partnership between the National Science Foundation (NSF AST-0552798), Research Experience for Undergraduates (REU), and the Department of Defense (DoD) ASSURE (Awards to Stimulate and Support Undergraduate Research Experiences) programs.
Development of Mirror Modules for the ART-XC Instrument aboard the Spectrum-Roentgen-Gamma Mission
NASA Technical Reports Server (NTRS)
Gubarev, M; Ramsey, B.; O'Dell, S. L.; Elsner, R.; Kilaru, K.; McCracken, J.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.; Atkins, C.;
2013-01-01
The Marshall Space Flight Center (MSFC) is developing x-ray mirror modules for the ART-XC instrument on board the Spectrum-Roentgen Gamma Mission. Four of those modules are being fabricated under a Reimbursable Agreement between NASA and the Russian Space Research Institute (IKI.) An additional three flight modules and one spare for the ART-XC Instrument are produced under a Cooperative Agreement between NASA and IKI. The instrument will consist of seven co-aligned x-ray mirror modules with seven corresponding CdTe focal plane detectors. Each module consists of 28 nested thin Ni/Co shells giving an effective area of 65 cm2 at 8 keV, response out to 30 keV, and an angular resolution of 45 arcsec or better HPD. Delivery of the first four modules is scheduled for November 2013, while the remaining three modules will be delivered to IKI in January 2014. We present a status of the ART x-ray module development at MSFC.
Development of mirror modules for the ART-XC instrument aboard the Spectrum-Roentgen-Gamma mission
NASA Astrophysics Data System (ADS)
Gubarev, M.; Ramsey, B.; O'Dell, S. L.; Elsner, R.; Kilaru, K.; McCracken, J.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.; Atkins, C.; Zavlin, V.
2013-09-01
The Marshall Space Flight Center (MSFC) is developing x-ray mirror modules for the ART-XC instrument on board the Spectrum-Roentgen Gamma Mission. Four of those modules are being fabricated under a Reimbursable Agreement between NASA and the Russian Space Research Institute (IKI.) An additional three flight modules and one spare for the ART-XC Instrument are produced under a Cooperative Agreement between NASA and IKI. The instrument will consist of seven co-aligned x-ray mirror modules with seven corresponding CdTe focal plane detectors. Each module consists of 28 nested thin Ni/Co shells giving an effective area of 65 cm2 at 8 keV, response out to 30 keV, and an angular resolution of 45 arcsec or better HPD. Delivery of the first four modules is scheduled for November 2013, while the remaining three modules will be delivered to IKI in January 2014. We present a status of the ART x-ray module development at MSFC.
View of model of Scientific Instrument Module to be flown on Apollo 15
NASA Technical Reports Server (NTRS)
1970-01-01
Close-up view of a scale model of the Scientific Instrument Module (SIM) to be flown for the first time on the Apollo 15 mission. Mounted in a previously vacant sector of the Apollo service module, the SIM carries specialized cameras and instrumentation for gathering lunar orbit scientific data.
Line drawing of layout of Scietific Instrument Module of Apollo 16
1972-03-01
A line drawing illustrating the layout of the Scietific Instrument Module (SIM) of the Apollo 16 Service Module. Shown here is the location in the SIM bay of the equipment for each orbital experiment. Arrows point to various components of the SIM bay. The sensors for the gamma ray spectrometer and the mas spectrometer both extend outward on a boom about 25 feet when the instruments are in use. The subsatellite is launched while the Service Module is in orbit around the moon. The film cassettes must be retrieved prior to Command Module/Service Module separation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Erik
In this successful SBIR Phase II effort, HJ Science & Technology, Inc. has designed and built a novel portable instrument capable of performing automated aqueous organochloride (chlorinated solvent) speciation analysis for environmental monitoring at DoE sites. Our technique employs performing organochloride conjugation, labeling the conjugate with an efficient fluorophore, and performing on-chip capillary electrophoresis separation with laser induced fluorescence detection. The key component of the portable instrument is a novel microfluidic chip capable of complete “end-to-end” automation of sample preparation, conjugation, labeling, and μCE separation and detection. In addition, the Phase II prototype includes key supporting instrumentation such as themore » optical module, pneumatic manifold, electronics, software, etc. As such, we have achieved all of the following 4 Phase II technical objectives: 1) Further refine and optimize the “on-chip” automation of the organochloride conjugation and labeling protocol, 2) Further improve the microfluidic chip fabrication process and the pneumatic manifold design in order to address issues related to performance consistency, product yield, performance reliability, and user friendliness, 3) Design and build the supporting components of the Phase II prototype including optical module, electronics, and software, and 4) Assemble the Phase II prototype hardware.« less
Fault-tolerant NAND-flash memory module for next-generation scientific instruments
NASA Astrophysics Data System (ADS)
Lange, Tobias; Michel, Holger; Fiethe, Björn; Michalik, Harald; Walter, Dietmar
2015-10-01
Remote sensing instruments on today's space missions deliver a high amount of data which is typically evaluated on ground. Especially for deep space missions the telemetry downlink is very limited which creates the need for the scientific evaluation and thereby a reduction of data volume already on-board the spacecraft. A demanding example is the Polarimetric and Helioseismic Imager (PHI) instrument on Solar Orbiter. To enable on-board offline processing for data reduction, the instrument has to be equipped with a high capacity memory module. The module is based on non-volatile NAND-Flash technology, which requires more advanced operation than volatile DRAM. Unlike classical mass memories, the module is integrated into the instrument and allows readback of data for processing. The architecture and safe operation of such kind of memory module is described in the following paper.
Space Telescope maintenance and refurbishment
NASA Technical Reports Server (NTRS)
Trucks, H. F.
1983-01-01
The Space Telescope (ST) represents a new concept regarding spaceborne astronomical observatories. Maintenance crews will be brought to the orbital worksite to make repairs and replace scientific instruments. For major overhauls the telescope can be temporarily returned to earth with the aid of the Shuttle. It will, thus, be possible to conduct astronomical studies with the ST for two decades or more. The five first-generation scientific instruments used with the ST include a wide field/planetary camera, a faint object camera, a faint object spectrograph, a high resolution spectrograph, and a high speed photometer. Attention is given to the optical telescope assembly, the support systems module, aspects of mission and science operations, unscheduled maintenance, contingency orbital maintenance, planned on-orbit maintenance, ground maintenance, ground refurbishment, and ground logistics.
Cryo-Vacuum Testing of JWST's Integrated Telescope & Scientific Instrument Suite (OTIS)
NASA Astrophysics Data System (ADS)
Kimble, Randy; Apollo, Peter; Feinberg, Lee; Glazer, Stuart; Hanley, Jeffrey; Keski-Kuha, Ritva; Kirk, Jeffrey; Knight, J. Scott; Lambros, Scott; Lander, Juli; McGuffey, Douglas; Mehalick, Kimberly; Ohl, Raymond; Ousley, Wes; Reis, Carl; Reynolds, Paul; Begoña Vila, Maria; Waldman, Mark; Whitman, Tony
2018-01-01
A year ago we reported on the planning for a major test in the James Webb Space Telescope (JWST) program: cryo-vacuum testing of the combination of the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM). The cryo-vacuum testing of that scientific heart of the JWST observatory, known as OTIS (= OTE + ISIM), has now been completed in historic chamber A at NASA’s Johnson Space Center. From July through October 2017, the flight payload was cooled to its operating temperatures, put through a comprehensive suite of optical, thermal, and operational tests, and then safely warmed back to room temperature. We report here on the execution and top-level results from this milestone event in the JWST program.
The Apollo Alpha Spectrometer.
NASA Technical Reports Server (NTRS)
Jagoda, N.; Kubierschky, K.; Frank, R.; Carroll, J.
1973-01-01
Located in the Science Instrument Module of Apollo 15 and 16, the Alpha Particle Spectrometer was designed to detect and measure the energy of alpha particles emitted by the radon isotopes and their daughter products. The spectrometer sensor consisted of an array of totally depleted silicon surface barrier detectors. Biased amplifier and linear gate techniques were utilized to reduce resolution degradation, thereby permitting the use of a single 512 channel PHA. Sensor identification and in-flight radioactive calibration were incorporated to enhance data reduction.
NASA Technical Reports Server (NTRS)
Krainak, Michael; Merritt, Scott
2016-01-01
Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.
Lineger and Tsibliev during EVA outside Mir Space Station
1997-04-29
NM23-48-009 (29 April 1997) --- United States astronaut Jerry M. Linenger, cosmonaut guest researcher, works outside the Russian Mir Space Station during a joint United States-Russian space walk on April 29, 1997. He was joined by Mir-23 commander Vasili V. Tsibliyev (out of frame) for the five-hour Extravehicular Activity (EVA) designed to deploy scientific instruments and retrieve other science hardware. At the top of the frame is a Russian Progress re-supply capsule docked to the Mir’s Kvant-1 module.
Using Commercial Off-the-Shelf Software Tools for Space Shuttle Scientific Software
NASA Technical Reports Server (NTRS)
Groleau, Nicolas; Friedland, Peter (Technical Monitor)
1994-01-01
In October 1993, the Astronaut Science Advisor (ASA) was on board the STS-58 flight of the space shuttle. ASA is an interactive system providing data acquisition and analysis, experiment step re-scheduling, and various other forms of reasoning. As fielded, the system runs on a single Macintosh PowerBook 170, which hosts the six ASA modules. There is one other piece of hardware, an external (GW Instruments, Sommerville, Massachusetts) analog-to-digital converter connected to the PowerBook's SCSI port. Three main software tools were used: LabVIEW, CLIPS, and HyperCard: First, a module written in LabVIEW (National Instruments, Austin, Texas) controls the A/D conversion and stores the resulting data in appropriate arrays. This module also analyzes the numerical data to produce a small set of characteristic numbers or symbols describing the results of an experiment trial. Second, a forward-chaining inference system written in CLIPS (NASA) uses the symbolic information provided by the first stage with a static rule base to infer decisions about the experiment. This expert system shell is used by the system for diagnosis. The third component of the system is the user interface, written in HyperCard (Claris Inc. and Apple Inc., both in Cupertino, California).
The response function of modulated grid Faraday cup plasma instruments
NASA Technical Reports Server (NTRS)
Barnett, A.; Olbert, S.
1986-01-01
Modulated grid Faraday cup plasma analyzers are a very useful tool for making in situ measurements of space plasmas. One of their great attributes is that their simplicity permits their angular response function to be calculated theoretically. An expression is derived for this response function by computing the trajectories of the charged particles inside the cup. The Voyager Plasma Science (PLS) experiment is used as a specific example. Two approximations to the rigorous response function useful for data analysis are discussed. The theoretical formulas were tested by multi-sensor analysis of solar wind data. The tests indicate that the formulas represent the true cup response function for all angles of incidence with a maximum error of only a few percent.
Spacelab Science Results Study
NASA Technical Reports Server (NTRS)
Naumann, R. J.; Lundquist, C. A.; Tandberg-Hanssen, E.; Horwitz, J. L.; Germany, G. A.; Cruise, J. F.; Lewis, M. L.; Murphy, K. L.
2009-01-01
Beginning with OSTA-1 in November 1981 and ending with Neurolab in March 1998, a total of 36 Shuttle missions carried various Spacelab components such as the Spacelab module, pallet, instrument pointing system, or mission peculiar experiment support structure. The experiments carried out during these flights included astrophysics, solar physics, plasma physics, atmospheric science, Earth observations, and a wide range of microgravity experiments in life sciences, biotechnology, materials science, and fluid physics which includes combustion and critical point phenomena. In all, some 764 experiments were conducted by investigators from the U.S., Europe, and Japan. The purpose of this Spacelab Science Results Study is to document the contributions made in each of the major research areas by giving a brief synopsis of the more significant experiments and an extensive list of the publications that were produced. We have also endeavored to show how these results impacted the existing body of knowledge, where they have spawned new fields, and if appropriate, where the knowledge they produced has been applied.
Science objectives of ESA's ExoMars mission
NASA Astrophysics Data System (ADS)
Vago, J. L.; Gardini, B.; Baglioni, P.; Kminek, G.; Gianfiglio, G.; Exomars Project Team
ExoMars will deliver two science elements to the Martian surface: a Rover, carrying the Pasteur scientific payload; and a small, fixed surface station -the Geophysics & Environment Package (GEP). The ExoMars mission's scientific objectives are: 1) To search for signs of past and present life on Mars; 2) To characterise the water/geochemical environment as a function of depth in the shallow subsurface; 3) To study the surface environment and identify hazards to future human missions; and 4) To investigate the planet's deep interior to better understand Mars's evolution and habitability. Over its planned 6-month lifetime, the Rover will travel a few kilometres searching for traces of past and present signs of life. It will do this by collecting and analysing samples from within surface rocks, and from underground -down to 2-m depth. The very powerful combination of mobility with the capability to access locations where organic molecules may be well preserved is unique to this mission. The ExoMars mission contains two other elements: a Carrier and a Descent Module. The Carrier will bring the Descent Module to Mars and release it from the hyperbolic arrival trajectory. The Descent Module's objective is to safely deploy the Pasteur Rover and the GEP -developing a robust European Entry, Descent and Landing System (EDLS) is another fundamental goal of this mission. The mission's data relay capability will be provided by a NASA orbiter. The Pasteur Rover's mass is presently estimated at 190 kg, including the Pasteur scientific payload. The Pasteur payload contains: Panoramic Instruments: stereoscopic cameras, a ground-penetrating radar, and an IR spectrometer; Contact Instrument for studying surface rocks: a close-up imager and a Mössbauer spectrometer; a subsurface drill capable of reaching a depth of 2 m, and also of collecting specimens from exposed bedrock; a sample preparation and distribution unit; a microscope; an oxidation sensor; and a variety of analytical instruments for the characterisation of organic substances and geochemistry in the collected samples. Latitudinal bands between -15 deg and 45 deg can be targeted for landing, ensuring that the mission is flexible enough to accommodate interesting new sites based on latest available data from on-going Mars orbital missions.
Key Science Instrument Installed into Webb Structure
2017-12-08
Engineers are checking to make sure that MIRI is precisely positioned with the ISIM as it slides into position. They have to make sure it's installed exactly where it needs to be within the width of a thin human hair. Visible is MIRI's pickoff mirror, which is the protrusion on the right side of the instrument that looks like a periscope on its side. This is where MIRI grabs light coming from the telescope optics. Also visible is the silver-colored base of MIRI's cryocooled shield, already installed on the ISIM structure and with a hole in it for MIRI's pickoff mirror. MIRI itself has special silver-colored blanketing around it as insulation to keep it at its proper cryogenic temperature during operation. Photo Credit: NASA/Chris Gunn; Text Credit: NASA/Laura Betz ---- Engineers worked meticulously to implant the James Webb Space Telescope's Mid-Infrared Instrument into the ISIM, or Integrated Science Instrument Module, in the cleanroom at NASA's Goddard Space Flight Center in Greenbelt, Md. As the successor to NASA's Hubble Space Telescope, the Webb telescope will be the most powerful space telescope ever built. It will observe the most distant objects in the universe, provide images of the first galaxies formed and see unexplored planets around distant stars. For more information, visit: www.jwst.nasa.gov NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Development of a canopy Solar-induced chlorophyll fluorescence measurement instrument
NASA Astrophysics Data System (ADS)
Sun, G.; Wang, X.; Niu, Zh; Chen, F.
2014-02-01
A portable solar-induced chlorophyll fluorescence detecting instrument based on Fraunhofer line principle was designed and tested. The instrument has a valid survey area of 1.3 × 1.3 meter when the height was fixed to 1.3 meter. The instrument uses sunlight as its light source. The instrument is quipped with two sets of special photoelectrical detectors with the centre wavelength at 760 nm and 771 nm respectively and bandwidth less than 1nm. Both sets of detectors are composed of an upper detector which are used for detecting incidence sunlight and a bottom detector which are used for detecting reflex light from the canopy of crop. This instrument includes photoelectric detector module, signal process module, A/D convert module, the data storage and upload module and human-machine interface module. The microprocessor calculates solar-induced fluorescence value based on the A/D values get from detectors. And the value can be displayed on the instrument's LCD, stored in the flash memory of instrument and can also be uploaded to PC through the PC's serial interface. The prototype was tested in the crop field and the results demonstrate that the instrument can measure the solar-induced chlorophyll value exactly with the correlation coefficients was 0.9 compared to the values got from Analytical Spectral Devices FieldSpec Pro spectrometer. This instrument can diagnose the plant growth status by the acquired spectral response.
Perceptually Salient Regions of the Modulation Power Spectrum for Musical Instrument Identification.
Thoret, Etienne; Depalle, Philippe; McAdams, Stephen
2017-01-01
The ability of a listener to recognize sound sources, and in particular musical instruments from the sounds they produce, raises the question of determining the acoustical information used to achieve such a task. It is now well known that the shapes of the temporal and spectral envelopes are crucial to the recognition of a musical instrument. More recently, Modulation Power Spectra (MPS) have been shown to be a representation that potentially explains the perception of musical instrument sounds. Nevertheless, the question of which specific regions of this representation characterize a musical instrument is still open. An identification task was applied to two subsets of musical instruments: tuba, trombone, cello, saxophone, and clarinet on the one hand, and marimba, vibraphone, guitar, harp, and viola pizzicato on the other. The sounds were processed with filtered spectrotemporal modulations with 2D Gaussian windows. The most relevant regions of this representation for instrument identification were determined for each instrument and reveal the regions essential for their identification. The method used here is based on a "molecular approach," the so-called bubbles method. Globally, the instruments were correctly identified and the lower values of spectrotemporal modulations are the most important regions of the MPS for recognizing instruments. Interestingly, instruments that were confused with each other led to non-overlapping regions and were confused when they were filtered in the most salient region of the other instrument. These results suggest that musical instrument timbres are characterized by specific spectrotemporal modulations, information which could contribute to music information retrieval tasks such as automatic source recognition.
Concept of Science Data Management for the Korea Pathfinder Lunar Orbiter
NASA Astrophysics Data System (ADS)
Kim, Joo Hyeon
2016-10-01
South Korea has a plan to explore the Moon in 2018 or 2019. For the plan, the Korea Aerospace Research Institute which is a government funded research institute kicked off the Korea Lunar Exploration Development Program in January, 2016 in support of Ministry of Science, ICT and Future Planning, South Korea.As the 1st stage mission of the program, named as the Korea Pathfinder Lunar Orbiter(KPLO), will perform acquisition of high resolution images and science data for investigation of lunar environment as well as the core technology demonstration and validation for space explorations. The scientific instruments consists of three Korean domestic developed science instruments except an imaging instrument and several foreign provided instruments. We are developing a science data management plan to encourage scientific activities using science data acquired by the science instruments.I introduce the Korean domestic developed science instruments and present concept of the science data management plan for data delivery, processing, and distribution for the science instruments.
OERL: A Tool For Geoscience Education Evaluators
NASA Astrophysics Data System (ADS)
Zalles, D. R.
2002-12-01
The Online Evaluation Resource Library (OERL) is a Web-based set of resources for improving the evaluation of projects funded by the Directorate for Education and Human Resources (EHR) of the National Science Foundation (NSF). OERL provides prospective project developers and evaluators with material that they can use to design, conduct, document, and review evaluations. OERL helps evaluators tackle the challenges of seeing if a project is meeting its implementation and outcome-related goals. Within OERL is a collection of exemplary plans, instruments, and reports from evaluations of EHR-funded projects in the geosciences and in other areas of science and mathematics. In addition, OERL contains criteria about good evaluation practices, professional development modules about evaluation design and questionnaire development, a dictionary of key evaluation terms, and links to evaluation standards. Scenarios illustrate how the resources can be used or adapted. Currently housed in OERL are 137 instruments, and full or excerpted versions of 38 plans and 60 reports. 143 science and math projects have contributed to the collection so far. OERL's search tool permits the launching of precise searches based on key attributes of resources such as their subject area and the name of the sponsoring university or research institute. OERL's goals are to 1) meet the needs for continuous professional development of evaluators and principal investigators, 2) complement traditional vehicles of learning about evaluation, 3) utilize the affordances of current technologies (e.g., Web-based digital libraries, relational databases, and electronic performance support systems) for improving evaluation practice, 4) provide anytime/anyplace access to update-able resources that support evaluators' needs, and 5) provide a forum by which professionals can interact on evaluation issues and practices. Geoscientists can search the collection of resources from geoscience education projects that have been funded by NSF to carry out curriculum development, teacher education, faculty development, and increased access, retention, and preparation of under-represented student populations in science. Over the next two years, additional plans, instruments, and reports from other projects will be added to the OERL collection. Also to be added are more professional development modules and online coaches for constructing key evaluation documents. The presentation overviews the structure of OERL, describes some of the geoscience projects in the collection, and provides some examples of how its resources can be used and adapted for other geoscience education evaluations.
ISIM Lowered into Thermal Vacuum Chamber
2017-12-08
An overhead glimpse inside the thermal vacuum chamber at NASA's Goddard Space Flight Center in Greenbelt, Md., as engineers ready the James Webb Space Telescope's Integrated Science Instrument Module, just lowered into the chamber for its first thermal vacuum test. The ISIM and the ISIM System Integration Fixture that holds the ISIM Electronics Compartment is completely covered in protective blankets to shield it from contamination. Image credit: NASA/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Phase-Retrieval Uncertainty Estimation and Algorithm Comparison for the JWST-ISIM Test Campaign
NASA Technical Reports Server (NTRS)
Aronstein, David L.; Smith, J. Scott
2016-01-01
Phase retrieval, the process of determining the exitpupil wavefront of an optical instrument from image-plane intensity measurements, is the baseline methodology for characterizing the wavefront for the suite of science instruments (SIs) in the Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST). JWST is a large, infrared space telescope with a 6.5-meter diameter primary mirror. JWST is currently NASA's flagship mission and will be the premier space observatory of the next decade. ISIM contains four optical benches with nine unique instruments, including redundancies. ISIM was characterized at the Goddard Space Flight Center (GSFC) in Greenbelt, MD in a series of cryogenic vacuum tests using a telescope simulator. During these tests, phase-retrieval algorithms were used to characterize the instruments. The objective of this paper is to describe the Monte-Carlo simulations that were used to establish uncertainties (i.e., error bars) for the wavefronts of the various instruments in ISIM. Multiple retrieval algorithms were used in the analysis of ISIM phase-retrieval focus-sweep data, including an iterativetransform algorithm and a nonlinear optimization algorithm. These algorithms emphasize the recovery of numerous optical parameters, including low-order wavefront composition described by Zernike polynomial terms and high-order wavefront described by a point-by-point map, location of instrument best focus, focal ratio, exit-pupil amplitude, the morphology of any extended object, and optical jitter. The secondary objective of this paper is to report on the relative accuracies of these algorithms for the ISIM instrument tests, and a comparison of their computational complexity and their performance on central and graphical processing unit clusters. From a phase-retrieval perspective, the ISIM test campaign includes a variety of source illumination bandwidths, various image-plane sampling criteria above and below the Nyquist- Shannon critical sampling value, various extended object sizes, and several other impactful effects.
NASA Technical Reports Server (NTRS)
Ohl, R.
2016-01-01
NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (40K). The JWST Observatory includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) that contains four science instruments (SI) and the guider. The SIs are mounted to a composite metering structure. The SI and guider units are integrated to the ISIM structure and optically tested at NASA Goddard Space Flight Center as a suite using a telescope simulator (Optical Telescope Element SIMulator; OSIM). OSIM is a full field, cryogenic JWST telescope simulator. SI performance, including alignment and wavefront error, is evaluated using OSIM. This is an overview presentation to undergraduate students and other personnel at the University of Richmond, planned for 12 Oct, 2016. It uses material previously released by NASA on the Internet (e.g., via Flickr) or at engineering conferences (e.g., SPIE). This presentation provides an overview of the status of the project, with an emphasis on optics and measurement.
ExoMars Entry, Descent, and Landing Science
NASA Astrophysics Data System (ADS)
Karatekin, Özgür; Forget, Francois; Withers, Paul; Colombatti, Giacomo; Aboudan, Alessio; Lewis, Stephen; Ferri, Francesca; Van Hove, Bart; Gerbal, Nicolas
2016-07-01
Schiaparelli, the Entry Demonstrator Module (EDM) of the ESA ExoMars Program will to land on Mars on 19th October 2016. The ExoMars Atmospheric Mars Entry and Landing Investigations and Analysis (AMELIA) team seeks to exploit the Entry Descent and Landing (EDL) engineering measurements of Schiaparelli for scientific investigations of Mars' atmosphere and surface. ExoMars offers a rare opportunity to perform an in situ investigation of the martian environment over a wide altitude range. There has been only 7 successfully landing on the surface of Mars, from the Viking probes in the 1970's to the Mars Science Laboratory (MSL) in 2012. ExoMars EDM is equipped with an instrumented heat shield like MSL. These novel flight sensors complement conventional accelerometer and gyroscope instrumentation, and provide additional information to reconstruct atmospheric conditions with. This abstract outlines general atmospheric reconstruction methodology using complementary set of sensors and in particular the use of surface pressure and radio data. In addition, we discuss the lessons learned from previous EDL and the plans for ExoMars AMELIA data analysis.
Research and realization of signal simulation on virtual instrument
NASA Astrophysics Data System (ADS)
Zhao, Qi; He, Wenting; Guan, Xiumei
2010-02-01
In the engineering project, arbitrary waveform generator controlled by software interface is needed by simulation and test. This article discussed the program using the SCPI (Standard Commands For Programmable Instruments) protocol and the VISA (Virtual Instrument System Architecture) library to control the Agilent signal generator (Agilent N5182A) by instrument communication over the LAN interface. The program can conduct several signal generations such as CW (continuous wave), AM (amplitude modulation), FM (frequency modulation), ΦM (phase modulation), Sweep. As the result, the program system has good operability and portability.
Calibration results using highly aberrated images for aligning the JWST instruments to the telescope
NASA Astrophysics Data System (ADS)
Smith, Koby Z.; Acton, D. Scott; Gallagher, Ben B.; Knight, J. Scott; Dean, Bruce H.; Jurling, Alden S.; Zielinski, Thomas P.
2016-07-01
The James Webb Space Telescope (JWST) project is an international collaboration led by NASA's Goddard Space Flight Center (GSFC) in Greenbelt, MD. JWST is NASA's flagship observatory that will operate nearly a million miles away from Earth at the L2 Lagrange point. JWST's optical design is a three-mirror anastigmat with four main optical components; 1) the eighteen Primary Mirror Segment Assemblies (PMSA), 2) a single Secondary Mirror Assembly (SMA), 3) an Aft-Optics Subsystem (AOS) consisting of a Tertiary Mirror and Fine Steering Mirror, and 4) an Integrated Science Instrument Module consisting of the various instruments for JWST. JWST's optical system has been designed to accommodate a significant amount of alignment capability and risk with the PMSAs and SMA having rigid body motion available on-orbit just for alignment purposes. However, the Aft-Optics Subsystem (AOS) and Integrated Science Instrument Module (ISIM) are essentially fixed optical subsystems within JWST, and therefore the cryogenic alignment of the AOS to the ISIM is critical to the optical performance and mission success of JWST. In support of this cryogenic alignment of the AOS to ISIM, an array of fiber optic sources, known as the AOS Source Plate Assembly (ASPA), are placed near the intermediate image location of JWST (between the secondary and tertiary mirrors) during thermal vacuum ground-test operations. The AOS produces images of the ASPA fiber optic sources at the JWST focal surface location, where they are captured by the various science instruments. In this manner, the AOS provides an optical yardstick by which the instruments within ISIM can evaluate their relative positions to and the alignment of the AOS to ISIM can be quantified. However, since the ASPA is located at the intermediate image location of the JWST three-mirror anastigmat design, the images of these fiber optic sources produced by the AOS are highly aberrated with approximately 2-3μm RMS wavefront error consisting mostly of 3rd-order astigmatism and coma. This is because the elliptical tertiary mirror of the AOS is used off of its ideal foci locations without the compensating wavefront effects of the JWST primary and secondary mirrors. Therefore, the PSFs created are highly asymmetric with relatively complex structure and the centroid and encircled energy analyses traditionally used to locate images are not sufficient for ensuring the AOS to ISIM alignment. A novel approach combining phase retrieval and spatial metrology was developed to both locate the images with respect to the AOS and provide calibration information for eventual AOS to ISIM alignment verification. During final JWST OTE and ISIM (OTIS) testing, only a single thru-focus image will be collected by the instruments. Therefore, tools and processes were developed to perform single-image phase retrieval on these highly aberrated images such that any single image of the ASPA source can provide calibrated knowledge of the instruments' position relative to the AOS. This paper discusses the results of the methodology, hardware, and calibration performed to ensure that the AOS and ISIM are aligned within their respective tolerances at JWST OTIS testing.
A Computer-Based Instrument That Identifies Common Science Misconceptions
ERIC Educational Resources Information Center
Larrabee, Timothy G.; Stein, Mary; Barman, Charles
2006-01-01
This article describes the rationale for and development of a computer-based instrument that helps identify commonly held science misconceptions. The instrument, known as the Science Beliefs Test, is a 47-item instrument that targets topics in chemistry, physics, biology, earth science, and astronomy. The use of an online data collection system…
Validation of an Adapted Instrument to Measure Students' Attitude towards Science
ERIC Educational Resources Information Center
Chin, Sook Fui; Lim, Hooi Lian
2016-01-01
Attitude towards science (ATS) is a major concern in science education. Although many ATS instruments have been developed, they are based on different cultural systems and having some limitations. This study aims to validate an instrument for measuring students' ATS in Malaysia context. The instrument was adapted from Test of Science-Related…
Integrated Instrument Simulator Suites for Earth Science
NASA Technical Reports Server (NTRS)
Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, Johnathan; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.;
2012-01-01
The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.
1983-01-01
This double exposure image shows Spacelab-1 in the cargo bay of orbiter Columbia. From top to bottom inside the cargo bay are the Spacelab Access Turnel, which is connected to the mid-deck of the orbiter; the Spacelab module, a pressurized module in which scientists conduct experiments not possible on Earth; and Spacelab pallets, which can hold instruments for the experiments requiring direct exposure to space. The first Spacelab mission, Spacelab-1, sponsored jointly and shared equally by NASA and the European Space Agency, was a multidisciplinary mission; that is, investigations were performed in several different fields of scientific research. The overall goal of the mission was to verify Spacelab performance through a variety of scientific experiments. The disciplines represented by these experiments were astronomy and solar physics, earth observations, space plasma physics, materials sciences, atmospheric physics, and life sciences. International in nature, Spacelab-1 conducted experiments from the United States, Japan, the Netherlands, United Kingdom, Beluga, France, Germany, Italy, and Switzerland. Spacelab-1 was launched from the Kennedy Space Center on November 28, 1983 aboard the orbiter Columbia (STS-9). The Marshall Space Flight Center was responsible for managing the Spacelab missions.
NASA Astrophysics Data System (ADS)
Ali, M.; Supriyatman; Saehana, S.
2018-03-01
It has been successfully designing low cost of science experiment from recycled materials. The science instruments were produced to explain expansion concept and hydrostatic pressure inside the liquid. Science instruments were calibrated and then validated. It was also implemented in science learning.
Portrait of the Mir 23 crew in the Base Block
1997-02-26
NM23-48-003 (29 April 1997) --- Cosmonaut Vasili V. Tsibliyev, Mir-23 commander, operates at the end of the Russian Mir Space Stations STRELA boom during a space walk on April 29, 1997. He was joined by United States astronaut Jerry M. Linenger, cosmonaut guest researcher, in an effort to deploy scientific instruments and retrieve other science hardware. At the lower left of the picture is the Kvant-1 module. Hovering above it is the Sofora tower, which was once used for an experiment in attitude control of the Mir.
Lineger and Tsibliev during EVA outside Mir Space Station
1997-04-29
NM23-48-009 (29 April 1997) --- United States astronaut Jerry M. Linenger, cosmonaut guest researcher, works outside the Russian Mir Space Station during a joint United States-Russian space walk on April 29, 1997. He was joined by Mir-23 commander Vasili V. Tsibliyev (out of frame) for the five-hour Extravehicular Activity (EVA) designed to deploy scientific instruments and retrieve other science hardware. At the top of the frame is a Russian Progress re-supply capsule docked to the Mirs Kvant-1 module.
1999-03-26
In the Vertical Processing Facility, TRW technicians check the point of attachment of the solar panel array at right. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
NASA Technical Reports Server (NTRS)
MonteedeGarcia, Kristina; Patel, Jignasha; Perry, Radford, III
2010-01-01
Extremely tight thermal control property degradation allowances on the vapor-deposited, gold-coated IEC baffle surface, made necessary by the cryogenic JWST Observatory operations, dictate tight contamination requirements on adjacent surfaces. Theoretical degradation in emittance with contaminant thickness was calculated. Maximum allowable source outgassing rates were calculated using worst case view factors from source to baffle surface. Tight requirements pushed the team to change the design of the adjacent surfaces to minimize the outgassing sources
Window Observational Research Facility (WORF)
NASA Technical Reports Server (NTRS)
Pelfrey, Joseph; Sledd, Annette
2007-01-01
This viewgraph document concerns the Window Observational Research Facility (WORF) Rack, a unique facility designed for use with the US Lab Destiny Module window. WORF will provide valuable resources for Earth Science payloads along with serving the purpose of protecting the lab window. The facility can be used for remote sensing instrumentation test and validation in a shirt sleeve environment. WORF will also provide a training platform for crewmembers to do orbital observations of other planetary bodies. WORF payloads will be able to conduct terrestrial studies utilizing the data collected from utilizing WORF and the lab window.
NASA Astrophysics Data System (ADS)
Montt de Garcia, Kristina; Patel, Jignasha; Perry, Radford, III
2010-08-01
Extremely tight thermal control property degradation allowances on the vapor-deposited, gold-coated IEC baffle surface, made necessary by the cryogenic JWST Observatory operations, dictate tight contamination requirements on adjacent surfaces. Theoretical degradation in emittance with contaminant thickness was calculated. Maximum allowable source outgassing rates were calculated using worst case view factors from source to baffle surface. Tight requirements pushed the team to change the design of the adjacent surfaces to minimize the outgassing sources.
Low-cost microwave radiometry for remote sensing of soil moisture
NASA Astrophysics Data System (ADS)
Chikando, Eric Ndjoukwe
2007-12-01
Remote sensing is now widely regarded as a dominant means of studying the Earth and its surrounding atmosphere. This science is based on blackbody theory, which states that all objects emit broadband electromagnetic radiation proportional to their temperature. This thermal emission is detectable by radiometers---highly sensitive receivers capable of measuring extremely low power radiation across a continuum of frequencies. In the particular case of a soil surface, one important parameter affecting the emitted radiation is the amount of water content or, soil moisture. A high degree of precision is required when estimating soil moisture in order to yield accurate forecasting of precipitations and short-term climate variability such as storms and hurricanes. Rapid progress within the remote sensing community in tackling current limitations necessitates an awareness of the general public towards the benefits of the science. Information about remote sensing instrumentation and techniques remain inaccessible to many higher-education institutions due to the high cost of instrumentation and the current general inaccessibility of the science. In an effort to draw more talent within the field, more affordable and reliable scientific instrumentation are needed. This dissertation introduces the first low-cost handheld microwave instrumentation fully capable of surface soil moisture studies. The framework of this research is two-fold. First, the development of a low-cost handheld microwave radiometer using the well-known Dicke configuration is examined. The instrument features a super-heterodyne architecture and is designed following a microwave integrated circuit (MIC) system approach. Validation of the instrument is performed by applying it to various soil targets and comparing measurement results to gravimetric technique measured data; a proven scientific method for determining volumetric soil moisture content. Second, the development of a fully functional receiver RF front-end is presented. This receiver module is designed in support to a digital radiometer effort under development by the Center of Microwave Satellite and RF Engineering (COMSARE) at Morgan State University. The topology of the receiver includes a low-noise amplifier, bandpass filters and a three-stage gain amplifier. Design, characterization and evaluation of these system blocks are detailed within the framework of this dissertation.
Introduction to Instrumentation. Teacher Edition.
ERIC Educational Resources Information Center
Brown, A. O., III
This module contains instructional materials on instrumentation to help teachers train students in the job skills they will need as beginning instrumentation technicians. The module addresses the nature of accessing, measuring, and controlling phenomena such as level, flow, pressure, and temperature. Students are introduced to the devices and…
Development and Evaluation of an Undergraduate Science Communication Module
ERIC Educational Resources Information Center
Yeoman, Kay H.; James, Helen A.; Bowater, Laura
2011-01-01
This paper describes the design and evaluation of an undergraduate final year science communication module for the Science Faculty at the University of East Anglia. The module focuses specifically on science communication and aims to bring an understanding of how science is disseminated to the public. Students on the module are made aware of the…
NASA Astrophysics Data System (ADS)
van Aalderen-Smeets, Sandra; Walma van der Molen, Juliette
2013-03-01
In this article, we present a valid and reliable instrument which measures the attitude of in-service and pre-service primary teachers toward teaching science, called the Dimensions of Attitude Toward Science (DAS) Instrument. Attention to the attitudes of primary teachers toward teaching science is of fundamental importance to the professionalization of these teachers in the field of primary science education. With the development of this instrument, we sought to fulfill the need for a statistically and theoretically valid and reliable instrument to measure pre-service and in-service teachers' attitudes. The DAS Instrument is based on a comprehensive theoretical framework for attitude toward (teaching) science. After pilot testing, the DAS was revised and subsequently validated using a large group of respondents (pre-service and in-service primary teachers) (N = 556). The theoretical underpinning of the DAS combined with the statistical data indicate that the DAS possesses good construct validity and that it proves to be a promising instrument that can be utilized for research purposes, and also as a teacher training and coaching tool. This instrument can therefore make a valuable contribution to progress within the field of science education.
A Modular Instrumentation System for NASA's Habitat Demonstration Unit
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Kennedy, Kriss; Yim, Hester; Wagner, Raymond S.; Hong, Todd; Studor, George; Delaune, Paul
2010-01-01
NASA's human spaceflight program is focused on developing technologies to expand the reaches of human exploration and science activities beyond low earth orbit. A critical aspect of living in space or on planetary surfaces is habitation, which provides a safe and comfortable space in which humans can live and work. NASA is seeking out the best option for habitation by exploring several different concepts through the Habitat Demonstration Unit (HDU) project. The purpose of this HDU is to develop a fully autonomous habitation system that enables human exploration of space. One critical feature of the HDU project that helps to accomplish its mission of autonomy is the instrumentation system that monitors key subsystems operating within a Habitat configuration. The following paper will discuss previous instrumentation systems used in analog habitat concepts and how the current instrumentation system being implemented on the HDU1-PEM, or pressurized excursion module, is building upon the lessons learned of those previous systems. Additionally, this paper will discuss the benefits and the limitations of implementing a wireless sensor network (WSN) as the basis for data transport in the instrumentation system. Finally, this paper will address the experiences and lessons learned with integration, testing prior to deployment, and field testing at the JSC rock yard. NASA is developing the HDU1-PEM as a step towards a fully autonomous habitation system that enables human exploration of space. To accomplish this purpose, the HDU project is focusing on development, integration, testing, and evaluation of habitation systems. The HDU will be used as a technology pull, testbed, and integration environment in which to advance NASA's understanding of alternative mission architectures, requirements, and operations concepts definition and validation. This project is a multi-year effort. In 2010, the HDU1-PEM will be in a pressurized excursion module configuration, and in 2011 the module will be reconfigured for a pressurized core module configuration. Each year the HDU configurations will undergo testing at NASA's Desert Research and Technology Studies (D-RaTS) in Arizona [1]. As part of this project, a modular instrumentation system is developed to meet the monitoring needs of the HDU subsystems and to integrate with the current command and data handling infrastructure that has been developed for the project. The main objective of this study is to provide for the monitoring needs of the HDU. The requirements necessary to meet this objective are developed by working with the subsystem managers of the HDU to understand their monitoring needs. Additionally, the instrumentation system design leverages knowledge and lessons learned from previous studies, such as the inflatable habitat health monitoring system that was deployed in Antarctica [2], the integrated health monitoring system developed for NASA's Microhab [3], and the JSC Lunar Habitat Wireless Testbed to demonstrate a "standardsbased" approach to a wireless instrumentation system [4]. The HDU also requires flexibility in reconfiguration options, and it is necessary to demonstrate and evaluate a modular approach to an instrumentation system. Thus, the instrumentation system is designed in two parts: the primary system employs a standard WSN configuration, and the secondary system employs a wired USB hub. The WSN design provides for reconfiguration or replacement of sensors due to malfunctions or upgrades by using a wireless node that accepts ten instrument inputs and wirelessly transmits the data to the command and data handling system. The USB hub is necessary for those instruments that operate using a wired USB connection, although the design attempts to limit the amount of sensors that need to be wired connections.
Integration of a Communicating Science Module into an Advanced Chemistry Laboratory Course
ERIC Educational Resources Information Center
Renaud, Jessica; Squier, Christopher; Larsen, Sarah C.
2006-01-01
A communicating science module was introduced into an advanced undergraduate physical chemistry laboratory course. The module was integrated into the course such that students received formal instruction in communicating science interwoven with the chemistry laboratory curriculum. The content of the communicating science module included three…
Sutherland, J. C.
2016-07-20
Photoelastic modulators can alter the polarization state of a beam of ultraviolet, visible or infrared photons by means of periodic stress-induced differences in the refractive index of a transparent material that forms the optical element of the device and is isotropic in the absence of stress. Furthermore, they have found widespread application in instruments that characterize or alter the polarization state of a beam in fields as diverse as astronomy, structural biology, materials science and ultraviolet lithography for the manufacture of nano-scale integrated circuits. Measurement of circular dichroism, the differential absorption of left- and right circularly polarized light, and ofmore » strain-induced birefringence of optical components are major applications. Instruments using synchrotron radiation and photoelastic modulators with CaF 2 optical elements have extended circular dichroism measurements down to wavelengths of about 130 nm in the vacuum ultraviolet. Maintaining a constant phase shift between two orthogonal polarization states across a spectrum requires that the amplitude of the modulated stress be changed as a function of wavelength. For commercially available photoelastic modulators, the voltage that controls the amplitude of modulation required to produce a specified phase shift, which is a surrogate for the stress modulation amplitude, has been shown to be an approximately linear function of wavelength in the spectral region where the optical element is transparent. But, extrapolations of such straight lines cross zero voltage at a non-zero wavelength, not at zero-wavelength. For modulators with calcium fluoride and fused silica optical elements, the zero-crossing wavelength is always in the spectral region where the optical element of the modulator strongly absorbs the incident radiation, and at a wavelength less than the longest-wavelength apparent resonance deduced from experimental values of the refractive index fit to the Sellmeier equation. Using a model that relates the refractive indices of a stressed optical element to the refractive index of its unstressed state, an expression for the modulator control voltage was derived that closely fits the experimental data. Our result provides a theoretical rational for the apparently linear constant-phase programming voltage, and thus provides theoretical backing for the calibration procedure frequently used for these modulators. Lastly there are other factors that can influence the calibration of a photoelastic modulator, including temperature and atmospheric pressure, are discussed briefly.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutherland, J. C.
Photoelastic modulators can alter the polarization state of a beam of ultraviolet, visible or infrared photons by means of periodic stress-induced differences in the refractive index of a transparent material that forms the optical element of the device and is isotropic in the absence of stress. Furthermore, they have found widespread application in instruments that characterize or alter the polarization state of a beam in fields as diverse as astronomy, structural biology, materials science and ultraviolet lithography for the manufacture of nano-scale integrated circuits. Measurement of circular dichroism, the differential absorption of left- and right circularly polarized light, and ofmore » strain-induced birefringence of optical components are major applications. Instruments using synchrotron radiation and photoelastic modulators with CaF 2 optical elements have extended circular dichroism measurements down to wavelengths of about 130 nm in the vacuum ultraviolet. Maintaining a constant phase shift between two orthogonal polarization states across a spectrum requires that the amplitude of the modulated stress be changed as a function of wavelength. For commercially available photoelastic modulators, the voltage that controls the amplitude of modulation required to produce a specified phase shift, which is a surrogate for the stress modulation amplitude, has been shown to be an approximately linear function of wavelength in the spectral region where the optical element is transparent. But, extrapolations of such straight lines cross zero voltage at a non-zero wavelength, not at zero-wavelength. For modulators with calcium fluoride and fused silica optical elements, the zero-crossing wavelength is always in the spectral region where the optical element of the modulator strongly absorbs the incident radiation, and at a wavelength less than the longest-wavelength apparent resonance deduced from experimental values of the refractive index fit to the Sellmeier equation. Using a model that relates the refractive indices of a stressed optical element to the refractive index of its unstressed state, an expression for the modulator control voltage was derived that closely fits the experimental data. Our result provides a theoretical rational for the apparently linear constant-phase programming voltage, and thus provides theoretical backing for the calibration procedure frequently used for these modulators. Lastly there are other factors that can influence the calibration of a photoelastic modulator, including temperature and atmospheric pressure, are discussed briefly.« less
Radiation effects on science instruments in Grand Tour type missions
NASA Technical Reports Server (NTRS)
Parker, R. H.
1972-01-01
The extent of the radiation effects problem is delineated, along with the status of protective designs for 15 representative science instruments. Designs for protecting science instruments from radiation damage is discussed for the various instruments to be employed in the Grand Tour type missions. A literature search effort was undertaken to collect science instrument components damage/interference effects data on the various sensitive components such as Si detectors, vidicon tubes, etc. A small experimental effort is underway to provide verification of the radiation effects predictions.
Apollo experience report: Lunar module instrumentation subsystem
NASA Technical Reports Server (NTRS)
Obrien, D. E., III; Woodfill, J. R., IV
1972-01-01
The design concepts and philosophies of the lunar module instrumentation subsystem are discussed along with manufacturing and systems integration. The experience gained from the program is discussed, and recommendations are made for making the subsystem more compatible and flexible in system usage. Characteristics of lunar module caution and warning circuits are presented.
NASA Shines a Spotlight on a Webb Telescope Test
2013-12-11
Dressed in a clean room suit, NASA photographer Desiree Stover shines a light on the Space Environment Simulator's Integration Frame inside the thermal vacuum chamber at NASA's Goddard Space Flight Center in Greenbelt, Md. Shortly after, the chamber was closed up and engineers used this frame to enclose and help cryogenic (cold) test the heart of the James Webb Space Telescope, the Integrated Science Instrument Module. Credit: NASA/Goddard/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Dr. Neil deGrasse Tyson Visits NASA Goddard
2017-12-08
Dr. Neil deGrasse Tyson visited with Goddard's Space Flight Center Director Chris Scolese and the James Webb Space Telescope team at Goddard in Greenbelt, Md. on June 3, 2014. Tyson spoke to the team and was able to see the giant vacuum test chamber that now holds the heart of the telescope, the Integrated Science Instrument Module. ..Learn more about JWST: www.jwst.nasa.gov..Credit: NASA/Goddard/Rebecca Roth..NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Dr. Neil deGrasse Tyson Visits NASA Goddard
2014-06-03
Dr. Neil deGrasse Tyson visited with Goddard's Space Flight Center Director Chris Scolese and the James Webb Space Telescope team at Goddard in Greenbelt, Md. on June 3, 2014. Tyson spoke to the team and was able to see the giant vacuum test chamber that now holds the heart of the telescope, the Integrated Science Instrument Module. ..Learn more about JWST: www.jwst.nasa.gov..Credit: NASA/Goddard/Rebecca Roth..NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
New Method for Characterizing the State of Optical and Opto-Mechanical Systems
NASA Technical Reports Server (NTRS)
Keski-Kuha, Ritva; Saif, Babak; Feinberg, Lee; Chaney, David; Bluth, Marcel; Greenfield, Perry; Hack, Warren; Smith, Scott; Sanders, James
2014-01-01
James Webb Space Telescope Optical Telescope Element (OTE) is a three mirror anastigmat consisting of a 6.5 m primary mirror (PM), secondary mirror (SM) and a tertiary mirror. The primary mirror is made out of 18 segments. The telescope and instruments will be assembled at Goddard Space Flight Center (GSFC) to make it the Optical Telescope Element-Integrated Science Instrument Module (OTIS). The OTIS will go through environmental testing at GSFC before being transported to Johnson Space Center for testing at cryogenic temperature. The objective of the primary mirror Center of Curvature test (CoC) is to characterize the PM before and after the environmental testing for workmanship. This paper discusses the CoC test including both a surface figure test and a new method for characterizing the state of the primary mirror using high speed dynamics interferometry.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, a worker inside the Multi-Purpose Logistics Module Raffaello is ready for installation of the Human Research Facility-2 (HRF-2) science rack. Raffaello will fly on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, workers prepare the Human Research Facility-2 (HRF-2) science rack for installation into the Multi-Purpose Logistics Module Raffaello for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, the Rack Insertion Device moves the Human Research Facility-2 (HRF-2) science rack toward the Multi-Purpose Logistics Module Raffaello (at left) for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, the Human Research Facility-2 (HRF-2) science rack sits on a stand waiting to be installed into the Multi-Purpose Logistics Module Raffaello for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.
ERIC Educational Resources Information Center
van Aalderen-Smeets, Sandra; Walma van der Molen, Juliette
2013-01-01
In this article, we present a valid and reliable instrument which measures the attitude of in-service and pre-service primary teachers toward teaching science, called the Dimensions of Attitude Toward Science (DAS) Instrument. Attention to the attitudes of primary teachers toward teaching science is of fundamental importance to the…
An Analysis of Several Instruments Measuring "Nature of Science" Objectives
ERIC Educational Resources Information Center
Doran, Rodney L.; And Others
1974-01-01
Reported is an investigation of the relationship among three selected instruments based on the responses of a sample of high school students. The instruments were the Nature of Science Scale (NOSS), the Science Support Scale (SSS), and the Test on the Social Aspects of Science (TSAS). All purport to measure "nature of science"…
The Successful Deployment of a New Sub-Seafloor Observatory
NASA Astrophysics Data System (ADS)
Lado Insua, T.; Moran, K.; Kulin, I.; Farrington, S.; Newman, J. B.; Riedel, M.; Iturrino, G. J.; Masterson, W. A.; Furman, C. R.; Klaus, A.; Storms, M.; Attryde, J.; Hetmaniak, C.; Huey, D.
2013-12-01
The Simple Cabled Instrument for Measuring Parameters In-Situ (SCIMPI) is a new ocean observatory instrument designed to study dynamic processes in the sub-seafloor. The first SCIMPI prototype comprises nine modules that collect time series measurements of temperature, pressure and electrical resistivity of sediments at pre-selected depths below seafloor. These modules are joined in an array by flexible cables. Floats are attached to the cables of the system to keep the cabling taught against the weight of a sinker bar at the bottom of the string. The system was designed for deployment through drillpipe using D/V JOIDES Resolution. SCIMPI is designed for sediments that will collapse around the observatory after deployment. After five years in development, SCIMPI was successfully deployed within the NEPTUNE Canada observatory in May 2013. The IODP Expedition 341S took place on the Cascadia Margin. The deployment Site U1416 is within an active gas hydrate vent field. Spacing of SCIMPI modules was tailored to measure parameters in the accreted sediment and above and below the Bottom Simulating Reflector (BSR). The location of the modules was dimensioned based on a multivariate analysis of physical properties derived from IODP boreholes located nearby. Members of the SCIMPI team, science party, technical support, crew and participants of the School of Rock assembled the instrument on deck during the days leading up to the deployment. During deployment, SCIMPI was connected to the Multi-Function-Telemetry-Module (from LDEO) and was lowered through drillpipe on the wireline logging cable. SCIMPI communicated data to a shipboard computer until its release, providing assurance that measurements were active on all sensors. The observatory was released with the Electronic Release System (ERS) and the drillpipe was pulled out of the borehole. A camera system was used to check on the installation immediately after deployment. An Ocean Networks Canada expedition revisited the site a month later to assess the borehole collapse around SCIMPI. Its four year battery life will allow SCIMPI to record data on its command module while waiting to be connected to the NEPTUNE Canada observatory in 2014. The modular design of SCIMPI allows adapting its configuration for different situations and environments. SCIMPI is now available for exploring other dynamic sub-seafloor settings in future expeditions.
Image dissector control and data system, part 1. [instrument packages and equipment specifications
NASA Technical Reports Server (NTRS)
1974-01-01
A general description of the image dissector control and data system is presented along with detailed design information, operating instructions, and maintenance and trouble-shooting procedures for the four instrumentation packages. The four instrumentation packages include a 90 inch telescope, a simplified telescope module for use on the 90 inch or other telescopes, a photographic plate scanner module which permits the scanning of astronomical photographic plates in the laboratory, and the lunar experiment package module.
First Materials Science Research Rack Capabilities and Design Features
NASA Technical Reports Server (NTRS)
Schaefer, D.; King, R.; Cobb, S.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The first Materials Science Research Rack (MSRR-1) will accommodate dual Experiment Modules (EM's) and provide simultaneous on-orbit processing operations capability. The first international Materials Science Experiment Module for the MSRR-1 is an international cooperative research activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center. (ESTEC). This International Standard Payload Rack (ISPR) will contain the Materials Science Laboratory (MSL) developed by ESA as an Experiment Module. The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts. Module Inserts currently planned are a Quench Module Insert, Low Gradient Furnace, Solidification with Quench Furnace, and Diffusion Module Insert. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Department (SPD). It includes capabilities for vapor transport processes and liquid metal sintering. This Experiment Module will be replaced on-orbit with other NASA Materials Science EMs.
Wang, Ke; Zhao, Yang; Chen, Deyong; Huang, Chengjun; Fan, Beiyuan; Long, Rong; Hsieh, Chia-Hsun; Wang, Junbo; Wu, Min-Hsien; Chen, Jian
2017-06-19
This paper presents the instrumentation of a microfluidic analyzer enabling the characterization of single-cell biophysical properties, which includes seven key components: a microfluidic module, a pressure module, an imaging module, an impedance module, two LabVIEW platforms for instrument operation and raw data processing, respectively, and a Python code for data translation. Under the control of the LabVIEW platform for instrument operation, the pressure module flushes single cells into the microfluidic module with raw biophysical parameters sampled by the imaging and impedance modules and processed by the LabVIEW platform for raw data processing, which were further translated into intrinsic cellular biophysical parameters using the code developed in Python. Based on this system, specific membrane capacitance, cytoplasm conductivity, and instantaneous Young's modulus of three cell types were quantified as 2.76 ± 0.57 μF/cm², 1.00 ± 0.14 S/m, and 3.79 ± 1.11 kPa for A549 cells ( n cell = 202); 1.88 ± 0.31 μF/cm², 1.05 ± 0.16 S/m, and 3.74 ± 0.75 kPa for 95D cells ( n cell = 257); 2.11 ± 0.38 μF/cm², 0.87 ± 0.11 S/m, and 5.39 ± 0.89 kPa for H460 cells ( n cell = 246). As a semi-automatic instrument with a throughput of roughly 1 cell per second, this prototype instrument can be potentially used for the characterization of cellular biophysical properties.
Wang, Ke; Zhao, Yang; Chen, Deyong; Huang, Chengjun; Fan, Beiyuan; Long, Rong; Hsieh, Chia-Hsun; Wang, Junbo; Wu, Min-Hsien; Chen, Jian
2017-01-01
This paper presents the instrumentation of a microfluidic analyzer enabling the characterization of single-cell biophysical properties, which includes seven key components: a microfluidic module, a pressure module, an imaging module, an impedance module, two LabVIEW platforms for instrument operation and raw data processing, respectively, and a Python code for data translation. Under the control of the LabVIEW platform for instrument operation, the pressure module flushes single cells into the microfluidic module with raw biophysical parameters sampled by the imaging and impedance modules and processed by the LabVIEW platform for raw data processing, which were further translated into intrinsic cellular biophysical parameters using the code developed in Python. Based on this system, specific membrane capacitance, cytoplasm conductivity, and instantaneous Young’s modulus of three cell types were quantified as 2.76 ± 0.57 μF/cm2, 1.00 ± 0.14 S/m, and 3.79 ± 1.11 kPa for A549 cells (ncell = 202); 1.88 ± 0.31 μF/cm2, 1.05 ± 0.16 S/m, and 3.74 ± 0.75 kPa for 95D cells (ncell = 257); 2.11 ± 0.38 μF/cm2, 0.87 ± 0.11 S/m, and 5.39 ± 0.89 kPa for H460 cells (ncell = 246). As a semi-automatic instrument with a throughput of roughly 1 cell per second, this prototype instrument can be potentially used for the characterization of cellular biophysical properties. PMID:28629175
ART-XC/SRG: Status of the X-ray Optics Development
NASA Technical Reports Server (NTRS)
Gubarev, M.; Ramsey, B.; Zavlin, V.; Swartz, D.; Elsner, R. F.; ODell, S.; Kilaru, K.; Atkins, C.; McCracken, J.; Pavlinsky, M.;
2014-01-01
The Astronomical Roentgen Telescope (ART) instrument is a hard x-ray instrument with energy response up to 30 keV that is to be launched on board of the Spectrum Roentgen Gamma (SRG) Mission. The instrument consists of seven identical mirror modules coupled with seven CdTe strip focal-plane detectors. The mirror modules are being developed at the Marshall Space Flight Center (MSFC.) Each module has approximately 65 sq. cm effective area and an on-axis angular resolution of 30 arcseconds half power diameter (HPD) at 8 keV. The current status of the mirror module development and testing will be presented.
ART-XC/SRG: Status of the X-ray Optics Development
NASA Technical Reports Server (NTRS)
Gubarev, M.; Ramsey, B.; Elsner, R.; O'Dell, S.; Kolodziejczak, J.; McCracken, J.; Zavlin, V.; Swartz, D.; Kilaru, K.; Atkins, C.;
2014-01-01
The Astronomical Roentgen Telescope (ART) instrument is a hard-x-ray instrument with energy response up to 30 keV that is to be launched on board of the Spectrum Roentgen Gamma (SRG) Mission. The instrument consists of seven identical mirror modules coupled with seven CdTe strip focal-plane detectors. The mirror modules are being developed at the Marshall Space Flight Center (MSFC.) Each module has approximately 65 sq. cm effective area and an on-axis angular resolution of 30 arcseconds half power diameter (HPD) at 8 keV. The current status of the mirror module development and testing will be presented.
ART-XC/SRG: Status of the X-ray Optics Development
NASA Technical Reports Server (NTRS)
Gubarev, M.; Ramsey, B.; Elsner, R.; O'Dell, S.; Kolodziejczak, J.; McCracken, J.; Zavlin, V.; Swartz, D.; Kilaru, K.; Atkins, C.;
2014-01-01
The Astronomical Roentgen Telescope (ART) instrument is a hard-x-ray instrument with energy response up to 30 keV that is to be launched on board of the Spectrum Roentgen Gamma (SRG) Mission. The instrument consists of seven identical mirror modules coupled with seven CdTe strip focal-plane detectors. The mirror modules are being developed at the Marshall Space Flight Center (MSFC.) Each module has approx. 65 sq. cm effective area and an on-axis angular resolution of 30 arcseconds half power diameter (HPD) at 8 keV. The current status of the mirror module development and testing will be presented.
NASA Technical Reports Server (NTRS)
Mackey, Jeffrey R.
1999-01-01
We have developed a new instrument that can measure fast transient birefringence and polymer chain orientation angle in complex fluids. The instrument uses a dual-crystal transverse electro-optic modulator with the second crystal's modulation voltage applied 180 deg out of phase from that of the first crystal. In this manner, the second crystal compensates for the intrinsic static birefringence of the first crystal, and it doubles the modulation depth. By incorporating a transverse electro-optic modulator with two lithium-niobate (LiNbO3) crystals oriented orthogonal to each other with a custom-designed optical system, we have produced a very small robust instrument capable of fast transient retardation measurements. By measuring the sample thickness or optical path length through the sample, we can calculate the transient birefringence. This system can also measure dichroism. We have compared the calibration results and retardation and orientation angle measurements of this instrument with those of a photoelastic modulator (PEM) based system using a quarter wave plate and a high-precision 1/16-wave plate to simulate a birefringent sample. Transient birefringence measurements on the order of 10(exp -9) can be measured using either modulator.
Spacelab Science Results Study. Volume 3; Microgravity Science
NASA Technical Reports Server (NTRS)
Naumann, Robert J. (Editor); Lewis, Marian L. (Editor); Murphy, Karen L. (Compiler)
1999-01-01
Beginning with OSTA-1 in November 1981, and ending with Neurolab in March 1998, thirty-six shuttle missions are considered Spacelab missions because they carried various Spacelab components such as the Spacelab module, the pallet, the Instrument Pointing System (IPS), or the MPESS. The experiments carried out during these flights included astrophysics, solar physics, plasma physics, atmospheric science, Earth observations, and a wide range of microgravity experiments in life sciences, biotechnology, materials science, and fluid physics which includes combustion and critical point phenomena. In all, some 764 experiments were conducted by investigators from the United States, Europe, and Japan. These experiments resulted in several thousand papers published in refereed journals, and thousands more in conference proceedings, chapters in books, and other publications. The purpose of this Spacelab Science Results Study is to document the contributions made in each of the major research areas by giving a brief synopsis of the more significant experiments and an extensive list of the publications that were produced. We have also endeavored to show how these results impacted the existing body of knowledge, where they have spawned new fields, and, if appropriate, where the knowledge they produced has been applied.
Spacelab Science Results Study. Volume 2; Microgravity Science
NASA Technical Reports Server (NTRS)
Naumann, Robert J. (Editor); Lundquist, C. A. (Editor); Tandberg-Hanssen, E. (Editor); Horwitz, J. L. (Editor); Germany, G. A. (Editor); Cruise, J. F. (Editor); Lewis, M. L. (Editor); Murphy, K. L. (Editor)
1999-01-01
Beginning with OSTA-1 in November 1981, and ending with Neurolab n March 1998, thirty-six shuttle missions are considered Spacelab missions because they carried various Spacelab components such as the Spacelab module, the pallet, the Instrument Pointing System (IPS), or the MPESS (Mission Peculiar Experiment Support Structure). The experiments carried out during these flights included astrophysics, solar physics, plasma physics, atmospheric science, Earth observations, and a wide range of microgravity experiments in life sciences, biotechnology, materials science, and fluid physics which includes combustion and critical point phenomena. In all, some 764 experiments were conducted by investigators from the United States, Europe, and Japan. These experiments resulted in several thousand papers published in refereed journals, and thousands more in conference proceedings, chapters in books, and other publications. The purpose of this Spacelab Science Results Study is to document the contributions made in each of the major research areas by giving a brief synopsis of the more significant experiments and an extensive list of the publications that were produced. We have also endeavored to show how these results impacted the existing body of knowledge, where they have spawned new fields, and, if appropriate, where the knowledge they produced has been applied.
Senior Science Enrichment Modules. S.S.T.A. Research Centre Report No. 58.
ERIC Educational Resources Information Center
Fedorak, Allen; And Others
Presented is a set of learning modules intended for teaching science to students in grades eleven and twelve. Each module incorporates problem solving using the scientific viewpoint and emphasizing the interface between science and society. The fifteen modules presented include the following topics: group dynamics; the value of science; a puzzle…
NASA Astrophysics Data System (ADS)
Chanover, Nancy J.; Aslam, Shahid; DiSanti, Michael A.; Hibbitts, Charles A.; Honniball, Casey I.; Paganini, Lucas; Parker, Alex; Skrutskie, Michael F.; Young, Eliot F.
2016-10-01
The Gondola for High Altitude Planetary Science (GHAPS) is an observing asset under development by NASA's Planetary Science Division that will be hosted on stratospheric balloon missions intended for use by the broad planetary science community. GHAPS is being designed in a modular fashion to interface to a suite of instruments as called for by science needs. It will operate at an altitude of 30+ km and will include an optical telescope assembly with a 1-meter aperture and a pointing stability of approximately 1 arcsecond with a flight duration of ~100 days. The spectral grasp of the system is envisaged to include wavelengths spanning the near-ultraviolet to near/mid-infrared (~0.3-5 µm) and possibly to longer wavelengths.The GHAPS Science Instrument Definition Team (SIDT) was convened in May 2016 to define the scope of science investigations, derive the science requirements and instrument concepts for GHAPS, prioritize the instruments according to science priorities that address Planetary Science Decadal Survey questions, and generate a report that is broadly disseminated to the planetary science community. The SIDT examined a wide range of solar system targets and science questions, focusing on unique measurements that could be made from a balloon-borne platform to address high-priority planetary science questions for a fraction of the cost of space missions. The resulting instrument concepts reflect unique capabilities offered by a balloon-borne platform (e.g., observations at spectral regions inaccessible from the ground due to telluric absorption, diffraction-limited imaging, and long duration uninterrupted observations of a target). We discuss example science cases that can be addressed with GHAPS and describe a notional instrument suite that can be used by guest observers to pursue decadal-level science questions.
NASA Technical Reports Server (NTRS)
Young, K. E.; Bleacher, J. E.; Evans, C. A.; Rogers, A. D.; Ito, G.; Arzoumanian, Z.; Gendreau, K.
2015-01-01
Regardless of the target destination for the next manned planetary mission, the crew will require technology with which to select samples for return to Earth. The six Apollo lunar surface missions crews had only the tools to enable them to physically pick samples up off the surface or from a boulder and store those samples for return to the Lunar Module and eventually to Earth. Sample characterization was dependent upon visual inspection and relied upon their extensive geology training. In the four decades since Apollo however, great advances have been made in traditionally laboratory-based instrument technologies that enable miniaturization to a field-portable configuration. The implications of these advancements extend past traditional terrestrial field geology and into planetary surface exploration. With tools that will allow for real-time geochemical analysis, an astronaut can better develop a series of working hypotheses that are testable during surface science operations. One such technology is x-ray fluorescence (XRF). Traditionally used in a laboratory configuration, these instruments have now been developed and marketed commercially in a field-portable mode. We examine this technology in the context of geologic sample analysis and discuss current and future plans for instrument deployment. We also discuss the development of the Chromatic Mineral Identification and Surface Texture (CMIST) instrument at the NASA Goddard Space Flight Center (GSFC). Testing is taking place in conjunction with the RIS4E (Remote, In Situ, and Synchrotron Studies for Science and Exploration) SSERVI (Solar System Exploration and Research Virtual Institute) team activities, including field testing at Kilauea Volcano, HI..
Data processing pipeline for Herschel HIFI
NASA Astrophysics Data System (ADS)
Shipman, R. F.; Beaulieu, S. F.; Teyssier, D.; Morris, P.; Rengel, M.; McCoey, C.; Edwards, K.; Kester, D.; Lorenzani, A.; Coeur-Joly, O.; Melchior, M.; Xie, J.; Sanchez, E.; Zaal, P.; Avruch, I.; Borys, C.; Braine, J.; Comito, C.; Delforge, B.; Herpin, F.; Hoac, A.; Kwon, W.; Lord, S. D.; Marston, A.; Mueller, M.; Olberg, M.; Ossenkopf, V.; Puga, E.; Akyilmaz-Yabaci, M.
2017-12-01
Context. The HIFI instrument on the Herschel Space Observatory performed over 9100 astronomical observations, almost 900 of which were calibration observations in the course of the nearly four-year Herschel mission. The data from each observation had to be converted from raw telemetry into calibrated products and were included in the Herschel Science Archive. Aims: The HIFI pipeline was designed to provide robust conversion from raw telemetry into calibrated data throughout all phases of the HIFI missions. Pre-launch laboratory testing was supported as were routine mission operations. Methods: A modular software design allowed components to be easily added, removed, amended and/or extended as the understanding of the HIFI data developed during and after mission operations. Results: The HIFI pipeline processed data from all HIFI observing modes within the Herschel automated processing environment as well as within an interactive environment. The same software can be used by the general astronomical community to reprocess any standard HIFI observation. The pipeline also recorded the consistency of processing results and provided automated quality reports. Many pipeline modules were in use since the HIFI pre-launch instrument level testing. Conclusions: Processing in steps facilitated data analysis to discover and address instrument artefacts and uncertainties. The availability of the same pipeline components from pre-launch throughout the mission made for well-understood, tested, and stable processing. A smooth transition from one phase to the next significantly enhanced processing reliability and robustness. Herschel was an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Earthquake!: An Event-Based Science Module. Teacher's Guide. Earth Science Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for middle school earth science teachers to help their students learn about earthquakes and scientific literacy through event-based science. Unlike traditional curricula, the event- based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork,…
Oil Spill!: An Event-Based Science Module. Teacher's Guide. Oceanography Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for middle school earth science or general science teachers to help their students learn scientific literacy through event-based science. Unlike traditional curricula, the event- based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork,…
Zhang, Zhen; Ma, Cheng; Zhu, Rong
2016-10-14
High integration of multi-functional instruments raises a critical issue in temperature control that is challenging due to its spatial-temporal complexity. This paper presents a multi-input multi-output (MIMO) self-tuning temperature sensing and control system for efficiently modulating the temperature environment within a multi-module instrument. The smart system ensures that the internal temperature of the instrument converges to a target without the need of a system model, thus making the control robust. The system consists of a fully-connected proportional-integral-derivative (PID) neural network (FCPIDNN) and an on-line self-tuning module. The experimental results show that the presented system can effectively control the internal temperature under various mission scenarios, in particular, it is able to self-reconfigure upon actuator failure. The system provides a new scheme for a complex and time-variant MIMO control system which can be widely applied for the distributed measurement and control of the environment in instruments, integration electronics, and house constructions.
PREFACE: 4th International Symposium on Instrumentation Science and Technology (ISIST'2006)
NASA Astrophysics Data System (ADS)
Jiubin, Tan
2006-10-01
On behalf of the International Program Committee of ISIST'2006 and the symposium coordinators, I would like to thank all the participants for their presence at the 4th International Symposium on Instrumentation Science and Technology (ISIST'2006), a platform for scientists, researchers and experts from different parts of the world to present their achievements and to exchange their views on ways and means to further develop modern instrumentation science and technology. In the present information age, instrumentation science and technology is playing a more and more important role, not only in the acquisition and conversion of information at the very beginning of the information transformation chain, but also in the transfer, manipulation and utilization of information. It provides an analysis and test means for bioengineering, medical engineering, life science, environmental engineering and micro/nanometer technology, and integrates these disciplines to form new subdivisions of their own. The major subject of the symposium is crossover and fusion between instrumentation science and technology and other sciences and technologies. ISIST'2006 received more than 800 full papers from 12 countries and regions, from which 300 papers were finally selected by the international program committee for inclusion in the proceedings of ISIST'2006, published in 2 volumes. The major topics include instrumentation basic theory and methodology, sensors and conversion technology, signal and image processing, instruments and systems, laser and optical fiber instrumentation, advanced optical instrumentation, optoelectronics instrumentation, MEMS, nanotechnology and instrumentation, biomedical and environmental instrumentation, automatic test and control. The International Symposium on Instrumentation Science and Technology (ISIST) is sponsored by ICMI, NSFC, CSM, and CIS, and organized by ICMI, HIT and IC-CSM, and held every two years. The 1st symposium was held in LuoYang, China in 1999. The 2nd symposium was held in JiNan, China in 2002. The 3rd symposium was held in Xi'an, China in 2004. The 4th symposium is held in Harbin, China in 2006. The 5th symposium will be held in Hangzhou in 2008. We hope this symposium will further promote the development of instrumentation science and technology and get us all together to create a bright future. Professor Dr Tan Jiubin
NASA Astrophysics Data System (ADS)
Wang, Tzu-Ling; Berlin, Donna
2010-12-01
The main purpose of this study is to develop a valid and reliable instrument for measuring the attitudes toward science class of fourth- and fifth-grade students in an Asian school culture. Specifically, the development focused on three science attitude constructs-science enjoyment, science confidence, and importance of science as related to science class experiences. A total of 265 elementary school students in Taiwan responded to the instrument developed. Data analysis indicated that the instrument exhibited satisfactory validity and reliability with the Taiwan population used. The Cronbach's alpha coefficient was 0.93 for the entire instrument indicating a satisfactory level of internal consistency. However, both principal component analysis and parallel analysis showed that the three attitude scales were not unique and should be combined and used as a general "attitudes toward science class" scale. The analysis also showed that there were no gender or grade-level differences in students' overall attitudes toward science class.
NASA Astrophysics Data System (ADS)
Kurniasari, H.; Sukarmin; Sarwanto
2018-03-01
The purpose of this research are to analyze the the properness of contextual teaching and learning (CTL)-based science module for Junior High School for increasing students’ creativity and using CTL-based science module to increase students’ learning creativity. Development of CTL-based science module for Junior High School is Research and Development (R&D) using 4D Model consist of 4 steps: define, design, develop, and disseminate. Module is validated by 3 expert validators (Material, media, and language experts), 2 reviewer and 1 peer reviewer. . Based on the results of data analysis, it can be concluded that: the results of the validation, the average score of CTL-based science module is 88.28%, the value exceeded the value of the cut off score of 87.5%, so the media declared eligible for the study. Research shows that the gain creativity class that uses CTL-based science module has a gain of 0.72. Based on the results of the study showed that CTL-based science module effectively promotes creativity of students
"Heart" of Herschel to be presented to media
NASA Astrophysics Data System (ADS)
2007-09-01
The Herschel mission, equipped with the largest telescope ever launched in space (3.5 m diameter), will give astronomers their best capability yet to explore the universe at far-infrared and sub-millimetre wavelengths. By measuring the light at these wavelengths, scientists see the ‘cold’ universe. Herschel will give them an unprecedented view, allowing them to see deep into star forming regions, galactic centres and planetary systems. In order to achieve its objectives and to be able to detect the faint radiation coming from the coolest objects in the cosmos, otherwise ‘invisible’, Herschel’s detectors must operate at very low and stable temperatures. The spacecraft is equipped so as to cool them close to absolute zero (-273.15 ºC), ranging from -271 ºC to only a few tenths of a degree above absolute zero. To have achieved this particular feature alone is a remarkable accomplishment for European industry and science. The final integration of the various components of the Herschel spacecraft - payload module, cryostat, service module, telescope and solar arrays - will be completed in the next few months. This phase will be followed by a series of tests to get the spacecraft ready for launch at the end of July 2008. Herschel will be launched into space on an Ariane 5 ECA rocket. The launch is shared with Planck, ESA’s mission to study relic radiation from the Big Bang. Media interested to attend the press event are invited to fill in the reply form below. Note for editors The Prime Contractor for the Herschel spacecraft is Thales Alenia Space (Cannes, France). It leads a consortium of industrial partners with Astrium (Germany) responsible for the Extended Payload Module (EPLM, including the Herschel cryostat), Astrium (France) responsible for the telescope, and the Thales Alenia Space industry branch of Torino, Italy, responsible for the Service Module (SVM). There is also a host of subcontractors spread throughout Europe. The three Herschel instruments were designed and built by consortia of scientists and institutes, with their own national funding. The Photodetector Array Camera and Spectrometer (PACS) was developed under the coordination of the MPE, Germany; the Spectral and Photometric Imaging Receiver (SPIRE) was developed under the coordination of the Cardiff University (United Kingdom); the Heterodyne Instrument for the Far Infrared (HIFI) was developed under the coordination of the SRON institute (The Netherlands). For more information ESA Media Relations Office Tel: +33(0)1.53.69.7299 Fax: +33(0)1.53.69.7690 Herschel Press Day at Astrium, Friedrichshafen, Germany 19 September 2007 Claude-Dornier-Strasse 88090 Immenstaad 09:00 h Arrival at Astrium /Check-in / Transfer to Building 8 / Room Meersburg (5 th floor) 09:30 h Welcome, by Uwe Minne, Director of Earth Observation and Science, Astrium 09:35 h ESA and Astronomy: looking forward, by Jacques Louet, Head of Scientific Projects Department, ESA 09:45 h Herschel/Planck mission overview, by Thomas Passvogel, ESA Herschel/Planck Project Manager 09:55 h The Herschel scientific mission, by Göran Pilbratt, ESA Herschel Project Scientist 10:05 h Q & A followed by coffee break 10:30 h Herschel spacecraft overview, by Jean-Jacques Julliet, Director of European Science and Optical Observation Programmes, Thales Alenia Space 10:40 h The ‘cool’ heart of Herschel, by Wolfgang Fricke, Herschel Project Manager, Astrium 10:50 h The PACS instrument, by Albrecht Poglitsch, Principal Investigator, Max-Planck-Institut für extraterrestrische Physik (MPE) 11:00 h The SPIRE instrument, by Matthew Griffin, Principal Investigator, Cardiff University 11:10 h The HIFI instrument, by Thijs de Graauw, Principal Investigator, Netherlands Institute for Space Research (SRON) 11:20 h Q & A, Individual Interviews 12:15 h Transfer to Integration Centre 12:30 h Warm / Cold Buffet on Visitoŕs Galaxy Build up of three different visitor groups Check-in into cleanroom Photo/video opportunity/interviews (3 groups, 30 min. each) 14:00 h End of event
1999-03-26
Viewed from above in the Vertical Processing Facility, the Chandra X-ray Observatory is seen with one of its solar panel arrays attached, at right. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
1999-03-25
In the Vertical Processing Facility, TRW workers continue checking the deployment of the solar panel array (right) after attaching it to the Chandra X-ray Observatory (left). Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
1999-03-26
TRW technicians in the Vertical Processing Facility check the fitting of the solar panel array being attached to the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
1999-03-26
TRW workers in the Vertical Processing Facility check equipment after deployment of the solar panel array above them, attached to the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
1999-03-26
In the Vertical Processing Facility, the Chandra X-ray Observatory is observed after deployment of the solar panel array (near the bottom and to the right). Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
Blight! An Event-Based Science Module. Teacher's Guide. Plants and Plant Diseases Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for middle school life science or physical science teachers to help their students learn scientific literacy through event-based science. Unlike traditional curricula, the event- based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork,…
Fire!: An Event-Based Science Module. Teacher's Guide. Chemistry and Fire Ecology Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for middle school earth science or physical science teachers to help their students learn scientific literacy through event-based science. Unlike traditional curricula, the event- based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork,…
The status of the QUIJOTE multi-frequency instrument
NASA Astrophysics Data System (ADS)
Hoyland, R. J.; Aguiar-González, M.; Aja, B.; Ariño, J.; Artal, E.; Barreiro, R. B.; Blackhurst, E. J.; Cagigas, J.; Cano de Diego, J. L.; Casas, F. J.; Davis, R. J.; Dickinson, C.; Arriaga, B. E.; Fernandez-Cobos, R.; de la Fuente, L.; Génova-Santos, R.; Gómez, A.; Gomez, C.; Gómez-Reñasco, F.; Grainge, K.; Harper, S.; Herran, D.; Herreros, J. M.; Herrera, G. A.; Hobson, M. P.; Lasenby, A. N.; Lopez-Caniego, M.; López-Caraballo, C.; Maffei, B.; Martinez-Gonzalez, E.; McCulloch, M.; Melhuish, S.; Mediavilla, A.; Murga, G.; Ortiz, D.; Piccirillo, L.; Pisano, G.; Rebolo-López, R.; Rubiño-Martin, J. A.; Ruiz, J. Luis; Sanchez de la Rosa, V.; Sanquirce, R.; Vega-Moreno, A.; Vielva, P.; Viera-Curbelo, T.; Villa, E.; Vizcargüenaga, A.; Watson, R. A.
2012-09-01
The QUIJOTE-CMB project has been described in previous publications. Here we present the current status of the QUIJOTE multi-frequency instrument (MFI) with five separate polarimeters (providing 5 independent sky pixels): two which operate at 10-14 GHz, two which operate at 16-20 GHz, and a central polarimeter at 30 GHz. The optical arrangement includes 5 conical corrugated feedhorns staring into a dual reflector crossed-draconian system, which provides optimal cross-polarization properties (designed to be < -35 dB) and symmetric beams. Each horn feeds a novel cryogenic on-axis rotating polar modulator which can rotate at a speed of up to 1 Hz. The science driver for this first instrument is the characterization of the galactic emission. The polarimeters use the polar modulator to derive linear polar parameters Q, U and I and switch out various systematics. The detection system provides optimum sensitivity through 2 correlated and 2 total power channels. The system is calibrated using bright polarized celestial sources and through a secondary calibration source and antenna. The acquisition system, telescope control and housekeeping are all linked through a real-time gigabit Ethernet network. All communication, power and helium gas are passed through a central rotary joint. The time stamp is synchronized to a GPS time signal. The acquisition software is based on PLCs written in Beckhoffs TwinCat and ethercat. The user interface is written in LABVIEW. The status of the QUIJOTE MFI will be presented including pre-commissioning results and laboratory testing.
JWST ISIM Harness Thermal Evaluation
NASA Technical Reports Server (NTRS)
Kobel, Mark; Glazer, Stuart; Tuttle, Jim; Martins, Mario; Ruppel, Sean
2008-01-01
The James Webb Space Telescope (JWST) will be a large infrared telescope with a 6.5-meter primary mirror. Launch is planned for 2013. JWST wl1 be the premier observatory of the next decade serving thousands of astronomers worldwide. The Integrated Science Instrument Module (ISIM) is the unit that will house thc four main JWST instruments. The ISIM enclosure passively cooled to 37 Kelvin and has a tightly managed thermal budget. A significant portion of the ISIM heat load is due to parasitic heat gains from the instrument harnesses. These harnesses provide a thermal path from the Instrument Electronics Control (IEC) to the ISIM. Because of the impact of this load to the ISIM thermal design, understanding the harness parasitic heat gains is critical. To this effect, a thermal test program has been conducted in order to characterize these parasitic loads and verify harness thermal models. Recent parasitic heat loads tests resulted in the addition of a dedicated multiple stage harness radiator. In order for the radiator to efficiently reject heat from the harness, effective thermal contact conductance values for multiple harnesses had to be determined. This presentation will describe the details and the results of this test program.
The James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Nowak, Maria; Eichorn, William; Hill, Michael; Hylan, Jason; Marsh, James; Ohl, Raymond; Sampler, Henry; Wright, Geraldine; Crane, Allen; Herrera, Acey;
2007-01-01
The James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (approx.40K). The JWST Observatory architecture includes the Optical Telescope Element and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The ISIM optical metering structure is a roughly 2.2x1.7x2.2mY, asymmetric frame that is composed of carbon fiber and resin tubes bonded to invar end fittings and composite gussets and clips. The structure supports the SIs, isolates the SIs from the OTE, and supports thermal and electrical subsystems. The structure is attached to the OTE structure via strut-like kinematic mounts. The ISM structure must meet its requirements at the approx.40K cryogenic operating temperature. The SIs are aligned to the structure s coordinate system under ambient, clean room conditions using laser tracker and theodolite metrology. The ISM structure is thermally cycled for stress relief and in order to measure temperature-induced mechanical, structural changes. These ambient-to-cryogenic changes in the alignment of SI and OTE-related interfaces are an important component in the JWST Observatory alignment plan and must be verified.
The Mid-Infrared Imager/Spectrometer/Coronagraph Instrument (MISC) for the Origins Space Telescope
NASA Astrophysics Data System (ADS)
Roellig, Thomas; Sakon, Itsuki; Ennico, Kimberly; MISC Instrument Study Team, Origins Space Telescope Study Team
2018-01-01
The Origins Space Telescope (OST) is one of four potential flagship missions that have been funded by NASA for study for consideration in the upcoming Astrophysics Decadal Review expected in 2020. The OST telescope will be up to 9.3 meters in diameter, cooled to ~4K, and the mission will be optimized for efficient mid and far-infrared astronomical observations. An initial suite of five focal plane instruments are being baselined for this observatory. The Mid-infrared Imager Spectrometer Coronagraph (MISC) instrument will observe at the shortest wavelengths of any of these instruments, ranging from 5 to 38 microns, and consists of three separate optical modules providing imaging, spectroscopy, and coronagraph capabilities. The imaging camera covers a 3 arcmin x 3 arcmin field with filters and grisms from 6-38 microns. The spectrometers have spectral resolving powers R~1,000 from 9-38 microns (with a goal of 5-38 microns) and R~25,000 for 12-18 and 25-36 microns. The coronagraph covers 6-38 microns. There is a special densified pupil spectrometer channel that provides R~100-300 exoplanet transit and emission spectroscopy from 6-26 microns with very high spectro-photometric stability. As the shortest wavelength focal plane imager the MISC instrument will also be used for focal plane guiding as needed for the other OST science instruments. The science that MISC enables on OST includes: studying episodic accretion in protostellar envelopes, tracing the rise in metallacity and dust over cosmic time (when combined with far-infrared measurements), measuring dust in galactic outflows, assessing feedback from supernovae and AGN on the multi-phase ISM in galaxies, characterizing the AGN and starburst power in normal and massive galaxies, detecting exoplanet atmospheric biosignatures, and direct imaging of Jovian planets orbiting older stars at separations of 5-20 AU.
Design and validation of a standards-based science teacher efficacy instrument
NASA Astrophysics Data System (ADS)
Kerr, Patricia Reda
National standards for K--12 science education address all aspects of science education, with their main emphasis on curriculum---both science subject matter and the process involved in doing science. Standards for science teacher education programs have been developing along a parallel plane, as is self-efficacy research involving classroom teachers. Generally, studies about efficacy have been dichotomous---basing the theoretical underpinnings on the work of either Rotter's Locus of Control theory or on Bandura's explanations of efficacy beliefs and outcome expectancy. This study brings all three threads together---K--12 science standards, teacher education standards, and efficacy beliefs---in an instrument designed to measure science teacher efficacy with items based on identified critical attributes of standards-based science teaching and learning. Based on Bandura's explanation of efficacy being task-specific and having outcome expectancy, a developmental, systematic progression from standards-based strategies and activities to tasks to critical attributes was used to craft items for a standards-based science teacher efficacy instrument. Demographic questions related to school characteristics, teacher characteristics, preservice background, science teaching experience, and post-certification professional development were included in the instrument. The instrument was completed by 102 middle level science teachers, with complete data for 87 teachers. A principal components analysis of the science teachers' responses to the instrument resulted in two components: Standards-Based Science Teacher Efficacy: Beliefs About Teaching (BAT, reliability = .92) and Standards-Based Science Teacher Efficacy: Beliefs About Student Achievement (BASA, reliability = .82). Variables that were characteristic of professional development activities, science content preparation, and school environment were identified as members of the sets of variables predicting the BAT and BASA subscales. Correlations were computed for BAT, BASA, and demographic variables to identify relationships between teacher efficacy, teacher characteristics, and school characteristics. Further research is recommended to refine the instrument and apply its use to a larger sample of science teachers. Its further development also has significance for the enhancement of science teacher education programs.
1987-10-01
include Security Classification) Instrumentation for scientific computing in neural networks, information science, artificial intelligence, and...instrumentation grant to purchase equipment for support of research in neural networks, information science, artificail intellignece , and applied mathematics...in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics Contract AFOSR 86-0282 Principal Investigator: Stephen
Aura Atmospheric Data Products and Their Availability from NASA Goddard Earth Sciences DAAC
NASA Technical Reports Server (NTRS)
Ahmad, S.; Johnson, J.; Gopalan, A.; Smith, P.; Leptoukh, G.; Kempler, S.
2004-01-01
NASA's EOS-Aura spacecraft was launched successfully on July 15, 2004. The four instruments onboard the spacecraft are the Microwave Limb Sounder (MLS), the Ozone Monitoring Instrument (OMI), the Tropospheric Emission Spectrometer (TES), and the High Resolution Dynamics Limb Sounder (HBDLS). The Aura instruments are designed to gather earth sciences measurements across the ultraviolet, visible, infra-red, thermal and microwave regions of the electromagnetic spectrum. Aura will provide over 70 distinct standard atmospheric data products for use in ozone layer and surface UV-B monitoring, air quality forecast, and atmospheric chemistry and climate change studies (http://eosaura.gsfc.nasa.gov/). These products include earth-atmosphere radiances and solar spectral irradiances; total column, tropospheric, and profiles of ozone and other trace gases, surface W-B flux; clouds and aerosol characteristics; and temperature, geopotential height, and water vapor profiles. The MLS, OMI, and HIRDLS data products will be archived at the NASA Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC), while data from TES will be archived at NASA Langley Research Center DAAC. Some of the standard products which have gone through quick preliminary checks are already archived at the GES DAAC (http://daac.nsfc.nasa.gov/) and are available to the Aura science team and data validation team members for data validation; and to the application and visualization software developers, for testing their application modules. Once data are corrected for obvious calibration problems and partially validated using in-situ observations, they would be made available to the broader user community. This presentation will provide details of the whole suite of Aura atmospheric data products, and the time line of the availability of the rest of the preliminary products and of the partially validated provisional products. Software and took available for data access, visualization, and data mining will also be discussed.
Collaboration Portals for NASA's Airborne Field Campaigns
NASA Astrophysics Data System (ADS)
Conover, H.; Kulkarni, A.; Garrett, M.; Goodman, M.; Petersen, W. A.; Drewry, M.; Hardin, D. M.; He, M.
2011-12-01
The University of Alabama in Huntsville (UAH), in collaboration with the Global Hydrology Resource Center, a NASA Earth Science Data Center, has provided information management for a number of NASA Airborne Field campaigns, both hurricane science investigations and satellite instrument validation. Effective field campaign management requires communication and coordination tools, including utilities for personnel to upload and share flight plans, weather forecasts, a variety of mission reports, preliminary science data, and personal photos. Beginning with the Genesis and Rapid Intensification Processes (GRIP) hurricane field campaign in 2010, we have provided these capabilities via a Drupal-based collaboration portal. This portal was reused and modified for the Midlatitude Continental Convective Clouds Experiment (MC3E), part of the Global Precipitation Measurement mission ground validation program. An end goal of these development efforts is the creation of a Drupal profile for field campaign management. This presentation will discuss experiences with Drupal in developing and using these collaboration portals. Topics will include Drupal modules used, advantages and disadvantages of working with Drupal in this context, and how the science teams used the portals in comparison with other communication and collaboration tools.
Collaboration Portals for NASA's Airborne Field Campaigns
NASA Technical Reports Server (NTRS)
Conover, Helen; Kulkami, Ajinkya; Garrett, Michele; Goodman, Michael; Peterson, Walter Arthur; Drewry, Marilyn; Hardin, Danny M.; He, Matt
2011-01-01
The University of Alabama in Huntsville (UAH), in collaboration with the Global Hydrology Resource Center, a NASA Earth Science Data Center, has provided information management for a number of NASA Airborne Field campaigns, both hurricane science investigations and satellite instrument validation. Effective field campaign management requires communication and coordination tools, including utilities for personnel to upload and share flight plans, weather forecasts, a variety of mission reports, preliminary science data, and personal photos. Beginning with the Genesis and Rapid Intensification Processes (GRIP) hurricane field campaign in 2010, we have provided these capabilities via a Drupal-based collaboration portal. This portal was reused and modified for the Midlatitude Continental Convective Clouds Experiment (MC3E), part of the Global Precipitation Measurement mission ground validation program. An end goal of these development efforts is the creation of a Drupal profile for field campaign management. This presentation will discuss experiences with Drupal in developing and using these collaboration portals. Topics will include Drupal modules used, advantages and disadvantages of working with Drupal in this context, and how the science teams used the portals in comparison with other communication and collaboration tools.
The NGST Science Instrument Procurement Plan
NASA Astrophysics Data System (ADS)
NGST Project Office Team
1999-05-01
The NGST will carry approximately 3 science instruments (SI) that together enable the wide field imaging and spectroscopic capability needed to perform the Design Reference Mission (http://www.ngst.nasa.gov/science/drm.html). The NGST telescope will permit these instruments to achieve Zodiacal light limited sensitivity over a wavelength range of 0.6 - 10+ microns. During April 2000, responsibility to provide these instruments will be allocated among the NGST partner agencies: NASA, ESA, and CSA. Instruments allocated to NASA will be solicited via a NASA Announcement of Opportunity (AO) during June 2001. This AO will be open to university, government, and industry scientists. At the present time, 11 science instrument concept studies are being conducted by US, European, and Canadian teams. Final results from these 1 year studies will be presented at the NGST Science and Technology Exposition at Woods Hole MA during September 1999 (http://ngst.gsfc.nasa.gov/science/meetings/WHannouncement.html). It is not necessary to have participated in these pre-Phase A activities in order to answer the up coming instrument technologies NRA or the flight instrument AO. In this poster, we present the process by which SI concepts will be allocated among NASA, ESA, and CSA prior to the AO solicitation as well as top level time lines for instrument acquisition and development.
Readying ISIM for its First Thermal Vacuum Test
2017-12-08
Engineers work with the Integrated Science Instrument Module for the James Webb Space Telescope inside the thermal vacuum chamber at NASA's Goddard Space Flight Center in Greenbelt, Md. The ISIM and the ISIM System Integration Fixture that holds the ISIM Electronics Compartment was recently lifted inside the chamber for its first thermal vacuum test. In this image one of the ISIM's many protective blanket layers is pulled back. The blankets will be removed during testing. Image credit: NASA/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
STS-107 Crew Interviews: Ilan Ramon, Mission Specialist
NASA Technical Reports Server (NTRS)
2002-01-01
STS-107 Mission Specialist Ilan Ramon is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. He outlines his role in the mission in general, and specifically in conducting on-board science experiments. He discusses the following instruments and sets of experiments in detail: CM2 (Combustion Module 2), FREESTAR (Fast Reaction Enabling Science Technology and Research), MEIDEX (Mediterranean Israeli Dust Experiment) and MGM (Mechanics of Granular Materials). Ramon also mentions on-board activities during launch and reentry, mission training and microgravity research. In addition, he touches on the dual work-shift nature of the mission, the use of crew members as research subjects including pre and postflight monitoring activities, the emphasis on crew safety during training and the value of international cooperation.
GeoLab's First Field Trials, 2010 Desert RATS: Evaluating Tools for Early Sample Characterization
NASA Technical Reports Server (NTRS)
Evans, Cindy A.; Bell, M. S.; Calaway, M. J.; Graff, Trevor; Young, Kelsey
2011-01-01
As part of an accelerated prototyping project to support science operations tests for future exploration missions, we designed and built a geological laboratory, GeoLab, that was integrated into NASA's first generation Habitat Demonstration Unit-1/Pressurized Excursion Module (HDU1-PEM). GeoLab includes a pressurized glovebox for transferring and handling samples collected on geological traverses, and a suite of instruments for collecting preliminary data to help characterize those samples. The GeoLab and the HDU1-PEM were tested for the first time as part of the 2010 Desert Research and Technology Studies (DRATS), NASA's analog field exercise for testing mission technologies. The HDU1- PEM and GeoLab participated in two weeks of joint operations in northern Arizona with two crewed rovers and the DRATS science team.
Earthquake!: An Event-Based Science Module. Student Edition. Earth Science Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…
STDN network operations procedure for Apollo range instrumentation aircraft, revision 1
NASA Technical Reports Server (NTRS)
Vette, A. R.; Pfeiffer, W. A.
1972-01-01
The Apollo range instrumentation aircraft (ARIA) fleet which consists of four EC-135N aircraft used for Apollo communication support is discussed. The ARIA aircraft are used to provide coverage of lunar missions, earth orbit missions, command module/service module separation to spacecraft landing, and assist in recovery operations. Descriptions of ARIA aircraft, capabilities, and instrumentation are included.
Dependence of the Martian radiation environment on atmospheric depth: Modeling and measurement
NASA Astrophysics Data System (ADS)
Guo, Jingnan; Slaba, Tony C.; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; Badavi, Francis F.; Böhm, Eckart; Böttcher, Stephan; Brinza, David E.; Ehresmann, Bent; Hassler, Donald M.; Matthiä, Daniel; Rafkin, Scot
2017-02-01
The energetic particle environment on the Martian surface is influenced by solar and heliospheric modulation and changes in the local atmospheric pressure (or column depth). The Radiation Assessment Detector (RAD) on board the Mars Science Laboratory rover Curiosity on the surface of Mars has been measuring this effect for over four Earth years (about two Martian years). The anticorrelation between the recorded surface Galactic Cosmic Ray-induced dose rates and pressure changes has been investigated by Rafkin et al. (2014) and the long-term solar modulation has also been empirically analyzed and modeled by Guo et al. (2015). This paper employs the newly updated HZETRN2015 code to model the Martian atmospheric shielding effect on the accumulated dose rates and the change of this effect under different solar modulation and atmospheric conditions. The modeled results are compared with the most up-to-date (from 14 August 2012 to 29 June 2016) observations of the RAD instrument on the surface of Mars. Both model and measurements agree reasonably well and show the atmospheric shielding effect under weak solar modulation conditions and the decline of this effect as solar modulation becomes stronger. This result is important for better risk estimations of future human explorations to Mars under different heliospheric and Martian atmospheric conditions.
The Imaging X-Ray Polarimetry Explorer (IXPE): Overview
NASA Technical Reports Server (NTRS)
O'Dell, Steve; Weisskopf, M.; Soffitta, P.; Baldini, L.; Bellazzini, R.; Costa, E.; Elsner, R.; Kaspi, V.; Kolodziejczak, J.; Latronico, L.;
2017-01-01
Mission background: Imaging x-ray polarimetry in 2–8 kiloelectronvolt band; NASA Astrophysics Small Explorer (SMEX) selected in 2017 January. Orbit: Pegasus-XL (airborne) launch in 2021, from Kwajalein; Equatorial circular orbit at greater than or approximately equal to 540 kilometers (620 kilometers, goal) altitude. Flight system: Spacecraft, payload structure, and integration by Ball Aerospace - Deployable payload boom from Orbital-ATK, under contract to Ball; X-ray Mirror Module Assemblies by NASA/MSFC; X-ray (polarization-sensitive) Instruments by IAPS/INAF (Istituto di Astrofisica e Planetologia Spaziali / Istituto Nazionale di Astrofisica) and INFN (Istituto Nazionale di Fisica Nucleare). Ground system: ASI (Agenzia Spaziale Italiana) Malindi ground station, with Singapore backup; Mission Operations Center at LASP (Laboratory for Atmospheric and Space Physics, University of Colorado); Science Operations Center at NASA/MSFC; Data archive at HEASARC (High Energy Astrophysics Science Archive Research Center), (NASA/GSFC), mirror at ASI Data Center. Science: Active galactic nuclei; Microquasars; Radio pulsars and pulsar wind nebulae; Supernova remnants; Magnetars; Accreting x-ray pulsars.
JWST's near infrared spectrograph status and performance overview
NASA Astrophysics Data System (ADS)
Te Plate, Maurice; Birkmann, Stephan; Sirianni, Marco; Rumler, Peter; Jensen, Peter; Ehrenwinkler, Ralf; Mosner, Peter; Karl, Hermann; Rapp, Robert; Wright, Ray; Wu, Rai
2016-09-01
The James Webb Space Telescope (JWST) Observatory is the follow-on mission to the Hubble Space Telescope (HST). JWST will be the biggest space telescope ever built and it will lead to astounding scientific breakthroughs. The mission will be launched in October 2018 from Kourou, French Guyana by an ESA provided Ariane 5 rocket. NIRSpec, one of the four instruments on board of the mission, recently underwent a major upgrade. New infrared detectors were installed and the Micro Shutter Assembly (MSA) was replaced as well. The rework was necessary because both systems were found to be degrading beyond a level that could be accepted. Now in its final flight configuration, NIRSpec underwent a final cryogenic performance test at NASA's Goddard Space Flight Center (GSFC) as part of the Integrated Science Instrument Module (ISIM). This paper will present a status overview and results of the recent test campaigns.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, the Human Research Facility-2 (HRF-2) science rack is attached to the Rack Insertion Device that will install it into the Multi-Purpose Logistics Module Raffaello (at left) for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, a worker watches as the Rack Insertion Device slowly moves the Human Research Facility-2 (HRF-2) science rack into the Multi-Purpose Logistics Module Raffaello for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, workers prepare to attach the Human Research Facility-2 (HRF-2) science rack onto the Rack Insertion Device. HRF-2 will be installed into the Multi-Purpose Logistics Module Raffaello (at left) for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, a worker stands by as the Rack Insertion Device slowly moves the Human Research Facility-2 (HRF-2) science rack into the Multi-Purpose Logistics Module Raffaello for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.
NASA Technical Reports Server (NTRS)
Barry, R. K.; Satyapal, S.; Greenhouse, M. A.; Barclay, R.; Amato, D.; Arritt, B.; Brown, G.; Harvey, V.; Holt, C.; Kuhn, J.
2000-01-01
We discuss work in progress on a near-infrared tunable bandpass filter for the Goddard baseline wide field camera concept of the Next Generation Space Telescope (NGST) Integrated Science Instrument Module (ISIM). This filter, the Demonstration Unit for Low Order Cryogenic Etalon (DULCE), is designed to demonstrate a high efficiency scanning Fabry-Perot etalon operating in interference orders 1 - 4 at 30K with a high stability DSP based servo control system. DULCE is currently the only available tunable filter for lower order cryogenic operation in the near infrared. In this application, scanning etalons will illuminate the focal plane arrays with a single order of interference to enable wide field lower resolution hyperspectral imaging over a wide range of redshifts. We discuss why tunable filters are an important instrument component in future space-based observatories.
NASA Astrophysics Data System (ADS)
Mazingo, Diann Etsuko
Feedback has been identified as a key variable in developing academic self-efficacy. The types of feedback can vary from a traditional, objectivist approach that focuses on minimizing learner errors to a more constructivist approach, focusing on facilitating understanding. The influx of computer-based courses, whether online or through a series of computer-assisted instruction (CAI) modules require that the current research of effective feedback techniques in the classroom be extended to computer environments in order to impact their instructional design. In this study, exposure to different types of feedback during a chemistry CAI module was studied in relation to science self-efficacy (SSE) and performance on an objective-driven assessment (ODA) of the chemistry concepts covered in the unit. The quantitative analysis consisted of two separate ANCOVAs on the dependent variables, using pretest as the covariate and group as the fixed factor. No significant differences were found for either variable between the three groups on adjusted posttest means for the ODA and SSE measures (.95F(2, 106) = 1.311, p = 0.274 and .95F(2, 106) = 1.080, p = 0.344, respectively). However, a mixed methods approach yielded valuable qualitative insights into why only one overall quantitative effect was observed. These findings are discussed in relation to the need to further refine the instruments and methods used in order to more fully explore the possibility that type of feedback might play a role in developing SSE, and consequently, improve academic performance in science. Future research building on this study may reveal significance that could impact instructional design practices for developing online and computer-based instruction.
ANALOG I/O MODULE TEST SYSTEM BASED ON EPICS CA PROTOCOL AND ACTIVEX CA INTERFACE
DOE Office of Scientific and Technical Information (OSTI.GOV)
YENG,YHOFF,L.
2003-10-13
Analog input (ADC) and output (DAC) modules play a substantial role in device level control of accelerator and large experiment physics control system. In order to get the best performance some features of analog modules including linearity, accuracy, crosstalk, thermal drift and so on have to be evaluated during the preliminary design phase. Gain and offset error calibration and thermal drift compensation (if needed) may have to be done in the implementation phase as well. A natural technique for performing these tasks is to interface the analog VO modules and GPIB interface programmable test instruments with a computer, which canmore » complete measurements or calibration automatically. A difficulty is that drivers of analog modules and test instruments usually work on totally different platforms (vxworks VS Windows). Developing new test routines and drivers for testing instruments under VxWorks (or any other RTOS) platform is not a good solution because such systems have relatively poor user interface and developing such software requires substantial effort. EPICS CA protocol and ActiveX CA interface provide another choice, a PC and LabVIEW based test system. Analog 110 module can be interfaced from LabVIEW test routines via ActiveX CA interface. Test instruments can be controlled via LabVIEW drivers, most of which are provided by instrument vendors or by National Instruments. Labview also provides extensive data analysis and process functions. Using these functions, users can generate powerful test routines very easily. Several applications built for Spallation Neutron Source (SNS) Beam Loss Monitor (BLM) system are described in this paper.« less
Development and application of a novel crop stress and quality instrument
NASA Astrophysics Data System (ADS)
Huang, Wengjiang; Sun, Gang; Wang, Jihua; Liu, Liangyun; Zheng, Wengang
2005-12-01
In this paper, a portable diagnostic instrument for crop quality analysis was designed and tested, which can measure the normalized difference vegetation index (PRI) and structure insensitive pigment index (NRI) of crop canopy in the field. The instrument have a valid survey area of 1m×1m when the height between instrument and the ground was fixed to 1.3 meter. The crop quality can be assessed based on their PRI and NRI values, so it will be very important for crop management to get these values. The instrument uses sunlight as its light source. There are six special different photoelectrical detectors within red, blue and near infrared bands, which are used for detecting incidence sunlight and reflex light from the canopy of crop. This optical instrument includes photoelectric detector module, signal process and A/D convert module, the data storing and transmission module and human-machine interface module. The detector is the core of the instrument which measures the spectrums at special bands. The microprocessor calculates the NDVI and SIPI value based on the A/D value. And the value can be displayed on the instrument's LCD, stored in the flash memory of instrument and can also be uploaded to PC through the PC's RS232 serial interface. The prototype was tested in the crop field at different view directions. It reveals the on-site and non-sampling mode of crop growth monitoring by fixed on the agricultural machine traveling in the field. Such simple instruments can diagnose the plant growth status by the acquired spectral response.
ERIC Educational Resources Information Center
Stein, Mary; Barman, Charles R.; Larrabee, Timothy
2007-01-01
This article describes the rationale for, and development of, an online instrument that helps identify commonly held science misconceptions. Science Beliefs is a 47-item instrument that targets topics in chemistry, physics, biology, earth science, and astronomy. It utilizes a true or false, along with a written-explanation, format. The true or…
Tornado! An Event-Based Science Module. Teacher's Guide. Meteorology Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for middle school earth science teachers to help their students learn about problems with tornadoes and scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning,…
Volcano!: An Event-Based Science Module. Teacher's Guide. Geology Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for middle school earth science teachers to help their students learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research,…
Development of an instrument to measure student attitudes toward science fairs
NASA Astrophysics Data System (ADS)
Huddleston, Claudia A.
Science fairs are woven into the very fabric of science instruction in the United States and in other countries. Even though thousands of students participate in science fairs every year, no instrument to measure student attitudes toward partaking in this hands-on learning experience has been fully developed and available for school administrators and teachers to assess the perceived value that current students attribute to participation in science fairs. Therefore, the purpose of this study was to continue the development and refinement of an instrument that measured student attitudes towards science fairs based on an unpublished instrument created by Michael (2005). The instrument developed and tested using 110 students at two different middle schools in southwest Virginia. The instrument consisted of 45 questions. After applying a principal component factor analysis, the instrument was reduced to two domains, enjoyment and value. The internal consistency of the instrument was calculated using Cronbach's alpha and showed good internal consistency of .89 between the two domains. Further analysis was conducted using a Pearson product-moment test and showed a significant positive correlation between enjoyment and value (r = .78). Demographic information was explored concerning the domains using a series of statistical tests, and results revealed no significant differences among race and science fair category. However, a significant difference was found among gender and students who won awards and those who did not. The conclusion was that further development and refinement of the instrument should be conducted.
NASA Astrophysics Data System (ADS)
Niro, F.
2009-04-01
The ENVISAT ESA's satellite was launched on a polar orbit on March 2002. It carries on-board three atmospheric chemistry instruments: GOMOS, MIPAS and SCIAMACHY [1]. At the present time, although the mission expected lifetime of 5 years has been already exceeded, all the payload modules are in good to excellent status. The only limiting factor is the available fuel that is used for orbit control manoeuvre. Recently a new strategy was proposed [2] that will allow to save fuel and to extend the mission up to 2013. Following this strategy, the altitude of the orbit will be lowered by 17 km starting from end of 2010 and the inclination will be allowed to drift. The new orbit scenario will result in a new repeating cycle with a variation of the Mean Local Solar Time (MLST). This will have an impact on both the in-flight operations, on the science data and on the mission. The simulations carried out for the atmospheric chemistry instruments show that the new orbit strategy will neither have a significant impact in the instrument operations nor on the quality of the science data. Therefore we expect that the atmospheric mission will continue nominally until the end of the platform life time, providing to the scientist a unique dataset of the most important geophysical parameters (e.g., trace gases, clouds, and aerosol) spanning a time interval of about 11 years. The aim of this paper is to review the overall ENVISAT atmospheric mission status for the past, present and future. The evolution of the instrument performances since launch will be analyzed with focus on the life-limited items monitoring. The tuning of the instrument in-flight operations decided to cope with instrument degradation or scientific needs will be described. The lessons learned on how to operate and monitor the instruments will be highlighted. Finally the expected evolution of the instrument performances until the ENVISAT end-of-life will be discussed. [1] H. Nett, J. Frerick, T. Paulsen, and G. Levrini, "The atmospheric instruments and their applications: GOMOS, MIPAS and SCIAMACHY", ESA Bulletin (ISSN 0376-4265), No. 106, p. 77 - 87 (2001) [2] J. Frerick, B. Duesmann, and M. Canela, "2010 and beyond - The ENVISAT mission extension", Proc. ‘Envisat Symposium 2007', Montreux, Switzerland, 23-27 April 2007 (ESA SP-636, July 2007)
NASA Astrophysics Data System (ADS)
Dehn, Angelika
The ENVISAT ESA's satellite was launched on a polar orbit on March 2002. It carries on-board three atmospheric chemistry instruments: GOMOS, MIPAS and SCIAMACHY [1]. At the present time, although the mission expected lifetime of 5 years has been already exceeded, all the payload modules are in good to excellent status. The only limiting factor is the available fuel that is used for orbit control manoeuvre. A new strategy was proposed [2] that will allow to save fuel and to extend the mission up to 2013. Following this strategy, the altitude of the orbit will be lowered by 17 km starting from end of 2010 and the inclination will be allowed to drift. The new orbit scenario will result in a new repeating cycle with a variation of the Mean Local Solar Time (MLST). This will have an impact on both the in-flight operations, on the science data and on the mission. The simulations carried out for the atmospheric chemistry instruments show that the new orbit strategy will neither have a significant impact in the instrument operations nor on the quality of the science data. Therefore we expect that the atmospheric mission will continue nominally until the end of the platform life time, providing to the scientist a unique dataset of the most important geophysical parameters (e.g., trace gases, clouds, and aerosol) spanning a time interval of about 11 years. The aim of this paper is to review the overall ENVISAT atmospheric mission status for the past, present and future. The evolution of the instrument performances since launch will be analyzed with focus on the life-limited items monitoring. The tuning of the instrument in-flight operations decided to cope with instrument degradation or scientific needs will be described. The lessons learned on how to operate and monitor the instruments will be highlighted. Finally the expected evolution of the instrument performances until the ENVISAT end-of-life will be discussed. [1] H. Nett, J. Frerick, T. Paulsen, and G. Levrini, "The atmospheric instruments and their applications: GOMOS, MIPAS and SCIAMACHY", ESA Bulletin (ISSN 0376-4265), No. 106, p. 77 -87 (2001) [2] J. Frerick, B. Duesmann, and M. Canela, "2010 and beyond -The ENVISAT mission extension", Proc. `Envisat Symposium 2007', Montreux, Switzerland, 23-27 April 2007 (ESA SP-636, July 2007)
Spacelab Science Results Study: Executive Summary
NASA Technical Reports Server (NTRS)
Naumann, Robert J. (Editor)
1999-01-01
Beginning with OSTA-1 in November 1981, and ending with Neurolab in March 1998, thirty-six shuttle missions are considered Spacelab missions because they carried various Spacelab components such as the Spacelab module, the pallet, the Instrument Pointing System (IPS), or the MPESS. The experiments carried out during these flights included astrophysics, solar physics, plasma physics, atmospheric science, Earth observations, and a wide range of microgravity experiments in life sciences, biotechnology, materials science, and fluid physics which includes combustion and critical point phenomena. In all, some 764 experiments were conducted by investigators from the United States, Europe, and Japan. These experiments resulted in several thousand papers published In refereed journals, and thousands more in conference proceedings, chapters in books, and other publications. The purpose of this Spacelab Science Results Study is to document the contributions made in each of the major research areas by giving a brief synopsis of the more significant experiments and an extensive list of the publications that were produced. We have also endeavored to show how these results impacted the existing body of knowledge, where they have spawned new fields, and, if appropriate, where the knowledge they produced has been applied.
Thirty Meter Telescope science instruments: a status report
NASA Astrophysics Data System (ADS)
Simard, Luc; Ellerbroek, Brent; Bhatia, Ravinder; Radovan, Matthew; Chisholm, Eric
2016-08-01
An overview of the current status of the science instruments for the Thirty Meter Telescope is presented. Three first-light instruments as well as a science calibration unit for AO-assisted instruments are under development. Developing instrument collaborations that can design and build these challenging instruments remains an area of intense activity. In addition to the instruments themselves, a preliminary design for a facility cryogenic cooling system based on gaseous helium turbine expanders has been completed. This system can deliver a total of 2.4 kilowatts of cooling power at 65K to the instruments with essentially no vibrations. Finally, the process for developing future instruments beyond first light has been extensively discussed and will get under way in early 2017.
Radio Science Measurements with Suppressed Carrier
NASA Technical Reports Server (NTRS)
Asmar, Sami; Divsalar, Dariush; Oudrhiri, Kamal
2013-01-01
Radio Science started when it became apparent with early Solar missions that occultations by planetary atmospheres would affect the quality of radio communications. Since then the atmospheric properties and other aspects of planetary science, solar science, and fundamental physics were studied by scientists. Radio Science data was always extracted from a received pure residual carrier (without data modulation). For some missions, it is very desirable to obtain Radio Science data from a suppressed carrier modulation. In this paper we propose a method to extract Radio Science data when a coded suppressed carrier modulation is used in deep space communications. Type of modulation can be BPSK, QPSK, OQPSK, MPSK or even GMSK. However we concentrate mostly on BPSK modulation. The proposed method for suppressed carrier simply tries to wipe out data that acts as an interference for Radio Science measurements. In order to measure the estimation errors in amplitude and phase of the Radio Science data we use Cramer-Rao bound (CRB). The CRB for the suppressed carrier modulation with non-ideal data wiping is then compared with residual carrier modulation under the same noise condition. The method of derivation of CRB for non-ideal data wiping is an innovative method that presented here. Some numerical results are provided for coded system.
Access to Space: Hands on flight instrument experience for sophomores at UW
NASA Astrophysics Data System (ADS)
Holzworth, R. H.; Harnett, E. M.; Winglee, R. M.; Chinowsky, T. M.; McCarthy, M. P.
2003-12-01
Students at the college sophomore level, with no science or technical prerequisites, form teams to design and fabricate sounding balloon payloads. This 200 level class promotes interest in research and involves a mixture of lectures about the upper atmosphere and space environment coupled with an intense laboratory experience. Students are taught rudimentary electronics and fabrication techniques, culminating after just 4 weeks of the flight of a CricketSat instrument (single, thermistor-controlled tone telemetry modulation; kit by Bob Twiggs at Stanford) on a sounding balloon. Following this appetite whetting, student teams design, test, calibrate and interface an instrument of their own choosing to a telemetry system for sounding balloon flight. During Spring 2003 student built payloads included devices to measure direct and reflected solar radiation, magnetic field variations, temperature and pressure, and even a small 'biosphere' with crickets which actually survived flight to near 30km altitude! Students go on a one day field trip to launch the sounding balloons and attempt recovery. This is followed by the last two weeks of data analysis and final report writing.
NASA Astrophysics Data System (ADS)
Wang, Hongrui; Wang, Yupeng; Ye, Xin; Yang, Dongjun; Wang, Kai; Li, Huiduan; Fang, Wei
2017-01-01
The Total Solar Irradiance Monitor (TSIM) onboard the nadir Feng Yun-3C (FY-3C) satellite provides measurements of the total solar irradiance with accurate solar tracking and sound thermal stability of its heat sink. TSIM/FY-3C mainly consists of the pointing system, the radiometer package, the thermal control system, and the electronics. Accurate solar tracking is achieved by the pointing system, which greatly improves the science data quality when compared with the previous TSIM/FY-3A and TSIM/FY-3B. The total solar irradiance (TSI) is recorded by TSIM/FY-3C about 26 times each day, using a two-channel radiometer package. One channel is used to perform routine observation, and the other channel is used to monitor the degradation of the cavity detector in the routine channel. From the results of the ground test, the incoming irradiance is measured by the routine channel (AR1) with a relative uncertainty of 592 ppm. A general description of the TSIM, including the instrument modules, uncertainty evaluation, and its operation, is given in this article.
NASA Astrophysics Data System (ADS)
Di, Q.
2013-12-01
In recent years, deep prospecting method such as magnetotelluric and controlled source audio-frequency magnetotelluric develop rapidly, but the instruments almost monopolized by several big geophysical companies from the United States, Canada and Germany. From prospecting practice, foreign equipment adaptation on complicated geological conditions in China is unsatisfactory. As increasing of national strength, electromagnetic exploration system development independently is on the agenda. In the year of 2010, the institute of geology and geophysics, Chinese academy of sciences, took on one subject of the SinoProbe project, the research of surface Electromagnetic Prospecting (SEP) System, and has achieved some achievements. SEP is an independent research instrumentation system, which is available for MT, AMT and CSAMT soundings. After laboratory testing, in order to test SEP's performance in field, the yang-jia-zhang-zi molybdenum deposit area is selected for SEP experiment. All modules and components of SEP system have been tested, and the field ability of the whole system also has been tested. The experimental results show that SEP performance has reached the level of commercial instruments.
The Slope Imaging Multi-Polarization Photon-Counting Lidar: Development and Performance Results
NASA Technical Reports Server (NTRS)
Dabney, Phillip
2010-01-01
The Slope Imaging Multi-polarization Photon-counting Lidar is an airborne instrument developed to demonstrate laser altimetry measurement methods that will enable more efficient observations of topography and surface properties from space. The instrument was developed through the NASA Earth Science Technology Office Instrument Incubator Program with a focus on cryosphere remote sensing. The SIMPL transmitter is an 11 KHz, 1064 nm, plane-polarized micropulse laser transmitter that is frequency doubled to 532 nm and split into four push-broom beams. The receiver employs single-photon, polarimetric ranging at 532 and 1064 nm using Single Photon Counting Modules in order to achieve simultaneous sampling of surface elevation, slope, roughness and depolarizing scattering properties, the latter used to differentiate surface types. Data acquired over ice-covered Lake Erie in February, 2009 are documenting SIMPL s measurement performance and capabilities, demonstrating differentiation of open water and several ice cover types. ICESat-2 will employ several of the technologies advanced by SIMPL, including micropulse, single photon ranging in a multi-beam, push-broom configuration operating at 532 nm.
Science Data Report for the Optical Properties Monitor (OPM) Experiment
NASA Technical Reports Server (NTRS)
Wilkes, Donald R.; Zwiener, James M.
1999-01-01
Long term stability of spacecraft materials when exposed to the space environment continues to be a major area of investigation. The natural and induced environment surrounding a spacecraft can decrease material performance and limit useful lifetimes. The Optical Properties Monitor (OPM) experiment provided the capability to perform the important flight testing of materials and was flown on the Russian Mir Station to study the long term effects of the natural and induced space environment on materials. The core of the OPM in-flight analysis was three independent optical instruments. These instruments included an integrating sphere spectral reflectometer, a vacuum ultraviolet spectrometer, and a Total Integrated Scatter instrument. The OPM also monitored selected components of the environment including molecular contamination. The OPM was exposed on the exterior of the Mir Docking Module for approximately 8-1/2 months. This report describes the OPM experiment, a brief background of its development, program organization, experiment description, mission overview including space environment definition, performance overview, materials data including flight and ground data, in-depth post flight analysis including ground analysis measurements and a summary discussion of the findings and results.
Adaptive Instrument Module: Space Instrument Controller "Brain" through Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Darrin, Ann Garrison; Conde, Richard; Chern, Bobbie; Luers, Phil; Jurczyk, Steve; Mills, Carl; Day, John H. (Technical Monitor)
2001-01-01
The Adaptive Instrument Module (AIM) will be the first true demonstration of reconfigurable computing with field-programmable gate arrays (FPGAs) in space, enabling the 'brain' of the system to evolve or adapt to changing requirements. In partnership with NASA Goddard Space Flight Center and the Australian Cooperative Research Centre for Satellite Systems (CRC-SS), APL has built the flight version to be flown on the Australian university-class satellite FEDSAT. The AIM provides satellites the flexibility to adapt to changing mission requirements by reconfiguring standardized processing hardware rather than incurring the large costs associated with new builds. This ability to reconfigure the processing in response to changing mission needs leads to true evolveable computing, wherein the instrument 'brain' can learn from new science data in order to perform state-of-the-art data processing. The development of the AIM is significant in its enormous potential to reduce total life-cycle costs for future space exploration missions. The advent of RAM-based FPGAs whose configuration can be changed at any time has enabled the development of the AIM for processing tasks that could not be performed in software. The use of the AIM enables reconfiguration of the FPGA circuitry while the spacecraft is in flight, with many accompanying advantages. The AIM demonstrates the practicalities of using reconfigurable computing hardware devices by conducting a series of designed experiments. These include the demonstration of implementing data compression, data filtering, and communication message processing and inter-experiment data computation. The second generation is the Adaptive Processing Template (ADAPT) which is further described in this paper. The next step forward is to make the hardware itself adaptable and the ADAPT pursues this challenge by developing a reconfigurable module that will be capable of functioning efficiently in various applications. ADAPT will take advantage of radiation tolerant RAM-based field programmable gate array (FPGA) technology to develop a reconfigurable processor that combines the flexibility of a general purpose processor running software with the performance of application specific processing hardware for a variety of high performance computing applications.
NASA Astrophysics Data System (ADS)
van Howe, James William
Telecommunication technology has often been applied to areas of science and engineering seemingly unrelated to communication systems. Innovations such as electronic amplifiers, the transistor, digital coding, optical fiber, and the laser, which all had roots in communication technology, have been implemented in devices from bar-code scanners to fiber endoscopes for medical procedures. In the same way, the central theme of the work in the following chapters has been to borrow both the concepts and technology of telecommunications systems to develop novel optical instrumentation for non-telecom pursuits. This work particularly leverages fiber-integrated electro-optic phase modulators to apply custom phase profiles to ultrafast pulses for control and manipulation. Such devices are typically used in telecom transmitters to encode phase data onto optical pulses (differential phase-shift keying), or for chirped data transmission. We, however, use electro-optic phase modulators to construct four novel optical devices: (1) a programmable ultrafast optical delay line with record scanning speed for applications in optical metrology, interferometry, or broad-band phase arrays, (2) a multiwavelength pulse generator for real-time optical sampling of electronic waveforms, (3) a simple femtosecond pulse generator for uses in biomedical imaging or ultrafast spectroscopy, and (4) a nonlinear phase compensator to increase the energy of fiber-amplified ultrashort pulse systems. In addition, we describe a fifth instrument which makes use of a higher-order mode fiber, similar in design to dispersion compensating fibers used for telecom. Through soliton self-frequency shift in the higher-order mode fiber, we can broadly-tune the center frequency of ultrashort pulses in energy regimes useful for biomedical imaging or ultrafast spectroscopy. The advantages gained through using telecom components in each of these systems are the simplicity and robustness of all-fiber configurations, high-speed operation, and electronic control of signals. Finally, we devote much attention to the paradigm of space-time duality and temporal imaging which allows the electro-optic phase modulators used in our instrumentation to be framed as temporal analogs of diffractive optical elements such as lenses and prisms. We show how the concepts of "time-lenses" and "time-prisms" give an intuitive understanding of our work as well as insight for the general development of optical instrumentation.
NASA Astrophysics Data System (ADS)
Seymour, Ben; Barbe, Michael; Dayan, Peter; Shiner, Tamara; Dolan, Ray; Fink, Gereon R.
2016-09-01
Deep brain stimulation (DBS) of the subthalamic nucleus in Parkinson’s disease is known to cause a subtle but important adverse impact on behaviour, with impulsivity its most widely reported manifestation. However, precisely which computational components of the decision process are modulated is not fully understood. Here we probe a number of distinct subprocesses, including temporal discount, outcome utility, instrumental learning rate, instrumental outcome sensitivity, reward-loss trade-offs, and perseveration. We tested 22 Parkinson’s Disease patients both on and off subthalamic nucleus deep brain stimulation (STN-DBS), while they performed an instrumental learning task involving financial rewards and losses, and an inter-temporal choice task for financial rewards. We found that instrumental learning performance was significantly worse following stimulation, due to modulation of instrumental outcome sensitivity. Specifically, patients became less sensitive to decision values for both rewards and losses, but without any change to the learning rate or reward-loss trade-offs. However, we found no evidence that DBS modulated different components of temporal impulsivity. In conclusion, our results implicate the subthalamic nucleus in a modulation of outcome value in experience-based learning and decision-making in Parkinson’s disease, suggesting a more pervasive role of the subthalamic nucleus in the control of human decision-making than previously thought.
Seymour, Ben; Barbe, Michael; Dayan, Peter; Shiner, Tamara; Dolan, Ray; Fink, Gereon R.
2016-01-01
Deep brain stimulation (DBS) of the subthalamic nucleus in Parkinson’s disease is known to cause a subtle but important adverse impact on behaviour, with impulsivity its most widely reported manifestation. However, precisely which computational components of the decision process are modulated is not fully understood. Here we probe a number of distinct subprocesses, including temporal discount, outcome utility, instrumental learning rate, instrumental outcome sensitivity, reward-loss trade-offs, and perseveration. We tested 22 Parkinson’s Disease patients both on and off subthalamic nucleus deep brain stimulation (STN-DBS), while they performed an instrumental learning task involving financial rewards and losses, and an inter-temporal choice task for financial rewards. We found that instrumental learning performance was significantly worse following stimulation, due to modulation of instrumental outcome sensitivity. Specifically, patients became less sensitive to decision values for both rewards and losses, but without any change to the learning rate or reward-loss trade-offs. However, we found no evidence that DBS modulated different components of temporal impulsivity. In conclusion, our results implicate the subthalamic nucleus in a modulation of outcome value in experience-based learning and decision-making in Parkinson’s disease, suggesting a more pervasive role of the subthalamic nucleus in the control of human decision-making than previously thought. PMID:27624437
NASA Astrophysics Data System (ADS)
Arbi, Y. R.; Sumarmin, R.; Putri, D. H.
2018-04-01
The problem in the science learning process is the application of the scientific approach takes a long time in order to provide conceptual understanding to the students, there is no teaching materials that can measure students reasoning and thinking ability, and the assessment has not measured students reasoning and literacy skills.The effort can be done is to develop science technology society module indue science literacy assessment. The purpose of the research was to produce a module oriented society indue science science technology literacy assessment. The research is development research using Plomp model, consist of preliminary, prototyping, and assessment phase. Data collect by questionnare and documantion. The result there is science technology society module indue science literacy assessment is very valid.
ERIC Educational Resources Information Center
Koksal, Mustafa Serdar; Ertekin, Pelin
2016-01-01
The study is focusing on development of an instrument to determine science-specific epistemological beliefs of prospective science teachers. The study involved 364 (male = 82, female = 282) prospective science teachers enrolled in a science teacher education program. The confirmatory factor analysis, reliability analysis and correlation analysis…
Reading Instruments: Objects, Texts and Museums
ERIC Educational Resources Information Center
Anderson, Katharine; Frappier, Melanie; Neswald, Elizabeth; Trim, Henry
2013-01-01
Science educators, historians of science and their students often share a curiosity about historical instruments as a tangible link between past and present practices in the sciences. We less often integrate instruments into our research and pedagogy, considering artefact study as the domain of museum specialists. We argue here that scholars and…
Science Instruments and Sensors Capability Roadmap: NRC Dialogue
NASA Technical Reports Server (NTRS)
Barney, Rich; Zuber, Maria
2005-01-01
The Science Instruments and Sensors roadmaps include capabilities associated with the collection, detection, conversion, and processing of scientific data required to answer compelling science questions driven by the Vision for Space Exploration and The New Age of Exploration (NASA's Direction for 2005 & Beyond). Viewgraphs on these instruments and sensors are presented.
NASA Technical Reports Server (NTRS)
1991-01-01
This photograph shows the Compton Gamma-Ray Observatory being released from the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-35 mission in April 1991. The GRO reentered the Earth's atmosphere and ended its successful mission in June 2000. For nearly 9 years, GRO's Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center, kept an unblinking watch on the universe to alert scientist to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of star, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in BATSE's science program.
1991-04-01
This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.
1991-04-01
This photograph shows the Compton Gamma-Ray Observatory being released from the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-35 mission in April 1991. The GRO reentered the Earth's atmosphere and ended its successful mission in June 2000. For nearly 9 years, GRO's Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center, kept an unblinking watch on the universe to alert scientist to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of star, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in BATSE's science program.
NASA Astrophysics Data System (ADS)
Barr, D.; Gilpatrick, J. D.; Martinez, D.; Shurter, R. B.
2004-11-01
The Los Alamos Neutron Science Center (LANSCE) facility at Los Alamos National Laboratory has constructed both an Isotope Production Facility (IPF) and a Switchyard Kicker (XDK) as additions to the H+ and H- accelerator. These additions contain eleven Beam Position Monitors (BPMs) that measure the beam's position throughout the transport. The analog electronics within each processing module determines the beam position using the log-ratio technique. For system reliability, calibrations compensate for various temperature drifts and other imperfections in the processing electronics components. Additionally, verifications are periodically implemented by a PC running a National Instruments LabVIEW virtual instrument (VI) to verify continued system and cable integrity. The VI communicates with the processor cards via a PCI/MXI-3 VXI-crate communication module. Previously, accelerator operators performed BPM system calibrations typically once per day while beam was explicitly turned off. One of this new measurement system's unique achievements is its automated calibration and verification capability. Taking advantage of the pulsed nature of the LANSCE-facility beams, the integrated electronics hardware and VI perform calibration and verification operations between beam pulses without interrupting production beam delivery. The design, construction, and performance results of the automated calibration and verification portion of this position measurement system will be the topic of this paper.
NASA Technical Reports Server (NTRS)
Bleacher, L. V.; Lakew, B.; Bracken, J.; Brown, T.; Rivera, R.
2017-01-01
The NASA Goddard Planetary Science Winter School (PSWS) is a Goddard Space Flight Center-sponsored training program, managed by Goddard's Solar System Exploration Division (SSED), for Goddard-based postdoctoral fellows and early career planetary scientists. Currently in its third year, the PSWS is an experiential training program for scientists interested in participating on future planetary science instrument teams. Inspired by the NASA Planetary Science Summer School, Goddard's PSWS is unique in that participants learn the flight instrument lifecycle by designing a planetary flight instrument under actual consideration by Goddard for proposal and development. They work alongside the instrument Principal Investigator (PI) and engineers in Goddard's Instrument Design Laboratory (IDL; idc.nasa.gov), to develop a science traceability matrix and design the instrument, culminating in a conceptual design and presentation to the PI, the IDL team and Goddard management. By shadowing and working alongside IDL discipline engineers, participants experience firsthand the science and cost constraints, trade-offs, and teamwork that are required for optimal instrument design. Each PSWS is collaboratively designed with representatives from SSED, IDL, and the instrument PI, to ensure value added for all stakeholders. The pilot PSWS was held in early 2015, with a second implementation in early 2016. Feedback from past participants was used to design the 2017 PSWS, which is underway as of the writing of this abstract.
NASA Astrophysics Data System (ADS)
Canora, C. P.; Moral, A. G.; Rull, F.; Maurice, S.; Hutchinson, I.; Ramos, G.; López-Reyes, G.; Belenguer, T.; Canchal, R.; Prieto, J. A. R.; Rodriguez, P.; Santamaria, P.; Berrocal, A.; Colombo, M.; Gallago, P.; Seoane, L.; Quintana, C.; Ibarmia, S.; Zafra, J.; Saiz, J.; Santiago, A.; Marin, A.; Gordillo, C.; Escribano, D.; Sanz-Palominoa, M.
2017-09-01
The Raman Laser Spectrometer (RLS) is one of the Pasteur Payload instruments, within the ESA's Aurora Exploration Programme, ExoMars mission. Raman spectroscopy is based on the analysis of spectral fingerprints due to the inelastic scattering of light when interacting with matter. RLS is composed by Units: SPU (Spectrometer Unit), iOH (Internal Optical Head), and ICEU (Instrument Control and Excitation Unit) and the harnesses (EH and OH). The iOH focuses the excitation laser on the samples and collects the Raman emission from the sample via SPU (CCD) and the video data (analog) is received, digitalizing it and transmiting it to the processor module (ICEU). The main sources of noise arise from the sample, the background, and the instrument (Laser, CCD, focuss, acquisition parameters, operation control). In this last case the sources are mainly perturbations from the optics, dark signal and readout noise. Also flicker noise arising from laser emission fluctuations can be considered as instrument noise. In order to evaluate the SNR of a Raman instrument in a practical manner it is useful to perform end-to-end measurements on given standards samples. These measurements have to be compared with radiometric simulations using Raman efficiency values from literature and taking into account the different instrumental contributions to the SNR. The RLS EQM instrument performances results and its functionalities have been demonstrated in accordance with the science expectations. The Instrument obtained SNR performances in the RLS EQM will be compared experimentally and via analysis, with the Instrument Radiometric Model tool. The characterization process for SNR optimization is still on going. The operational parameters and RLS algorithms (fluorescence removal and acquisition parameters estimation) will be improved in future models (EQM-2) until FM Model delivery.
The Contemporary Issues Module: Its Use in the Science Methods Class
ERIC Educational Resources Information Center
Kuhn, David J.
1973-01-01
Author conducts preservice education for science teachers by engaging students in modules stressing contemporary issues. Basic features of the modules include providing individualized instruction and stressing the interdisciplinary aspects of pure applied and social sciences. (PS)
A Module-Based Environmental Science Course for Teaching Ecology to Non-Majors
ERIC Educational Resources Information Center
Smith, Geoffrey R.
2010-01-01
Using module-based courses has been suggested to improve undergraduate science courses. A course based around a series of modules focused on major environmental issues might be an effective way to teach non-science majors about ecology and ecology's role in helping to solve environmental problems. I have used such a module-based environmental…
ERIC Educational Resources Information Center
Klop, Tanja; Severiens, Sabine E.; Knippels, Marie-Christine P. J.; van Mil, Marc H. W.; Ten Dam, Geert T. M.
2010-01-01
This article evaluated the impact of a four-lesson science module on the attitudes of secondary school students. This science module (on cancer and modern biotechnology) utilises several design principles, related to a social constructivist perspective on learning. The expectation was that the module would help students become more articulate in…
Engineering sciences area and module performance and failure analysis area
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.; Runkle, L. D.
1982-01-01
Photovoltaic-array/power-conditioner interface studies are updated. An experiment conducted to evaluate different operating-point strategies, such as constant voltage and pilot cells, and to determine array energy losses when the array is operated off the maximum power points is described. Initial results over a test period of three and a half weeks showed a 2% energy loss when the array is operated at a fixed voltage. Degraded-array studies conducted at NE RES that used a range of simulated common types of degraded I-V curves are reviewed. The instrumentation installed at the JPL field-test site to obtain the irradiance data was described. Experiments using an optical filter to adjust the spectral irradiance of the large-area pulsed solar simulator (LAPSS) to AM1.5 are described. Residential-array research activity is reviewed. Voltage isolation test results are described. Experiments performed on one type of module to determine the relationship between leakage current and temperature are reviewed. An encapsulated-cell testing approach is explained. The test program, data reduction methods, and initial results of long-duration module testing are described.
NASA Astrophysics Data System (ADS)
Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Liu, Yaqi; Xu, Jun; Yu, Dapeng; Wan, Weishi; Zhu, Yimei; Xiang, Dao; Zhang, Jie
2018-03-01
An accelerator-based MeV ultrafast electron microscope (MUEM) has been proposed as a promising tool to the study structural dynamics at the nanometer spatial scale and the picosecond temporal scale. Here, we report experimental tests of a prototype MUEM where high quality images with nanoscale fine structures were recorded with a pulsed ˜3 MeV picosecond electron beam. The temporal and spatial resolutions of the MUEM operating in the single-shot mode are about 4 ps (FWHM) and 100 nm (FWHM), corresponding to a temporal-spatial resolution of 4 × 10-19 s m, about 2 orders of magnitude higher than that achieved with state-of-the-art single-shot keV UEM. Using this instrument, we offer the demonstration of visualizing the nanoscale periodic spatial modulation of an electron beam, which may be converted into longitudinal density modulation through emittance exchange to enable production of high-power coherent radiation at short wavelengths. Our results mark a great step towards single-shot nanometer-resolution MUEMs and compact intense x-ray sources that may have widespread applications in many areas of science.
View of Hadley-Apennine area, looking north, photographed by Apollo 15
1971-08-25
S71-44667 (31 July-2 Aug. 1971) --- An oblique view of the Hadley-Apennine area, looking north, as photographed by the Fairchild metric camera in the Scientific Instrumentation Module (SIM) bay of the Apollo 15 Command and Service Modules (CSM) in lunar orbit. Hadley Rille meanders through the lower center of the picture. The Apennine Mountains are at lower right. The Apollo 15 Lunar Module (LM) touchdown point is on the east side of the "chicken beak" of Hadley Rille. The Caucasus Mountains are at upper right. The dark mare area at the extreme upper right is a portion of the Sea of Serenity. The Marsh of Decay is at lower left. The large crater near the horizon is Aristillus, which is about 55 kilometers (34.18 statute miles) in diameter. The crater just to the south of Aristillus is Autolycus, which is about 40 kilometers (25 statute miles) in diameter. The crater Cassini is barely visible on the horizon at upper right. The three-inch mapping camera was one of eight lunar orbital science experiments mounted in the SIM bay.
Development of Mirror Modules for the ART-XC Instrument aboard the Spectrum-Roentgen-Gamma Mission
NASA Technical Reports Server (NTRS)
Gubarev, Mikhail V.; Ramsey, Brian; O'Dell, Stephen L.; Elsner, Ronald F.; Kilaru, Kiranmayee; Atkins, Carolyn; Pavlinskiy, Mikhail N.; Tkachenko, Alexey V.; Lapshov, Igor Y.
2013-01-01
The Marshall Space Flight Center (MSFC) is developing x-ray mirror modules for the Astronomical Roengen Telescope- X-ray Concentrator (ART-XC) instrument on board the Spectrum-Roentgen-Gamma Mission. ART-XC will consist of seven co-aligned x-ray mirror modules with seven corresponding CdTe focal plane detectors. Each module provides an effective area of 65 sq cm at 8 keV, response out to 30 keV, and an angular resolution of 45 arcsec or better HPD. We will present a status of the ART x-ray module development at MSFC.
NASA Technical Reports Server (NTRS)
Martini, M.
1981-01-01
Advances in instrumentation for use in nuclear-science studies are described. Consideration is given to medical instrumentation, computerized fluoroscopy, environmental instrumentation, data acquisition techniques, semiconductor detectors, microchannel plates and photomultiplier tubes, reactor instrumentation, neutron detectors and proportional counters, and space instrumentation.
Real-time exhaust gas modular flowmeter and emissions reporting system for mobile apparatus
NASA Technical Reports Server (NTRS)
Breton, Leo Alphonse Gerard (Inventor)
2002-01-01
A real-time emissions reporting system includes an instrument module adapted to be detachably connected to the exhaust pipe of a combustion engine to provide for flow of exhaust gas therethrough. The instrument module includes a differential pressure probe which allows for determination of flow rate of the exhaust gas and a gas sampling tube for continuously feeding a sample of the exhaust gas to a gas analyzer or a mounting location for a non-sampling gas analyzer. In addition to the module, the emissions reporting system also includes an elastomeric boot for detachably connecting the module to the exhaust pipe of the combustion engine, a gas analyzer for receiving and analyzing gases sampled within the module and a computer for calculating pollutant mass flow rates based on concentrations detected by the gas analyzer and the detected flowrate of the exhaust gas. The system may also include a particulate matter detector with a second gas sampling tube feeding same mounted within the instrument module.
Cultivation mode research of practical application talents for optical engineering major
NASA Astrophysics Data System (ADS)
Liu, Zhiying
2017-08-01
The requirements on science and technology graduates are more and higher with modern science progress and society market economy development. Because optical engineering major is with very long practicality, practice should be paid more attention from analysis of optical engineering major and students' foundation. To play role of practice to a large amount, the practice need be systemic and correlation. It should be combination of foundation and profundity. Modern foundation professional knowledge is studied with traditional optical concept and technology at the same time. Systemic regularity and correlation should be embodied in the contents. Start from basic geometrical optics concept, the optical parameter of optical instrument is analyzed, the optical module is built and ray tracing is completed during geometrical optics practice. With foundation of primary aberration calculation, the optical system is further designed and evaluated during optical design practice course. With the optical model and given instrument functions and requirements, the optical-mechanism is matched. The accuracy is calculated, analyzed and distributed in every motion segment. And the mechanism should guarantee the alignment and adjustment. The optical mechanism is designed during the instrument and element design practice. When the optical and mechanism drawings are completed, the system is ready to be fabricated. Students can complete grinding, polishing and coating process by themselves through optical fabricating practice. With the optical and mechanical elements, the system can be assembled and aligned during the thesis practice. With a set of correlated and logical practices, the students can acquire the whole process knowledge about optical instrument. All details are contained in every practice process. These practical experiences provide students working ability. They do not need much adaption anymore when they go to work after graduation. It is favorable to both student talents and employer.
NASA Astrophysics Data System (ADS)
Ritter, Jennifer M.; Boone, William J.; Rubba, Peter A.
2001-06-01
This paper presents an overview of the procedures used to develop and validate an instrument to measure the self-efficacy beliefs of prospective elementary teachers about equitable science teaching and learning. The instrument, titled the SEBEST, was based on the work of Ashton and Webb (1986a, 1986b) and Bandura (1977, 1986). It was modeled after the Science Teaching Efficacy Belief Instrument (STEBI) (Riggs, 1988) and the Science Teaching Efficacy Belief Instrument for Prospective Teachers (STEBI-B) (Enochs & Riggs, 1990). Based on the standardized development procedures used and associated evidence, the SEBEST appears to be a content and construct valid instrument, with high internal reliability qualities. "Most probable response" plots are introduced and used to bring meaning to SEBEST raw scores.
NASA Technical Reports Server (NTRS)
Acton, Charles H., Jr.
1990-01-01
The Navigation Ancillary Information Facility (NAIF), acting under the direction of NASA's Office of Space Science and Applications, and with substantial participation of the planetary science community, is designing and implementing an ancillary data system - called SPICE - to assist scientists in planning and interpreting scientific observations taken from spaceborne instruments. The principal objective of the implemented SPICE system is that it will hold the essential geometric and related ancillary information needed to recover the full value of science instrument data, and that it will facilitate correlations of individual instrument datasets with data obtained from other instruments on the same or other spacecraft.
Reading Instruments: Objects, Texts and Museums
NASA Astrophysics Data System (ADS)
Anderson, Katharine; Frappier, Mélanie; Neswald, Elizabeth; Trim, Henry
2013-05-01
Science educators, historians of science and their students often share a curiosity about historical instruments as a tangible link between past and present practices in the sciences. We less often integrate instruments into our research and pedagogy, considering artefact study as the domain of museum specialists. We argue here that scholars and teachers new to material culture can readily use artefacts to reveal rich and complex networks of narratives. We illustrate this point by describing our own lay encounter with an artefact turned over for our analysis during a week-long workshop at the Canada Science and Technology Museum. The text explains how elements as disparate as the military appearance of the instrument, the crest stamped on its body, the manipulation of its telescopes, or a luggage tag revealed the object's scientific and political significance in different national contexts. In this way, the presence of the instrument in the classroom vividly conveyed the nature of geophysics as a field practice and an international science, and illuminated relationships between pure and applied science for early twentieth century geologists. We conclude that artefact study can be an unexpectedly powerful and accessible tool in the study of science, making visible the connections between past and present, laboratory and field, texts and instruments.
NASA Planetary Science Division's Instrument Development Programs, PICASSO and MatISSE
NASA Technical Reports Server (NTRS)
Gaier, James R.
2016-01-01
The Planetary Science Division (PSD) has combined several legacy instrument development programs into just two. The Planetary Instrument Concepts Advancing Solar System Observations (PICASSO) program funds the development of low TRL instruments and components. The Maturation of Instruments for Solar System Observations (MatISSE) program funds the development of instruments in the mid-TRL range. The strategy of PSD instrument development is to develop instruments from PICASSO to MatISSE to proposing for mission development.
ERIC Educational Resources Information Center
Boone, William J.; Townsend, J. Scott; Staver, John
2011-01-01
Over many decades, science education researchers have developed, validated, and used a wide range of attitudinal instruments. Data from such instruments have been analyzed, results have been published, and public policies have been influenced. Unfortunately, most science education instruments are not developed using a guiding theoretical…
ERIC Educational Resources Information Center
Noyce, Ruth, Ed.
Twenty-four biographical sketches of women in scientific professions are included in this COMETS Profiles package. Each biography relates to a science topic dealt with in one of the instructional modules of COMETS Science (Career Oriented Modules to Explore Topics in Science). The purpose of these materials is to demonstrate to early adolescents…
Design study of the accessible focal plane telescope for shuttle
NASA Technical Reports Server (NTRS)
1976-01-01
The design and cost analysis of an accessible focal plane telescope for Spacelab is presented in blueprints, tables, and graphs. Topics covered include the telescope tube, the telescope mounting, the airlock plus Spacelab module aft plate, the instrument adapter, and the instrument package. The system allows access to the image plane with instrumentation that can be operated by a scientist in a shirt sleeve environment inside a Spacelab module.
NASA SMD Airborne Science Capabilities for Development and Testing of New Instruments
NASA Technical Reports Server (NTRS)
Fladeland, Matthew
2015-01-01
The SMD NASA Airborne Science Program operates and maintains a fleet of highly modified aircraft to support instrument development, satellite instrument calibration, data product validation and earth science process studies. This poster will provide an overview of aircraft available to NASA researchers including performance specifications and modifications for instrument support, processes for requesting aircraft time and developing cost estimates for proposals, and policies and procedures required to ensure safety of flight.
Development of Mirror Modules for the ART-XC Instrument
NASA Technical Reports Server (NTRS)
Gubarev, M.; Ramsey, B.; O'Dell, S. L.; Elsner, R.; Kilaru, K.; McCracken, J.; Pavlinsky, M.; Lapshov, I.
2012-01-01
The Marshall Space Flight Center (MSFC) is developing x-ray mirror modules for the ART -XC instrument on board the Spectrum-Roentgen-Gamma Mission under a Reimbursable Agreement between NASA and the Russian Space Research Institute (IKI.) ART-XC will consist of seven co-aligned x-ray mirror modules with seven corresponding CdTe focal plane detectors. Currently, four of the modules are being fabricated by the Marshall Space Flight Center (MSFC.) Each MSFC module provides an effective area of 65 cm2 at 8 keV, response out to 30 keV, and an angular resolution of 45 arcsec or better HPD. We will present a status of the ART x-ray module development at MSFC.
1999-03-26
In the Vertical Processing Facility, TRW technicians get ready to attach and deploy a solar panel array on the Chandra X-ray Observatory, which is sitting on a workstand. The panel is to the right. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
1999-04-15
The Space Shuttle orbiter Columbia sits outside the Orbiter Processing Facility bay 1 after transfer from the Vehicle Assembly Building. Columbia will undergo processing for mission STS-93, targeted for launch in July 1999. The STS-93 mission will deploy the Chandra X-ray Observatory (formerly AXAF) which comprises three major elements: the spacecraft, the telescope, and the science instrument module (SIM). Chandra will allow scientists from around the world to obtain unprecedented X-ray images of a variety of high-energy objects to help understand the structure and evolution of the universe. The STs-93 mission commander is Eileen M. Collins, the first woman to serve in that capacity
1999-03-26
In the Vertical Processing Facility, a TRW technician checks the attachment of the solar panel array (out of sight to the right) to the Chandra X-ray Observatory, at left. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
NASA Astrophysics Data System (ADS)
Rademacher, L. K.
2017-12-01
The Interdisciplinary Teaching about Earth for a Sustainable Future (InTeGrate) community has developed extensive courses and modules designed for broad adoption into geoscience classrooms in diverse environments. I participated in a three-semester research project designed to test the efficacy of incorporating "high doses" (minimum 3 modules or 18 class periods) of InTeGrate materials into a course, in my case, an introductory environmental science class. InTeGrate materials were developed by groups of instructors from a range of institutions across the US. These materials include an emphasis on systems thinking, interdisciplinary approaches, and sustainability, and those themes are woven throughout the modules. The three semesters included a control in which no InTeGrate materials were used, a pilot in which InTeGrate materials were tested, and a treatment semesters in which tested materials were modified as needed and fully implemented into the course. Data were collected each semester on student attitudes using the InTeGrate Attitudinal Instrument (pre and post), a subset of Geoscience Literacy Exam questions (pre and post), and a series of assessments and essay exam questions (post only). Although results suggest that learning gains were mixed, changes in attitudes pre- and post-instruction were substantial. Changes in attitudes regarding the importance of sustainable employers, the frequency of self-reported individual sustainable actions, and motivation level for creating a sustainable society were observed in the control and treatment semesters, with the treatment semester showing the greatest gains. Importantly, one of the biggest differences between the control and treatment semesters is the reported impact that the course had on influencing students' sustainable behaviors. The treatment semester course impacted students' sustainable behaviors far more than the control semester.
Rolling Band Artifact Flagging in the Kepler Data Pipeline
NASA Astrophysics Data System (ADS)
Clarke, Bruce; Kolodziejczak, Jeffery J; Caldwell, Douglas A.
2014-06-01
Instrument-induced artifacts in the raw Kepler pixel data include time-varying crosstalk from the fine guidance sensor (FGS) clock signals, manifestations of drifting moiré pattern as locally correlated nonstationary noise and rolling bands in the images. These systematics find their way into the calibrated pixel time series and ultimately into the target flux time series. The Kepler pipeline module Dynablack models the FGS crosstalk artifacts using a combination of raw science pixel data, full frame images, reverse-clocked pixel data and ancillary temperature data. The calibration module (CAL) uses the fitted Dynablack models to remove FGS crosstalk artifacts in the calibrated pixels by adjusting the black level correction per cadence. Dynablack also detects and flags spatial regions and time intervals of strong time-varying black-level. These rolling band artifact (RBA) flags are produced on a per row per cadence basis by searching for transit signatures in the Dynablack fit residuals. The Photometric Analysis module (PA) generates per target per cadence data quality flags based on the Dynablack RBA flags. Proposed future work includes using the target data quality flags as a basis for de-weighting in the Presearch Data Conditioning (PDC), Transiting Planet Search (TPS) and Data Validation (DV) pipeline modules. We discuss the effectiveness of RBA flagging for downstream users and illustrate with some affected light curves. We also discuss the implementation of Dynablack in the Kepler data pipeline and present results regarding the improvement in calibrated pixels and the expected improvement in cotrending performance as a result of including FGS corrections in the calibration. Funding for the Kepler Mission has been provided by the NASA Science Mission Directorate.
Preparing Teachers to Support the Development of Climate Literate Students
NASA Astrophysics Data System (ADS)
Haddad, N.; Ledley, T. S.; Ellins, K. K.; Bardar, E. W.; Youngman, E.; Dunlap, C.; Lockwood, J.; Mote, A. S.; McNeal, K.; Libarkin, J. C.; Lynds, S. E.; Gold, A. U.
2014-12-01
The EarthLabs climate project includes curriculum development, teacher professional development, teacher leadership development, and research on student learning, all directed at increasing high school teachers' and students' understanding of the factors that shape our planet's climate. The project has developed four new modules which focus on climate literacy and which are part of the larger Web based EarthLabs collection of Earth science modules. Climate related themes highlighted in the new modules include the Earth system with its positive and negative feedback loops; the range of temporal and spatial scales at which climate, weather, and other Earth system processes occur; and the recurring question, "How do we know what we know about Earth's past and present climate?" which addresses proxy data and scientific instrumentation. EarthLabs climate modules use two central strategies to help students navigate the multiple challenges inherent in understanding climate science. The first is to actively engage students with the content by using a variety of learning modes, and by allowing students to pace themselves through interactive visualizations that address particularly challenging content. The second strategy, which is the focus of this presentation, is to support teachers in a subject area where few have substantive content knowledge or technical skills. Teachers who grasp the processes and interactions that give Earth its climate and the technical skills to engage with relevant data and visualizations are more likely to be successful in supporting students' understanding of climate's complexities. This presentation will briefly introduce the EarthLabs project and will describe the steps the project takes to prepare climate literate teachers, including Web based resources, teacher workshops, and the development of a cadre of teacher leaders who are prepared to continue leading the workshops after project funding ends.
2017-12-08
Engineer Erin Wilson adds aluminum tape to electrical cables to protect them from the cold during environmental testing of special optical equipment. These tests will verify the alignment of the actual flight instruments that will fly aboard NASA’s James Webb Space Telescope. "Because the flight science instruments detect infrared light, they must be extremely cold to work, and so the environment we test them in must be extremely cold too," Wilson says. Wilson is working in the Space Environment Simulator thermal-vacuum chamber at NASA's Goddard Space Flight Center in Greenbelt, Md. The subject of the testing is the Optical Telescope Element (OTE) Simulator, or OSIM. The hardware seen in the background is the Beam Image Analyzer, which will be used to measure OSIM. It sits above the OSIM, which is under the platform that Wilson is working on. The OSIM is about two stories tall and almost as wide as the whole test chamber. The job of the OSIM is to generate a beam of light just like the one that the real telescope optics will feed into the actual flight science instruments. Because the real flight science instruments will be used to test the real flight telescope, their alignment and performance have to be verified first, using OSIM, and before that can happen, the OSIM has to tested and verified. In space, the telescope optics act as Webb’s eye, and on the ground, the OSIM substitutes for the telescope optics, says Robert Rashford, manager for the OSIM as well as the Integrated Science Instrument Module (ISIM) Electronics Compartment. This hardware is being tested in an environment that mimics the hard vacuum and cold temperatures that Webb will experience in space. After Erin and others were done setting things up in the test chamber, Goddard engineers sealed it up, evacuated all the air and lowered the temperature of the equipment being tested to 42 Kelvin (-384-point-1 Fahrenheit or -231-point-1 Celsius). "It has taken a little over a month to get temperatures cold enough to duplicate the temperatures that Webb will see in operation in space," Rashford says. In the next couple weeks Rashford and the team of Goddard engineers will measure the OSIM with the Beam Image Analyzer. This extremely cold or “cryogenic” optical testing and verification process will likely take 90 days to complete. Laura Betz NASA's Goddard Space Flight Center, Greenbelt, Md. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
The optical design of a far infrared imaging FTS for SPICA
NASA Astrophysics Data System (ADS)
Pastor, Carmen; Zuluaga, Pablo; Jellema, Willem; González Fernández, Luis Miguel; Belenguer, Tomas; Torres Redondo, Josefina; Kooijman, Peter Paul; Najarro, Francisco; Eggens, Martin; Roelfsema, Peter; Nakagawa, Takao
2014-08-01
This paper describes the optical design of the far infrared imaging spectrometer for the JAXA's SPICA mission. The SAFARI instrument, is a cryogenic imaging Fourier transform spectrometer (iFTS), designed to perform backgroundlimited spectroscopic and photometric imaging in the band 34-210 μm. The all-reflective optical system is highly modular and consists of three main modules; input optics module, interferometer module (FTS) and camera bay optics. A special study has been dedicated to the spectroscopic performance of the instrument, in which the spectral response and interference of the instrument have been modeled, as the FTS mechanism scans over the total desired OPD range.
Dr. Fishman Reviewing Data From the Burst and Transient Source Experiment (BATSE)
NASA Technical Reports Server (NTRS)
1996-01-01
In this photograph, Dr. Gerald Fishman of the Marshall Space Flight Center (MSFC), a principal investigator of the Compton Gamma-Ray Observatory's (GRO's) instrument, the Burst and Transient Source Experiment (BATSE), and Dr. Chryssa Kouveliotou of Universities Space Research Associates review data from the BATSE. For nearly 9 years, GRO's Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center, kept a blinking watch on the universe to alert scientist to the invisible, mysterious gamma-ray bursts. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. Because gamma-rays are so powerful, they pass through conventional telescope mirrors. Instead of a mirror, the heart of each BATSE module was a large, flat, transparent crystal that generated a tiny flash of light when struck by a gamma-ray. With an impressive list of discoveries and diverse accomplishments, BATSE could claim to have rewritten astronomy textbooks. Launched aboard the Space Shuttle Orbiter Atlantis during the STS-35 mission in April 1991, the GRO reentered the Earth's atmosphere and ended its successful 9-year mission in June 2000.
STS-107 Crew Interviews: Michael Anderson, Mission Specialist
NASA Technical Reports Server (NTRS)
2002-01-01
STS-107 Mission Specialist 3 and Payload Commander Michael Anderson is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. He outlines his role in the mission in general, and specifically in conducting onboard science experiments. He discusses the following instruments and sets of experiments in detail: CM2 (Combustion Module 2), FREESTAR (Fast Reaction Enabling Science Technology and Research, MEIDEX (Mediterranean Israeli Dust Experiment) and MGM (Mechanics of Granular Materials). Anderson also mentions on-board activities and responsibilities during launch and reentry, mission training, and microgravity research. In addition, he touches on the dual work-shift nature of the mission, the use of crew members as research subjects including pre and postflight monitoring activities, the emphasis on crew safety during training and the value of international cooperation.
ERIC Educational Resources Information Center
Wang, Tzu-Ling; Berlin, Donna
2010-01-01
The main purpose of this study is to develop a valid and reliable instrument for measuring the "attitudes toward science class" of fourth- and fifth-grade students in an Asian school culture. Specifically, the development focused on three science attitude constructs--science enjoyment, science confidence, and importance of science as…
Development of Mirror Modules for the ART-XC Instrument aboard the Spectrum-Roentgen-Gamma Mission
NASA Technical Reports Server (NTRS)
Gubarev, M.; Ramsey, B.; O'Dell, S. L.; Elsner, R.; Kilaru, K.; McCracken, J.; Atkins, C.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.
2013-01-01
MSFC is developing eight x-ray mirror modules for the ART-XC instrument on board the SRG Mission. The Engineering Unit tests are successful. MSFC is on schedule to deliver flight units in the November of 2013 and January 2014.
The Cloud-Aerosol Transport System (CATS): A New Earth Science Capability for ISS (Invited)
NASA Astrophysics Data System (ADS)
McGill, M. J.; Yorks, J. E.; Scott, S.; Kupchock, A.; Selmer, P.
2013-12-01
The Cloud-Aerosol Transport System (CATS) is a lidar remote sensing instrument developed for deployment to the International Space Station (ISS). The CATS lidar will provide range-resolved profile measurements of atmospheric aerosol and cloud distributions and properties. The CATS instrument uses a high repetition rate laser operating at three wavelengths (1064, 532, and 355 nm) to derive properties of cloud/aerosol layers including: layer height, layer thickness, backscatter, optical depth, extinction, and depolarization-based discrimination of particle type. The CATS mission was designed to capitalize on the Space Station's unique orbit and facilities to continue existing Earth Science data records, to provide observational data for use in forecast models, and to demonstrate new technologies for use in future missions. The CATS payload will be installed on the Japanese Experiment Module - Exposed Facility (JEM-EF). The payload is designed to operate on-orbit for at least six months, and up to three years. The payload is completed and currently scheduled for a mid-2014 launch. The ISS and, in particular, the JEM-EF, is an exciting new platform for spaceborne Earth observations. The ability to leverage existing aircraft instrument designs coupled with the lower cost possible for ISS external attached payloads permits rapid and cost effective development of spaceborne sensors. The CATS payload is based on existing instrumentation built and operated on the high-altitude NASA ER-2 aircraft. The payload is housed in a 1.5 m x 1 m x 0.8 m volume that attaches to the JEM-EF. The allowed volume limits the maximum size for the collecting telescope to 60 cm diameter. Figure 1 shows a schematic layout of the CATS payload, with the primary instrument components identified. Figure 2 is a photo of the completed payload. CATS payload cut-away view. Completed CATS payload assembly.
NASA Technical Reports Server (NTRS)
Horan, Stephen; Wang, Ru-Hai
1999-01-01
There exists a need for designers and developers to have a method to conveniently test a variety of communications parameters for an overall system design. This is no different when testing network protocols as when testing modulation formats. In this report, we discuss a means of providing a networking test device specifically designed to be used for space communications. This test device is a PC-based Virtual Instrument (VI) programmed using the LabVIEW(TM) version 5 software suite developed by National Instruments(TM)TM. This instrument was designed to be portable and usable by others without special, additional equipment. The programming was designed to replicate a VME-based hardware module developed earlier at New Mexico State University (NMSU) and to provide expanded capabilities exceeding the baseline configuration existing in that module. This report describes the design goals for the VI module in the next section and follows that with a description of the design of the VI instrument. This is followed with a description of the validation tests run on the VI. An application of the error-generating VI to networking protocols is then given.
Tornado! An Event-Based Science Module. Student Edition. Meteorology Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…
Volcano!: An Event-Based Science Module. Student Edition. Geology Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…
Oil Spill! An Event-Based Science Module. Student Edition. Oceanography Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…
A Long Range Science Rover For Future Mars Missions
NASA Technical Reports Server (NTRS)
Hayati, Samad
1997-01-01
This paper describes the design and implementation currently underway at the Jet Propulsion Laboratory of a long range science rover for future missions to Mars. The small rover prototype, called Rocky 7, is capable of long traverse. autonomous navigation. and science instrument control, carries three science instruments, and can be commanded from any computer platform and any location using the World Wide Web. In this paper we describe the mobility system, the sampling system, the sensor suite, navigation and control, onboard science instruments. and the ground command and control system.
NASA Technical Reports Server (NTRS)
DiPirro, M.; Homan, J.; Havey, K.; Ousley, W.
2017-01-01
The James Webb Space Telescope (JWST) is the largest cryogenic instrument telescope to be developed for space flight. The telescope will be passively cooled to 50 K and the instrument package will be at 40 K with the mid-infrared instrument at 6 K. The final cryogenic test of the Optical Telescope Element (OTE) and Integrated Science Instrument Module (ISIM) as an assembly (OTE + ISIM OTIS) will be performed in the largest 15 K chamber in the world, Chamber A at Johnson Space Center. The planned duration of this test will be 100 days in the middle of 2017. Needless to say, this ultimate test of OTIS, the cryogenic portion of JWST will be crucial in verifying the end-to-end performance of JWST. A repeat of this test would not only be expensive, but would delay the launch schedule (currently October 2018). Therefore a series of checkouts and verifications of the chamber and ground support equipment were planned and carried out between 2012 and 2016. This paper will provide a top-level summary of those tests, trades in coming up with the test plan, as well as some details of individual issues that were encountered and resolved in the course of testing.
A Motion Tracking and Sensor Fusion Module for Medical Simulation.
Shen, Yunhe; Wu, Fan; Tseng, Kuo-Shih; Ye, Ding; Raymond, John; Konety, Badrinath; Sweet, Robert
2016-01-01
Here we introduce a motion tracking or navigation module for medical simulation systems. Our main contribution is a sensor fusion method for proximity or distance sensors integrated with inertial measurement unit (IMU). Since IMU rotation tracking has been widely studied, we focus on the position or trajectory tracking of the instrument moving freely within a given boundary. In our experiments, we have found that this module reliably tracks instrument motion.
NASA Astrophysics Data System (ADS)
Dira Smolleck, Lori; Zembal-Saul, Carla; Yoder, Edgar P.
2006-06-01
The purpose of this study was to develop, validate, and establish the reliability of an instrument that measures preservice teachers' self-efficacy in regard to the teaching of science as inquiry. The instrument, Teaching Science as Inquiry (TSI), is based upon the work of Bandura (1977, 1981, 1982, 1986, 1989, 1995, 1997), Riggs (1988), and Enochs and Riggs (1990). Self-efficacy in regard to the teaching of science as inquiry was measured through the use of a 69-item Likert-type scale instrument designed by the author of the study. Based on the standardized development processes used and the associated evidence, the TSI appears to be a content and construct valid instrument with high internal reliability for use with preservice elementary teachers to assess self-efficacy beliefs in regard to the teaching of science as inquiry.
NASA Astrophysics Data System (ADS)
Smolleck, Lori Dira; Zembal-Saul, Carla; Yoder, Edgar P.
2006-06-01
The purpose of this study was to develop, validate, and establish the reliability of an instrument that measures preservice teachers' self-efficacy in regard to the teaching of science as inquiry. The instrument, Teaching Science as Inquiry (TSI), is based upon the work of Bandura (1977, 1981, 1982, 1986, 1989, 1995, 1997), Riggs (1988), and Enochs and Riggs (1990). Self-efficacy in regard to the teaching of science as inquiry was measured through the use of a 69-item Likert-type scale instrument designed by the author of the study. Based on the standardized development processes used and the associated evidence, the TSI appears to be a content and construct valid instrument with high internal reliability for use with preservice elementary teachers to assess self-efficacy beliefs in regard to the teaching of science as inquiry.
Engineers Install Near Infrared Camera into the Heart of Webb Telescope
2014-03-31
nside the world's largest clean room at NASA's Goddard Space Flight Center in Greenbelt, Md., engineers worked tirelessly to install another essential part of the James Webb Space Telescope - the Near Infrared Camera into the heart of the telescope. To complete this installation, the engineers needed to carefully move NIRCam inside the heart or ISIM, or Integrated Science Instrument Module that will house all of the science instruments. "Installing NIRCam into the center of the structure is nerve wracking because of the tight clearances," said Marcia J. Rieke, Professor of Astronomy at the University of Arizona, and principal investigator for the NIRCam. "I'm glad nothing bumped, and all the bolts are in place." NIRCam is a unique machine because in addition to being one of the four science instruments on the Webb, it also serves as the wavefront sensor, which means it will provide vital information for shaping the telescope mirrors and aligning its optics so that they can function properly and see into the distant universe. The NIRCam instrument will operate at very cold temperatures, and will be tested to ensure that it will be able to withstand the environment of space. The NIRCam is Webb's primary imager that will cover the infrared wavelength range 0.6 to 5 microns. It will detect light from the earliest stars and galaxies in the process of formation, the population of stars in nearby galaxies, as well as young stars and exoplanets in the Milky Way. NIRCam is provided by the University of Arizona and Lockheed Martin Advanced Technology Center. Webb is an international project led by NASA with its partners the European Space Agency and the Canadian Space Agency. The James Webb Space Telescope is the successor to NASA's Hubble Space Telescope. It will be the most powerful space telescope ever built. For more information about the Webb telescope, visit: www.jwst.nasa.gov or www.nasa.gov/webb Credit: NASA/Goddard/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Masek, J.; Rao, A.; Gao, F.; Davis, P.; Jackson, G.; Huang, C.; Weinstein, B.
2008-12-01
The Land Cover Change Community-based Processing and Analysis System (LC-ComPS) combines grid technology, existing science modules, and dynamic workflows to enable users to complete advanced land data processing on data available from local and distributed archives. Changes in land cover represent a direct link between human activities and the global environment, and in turn affect Earth's climate. Thus characterizing land cover change has become a major goal for Earth observation science. Many science algorithms exist to generate new products (e.g., surface reflectance, change detection) used to study land cover change. The overall objective of the LC-ComPS is to release a set of tools and services to the land science community that can be implemented as a flexible LC-ComPS to produce surface reflectance and land-cover change information with ground resolution on the order of Landsat-class instruments. This package includes software modules for pre-processing Landsat-type satellite imagery (calibration, atmospheric correction, orthorectification, precision registration, BRDF correction) for performing land-cover change analysis and includes pre-built workflow chains to automatically generate surface reflectance and land-cover change products based on user input. In order to meet the project objectives, the team created the infrastructure (i.e., client-server system with graphical and machine interfaces) to expand the use of these existing science algorithm capabilities in a community with distributed, large data archives and processing centers. Because of the distributed nature of the user community, grid technology was chosen to unite the dispersed community resources. At that time, grid computing was not used consistently and operationally within the Earth science research community. Therefore, there was a learning curve to configure and implement the underlying public key infrastructure (PKI) interfaces, required for the user authentication, secure file transfer and remote job execution on the grid network of machines. In addition, science support was needed to vet that the grid technology did not have any adverse affects of the science module outputs. Other open source, unproven technologies, such as a workflow package to manage jobs submitted by the user, were infused into the overall system with successful results. This presentation will discuss the basic capabilities of LC-ComPS, explain how the technology was infused, and provide lessons learned for using and integrating the various technologies while developing and operating the system, and finally outline plans moving forward (maintenance and operations decisions) based on the experience to date.
ERIC Educational Resources Information Center
O'Brien, George, Ed.
This collection of instruction modules studies the interactions of science, technology, and society (STS) using five activity sets. The introduction module includes activities which show students the STS relationships in their world, develop good organizational skills, develop an understanding of who and what a scientist is, develop graphing…
Toxic Leak!: An Event-Based Science Module. Student Edition. Groundwater Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for the middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…
Fire!: An Event-Based Science Module. Student Edition. Chemistry and Fire Ecology Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…
SAFARI optical system architecture and design concept
NASA Astrophysics Data System (ADS)
Pastor, Carmen; Jellema, Willem; Zuluaga-Ramírez, Pablo; Arrazola, David; Fernández-Rodriguez, M.; Belenguer, Tomás.; González Fernández, Luis M.; Audley, Michael D.; Evers, Jaap; Eggens, Martin; Torres Redondo, Josefina; Najarro, Francisco; Roelfsema, Peter
2016-07-01
SpicA FAR infrared Instrument, SAFARI, is one of the instruments planned for the SPICA mission. The SPICA mission is the next great leap forward in space-based far-infrared astronomy and will study the evolution of galaxies, stars and planetary systems. SPICA will utilize a deeply cooled 2.5m-class telescope, provided by European industry, to realize zodiacal background limited performance, and high spatial resolution. The instrument SAFARI is a cryogenic grating-based point source spectrometer working in the wavelength domain 34 to 230 μm, providing spectral resolving power from 300 to at least 2000. The instrument shall provide low and high resolution spectroscopy in four spectral bands. Low Resolution mode is the native instrument mode, while the high Resolution mode is achieved by means of a Martin-Pupplet interferometer. The optical system is all-reflective and consists of three main modules; an input optics module, followed by the Band and Mode Distributing Optics and the grating Modules. The instrument utilizes Nyquist sampled filled linear arrays of very sensitive TES detectors. The work presented in this paper describes the optical design architecture and design concept compatible with the current instrument performance and volume design drivers.
ERIC Educational Resources Information Center
Campbell, Todd; Abd-Hamid, Nor Hashidah
2013-01-01
This study describes the development of an instrument to investigate the extent to which technology is integrated in science instruction in ways aligned to science reform outlined in standards documents. The instrument was developed by: (a) creating items consistent with the five dimensions identified in science education literature, (b)…
Instrumentation: Software-Driven Instrumentation: The New Wave.
ERIC Educational Resources Information Center
Salit, M. L.; Parsons, M. L.
1985-01-01
Software-driven instrumentation makes measurements that demand a computer as an integral part of either control, data acquisition, or data reduction. The structure of such instrumentation, hardware requirements, and software requirements are discussed. Examples of software-driven instrumentation (such as wavelength-modulated continuum source…
A Robot or a Science Instrument?
2009-10-20
Some say the science instrument on NASA Wide-field Infrared Survey Explorer mission resembles the Star Wars robot R2-D2. The instrument is enclosed in a solid-hydrogen cryostat, which cools the WISE telescope and detectors.
Lifting SAM Instrument for Installation into Mars Rover
2011-01-18
NASA Sample Analysis at Mars SAM instrument, largest of the 10 science instruments for NASA Mars Science Laboratory mission, will examine samples of Martian rocks, soil and atmosphere for information about chemicals that are important to life.
User interfaces in space science instrumentation
NASA Astrophysics Data System (ADS)
McCalden, Alec John
This thesis examines user interaction with instrumentation in the specific context of space science. It gathers together existing practice in machine interfaces with a look at potential future usage and recommends a new approach to space science projects with the intention of maximising their science return. It first takes a historical perspective on user interfaces and ways of defining and measuring the science return of a space instrument. Choices of research methodology are considered. Implementation details such as the concepts of usability, mental models, affordance and presentation of information are described, and examples of existing interfaces in space science are given. A set of parameters for use in analysing and synthesizing a user interface is derived by using a set of case studies of diverse failures and from previous work. A general space science user analysis is made by looking at typical practice, and an interview plus persona technique is used to group users with interface designs. An examination is made of designs in the field of astronomical instrumentation interfaces, showing the evolution of current concepts and including ideas capable of sustaining progress in the future. The parameters developed earlier are then tested against several established interfaces in the space science context to give a degree of confidence in their use. The concept of a simulator that is used to guide the development of an instrument over the whole lifecycle is described, and the idea is proposed that better instrumentation would result from more efficient use of the resources available. The previous ideas in this thesis are then brought together to describe a proposed new approach to a typical development programme, with an emphasis on user interaction. The conclusion shows that there is significant room for improvement in the science return from space instrumentation by attention to the user interface.
NASA Technical Reports Server (NTRS)
West, E. A.
1993-01-01
Magnetographs, which measure polarized light, allow solar astronomers to infer the magnetic field intensity on the Sun. The Marshall Space Flight Center (MSFC) Vector Magnetograph is such an imaging instrument. The instrument requires rapid modulation between polarization states to minimize seeing effects. The accuracy of those polarization measurements is dependent on stable modulators with small field-of-view errors. Although these devices are very important in ground-based telescopes, extending the field of view of electro-optical crystals such as KD*Ps (potassium di-deuterium phosphate) could encourage the development of these devices for other imaging applications. The work that was done at MSFC as part of the Center Director's Discretionary Fund (CDDF) to reduce the field-of-view errors of instruments that use KD*P modulators in their polarimeters is described.
NASA Astrophysics Data System (ADS)
Campbell, Todd; Abd-Hamid, Nor Hashidah
2013-08-01
This study describes the development of an instrument to investigate the extent to which technology is integrated in science instruction in ways aligned to science reform outlined in standards documents. The instrument was developed by: (a) creating items consistent with the five dimensions identified in science education literature, (b) establishing content validity with both national and international content experts, (c) refining the item pool based on content expert feedback, (d) piloting testing of the instrument, (e) checking statistical reliability and item analysis, and (f) subsequently refining and finalization of the instrument. The TUSI was administered in a field test across eleven classrooms by three observers, with a total of 33 TUSI ratings completed. The finalized instrument was found to have acceptable inter-rater intraclass correlation reliability estimates. After the final stage of development, the TUSI instrument consisted of 26-items separated into the original five categories, which aligned with the exploratory factor analysis clustering of the items. Additionally, concurrent validity of the TUSI was established with the Reformed Teaching Observation Protocol. Finally, a subsequent set of 17 different classrooms were observed during the spring of 2011, and for the 9 classrooms where technology integration was observed, an overall Cronbach alpha reliability coefficient of 0.913 was found. Based on the analyses completed, the TUSI appears to be a useful instrument for measuring how technology is integrated into science classrooms and is seen as one mechanism for measuring the intersection of technological, pedagogical, and content knowledge in science classrooms.
The NGST Science Instrument Procurement Plan
NASA Astrophysics Data System (ADS)
Greenhouse, M. A.; NGST Project Office Team
1998-12-01
We display the top level plan for procurement of science instruments for NGST. The procurement process and time line schedule leading to a NASA AO solicitation for flight instruments is presented and discussed. This procurement schedule includes important milestones that will be reached during 1999 and that are of potential interest to NGST instrument offerors.
Push Tester For Laminated Films
NASA Technical Reports Server (NTRS)
Sugimura, Russell S.
1991-01-01
Small instrument used to measure brittleness of polymer film adhesively bonded to hard substrate. Penlike instrument has microball tip. Small pointer in slot on side of instrument used to calibrate and indicate spring force applied by point. Microball dents only small area of specimen. Such measurements used to measure rates of embrittlement in environmental tests of candidate laminated-film covers for photovoltaic modules. Not limited to transparent films; also used on opaque laminated films on back panels of photovoltaic modules.
UNH Project SMART 2017: Space Science for High School Students
NASA Astrophysics Data System (ADS)
Smith, C. W.; Broad, L.; Goelzer, S.; Levergood, R.; Lugaz, N.; Moebius, E.
2017-12-01
Every summer for the past 26 years the University of New Hampshire (UNH) has run a month-long, residential outreach program for high school students considering careers in mathematics, science, or engineering. Space science is one of the modules. Students work directly with UNH faculty performing original work with real spacecraft data and hardware and present the results of that effort at the end of the program. This year the student research projects used data from the Messenger, STEREO, and Triana missions. In addition, the students build and fly a high-altitude balloon payload with instruments of their own construction. Students learn circuit design and construction, microcontroller programming, and core atmospheric and space science along with fundamental concepts in space physics and engineering. Our payload design has evolved significantly since the first flight of a simple rectangular box and now involves a stable descent vehicle that does not require a parachute. Our flight hardware includes an on-board flight control computer, in-flight autonomous control and data acquisition of multiple student-built instruments, and real-time camera images sent to ground. This year we developed, built and flew a successful line cutter based on GPS location information that prevents our payload from falling into the ocean while also separating the payload from the balloon remains for a cleaner descent. We will describe that new line cutter design and implementation along with the shielded Geiger counters that we flew as part of our cosmic ray air shower experiment. This is a program that can be used as a model for other schools to follow and that high schools can initiate. More information can be found at .
Smarter Instruments, Smarter Archives: Machine Learning for Tactical Science
NASA Astrophysics Data System (ADS)
Thompson, D. R.; Kiran, R.; Allwood, A.; Altinok, A.; Estlin, T.; Flannery, D.
2014-12-01
There has been a growing interest by Earth and Planetary Sciences in machine learning, visualization and cyberinfrastructure to interpret ever-increasing volumes of instrument data. Such tools are commonly used to analyze archival datasets, but they can also play a valuable real-time role during missions. Here we discuss ways that machine learning can benefit tactical science decisions during Earth and Planetary Exploration. Machine learning's potential begins at the instrument itself. Smart instruments endowed with pattern recognition can immediately recognize science features of interest. This allows robotic explorers to optimize their limited communications bandwidth, triaging science products and prioritizing the most relevant data. Smart instruments can also target their data collection on the fly, using principles of experimental design to reduce redundancy and generally improve sampling efficiency for time-limited operations. Moreover, smart instruments can respond immediately to transient or unexpected phenomena. Examples include detections of cometary plumes, terrestrial floods, or volcanism. We show recent examples of smart instruments from 2014 tests including: aircraft and spacecraft remote sensing instruments that recognize cloud contamination, field tests of a "smart camera" for robotic surface geology, and adaptive data collection by X-Ray fluorescence spectrometers. Machine learning can also assist human operators when tactical decision making is required. Terrestrial scenarios include airborne remote sensing, where the decision to re-fly a transect must be made immediately. Planetary scenarios include deep space encounters or planetary surface exploration, where the number of command cycles is limited and operators make rapid daily decisions about where next to collect measurements. Visualization and modeling can reveal trends, clusters, and outliers in new data. This can help operators recognize instrument artifacts or spot anomalies in real time. We show recent examples from science data pipelines deployed onboard aircraft as well as tactical visualizations for non-image instrument data.
NASA Astrophysics Data System (ADS)
Gibbons, Beatrice Lowney
2002-01-01
The purpose of this study was to develop an evaluation instrument to be used by elementary school administrators in the promotion of constructivist teaching of elementary science for English Learners using a qualitative and quantitative design that identified effective instructional strategies to be included on the evaluation instrument. This study was conducted in fifth grade classrooms of predominately English Learners whose teachers are CLAD-certified, tenured teachers with at least three years of teaching experience. The classroom observations took place within a multicultural school district with predominantly Hispanic and Filipino students in the Southern San Joaquin Valley of California. The evaluation instrument was used to observe these teachers teach elementary science lessons to classrooms of predominately English Learners. The frequency of the use of the ELD/SDAIE instructional strategies were noted on the evaluation instrument with a check mark, indicating the fact that an instructional technique was employed by the teacher. These observation visits revealed what type of instructional strategies were being utilized in the teaching of science to fifth grade English Learners, whether these CLAD-certified teachers were using ELD strategies, and whether the incidence of ELD/SDAIE constructivist instructional techniques increased with the repeated use of the evaluation instrument. As a result of this study, an evaluation instrument to be utilized by school administrators in the evaluation of elementary science instruction to English Learners was developed. The repeated use of this evaluation instrument coupled with preobservation and postobservation conferences may result in the increase in frequency of ELD/SDAIE methodology and constructivist strategies listed on the evaluation instrument in the elementary science classroom.
Performance analysis of LDPC codes on OOK terahertz wireless channels
NASA Astrophysics Data System (ADS)
Chun, Liu; Chang, Wang; Jun-Cheng, Cao
2016-02-01
Atmospheric absorption, scattering, and scintillation are the major causes to deteriorate the transmission quality of terahertz (THz) wireless communications. An error control coding scheme based on low density parity check (LDPC) codes with soft decision decoding algorithm is proposed to improve the bit-error-rate (BER) performance of an on-off keying (OOK) modulated THz signal through atmospheric channel. The THz wave propagation characteristics and channel model in atmosphere is set up. Numerical simulations validate the great performance of LDPC codes against the atmospheric fading and demonstrate the huge potential in future ultra-high speed beyond Gbps THz communications. Project supported by the National Key Basic Research Program of China (Grant No. 2014CB339803), the National High Technology Research and Development Program of China (Grant No. 2011AA010205), the National Natural Science Foundation of China (Grant Nos. 61131006, 61321492, and 61204135), the Major National Development Project of Scientific Instrument and Equipment (Grant No. 2011YQ150021), the National Science and Technology Major Project (Grant No. 2011ZX02707), the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciences, and the Shanghai Municipal Commission of Science and Technology (Grant No. 14530711300).
Evaluating Instrument Quality in Science Education: Rasch-based analyses of a Nature of Science test
NASA Astrophysics Data System (ADS)
Neumann, Irene; Neumann, Knut; Nehm, Ross
2011-07-01
Given the central importance of the Nature of Science (NOS) and Scientific Inquiry (SI) in national and international science standards and science learning, empirical support for the theoretical delineation of these constructs is of considerable significance. Furthermore, tests of the effects of varying magnitudes of NOS knowledge on domain-specific science understanding and belief require the application of instruments validated in accordance with AERA, APA, and NCME assessment standards. Our study explores three interrelated aspects of a recently developed NOS instrument: (1) validity and reliability; (2) instrument dimensionality; and (3) item scales, properties, and qualities within the context of Classical Test Theory and Item Response Theory (Rasch modeling). A construct analysis revealed that the instrument did not match published operationalizations of NOS concepts. Rasch analysis of the original instrument-as well as a reduced item set-indicated that a two-dimensional Rasch model fit significantly better than a one-dimensional model in both cases. Thus, our study revealed that NOS and SI are supported as two separate dimensions, corroborating theoretical distinctions in the literature. To identify items with unacceptable fit values, item quality analyses were used. A Wright Map revealed that few items sufficiently distinguished high performers in the sample and excessive numbers of items were present at the low end of the performance scale. Overall, our study outlines an approach for how Rasch modeling may be used to evaluate and improve Likert-type instruments in science education.
COMETS Science. Career Oriented Modules to Explore Topics in Science.
ERIC Educational Resources Information Center
Smith, Walter S.; And Others
COMETS Science (Career Oriented Modules to Explore Topics in Science) was developed to demonstrate to early adolescents that learning mathematics and science concepts can have payoff in a wide variety of careers and to encourage early adolescent students (grades 5-9), especially girls, to consider science-related careers. The program provides 24…
NASA Technical Reports Server (NTRS)
Kempler, Steve; Leptoukh, Greg; Lynnes, Chris
2010-01-01
The presentation purpose is to describe multi-instrument tools and services that facilitate access and usability of NASA Earth science data at Goddard Space Flight Center (GSFC). NASA's Earth observing system includes 14 satellites. Topics include EOSDIS facilities and system architecture, and overview of GSFC Earth Science Data and Information Services Center (GES DISC) mission, Mirador data search, Giovanni, multi-instrument data exploration, Google Earth[TM], data merging, and applications.
NASA Astrophysics Data System (ADS)
Mandell, Avi M.; Groff, Tyler D.; Gong, Qian; Rizzo, Maxime J.; Lupu, Roxana; Zimmerman, Neil T.; Saxena, Prabal; McElwain, Michael W.
2017-09-01
One of the key science goals of the Coronograph Instrument (CGI) on the WFIRST mission is to spectrally characterize the atmospheres of planets around other stars at extremely high contrast levels. To achieve this goal, the CGI instrument will include a integral field spectrograph (IFS) as one of the two science cameras. We present the current science requirements that pertain to the IFS design, describe how our design implementation flows from these requirements, and outline our current instrument design.
NASA Technical Reports Server (NTRS)
Mandell, Avi M.; Groff, Tyler D.; Gong, Qian; Rizzo, Maxime J.; Lupu, Roxana; Zimmerman, Neil T.; Saxena, Prabal; McElwain, Michael W.
2017-01-01
One of the key science goals of the Coronograph Instrument (CGI) on the WFIRST mission is to spectrally characterize the atmospheres of planets around other stars at extremely high contrast levels. To achieve this goal, the CGI Instrument will include a integral field spectrograph (IFS) as one of the two science cameras. We present the current science requirements that pertain to the IFS design, describe how our design implementation flows from these requirements, and outline our current instrument design.
Prototyping Instruments for Chemical Laboratory Using Inexpensive Electronic Modules.
Urban, Pawel L
2018-05-15
Open-source electronics and programming can augment chemical and biomedical research. Currently, chemists can choose from a broad range of low-cost universal electronic modules (microcontroller boards and single-board computers) and use them to assemble working prototypes of scientific tools to address specific experimental problems and to support daily research work. The learning time can be as short as a few hours, and the required budget is often as low as 50 USD. Prototyping instruments using low-cost electronic modules gives chemists enormous flexibility to design and construct customized instrumentation, which can reduce the delays caused by limited access to high-end commercial platforms. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Dira-Smolleck, Lori
The purpose of this study was to develop, validate and establish the reliability of an instrument that measures preservice teachers' self-efficacy in regard to the teaching of science as inquiry. The instrument (TSI) is based upon the work of Bandura, Riggs, and Enochs & Riggs (1990). The study used Bandura's theoretical framework in that the instrument uses the self-efficacy construct to explore the beliefs of prospective elementary science teachers with regards to the teaching of science through inquiry: specifically, the two dimensions of self-efficacy beliefs defined by Bandura: personal self-efficacy and outcome expectancy. Self-efficacy in regard to the teaching of science as inquiry was measured through the use of a 69-item Likert scale instrument designed by the author of the study. A 13-step plan was designed and followed in the process of developing the instrument. Using the results from Chronbach Alpha and Analysis of Variance, a 69-item instrument was found to achieve the greatest balance across the construct validity, reliability and item balance with the Essential Elements of Classroom Inquiry content matrix. Based on the standardized development processes used and the associated evidence, the TSI appears to be a content and construct valid instrument, with high internal reliability for use with prospective elementary teachers to assess self-efficacy beliefs in regard to the teaching of science as inquiry. Implications for research, policy and practice are also discussed.
ERIC Educational Resources Information Center
Bahçivan, Eralp; Kapucu, Serkan
2014-01-01
The purposes of this study were to (1) adapt an instrument "The Conceptions of Learning Science (COLS) questionnaire" into Turkish, and (2) to determine Turkish science teacher candidates' COLS. Adapting the instrument four steps were followed. Firstly, COLS questionnaire was translated into Turkish. Secondly, COLS questionnaire was…
ERIC Educational Resources Information Center
Romine, William; Sadler, Troy D.; Presley, Morgan; Klosterman, Michelle L.
2014-01-01
This study presents the systematic development, validation, and use of a new instrument for measuring student interest in science and technology. The Student Interest in Technology and Science (SITS) survey is composed of 5 sub-sections assessing the following dimensions: interest in learning science, using technology to learn science, science…
NASA Astrophysics Data System (ADS)
Steer, D. N.; McConnell, D. A.; Owens, K.
2001-12-01
Geoscience and education faculty at The University of Akron jointly developed a series of inquiry-based learning modules aimed at both non-major and major student populations enrolled in introductory geology courses. These courses typically serve 2500 students per year in four to six classes of 40-160 students each per section. Twelve modules were developed that contained common topics and assessments appropriate to Earth Science, Environmental Geology and Physical Geology classes. All modules were designed to meet four primary learning objectives agreed upon by Department of Geology faculty. These major objectives include: 1) Improvement of student understanding of the scientific method; 2) Incorporation of problem solving strategies involving analysis, synthesis, and interpretation; 3) Development of the ability to distinguish between inferences, data and observations; and 4) Obtaining an understanding of basic processes that operate on Earth. Additional objectives that may be addressed by selected modules include: 1) The societal relevance of science; 2) Use and interpretation of quantitative data to better understand the Earth; 3) Development of the students' ability to communicate scientific results; 4) Distinguishing differences between science, religion and pseudo-science; 5) Evaluation of scientific information found in the mass media; and 6) Building interpersonal relationships through in-class group work. Student pre- and post-instruction progress was evaluated by administering a test of logical thinking, an attitude toward science survey, and formative evaluations. Scores from the logical thinking instrument were used to form balanced four-person working groups based on the students' incoming cognitive level. Groups were required to complete a series of activities and/or exercises that targeted different cognitive domains based upon Bloom's taxonomy (knowledge, comprehension, application, analysis, synthesis and evaluation of information). Daily assessments of knowledge-level learning included evaluations of student responses to pre- and post-instruction conceptual test questions, short group exercises and content-oriented exam questions. Higher level thinking skills were assessed when students completed exercises that required the completion of Venn diagrams, concept maps and/or evaluation rubrics both during class periods and on exams. Initial results indicate that these techniques improved student attendance significantly and improved overall retention in the course by 8-14% over traditional lecture formats. Student scores on multiple choice exam questions were slightly higher (1-3%) for students taught in the active learning environment and short answer questions showed larger gains (7%) over students' scores in a more traditional class structure.
NASA Astrophysics Data System (ADS)
Besse, S.; Benkhoff, J.; Bentley, M.; Cornet, T.; Moissl, R.; Munoz, C.; Zender, J.
2018-05-01
The BepiColombo Science Ground Segment is developing, in collaboration with the instrument teams, targeted science traceability matrix of each instrument. They are defined in such a way that they can be tracked during the observation lifecycle.
Highly integrated Pluto payload system (HIPPS): a sciencecraft instrument for the Pluto mission
NASA Astrophysics Data System (ADS)
Stern, S. Alan; Slater, David C.; Gibson, William; Reitsema, Harold J.; Delamere, W. Alan; Jennings, Donald E.; Reuter, D. C.; Clarke, John T.; Porco, Carolyn C.; Shoemaker, Eugene M.; Spencer, John R.
1995-09-01
We describe the design concept for the highly integrated Pluto payload system (HIPPS): a highly integrated, low-cost, light-weight, low-power instrument payload designed to fly aboard the proposed NASA Pluto flyby spacecraft destined for the Pluto/Charon system. The HIPPS payload is designed to accomplish all of the Pluto flyby prime (IA) science objectives, except radio science, set forth by NASA's Outer Planets Science Working Group (OPSWG) and the Pluto Express Science Definition Team (SDT). HIPPS contains a complement of three instrument components within one common infrastructure; these are: (1) a visible/near UV CCD imaging camera; (2) an infrared spectrograph; and (3) an ultraviolet spectrograph. A detailed description of each instrument is presented along with how they will meet the IA science requirements.
Kolluru, Srikanth; Roesch, Darren M; Akhtar de la Fuente, Ayesha
2012-03-12
To introduce a multiple-instructor, team-based, active-learning exercise to promote the integration of basic sciences (pathophysiology, pharmacology, and medicinal chemistry) and clinical sciences in a doctor of pharmacy curriculum. A team-based learning activity that involved pre-class reading assignments, individual-and team-answered multiple-choice questions, and evaluation and discussion of a clinical case, was designed, implemented, and moderated by 3 faculty members from the pharmaceutical sciences and pharmacy practice departments. Student performance was assessed using a multiple-choice examination, an individual readiness assurance test (IRAT), a team readiness assurance test (TRAT), and a subjective, objective, assessment, and plan (SOAP) note. Student attitudes were assessed using a pre- and post-exercise survey instrument. Students' understanding of possible correct treatment strategies for depression improved. Students were appreciative of this true integration of basic sciences knowledge in a pharmacotherapy course and to have faculty members from both disciplines present to answer questions. Mean student score on the on depression module for the examination was 80.4%, indicating mastery of the content. An exercise led by multiple instructors improved student perceptions of the importance of team-based teaching. Integrated teaching and learning may be achieved when instructors from multiple disciplines work together in the classroom using proven team-based, active-learning exercises.
ERIC Educational Resources Information Center
Lin, Tzung-Jin; Tsai, Chin-Chung
2013-01-01
In the past, students' science learning self-efficacy (SLSE) was usually measured by questionnaires that consisted of only a single scale, which might be insufficient to fully understand their SLSE. In this study, a multi-dimensional instrument, the SLSE instrument, was developed and validated to assess students' SLSE based on the previous…
78 FR 11658 - National Institute of General Medical Sciences; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-19
... Institute of General Medical Sciences Special Emphasis Panel; Biomedical Instrumentation 1. Date: March 12... Sciences Special Emphasis Panel; Biomedical Instrumentation 2. Date: March 13, 2013. Time: 8:30 a.m. to 5...
Science aspects of a 1980 flyby of Comet Encke with a Pioneer spacecraft
NASA Technical Reports Server (NTRS)
Jaffe, L. D.; Elachi, C.; Giffin, C. E.; Huntress, W.; Newburn, R. L.; Parker, R. H.; Taylor, F. W.; Thorpe, T. E.
1974-01-01
Results are presented of an investigation of the feasibility of a 1980 flyby of Comet Encke using a Pioneer class spacecraft. Specific areas studied include: science objectives and rationale; science observables; effects of encounter velocity; science encounter and targeting requirements; selection and description of science instruments; definition of a candidate science payload; engineering characteristics of suggested payload; value of a separable probe; science instruments for a separable probe; science payload integration problems; and science operations profile.
ERIC Educational Resources Information Center
Shin, Soo Yeon; Parker, Loran Carleton; Adedokun, Omolola; Mennonno, Ann; Wackerly, Amy; San Miguel, Sandra
2015-01-01
This study examined to what extent a curriculum module that uses animal and human health scientists and science concepts to portray science and scientists in a relevant and authentic manner could enhance elementary students' aspiration for science careers, attitudes to science, positive perceptions of scientists, and perceived relevance of…
Increased Science Instrumentation Funding Strengthens Mars Program
NASA Technical Reports Server (NTRS)
Graham, Lee D.; Graff, T. G.
2012-01-01
As the strategic knowledge gaps mature for the exploration of Mars, Mars sample return (MSR), and Phobos/Deimos missions, one approach that becomes more probable involves smaller science instrumentation and integrated science suites. Recent technological advances provide the foundation for a significant evolution of instrumentation; however, the funding support is currently too small to fully utilize these advances. We propose that an increase in funding for instrumentation development occur in the near-term so that these foundational technologies can be applied. These instruments would directly address the significant knowledge gaps for humans to Mars orbit, humans to the Martian surface, and humans to Phobos/ Deimos. They would also address the topics covered by the Decadal Survey and the Mars scientific goals, objectives, investigations and priorities as stated by the MEPAG. We argue that an increase of science instrumentation funding would be of great benefit to the Mars program as well as the potential for human exploration of the Mars system. If the total non-Earth-related planetary science instrumentation budget were increased 100% it would not add an appreciable amount to the overall NASA budget and would provide the real potential for future breakthroughs. If such an approach were implemented in the near-term, NASA would benefit greatly in terms of science knowledge of the Mars, Phobos/Deimos system, exploration risk mitigation, technology development, and public interest.
NASA Technical Reports Server (NTRS)
1991-01-01
This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.
Guided-Inquiry Lessons Raise Scores on the Sixth Grade Georgia Science Test
NASA Astrophysics Data System (ADS)
Page, Purlie M.
At the local level, G Middle School has the highest district-wide percentage of 6th grade science students who are not meeting standards. It is imperative that G middle school take corrective action to reduce the number of students failing to meet state science standards. Dewey's theory of conceptual framework, which involves knowledge constructed on a person's personal experience and mind activity through active forms of learning, guided this study. The goal of the study was to determine whether inquiry-based science modules produce greater 6th grade science achievement, as measured by an equivalent instrument of the science section of the Georgia Criterion-Referenced Competency Test, when compared to traditional instruction among eastern Georgia 6th graders. The sample consisted of 230 students in the nonintervention group and 119 students in the intervention group. All students were from intact classes. At the end of the intervention, an independent t test was conducted to analyze the scores. According to the study t test, (t = 12.33, df = 304.56, p < 0.05), the difference between the means was statistically significant. This project's potential impact on social change includes increasing student motivation towards, comprehension of, and interest in science concepts. At the local level, these inquiry lessons can be shared with science teachers across grade levels and within the district to improve county-wide science scores. An increase in student interest and comprehension of science concepts could ultimately lead to the United States producing more students in the fields of science, technology, engineering, and mathematics (STEM) education.
NASA Astrophysics Data System (ADS)
Klop, Tanja; Severiens, Sabine E.; Knippels, Marie-Christine P. J.; van Mil, Marc H. W.; Ten Dam, Geert T. M.
2010-06-01
This article evaluated the impact of a four-lesson science module on the attitudes of secondary school students. This science module (on cancer and modern biotechnology) utilises several design principles, related to a social constructivist perspective on learning. The expectation was that the module would help students become more articulate in this particular field. In a quasi-experimental design (experimental-, control groups, and pre- and post-tests), secondary school students' attitudes (N = 365) towards modern biotechnology were measured by a questionnaire. Data were analysed using Chi-square tests. Significant differences were obtained between the control and experimental conditions. Results showed that the science module had a significant effect on attitudes, although predominantly towards a more supportive and not towards a more critical stance. It is discussed that offering a science module of this kind can indeed encourage students to become more aware of modern biotechnology, although promoting a more critical attitude towards modern biotechnology should receive more attention.
NASA Technical Reports Server (NTRS)
Crouch, Myscha; Carswell, Bill; Farmer, Jeff; Rose, Fred; Tidwell, Paul
1999-01-01
The Material Science Research Rack 1 (MSRR-1) of the Material Science Research Facility (MSRF) contains an Experiment Module (EM) being developed collaboratively by NASA and the European Space Agency (ESA). This NASA/ESA EM will accommodate several different removable and replaceable Module Inserts (MIs) which are installed on orbit. Two of the NASA MIs being developed for specific material science investigations are described herein.
Wang, Wen-Bin; Li, Jang-Yuan; Wu, Qi-Jun
2007-01-01
A LabVIEW-based self-constructed chemical virtual instrument (VI) has been developed for determining temperatures and pressures. It can be put together easily and quickly by selecting hardware modules, such as the PCI-DAQ card or serial port method, different kinds of sensors, signal-conditioning circuits or finished chemical instruments, and software modules such as data acquisition, saving, proceeding. The VI system provides individual and extremely flexible solutions for automatic measurements in physical chemistry research.
Wang, Wen-Bin; Li, Jang-Yuan; Wu, Qi-Jun
2007-01-01
A LabVIEW-based self-constructed chemical virtual instrument (VI) has been developed for determining temperatures and pressures. It can be put together easily and quickly by selecting hardware modules, such as the PCI-DAQ card or serial port method, different kinds of sensors, signal-conditioning circuits or finished chemical instruments, and software modules such as data acquisition, saving, proceeding. The VI system provides individual and extremely flexible solutions for automatic measurements in physical chemistry research. PMID:17671611
System Measures Pressures Aboard A Compressor Rotor
NASA Technical Reports Server (NTRS)
Freedman, Robert J.; Senyitko, Richard G.; Blumenthal, Philip Z.
1994-01-01
Rotating pressure-measuring instrumentation includes on-board calibration standard. Computer-controlled, multichannel instrumentation system acquires pressure measurements from sensors mounted in 1.52-m-diameter rotor of compressor. Includes 5 miniature, electronically scanned pressure (ESP) modules, each containing 48 piezoresistive pressure sensors, pneumatic calibration valve, and electronic circuits for addressing and amplifying output of each sensor. Modules mounted on centerline of rotor, on instrumentation tower located inside nose cone of rotor. Subsystem designed to convert analog signal to distinct frequency without significantly affecting accuracy.
Design of Instrument Control Software for Solar Vector Magnetograph at Udaipur Solar Observatory
NASA Astrophysics Data System (ADS)
Gosain, Sanjay; Venkatakrishnan, P.; Venugopalan, K.
2004-04-01
A magnetograph is an instrument which makes measurement of solar magnetic field by measuring Zeeman induced polarization in solar spectral lines. In a typical filter based magnetograph there are three main modules namely, polarimeter, narrow-band spectrometer (filter), and imager(CCD camera). For a successful operation of magnetograph it is essential that these modules work in synchronization with each other. Here, we describe the design of instrument control system implemented for the Solar Vector Magnetograph under development at Udaipur Solar Observatory. The control software is written in Visual Basic and exploits the Component Object Model (COM) components for a fast and flexible application development. The user can interact with the instrument modules through a Graphical User Interface (GUI) and can program the sequence of magnetograph operations. The integration of Interactive Data Language (IDL) ActiveX components in the interface provides a powerful tool for online visualization, analysis and processing of images.
Introduction: Reengaging with instruments.
Taub, Liba
2011-12-01
Over the past twenty years or so, historians of science have become increasingly sensitized to issues involved in studying and interpreting scientific and medical instruments. The contributors to this Focus section are historians of science who have worked closely with museum objects and collections, specifically instruments used in scientific and medical contexts. Such close engagement by historians of science is somewhat rare, provoking distinctive questions as to how we define and understand instruments, opening up issues regarding the value of broken or incomplete objects, and raising concerns about which scientific and medical artifacts are displayed and interpreted in museums and in what manner. It is hoped that these essays point historians of science in new directions for reengaging with scientific objects and collections.
Instrumentation for single-dish observations with The Greenland Telescope
NASA Astrophysics Data System (ADS)
Grimes, Paul K.; Asada, K.; Blundell, R.; Burgos, R.; Chang, H.-H.; Chen, M. T.; Goldie, D.; Groppi, C.; Han, C. C.; Ho, P. T. P.; Huang, Y. D.; Inoue, M.; Kubo, D.; Koch, P.; Leech, J.; de Lera Acedo, E.; Martin-Cocher, P.; Nishioka, H.; Nakamura, M.; Matsushita, S.; Paine, S. N.; Patel, N.; Raffin, P.; Snow, W.; Sridharan, T. K.; Srinivasan, R.; Thomas, C. N.; Tong, E.; Wang, M.-J.; Wheeler, C.; Withington, S.; Yassin, G.; Zeng, L.-Z.
2014-07-01
The Greenland Telescope project will deploy and operate a 12m sub-millimeter telescope at the highest point of the Greenland i e sheet. The Greenland Telescope project is a joint venture between the Smithsonian As- trophysical Observatory (SAO) and the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA). In this paper we discuss the concepts, specifications, and science goals of the instruments being developed for single-dish observations with the Greenland Telescope, and the coupling optics required to couple both them and the mm-VLBI receivers to antenna. The project will outfit the ALMA North America prototype antenna for Arctic operations and deploy it to Summit Station,1 a NSF operated Arctic station at 3,100m above MSL on the Greenland I e Sheet. This site is exceptionally dry, and promises to be an excellent site for sub-millimeter astronomical observations. The main science goal of the Greenland Telescope is to carry out millimeter VLBI observations alongside other telescopes in Europe and the Americas, with the aim of resolving the event horizon of the super-massive black hole at the enter of M87. The Greenland Telescope will also be outfitted for single-dish observations from the millimeter-wave to Tera-hertz bands. In this paper we will discuss the proposed instruments that are currently in development for the Greenland Telescope - 350 GHz and 650 GHz heterodyne array receivers; 1.4 THz HEB array receivers and a W-band bolometric spectrometer. SAO is leading the development of two heterodyne array instruments for the Greenland Telescope, a 48- pixel, 325-375 GHz SIS array receiver, and a 4 pixel, 1.4 THz HEB array receiver. A key science goal for these instruments is the mapping of ortho and para H2D+ in old protostellar ores, as well as general mapping of CO and other transitions in molecular louds. An 8-pixel prototype module for the 350 GHz array is currently being built for laboratory and operational testing on the Greenland Telescope. Arizona State University are developing a 650 GHz 256 pixel SIS array receiver based on the KAPPa SIS mixer array technology and ASIAA are developing 1.4 THz HEB single pixel and array receivers. The University of Cambridge and SAO are collaborating on the development of the CAMbridge Emission Line Surveyor (CAMELS), a W-band `on- hip' spectrometer instrument with a spectral resolution of R ~ 3000. CAMELS will consist of two pairs of horn antennas, feeding super conducting niobium nitride filter banks read by tantalum based Kinetic Inductance Detectors.
NASA Technical Reports Server (NTRS)
1978-01-01
Consideration is given to the following types of high energy physics instrumentation: drift chambers, multiwire proportional chambers, calorimeters, optical detectors, ionization and scintillation detectors, solid state detectors, and electronic and digital subsystems. Attention is also paid to reactor instrumentation, nuclear medicine instrumentation, data acquisition systems for nuclear instrumentation, microprocessor applications in nuclear science, environmental instrumentation, control and instrumentation of nuclear power generating stations, and radiation monitoring. Papers are also presented on instrumentation for the High Energy Astronomy Observatory.
MacRae, Rhoda; Rooney, Kevin D; Taylor, Alan; Ritters, Katrina; Sansoni, Julita; Lillo Crespo, Manuel; Skela-Savič, Brigita; O'Donnell, Barbara
2016-07-01
Numerous international policy drivers espouse the need to improve healthcare. The application of Improvement Science has the potential to restore the balance of healthcare and transform it to a more person-centred and quality improvement focussed system. However there is currently no accredited Improvement Science education offered routinely to healthcare students. This means that there are a huge number of healthcare professionals who do not have the conceptual or experiential skills to apply Improvement Science in everyday practise. This article describes how seven European Higher Education Institutions (HEIs) worked together to develop four evidence informed accredited inter-professional Improvement Science modules for under and postgraduate healthcare students. It outlines the way in which a Policy Delphi, a narrative literature review, a review of the competency and capability requirements for healthcare professionals to practise Improvement Science, and a mapping of current Improvement Science education informed the content of the modules. A contemporary consensus definition of Healthcare Improvement Science was developed. The four Improvement Science modules that have been designed are outlined. A framework to evaluate the impact modules have in practise has been developed and piloted. The authors argue that there is a clear need to advance healthcare Improvement Science education through incorporating evidence based accredited modules into healthcare professional education. They suggest that if Improvement Science education, that incorporates work based learning, becomes a staple part of the curricula in inter-professional education then it has real promise to improve the delivery, quality and design of healthcare. Copyright © 2016 Elsevier Ltd. All rights reserved.
Design and qualification of the interferometer for the GOSAT-2 spectrometer
NASA Astrophysics Data System (ADS)
Montembault, Yan; Moreau, Louis; Roux, Michel; Buijs, Henry; Soucy, Marc-André
2016-10-01
GOSAT-2 is the successor of the Greenhouse gases Observing SATellite (GOSAT, "IBUKI") launched in 2009 by Japan Aerospace Exploration Agency (JAXA). GOSAT-2 will continue and enhance space borne measurements of greenhouse gases started by GOSAT and monitor the impacts of climate change and human activities on the carbon cycle. It will also contribute to climate science and climate change related policies. The GOSAT-2 spacecraft will carry two earth observation instruments: FTS-2, the second generation of the TANSO-FTS and CAI-2, a Cloud and Aerosol Imager. Mitsubishi Electric Corporation is the prime contractor of GOSAT-2. Harris is the subcontractor of the spectrometer. ABB, who successfully designed, manufactured, and delivered the interferometer for the TANSO-FTS instrument for GOSAT, is currently delivering the modulator for the FTS-2 instrument to Mitsubishi Electric Corporation. Built on the TANSO-FTS heritage, FTS-2 is a thermal and near infrared sensor for carbon observation based on a Fourier transform spectrometer featuring larger optical throughput than TANSO-FTS. This paper presents an overview of the design of the FTS-2 interferometer as well as key qualification and performance verification activities conducted on the interferometer flight model.
Shelley, Barry G
2011-02-01
Researchers, policy makers, and practitioners have used various terms to describe instruments that reward the stewardship of ecosystem services that benefit "external" actors. Payments for environmental services, or PES, has been the predominant name. However, critics have challenged both the payments and environmental components of this nomenclature, most commonly proposing markets, compensation, or rewards as alternatives for the former, and ecosystem for the latter. Additional questions arise regarding what to call the agents directly involved in the transaction: sellers and buyers, or stewards and beneficiaries? For some, concerns about this terminology have emerged from so-called "pro-poor PES" debates that ask if actors could and should incorporate poverty alleviation goals into PES instruments. This review of the modulating use of terms and the arguments about which best fit theory and experience points to the key policy and ethical issues at stake as PES programs face critical and timely questions about the direction they will head. The author contends that the choices of terms will influence that direction and proposes a new alternative-rewards for ecosystem service stewardship (RESS)-that better encompasses pro-poor options. © 2011 New York Academy of Sciences.
Static feed water electrolysis module
NASA Technical Reports Server (NTRS)
Powell, J. D.; Schubert, F. H.; Jensen, F. C.
1974-01-01
An advanced static feed water electrolysis module (SFWEM) and associated instrumentation for generating breathable O2 was developed. The system also generates a H2 byproduct for use in an air revitalization system for O2 recovery from metabolic CO2. Special attention was given to: (1) eliminating water feed compartment degassing, (2) eliminating need for zero gravity condenser/separators, (3) increasing current density capability, and (4) providing a self contained module so that operation is independent of laboratory instrumentation and complicated startup/shutdown procedures.
Science Career Exploration for Women.
ERIC Educational Resources Information Center
Smith, Walter S.; Stroup, Kala M.
The main body of this pamphlet presents science career exploration activities for women in the form of six modules. Complete modules can be used as presented or activities may be adapted or borrowed to suit individual situations. The modules are titled: (1) Turning A Girl Onto Science Careers; (2) What Do I Want Out of Life?; (3) How Do Parents…
Textile Science Leader's Guide. 4-H Textile Science.
ERIC Educational Resources Information Center
Scholl, Jan
This instructor's guide provides an overview of 4-H student project modules in the textile sciences area. The guide includes short notes explaining how to use the project modules, a flowchart chart showing how the project areas are sequenced, a synopsis of the design and content of the modules, and some program planning tips. For each of the…
Power Amplifier Module with 734-mW Continuous Wave Output Power
NASA Technical Reports Server (NTRS)
Fung, King Man; Samoska, Lorene A.; Kangaslahti, Pekka P.; Lamgrigtsen, Bjorn H.; Goldsmith, Paul F.; Lin, Robert H.; Soria, Mary M.; Cooperrider, Joelle T.; Micovic, Moroslav; Kurdoghlian, Ara
2010-01-01
Research findings were reported from an investigation of new gallium nitride (GaN) monolithic millimeter-wave integrated circuit (MMIC) power amplifiers (PAs) targeting the highest output power and the highest efficiency for class-A operation in W-band (75-110 GHz). W-band PAs are a major component of many frequency multiplied submillimeter-wave LO signal sources. For spectrometer arrays, substantial W-band power is required due to the passive lossy frequency multipliers-to generate higher frequency signals in nonlinear Schottky diode-based LO sources. By advancing PA technology, the LO system performance can be increased with possible cost reductions compared to current GaAs PAs. High-power, high-efficiency GaN PAs are cross-cutting and can enable more efficient local oscillator distribution systems for new astrophysics and planetary receivers and heterodyne array instruments. It can also allow for a new, electronically scannable solid-state array technology for future Earth science radar instruments and communications platforms.
Microgravity acceleration measurement and environment characterization science (17-IML-1)
NASA Technical Reports Server (NTRS)
1992-01-01
The Space Acceleration Measurement System (SAMS) is a general purpose instrumentation system designed to measure the accelerations onboard the Shuttle Orbiter and Shuttle/Spacelab vehicles. These measurements are used to support microgravity experiments and investigation into the microgravity environment of the vehicle. Acceleration measurements can be made at locations remote from the SAMS main instrumentation unit by the use of up to three remote triaxial sensor heads. The prime objective for SAMS on the International Microgravity Lab (IML-1) mission will be to measure the accelerations experienced by the Fluid Experiment System (FES). The SAMS acceleration measurements for FES will be complemented by low level, low frequency acceleration measurements made by the Orbital Acceleration Research Experiment (OARE) installed on the shuttle. Secondary objectives for SAMS will be to measure accelerations at several specific locations to enable the acceleration transfer function of the Spacelab module to be analyzed. This analysis effort will be in conjunction with similar measurements analyses on other Spacelab missions.
Design and Lessons Learned on the Development of a Cryogenic Pupil Select Mechanism (PSM)
NASA Technical Reports Server (NTRS)
Mitchell, Alissa L.; Capon, Thomas L.; Hakun, Claef; Haney, Paul; Koca, Corina; Guzek, Jeffrey
2014-01-01
Calibration and testing of the instruments on the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) is being performed by the use of a cryogenic, full-field, optical simulator that was constructed for this purpose. The Pupil Select Mechanism (PSM) assembly is one of several mechanisms and optical elements that compose the Optical Telescope Element SIMulator, or OSIM. The PSM allows for several optical elements to be inserted into the optical plane of OSIM, introducing a variety of aberrations, distortions, obscurations, and other calibration states into the pupil plane. The following discussion focuses on the details of the design evolution, analysis, build, and test of this mechanism along with the challenges associated with creating a sub arc-minute positioning mechanism operating in an extreme cryogenic environment. In addition, difficult challenges in the control system design will be discussed including the incorporation of closed-loop feedback control into a system that was designed to operate in an open-loop fashion.
NASA Technical Reports Server (NTRS)
Collier, Michael R.; Porter, F. Scott; Sibeck, David G.; Carter, Jenny A.; Chiao, Meng P.; Chornay, Dennis J.; Cravens, Thomas; Galeazzi, Massimiliano; Keller, John W.; Koutroumpa, Dimitra;
2012-01-01
We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the FSA AXIOM mission
NASA Technical Reports Server (NTRS)
Collier, M. R.; Porter, F. S.; Sibeck, D. G.; Carter, J. A.; Chiao, M. P.; Chornay, D. J.; Cravens, T.; Galeazzi, M.; Keller, J. W.; Koutroumpa, D.;
2012-01-01
We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobstereye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the ESA AXIOM mission.
ERIC Educational Resources Information Center
Peoples, Shelagh M.; O'Dwyer, Laura M.; Wang, Yang; Brown, Jessica J.; Rosca, Camelia V.
2014-01-01
This article describes the development, validation and application of a Rasch-based instrument, the Elementary School Science Classroom Environment Scale (ESSCES), for measuring students' perceptions of constructivist practices within the elementary science classroom. The instrument, designed to complement the Reformed Teaching Observation…
Gas chromatographic concepts for the analysis of planetary atmospheres
NASA Technical Reports Server (NTRS)
Valentin, J. R.; Cullers, D. K.; Hall, K. W.; Krekorian, R. L.; Phillips, J. B.
1991-01-01
Over the last few years, new gas chromatographic (GC) concepts were developed for use on board spacecraft or any other restricted environments for determining the chemical composition of the atmosphere and surface material of various planetary bodies. Future NASA Missions include an entry probe that will be sent to Titan and various spacecraft that will land on Mars. In order to be able to properly respond to the mission science requirements and physical restrictions imposed on the instruments by these missions, GC analytical techniques are being developed. Some of these techniques include hardware and mathematical techniques that will improve GC sensitivity and increase the sampling rate of a GC descending through a planetary atmosphere. The technique of Multiplex Gas Chromatography (MGC) is an example of a technique that was studied in a simulated Titan atmosphere. In such an environment, the atmospheric pressure at instrument deployment is estimated to be a few torr. Thus, at such pressures, the small amount of sample that is acquired might not be enough to satisfy the detection requirements of the gas chromatograph. In MGC, many samples are pseudo-randomly introduced to the chromatograph without regard to elution of preceding components. The resulting data is then reduced using mathematical techniques such as cross-correlation of Fourier Transforms. Advantages realized from this technique include: improvement in detection limits of several orders of magnitude and increase in the number of analyses that can be conducted in a given period of time. Results proving the application of MGC at very low pressures emulating the same atmospheric pressures that a Titan Probe will encounter when the instruments are deployed are presented. The sample used contained hydrocarbons that are expected to be found in Titan's atmosphere. In addition, a new selective modulator was developed to monitor water under Martian atmospheric conditions. Since this modulator is selective only to water, the need for a GC column is eliminated. This results in further simplification of the instrument.
Implementation fidelity of a self-management course for epilepsy: method and assessment.
Wojewodka, G; Hurley, S; Taylor, S J C; Noble, A J; Ridsdale, L; Goldstein, L H
2017-07-11
Complex interventions such as self-management courses are difficult to evaluate due to the many interacting components. The way complex interventions are delivered can influence the effect they have for patients, and can impact the interpretation of outcomes of clinical trials. Implementation fidelity evaluates whether complex interventions are delivered according to protocol. Such assessments have been used for one-to-one psychological interventions; however, the science is still developing for group interventions. We developed and tested an instrument to measure implementation fidelity of a two-day self-management course for people with epilepsy, SMILE(UK). Using audio recordings, we looked at adherence and competence of course facilitators. Adherence was assessed by checklists. Competence was measured by scoring group interaction, an overall impression score and facilitator "didacticism". To measure "didacticism", we developed a novel way to calculate facilitator speech using computer software. Using this new instrument, implementation fidelity of SMILE(UK) was assessed on three modules of the course, for 28% of all courses delivered. Using the instrument for adherence, scores from two independent raters showed substantial agreement with weighted Kappa of 0.67 and high percent agreement of 81.2%. For didacticism, the results from both raters were highly correlated with an intraclass coefficient of 0.97 (p < 0.0001). We found that the courses were delivered with a good level of adherence (> 50% of scored items received the maximum of 2 points) and high competence. Groups were interactive (mean score: 1.9-2.0 out of 2) and the overall impression was on average assessed as "good". Didacticism varied from 42% to 93% of total module time and was not associated with the other competence scores. The instrument devised to measure implementation fidelity was reproducible and easy to use. The courses for the SMILE(UK) study were delivered with a good level of adherence to protocol while not compromising facilitator competence. ISRCTN57937389 .
Using Model-Based Reasoning for Autonomous Instrument Operation - Lessons Learned From IMAGE/LENA
NASA Technical Reports Server (NTRS)
Johnson, Michael A.; Rilee, Michael L.; Truszkowski, Walt; Bailin, Sidney C.
2001-01-01
Model-based reasoning has been applied as an autonomous control strategy on the Low Energy Neutral Atom (LENA) instrument currently flying on board the Imager for Magnetosphere-to-Aurora Global Exploration (IMAGE) spacecraft. Explicit models of instrument subsystem responses have been constructed and are used to dynamically adapt the instrument to the spacecraft's environment. These functions are cast as part of a Virtual Principal Investigator (VPI) that autonomously monitors and controls the instrument. In the VPI's current implementation, LENA's command uplink volume has been decreased significantly from its previous volume; typically, no uplinks are required for operations. This work demonstrates that a model-based approach can be used to enhance science instrument effectiveness. The components of LENA are common in space science instrumentation, and lessons learned by modeling this system may be applied to other instruments. Future work involves the extension of these methods to cover more aspects of LENA operation and the generalization to other space science instrumentation.
1999-03-26
In the Vertical Processing Facility, TRW technicians look at the point of attachment on the Chandra X-ray Observatory, at left, for the solar panel array (behind them). They are getting ready to attach and deploy the solar panel. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
1996-01-01
Exterior view of the NASA Bioreactor Engineering Development Unit flown on Mir. The rotating wall vessel is behind the window on the face of the large module. Control electronics are in the module at left; gas supply and cooling fans are in the module at back. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.
Employees lower Cassini's upper experiment module and base onto a work stand in the PHSF
NASA Technical Reports Server (NTRS)
1997-01-01
Employees in the Payload Hazardous Servicing Facility (PHSF) lower the upper experiment module and base of the Cassini orbiter onto a work stand during prelaunch processing, testing and integration work in that facility. The Cassini orbiter and Huygens probe being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn's largest moon, Titan. The orbiter was designed and assembled at NASA's Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Chao; Jiang, Tao; Liu, Shengguang
Here, an accelerator-based MeV ultrafast electron microscope (MUEM) has been proposed as a promising tool to the study structural dynamics at the nanometer spatial scale and the picosecond temporal scale. Here, we report experimental tests of a prototype MUEM where high quality images with nanoscale fine structures were recorded with a pulsed ~3 MeV picosecond electron beam. The temporal and spatial resolutions of the MUEM operating in the single-shot mode are about 4 ps (FWHM) and 100 nm (FWHM), corresponding to a temporal-spatial resolution of 4 × 10 –19 sm, about 2 orders of magnitude higher than that achieved withmore » state-of-the-art single-shot keV UEM. Using this instrument, we offer the demonstration of visualizing the nanoscale periodic spatial modulation of an electron beam, which may be converted into longitudinal density modulation through emittance exchange to enable production of high-power coherent radiation at short wavelengths. Our results mark a great step towards single-shot nanometer-resolution MUEMs and compact intense x-ray sources that may have widespread applications in many areas of science.« less
Lu, Chao; Jiang, Tao; Liu, Shengguang; ...
2018-03-12
Here, an accelerator-based MeV ultrafast electron microscope (MUEM) has been proposed as a promising tool to the study structural dynamics at the nanometer spatial scale and the picosecond temporal scale. Here, we report experimental tests of a prototype MUEM where high quality images with nanoscale fine structures were recorded with a pulsed ~3 MeV picosecond electron beam. The temporal and spatial resolutions of the MUEM operating in the single-shot mode are about 4 ps (FWHM) and 100 nm (FWHM), corresponding to a temporal-spatial resolution of 4 × 10 –19 sm, about 2 orders of magnitude higher than that achieved withmore » state-of-the-art single-shot keV UEM. Using this instrument, we offer the demonstration of visualizing the nanoscale periodic spatial modulation of an electron beam, which may be converted into longitudinal density modulation through emittance exchange to enable production of high-power coherent radiation at short wavelengths. Our results mark a great step towards single-shot nanometer-resolution MUEMs and compact intense x-ray sources that may have widespread applications in many areas of science.« less
NASA Technical Reports Server (NTRS)
1996-01-01
Exterior view of the NASA Bioreactor Engineering Development Unit flown on Mir. The rotating wall vessel is behind the window on the face of the large module. Control electronics are in the module at left; gas supply and cooling fans are in the module at back. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.
ChemCam Science Objectives for the Mars Science Laboratory (MSL) Rover
NASA Technical Reports Server (NTRS)
Wiens, R.; Maurice, S.; Bridges, N.; Clark, B.; Cremers, D.; Herkenhoff, K.; Kirkland, L.; Mangold, N.; Manhes, G.; Mauchien, P.
2005-01-01
ChemCam consists of two remote sensing instruments. One, a Laser-Induced Breakdown Spectroscopy (LIBS) instrument provides rapid elemental composition data on rocks and soils within 13 m of the rover. By using laser pulses, it can remove dust or profile through weathering layers remotely. The other instrument, the Remote Micro-Imager (RMI), provides the highest resolution images between 2 m and infinity. At approximately 80 Rad field of view, its resolution exceeds that of MER Pancam by at least a factor of four. The ChemCam instruments are described in a companion paper by Maurice et al. [1]. Here we present the science objectives for the ChemCam instrument package.
ChemCam Science Objectives for the Mars Science Laboratory (MSL) Rover
NASA Technical Reports Server (NTRS)
Wiens, R.; Maurice, S.; Bridges, N.; Clark, B.; Cremers, D.; Herkenhoff, K.; Kirkland, L.; Mangold, N.; Manhes, G.; Mauchien, P.
2005-01-01
ChemCam consists of two remote sensing instruments. One, a Laser-Induced Breakdown Spectroscopy (LIBS) instrument provides rapid elemental composition data on rocks and soils within 13 m of the rover. By using laser pulses, it can remove dust or profile through weathering layers remotely. The other instrument, the Remote Micro-Imager (RMI), provides the highest resolution images between 2 m and infinity. At approximately 80 Rad field of view, its resolution exceeds that of MER Pancam by at least a factor of four. The ChemCam instruments are described in a companion paper by Maurice et al. Here we present the science objectives for the ChemCam instrument package.
NASA Astrophysics Data System (ADS)
Garcia, Oscar; Mihai Toma, Daniel; Dañobeitia, Juanjo; del Rio, Joaquin; Bartolome, Rafael; Martínez, Enoc; Nogueras, Marc; Bghiel, Ikram; Lanteri, Nadine; Rolin, Jean Francois; Beranzoli, Laura; Favali, Paolo
2017-04-01
The EMSODEV project (EMSO implementation and operation: DEVelopment of instrument module) is an Horizon-2020 UE project whose overall objective is the operation of eleven seafloor observatories and four test sites. These infrastructures are distributed throughout European seas, from the Arctic across the Atlantic and the Mediterranean to the Black Sea, and are managed by the European consortium EMSO-ERIC (European Research Infrastructure Consortium) with the participation of 8 European countries and other associated partners. Recently, we have implemented a Generic Sensor Module (EGIM) within the EMSO-ERIC distributed marine research infrastructure. EGIM is able to operate on any EMSO observatory node, mooring line, seabed station, cabled or non-cabled and surface buoy. The main role of EGIM is to measure homogeneously a set of core variables using the same hardware, sensor references, qualification methods, calibration methods, data format and access, maintenance procedures in several European ocean locations. The EGIM module acquires a wide range of ocean parameters in a long-term consistent, accurate and comparable manner from disciplines such as biology, geology, chemistry, physics, engineering, and computer science, from polar to subtropical environments, through the water column down to the deep sea. Our work includes developing standard-compliant generic software for Sensor Web Enablement (SWE) on EGIM and to perform the first onshore and offshore test bench, to support the sensors data acquisition on a new interoperable EGIM system. EGIM in its turn is linked to an acquisition drives processes, a centralized Sensor Observation Service (SOS) server and a laboratory monitor system (LabMonitor) that records events and alarms during acquisition. The measurements recorded along EMSO NODES are essential to accurately respond to the social and scientific challenges such as climate change, changes in marine ecosystems, and marine hazards. This presentation shows the first EGIM deployment and the SWE infrastructure, developed to manage the data acquisition from the underwater sensors and their insertion to the SOS interface.
NASA Technical Reports Server (NTRS)
Bos, Brent; Davila, Pam; Jurotich, Matthew; Hobbs, Gurnie; Lightsey, Paul; Contreras, Jim; Whitman, Tony
2003-01-01
The James Webb Space Telescope (JWST) is a space-based, infrared observatory designed to study the early stages of galaxy formation in the Universe. The telescope will be launched into an elliptical orbit about the second Lagrange point and passively cooled to 30-50 K to enable astronomical observations from 0.6 to 28 microns. A group from the NASA Goddard Space Flight Center and the Northrop Grumman Space Technology prime contractor team has developed an optical and mechanical layout for the science instruments within the JWST field of view that satisfies the telescope s high-level performance requirements. Four instruments required accommodation within the telescope's field of view: a Near-Infrared Camera (NIRCam) provided by the University of Arizona; a Near-Mared Spectrometer (NIRSpec) provided by the European Space Agency; a Mid-Infrared Instrument (MIRI) provided by the Jet Propulsion Laboratory and a European consortium; and a Fine Guidance Sensor (FGS) with a tunable filter module provided by the Canadian Space Agency. The size and position of each instrument's field of view allocation were developed through an iterative, concurrent engineering process involving the key observatory stakeholders. While some of the system design considerations were those typically encountered during the development of an infrared observatory, others were unique to the deployable and controllable nature of JWST. This paper describes the optical and mechanical issues considered during the field of view layout development, as well as the supporting modeling and analysis activities.
Origins Space Telescope Concept 1: Mid to Far Infrared Mission
NASA Astrophysics Data System (ADS)
Carter, Ruth; DiPirro, Michael; Origins Space Telescope Decadal Mission Study Team
2018-01-01
Origins Space Telescope (OST), is a NASA large mission concept designed to investigate the mid to far infrared sky. It would launch in the mid 2030’s, with mission development and implementation beginning in the mid-2020’s. This poster presents the overall architecture of OST Mission Concept 1. The Concept 1 telescope has a 9-meter diameter off-axis primary mirror, a three-mirror astigmat with a field steering mirror, covering the wavelength range of 6 to 600 µm. Five science instruments are on board the OST observatory for spectroscopy, imaging and coronagraphy. The instruments are the Medium Resolution Survey Spectrometer (MRSS), High Resolution Spectrometer (HRS), Far –IR Imaging and Polarimeter (FIP), Mid-IR Imaging Spectrometer and Coronagraph (MISC) and Heterodyne Instrument (HERO). The instruments are housed in the Instrument Accommodation Module (IAM). The Telescope and IAM are actively cooled to 4 Kelvin by relative high maturity 4 K cryocoolers To limit the Sun, Earth, Moon, and Spacecraft thermal radiation into the 4 K environment, multiple layers of sun shields similar to those used on JWST, are implemented. The sun-shields are also designed to minimize solar pressure and center of gravity discrepancies, thus resulting in the “sugar-scoop” like shape. To prevent locally generated stray light from entering the 4 Kelvin environment during mission operations, a 4 K baffle around the telescope and IAM is used. The OST Observatory will be inserted to a Sun-Earth L2 for mission operations.
Science with NGST: The Origins Initiatives and a Broad IR Program
NASA Astrophysics Data System (ADS)
Stockman, P.; Mather, J.
1997-12-01
As envisioned by the HST & Beyond Committee, the focus of the NGST scientific goals is the study of the early universe, the origins of galaxies such as our Milky Way. By utilizing NGST's unprecedented sensitivity in the near-IR, astronomers will be able to probe the structures of galaxies at redshifts corresponding to the first billion years after the Big Bang and study the formation epoch of the first stars and stellar systems. Zodiacal-light limited sensitivity in NIR imaging and 2-D spectroscopy is the core technical driver of NGST. However, the astronomical potential of cooled, large, diffraction-limited optics in a low background environment is too great to restrict its use to only these cosmological goals.The astronomy community must help find an appropriate balance between all desired capabilities and financial and technical feasibility. To this end, NASA and the STScI hosted a scientific meeting in April 1997 dedicated to the scientific impact of NGST. NASA HQ has charted an Ad Hoc Science Working Group to develop the NGST science program, the Design Reference Mission, in greater detail and breadth. Already, we have gained a better understanding of NGST's potential to contribute to the long range goals of OSS with higher NIR spectroscopic resolution and with extended capabilities in the visible and mid-IR (beyond 5 microns). To pursue the instrumental and observatory implications, NASA has selected a handful of studies for the Integrated Science Instrument Module. Similar European and Canadian efforts are going on in parallel. We anticipate that the results of this work will inform the detailed design phase of NGST and lead to the ultimate selection of the NGST architecture, the development of the ISIM, and the solicitation and selection of the flight Science Working Group. We conclude with a panel of astronomers briefly describing key goals in the OSS strategic plan and how they may be achieved with NGST. Audience participation is encouraged.
Instrumentation to Improve Chemistry and Environmental Science Laboratory Curricula
1999-09-01
Introduction of modem chemical instrumentation in the chemistry, biology, and environmental science curricula provides a valuable experience for students and...stimulation for the faculty. The major concern now facing the chemistry, biology, and environmental science faculty at PCUPR is the inability to
Using Model-Based Reasoning for Autonomous Instrument Operation
NASA Technical Reports Server (NTRS)
Johnson, Mike; Rilee, M.; Truszkowski, W.; Powers, Edward I. (Technical Monitor)
2000-01-01
Multiprobe missions are an important part of NASA's future: Cluster, Magnetospheric Multi Scale, Global Electrodynamics and Magnetospheric Constellation are representatives from the Sun-Earth Connections Theme. To make such missions robust, reliable, and affordable, ideally the many spacecraft of a constellation must be at least as easy to operate as one spacecraft is today. To support this need for scalability, science instrumentation must become increasingly easy to operate, even as this same instrumentation becomes more capable and advanced. Communication and control resources will be at a premium for future instruments. Many missions will be out of contact with ground operators for extended periods either to reduce operations cost or because of orbits that limit communication to weekly perigee transits. Autonomous capability is necessary if such missions are to effectively achieve their operational objectives. An autonomous system is one that acts given its situation in a mission appropriate manner without external direction to achieve mission goals. To achieve this capability autonomy must be built into the system through judicious design or through a built-in intelligence that recognizes system state and manages system response. To recognize desired or undesired system states, the system must have an implicit or explicit understanding of its expected states given its history and self observations. The systems we are concerned with, science instruments, can have stringent requirements for system state knowledge in addition to requirements driven by health and safety concerns. Without accurate knowledge of the system state, the usefulness of the science instrument may be severely limited. At the same time, health and safety concerns often lead to overly conservative instrument operations further reducing the effectiveness of the instrument. These requirements, coupled with overall mission requirements including lack of communication opportunities and tolerance of environmental hazards, frame the problem of constructing autonomous science instruments. we are developing a model of the Low Energy Neutral Atom instrument (LENA) that is currently flying on board the Imager for Magnetosphere-to-Aurora Global Exploration (IMAGE) spacecraft. LENA is a particle detector that uses high voltage electrostatic optics and time-of-flight mass spectrometry to image neutral atom emissions from the denser regions of the Earth's magnetosphere. As with most spacecraft borne science instruments, phenomena in addition to neutral atoms are detected by LENA. Solar radiation and energetic particles from Earth's radiation belts are of particular concern because they may help generate currents that may compromise LENA's long term performance. An explicit model of the instrument response has been constructed and is currently in use on board IMAGE to dynamically adapt LENA to the presence or absence of energetic background radiations. The components of LENA are common in space science instrumentation, and lessons learned by modelling this system may be applied to other instruments. This work demonstrates that a model-based approach can be used to enhance science instrument effectiveness. Our future work involves the extension of these methods to cover more aspects of LENA operation and the generalization to other space science instrumentation.
NASA Technical Reports Server (NTRS)
Gubarev, Mikhail V.; Ramsey, B.; ODell, S. L.; Elsner, R.; Kilaru, K.; McCracken, J.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.
2012-01-01
The Marshall Space Flight Center (MSFC) is developing x-ray mirror modules for the ART-XC instrument on board the Spectrum-Roentgen Gamma Mission under a Reimbursable Agreement between NASA and the Russian Space Research Institute (IKI.) ART-XC will consist of seven co-aligned x-ray mirror modules with seven corresponding CdTe focal plane detectors. Currently, four of the modules are being fabricated by the Marshall Space Flight Center (MSFC.) Each MSFC module consist of 28 nested Ni/Co thin shells giving an effective area of 65 sq cm at 8 keV, response out to 30 keV, and an angular resolution of 45 arcsec or better HPD. Delivery of these modules to the IKI is scheduled for summer 2013. We present a status of the ART x-ray modules development at the MSFC.
NASA Astrophysics Data System (ADS)
Gubarev, M.; Ramsey, B.; O'Dell, S. L.; Elsner, R.; Kilaru, K.; McCracken, J.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.
2012-09-01
The Marshall Space Flight Center (MSFC) is developing x-ray mirror modules for the ART-XC instrument on board the Spectrum-Roentgen-Gamma Mission under a Reimbursable Agreement between NASA and the Russian Space Research Institute (IKI.) ART-XC will consist of seven co-aligned x-ray mirror modules with seven corresponding CdTe focal plane detectors. Currently, four of the modules are being fabricated by the Marshall Space Flight Center (MSFC.) Each MSFC module consist of 28 nested Ni/Co thin shells giving an effective area of 65 cm2 at 8 keV, response out to 30 keV, and an angular resolution of 45 arcsec or better HPD. Delivery of these modules to the IKI is scheduled for summer 2013. We present a status of the ART x-ray modules development at the MSFC.
ERIC Educational Resources Information Center
Burgdorf, Kenneth; White, Kristine
This report presents information from phase I of a survey designed to develop quantitative indicators of the current national stock, cost/investment, condition, obsolescence, utilization, and need for major research instruments in academic settings. Data for phase I (which focused on the physical and computer sciences and engineering) were…
NASA Astrophysics Data System (ADS)
Hallau, K.; Turney, D.; Beisser, K.; Edmonds, J.; Grigsby, B.
2015-12-01
The Student Planetary Investigator (PI) Program engages students in authentic scientific research using NASA mission data. This student-focused STEM (Science, Technology, Engineering and Math) program combines problem-based learning modules, Next Generation Science Standards (NGSS) aligned curriculum, and live interactive webinars with mission scientists to create authentic research opportunities and career-ready experiences that prepare and inspire students to pursue STEM occupations. Primarily for high school students, the program employs distance-learning technologies to stream live presentations from mission scientists, archive those presentations to accommodate varied schedules, and collaborate with other student teams and scientists. Like its predecessor, the Mars Exploration Student Data Team (MESDT) program, the Student PI is free and open to teams across the country. To date, students have drafted research-based reports using data from the Lunar Reconnaissance Orbiter Mini-RF instrument and the MESSENGER Mercury orbiter, with plans to offer similar programs aligned with additional NASA missions in the future pending available funding. Overall, the program has reached about 600 students and their educators. Assessments based on qualitative and quantitative data gathered for each Student PI program have shown that students gain new understanding about the scientific process used by real-world scientists as well as gaining enthusiasm for STEM. Additionally, it is highly adaptable to other disciplines and fields. The Student PI program was created by the Johns Hopkins University Applied Physics Laboratory (APL) Space Department Education and Public Outreach office with support from NASA mission and instrument science and engineering teams.
NASA Astrophysics Data System (ADS)
Buhr, S. M.; Lynds, S. E.; McCaffrey, M. S.; Morton, E.
2010-12-01
Inspiring Climate Education Excellence (ICEE) is a NASA-funded project to develop online course modules and self-directed learning resources aligned with the Essential Principles of Climate Science. Following a national needs assessment survey and a face to face workshop to pilot test topics, a suite of online modules is being developed suitable for self-directed learning by secondary science teachers. Modules are designed around concepts and topics in which teachers express the most interest and need for instruction. Module design also includes attention to effective teaching strategies, such as awareness of student misconceptions, strategies for forestalling controversy and advice from master teachers on implementation and curriculum development. The resources are being developed in partnership with GLOBE, and the National Science Digital Library (NSDL) and is informed by the work of the Climate Literacy and Energy Awareness Network (CLEAN) project. ICEE will help to meet the professional development needs of teachers, including those participating in the GLOBE Student Climate Research Campaign. Modules and self-directed learning resources will be developed and disseminated in partnership with the National Science Digital Library (NSDL). This presentation introduces the needs assessment and pilot workshop data upon which the modules are based, and describes the modules that are available and in development.
Climate Literacy: Supporting Teacher Professional Development
NASA Astrophysics Data System (ADS)
Haddad, N.; Ledley, T. S.; Dunlap, C.; Bardar, E.; Youngman, B.; Ellins, K. K.; McNeal, K. S.; Libarkin, J.
2012-12-01
Confronting the Challenges of Climate Literacy (CCCL) is an NSF-funded (DRK-12) project that includes curriculum development, teacher professional development, teacher leadership development, and research on student learning, all directed at high school teachers and students. The project's evaluation efforts inform and guide all major components of the project. The research effort addresses the question of what interventions are most effective in helping high school students grasp the complexities of the Earth system and climate processes, which occur over a range of spatial and temporal scales. The curriculum unit includes three distinct but related modules: Climate and the Cryosphere; Climate, Weather, and the Biosphere; and Climate and the Carbon Cycle. Climate-related themes that cut across all three modules include the Earth system, with the complexities of its positive and negative feedback loops; the range of temporal and spatial scales at which climate, weather, and other Earth system processes occur; and the recurring question, "How do we know what we know about Earth's past and present climate?" which addresses proxy data and scientific instrumentation. The professional development component of the project includes online science resources to support the teaching of the curriculum modules, summer workshops for high school teachers, and a support system for developing the teacher leaders who plan and implement those summer workshops. When completed, the project will provide a model high school curriculum with online support for implementing teachers and a cadre of leaders who can continue to introduce new teachers to the resource. This presentation will introduce the curriculum and the university partnerships that are key to the project's success, and describe how the project addresses the challenge of helping teachers develop their understanding of climate science and their ability to convey climate-related concepts articulated in the Next Generation Science Standards to their students. We will also describe the professional development and support system to develop teacher leaders and explain some of the challenges that accompany this approach of developing teacher leaders in the area of climate literacy.
NASA Technical Reports Server (NTRS)
Hancock, David W., III
1999-01-01
This document provides the Software Management Plan for the GLAS Standard Data Software (SDS) supporting the GLAS instrument of the EOS ICESat Spacecraft. The SDS encompasses the ICESat Science Investigator-led Processing System (I-SIPS) Software and the Instrument Support Terminal (IST) Software. For the I-SIPS Software, the SDS will produce Level 0, Level 1, and Level 2 data products as well as the associated product quality assessments and descriptive information. For the IST Software, the SDS will accommodate the GLAS instrument support areas of engineering status, command, performance assessment, and instrument health status.
NASA Astrophysics Data System (ADS)
Velayutham, Sunitadevi; Aldridge, Jill; Fraser, Barry
2011-10-01
Students' motivational beliefs and self-regulatory practices have been identified as instrumental in influencing the engagement of students in the learning process. An important aim of science education is to empower students by nurturing the belief that they can succeed in science learning and to cultivate the adaptive learning strategies required to help to bring about that success. This article reports the development and validation of an instrument to measure salient factors related to the motivation and self-regulation of students in lower secondary science classrooms. The development of the instrument involved identifying key determinants of students' motivation and self-regulation in science learning based on theoretical and research underpinnings. Once the instrument was developed, a pilot study involving 52 students from two Grade 8 science classes was undertaken. Quantitative data were collected from 1,360 students in 78 classes across Grades 8, 9, and 10, in addition to in-depth qualitative information gathered from 10 experienced science teachers and 12 Grade 8 students. Analyses of the data suggest that the survey has strong construct validity when used with lower secondary students. This survey could be practically valuable as a tool for gathering information that may guide classroom teachers in refocusing their teaching practices and help to evaluate the effectiveness of intervention programmes.
NASA Astrophysics Data System (ADS)
Zender, J.; Berghmans, D.; Bloomfield, D. S.; Cabanas Parada, C.; Dammasch, I.; De Groof, A.; D'Huys, E.; Dominique, M.; Gallagher, P.; Giordanengo, B.; Higgins, P. A.; Hochedez, J.-F.; Yalim, M. S.; Nicula, B.; Pylyser, E.; Sanchez-Duarte, L.; Schwehm, G.; Seaton, D. B.; Stanger, A.; Stegen, K.; Willems, S.
2013-08-01
The PROBA2 Science Centre (P2SC) is a small-scale science operations centre supporting the Sun observation instruments onboard PROBA2: the EUV imager Sun Watcher using APS detectors and image Processing (SWAP) and Large-Yield Radiometer (LYRA). PROBA2 is one of ESA's small, low-cost Projects for Onboard Autonomy (PROBA) and part of ESA's In-Orbit Technology Demonstration Programme. The P2SC is hosted at the Royal Observatory of Belgium, co-located with both Principal Investigator teams. The P2SC tasks cover science planning, instrument commanding, instrument monitoring, data processing, support of outreach activities, and distribution of science data products. PROBA missions aim for a high degree of autonomy at mission and system level, including the science operations centre. The autonomy and flexibility of the P2SC is reached by a set of web-based interfaces allowing the operators as well as the instrument teams to monitor quasi-continuously the status of the operations, allowing a quick reaction to solar events. In addition, several new concepts are implemented at instrument, spacecraft, and ground-segment levels allowing a high degree of flexibility in the operations of the instruments. This article explains the key concepts of the P2SC, emphasising the automation and the flexibility achieved in the commanding as well as the data-processing chain.
Photogrammetric Metrology for the James Webb Space Telescope Integrated Science Instrument Module
NASA Technical Reports Server (NTRS)
Nowak, Maria; Crane, Allen; Davila, Pam; Eichhorn, William; Gill, James; Herrera, Acey; Hill, Michael; Hylan, Jason; Jetten, Mark; Marsh, James;
2007-01-01
The James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (approximately 40K). The JWST Observatory architecture includes the Optical Telescope Element and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The ISM optical metering structure is a roughly 2.2x1.7x2.2m, asymmetric frame that is composed of carbon fiber and resin tubes bonded to invar end fittings and composite gussets and clips. The structure supports the SIs, isolates the SIs from the OTE, and supports thermal and electrical subsystems. The structure is attached to the OTE structure via strut-like kinematic mounts. The ISIM structure must meet its requirements at the approximately 40K cryogenic operating temperature. The SIs are aligned to the structure's coordinate system under ambient, clean room conditions using laser tracker and theodolite metrology. The ISIM structure is thermally cycled for stress relief and in order to measure temperature-induced mechanical, structural changes. These ambient-to-cryogenic changes in the alignment of SI and OTE-related interfaces are an important component in the JWST Observatory alignment plan and must be verified. We report on the planning for and preliminary testing of a cryogenic metrology system for ISIM based on photogrammetry. Photogrammetry is the measurement of the location of custom targets via triangulation using images obtained at a suite of digital camera locations and orientations. We describe metrology system requirements, plans, and ambient photogrammetric measurements of a mock-up of the ISIM structure to design targeting and obtain resolution estimates. We compare these measurements with those taken from a well known ambient metrology system, namely, the Leica laser tracker system. We also describe the data reduction algorithm planned to interpret cryogenic data from the Flight structure. Photogrammetry was selected from an informal trade study of cryogenic metrology systems because its resolution meets sub-allocations to ISIM alignment requirements and it is a non-contact method that can in principle measure six degrees of freedom changes in target location. In addition, photogrammetry targets can be readily related to targets used for ambient surveys of the structure. By thermally isolating the photogrammetry camera during testing, metrology can be performed in situ during thermal cycling. Photogrammetry also has a small but significant cryogenic heritage in astronomical instrumentation metrology. It was used to validate the displacement/deformation predictions of the reflectors and the feed horns during thermal/vacuum testing (90K) for the Microwave Anisotropy Probe (MAP). It also was used during thermal vacuum testing (100K) to verify shape and component alignment at operational temperature of the High Gain Antenna for New Horizons. With tighter alignment requirements and lower operating temperatures than the aforementioned observatories, ISIM presents new challenges in the development of this metrology system.
Preferred-Actual Learning Environment "Spaces" and Earth Science Outcomes in Taiwan
ERIC Educational Resources Information Center
Chang, Chun-Yen; Hsiao, Chien-Hua; Barufaldi, James P.
2006-01-01
This study examines the possibilities of differential impacts on students' earth science learning outcomes between different preferred-actual learning environment spaces by using a newly developed ESCLEI (Earth Science Classroom Learning Environment Instrument). The instrument emphasizes three simultaneously important classroom components:…
The Science-Mathematics Connection: Using Technology in an Interdisciplinary Module.
ERIC Educational Resources Information Center
Flournoy, Bonita E.; Cook-Bax, Janice E.; Harris, Lillian
2001-01-01
Points out the importance of mathematics and science connections in the curriculum and introduces the Science Teachers Open Support System (STOSS) program which aims to assist African American middle school and high school teachers in designing and implementing technology-based interdisciplinary science and mathematics modules for culturally…
Teaching Earth System Science Using Climate Educational Modules Based on NASA and NOAA Resources
NASA Astrophysics Data System (ADS)
Ramirez, P. C.; LaDochy, S.; Patzert, W. C.; Willis, J. K.
2011-12-01
The Earth System Science Education Alliance (ESSEA) recently developed a set of climate related educational modules to be used by K-12 teachers. These modules incorporate recent NASA and NOAA resources in Earth Science education. In the summer of 2011, these modules were tested by in-service teachers in courses held at several college campuses. At California State University, Los Angeles, we reviewed two climate modules: The Great Ocean Conveyer Belt and Abrupt Climate Change (http://essea.strategies.org/module.php?module_id=148) and Sulfur Dioxide: Its Role in Climate Change (http://essea.strategies.org/module.php?module_id=168). For each module, 4-6 teachers formed a cohort to complete assignments and unit assessments and to evaluate the effectiveness of the module for use in their classroom. Each module presented the teachers with a task that enabled them to research and better understand the science behind the climate related topic. For The Great Ocean Conveyer Belt, teachers are tasked with evaluating the impacts of the slowing or stopping of the thermohaline circulation on climate. In the same module teachers are charged with determining the possibilities of an abrupt climate shift during this century such as happened in the past. For the Sulfur Dioxide module teachers investigated the climate implications of the occurrence of several major volcanic eruptions within a short time period, as well as the feasibility of using sulfates to geoengineer climate change. In completing module assignments, teachers must list what they already know about the topic as well as formulate questions that still need to be addressed. Teachers then model the related interactions between spheres comprising the earth system (atmosphere-lithosphere, for example) to evaluate possible environmental impacts. Finally, teachers applied their research results to create lesson plans for their students. At a time when climate change and global warming are important topics in science education, these climate modules provide valuable learning experiences and resources for K-12 teachers.
Science with Constellation-X, Choice of Instrumentation
NASA Technical Reports Server (NTRS)
Hornscheimeier, Ann; White, Nicholas; Tananbaum, Harvey; Garcia, Michael; Bookbinder, Jay; Petre, Robert; Cottam, Jean
2007-01-01
The Constellation X-ray Observatory is one of the two Beyond Einstein Great Observatories and will provide a 100-fold increase in collecting area in high spectral resolving power X-ray instruments over the Chandra and XMM-Newton gratings instruments. The mission has four main science objectives which drive the requirements for the mission. This contribution to the Garmire celebration conference describes these four science areas: Black Holes, Dark Energy, Missing Baryons, and the Neutron Star Equation of State as well as the requirements flow-down that give rise to the choice of instrumentation and implementation for Constellation-X. As we show, each of these science areas place complementary constraints on mission performance parameters such as collecting area, spectral resolving power, timing resolution, and field of view. The mission's capabilities will enable a great breadth of science, and its resources will be open to the community through its General Observer program.
Science Data Preservation: Implementation and Why It Is Important
NASA Technical Reports Server (NTRS)
Kempler, Steven J.; Moses, John F.; Gerasimov, Irina V.; Johnson, James E.; Vollmer, Bruce E.; Theobald, Michael L.; Ostrenga, Dana M.; Ahmad, Suraiya; Ramapriyan, Hampapuram K.; Khayat, Mohammad G.
2013-01-01
Remote Sensing data generation by NASA to study Earth s geophysical processes was initiated in 1960 with the launch of the first Television Infrared Observation Satellite Program (TIROS), to develop a meteorological satellite information system. What would be deemed as a primitive data set by today s standards, early Earth science missions were the foundation upon which today s remote sensing instruments have built their scientific success, and tomorrow s instruments will yield science not yet imagined. NASA Scientific Data Stewardship requirements have been documented to ensure the long term preservation and usability of remote sensing science data. In recent years, the Federation of Earth Science Information Partners and NASA s Earth Science Data System Working Groups have organized committees that specifically examine standards, processes, and ontologies that can best be employed for the preservation of remote sensing data, supporting documentation, and data provenance information. This presentation describes the activities, issues, and implementations, guided by the NASA Earth Science Data Preservation Content Specification (423-SPEC-001), for preserving instrument characteristics, and data processing and science information generated for 20 Earth science instruments, spanning 40 years of geophysical measurements, at the NASA s Goddard Earth Sciences Data and Information Services Center (GES DISC). In addition, unanticipated preservation/implementation questions and issues in the implementation process are presented.
Advanced instrumentation for acousto-ultrasonic based structural health monitoring
NASA Astrophysics Data System (ADS)
Smithard, Joel; Galea, Steve; van der Velden, Stephen; Powlesland, Ian; Jung, George; Rajic, Nik
2016-04-01
Structural health monitoring (SHM) systems using structurally-integrated sensors potentially allow the ability to inspect for damage in aircraft structures on-demand and could provide a basis for the development of condition-based maintenance approaches for airframes. These systems potentially offer both substantial cost savings and performance improvements over conventional nondestructive inspection (NDI). Acousto-ultrasonics (AU), using structurallyintegrated piezoelectric transducers, offers a promising basis for broad-field damage detection in aircraft structures. For these systems to be successfully applied in the field the hardware for AU excitation and interrogation needs to be easy to use, compact, portable, light and, electrically and mechanically robust. Highly flexible and inexpensive instrumentation for basic background laboratory investigations is also required to allow researchers to tackle the numerous scientific and engineering issues associated with AU based SHM. The Australian Defence Science and Technology Group (DST Group) has developed the Acousto Ultrasonic Structural health monitoring Array Module (AUSAM+), a compact device for AU excitation and interrogation. The module, which has the footprint of a typical current generation smart phone, provides autonomous control of four send and receive piezoelectric elements, which can operate in pitch-catch or pulse-echo modes and can undertake electro-mechanical impedance measurements for transducer and structural diagnostics. Modules are designed to operate synchronously with other units, via an optical link, to accommodate larger transducer arrays. The module also caters for fibre optic sensing of acoustic waves with four intensity-based optical inputs. Temperature and electrical resistance strain gauge inputs as well as external triggering functionality are also provided. The development of a Matlab hardware object allows users to easily access the full hardware functionality of the device and provides enormous flexibility for the creation of custom interfaces. This paper discusses the impetus for the concept, and outlines key aspects of the hardware design and the module capabilities. The efficacy of the system is demonstrated through the results of first-of-class testing, as well as laboratory AU studies on a flat plate using an array of piezoelectric elements.
Study of the true performance limits of the Astrometric Multiplexing Area Scanner (AMAS)
NASA Technical Reports Server (NTRS)
Frederick, L. W.; Mcalister, H. A.
1975-01-01
The Astrometric Multiplexing Area Scanner (AMAS) is an instrument designed to perform photoelectric long focus astrometry of small fields. Modulation of a telescope focal plane with a rotating Ronchi ruling produces a frequency modulated signal from which relative positions and magnitudes can be extracted. Evaluation instrumental precision, accuracy and resolution characteristics with respect to a variety of instrumental and cosmical parameters indicates 1.5 micron precision and accuracy for single stars under specific conditions. This value decreases for increased number of field stars, particularly for fainter stars.
NASA Astrophysics Data System (ADS)
Bleuel, M.; Bröll, M.; Lang, E.; Littrell, K.; Gähler, R.; Lal, J.
2006-01-01
In this paper we report the results of our first tests of a novel proof-of-principle instrument developed at the IPNS, Argonne. The experiment was performed on the time of flight POSY1 instrument, the polarized reflectometer at the IPNS, which was modified to accommodate the apparatus. Two sets of RF-flippers were tested together, generating a modulated intensity by zero effort (MIEZE)-type neutron resonant spin echo signal which was observed at the detector using a wide neutron wavelength band.
NASA Astrophysics Data System (ADS)
Davis, J. B.; Rigsby, C. A.; Muston, C.; Robinson, Z.; Morehead, A.; Stellwag, E. J.; Shinpaugh, J.; Thompson, A.; Teller, J.
2010-12-01
Graduate students and faculty at East Carolina University are working with area high schools to address the common science and mathematics deficiencies of many high school students. Project RaN (Reasoning about Nature), an interdisciplinary science/math/education research project, addresses these deficiencies by focusing on the history of science and the relationship between that history and modern scientific thought and practice. The geological sciences portion of project RaN has three specific goals: (1) to elucidate the relationships among the history of scientific discovery, the geological sciences, and modern scientific thought; (2) to develop, and utilize in the classroom, instructional modules that are relevant to the modern geological sciences curriculum and that relate fundamental scientific discoveries and principles to multiple disciplines and to modern societal issues; and (3) to use these activity-based modules to heighten students’ interest in science disciplines and to generate enthusiasm for doing science in both students and instructors. The educational modules that result from this linkage of modern and historical scientific thought are activity-based, directly related to the National Science Standards for the high school sciences curriculum, and adaptable to fit each state’s standard course of study for the sciences and math. They integrate historic sciences and mathematics with modern science, contain relevant background information on both the concept(s) and scientist(s) involved, present questions that compel students to think more deeply (both qualitatively and quantitatively) about the subject matter, and include threads that branch off to related topics. Modules on topics ranging from the density to cladistics to Kepler’s laws of planetary motion have been developed and tested. Pre- and post-module data suggest that both students and teachers benefit from these interdisciplinary historically based classroom experiences.
ERIC Educational Resources Information Center
Lind, Patricia; Germano, Catherine
These five learning modules use text interspersed with illustrations and reinforcement exercises to instruct dental aide and dental hygiene students about jaw bones and gums, dental deposits, and dental instruments. The first four modules were prepared by Patricia Lind in both Spanish and English. "The Gum and Bone of Permanent Teeth"…
NASA Astrophysics Data System (ADS)
Oktarina, K.; Lufri, L.; Chatri, M.
2018-04-01
Referring to primary data collected through observation and interview to natural science teachers and some students, it is found that there is no natural science teaching materials in the form of learning modules that can make learners learn independently, build their own knowledge, and construct good character in themselves. In order to address this problem, then it is developed natural science learning module oriented to constructivism with the contain of character education. The purpose of this study is to reconstruct valid module of natural science learning materials. This type of research is a development research using the Plomp model. The development phase of the Plomp model consists of 3 stages, namely 1) preliminary research phase, 2) development or prototyping phase, and 3) assessment phase. The result of the study shows that natural science learning module oriented to constructivism with the contain of character education for students class VIII of Yunior High School 11 Sungai Penuh is valid. In future work, practicality and effectiveness will be investigated.
The Socio-Technical Design of a Library and Information Science Collaboratory
ERIC Educational Resources Information Center
Lassi, Monica; Sonnenwald, Diane H.
2013-01-01
Introduction: We present a prototype collaboratory, a socio-technical platform to support sharing research data collection instruments in library and information science. No previous collaboratory has attempted to facilitate sharing digital research data collection instruments among library and information science researchers. Method: We have…
Bio-Optical Instrumentation for Mapping of the Upper Ocean Using SeaSoar
1998-01-01
Bio-Optical Instrumentation for Mapping of the Upper Ocean Using SeaSoar Burton H. Jones Wrigley Institute of Environmental Science and Department of... Environmental Science and,Department of Biological Sciences,Los Angeles,CA,90089-0371 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING
Cellular telephone-based radiation detection instrument
Craig, William W [Pittsburg, CA; Labov, Simon E [Berkeley, CA
2011-06-14
A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.
2010 Space Telescope Science Institute Calibration Workshop - Hubble after SM4. Preparing JWST
NASA Astrophysics Data System (ADS)
Deustua, Susana; Oliveira, Cristina
2010-07-01
After the successful servicing mission in May 2009 (SM4), the Hubble Space Telescope now has five working science instruments: COS, WFC3, STIS, ACS, FGS. NICMOS is currently on hold. Construction has started on the James Webb Space Telescope and its instruments. Conducting research projects at the vanguard often means pushing the instruments to their limits and requires understanding and calibrating complex instrument effects.
Advanced Instrumentation for Ultrafast Science at the LCLS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berrah, Nora
2015-10-13
This grant supported a Single Investigator and Small Group Research (SISGR) application to enable multi-user research in Ultrafast Science using the Linac Coherent Light Source (LCLS), the world’s first hard x-ray free electron laser (FEL) which lased for the first time at 1.5 Å on April 20, 2009. The goal of our proposal was to enable a New Era of Science by requesting funds to purchase and build Advanced Instrumentation for Ultrafast Science (AIUS), to utilize the intense, short x-ray pulses produced by the LCLS. The proposed instrumentation will allow peer review selected users to probe the ultrasmall and capture themore » ultrafast. These tools will expand on the investment already made in the construction of the light source and its instrumentation in both the LCLS and LUSI projects. The AIUS will provide researchers in the AMO, Chemical, Biological and Condensed Matter communities with greater flexibility in defining their scientific agenda at the LCLS. The proposed instrumentation will complement and significantly augment the present AMO instrument (funded through the LCLS project) through detectors and capabilities not included in the initial suite of instrumentation at the facility. We have built all of the instrumentations and they have been utilized by scientists. Please see report attached.« less
LADEE Science Results and Implications for Exploration
NASA Technical Reports Server (NTRS)
Elphic, R. C.; M. Horanyi; Colaprete, A.; Benna; Mahaffy, P.; Delory, G. T.; Noble, S. K.; Halekas, J. S.; Hurley, D. M.; Stubbs, T. J.;
2015-01-01
NASA's Lunar Atmosphere and Dust Environment Explorer, LADEE, concluded a fully successful investigation of the Moon's tenuous gas and dust atmosphere on April 18, 2014. LADEE hosted three science instruments to address atmospheric and dust objectives, and a technology demonstration of deep-space optical communication. The three science instruments were an ultraviolet-visible spectrometer (UVS), a neutral mass spectrometer (NMS), and a lunar dust experiment (LDEX). All data acquired by these instruments have been submitted to the Planetary Data System. A mission overview and science instrument descriptions are readily available. LADEE inserted into a low-altitude, retrograde lunar orbit optimized for observations at the sunrise terminator, where surface temperatures rise abruptly. LADEE also carried out observations over a wide range of local times and altitudes. Here we describe some of the initial results.
Instrumentation issues in implementation science.
Martinez, Ruben G; Lewis, Cara C; Weiner, Bryan J
2014-09-04
Like many new fields, implementation science has become vulnerable to instrumentation issues that potentially threaten the strength of the developing knowledge base. For instance, many implementation studies report findings based on instruments that do not have established psychometric properties. This article aims to review six pressing instrumentation issues, discuss the impact of these issues on the field, and provide practical recommendations. This debate centers on the impact of the following instrumentation issues: use of frameworks, theories, and models; role of psychometric properties; use of 'home-grown' and adapted instruments; choosing the most appropriate evaluation method and approach; practicality; and need for decision-making tools. Practical recommendations include: use of consensus definitions for key implementation constructs; reporting standards (e.g., regarding psychometrics, instrument adaptation); when to use multiple forms of observation and mixed methods; and accessing instrument repositories and decision aid tools. This debate provides an overview of six key instrumentation issues and offers several courses of action to limit the impact of these issues on the field. With careful attention to these issues, the field of implementation science can potentially move forward at the rapid pace that is respectfully demanded by community stakeholders.
NASA Astrophysics Data System (ADS)
Abd-El-Khalick, Fouad; Summers, Ryan; Said, Ziad; Wang, Shuai; Culbertson, Michael
2015-11-01
This study is part of a large-scale project focused on 'Qatari students' Interest in, and Attitudes toward, Science' (QIAS). QIAS aimed to gauge Qatari student attitudes toward science in grades 3-12, examine factors that impact these attitudes, and assess the relationship between student attitudes and prevailing modes of science teaching in Qatari schools. This report details the development and validation of the 'Arabic-Speaking Students' Attitudes toward Science Survey' (ASSASS), which was specifically developed for the purposes of the QIAS project. The theories of reasoned action and planned behavior (TRAPB) [Ajzen, I., & Fishbein, M. (2005). The influence of attitudes on behavior. In D. Albarracín, B. T. Johnson, & M. P. Zanna (Eds.), The handbook of attitudes (pp. 173-221). Mahwah, NJ: Erlbaum] guided the instrument development. Development and validation of the ASSASS proceeded in 3 phases. First, a 10-member expert panel examined an initial pool of 74 items, which were revised and consolidated into a 60-item version of the instrument. This version was piloted with 369 Qatari students from the target schools and grade levels. Analyses of pilot data resulted in a refined version of the ASSASS, which was administered to a national probability sample of 3027 participants representing all students enrolled in grades 3-12 in the various types of schools in Qatar. Of the latter, 1978 students completed the Arabic version of the instrument. Analyses supported a robust, 5-factor model for the instrument, which is consistent with the TRAPB framework. The factors were: Attitudes toward science and school science, unfavorable outlook on science, control beliefs about ability in science, behavioral beliefs about the consequences of engaging with science, and intentions to pursue science.
NASA Technical Reports Server (NTRS)
Orr, H. D., III; Rarig, P. L.
1981-01-01
A pressure modulator radiometer operated in a nadir viewing mode from the top of a midlatitude summer model of the atmosphere was theoretically studied for monitoring the mean volumetric mixing ratio of carbon monoxide in the troposphere. The mechanical characteristics of the instrument on the Nimbus 7 stratospheric and mesospheric sounder experiment are assumed and CO is assumed to be the only infrared active constituent. A line by line radiative transfer computer program is used to simulate the upwelling radiation reaching the top of the atmosphere. The performance of the instrument is examined as a function of the mean pressure in and the length of the instrument gas correlation cell. Instrument sensitivity is described in terms of signal to noise ratio for a 10 percent change in CO mixing ratio. Sensitivity to mixing ratio changes is also studied. It is concluded that tropospheric monitoring requires a pressure modulator drive having a larger swept volume and producing higher compression ratios at higher mean cell pressures than the Nimbus 7 design.
Status of ART-XC/SRG instrument
NASA Astrophysics Data System (ADS)
Pavlinsky, M.; Akimov, V.; Levin, V.; Krivchenko, A.; Rotin, A.; Kuznetsova, M.; Lapshov, I.; Tkachenko, A.; Semena, N.; Buntov, M.; Glushenko, A.; Arefiev, V.; Yaskovich, A.; Grebenev, S.; Sazonov, S.; Revnivtsev, M.; Lutovinov, A.; Molkov, S.; Krivonos, R.; Serbinov, D.; Kudelin, M.; Drozdova, T.; Voronkov, S.; Sunyaev, R.; Churazov, E.; Gilfanov, M.; Babyshkin, V.; Lomakin, I.; Menderov, A.; Gubarev, M.; Ramsey, B.; Kilaru, K.; O'Dell, S. L.; Kolodziejczak, J.; Elsner, R.; Zavlin, V.; Swartz, D.
2016-07-01
Spectrum Roentgen Gamma (SRG) is an X-ray astrophysical observatory, developed by Russia in collaboration with Germany. The mission will be launched in 2017 from Baikonur and placed in a 6-month-period halo orbit around L2. The scientific payload consists of two independent telescope arrays - a soft-x-ray survey instrument, eROSITA, being provided by Germany and a medium-x-ray-energy survey instrument ART-XC being developed by Russia. ART-XC will consist of seven independent, but co-aligned, telescope modules. The ART-XC flight mirror modules have been developed and fabricated at the NASA Marshall Space Flight Center (MSFC). Each mirror module will be aligned with a focal plane CdTe double-sided strip detector which will operate over the energy range of 6-30 keV, with an angular resolution of <1', a field of view of 34' and an expected energy resolution of about 12% at 14 keV. The current status of the ART-XC/SRG instrument is presented here.
Many Paths toward Discovery: A Module for Teaching How Science Works
ERIC Educational Resources Information Center
Price, Rebecca M.; Perez, Kathryn E.
2018-01-01
Improving students' understanding of how science works requires explicit instruction. Here, we test the efficacy of a module based on two previously published activities (the "Cube Puzzle" and the case study "Asteroids and Dinosaurs") that teach how science works to college science majors. Students also use the How Science…
Bringing Global Climate Change Education to Alabama Middle School and High School Classrooms
NASA Astrophysics Data System (ADS)
Lee, M.; Mitra, C.; Percival, E.; Thomas, A.; Lucy, T.; Hickman, E.; Cox, J.; Chaudhury, S. R.; Rodger, C.
2013-12-01
A NASA-funded Innovations in Climate Education (NICE) Program has been launched in Alabama to improve high school and middle school education in climate change science. The overarching goal is to generate a better informed public that understands the consequences of climate change and can contribute to sound decision making on related issues. Inquiry based NICE modules have been incorporated into the existing course of study for 9-12 grade biology, chemistry, and physics classes. In addition, new modules in three major content areas (earth and space science, physical science, and biological science) have been introduced to selected 6-8 grade science teachers in the summer of 2013. The NICE modules employ five E's of the learning cycle: Engage, Explore, Explain, Extend and Evaluate. Modules learning activities include field data collection, laboratory measurements, and data visualization and interpretation. Teachers are trained in the use of these modules for their classroom through unique partnership with Alabama Science in Motion (ASIM) and the Alabama Math Science Technology Initiative (AMSTI). Certified AMSTI teachers attend summer professional development workshops taught by ASIM and AMSTI specialists to learn to use NICE modules. During the school year, the specialists in turn deliver the needed equipment to conduct NICE classroom exercises and serve as an in-classroom resource for teachers and their students. Scientists are partnered with learning and teaching specialists and lead teachers to implement and test efficacy of instructional materials, models, and NASA data used in classroom. The assessment by professional evaluators after the development of the modules and the training of teachers indicates that the modules are complete, clear, and user-friendly. The overall teacher satisfaction from the teacher training was 4.88/5.00. After completing the module teacher training, the teachers reported a strong agreement that the content developed in the NICE modules should be included in the Alabama secondary curriculum. Eventually, the NICE program has the potential to reach over 200,000 students when the modules are fully implemented in every school in the state of Alabama. The project can give these students access to expertise and equipment, thereby strengthening the connections between the universities, state education administrators, and the community.
ERIC Educational Resources Information Center
Wei, Silin; Liu, Xiufeng; Jia, Yuane
2014-01-01
Scientific models and modeling play an important role in science, and students' understanding of scientific models is essential for their understanding of scientific concepts. The measurement instrument of "Students' Understanding of Models in Science" (SUMS), developed by Treagust, Chittleborough & Mamiala ("International…
CAB Contribution to HARMONI: The first light spectrograph of the E-ELT
NASA Astrophysics Data System (ADS)
Piqueras López, J.; Arribas, S.; Calcines, A.
2017-03-01
HARMONI (High Angular Resolution Monolithic Optical and Near-infrared Integral field spectrograph) is a visible and near-infrared (0.47 to 2.45 μm) integral field spectrograph selected as a first-light instrument for the European Extremely Large Telescope (E-ELT). With four spatial scales (60, 20, 10 and 4 mas) and a wide range of spectral resolving powers (R=3500, 7500, 20000), HARMONI will allow scientists to address many of the E-ELT science cases. The HARMONI Consortium is led by the University of Oxford, and is also formed by the UK Astronomy Technology Centre (UKATC, Edinburgh, UK), Centre de Recherche Astrophysique de Lyon (CRAL), Laboratoire d'Astrophysique de Marseille (LAM), Instituto de Astrofísica de Canarias (IAC, Spain) and the Centro de Astrobiología (CAB INTA-CSIC, Spain). We summarize here the current status of the project, and describe the participation of CAB to design and manufacture two of the instrument sub-systems: the calibration unit and the secondary guiding module. The calibration unit will simulate the optical output of the telescope, and provide the functionality needed to illuminate the focal plane in such a way that the following type of data can be obtained: data aimed at removing the instrumental signature from the raw data and to convert the data into a data product that uses physical units, data required for monitoring the status of the instrument, and data required for calibrating the secondary guiding subsystem. The secondary guiding subsystem basic requirement is to provide knowledge (relative or absolute) of the location of the science focal plane on timescales of a few seconds and longer (up to months), with an accuracy of 2mas or 0.1x the input FWHM (at H/K bands), whichever is greater. The subsystem should achieve this level performance for different observation modes, e.g. no- AO, GLAO and LTAO modes.
NASA's Planetary Science Missions and Participations
NASA Astrophysics Data System (ADS)
Daou, Doris; Green, James L.
2017-04-01
NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. The PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of another instrument. This was a tremendously successful activity leading to another similar call for instrument proposals for the Europa mission. Europa mission instruments will be used to conduct high priority scientific investigations addressing the science goals for the moon's exploration outlined in the National Resource Council's Planetary Decadal Survey, Vision and Voyages (2011). International partnerships are an excellent, proven way of amplifying the scope and sharing the science results of a mission otherwise implemented by an individual space agency. The exploration of the Solar System is uniquely poised to bring planetary scientists, worldwide, together under the common theme of understanding the origin, evolution, and bodies of our solar neighborhood. In the past decade we have witnessed great examples of international partnerships that made various missions the success they are known for today. The Planetary Science Division at NASA continues to seek cooperation with our strong international partners in support of planetary missions.
A Review and Comparison of Diagnostic Instruments to Identify Students' Misconceptions in Science
ERIC Educational Resources Information Center
Gurel, Derya Kaltakci; Eryilmaz, Ali; McDermott, Lillian Christie
2015-01-01
Different diagnostic tools have been developed and used by researchers to identify students' conceptions. The present study aimed to provide an overview of the common diagnostic instruments in science to assess students' misconceptions. Also the study provides a brief comparison of these common diagnostic instruments with their strengths and…
NASA Astrophysics Data System (ADS)
Sari, Anggi Ristiyana Puspita; Suyanta, LFX, Endang Widjajanti; Rohaeti, Eli
2017-05-01
Recognizing the importance of the development of critical thinking and science process skills, the instrument should give attention to the characteristics of chemistry. Therefore, constructing an accurate instrument for measuring those skills is important. However, the integrated instrument assessment is limited in number. The purpose of this study is to validate an integrated assessment instrument for measuring students' critical thinking and science process skills on acid base matter. The development model of the test instrument adapted McIntire model. The sample consisted of 392 second grade high school students in the academic year of 2015/2016 in Yogyakarta. Exploratory Factor Analysis (EFA) was conducted to explore construct validity, whereas content validity was substantiated by Aiken's formula. The result shows that the KMO test is 0.714 which indicates sufficient items for each factor and the Bartlett test is significant (a significance value of less than 0.05). Furthermore, content validity coefficient which is based on 8 experts is obtained at 0.85. The findings support the integrated assessment instrument to measure critical thinking and science process skills on acid base matter.
2009-10-06
NASA Conducts Airborne Science Aboard Zeppelin Airship: equipped with two imaging instruments enabling remote sensing and atmospheric science measurements not previously practical. Pre-flight checkout of airship flight systems and instruments.
Mars 2020 Rover SHERLOC Calibration Target
NASA Technical Reports Server (NTRS)
Graff, Trevor; Fries, Marc; Burton, Aaron; Ross, Amy; Larson, Kristine; Garrison, Dan; Calaway, Mike; Tran, Vinh; Bhartia, Roh; Beegle, Luther
2016-01-01
The Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) instrument is a deep ultraviolet (UV) Raman Fluorescence instrument selected as part of the Mars 2020 rover instrument suite. SHERLOC will be mounted on the rover arm and its primary role is to identify carbonaceous species in martian samples. The SHERLOC instrument requires a calibration target which is being designed and fabricated at JSC as part of our continued science participation in Mars robotic missions. The SHERLOC calibration target will address a wide range of NASA goals to include basic science of interest to both the Science Mission Directorate and Human Exploration and Operations Mission Directorate.
Advances in instrumentation at the W. M. Keck Observatory
NASA Astrophysics Data System (ADS)
Adkins, Sean M.; Armandroff, Taft; Lewis, Hilton; Martin, Chris; McLean, Ian S.; Rockosi, Constance; Wizinowich, Peter
2010-07-01
In this paper we describe both recently completed instrumentation projects and our current development efforts in the context of the Observatory's science driven strategic plan which seeks to address key questions in observational astronomy for extra-galactic, Galactic, and planetary science with both seeing limited capabilities and high angular resolution adaptive optics capabilities. This paper will review recently completed projects as well as new instruments in development including MOSFIRE, a near IR multi-object spectrograph nearing completion, a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager, and the Keck Next Generation Adaptive Optics facility and its first light science instrument DAVINCI.
Teaching energy using an integrated science approach
NASA Astrophysics Data System (ADS)
Poggi, Valeria; Miceli, Cristina; Testa, Italo
2017-01-01
Despite its relevance to all scientific domains, the debate surrounding the teaching of energy is still open. The main point remains the problems students have in understanding some aspects of the energy concept and in applying their knowledge to the comprehension of natural phenomena. In this paper, we present a research-based interdisciplinary approach to the teaching of energy in which the first and second laws of thermodynamics were used to interpret physical, chemical and biological processes. The contents of the three disciplines (physics, chemistry, biology) were reconstructed focusing on six basic aspects of energy (forms, transfer, transformation, conservation, degradation, and entropy) and using common teaching methodologies. The module was assessed with 39 secondary school students (aged 15-16) using a 30-question research instrument and a treatment/control group methodology. Analysis of students’ learning outcomes suggests a better understanding of the energy concept, supporting the effectiveness of an interdisciplinary approach in the teaching of energy in physics and science in general. Implications for the teaching of energy are briefly discussed.
Visually Lossless Data Compression for Real-Time Frame/Pushbroom Space Science Imagers
NASA Technical Reports Server (NTRS)
Yeh, Pen-Shu; Venbrux, Jack; Bhatia, Prakash; Miller, Warner H.
2000-01-01
A visually lossless data compression technique is currently being developed for space science applications under the requirement of high-speed push-broom scanning. The technique is also applicable to frame based imaging and is error-resilient in that error propagation is contained within a few scan lines. The algorithm is based on a block transform of a hybrid of modulated lapped transform (MLT) and discrete cosine transform (DCT), or a 2-dimensional lapped transform, followed by bit-plane encoding; this combination results in an embedded bit string with exactly the desirable compression rate as desired by the user. The approach requires no unique table to maximize its performance. The compression scheme performs well on a suite of test images typical of images from spacecraft instruments. Flight qualified hardware implementations are in development; a functional chip set is expected by the end of 2001. The chip set is being designed to compress data in excess of 20 Msamples/sec and support quantizations from 2 to 16 bits.
NASA Technical Reports Server (NTRS)
Beyon, Jeffrey Y.; Ng, Tak-Kwong; Davis, Mitchell J.; Adams, James K.; Bowen, Stephen C.; Fay, James J.; Hutchinson, Mark A.
2015-01-01
The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program since April, 2012. The HOPS team recently completed two flight campaigns during the summer of 2014 on two different aircrafts with two different science instruments. The first flight campaign was in July, 2014 based at NASA Langley Research Center (LaRC) in Hampton, VA on the NASA's HU-25 aircraft. The science instrument that flew with HOPS was Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) funded by NASA's Instrument Incubator Program (IIP). The second campaign was in August, 2014 based at NASA Armstrong Flight Research Center (AFRC) in Palmdale, CA on the NASA's DC-8 aircraft. HOPS flew with the Multifunctional Fiber Laser Lidar (MFLL) instrument developed by Excelis Inc. The goal of the campaigns was to perform an end-to-end demonstration of the capabilities of the HOPS prototype system (HOPS COTS) while running the most computationally intensive part of the ASCENDS algorithm real-time on-board. The comparison of the two flight campaigns and the results of the functionality tests of the HOPS COTS are presented in this paper.
MSL-RAD Cruise Operations Concept
NASA Technical Reports Server (NTRS)
Brinza, David E.; Zeitlin, Cary; Hassler, Donald; Weigle, Gerald E.; Boettcher, Stephan; Martin, Cesar; Wimmer-Schweingrubber, Robert
2012-01-01
The Mars Science Laboratory (MSL) payload includes the Radiation Assessment Detector (RAD) instrument, intended to fully characterize the radiation environment for the MSL mission. The RAD instrument operations concept is intended to reduce impact to spacecraft resources and effort for the MSL operations team. By design, RAD autonomously performs regular science observations without the need for frequent commanding from the Rover Compute Element (RCE). RAD operates with pre-defined "sleep" and "observe" periods, with an adjustable duty cycle for meeting power and data volume constraints during the mission. At the start of a new science observation, RAD performs a pre-observation activity to assess count rates for selected RAD detector elements. Based on this assessment, RAD can enter "solar event" mode, in which instrument parameters (including observation duration) are selected to more effectively characterize the environment. At the end of each observation period, RAD stores a time-tagged, fixed length science data packet in its non-volatile mass memory storage. The operating cadence is defined by adjustable parameters, also stored in non-volatile memory within the instrument. Periodically, the RCE executes an on-board sequence to transfer RAD science data packets from the instrument mass storage to the MSL downlink buffer. Infrequently, the RAD instrument operating configuration is modified by updating internal parameter tables and configuration entries.
Teaching "Digital Earth" technologies in Environmental Sciences
NASA Astrophysics Data System (ADS)
Griffiths, J. A.
2014-04-01
As part of a review process for a module entitled "Digital Earth" which is currently taught as part of a BSc in Environmental Sciences program, research into the current provision of Geographical Information Science and Technology (GIS&T) related modules on UKbased Environmental Science degrees is made. The result of this search is used with DiBiase et al. (2006) "Body of Knowledge of GIS&T" to develop a foundation level module for Environmental Sciences. Reference is also made to the current provision geospatial analysis techniques in secondary and tertiary education in the UK, US and China, and the optimal use of IT and multimedia in geo-education.
Conceptual design of the Space Station combustion module
NASA Technical Reports Server (NTRS)
Morilak, Daniel P.; Rohn, Dennis W.; Rhatigan, Jennifer L.
1994-01-01
The purpose of this paper is to describe the conceptual design of the Combustion Module for the International Space Station Alpha (ISSA). This module is part of the Space Station Fluids/Combustion Facility (SS FCF) under development at the NASA Lewis Research Center. The Fluids/Combustion Facility is one of several science facilities which are being developed to support microgravity science investigations in the US Laboratory Module of the ISSA. The SS FCF will support a multitude of fluids and combustion science investigations over the lifetime of the ISSA and return state-of-the-art science data in a timely and efficient manner to the scientific communities. This will be accomplished through modularization of hardware, with planned, periodic upgrades; modularization of like scientific investigations that make use of common facility functions; and through the use of orbital replacement units (ORU's) for incorporation of new technology and new functionality. The SS FCF is scheduled to become operational on-orbit in 1999. The Combustion Module is presently scheduled for launch to orbit and integration with the Fluids/Combustion Facility in 1999. The objectives of this paper are to describe the history of the Combustion Module concept, the types of combustion science investigations which will be accommodated by the module, the hardware design heritage, the hardware concept, and the hardware breadboarding efforts currently underway.
Conceptual Design of the Space Station Fluids Module
NASA Technical Reports Server (NTRS)
Rohn, Dennis W.; Morilak, Daniel P.; Rhatigan, Jennifer L.; Peterson, Todd T.
1994-01-01
The purpose of this paper is to describe the conceptual design of the Fluids Module for the International Space Station Alpha (ISSA). This module is part of the Space Station Fluids/Combustion Facility (SS FCF) under development at the NASA Lewis Research Center. The Fluids/Combustion Facility is one of several science facilities which are being developed to support microgravity science investigations in the US Laboratory Module of the ISSA. The SS FCF will support a multitude of fluids and combustion science investigations over the lifetime of the ISSA and return state-of-the-art science data in a timely and efficient manner to the scientific communities. This will be accomplished through modularization of hardware, with planned, periodic upgrades; modularization of like scientific investigations that make use of common facility functions; and use of orbital replacement units (ORU's) for incorporation of new technology and new functionality. Portions of the SS FCF are scheduled to become operational on-orbit in 1999. The Fluids Module is presently scheduled for launch to orbit and integration with the Fluids/Combustion Facility in 2001. The objectives of this paper are to describe the history of the Fluids Module concept, the types of fluids science investigations which will be accommodated by the module, the hardware design heritage, the hardware concept, and the hardware breadboarding efforts currently underway.
Study of a module alignment measuring system for UARS
NASA Technical Reports Server (NTRS)
1982-01-01
An alignment measurement system (AMS) which precisely determines the boresights pointing directions of the Upper Atmosphere Research Satellite (UARS) instruments relative to the UARS attitude control system (ACS) was studied. The technology used in on the MAGSAT mission was considered. The AMS optical, mechanical, thermal and electrical system properties were defined. The AMS is constrained to interface with the UARS instrument module and spacecraft layout.
The Stratospheric Observatory for Infrared Astronomy (SOFIA)
NASA Astrophysics Data System (ADS)
Gehrz, R. D.; Becklin, E. E.
2008-07-01
The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA) Project will operate a 2.5-meter infrared airborne telescope in a Boeing 747SP. Flying in the stratosphere at altitudes as high as 45,000 feet, SOFIA enables observations in the infrared and submillimeter region with an average transmission of 80%. SOFIA has a wide instrument complement including broadband imaging cameras, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. The first generation and future instruments will enable SOFIA to make unique contributions to a broad array of science topics. SOFIA began its post-modification test flight series on April 26, 2007 in Waco, Texas and will conclude in winter of 2008-09. SOFIA will be staged out of Dryden's aircraft operations facility at Palmdale, Site 9, CA for science operations. The SOFIA Science Center will be at NASA Ames Research Center, Moffet Field, CA. First science flights will begin in 2009, the next instrument call and first General Observer science call will be in 2010, and a full operations schedule of ~120 flights per year will be reached by 2014. The observatory is expected to operate for more than 20 years. The sensitivity, characteristics, science instrument complement, future instrument opportunities, and examples of first light and early mission science are discussed.
First Materials Science Research Facility Rack Capabilities and Design Features
NASA Technical Reports Server (NTRS)
Cobb, S.; Higgins, D.; Kitchens, L.; Curreri, Peter (Technical Monitor)
2002-01-01
The first Materials Science Research Rack (MSRR-1) is the primary facility for U.S. sponsored materials science research on the International Space Station. MSRR-1 is contained in an International Standard Payload Rack (ISPR) equipped with the Active Rack Isolation System (ARIS) for the best possible microgravity environment. MSRR-1 will accommodate dual Experiment Modules and provide simultaneous on-orbit processing operations capability. The first Experiment Module for the MSRR-1, the Materials Science Laboratory (MSL), is an international cooperative activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center (ESTEC). The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts which provide distinct thermal processing capabilities. Module Inserts currently planned for the MSL are a Quench Module Insert, Low Gradient Furnace, and a Solidification with Quench Furnace. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Development (SPD) Group. Transparent furnace assemblies include capabilities for vapor transport processes and annealing of glass fiber preforms. This Experiment Module is replaceable on-orbit. This paper will describe facility capabilities, schedule to flight and research opportunities.
ERIC Educational Resources Information Center
Yu, Chong Ho
2012-01-01
Many American authors expressed their concern that US competitiveness in science, technology, engineering, and mathematics (STEM) is losing ground. Using the Trends in International Mathematics and Science Study (TIMSS) 2007 data, this study investigated how academic self-concept and instrumental motivation influence science test performance among…
SIRTF Science Operations System Design
NASA Technical Reports Server (NTRS)
Green, William
1999-01-01
SIRTF Science Operations System Design William B. Green Manager, SIRTF Science Center California Institute of Technology M/S 310-6 1200 E. California Blvd., Pasadena CA 91125 (626) 395 8572 Fax (626) 568 0673 bgreen@ipac.caltech.edu. The Space Infrared Telescope Facility (SIRTF) will be launched in December 2001, and perform an extended series of science observations at wavelengths ranging from 20 to 160 microns for five years or more. The California Institute of Technology has been selected as the home for the SIRTF Science Center (SSC). The SSC will be responsible for evaluating and selecting observation proposals, providing technical support to the science community, performing mission planning and science observation scheduling activities, instrument calibration during operations and instrument health monitoring, production of archival quality data products, and management of science research grants. The science payload consists of three instruments delivered by instrument Principal Investigators located at University of Arizona, Cornell, and Harvard Smithsonian Astrophysical Observatory. The SSC is responsible for design, development, and operation of the Science Operations System (SOS) which will support the functions assigned to the SSC by NASA. The SIRTF spacecraft, mission profile, and science instrument design have undergone almost ten years of refinement. SIRTF development and operations activities are highly cost constrained. The cost constraints have impacted the design of the SOS in several ways. The Science Operations System has been designed to incorporate a set of efficient, easy to use tools which will make it possible for scientists to propose observation sequences in a rapid and automated manner. The use of highly automated tools for requesting observations will simplify the long range observatory scheduling process, and the short term scheduling of science observations. Pipeline data processing will be highly automated and data-driven, utilizing a variety of tools developed at JPL, the instrument development teams, and Space Telescope Science Institute to automate processing. An incremental ground data system development approach has been adopted, featuring periodic deliveries that are validated with the flight hardware throughout the various phases of system level development and testing. This approach minimizes development time and decreases operations risk. This paper will describe the top level architecture of the SOS and the basic design concepts. A summary of the incremental development approach will be presented. Examples of the unique science user tools now under final development prior to the first proposal call scheduled for mid-2000 will be shown.
NASA Technical Reports Server (NTRS)
Jules, Kenol; Istasse, Eric; Stenuit, Hilde; Murakami, Jeiji; Yoshizaki, Izumi; Johnson-Green, Perry
2008-01-01
With the launch of the STS-122 on February 7, 2008, which delivered the European Columbus science module and the upcoming STS-124 flight, which will deliver the Japanese Kibo science module in May 2008, the International Space Station will become truly International with Europe and Japan joining the United States of America and Russia to perform science on a continuous basis in a wide spectrum of science disciplines. The last science module, Kibo, of the United States Orbital Segment (USOS) will be mated to the station on time to celebrate its first decade in low Earth orbit in October 2008 (end of Increment 17), thus ushering in the second decade of the station with all the USOS science modules mated and performing science. The arrival of the Kibo science module will also mark continuous human presence on the station for eighty eight (88) months, and, with the addition of the ESA science module during the STS-122 flight, the USOS will be made up of four space agencies: CSA, ESA, JAXA and NASA, spanning three continents. With the additional partners coming onboard with different research needs, every effort is being made to coordinate science across the USOS segment in an integrated manner for the benefit of all parties. One of the objectives of this paper is to discuss the integrated manner in which science planning/replanning and prioritization during the execution phase of an increment is being done. The main focus, though, of this paper is to summarize and to discuss the science performed during Increments 16 and 17 (October 2007 to October 2008). The discussion will focus mainly on the primary objectives of each investigation and their associated hypotheses that were investigated during these two Increments. Also, preliminary science results will be discussed for each of the investigation as science results availability permit. Additionally, the paper will briefly touch on what the science complement for these two increments was and what was actually accomplished due to real time science implementation and constraints. Finally, the paper will briefly discuss the science research complements for the next three Increments: Increments 18 to 20, in order to preview how much science might be accomplished during these three upcoming Increments of the station next decade.
ERIC Educational Resources Information Center
Williams, Michelle; Linn, Marcia C.; Hollowell, Gail P.
2008-01-01
The Technology-Enhanced Learning in Science (TELS) center, a National Science Foundation-funded Center for Learning and Teaching, offers research-tested science modules for students in grades 6-12 (Linn et al. 2006). These free, online modules engage students in scientific inquiry through collaborative activities that include online…
Divulgación del Programa Consolider-GTC
NASA Astrophysics Data System (ADS)
Ruiz Zelmanovitch, N.; Mass Hesse, M.; Alfaro, E.
2013-05-01
The Gran Telescopio Canarias (GTC) is the biggest telescope of its class in the world. The CONSOLIDER INGENIO 2010-GTC project, First Science with the GTC: Spanish Astron- omy on the Forefront of the European Astronomy, funded by the Spanish Ministry of Science and Innovation, MICINN (now the Ministry of Economy and competitiveness, MINECO) has used the GTC to: (i) obtain leading science with its data, (ii) increase the involvement of the Spanish astronomical community in developing astronomical instrumentation, (iii) get an important Spanish participation in the new extremely large telescopes generation (ELTs), and (iv) make outreach and communicating to the society the main results. The project CONSOLIDER INGENIO 2010-GTC is structured and defined by objectives: 1) GTC: To optimize the GTC and its instruments; 2) SCIENCE: To develop leading science with the GTC; 3) E-ELT: To take advantage of the technological experience obtained with the GTC for the new generation of giant telescopes; 4) INSTRUMENTATION: To promote the Spanish participation in the new instrument developments for the GTC, VLT and the future ELTs; 5) EDUCATION: International School for Advanced Instrumentation (IScAI); and 6) OUTREACH: Outreach and communication of the project scientific results. This poster resumes five years of science communication around the Consolider-GTC project.
NASA Astrophysics Data System (ADS)
Satria, E.
2018-03-01
Preservice teachers in primary education should be well equipped to meet the challenges of teaching primary science effectively in 21century. The purpose of this research was to describe the projects for the implementation of Science-Technology-Society (STS) approach in Basic Concept of Natural Science course as application of optical and electrical instruments’ material by the preservice teachers in Elementary Schools Teacher Education Program. One of the reasons is the lack of preservice teachers’ ability in making projects for application of STS approach and optical and electrical instruments’ material in Basic Concept of Natural Science course. This research applied descriptive method. The instrument of the research was the researcher himself. The data were gathered through observation and documentation. Based on the results of the research, it was figured out that preservice teachers, in groups, were creatively and successful to make the projects of optical and electrical instruments assigned such as projector and doorbell. It was suggested that the construction of the instruments should be better (fixed and strong structure) and more attractive for both instruments, and used strong light source, high quality images, and it could use speaker box for projector, power battery, and heat sink for electrical instruments.
Aqua Education and Public Outreach
NASA Astrophysics Data System (ADS)
Graham, S. M.; Parkinson, C. L.; Chambers, L. H.; Ray, S. E.
2011-12-01
NASA's Aqua satellite was launched on May 4, 2002, with six instruments designed to collect data about the Earth's atmosphere, biosphere, hydrosphere, and cryosphere. Since the late 1990s, the Aqua mission has involved considerable education and public outreach (EPO) activities, including printed products, formal education, an engineering competition, webcasts, and high-profile multimedia efforts. The printed products include Aqua and instrument brochures, an Aqua lithograph, Aqua trading cards, NASA Fact Sheets on Aqua, the water cycle, and weather forecasting, and an Aqua science writers' guide. On-going formal education efforts include the Students' Cloud Observations On-Line (S'COOL) Project, the MY NASA DATA Project, the Earth System Science Education Alliance, and, in partnership with university professors, undergraduate student research modules. Each of these projects incorporates Aqua data into its inquiry-based framework. Additionally, high school and undergraduate students have participated in summer internship programs. An earlier formal education activity was the Aqua Engineering Competition, which was a high school program sponsored by the NASA Goddard Space Flight Center, Morgan State University, and the Baltimore Museum of Industry. The competition began with the posting of a Round 1 Aqua-related engineering problem in December 2002 and concluded in April 2003 with a final round of competition among the five finalist teams. The Aqua EPO efforts have also included a wide range of multimedia products. Prior to launch, the Aqua team worked closely with the Special Projects Initiative (SPI) Office to produce a series of live webcasts on Aqua science and the Cool Science website aqua.nasa.gov/coolscience, which displays short video clips of Aqua scientists and engineers explaining the many aspects of the Aqua mission. These video clips, the Aqua website, and numerous presentations have benefited from dynamic visualizations showing the Aqua launch, instrument deployments, instrument sensing, and the Aqua orbit. More recently, in 2008 the Aqua team worked with the ViewSpace production team from the Space Telescope Science Institute to create an 18-minute ViewSpace feature showcasing the science and applications of the Aqua mission. Then in 2010 and 2011, Aqua and other NASA Earth-observing missions partnered with National CineMedia on the "Know Your Earth" (KYE) project. During January and July 2010 and 2011, KYE ran 2-minute segments highlighting questions that promoted global climate literacy on lobby LCD screens in movie theaters throughout the U.S. Among the ongoing Aqua EPO efforts is the incorporation of Aqua data sets onto the Dynamic Planet, a large digital video globe that projects a wide variety of spherical data sets. Aqua also has a highly successful collaboration with EarthSky communications on the production of an Aqua/EarthSky radio show and podcast series. To date, eleven productions have been completed and distributed via the EarthSky network. In addition, a series of eight video podcasts (i.e., vodcasts) are under production by NASA Goddard TV in conjunction with Aqua personnel, highlighting various aspects of the Aqua mission.
Space Station life sciences guidelines for nonhuman experiment accommodation
NASA Technical Reports Server (NTRS)
Arno, R.; Hilchey, J.
1985-01-01
Life scientists will utilize one of four habitable modules which constitute the initial Space Station configuration. This module will be initially employed for studies related to nonhuman and human life sciences. At a later date, a new module, devoted entirely to nonhuman life sciences will be launched. This report presents a description of the characteristics of a Space Station laboratory facility from the standpoint of nonhuman research requirements. Attention is given to the science rationale for experiments which support applied medical research and basic gravitational biology, mission profiles and typical equipment and subsystem descriptions, issues associated with the accommodation of nonhuman life sciences on the Space Station, and conceptual designs for the initial operational capability configuration and later Space Station life-sciences research facilities.
Akon - A Penetrator for Europa
NASA Astrophysics Data System (ADS)
Jones, Geraint
2016-04-01
Jupiter's moon Europa is one of the most intriguing objects in our Solar System. This 2000km-wide body has a geologically young solid water ice crust that is believed to cover a global ocean of liquid water. The presence of this ocean, together with a source of heating through tidal forces, make Europa a conceivable location for extraterrestrial life. The science case for exploring all aspects of this icy world is compelling. NASA has selected the Europa Mission (formerly Europa Clipper) to study Europa in detail in the 2020s through multiple flybys, and ESA's JUICE mission will perform two flybys of the body in the 2030s. The US agency has extended to the European Space Agency an invitation to provide a contribution to their mission. European scientists interested in Europa science and exploration are currently organizing themselves, in the framework of a coordinated Europa M5 Inititative to study concurrently the main options for this ESA contribution, from a simple addition of individual instruments to the NASA spacecraft, to a lander to investigate Europa's surface in situ. A high speed lander - a penetrator - is by far the most promising technology to achieve this latter option within the anticipated mass constraints, and studies of such a hard lander, many funded by ESA, are now at an advanced level. An international team to formally propose an Europa penetrator to ESA in response to the anticipated ESA M5 call is growing. The working title of this proposal is Akon (Άκων), named after the highly accurate javelin gifted to Europa by Zeus in ancient Greek mythology. We present plans for the Akon penetrator, which would impact Europa's surface at several hundred metres per second, and travel up to several metres into the moon's subsurface. To achieve this, the penetrator would be delivered to the surface by a dedicated descent module, to be destroyed on impact following release of the penetrator above the surface. It is planned that the instruments to be considered for inclusion on the penetrator and its delivery module will address a wide range of scientific topics, from Europa's tenuous atmosphere, surface and near-surface composition, through geophysics and geomorphology, to habitability and astrobiology. An overview of the instrument complement is also provided.
Computational Challenges in Processing the Q1-Q16 Kepler Data Set
NASA Astrophysics Data System (ADS)
Klaus, Todd C.; Henze, C.; Twicken, J. D.; Hall, J.; McCauliff, S. D.; Girouard, F.; Cote, M.; Morris, R. L.; Clarke, B.; Jenkins, J. M.; Caldwell, D.; Kepler Science Operations Center
2013-10-01
Since launch on March 6th, 2009, NASA’s Kepler Space Telescope has collected 48 months of data on over 195,000 targets. The raw data are rife with instrumental and astrophysical noise that must be removed in order to detect and model the transit-like signals present in the data. Calibrating the raw pixels, generating and correcting the flux light curves, and detecting and characterizing the signals require significant computational power. In addition, the algorithms that make up the Kepler Science Pipeline and their parameters are still undergoing changes (most of which increase the computational cost), creating the need to reprocess the entire data set on a regular basis. We discuss how we have ported all of the core elements of the pipeline to the Pleiades cluster at the NASA Advanced Supercomputing (NAS) Division, the needs driving the port, and the technical challenges we faced. In 2011 we ported the Transiting Planet Search (TPS) and Data Validation (DV) modules to Pleiades. These pipeline modules operate on the full data set and the computational complexity increases roughly by the square of the number of data points. At the time of the port it had become infeasible to run these modules on our local hardware, necessitating the move to Pleiades. In 2012 and 2013 we turned our attention to the front end of the pipeline; Pixel-level Calibration (CAL), Photometric Analysis (PA), and Pre-Search Data Conditioning (PDC). Porting these modules to Pleiades will allow us to reprocess the complete data set on a more frequent basis. The last time we reprocessed all data for the front end we only had 24 months of data. We estimate that the full 48-month data set would take over 200 days to complete on local hardware. When the port is complete we expect to reprocess this data set on Pleiades in about a month. The NASA Science Mission Directorate provided funding for the Kepler Mission.
NASA Astrophysics Data System (ADS)
Ennico, Kimberly; Shirley, Mark; Colaprete, Anthony; Osetinsky, Leonid
2012-05-01
The primary objective of the Lunar Crater Observation and Sensing Satellite (LCROSS) was to confirm the presence or absence of water ice in a permanently shadowed region (PSR) at a lunar pole. LCROSS was classified as a NASA Class D mission. Its payload, the subject of this article, was designed, built, tested and operated to support a condensed schedule, risk tolerant mission approach, a new paradigm for NASA science missions. All nine science instruments, most of them ruggedized commercial-off-the-shelf (COTS), successfully collected data during all in-flight calibration campaigns, and most importantly, during the final descent to the lunar surface on October 9, 2009, after 112 days in space. LCROSS demonstrated that COTS instruments and designs with simple interfaces, can provide high-quality science at low-cost and in short development time frames. Building upfront into the payload design, flexibility, redundancy where possible even with the science measurement approach, and large margins, played important roles for this new type of payload. The environmental and calibration approach adopted by the LCROSS team, compared to existing standard programs, is discussed. The description, capabilities, calibration and in-flight performance of each instrument are summarized. Finally, this paper goes into depth about specific areas where the instruments worked differently than expected and how the flexibility of the payload team, the knowledge of instrument priority and science trades, and proactive margin maintenance, led to a successful science measurement by the LCROSS payload's instrument complement.
The Development and Validation of a Behaviorally Defined Interest Instrument for Science.
ERIC Educational Resources Information Center
Butzow, John W., Jr.
A semantic differential (SD) instrument, modified by replacing words or noun phrases with phrases describing a behavior, was administered to male freshmen students. Six items discriminated between two groups, 97 science majors and 161 non-science majors, on three axes, labelled as evaluation, potency, and activity. To test whether the instrument…
ERIC Educational Resources Information Center
Fraser, Barry J.; And Others
1993-01-01
Describes the development of the Science Laboratory Environment Inventory (SLEI) instrument for assessing perceptions of the psychosocial environment in science laboratory classrooms, and reports validation information for samples of senior high school students from six different countries. The SLEI assesses five dimensions of the actual and…
Cryogenic Caging for Science Instrumentation
NASA Technical Reports Server (NTRS)
Penanen, Konstantin; Chui, Talso C.
2011-01-01
A method has been developed for caging science instrumentation to protect from pyro-shock and EDL (entry, descent, and landing) acceleration damage. Caging can be achieved by immersing the instrument (or its critical parts) in a liquid and solidifying the liquid by cooling. After the launch shock and/or after the payload has landed, the solid is heated up and evaporated.
ERIC Educational Resources Information Center
DeChenne, Sue Ellen; Enochs, Larry
2010-01-01
An instrument to measure the teaching self-efficacy of science, technology, engineering, and mathematics (STEM) GTAs is adapted from a general college teaching instrument (Prieto Navarro, 2005) for the specific teaching environment of the STEM GTAs. The construct and content validity and reliability of the final instrument are indicated. The final…
ERIC Educational Resources Information Center
Erdogan, Ibrahim; Campbell, Todd; Abd-Hamid, Nor Hashidah
2011-01-01
This study describes the development of an instrument to investigate the extent to which student-centered actions are occurring in science classrooms. The instrument was developed through the following five stages: (1) student action identification, (2) use of both national and international content experts to establish content validity, (3)…
The HEAO-A Scanning Modulation Collimator instrument
NASA Technical Reports Server (NTRS)
Roy, A.; Ballas, J.; Jagoda, N.; Mckinnon, P.; Ramsey, A.; Wester, E.
1977-01-01
The Scanning Modulation Collimator X-ray instrument for the HEAO-A satellite was designed to measure celestial radiation in the range between 1 and 15 KeV and to resolve, and correlate, the position of X-ray sources with visible light sources on the celestial sphere to within 5 arc seconds. The positional accuracy is made possible by mechanical collimation of the X-ray sources viewed by the instrument. High sensitivity is provided from two systems each containing four gas filled proportional counters followed by preamplification, signal summing, pulse height analysis, pulse shape discrimination, X-ray event accumulators and telemetry processing electronics.
LYMAN - The far ultraviolet explorer
NASA Technical Reports Server (NTRS)
Moos, Warren; Osantowski, John F.
1989-01-01
The LYMAN FUSE mission concept for far ultraviolet astronomy is presented. The wavelength window from 100 to 1200 A provides access to a wide range of important scientific problems in cosmology, galactic structure, stellar evolution, and planetary magnetospheres, which cannot be studied in any other way. The LYMAN FUSE Phase A study is examining in detail mission operations, instrumentation technology, the construction of the instrument module, and the interfaces between the Instrument Module and the Explorer Platform Mission. Most of the mission observing time will be allotted through a competitive Guest Observer program analogous to that in operation for the IUE.
View of Scientific Instrument Module to be flown on Apollo 15
1971-06-27
S71-2250X (June 1971) --- A close-up view of the Scientific Instrument Module (SIM) to be flown for the first time on the Apollo 15 lunar landing mission. Mounted in a previously vacant sector of the Apollo Service Module (SM), the SIM carries specialized cameras and instrumentation for gathering lunar orbit scientific data. SIM equipment includes a laser altimeter for accurate measurement of height above the lunar surface; a large-format panoramic camera for mapping, correlated with a metric camera and the laser altimeter for surface mapping; a gamma ray spectrometer on a 25-feet extendible boom; a mass spectrometer on a 21-feet extendible boom; X-ray and alpha particle spectrometers; and a subsatellite which will be injected into lunar orbit carrying a particle and magnetometer, and the S-Band transponder.
Development and Calibration of the ART-XC Mirror Modules for the Spectrum Rontgen Gamma Mission
NASA Technical Reports Server (NTRS)
Ramsey, B.; Gubarev, M.; Elsner, R.; Kolodziejczak, J.; Odell, S.; Swartz, D.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.
2013-01-01
The Spectrum-Röntgen-Gamma (SRG) mission is a Russian-lead X-ray astrophysical observatory that carries two co-aligned X-ray telescope systems. The primary instrument is the German-led extended ROentgen Survey with an Imaging Telescope Array (eROSITA), a 7-module X-ray telescope system that covers the energy range from 0.2-12 keV. The complementary instrument is the Astronomical Roentgen Telescope -- X-ray Concentrator (ART-XC or ART), a 7-module Xray telescope system that provides higher energy coverage, up to 30 keV.
On System Engineering a Barter-Based Re-allocation of Space System Key Development Resources
NASA Astrophysics Data System (ADS)
Kosmann, William J.
NASA has had a decades-long problem with cost growth during the development of space science missions. Numerous agency-sponsored studies have produced average mission level development cost growths ranging from 23 to 77%. A new study of 26 historical NASA science instrument set developments using expert judgment to re-allocate key development resources has an average cost growth of 73.77%. Twice in history, during the Cassini and EOS-Terra science instrument developments, a barter-based mechanism has been used to re-allocate key development resources. The mean instrument set development cost growth was -1.55%. Performing a bivariate inference on the means of these two distributions, there is statistical evidence to support the claim that using a barter-based mechanism to re-allocate key instrument development resources will result in a lower expected cost growth than using the expert judgment approach. Agent-based discrete event simulation is the natural way to model a trade environment. A NetLogo agent-based barter-based simulation of science instrument development was created. The agent-based model was validated against the Cassini historical example, as the starting and ending instrument development conditions are available. The resulting validated agent-based barter-based science instrument resource re-allocation simulation was used to perform 300 instrument development simulations, using barter to re-allocate development resources. The mean cost growth was -3.365%. A bivariate inference on the means was performed to determine that additional significant statistical evidence exists to support a claim that using barter-based resource re-allocation will result in lower expected cost growth, with respect to the historical expert judgment approach. Barter-based key development resource re-allocation should work on science spacecraft development as well as it has worked on science instrument development. A new study of 28 historical NASA science spacecraft developments has an average cost growth of 46.04%. As barter-based key development resource re-allocation has never been tried in a spacecraft development, no historical results exist, and an inference on the means test is not possible. A simulation of using barter-based resource re-allocation should be developed. The NetLogo instrument development simulation should be modified to account for spacecraft development market participant differences. The resulting agent-based barter-based spacecraft resource re-allocation simulation would then be used to determine if significant statistical evidence exists to prove a claim that using barter-based resource re-allocation will result in lower expected cost growth.
"Every boy & girl a scientist": instruments for children in interwar Britain.
Keene, Melanie
2007-06-01
Historians of science have identified toys as part of their subject's material culture, but there has been little exploration of the production and use of educational or playful objects. Moreover, academic writing on science for children has focused on the eighteenth and nineteenth centuries. This essay argues that our understanding of historical science education can be enhanced by exploring twentieth-century instruments. It uses the example of Construments sets, with which children could build a wide variety of optical instruments from a series of standardized parts. Invented by C. W. Hansel, a school science master, Construments were founded in and responded to contemporary educational practices and debates over "general science," as well as addressing characteristic interwar concerns about adaptability and economy and older ideals of rational entertainment. By exploring the company's instruments, promotional literature, and magazine, and by drawing on the memories of contemporary users, I reconstruct the contexts in which Construments were used, emphasizing the creation of heterogeneous communities vital for the transmission of skills and knowledge.
Alignment and testing of critical interface fixtures for the James Webb Space Telescope
NASA Astrophysics Data System (ADS)
McLean, Kyle; Bagdanove, Paul; Berrier, Joshua; Cofie, Emmanuel; Glassman, Tiffany; Hadjimichael, Theodore; Johnson, Eric; Levi, Joshua; Lo, Amy; McMann, Joseph; Ohl, Raymond; Osgood, Dean; Parker, James; Redman, Kevin; Roberts, Vicki; Stephens, Matthew; Sutton, Adam; Wenzel, Greg; Young, Jerrod
2017-08-01
NASA's James Webb Space Telescope (JWST) is a 6.5m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Primary Mirror Backplane Support Structure (PMBSS) and Integrated Science Instrument Module (ISIM) Electronics Compartment (IEC) which is designed to integrate to the spacecraft bus via six cup/cone interfaces. Prior to integration to the spacecraft bus, the JWST observatory must undergo environmental testing, handling, and transportation. Multiple fixtures were developed to support these tasks including the vibration fixture and handling and integration fixture (HIF). This work reports on the development of the nominal alignment of the six interfaces and metrology operations performed for the JWST observatory to safely integrate them for successful environmental testing.
Alignment and Testing of Critical Interface Fixtures for the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Mclean, Kyle; Bagdanove, Paul; Berrier, Joshua; Cofie, Emmanuel; Glassman, Tiffany; Hadjimichael, Theodore; Johnson, Eric; Levi, Joshua; Lo, Amy; McMann, Joseph;
2017-01-01
NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Primary Mirror Backplane Support Structure (PMBSS) and Integrated Science Instrument Module (ISIM) Electronics Compartment (IEC) which is designed to integrate to the spacecraft bus via six cup/cone interfaces. Prior to integration to the spacecraft bus the JWST observatory must undergo environmental testing, handling, and transportation. Multiple fixtures were developed to support these tasks including the vibration fixture and handling and integration fixture (HIF). This work reports on the development of the nominal alignment of the six interfaces and metrology operations performed for the JWST observatory to safely integrate them for successful environmental testing.
Alignment and Testing of Critical Interface Fixtures for the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Mclean, Kyle; Bagdanove, Paul; Berrier, Joshua; Cofie, Emmanuel; Glassman, Tiffany; Hadjimichael, Theodore; Johnson, Eric; Levi, Joshua; Lo, Amy; McMann, Joseph;
2017-01-01
NASAs James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Primary Mirror Backplane Support Structure (PMBSS) and Integrated Science Instrument Module (ISIM) Electronics Compartment (IEC) which is designed to integrate to the spacecraft bus via six cupcone interfaces. Prior to integration to the spacecraft bus the JWST observatory must undergo environmental testing, handling, and transportation. Multiple fixtures were developed to support these tasks including the vibration fixture and handling and integration fixture (HIF). This work reports on the development of the nominal alignment of the six interfaces and metrology operations performed for the JWST observatory to safely integrate them for successful environmental testing.
Testing of Large Diameter Fresnel Optics for Space Based Observations of Extensive Air Showers
NASA Technical Reports Server (NTRS)
Adams, James H.; Christl, Mark J.; Young, Roy M.
2011-01-01
The JEM-EUSO mission will detect extensive air showers produced by extreme energy cosmic rays. It operates from the ISS looking down on Earth's night time atmosphere to detect the nitrogen fluorescence and Cherenkov produce by the charged particles in the EAS. The JEM-EUSO science objectives require a large field of view, sensitivity to energies below 50 EeV, and must fit within available ISS resources. The JEM-EUSO optic module uses three large diameter, thin plastic lenses with Fresnel surfaces to meet the instrument requirements. A bread-board model of the optic has been manufactured and has undergone preliminary tests. We report the results of optical performance tests and evaluate the present capability to manufacture these optical elements.
NASA Technical Reports Server (NTRS)
Garrison, Matthew; Rashford, Robert; Switzer, Timothy; Shaw, David; White, Bryant; Lynch, Michael; Huber, Frank; Bachtell, Neal
2009-01-01
The thermal performance of NASA s planned James Webb Space Telescope is highly reliant on a collection of directional baffles that are part of the Integrated Science Instrument Module Electronics Compartment. In order to verify the performance of the baffle concept, two test assemblies were recently fabricated and tested at the Goddard Space Flight Center. The centerpiece of the testing was a fixture that used bolometers to measure the emission field through the baffles while the radiator panels and baffles ran a flight-like temperature. Although not all test goals were able to be met due to facility malfunctions, the test was able to prove the design viability enough to gain approval to begin manufacturing the flight article.
1999-02-10
In the Vertical Processing Facility (VPF), workers prepare the shrouded Chandra X-ray Observatory for its lift to a vertical position. The telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
1999-02-10
In the Vertical Processing Facility (VPF), the shrouded Chandra X-ray Observatory achieves a vertical position via the overhead crane. The telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
ERIC Educational Resources Information Center
Tufts, Mark; Higgins-Opitz, Susan B.
2014-01-01
Health Science students at the University of KwaZulu-Natal perform better in their professional modules compared with their physiology modules. The pass rates of physiology service modules have steadily declined over the years. While a system is in place to identify "at-risk" students, it is only activated after the first semester. As a…
ERIC Educational Resources Information Center
Subali, Bambang; Paidi; Mariyam, Siti
2016-01-01
This research aims at measuring the divergent thinking of basic skills of science process skills (SPS) of life aspects in Natural Sciences subjects on Elementary School. The test instruments used in this research have been standardized through the development of instruments. In this case, the tests were tried out to 3070 students. The results of…
Making Authentic Data Accessible: The Sensing the Environment Inquiry Module
ERIC Educational Resources Information Center
Griffis, Kathy; Thadani, Vandana; Wise, Joe
2008-01-01
We report on the development of a middle school life sciences inquiry module, Sensing the Environment. This "data-enriched" inquiry module includes a series of activities exploring the nature of science, photosynthesis, transpiration, and natural selection, which culminates in students' querying authentic environmental data to support a scientific…
DESIGN AND INSTRUMENTATION OF A POUND-WATKINS NUCLEAR MAGNETIC-RESONANCE SPECTROMETER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geiger, F.E. Jr.
Problems of instrumentation of a Pound-Watkins nuclear magnetic- resonance spectrometer were investigated. Experimertal data were collected for the sensitivity of the os cillator to a signal from a Watkins calibrator as a function of modulation frequencies from 30 cps to 5 kc and rf tank voltsges from 0.05 to 0.7v/sub rms/. The results confirm Watkins" oscillator theory. An expression was derived for the amount of frequency modulation of the rf oscillator by the Watkins calibrator. For representative values of rf circuit components, this frequency modulation is roughly 0.5 cps at 10 Mc. The rf sample probes constructed for this projectmore » are almost free of modulation pickup in modulation fields as high as 23.5 oersteds (280 cps) and a steady field of 7000 oersteds. (auth)« less
Evaluating the High School Lunar Research Projects Program
NASA Astrophysics Data System (ADS)
Shaner, A. J.; Shipp, S. S.; Allen, J.; Kring, D. A.
2012-12-01
The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA's and NLSI's objective to train the next generation of scientists, CLSE's High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 140 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research. Three instruments have been developed or modified to evaluate the extent to which the High School Lunar Research Projects meets its objectives. These three instruments measure changes in student views of the nature of science, attitudes towards science and science careers, and knowledge of lunar science. Exit surveys for teachers, students, and mentors were also developed to elicit general feedback about the program and its impact. The nature of science instrument is an open-ended, modified version of the Views of Nature of Science questionnaire. The science attitudes Likert-scale instrument is a modified version of the Attitudes Toward Science Inventory. The lunar science content instrument was developed by CLSE education staff. All three of these instruments are administered to students before and after their research experience to measure the program's impact on student views of the nature of science, attitudes toward science, and knowledge of lunar science. All instruments are administered online via Survey Monkey®. When asked if the program changed the way they view the Moon, 77.4% of students (n=53) replied "yes" and described their increase in knowledge of the formation of the Moon, lunar surface processes, etc. Just under half (41.5%) of the students reported that their experience in the program has contributed to their consideration of a career in science. When asked about obstacles teams had to overcome, teachers described issues with time, student motivation and technology. However, every teacher enthusiastically agreed that the authentic research experience was worthwhile to their students. Detailed evaluation results for the 2011-2012 program will be presented.
The life science X-ray scattering beamline at NSLS-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiFabio, Jonathan; Yang, Lin; Chodankar, Shirish
We report the current development status of the High Brightness X-ray Scattering for Life Sciences (or Life Science X-ray Scattering, LiX) beamline at the NSLS-II facility of Brookhaven National Laboratory. This instrument will operate in the x-ray energy range of 2.1-18 keV, provide variable beam sizes from 1 micron to ~0.5 mm, and support user experiments in three scientific areas: (1) high-throughput solution scattering, in-line size exclusion chromatography and flow mixers-based time-resolved solution scattering of biological macro-molecules, (2) diffraction from single- and multi-layered lipid membranes, and (3) scattering-based scanning probe imaging of biological tissues. In order to satisfy the beammore » stability required for these experiments and to switch rapidly between different types of experiments, we have adopted a secondary source with refractive lenses for secondary focusing, a detector system consisting of three Pilatus detectors, and specialized experimental modules that can be quickly exchanged and each dedicated to a defined set of experiments. The construction of this beamline is on schedule for completion in September 2015. User experiments are expected to start in Spring 2016.« less
The life science X-ray scattering beamline at NSLS-II
DiFabio, Jonathan; Yang, Lin; Chodankar, Shirish; ...
2015-09-30
We report the current development status of the High Brightness X-ray Scattering for Life Sciences (or Life Science X-ray Scattering, LiX) beamline at the NSLS-II facility of Brookhaven National Laboratory. This instrument will operate in the x-ray energy range of 2.1-18 keV, provide variable beam sizes from 1 micron to ~0.5 mm, and support user experiments in three scientific areas: (1) high-throughput solution scattering, in-line size exclusion chromatography and flow mixers-based time-resolved solution scattering of biological macro-molecules, (2) diffraction from single- and multi-layered lipid membranes, and (3) scattering-based scanning probe imaging of biological tissues. In order to satisfy the beammore » stability required for these experiments and to switch rapidly between different types of experiments, we have adopted a secondary source with refractive lenses for secondary focusing, a detector system consisting of three Pilatus detectors, and specialized experimental modules that can be quickly exchanged and each dedicated to a defined set of experiments. The construction of this beamline is on schedule for completion in September 2015. User experiments are expected to start in Spring 2016.« less
The life science x-ray scattering beamline at NSLS-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiFabio, Jonathan; Chodankar, Shirish; Pjerov, Sal
We report the current development status of the High Brightness X-ray Scattering for Life Sciences (or Life Science X-ray Scattering, LiX) beamline at the NSLS-II facility of Brookhaven National Laboratory. This instrument will operate in the x-ray energy range of 2.1-18 keV, provide variable beam sizes from 1 micron to ∼0.5 mm, and support user experiments in three scientific areas: (1) high-throughput solution scattering, in-line size exclusion chromatography and flow mixers-based time-resolved solution scattering of biological macro-molecules, (2) diffraction from single- and multi-layered lipid membranes, and (3) scattering-based scanning probe imaging of biological tissues. In order to satisfy the beammore » stability required for these experiments and to switch rapidly between different types of experiments, we have adopted a secondary source with refractive lenses for secondary focusing, a detector system consisting of three Pilatus detectors, and specialized experimental modules that can be quickly exchanged and each dedicated to a defined set of experiments. The construction of this beamline is on schedule for completion in September 2015. User experiments are expected to start in Spring 2016.« less
A hierarchical instrumental decision theory of nicotine dependence.
Hogarth, Lee; Troisi, Joseph R
2015-01-01
It is important to characterize the learning processes governing tobacco-seeking in order to understand how best to treat this behavior. Most drug learning theories have adopted a Pavlovian framework wherein the conditioned response is the main motivational process. We favor instead a hierarchical instrumental decision account, wherein expectations about the instrumental contingency between voluntary tobacco-seeking and the receipt of nicotine reward determines the probability of executing this behavior. To support this view, we review titration and nicotine discrimination research showing that internal signals for deprivation/satiation modulate expectations about the current incentive value of smoking, thereby modulating the propensity of this behavior. We also review research on cue-reactivity which has shown that external smoking cues modulate expectations about the probability of the tobacco-seeking response being effective, thereby modulating the propensity of this behavior. Economic decision theory is then considered to elucidate how expectations about the value and probability of response-nicotine contingency are integrated to form an overall utility estimate for that option for comparison with qualitatively different, nonsubstitute reinforcers, to determine response selection. As an applied test for this hierarchical instrumental decision framework, we consider how well it accounts for individual liability to smoking uptake and perseveration, pharmacotherapy, cue-extinction therapies, and plain packaging. We conclude that the hierarchical instrumental account is successful in reconciling this broad range of phenomenon precisely because it accepts that multiple diverse sources of internal and external information must be integrated to shape the decision to smoke.
Purging sensitive science instruments with nitrogen in the STS environment
NASA Technical Reports Server (NTRS)
Lumsden, J. M.; Noel, M. B.
1983-01-01
Potential contamination of extremely sensitive science instruments during prelaunch, launch, and earth orbit operations are a major concern to the Galileo and International Solar Polar Mission (ISPM) Programs. The Galileo Program is developing a system to purify Shuttle supplied nitrogen gas for in-flight purging of seven imaging and non-imaging science instruments. Monolayers of contamination deposited on critical surfaces can degrade some instrument sensitivities as much as fifty percent. The purging system provides a reliable supply of filtered and fried nitrogen gas during these critical phases of the mission when the contamination potential is highest. The Galileo and ISPM Programs are including the system as Airborne Support Equipment (ASE).
NASA Astrophysics Data System (ADS)
Shin, Jongho; Lee, Hyunjoo; McCarthy-Donovan, Alexander; Hwang, Hyeyoung; Yim, Sonyoung; Seo, EunJin
2015-06-01
The purpose of the study was to examine whether gender differences exist in the mean levels of and relations between adolescents' home environments (parents' view of science, socio-economic status (SES)), motivations (intrinsic and instrumental motivations, self-beliefs), and pursuit of science careers. For the purpose, the Programmed for International Student Assessment 2006 data of Korean 15-year-old students were analysed. The results of the study showed that girls had lower levels of science intrinsic and instrumental motivations, self-beliefs, and science-career pursuit (SCP) as well as their parents' values in science less than boys. Gender similarities, rather than gender differences, existed in patterns of causal relationship among home environments, motivations, and SCP. The results showed positive effects for parents' higher value in science and SES on motivations, SCP, and for intrinsic and instrumental motivations on SCP for girls and boys. These results provide implications for educational interventions to decrease gender differences in science motivations and SCP, and to decrease adolescents' gender stereotypes.
Simple system for locating ground loops.
Bellan, P M
2007-06-01
A simple low-cost system for rapid identification of the cables causing ground loops in complex instrumentation configurations is described. The system consists of an exciter module that generates a 100 kHz ground loop current and a detector module that determines which cable conducts this test current. Both the exciter and detector are magnetically coupled to the ground circuit so there is no physical contact to the instrumentation system under test.